LISP from scratch on a PDP-11,
Part 1

Jacques Comeaux

Why LISP?

> |nfluential
» Recursion
» Conditional expressions
» (Garbage collection
> First-class functions

> Symbols

Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part 1

Joun McoCarrmy, Massachuselts Tnstitute of Technology, Cambridge, Mass.

1. Introduction

A programming system called LISP (for LISt Processor)
has been developed for the IBM 704 computer by the
Ariificial Intelligence group at M.I'T. The system was
designed to facilitate experiments with a proposed system
called the Advice Taker, whereby a machine could be
mstructed to handle declarative as well as imperative
sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice
Taker was made in November 1958. The main require-
ment was a programming system for manipulating ex-
pressions representing formalized declarative and impera-
tive sentences so that the Advice Taker system could make
deductions.

In the course of its development the Lisp sysiem went
through several stages of simplification and eventually
came to be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704
computer, or of any other eleetroniec computer, and it now
seerns expedient to expound the system by starting with
the class of expressions called S-expressions and the fune-
tions called S-functions.

In this article, we first deseribe a formalism for defining
functions recursively. We believe this formalism has ad-
vantages both as a programming language and as vehicle
for developing a theory of computation. Next, we describe
S-expressions and S-functions, give some examples, and
then deseribe the universal S-function apply which plays
the theoretical role of a universal Turing machine and
the practical role of an interpreter. Then we describe the
representation of S-expressions in the memory of the
IBM 704 by list structures similar to those used by Newell,
Shaw and Simon (2], and the representation of S-functions
by program. Then we mention the main features of the
Ligp programming system for the IBM 704. Next comes
another way of deseribing computations with symbolic
expressions, and finally we give a recursive function in-
terpretation of flow charts.

We hope to describe some of the symbolic computations
for which Lisp has been used in another paper, and also to
give elsewhere some applications of our recursive {unction
formalism (o mathematical logic and to the problem of
mechanical theorem proving.

184 Communications of the ACM

2. Functions and Function Definitions

We shall need a number of mathematical ideas and
notations concerning functions in general. Most of the
ideas are well known, but the notion of condafional cxpres-
store 1 believed 1o be new, and the use of conditional
expressions permits [unctions to be defined recursively ina
new and convenient way.

a. Parttal Functions. A partial function is a function
that is defined only on part of its domain. Parvial funetions
necessarily arise when functions are defined by computa-
tions because for some values of the arguments the eompu-
tation defining the value of the function may not ter
minate. However, some of our elementary functions will be
defined as partial functions.

b. Propositional Fapressions and Predicates. A proposi-
tional expression is an expression whose possible values
are T (for truth) and T (for falsity). We shall assume
that the reader is familiar with the propositional connee-
tives A (“and”), Vv (“or”), and ~ (“not’). Typical
propositional expressions are:

X<y
(x <y) A (b=c¢)
X is prime

A predicate is a funetion whose range cousists of the
truth values T and I

¢. Conditional FEzpressions. The dependence of truth
values on the values of quantities of other kinds is ex-
pressed in mathematics by predicates, and the dependence
of truth values on other truth values by logical connet:
tives. However, the notations for expressing symbolically
the dependence of quantities of other kinds on truth
values is inadequate, so that English words and plu-u:ff\:
arc generally used for expressing these dependenees 10
texts that deseribe other dependences symbolically. FF,r
cxample, the function | x |is usually defined in words

Conditional expressions are a deviee for expressing the
dependence of quantities on propositional quantities. A
conditional expression has the form

(pl'—"ely""pn'—’en)

e p's A

where the p’s are propositional expressions and tf
expressions of any kind. Tt may be read, “If px then €4y

Why LISP?

> |nfluential
» Recursion
» Conditional expressions
» (Garbage collection
> First-class functions
> Symbols

> Simple

Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part 1

Joun McoCarrmy, Massachuselts Tnstitute of Technology, Cambridge, Mass.

1. Introduction

A programming system called LISP (for LISt Processor)
has been developed for the IBM 704 computer by the
Ariificial Intelligence group at M.I'T. The system was
designed to facilitate experiments with a proposed system
called the Advice Taker, whereby a machine could be
mstructed to handle declarative as well as imperative
sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice
Taker was made in November 1958. The main require-
ment was a programming system for manipulating ex-
pressions representing formalized declarative and impera-
tive sentences so that the Advice Taker system could make
deductions.

In the course of its development the Lisp sysiem went
through several stages of simplification and eventually
came to be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704
computer, or of any other eleetroniec computer, and it now
seerns expedient to expound the system by starting with
the class of expressions called S-expressions and the fune-
tions called S-functions.

In this article, we first deseribe a formalism for defining
functions recursively. We believe this formalism has ad-
vantages both as a programming language and as vehicle
for developing a theory of computation. Next, we describe
S-expressions and S-functions, give some examples, and
then deseribe the universal S-function apply which plays
the theoretical role of a universal Turing machine and
the practical role of an interpreter. Then we describe the
representation of S-expressions in the memory of the
IBM 704 by list structures similar to those used by Newell,
Shaw and Simon (2], and the representation of S-functions
by program. Then we mention the main features of the
Ligp programming system for the IBM 704. Next comes
another way of deseribing computations with symbolic
expressions, and finally we give a recursive function in-
terpretation of flow charts.

We hope to describe some of the symbolic computations
for which Lisp has been used in another paper, and also to
give elsewhere some applications of our recursive {unction
formalism (o mathematical logic and to the problem of
mechanical theorem proving.

184 Communications of the ACM

2. Functions and Function Definitions

We shall need a number of mathematical ideas and
notations concerning functions in general. Most of the
ideas are well known, but the notion of condafional expres-
ston i3 believed 1o be new, and the use of conditiona!
expressions permits functions to be defined recursively ina
new and convenient way.

a. Parttal Functions. A partial function is a function
that is defined only on part of its domain. Parvial funetions
necessarily arise when functions are defined by computa-
tions because for some values of the arguments the compu-
tation defining the value of the function may not ter
minate. However, some of our elementary functions will be
defined as partial functions.

b. Propositional Fapressions and Predicates. A proposi-
tional expression is an expression whose possible values
are T (for truth) and T (for falsity). We shall assume
that the reader is familiar with the propositional connee-
tives A (“and”), Vv (“or”), and ~ (“not’). Typical
propositional expressions are:

X<y
(x <y) A (b=c¢)
X is prime

A predicate is a funetion whose range cousists of the
truth values T and I

¢. Conditional FEzpressions. The dependence of truth
values on the values of quantities of other kinds is ex-
pressed in mathematics by predicates, and the dependence
of truth values on other truth values by logical connet:
tives. However, the notations for expressing symbolically
the dependence of quantities of other kinds on truth
values is inadequate, so that English words and plu-u:ff\:
arc generally used for expressing these dependenees 10
texts that deseribe other dependences symbolically. FF,r
cxample, the function | x |is usually defined in words

Conditional expressions are a deviee for expressing the
dependence of quantities on propositional quantities. A
conditional expression has the form

(pl'—"ely""pn'—’en)

e p's A

where the p’s are propositional expressions and tf
expressions of any kind. Tt may be read, “If px then €4y

S-Expressions

> Symbolic expressions
» Each S-Expression is either
> An atomic symbol

> A list of S-Expressions

S-Expressions

> Symbolic expressions
DOG

» Each S-Expression is either
> An atomic symbol

> A list of S-Expressions

S-Expressions

> Symbolic expressions
» Each S-Expression is either
> An atomic symbol

> A list of S-Expressions

DOG

PPL]

&

S-Expressions

> Symbolic expressions
» Each S-Expression is either
> An atomic symbol

> A list of S-Expressions

DOG

PPL]

&

LISP

S-Expressions

y . .
Symbolic expressions e

&

DOG

» Each S-Expression is either

> An atomic symbol

> A list of S-Expressions

S-Expressions

> Symbolic expressions

APPLE
ion is e DOG
» Each S-Expression is either
| LISP
> An atomic symbol
> A list of S-Expressions
(ABCDE)

(XY)(Y2)(PQR))

S-Expressions

> Symbolic expressions

APPLE
» Each S-Expression is either DOG
> An atomic symbol LISP
> A list of S-Expressions
(ABCDE)
((XY) (Y 2)(PQR))

(THIS (IS AN) S EXPRESSION)

10

S-Functions

» Functions of symbolic expressions

> Five primitive S-Functions

11

S-Functions

atom [X] =T

» Functions of symbolic expressions |
atom [(X ...)]=F

> Five primitive S-Functions

> atom

12

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions
> atom

%eq

13

atom

atom

eq [X;

X]=T

(X ..)]=F

y] =T if X and y are the same symbol

X; y] = F otherwise

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions

> atom

> eg

> car

14

atom [X] =T
atom [(X ...)]=F

eq [x; y] =T 1if x and y are the same symbol

eq [X; y] = F otherwise

car [(X1 X2 ... Xn)] = X1

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions

> atom

P eq

> car

> cdr

15

atom [X] =T
atom [(X ...)]=F

eq [x; y] =T 1if x and y are the same symbol

eq [X; y] = F otherwise

car [(X1 X2 ... Xn)] = X1

cdr [(X1 X2 ... Xp)]=(X> ... Xh)

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions

> atom

> eq

> car

> cdr

> COoNns

16

atom [X] =T
atom [(X ...)]=F

eq [x; y] =T 1if x and y are the same symbol

eq [X; y] = F otherwise

car [(X1 X2 ... Xn)] = X1

cdr [(X1 X2 ... Xp)]=(X> ... Xh)

cons [X1; (X2 ... Xp)] =(X1 X2 ... Xp)

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions
» Conditional expressions

> Evaluate p’s from left to right

> Result Is the e corresponding to
the first p which evaluates to T

17

lp1 — €1, ", P — €3]

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions
» Conditional expressions

> Evaluate p’s from left to right

> Result Is the e corresponding to
the first p which evaluates to T

18

atom
cq
car

cdr

COIS

[p1 =€,

, Pn = €4

S-Functions

» Functions of symbolic expressions
> Five primitive S-Functions
» Conditional expressions

> Evaluate p’s from left to right

> Result Is the e corresponding to
the first p which evaluates to T

> Arbitrary S-Functions?

19

atom
cq
car

cdr

COIS

[p1 =€,

, Pn = €4

Interlude:

Lambda Calculus!

Lambda Calculus

> A formal system for functions

> Three syntactic constructs

21

Lambda Calculus

> A formal system for functions
> Three syntactic constructs

» Variables

22

Lambda Calculus

> A formal system for functions
> Three syntactic constructs

» Variables

» Functions ﬂx N
®

23

Lambda Calculus

> A formal system for functions
> Three syntactic constructs
> Variables

» Functions

> Application

24

Lambda Calculus

> A formal system for functions

> Three syntactic constructs
> Variables
> Functions

> Application

25

Lambda Calculus

> A formal system for functions

> Three syntactic constructs
> Variables
> Functions
> Application

> Sometimes more

» Booleans; Natural numbers; etc.

26

Lambda Calculus

> A formal system for functions

> Three syntactic constructs x

> Variables 0,1,2,...
> Functions ﬂx) N

> Application

> Sometimes more M N

» Booleans; Natural numbers; etc.

27

Lambda Calculus

> A formal system for functions

> Three syntactic constructs x

> Variables 0,1,2,...

> Functions ﬂx) N

> Application M _I_ N
> Sometimes more M N

» Booleans; Natural numbers; etc.

28

Lambda can’t hurt you

“Normal” math

fix) =x*+5

“Normal” math

X = x4+ 5

Lambda notation

Ax.x%+5

Substitution example

Example Lambda calculus expressions

Af AX Ay . fyx
Af.Ag . Ax . f(gx)

AX . X

(Ax.xx)(Aa . Ab . a)

AX . XX

Example Lambda calculus expressions

ATXy . fyx
Afgx . J(8X)

AX . X

(Ax . xx)(Aab . a)

AX . XX

Back to LISP

S-Functions manipulate S-Expressions

S-Expressions

S-Functions manipulate S-Expressions

S-Expressions

(THIS

(IS AN)
S EXPRESSION)

S-Functions manipulate S-Expressions

(XY) 2)

S-Expressions

(THIS

(IS AN)
S EXPRESSION)

S-Functions manipulate S-Expressions

(XY) 2)

S-Expressions

(THIS

(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)

(FOOD ONIONS)

(ACTOR DENNEHY)
(TEAM BEARS)
(CAR BUICK))

40

S-Functions manipulate S-Expressions

(XY) 2)

(D))

S-Expressions

(THIS

(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)

(FOOD ONIONS)

(ACTOR DENNEHY)
(TEAM BEARS)
(CAR BUICK))

41

S-Functions manipulate S-Expressions

(XY) Z)
(A B Q)

(D))

S-Expressions

(THIS

(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)

(FOOD ONIONS)

(ACTOR DENNEHY)
(TEAM BEARS)
(CAR BUICK))

42

S-Functions manipulate S-Expressions

(XY) 2)
(ABOQ)

(D))

S-Expressions

(THIS

(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)

(FOOD ONIONS)

(ACTOR DENNEHY)
(TEAM BEARS)

TOMATO (CAR BUICK))

43

S-Functions manipulate S-Expressions

(XY) 2)
(ABOQ)

(D)) DOG

S-Expressions

(THIS

(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)

(FOOD ONIONS)

(ACTOR DENNEHY)
(TEAM BEARS)

TOMATO (CAR BUICK))

44

S-Functions manipulate S-Expressions

(XY)Z)
S-Functions
((®))) DOG
RIS v S-Expressions
(THIS
(IS AN) (FAVORITE
S EXPRESSION) (COLOR RED)
(FOOD ONIONS) ..
(ACTOR DENNEHY) BRI
(TEAM BEARS)
TOMATO (CAR BUICK))

ff[x] = [atom[x] — x; T — ff[car[x]]]

~
'''''

45

S-Functions manipulate S-Expressions

(XY)2)
S-Functions
(D)) DOG
e S-Expressions
(THIS
€ (IS AN) FAVORITE
q S EXPRESSION) ((COLOR RED) subst

(FOOD ONIONS) ..
(ACTOR DENNEHY) / ~ ~"=-.
(TEAM BEARS)

TOMATO (CAR BUICK))

ff[x] = [atom[x] — x; T — ff[car[x]]]

~
'''''

46

S-Functions manipulate S-Expressions

append
(XY) Z) PP
S-Functions
(D)) DOG
e S-Expressions
(THIS
€ (IS AN) FAVORITE
q S EXPRESSION) ((COLOR RED) subst

(FOOD ONIONS) ..
(ACTOR DENNEHY) / ~"=-.
(TEAM BEARS)

TOMATO (CAR BUICK))

ff[x] = [atom[x] — x; T — ff[car[x]]]

cons

~
'''''

47

S-Functions manipulate S-Expressions

append
(XY) Z) P
S-Functions
(™)) DOG
\ _ among
e v S-Expressions
(THIS
e (IS AN) FAVORITE
9 S EXPRESSION) ((COLOR RED) subst
(FOOD ONIONS) -.
(ACTOR DENNEHY) / ~"=-.
(TEAM BEARS)
TOMATO (CAR BUICK))

car
ff[x] = [atom[x] — x; T — ff[car[x]]]

cons

~
'''''

48

S-Functions manipulate S-Expressions

(X 2) append
S-Functions
(D)) DOG
" _ among
RN i S-Expressions
(THIS pair
= cdar (IS AN) FAVORITE
. SEXPRESSION) (COLOR RED) subst
(FOOD ONIONS) .
(ACTOR DENNEHY) / — ~==-.
(TEAM BEARS)
TOMATO (CAR BUICK))
car

ff[x] = [atom[x] — x; T — ff[car[x]]]

cons

~
'''''

49

S-Functions are S-Expressions

subst [X; y; z] =
| atom (z) — [eq (y; 2) = x; T — 7]

; T — cons [subst [X; y; car [z]]; subst [X; y; cdr [z]]]]

l

(LABEL, SUBST, (LAMBDA, (X, Y, Z), (COND ((ATOM, Z), (COND,
(EQ, Y, 2), X), ((QUOTE, T), Z))), ((QUOTE, T), (CONS, (SUBST, X, Y,
(CAR Z)), (SUBST, X, Y, (CDR, 2)))))))

50

S-Functions are S-Expressions

(XY) Z)
(A B Q)

(D)) DOG

S-Expressions
(THIS

(IS AN)
S EXPRESSION)

: S-Functions
TOMATO ; §

51

What if? A universal evaluator

(XY) 2)

(ABCQ)
«)) DOG
S-Expressions eval
(THIS :
(IS AN) '
S EXPRESSION)

. S-Functions |)
TOMATO : i

52

The universal evaluator

evall[e; a] =
[atom|[e] - assocle; al

» atom[carl[e]l] -
- eqlcar[e]; QUOTE] - cadrlel
» eqlcar[e]l; ATOM] - atom[evallcadrle]; all
; eqlcarle]; EQ] - eglevallcadr[el]l; al; evallcaddr[el]; all
: eqlcar[e]; COND] - evcon[cadrle]; all
s eqlcar[el; CAR] - carlevallcadrlel; al.
» eqlcar[el; CDR] - cdrlevallcadrlel; al.
» eqlcarl[e]; CONS] - conslevallcadrle]; al; evallcaddrle]; all
s T -» evallcons[assoc[car[e]l; al; cdrlel]ll; al
]

]
; eqlcaar[e]l; LABEL] - evallconslcaddarlel; cdrlell; cons[list[cadarle]; carlell; all
: eqlcaar[e]l; LAMBDA] - evallcaddarl[e]; append[pair[cadarlel; evlis[cdrlel; all; all
]
where
evcon[c; al
evlis([m; al

[evallcaar[c]; al] - evallcadarlc]; al; T - evconlcdrlc]l;all
[null[m] - NIL; T - cons[evallcarlm]; al; evlisl[cdrm]; alll

53

> Represent S-Expressions as binary
trees

> |Left child is CAR (head)
> Right child is CDR (tail)

» Leaf nodes are atoms

S-Expressions in memory

54

(A

BC.

=

=

NIL

S-Expressions in memory

> Represent S-Expressions as binary
trees

> |eft child is CAR (head)
> Right child is CDR (tail)
» Leaf nodes are atoms

> LSB of pointer used to distinguish
Interior nodes from atoms

55

(A

BC.

=

=

NIL

S-Expressions in memory

(A B Q)

S-Expressions in memory

A
(ABOC) /3>>\

S-Expressions in memory

A
(ABC) /3>>\

S-Expressions in memory

(A

B Q)

]

IlCIl

IINIL"

59

Address Data Comment
006000 006014 cons
006002 006004

006004 006016 cons
006006 006010

006010 006020 cons
006012 006022

006014 006025 atom A
006016 006027 atom B
006020 0060431 atom C
006022 006035 atom NIL
006024 000101 "A"
006026 000102 "B"
006030 000103 "C"
006032 044516 "NIL"
006034 000114

S-Expressions in memory

(A B Q)

]

IIAII

l

HE

II:BII

IINILII

IICII

60

Address Data Comment
006000 i cons
006002 006004
006004 006016 cons
006006 006010
006010 cons
006012 006022
006025 atom A
006027 | atom B
0060431 atom C
006035 atom NIL
006024 000101 "A"
006026 000102 "B"
006030 000103 "C"
0060382 044516 "NIL"
006034 000114

S-Expressions in memory

(A B Q)

no

(]

IIAII

l

A4

(]

II:BII

L]
]

IICII

IINILII

61

Address Data, Comment
006000 006014 cons
006016 cons
006006 006010
006010 006020 cons
006012 [1I006023"
006014 0060:5 atom A
006016 0060:7 atom B
006020 0060431 atom C
006022 006035 | atom NIL
006024 000101 "A"
006026 000102 "B"
006030 0001083 "C"
006032 044516 "NIL"
006034 000114

S-Expressions in memory

(A B Q)

IIAlI

62

Address Data Comment
006000 006014 COons
006002 006004
006004 006016 cons
006006 006010
006010 006020 COnNs
006012 006022
006014 atom A
006016 atom B
006020 atom C
006022 atom NIL
000101 "A"
000102 "B
000103 "C"
044516 "NIL"
006034 000114

REPL overview

Read

> Copy input from console

» Parse input and construct S-Expression

Eval

> Evaluate S-Expression

Print

> Convert result to string

» Print to console

Loop

63

r Init
001000
001002
001004
001006
001010
001012
001014
001016
001020
001022
001024

; REPL
001100
001102
001104
001106
001110
001112
001114
001116

012706
001000
005037
177560
012737
010002
010000
012705
006000
000137
001100

004737
002000
004737
003000
004737
004000
000137
001100

MOV #1000, SP
CLR @#177560

MOV #10002, @#10000

MOV #6000, R5

JMP @©#1100

JSR @read
JSR @eval
JSR @print

JMP @#1100 ; loop

Primitive S-Functions

> ATOM

BIT #1, (RO)
BEQ not_atom

Primitive S-Functions

eq: MOV @(R@), RO

> ATOM DEC RO
MOV @(R1), R1

EQ DEC R1

Lloop: CMPB (RQ), (R1)+
BNE neq
TSTB (RO)+
BEQ done
BR loop

neqg: CLZ
RTS PC

done: SEZ
RTS PC

65

Primitive S-Functions

> ATOM
> EQ

> CAR
MOV @RO, R1

Primitive S-Functions

> ATOM
> EQ
> CAR

MOV 2(R@), R1
> CDR

Primitive S-Functions

> ATOM
> EQ

> CAR
> CDR
> CONS

68

cons.

MOV
MOV
MOV
MOV
ADD
MOV
RTS

©#10000, R2
RO, @R2

R1, 2(R2)
R2, RO

4, R2

R2, @#10000
PC

Evaluator subroutines

> ATOM, EQ, CAR, CDR, CONS
> QUOTE

> COND

> LAMBDA

> LABEL

» asSsSocC, evlis, evcon

69

assoc: MOV R5, R4

Loop:

bad:

MOV RO, R2

R4, #6000
BLOS bad

TST —(R4)

MOV -(R4), R1
MOV R2, RO
JSR PC, #eq
BNE loop

MOV 2(R4), RO
RTS PC

BR bad

PDP-11 code layout

Offset Description
001000 main loop
002000 parser
003000 eval
004000 printer
005000 built-in atoms
006000 symbol table
007000 read/print buffer
010000 heap

70

r Init
001000
001002
001004
001006
001010
001012
001014
001016
001020
001022
001024

; REPL
001100
001102
001104
001106
001110
001112
001114
001116

012706
001000
005037
177560
012737
010002
010000
012705
006000
000137
001100

004737
002000
004737
003000
004737
004000
000137
001100

MOV #1000, SP
CLR @#177560

MOV #10002, @#10000

MOV #6000, R5

JMP ©#1100

JSR @read
JSR @eval
JSR @print

JMP @#1100 ; loop

Summary

> Print is about 120 bytes
» Read Is about 260 bytes
> Eval Is about 520 bytes

/1

(QUOTE SUBST)
(QUOTE
(LAMBDA (X Y Z)
(COND
((ATOM Z)
(COND
((EQ Y Z) X)
((QUOTE T) Z)))
((QUOTE T)
(CONS
(SUBST X Y (CAR Z2))
(SUBST X Y (CDR Z)))))))

Summary

> Print is about 120 bytes
(QUOTE SUBST)

> Read Is about 260 bytes (QUOTE
(LAMBDA (X Y Z)
> Eval Is about 520 bytes (COND
((ATOM Z)
> Nexts steps (C(()I?EQ Y Z) X)
| ((QUOTE T) 2)))
> Error handling ((QUOTE T)
(CONS

(SUBST X Y (CAR Z))
(SUBST X Y (CDR Z)))))))

(2

Summary

> Print is about 120 bytes
(QUOTE SUBST)

> Read Is about 260 bytes (QUOTE
(LAMBDA (X Y Z)
> Eval is about 520 bytes (COND
((ATOM Z)
(COND
> Nexts steps ((EQ Y Z) X)
| ((QUOTE T) Z)))
> Error handling ((QUOTE T)
(CONS
> Implement backspace {SUBST X Y (CAR Z))

(SUBST X Y (CDR Z)))))))

/3

Summary

> Print is about 120 bytes
(QUOTE SUBST)

> Read Is about 260 bytes (QUOTE
(LAMBDA (X Y Z)
> Eval is about 520 bytes (COND
((ATOM Z)
(COND
> Nexts steps ((EQ Y Z) X)
| ((QUOTE T) Z)))
> Error handling ((QUOTE T)
(CONS
> Implement backspace {SUBST X Y (CAR Z))

(SUBST X Y (CDR Z)))))))
» Add octal literals

74

Code examples

(QUOTE T)
(QUOTE T)
(QUOTE AMONG)
(QUOTE F) (QUOTE
(QUOTE F) (LAMBDA (X Y)
(COND
(QUOTE SUBST) (QUOTE NOT) (- (NOT (ATOM Y))
(QUOTE (QUOTE (COND
(LAMBDA (X Y Z) (LAMBDA (P) ((EQUAL X (CAR Y)) T)
(COND (COND (T (AMONG X (CDR Y)))))
((ATOM Z) (P F) (T F))))
(COND (T T))))
((EQ Y Z) X)
((QUOTE T) 2))) (QUOTE AND) (QUOTE EQUAL)
((QUOTE T) (QUOTE (QUOTE
(CONS (LAMBDA (P Q) (LAMBDA (X Y)
(SUBST X Y (CAR Z)) (COND (COND
(SUBST X Y (CDR Z))))))) (P Q) ((AND (ATOM X) (ATOM Y))
(T F)))) (EQ X Y))
AND (N
(QUOTE OR) (gAND (NOT (ATOM X)) (NOT (ATOM Y)))
(QUOTE (EQUAL (CAR X) (CAR Y))
(LAMBDA (P Q) (EQUAL (CDR X) (CDR Y))))
(COND (T F))))

(P T)
(T Q))))

75

Code examples

(QUOTE SUBST)
(QUOTE
(LAMBDA (X Y Z)
(COND
((ATOM Z)
(COND
((EQ Y Z) X)
((QUOTE T) Z2)))
((QUOTE T)
(CONS
(SUBST X Y (CAR Z2))
(SUBST X Y (CDR Z)))))))

(SUBST
(QUOTE (AN S EXPRESSION)
(QUOTE AWESOME)
(QUOTE (THIS IS AWESOME)))

(THIS IS (AN S EXPRESSION))

/6

Questions?

