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Abstract

We introduce VOICECRAFT, a token infilling
neural codec language model, that achieves
state-of-the-art performance on both speech
editing and zero-shot text-to-speech (TTS) on
audiobooks, internet videos, and podcasts1.
VOICECRAFT employs a Transformer decoder
architecture and introduces a token rearrange-
ment procedure that combines causal mask-
ing and delayed stacking to enable generation
within an existing sequence. On speech editing
tasks, VOICECRAFT produces edited speech
that is nearly indistinguishable from unedited
recordings in terms of naturalness, as evaluated
by humans; for zero-shot TTS, our model out-
performs prior SotA models including VALL-
E and the popular commercial model XTTS
v2. Crucially, the models are evaluated on
challenging and realistic datasets, that consist
of diverse accents, speaking styles, recording
conditions, and background noise and music,
and our model performs consistently well com-
pared to other models and real recordings. In
particular, for speech editing evaluation, we
introduce a high quality, challenging, and re-
alistic dataset named REALEDIT. We encour-
age readers to listen to the demos at https:
//jasonppy.github.io/VoiceCraft_web.

1 Introduction

We introduce VOICECRAFT, a Transformer-based
neural codec language model (NCLM) that per-
forms infilling generation of neural speech codec to-
kens autoregressively conditioned on bidirectional
context. VOICECRAFT achieves state-of-the-art
(SotA) performance on both speech editing (shown
in Fig. 1) and zero-shot TTS. Our method is based
on a two-step token rearrangement procedure that
consists of a causal masking step and delayed
stacking step. The causal masking technique is in-
spired by the success of causal masked multimodal

1Data, code, and model weights are available at https:
//github.com/jasonppy/VoiceCraft.
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Figure 1: Speech editing with VOICECRAFT. Human
listeners prefer VOICECRAFT edited speech over the
original real recording 48% of the time in side-by-side
naturalness comparison (details in §5.3)

model in joint text-image modeling (Aghajanyan
et al., 2022), and our proposed technique works
for speech codec sequences, which enables autore-
gressive generation with bidirectional context. In
addition, we further integrate causal masking with
delayed stacking (Kharitonov et al., 2021a; Copet
et al., 2023) as our proposed token rearrangement
procedure, to ensure efficient multi-codebook mod-
eling.

To evaluate speech editing, we manually crafted
a first-of-its-kind, realistic, and challenging dataset
named REALEDIT. REALEDIT consists of 310
real world speech editing examples, with wave-
forms sourced from audiobooks (Zen et al., 2019),
YouTube videos (Chen et al., 2021a), and Spo-
tify podcasts (Clifton et al., 2020), and duration
ranging from 5 seconds to 12 seconds. To create
the target transcripts, the transcripts of the source
speech are edited in such a way that the edited
transcripts remain grammatically correct and are
semantically coherent. The dataset is designed to
cover a wide range of editing scenarios, includ-
ing insertion, deletion, substitution, and multi-span
editing, with the length of the edited text ranging
from 1 word to 16 words. Compared to commonly
used speech synthesis evaluation datasets that only
contain audiobooks such as VCTK (Yamagishi
et al., 2019), LJSpeech (Ito and Johnson, 2017),
and LibriTTS (Zen et al., 2019), REALEDIT is
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more challenging in that the recordings have di-
verse content, accents, speaking styles, recording
conditions, and background sounds. We believe
that the realism and diversity of REALEDIT makes
it a reliable indicator of the practicality of speech
editing models in the real world.

In the subjective human listening tests, VOICE-
CRAFT significantly outperforms prior SotA
speech editing model on REALEDIT. Importantly,
the edited speech produced by VOICECRAFT is
nearly indistinguishable from the original unedited
recording in terms of naturalness. We found that
VOICECRAFT generalizes well to zero-shot TTS
without any finetuning, achieving SotA perfor-
mance on a dataset comprised of audiobooks and
YouTube videos, outperforming strong baselines
including reproduced VALL-E (Wang et al., 2023a)
and the popular commercial model XTTS v2 (CO-
QUI, 2023). In summary, our contributions are:

1. We introduce VOICECRAFT, a neural codec
language model for speech editing that gener-
ates synthesized speech that is nearly indistin-
guishable from in-the-wild recordings accord-
ing to human listeners. We also release the
code and model weights for VOICECRAFT.

2. We show that VOICECRAFT generalizes well
to zero-shot TTS without finetuning.

3. We release a high quality, challenging, and
realistic speech editing evaluation dataset
REALEDIT.

2 Related Work

Neural codec langauge models (NCLM) and
zero-shot TTS. Tokenizing speech signals into
sequences of learnable, discrete units and then
training a language model on the resulting unit
sequences was initially proposed in the context
of textless NLP (Hsu et al., 2021; Lakhotia et al.,
2021; Kharitonov et al., 2021b; Nguyen et al.,
2022), where the goal is to perform NLP tasks
directly on spoken utterances without the need
to first transcribe the speech into text. Recently,
NCLMs that operates on tokens from Residual vec-
tor quantization (RVQ)-based models (Zeghidour
et al., 2021; Defossez et al., 2022) attract increased
attention due to its high quality generation. For
example, AudioLM (Borsos et al., 2022a) exhibits
strong performance on long-term coherent speech
continuation. Zero-shot TTS is a task where a
model needs to synthesize speech in a target voice

which was unseen during training, given only the
target transcript and a short reference recording
of the target voice. Framing zero-shot TTS as
transcript-conditioned speech continuation, VALL-
E (Wang et al., 2023a) and Spear-TTS (Kharitonov
et al., 2023) are the first applications of NCLMs on
this task, significantly outperforming non-NCLM
approaches. Zhang et al. (2023) extends VALL-E
to cross-lingual TTS. Guo et al. (2022); Yang et al.
(2023); Liu et al. (2023); Ji et al. (2023); Lyth and
King (2024) adapt NCLMs style-controlled speech
synthesis. Song et al. (2024); Du et al. (2024b) en-
hance phoneme alignment in NCLMs to reduce er-
ror. Wang et al. (2023b) proposes a unified NCLM
for both speech generation and recognition tasks.
Borsos et al. (2023) proposes an efficient paral-
lel decoding method. Jiang et al. (2024) proposes
disentangled timbre and prosody modeling, where
the latter is modeled with a NCLM. NCLMs have
also been successfully applied to other audio do-
mains. Kreuk et al. (2022) applies NCLM to sound
effects generation, and Agostinelli et al. (2023);
Donahue et al. (2023); Garcia et al. (2023); Copet
et al. (2023) use NCLMs for music generation.

Speech editing. This task requires a model
to alter words or phrases within an utterance to
match a target transcript, but the regions of the
original speech not targeted for editing must re-
main unchanged (see Fig. 1 for an example). Early
methods achieve text-guided speech insertion and
substitution by combining a single speaker TTS
model and a voice conversion model to generate
desired speech segment, which is then concate-
nated with unedited part (Jin et al., 2017). Since
the generation is not conditioned on the unedited
part of the speech, the result sounds unnatural due
to prosody mismatch and boundary artifacts (Morri-
son et al., 2021). More recent speech editing mod-
els have attempted to condition their generation
on surrounding speech context. Tan et al. (2021)
uses two unidirectional LSTM models with bidirec-
tional fusion. Wang et al. (2022); Bai et al. (2022);
Borsos et al. (2022b) uses the masked reconstruc-
tion objective with Convolutional or Transformer
models to further improve contextualization. Flu-
entSpeech (Jiang et al., 2023b) is a diffusion-based
speech editing model that achieves SotA perfor-
mance on speech editing on LibriTTS and VCTK.

The research community starts to investigate the
possibility of having a unified model for both zero-
shot TTS and speech editing. Yin et al. (2022);
Jiang et al. (2023a) propose modular models for
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the two tasks, while our model is end-to-end. Con-
current work SpeechX (Wang et al., 2023c) adapt
VALL-E by prompt tuning for a range of tasks
including speech editing and zero-shot TTS, but
no human evaluation is conducted in their paper.
Concurrent work UniCATS (Du et al., 2024a) is a
diffusion-based modular model for the two tasks.
However their model is only evaluated on masked
speech reconstruction of span length less than 2 sec-
onds, while our model is evaluated on as much as
16 words editing. Voicebox (Le et al., 2023) is a re-
cent flow matching based model capable of a wide
range of tasks including speech editing and zero-
shot TTS. However the speech editing capability is
not evaluated in their paper, and only shown in their
demo page. We therefore compare our model’s edit-
ing results with Voicebox’s on our demo page using
on the same examples from their demo page.

3 Method

VOICECRAFT casts both sequence infilling (for
speech editing) and continuation (for zero-shot
TTS) as a simple left-to-right language mod-
eling by rearranging neural codec’s output to-
kens. The rearrangement involves two steps: (1)
causal masking (§3.1) to enable autoregressive
continuation/infilling with bidirectional context
and (2) delayed stacking (§3.2) to ensure efficient
multi-codebook modeling. VOICECRAFT employs
decoder-only Transformers and is trained with an
autoregressive sequence prediction (§3.3). We in-
troduce the inference setup for speech editing and
zero-shot TTS in §3.4.

3.1 Rearrangement Step 1: Causal Masking

As shown on the left hand side of Fig. 2, given a
continuous speech waveform as input, we first use
Encodec (Defossez et al., 2022) to quantize it into
a T by K codec matrix X , where T is the number
of temporal frames, and K is the number of RVQ
codebooks. X can be written as (X1, · · · , XT ),
where Xt is a vector of length K representing the
codes from different codebooks at time step t, and
we assume that code from codebook k models the
residual from codebook k − 1. During training,
our goal is to randomly mask some span of tokens
(Xt0 , . . . , Xt1), and then autoregressively predict
these masked tokens conditioned on all of the un-
masked tokens. This is a problem when t1 < T , be-
cause we cannot condition on future outputs when
performing autoregressive generation. We need to

modify the masking on X so that it is causal, by
moving the span to be masked to the end of the
sequence, so that when infilling these tokens the
model can condition on both past and future un-
masked tokens (Aghajanyan et al., 2022; Donahue
et al., 2020; Bavarian et al., 2022).

The procedure outlined above can be trivially ex-
tended to multiple masked spans by simply moving
all masked spans to the end of the sequence. The
number of spans to be masked n is sampled from
Poison(λ), and then for each span, we sample a
span length l ∼ Uniform(1, L). Finally, we ran-
domly select the locations of the spans within X
under the constraint that they do not overlap with
each other. The selected n spans are then replaced
with mask tokens 〈M1〉, · · · , 〈Mn〉. The original
tokens within these masked spans are moved to the
end of the sequence X , with each span preceded
by its corresponding mask token.

Consider this example: let X = (X1, . . . , X6)
and imagine we wish to mask a single span from
X2 to X4. The original sequence X is rearranged
into Y = (Y1; 〈M1〉;Y2; 〈M1〉;Y3; ), where Y1 =
(X1), Y2 = (X5, X6), and Y3 = (X2, X3, X4).
We call Y1 and Y2 the unmasked spans, and Y3 the
masked span. An end of span or EOS token is added
to the end of each masked span (in this example at
the end of Y3), and an end of utterance or EOU token
is added to the end of the utterance (i.e. Y2). For
simplicity, we do not explicitly denote these special
tokens and assume they are part of the spans.

3.2 Rearrangement Step 2: Delayed Stacking
After the causal masking token rearrangement,
each timestep of the rearranged matrix Y is vec-
tor of K tokens. Copet et al. (2023) observed
that when performing autoregressive generation
over stacked RVQ tokens, it is advantageous to
apply a delay pattern so that the prediction of
codebook k at time t can be conditioned on the
prediction of codebook k − 1 from the same
timestep. We take a similar approach which we
describe here. Assume a span Ys is of shape
Ls × K. Applying the delay pattern rearranges
it into Zs = (Zs,0, Zs,1, · · · , Zs,Ls+K−1), where
Zs,t, t ∈ [Ls +K − 1] is defined as2:

Zs,t = (Ys,t,1, Ys,t+1,2, · · · , Ys,t−K+1,K) (1)

where Ys,t−k+1,k denotes the token located at coor-
dinate (t− k+1, k) in matrix Ys, i.e. the kth code-
book entry at the (t− k + 1)th timestep. To make

2[N ] represents integer set {0, 1, · · · , N}
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Figure 2: An example of the token rearrangement procedure and modeling framework. The rearrangement procedure
involves two steps: (1) Causal masking, where masked spans are replaced with mask tokens and moved to the end,
and (2) Delayed stacking, where tokens are shifted in the time dimension based on their codebook index.

sure that ∀t ∈ [Ls +K − 1], Zs,t contains K valid
tokens, we introduce a special learnable [empty]
token and define Ys,t−k+1,k ≜ [empty] ,∀t ∈
{s : s < k ∪ s − k + 1 > Ls}. Note that
the mask tokens are not part of any span and
are not changed during delayed stacking. We
define the resulting matrix of delayed stacking
Z = (Z1, 〈M1〉, Z2, 〈M1〉, · · · , 〈MS−1

2
〉, ZS) (as-

suming Y consists of S spans). See the diagram
for Z in Fig. 2 for an illustration.

3.3 Modeling
As shown in the right hand side of Fig. 2, we use a
Transformer decoder to model Z autoregressively,
conditioned on transcript of the speech W . There-
fore, the input to the decoder is [W ;Z], where “;”
denotes concatenation. At timestep t of span s in
codec matrix Z, the model predicts all K tokens
of Zs,t simultaneously, by using K MLP heads
to project the transformer’s final hidden state to
K sets of logits, one for each of the K codebooks.
Note that the prediction is conditioned on transcript
W , and all tokens in Z before Zs,t, denoted as Hs,t.
Mathematically, the Transformer decoder models
the factorized conditional distribution of Z:

Pθ(Z|W ) =
∏
s

∏
t

Pθ(Zs,t|W,Hs,t) (2)

=
∏
s

∏
t

K∏
k=1

Pθ(Zs,t,k|W,Hs,t) (3)

Where θ represent the parameters of the model.
Equation 2 is the autoregressive factorization
across time, while Equation 3 is the factorization
across codebooks given an independence assump-

tion - given W and Hs,t, the K RVQ codes in Zs,t

are assumed to be independent of each other. We
argue in appendix D that this assumption is mild.

With the token level probability formulation in
Equation 3, we derive the training loss as the neg-
ative log likelihood L(θ) = − logPθ(Z|W ) =
−
∑K

k=1 Lk(θ). Empirically, we found that weight-
ing the first residual codebooks more than the lat-
ter codebooks leads to better performance, and
therefore our final loss is L(θ) =

∑K
k=1 αkLk(θ),

where (αk)
K
k=1 are tunable hyperparameters. Note

that we follow Aghajanyan et al. (2022) and cal-
culate the prediction loss on all tokens (not just
the tokens in the masked spans), except for mask
tokens and [empty] tokens.

3.4 Inference

Speech Editing. The setting for speech editing is
the following: we have a speech recording R and
its transcript W , and we want the model to mod-
ify only the relevant spans of R so that it matches
the target transcript W ′. We assume that W ′ is an
edited version of W , where some words have been
inserted, substituted, or deleted. This task is almost
exactly the same as the training task, with two dif-
ferences: 1) during training, the input transcript is
simply the transcript of the original recording W ,
while during inference it is a modified transcript
W ′ 2) during training, the spans to be masked (i.e.
edited) are chosen randomly. During inference, we
select them by comparing the original transcript
and the target transcript to identify the words that
should be masked out, and then use the word level
forced alignment of the original transcript to iden-
tify the codec token spans that correspond to these
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Table 1: Examples of the speech editing dataset REALEDIT. More examples are shown in table 8.

Edit Types Original Edited

deletion I wrote the title of the course many years ago, ah,
when I created this course.

I wrote the title when I created this course.

insertion And we’re at this point. And we’re all extremely excited at this point.

substitution,
substitution

See why it’s extremely valuable to it’s kind of like
it’s kind of like having a wall hack to watch a demo.

See why it’s extremely important right? it’s kind of
like having a rough time to watch a demo.

words to be masked. To ensure a smooth transition
between the edited speech and the unedited speech,
the neighboring words surrounding the span to be
edited also need to be slightly modified in order to
model co-articulation effects. Therefore, we spec-
ify a small margin hyperparameter ϵ, and extend
the mask span length by ϵ on both the left and right
sides3. During autoregressive generation, we feed
the model the target transcript with all unmasked
spans, with mask tokens inserted in the locations
where the edits should take place. We then have
the model autoregressively continue this sequence,
whereby it fills in the masked spans. The generated
codec tokens are then spliced back into their correct
location in the utterance, and we map the complete
codec token sequence back to a waveform using
the Encodec decoder network.

Zero-shot TTS. As we previously noted, zero-
shot TTS for our model is straightforward because
it simply corresponds to performing an insertion
edit at the end of the original utterance. In this
case, the model is provided a voice prompt with
its transcription, as well as the target transcript of
the speech to be generated. The three inputs are
concatenated together and fed to the model, after
which it generates the codec sequence of the target
transcript autoregressively.

4 REALEDIT: a realistic and challenging
speech editing dataset

To support as realistic an evaluation as possible,
we constructed a first-of-its-kind dataset of 310
manually-crafted speech editing examples. Each
example consists of a tuple: (original audio, origi-
nal transcript, edited transcript). The dataset con-
tains 100 utterances from LibriTTS (dev-clean and
dev-other) (Zen et al., 2019), 100 utterances from
YouTube (from Gigaspeech testset) (Chen et al.,
2021a) and 110 utterances from the Spotify Pod-

3for substitution and deletion, the spans that are to be
masked are just those words that are different from the target
plus the margin; for insertion, the spans are just left and right
margin spanning from the middle of the two words where the
insertion happens

cast dataset (Clifton et al., 2020). We manually
checked the utterances for accuracy, then had na-
tive English speakers revise them to create edited
transcripts. For each utterance, we determine the
type of modification using predefined probability
distributions of editing type, number of disjoint
spans to be edited, and editing span length. Specifi-
cally, we study the following categories: 1) number
of edited spans: 1 or 2; 2) type of edits: insertion,
deletion and substitution; 3) editing span length:
short (1-2 words), medium (3-6 words), long (7-
12 words). Crucially, a edited transcript must be
grammatically correct and semantically coher-
ent. Examples of the dataset are shown in table 1
and 8, and statistics are shown in table 2,

Table 2: Dataset statistics for speech editing evaluation.
Note that for 2-span editing, each example is edited
using 2 of the 3 edit types.

length type Insert. Delet. Substi. Total

1-2 words (1 span) 8 17 38 63
3-6 words (1 span) 22 24 79 125
7-12 words (1 span) 15 11 56 82

1 span total 45 52 173 270

2 spans total 13 13 54 40

5 Experiments

5.1 Setup

Data. Gigaspeech training set (Chen et al., 2021a)
is used as the training data, which contains 9k hours
of audiobooks, podcasts, and YouTube videos at
16kHz audio sampling rate. Audio files that shorter
than 2 seconds are dropped. For ablation studies,
we use the masked reconstruction task, and a 1000-
utterance random subset of Gigaspeech validation
set as the testing utterances (detailed in §C). For
speech editing evaluation, we use the proposed
REALEDIT dataset. For zero-shot TTS evalua-
tion, we constructed a 250 prompt-transcript paired
dataset from LibriTTS (Zen et al., 2019) and the
YouTube portion of the Gigaspeech test set, with
half of the examples drawn from each dataset. The
length of each voice prompt is kept as close as pos-
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sible to 3 seconds long, with the constraint applied
that we only cut the audio between complete words.
The transcript is a concatenation of the transcript
of the voice prompt and the target transcript. The
target transcripts are chosen from different utter-
ances spoken by the same speaker as the prompt,
and range from 8 to 40 words in length. We only
select utterances with a WER lower than 15% by
Whisper medium.en (Radford et al., 2022).

Model. Encodec (Defossez et al., 2022) is used
as the speech tokenizer, which has 4 RVQ code-
books each with vocabulary size of 2048, and a
codec framerate of 50Hz on 16kHz recordings. (see
§C for detailed config). To choose the number of
spans to mask in training, we use a Poison(1) distri-
bution truncated to a minimum of 1 and maximum
of 3. Span lengths are sampled from Uniform(1,
600) i.e. the masked speech can be as long as
12 seconds. At each time step, the embeddings of
codes from different codebooks are summed (Wang
et al., 2023a), then added by sinusoidal positional
encoding (Vaswani et al., 2017), before being fed
to the transformer. Text transcripts are phonemized
based on the IPA phoneset using the toolkit pro-
vided by Bernard and Titeux (2021). Our main
VOICECRAFT model has 16 transformers layer
with hidden/FFN dimensions of 2048/8192, and
12 attention heads. The output of the last layers
are fed to four separate 2-layer MLP modules to
get prediction logits. Our Main model has 830M
parameters and codebook weight hyperparameters
α is set to be (5, 1, 0.5, 0.1). Ablations on model
sizes and codebook weights are shown in §5.2.

Training and inference. The training of the En-
codec model largely follows the setting in Copet
et al. (2023), detailed in §C. To train VOICE-
CRAFT, we used the ScaledAdam optimizer and
Eden Scheduler proposed in (Yao et al., 2024) with
a base learning rate of 0.05, batch size of 400k
frames (i.e. 133.2 minutes), and total training step
of 50k with gradient accumulation. The training
of the 830M VOICECRAFT model took about 2
weeks on 4 NVIDIA A40 GPUs. More details
can be found in §C. We compare the performance
of ScaledAdam and AdamW in §A.1. For infer-
ence, we use Nucleus sampling (Holtzman et al.,
2020) with p = 0.8 and a temperature of 1 for all
experiments. Due to the stochasticity of autoregres-
sive generation, via manual inspection we found
that while most of the time the model produces
natural sounding speech, it sometimes produces ex-
cessively long silence or drags out certain sounds.

Table 3: Effect of scaling model sizes and codebook
re-weighting. Lower is better for all metrics.

Params Weights WER MCD F0 Energy

120M (1,1,1,1) 10.18 8.75 78.49 3.22
120M (5,1,0.5,0.1) 7.75 8.31 87.74 3.54
430M (1,1,1,1) 7.87 8.22 70.05 3.17
430M (5,1,0.5,0.1) 7.30 8.13 73.41 3.19
830M (5,1,0.5,0.1) 6.68 8.05 67.81 3.12

We found that happens when the codec token gen-
eration gets stuck in a repeating loop. To resolve
it, we use a simple heuristic: for each input utter-
ance we generate several different output utterances
and throw away the longest outputs. Specifically
for speech editing, we run inference 10 times with
different margin parameters, stepping ϵ up from
0.05 to 0.14 in 0.01 increments. The 4 longest
outputs are discarded, and then we randomly se-
lect one sample from the remaining 6 outputs. For
zero-shot TTS, we reduce the probability of gen-
erating the same token in consecutive timesteps in
proportion to how many times that token was con-
secutively generated in the immediately preceding
timesteps. In addition, we generate 5 samples with
different random seeds, and select the shortest for
TTS evaluation. The sample selection process is
completely automatic and unsupervised (i.e. no
human intervention or ASR scoring).

Baselines. For speech editing, we compare
VOICECRAFT with the diffusion-based model Flu-
entSpeech (Jiang et al., 2023b) which is the cur-
rent open-source SotA model for speech editing.
Since the original FluentSpeech model is trained
on LibriTTS, for a fair comparison, we took the
official GitHub repo and trained the model on Gi-
gaspeech. Please find more details in §C. For zero-
shot TTS, we compare our VOICECRAFT with
VALL-E (Wang et al., 2023a), XTTS v2 (CO-
QUI, 2023), YourTTS (Casanova et al., 2021), and
FluentSpeech. Since the original VALL-E is not
open-sourced, we use the code from the popular
open-source implementation by Li (2023), and also
trained the model on Gigaspeech. XTTS v2 is a
popular commercial zero-shot TTS model4 trained
on a mixture of publicly available data and web-
crawled data, although the exact data sources are
unknown. YourTTS is trained on VCTK, LibriTTS,
and also French and Portugese corpora.

Metrics. For ablation studies, since ground truth
waveform is avaliable, in addition to WER (us-
ing Whisper medium.en as the ASR model), we

4The GitHub repo hosting XTTS v2 has 26k stars by Jan
2024.
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Table 4: Performance comparison on speech editing.

Intelligibility MOS Naturalness MOS

Model WER LibriTTS YouTube Spotify Total LibriTTS YouTube Spotify Total

FluentSpeech 4.5 3.89±0.09 4.08±0.08 3.95±0.08 3.97±0.05 3.42±0.10 4.07±0.10 3.93±0.10 3.81±0.06

VOICECRAFT 6.1 4.05±0.08 4.14±0.07 4.12±0.07 4.11±0.05 3.68±0.10 4.25±0.09 4.16±0.08 4.03±0.05

Original 5.4 4.22±0.07 4.30±0.07 4.16±0.08 4.22±0.05 3.84±0.09 4.35±0.08 4.29±0.08 4.17±0.05

0 20 40 60 80 100

insertion

substitution

deletion

39.11%
VoiceCraft

17.78%
Neutral

43.11%
Original

40.46%
VoiceCraft

16.65%
Neutral

42.89%
Original

40.77%
VoiceCraft

15.77%
Neutral

43.46%
Original

0 20 40 60 80 100
2 spans

7-12 words

3-6 words

1-2 words

40.00%VoiceCraft 13.00%Neutral 47.00%Original
41.95%VoiceCraft 13.66%Neutral 44.39%Original

39.52%VoiceCraft 17.28%Neutral 43.20%Original
39.68%VoiceCraft 19.37%Neutral 40.95%Original

Figure 3: Breakdown of side-by-side human preference on naturalness comparing VOICECRAFT edited speech and
the original speech. Grouped by edit type (left) and edit span length (right).

Table 5: Side-by-side naturalness comparison of VOICE-
CRAFT (VCR) v.s. Original (Orig.) and FluentSpeech (FS).

Comparison VCR better Tie VCR worse

VOICECRAFT v. FS 56.1% 19.7% 24.1%
VOICECRAFT v. Orig. 40.3% 16.2% 43.6%

use mel-ceptral distortion (MCD), F0 distance (F0)
and energy distance (Energy). These are all ob-
jective metrics and their definitions are detailed in
§C. For speech editing and zero-shot TTS eval-
uation, we use a combination of objective and
subjective metrics. For the objective metrics, we
used WER and speaker similarity (SIM) follow-
ing prior works(Wang et al., 2023a; Kharitonov
et al., 2023). SIM is calculated using the WavLM-
TDCNN (Chen et al., 2021b). WER and SIM are
calculated on all 310 utterances in REALEDIT, and
250 utterances in the zero-shot TTS dataset. For
our subjective evaluation, we used the Amazon
Mechanical Turk platform to conduct human lis-
tening tests. For speech editing, the outputs of our
model on all 310 utterances from REALEDIT are
evaluated by Turkers in terms of naturalness and
intelligibility, and we use a 5-point Likert scale
where 1 means poor and 5 means excellent. We
also performed side-by-side A/B testing of VOICE-
CRAFT’s output against the original (non-edited)
speech, as well as the edited speech produced by
FluentSpeech. In both cases, Turkers were asked
to determine which utterance sounds more natural.
The Turkers can choose either one of the two, or
indicate that they are equally natural. Each evalu-
ation received 5 ratings from 5 different Turkers.
For zero-shot TTS, we randomly sampled 80 utter-
ances (40 from LibriTTS and 40 from YouTube)
from the original evaluation set, and asked Turkers

to rate the naturalness, intelligibility, and speaker
similarity of the generated speech to the reference
prompt on a 5-point Likert scale. Each evalua-
tion received 10 ratings. For all evaluations except
the side-by-side comparison, Mean-Opinion-Score
(MOS) with 95% confidence interval are reported.
For the side-by-side comparison, we report the per-
centage of the time one model is preferred over the
other. 64 and 59 Turkers participated in speech edit-
ing and TTS evaluation respectively. Please refer
to §E for instructions and participants description.

5.2 Ablations
In table 3, we see that larger model sizes lead
to better performance across all metrics . In ad-
dition, we see a bigger gap between the bigger
models, indicating the potential of further scal-
ing model (and possibly training data) sizes. For
the impact of codebook re-weighting, and we see
that weighting earlier codebook heavier leads to
better performance on intelligibility related met-
rics WER and MCD, while worse performance
on prosody related metrics F0 and Energy5. We
choose weight (5, 1, 0.5, 0.1) in our final 830M
model because anecdotally, we found that VOICE-
CRAFT is stronger in prosody compared to intelli-
gibility (similar properties about NCLMs are also
found in (Jiang et al., 2023a; Song et al., 2024; Du
et al., 2024b))

5.3 Speech Editing Results
Table 4 shows the results of speech editing eval-
uation in terms of WER, and human preference

5This can be regarded as a probing results that shows the
properties of different codebooks in RVQ models. Since this
is not the focus of our work, we do not conduct further experi-
ment on this direction.
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Table 6: On the zero-shot TTS task, comparing VOICECRAFT with other models.

Intelligibility MOS Naturalness MOS Speaker Similarity MOS

Model WER SIM Libri. YouTube Total Libri. YouTube Total Libri. YouTube Total

YourTTS 6.6 0.41 3.28±0.11 3.01±0.12 3.14±0.08 2.99±0.12 2.59±0.12 2.79±0.08 3.10±0.12 2.49±0.12 2.79±0.09

FluentSpeech 3.5 0.47 3.70±0.11 3.65±0.12 3.67±0.08 3.34±0.11 3.43±0.12 3.38±0.08 4.10±0.09 3.92±0.11 4.01±0.07

VALL-E 7.1 0.50 4.05±0.09 3.94±0.10 4.00±0.07 3.85±0.10 3.86±0.10 3.86±0.07 4.12±0.10 4.02±0.10 4.07±0.07

XTTS v2 3.6 0.47 4.29±0.09 3.97±0.10 4.13±0.07 4.02±0.09 3.90±0.10 3.96±0.07 3.64±0.12 3.25±0.12 3.44±0.08

VOICECRAFT 4.5 0.55 4.38±0.08 4.08±0.10 4.23±0.06 4.16±0.08 4.18±0.09 4.17±0.06 4.35±0.08 4.33±0.09 4.34±0.06

Ground Truth 3.8 0.76 4.37±0.08 4.42±0.08 4.39±0.06 4.32±0.08 4.64±0.06 4.48±0.05 4.26±0.10 4.62±0.08 4.44±0.06

on intelligibility and naturalness. Our VOICE-
CRAFToutperforms FluentSpeech on both intel-
ligibility and naturalness MOS across different
sources. Interestingly, FluentSpeech achieves a
WER lower than the original recording (4.5 v.s.
5.4), although its intelligibility MOS (3.97) is
worse than both VOICECRAFT (4.11) and original
recording (4.22). This suggests that ASR model
and human judgement diverge on FluentSpeech’s
intelligibility. Anecdotally, we observe that Flu-
entSpeech tends to produce dull and sometimes
robotic speech 6, and we hypothesize that this type
of speech tends be more easily recognized by ASR,
but is less intelligible to human ears. We notice this
same phenomenon in our results on zero-shot TTS.

Human listeners rate LibriTTS’s naturalness
lower than YouTube and Spotify on original speech
(results on TTS is consistent with this). This sug-
gests that to better evaluate speech synthesis in
general, the research community should consider
evaluating on other speech domains besides audio-
books as is commonly done.

Table 5 presents side-by-side utterance natu-
ralness comparison of VOICECRAFT vs. Flu-
entSpeech and VOICECRAFT vs. the original,
unedited speech. We observe that VOICECRAFT is
preferred over FluentSpeech 56.1% of the time,
with an additional 19.7% of the time the two are
tied. This means that 75.9% of the time, human lis-
teners’ think VOICECRAFT produces equal or more
natural speech than FluentSpeech. Impressively,
human listeners judge the edited speech produced
by VOICECRAFT to be equally or more natural than
the original unedited speech 56.4% of the time.
Fig. 4 shows the breakdown of the side-by-side
comparisons by edit type and edit span length. We
see that compared to the original speech, VOICE-
CRAFT performs consistently well across different
edit types, but human listeners think its outputs are
slightly less natural with longer edit span(s).

6please refer to our demo page for examples

5.4 Zero-Shot TTS Results

Table 6 shows both objective and subjective eval-
uation on zero-shot TTS. We observe that VOICE-
CRAFT achieves the best results in both automatic
speaker similarity metric SIM, and all human eval-
uation metrics. In particular, VOICECRAFT is only
slightly worse than ground truth in terms of intel-
ligibility MOS (4.23 v.s. 4.39), and speaker sim-
ilarity MOS (4.34 v.s. 4.44). The gap on natural-
ness is larger between VOICECRAFT and ground
truth (4.17 v.s. 4.48), especially on YouTube utter-
ances, which highlights the challenges of zero-shot
TTS on noisy, in-the-wild data. The commercial
model XTTS v2 comes second in terms of intel-
ligibility and naturalness, and second to last on
speaker similarity MOS. VALL-E achieves the sec-
ond best on both automatic metric SIM and subjec-
tive metric speaker similarity MOS. Similarly to
the speech editing results, ground truth YouTube
utterances receive higher MOS scores than ground
truth LibriTTS utterances in Table 6, which again
suggests that we should consider using more di-
verse data for future speech synthesis model evalu-
ation. Lastly, we again observe that FluentSpeech
achieves lower WER than the ground truth, but re-
ceives much lower ratings in terms of intelligibility
MOS from human listeners, indicating that WER
could be misleading in evaluating intelligibility of
speech synthesis systems7.

6 Conclusion

We introduce a neural codec language model
VOICECRAFT that achieves state-of-the-art perfor-
mance on speech editing and zero-shot TTS on in-
the-wild data. The key lies in an innovative token
rearrangement procedure which enables efficient
and effective autoregressive codec generation with
bidirectional context. In addition, we introduce a
first-of-its-kind high quality, challenging, and re-

7we also tried Whisper Large-v3, it gets WER of 4.1 for
ground truth, and 2.7 for FluentSpeech.
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alistic speech editing dataset REALEDIT, which
we believe can reliably measure the practicality of
speech editing models.

7 Limitations

Given the advancement of made by VOICECRAFT,
there are still limitations. First and foremost is
the long silence and scratching sound that occa-
sionally occur during generation. Although in this
work, we overcome it with sampling multiple utter-
ances and selecting the shorter ones, more elegant
and efficient methods are needed. Another impor-
tant aspect is AI safety, how can we watermark
and detect synthesized speech? While watermark-
ing and deepfake detection has attracted increas-
ing attention in the research community, and re-
markable progress has been made (Zhang et al.,
2020; Yamagishi et al., 2021; Chen et al., 2023;
Roman et al., 2024), more advanced models such
as VOICECRAFT presents new opportunities and
challenges to safety research. To facilitate speech
synthesis and AI safety research, we fully open
source our codebase and model weights.

8 Ethical Implications

The speech synthesis model VOICECRAFT intro-
duced in this work has both positive and negative
implications.

On the positive side, VOICECRAFT holds the
promise of significant benefits across several do-
mains. For individuals with speech impairments
or who have lost the use of their voice, VOICE-
CRAFT could be transformative, enabling these in-
dividuals new ways to communicate with ease and
clarity that were previously not possible. Content
creators, whether they work in education, video
production, or podcasting, could leverage VOICE-
CRAFT to streamline their editing processes, mak-
ing it easier to produce high-quality content with-
out the need to re-record takes when they contain a
small mistake. Furthermore, VOICECRAFT’s abil-
ity to handle diverse accents without compromising
on quality opens up new possibilities for creating
synthetic data. This could, in turn, enhance speech
recognition systems, such as Voicebox (Le et al.,
2023), by providing them with a richer and more
varied dataset to learn from, thereby improving
their accuracy and accessibility to users worldwide.

However, the potential negative impacts of
VOICECRAFT cannot be overlooked. One of the
primary concerns is the model’s potential to exac-

erbate existing biases, particularly those related to
ethnicity. If not carefully monitored and corrected,
these biases could lead to unequal performance
across different groups, perpetuating and possibly
even worsening existing disparities. Moreover, the
ease with which voices can be cloned raises serious
concerns about misuse, including impersonation
and fraud. The ability to replicate someone’s voice
with only a few seconds of reference audio could
be exploited to commit crimes or spread misin-
formation, posing significant ethical and security
challenges. As such, while the benefits of VOICE-
CRAFT are clear and substantial, it is imperative
to approach its deployment with caution, ensuring
that measures are in place to mitigate these risks
and protect against potential misuse.

Despite the concerns regarding impersonation
and fraud associated with VOICECRAFT, there are
compelling reasons to advocate for its release. Fore-
most among these is the opportunity it presents for
the broader research community and technology
developers to better understand and mitigate these
negative impacts. By making these methods open
source, we can catalyze the development of more
robust countermeasures against the misuse of voice
cloning technologies. This collaborative approach
allows for the rapid identification of vulnerabili-
ties and the exploration of innovative strategies to
address them. Moreover, the authors of this work
fully committed to advancing the field responsibly.
We are actively working on pioneering deepfake
detection and watermarking algorithms specifically
designed for synthetic speech. By doing so, we
not only acknowledge the potential risks associ-
ated with our technology but also take concrete
steps to ensure its ethical use. This dual approach
of open collaboration and dedicated research into
safeguarding mechanisms reflects our commitment
to fostering a technological ecosystem where the
benefits of voice cloning can be realized while min-
imizing its potential for harm.
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A Additional Experiments

A.1 Comparing ScaledAdam and AdamW

The hyperparameters settings of ScaledAdam can
be found in table 9. For AdamW (Loshchilov and
Hutter, 2017), we tried 3 settings:

• setting1: peak learning rate: 1e-5, batch size:
3.3 min, update steps: 500k

• setting2: peak learning rate: 1e-4, batch size:
33.3 min (same as ScaledAdam), update steps:
80k

• setting3: peak learning rate: 1e-4, batch size:
3.3 min, update steps: 500k

For all settings, we use a linear scheduler which
linear ramp up the learning rate to peak in first
8% steps, and linearly decay it afterwards. We
use the common default values for other hy-
perparameters, setting β1 = 0.9, β2 = 0.999,
weight-decay = 0.01. All experiments are done
on 4 A40 GPUs. Results are shown in table 7.8

We see that ScaledAdam achieves better perfor-
mance in all metrics while using less compute.
However we note that due to limitation in com-
putational resources, we could not exhaust hyper-
parameter search for AdamW, therefore we do not
over-generalize our finding here.

A.2 Breakdown of side-by-side human
preference comparison.

The comparison breakdown between VOICE-
CRAFT and FluentSpeech is shown in figure 4. We
see that VOICECRAFT outperforms FluentSpeech
across the board, especially for substitution edits
and when the edit span length is long.

A.3 Spectrograms Comparison

Spectrogram level comparison between Flu-
entSpeech and VOICECRAFTare shown in fig-
ure 5, 6, 7 with the edited part marked in dark green
rectangle. The three examples have increasing diffi-
culty in terms of accents and recording conditions,
in particular, the examples in figure 7 appears to be
in low bandwidth transmission. In all 3 examples,
we see that VOICECRAFT is able to generated more
detailed frequency patterns. The corresponding au-
dio can be found in the demo page.

8We early stopped AdamW setting 2 at step 57k to save the
compute, as it has already taken more time than the finished
ScaledAdam job while the performance was worse.
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Table 7: ScaledAdam consistently outperforms AdamW across all metrics, while taking 10% less time to train.

Optimizer Setting Training Time WER MCD F0 Energy

AdamW lr=1e-5, bsz=13.3min, steps=500k 262 hours 16.45 8.91 196.15 5.94
AdamW lr=1e-4, bsz=133.2min, steps=57k 273 hours 10.77 8.45 117.38 4.91
AdamW lr=1e-4, bsz=13.3min, steps=500k 262 hours 7.58 8.32 82.73 3.70
ScaledAdam lr=3e-2, bsz=133.2min, steps=50k 237 hours 7.30 8.13 73.41 3.19
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substitution
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Figure 4: Breakdown of side-by-side human preference on naturalness comparing of VOICECRAFT and Flu-
entSpeech on speech editing. Grouped by edit type (left) and edit span length (right).

Figure 5: Upper: FluentSpeech; lower: VOICECRAFT
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Figure 6: upper: FluentSpeech; lower: VOICECRAFT

Figure 7: upper: FluentSpeech; lower: VOICECRAFT. Note that since the speech is recorded in very challenging
condition, the word alignment is not very accurate. We see that for FluentSpeech’s result, since the entire mel-
spectrogram are passed to HiFi-GAN for resynthesis, even the unedited speech contains high frequency noise.
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B Examples of the Speech Editing
Dataset REALEDIT

Examples of REALEDIT are shown in table 8.

C Implementational Details

The Encodec model. The Encodec model we use
has a stride of 320 samples, which means the codec
framerate is 50Hz for recording of sample rate
16kHz. The base dimension is 64, doubling at
each of the 5 convolutional layer in the encoder.
Following (Copet et al., 2023), we use the open-
sourced audiocraft repo9 for Encodec model train-
ing. 1 second speech segments sampled from Gi-
gaspeech over a total of 160 epochs (320k steps)
with a batch size of 240. The model is trained
with the Adam (Kingma and Ba, 2014) with base
learning rate of 3e-4.

Eden Scheduler (Yao et al., 2024). the sched-
uler adjust the learning rate αt at step t using the
following formula:

αt =αbase ·

(
t2 + α2

step

α2
step

)−0.25

·

·

(
e2 + α2

epoch

α2
epoch

)−0.25

·

· linear(αstart, twarmup, t).

Where αbase base learning rate, t is the step in-
dex, e is the epoch index, and αstep and αepoch
controls the amount of data the model has seen
before significantly reducing the learning rate.
linear(αstart, twarmup, t) linearly increase the out-
come from αstart to 1 over twarmup steps, and stays
at 1. In our experiment, we set

αbase = 0.05, αstep = 3000, αepoch = 4,

αstart = 0.5, twarmup = 500

Since our dataset is quite large, we use pseudo-
epoch instead of the actual epoch, and 1 pseudo-
epoch is set to be 3000 training steps. Note that
the choice of these hyperparameters are inspired
by Yao et al. (2024); Li (2023), and if computation
resources permitted, a grid search might find better
hyperparameters settings.

Configuration in ablation studies. Configura-
tion of different models are shown in table 9. Note
that we use base learning rate 3e-2 for 430M model
instead of 5e-2 because the latter gave a NaN error.

9Encodec training doc can be here

Task and Data for ablation studies. The evalu-
ation task is masked reconstruction, where for each
utterance, we randomly select a span of length 1 to
15 words to mask, and ask VOICECRAFT to recon-
struct the masked speech based on the transcript
and unmasked speech. We use a 1000-utterance
random subset of the Gigaspeech validation set,
which contains YouTube videos and podcast data.
We ensure that each utterance in the subset has a
WER lower than 15% when decoded by Whisper
medium.en (Radford et al., 2022).

Metrics for ablation studies. Since ground
truth is available for masked reconstruction evalua-
tion, in addition to WER (measured from Whisper
medium.en’s output), we also measure the mel-
cepstral distortion (MCD) (Kubichek, 1993), F0
distance (F0), and energy distance (Energy) WER
and MCD are better correlated with intelligibility
of the speech, and F0 and Energy are better corre-
lated with prosody similarity between the generated
and ground truth. MCD measures the difference
of Mel Frequency Cepstrum Coefficients (MFCC)
between generated and ground truth, defined as

MCD =
10

ln 10

√√√√1

2

L∑
i=1

(mg
i −mr

i )
2

where L is the order of MFCC, which we set to be
13. mg

i is the ith MFCC of ground truth recording
and mr

i is the ith MFCC of the generated. We use
pymcd package 10 for calculating MCD. For F0
estimation, we use the pYIN (Mauch and Dixon,
2014) algorithm implemented in librosa (McFee
et al., 2015) with minimal frequency 80hz and max-
imal frequency 600hz. For energy calculation, we
use the root mean square of magnitude of spectro-
gram, which is extracted using short time Fourier
transform with window length of 640, hop size of
160. Note that since generated speech might have a
different length compared to ground truth, dynamic
time wrapping is first applied to time aligned the
extracted MFCC/F0/energy before calculating their
euclidean distances. For each model in the ablation
study, we use 3 different random seeds and report
the averaged results.

Scaling FluentSpeech. The original Flu-
entSpeech (Jiang et al., 2023b) is trained on Lib-
riTTS, and we made our best effort in scaling it
for a fair comparison. Taking guidance from the
authors of FluentSpeech. We scale the batch size

10https://github.com/chenqi008/pymcd
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Table 8: Examples of the speech editing dataset REALEDIT.

Edit Types Original Edited

substitution,
substitution

See why it’s extremely valuable to it’s kind
of like it’s kind of like having a wall hack to
watch a demo.

See why it’s extremely important right? it’s
kind of like having a rough time to watch a
demo.

deletion I wrote the title of the course many years ago,
ah, when I created this course.

I wrote the title when I created this course.

insertion Fast cars, that had the nice clothes, that had the
money, they was criminals.

Fast cars, that had the nice clothes, that had
expensive gold watches, that had the money,
they was criminals.

substitution When the CEO of blockbuster heard that, he
promptly had a kitchen sink delivered to the
netflix office, a fairly creative way of declaring
war.

When the CEO of blockbuster heard that, he
promptly had five hundred pounds of glitter
divided into five thousand manilla envelopes
delivered to the netflix office, a fairly creative
way of declaring war.

substitution So if you’ve been following my story, you will
remember that I said earlier in this podcast that
the Grammy nominations came out.

So if you’ve been following my story, you will
remember that I said earlier that this week we
had super exciting stuff to talk about because
Grammy nominations came out.

insertion No to the chemical pollution, air pollution, and
the destruction of the environment caused by
factories and the manufacturing industry.

No to the chemical pollution, air pollution, no
to the killing of plants and wildlife and the de-
struction of the environment caused by factories
and the manufacturing industry.

substitution,
substitution

because we can include so many other charac-
ters if we just expand the definitions to any
sword wielder, who’s a little spicy.

because we can include so many other partic-
ipants if we are brave enough to expand the
definitions to any blade wielder, who’s a little
spicy.

insertion So for more craziness now that French was con-
quered we have to join forces to Great Britain.

So for more craziness now that French was con-
quered by the Germans, we have to join forces
to Great Britain.

substitution economic development remains one of the most
effective ways to increase the capacity to
adapt to climate change.

economic development remains one of the most
promising options that we have left on the
table to increase the capacity to adapt to climate
change.

insertion And we’re at this point. And we’re all extremely excited at this point.

insertion Steve also co-founded pixar animation studios.
Which has revolutionized the film industry in
it’s short history with brilliant use of technol-
ogy.

Steve also co-founded pixar animation studios.
Which has revolutionized the film industry in
it’s short history with films like toy story that
showcase brilliant use of technology.

substitution,
deletion

this is just so cozy up here, and having that
skylight is just lovely isn’t it.

this is just so cozy and warm here, isn’t it.

substitution It was a glance of inquiry, ending in a look
of chagrin, with some muttered phrases that
rendered it more emphatic.

It was a look of disgust followed by a curled
lip, with some muttered phrases that rendered it
more emphatic.

substitution More of a base and infrastructure to tell those
stories rather than doing it out of a out of a
tent with solar power.

More of a base and infrastructure to fight these
battles instead of out of a tent with solar power.
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Params codebook dim Trm hidden dim FFN dim Trm layers Base LR Update Steps

830M 2048 2048 8192 16 5e-2 50k
430M 2048 2048 8192 8 3e-2 50k
120M 1024 1024 4196 8 5e-2 50k

Table 9: Hyperparameters settings for the different model sizes. Trm stands for Transformer.

from 16 utterances to 256 utterances. Diffusion
base hidden dimension from 320 to 1024, residual
layers from 20 layers to 30 layers, residual chan-
nels from 256 to 512. The final model contains
330M parameters, which is roughly the same as the
Voicebox model (Le et al., 2023). The model was
trained on Gigaspeech training set on 1 A40 GPU
for 626k steps which took 10 days. The HiFi-GAN
vocoder is also retrained on Gigaspeech training
set for 400k steps using hyperparameters used on
Voicebox (Le et al., 2023) (they also use Hifi-GAN
as vocoder to decode to 16kHz speech)

Baselines for zero-shot TTS. For zero-shot
TTS, we compare our VOICECRAFT with VALL-
E (Wang et al., 2023a), XTTS v2 (COQUI,
2023), YourTTS (Casanova et al., 2021), and Flu-
entSpeech. Since the original VALL-E is not
open-sourced, we use the code from the popu-
lar open-source implementation by Li (2023), and
also trained the model on Gigaspeech. Both the
AR and NAR model are trained for 50k steps us-
ing the ScaledAdam optimizer and Eden sched-
uler, same as our VOICECRAFT. The commercial
model XTTS v2 is composed of three modules,
VQ-VAE (van den Oord et al., 2017) for speech
tokenization, a GPT-2 (Radford et al., 2019) model
for speech token modeling and a customized HiFi-
GAN (Kong et al., 2020) model for token to wave-
form generation. XTTS v2 is trained on a mixture
of publicly available data and web-crawled data,
but the exact data sources are unknown. YourTTS
is a zero-shot TTS model built upon the adversarial
VAE model VITS (Kim et al., 2021), with novel
zero-shot multi-speaker and multilingual training.
The model is trained on VCTK, LibriTTS, and also
French and Portugese corpora. The FluentSpeech
model we used for TTS is the same as in speech
editing, as the model can be configured to do zero-
shot TTS similar to Voicebox (Le et al., 2023).

Licenses of the speech corpora. Licenses: Lib-
riTTS: CC BY 4.0; Gigaspeech: Apache-2.0; Spo-
tify Podcast dataset: CC BY 4.0.

D The Conditional Independence
Assumption

To better explain the rational behind the conditional
independent assumption in equation 3, we go back
to sequence Y produced by causal masking. The
assumption we are making for equation 3 to hold is
equivalent to the assumption that given W and Hs,t,
Ys,t,k is independent of I(1)s,t,k and I

(2)
s,t,k defined as

I
(1)
s,t,k ≜ (Ys,t+k−1,1, Ys,t+k−2,2, · · · , Ys,t+1,k−1)

I
(2)
s,t,k ≜ (Ys,t−1,k+1, Ys,t−2,k+2, · · · , Ys,t−K+k,K)

We argue that this assumption is mild, because
1) I

(1)
s,t,k are tokens from timestep after t and

therefore should have less impact on the dis-
tribution of Yt,k given past tokens Hs,t (Hs,t

might also contain also future tokens in physi-
cal time if Zs,t is in the masked spans); 2) al-
though I

(2)
s,t,k are tokens from timestep before t,

they are from codebooks that are later than code-
book k in the residual quantization chain, meaning
that they model the residual left by codebook k
(at the corresponding timesteps). Given the fact
that {Ys,t−1,k, Ys,t−2,k+1, · · · , Ys,t−K+k,K−1} ⊂
Hs,t

11, meaning that the “fitted parts” are given,
and therefore the “unfitted parts” (which is the
residual) should have miner impact on the distribu-
tion of Ys,t,k. Empirically, MusicGen shows that
a codec language model trained with the Delay
Pattern enjoys the efficiency of the naive parallel
pattern, while achieving similar modeling perfor-
mance as completely flattened sequence.

E Instructions for human listening test

Screenshots of instructions for the human listen-
ing test we used on Amazon Mechanical Turk is
shown in figure 8 (speech editing - intelligibility),
figure 9(speech editing - naturalness), figure 10
(speech editing - side-by-side comparison), fig-
ure 11 (zero-shot TTS - intelligibility), figure 12

11A weaker condition holds for the first K tokens in un-
masked spans (which accounts for at most 0.08s of speech for
our models), but we omit the discussion here for simplicity
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(zero-shot TTS - speaker similarity), figure 13
(zero-shot TTS - naturalness). For speech edit-
ing evaluation, 64 Turkers participated and we paid
474.3 USD in total; for zero-shot TTS evaluation,
59 Turkers participated and we paid 457.6 USD.
We only allow Turkers who are resident of the U.S.
to do the tasks, and the goal is to increase the prob-
ability of Turkers being native English speakers.
We acknowledge that this is a perfect approach and
might need to bias in judgement, but since Amazon
Mechanical Turk doesn’t allow selection on native
language, this is the best approach we could think
of as a proxy to constraining the native language.
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Figure 8: Instruction for speech editing-intelligibility preference. Each task contains 5 recordings. Since the first
paragraph is also presented in all other tasks in the instruction page, we only show it in this screenshot.

Figure 9: Instruction for speech editing-naturalness preference. Each task contains 5 recordings.

Figure 10: Instruction for speech editing, side-by-side naturalness preference. Each task contains 3 pairs of
recordings.
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Figure 11: Instruction for zero-shot TTS, intelligibility preference. Each task contains 5 recordings.

Figure 12: Instruction for zero-shot TTS, speaker similarity preference. Each task contains 3 pairs.

Figure 13: Instruction for zero-shot TTS, naturalness preference. Each task contains 5 recordings.
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