
The 8 Requirements of Real-Time Stream Processing
Michael Stonebraker

Computer Science and Artificial
Intelligence Laboratory, M.I.T., and

StreamBase Systems, Inc.

stonebraker@csail.mit.edu

U ur Çetintemel
Department of Computer Science,

Brown University, and
StreamBase Systems, Inc.

ugur@cs.brown.edu

Stan Zdonik
Department of Computer Science,

Brown University, and
StreamBase Systems, Inc.

sbz@cs.brown.edu

ABSTRACT
Applications that require real-time processing of high-volume

data steams are pushing the limits of traditional data processing

infrastructures. These stream-based applications include market

feed processing and electronic trading on Wall Street, network

and infrastructure monitoring, fraud detection, and command and

control in military environments. Furthermore, as the “sea

change” caused by cheap micro-sensor technology takes hold, we

expect to see everything of material significance on the planet get

“sensor-tagged” and report its state or location in real time. This

sensorization of the real world will lead to a “green field” of

novel monitoring and control applications with high-volume and

low-latency processing requirements.

Recently, several technologies have emerged—including off-the-

shelf stream processing engines—specifically to address the

challenges of processing high-volume, real-time data without

requiring the use of custom code. At the same time, some existing

software technologies, such as main memory DBMSs and rule

engines, are also being “repurposed” by marketing departments to

address these applications.

In this paper, we outline eight requirements that a system software

should meet to excel at a variety of real-time stream processing

applications. Our goal is to provide high-level guidance to

information technologists so that they will know what to look for

when evaluation alternative stream processing solutions. As such,

this paper serves a purpose comparable to the requirements papers

in relational DBMSs and on-line analytical processing. We also

briefly review alternative system software technologies in the

context of our requirements.

The paper attempts to be vendor neutral, so no specific

commercial products are mentioned.

1. INTRODUCTION
On Wall Street and other global exchanges, electronic trading

volumes are growing exponentially. Market data feeds can

generate tens of thousands of messages per second. The Options

Price Reporting Authority (OPRA), which aggregates all the

quotes and trades from the options exchanges, estimates peak

rates of 122,000 messages per second in 2005, with rates doubling

every year [13]. This dramatic escalation in feed volumes is

stressing or breaking traditional feed processing systems.

Furthermore, in electronic trading, a latency of even one second is

unacceptable, and the trading operation whose engine produces

the most current results will maximize arbitrage profits. This fact

is causing financial services companies to require very high-

volume processing of feed data with very low latency.

Similar requirements are present in monitoring computer

networks for denial of service and other kinds of security attacks.

Real-time fraud detection in diverse areas from financial services

networks to cell phone networks exhibits similar characteristics.

In time, process control and automation of industrial facilities,

ranging from oil refineries to corn flakes factories, will also move

to such “firehose” data volumes and sub-second latency

requirements.

There is a “sea change” arising from the advances in micro-sensor

technologies. Although RFID has gotten the most press recently,

there are a variety of other technologies with various price points,

capabilities, and footprints (e.g., mote [1] and Lojack [2]). Over

time, this sea change will cause everything of material

significance to be sensor-tagged to report its location and/or state

in real time.

Military has been an early driver and adopter of wireless sensor

network technologies. For example, the US Army has been

investigating putting vital-signs monitors on all soldiers. In

addition, there is already a GPS system in many military vehicles,

but it is not connected yet into a closed-loop system. Using this

technology, the army would like to monitor the position of all

vehicles and determine, in real time, if they are off course.

Other sensor-based monitoring applications will come over time

in non-military domains. Tagging will be applied to customers at

amusement parks for ride management and prevention of lost

children. More sophisticated “easy-pass” systems will allow

congestion-based tolling of automobiles on freeways (which was

the inspiration behind the Linear Road Benchmark [5]) as well as

optimized routing of cars in a metropolitan area. The processing

of “firehoses” of real-time data from existing and newly-emerging

monitoring applications presents a major stream processing

challenge and opportunity.

Traditionally, custom coding has been used to solve high-volume,

low-latency streaming processing problems. Even though the “roll

your own” approach is universally despised because of its

inflexibility, high cost of development and maintenance, and slow

response time to new feature requests, application developers had

to resort to it as they have not had good luck with traditional off-

the-shelf system software.

Recently, several traditional system software technologies, such

as main memory DBMSs and rule engines, have been repurposed

and remarketed to address this application space. In addition,

Stream Processing Engines (e.g., Aurora [8], STREAM [4],

TelegraphCQ [9]), a new class of system software, have emerged

to specifically support high-volume, low-latency stream

processing applications.

42 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

In this paper, we describe eight characteristics that a system

software must exhibit to excel at a variety of real-time stream

processing applications. Our goal is to provide information

technologists high-level guidance so that they know what to look

for when evaluating their options. Thus, this paper shares a

similar goal with earlier papers that present requirements for

relational DBSMs [10, 11] and on-line analytical processing [12].

We present these features as a collection of eight rules in the next

section. We then review the alternative technologies and

summarize how they measure up for real-time stream processing

in Section 3. We conclude with final remarks in Section 4.

2. EIGHT RULES FOR STREAM

PROCESSING

Rule 1: Keep the Data Moving

To achieve low latency, a system must be able to perform

message processing without having a costly storage operation in

the critical processing path. A storage operation adds a great deal

of unnecessary latency to the process (e.g., committing a database

record requires a disk write of a log record). For many stream

processing applications, it is neither acceptable nor necessary to

require such a time-intensive operation before message processing

can occur. Instead, messages should be processed “in-stream” as

they fly by. See Figure 1 for an architectural illustration of this

straight-through processing paradigm.

An additional latency problem exists with systems that are

passive, as such systems wait to be told what to do by an

application before initiating processing. Passive systems require

applications to continuously poll for conditions of interest.

Unfortunately, polling results in additional overhead on the

system as well as the application, and additional latency, because

(on average) half the polling interval is added to the processing

delay. Active systems avoid this overhead by incorporating built-

in event/data-driven processing capabilities.

Rule 2: Query using SQL on Streams (StreamSQL)

In streaming applications, some querying mechanism must be

used to find output events of interest or compute real-time

analytics. Historically, for streaming applications, general

purpose languages such as C++ or Java have been used as the

workhorse development and programming tools. Unfortunately,

relying on low-level programming schemes results in long

development cycles and high maintenance costs.

In contrast, it is very much desirable to process moving real-time

data using a high-level language such as SQL. SQL has remained

the most enduring standard database language over three decades.

SQL’s success at expressing complex data transformations derives

from the fact that it is based on a set of very powerful data

processing primitives that do filtering, merging, correlation, and

aggregation. SQL is explicit about how these primitives interact

so that its meaning can be easily understood independently from

runtime conditions. Furthermore, SQL is a widely promulgated

standard that is understood by hundreds of thousands of database

programmers and is implemented by every serious DBMS in

commercial use today, due to its combination of functionality,

power, and relative ease-of-use. Given that millions of relational

database servers running SQL are already installed and operating

globally today, it makes good sense to leverage the familiar SQL

querying model and operators, and simply extend them to perform

processing on continuous data streams.

In order to address the unique requirements of stream processing,

StreamSQL, a variant of the SQL language specifically designed

to express processing on continuous streams of data, is needed.

StreamSQL should extend the semantics of standard SQL (that

assumes records in a finite stored dataset) by adding to it rich

windowing constructs and stream-specific operators.

Although a traditional SQL system knows it is finished computing

when it gets to the end of a table, because streaming data never

ends, a stream processing engine must be instructed when to

finish such an operation and output an answer. The window

construct serves this purpose by defining the “scope” of a multi-

message operator such as an aggregate or a join.

Windows should be definable over time (probably the most

common usage case), number of messages, or breakpoints in other

attributes in a message. Such windows should be able to slide a

variable amount from the current window (e.g., a window could

be five ticks wide and the next window could slide by one tick

from the current one). As a result, depending on the choice of

window size and slide parameters, windows can be made disjoint

or overlapping. A sliding window example is shown in Figure 2.

Furthermore, new stream-oriented operators that are not present in

the standard SQL are needed. An example is a “Merge” operator

that multiplexes messages from multiple streams in a manner that

Figure 1: “Straight-through” processing of messages

with optional storage.

Figure 2: Windows define the scope of operations. The

window has a size of 4 messages and slides by 1 each time the

associated operator is executed. Consecutive windows

overlap.

The first requirement for a real-time stream processing

system is to process messages “in-stream”, without any

requirement to store them to perform any operation or

sequence of operations. Ideally the system should also use

an active (i.e., non-polling) processing model.

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 43

is sensitive to arrival times and ordering of data messages.

Finally, the operator set must be extensible, so that developers can

easily achieve new processing functionality within the system

(e.g., to implement a proprietary analysis algorithm on the

streaming data).

Rule 3: Handle Stream Imperfections (Delayed, Missing

and Out-of-Order Data)

In a conventional database, data is always present before it is

queried against, but in a real-time system, since the data is never

stored, the infrastructure must make provision for handling data

that is late or delayed, missing, or out-of-sequence.

One requirement here is the ability to time out individual

calculations or computations. For example, consider a simple real-

time business analytic that computes the average price of the last

tick for a collection of 25 securities. One need only wait for a

tick from each security and then output the average price.

However, suppose one of the 25 stocks is thinly traded, and no

tick for that symbol will be received for the next 10 minutes. This

is an example of a computation that must block, waiting for input

to complete its calculation. Such input may or may not arrive in a

timely fashion. In fact, if the SEC orders a stop to trading in one

of the 25 securities, then the calculation will block indefinitely.

In a real-time system, it is never a good idea to allow a program to

wait indefinitely. Hence, every calculation that can block must be

allowed to time out, so that the application can continue with

partial data. Any real-time processing system must have such

time-outs for any potentially blocking operation.

Dealing with out-of-order data introduces similar challenges.

Ordinarily, a time window (e.g., [9:00 – 9:01]) would be closed

once a message with a timestamp greater than the window’s

closing time is received. However, such an action assumes that

the data arrives in timestamp order, which may not be the case.

To deal with out-of-order data, a mechanism must be provided to

allow windows to stay open for an additional period of time. One

solution specified in Aurora was the notion of slack [3].

Rule 4: Generate Predictable Outcomes

A stream processing system must process time-series messages in

a predictable manner to ensure that the results of processing are

deterministic and repeatable.

For example, consider two feeds, one containing TICKS data with

fields:

TICKS (stock_symbol, volume, price, time),

and the other a SPLITS feed, which indicates when a stock splits,

with the format:

SPLITS (symbol, time, split_factor).

A typical stream processing application would be to produce the

real-time split-adjusted price for a collection of stocks. The price

must be adjusted for the cumulative split_factor that has been

seen. The correct answer to this computation can be produced

when messages are processed by the system in ascending time

order, regardless of when the messages arrive to the system. If a

split message is processed out-of-order, then the split-adjusted

price for the stock in question will be wrong for one or more

ticks. Notice that it is insufficient to simply sort-order messages

before they are input to the system correctness can be

guaranteed only if time-ordered, deterministic processing is

maintained throughout the entire processing pipeline.

The ability to produce predictable results is also important from

the perspective of fault tolerance and recovery, as replaying and

reprocessing the same input stream should yield the same

outcome regardless of the time of execution.

Rule 5: Integrate Stored and Streaming Data

For many stream processing applications, comparing “present”

with “past” is a common task. Thus, a stream processing system

must also provide for careful management of stored state. For

example, in on-line data mining applications (such as detecting

credit card or other transactional fraud), identifying whether an

activity is “unusual” requires, by definition, gathering the usual

activity patterns over time, summarizing them as a “signature”,

and comparing them to the present activity in real time. To realize

this task, both historical and live data need to be integrated within

the same application for comparison.

A very popular extension of this requirement comes from firms

with electronic trading applications, who want to write a trading

algorithm and then test it on historical data to see how it would

have performed and to test alternative scenarios. When the

algorithm works well on historical data, the customer wants to

switch it over to a live feed seamlessly; i.e., without modifying

the application code. Seamless switching ensures that new errors

are not introduced by changes to the program.

Another reason for seamless switching is the desire to compute

some sort of business analytic starting from a past point in time

(such as starting two hours ago), “catch up” to real time, and then

seamlessly continue with the calculation on live data. This

capability requires switching automatically from historical to live

data, without the manual intervention of a human.

For low-latency streaming data applications, interfacing with a

client-server database connection to efficiently store and access

persistent state will add excessive latency and overhead to the

application. Therefore, state must be stored in the same operating

system address space as the application using an embedded

database system. Therefore, the scope of a StreamSQL command

should be either a live stream or a stored table in the embedded

database system.

The second requirement is to support a high-level

“StreamSQL” language with built-in extensible stream-

oriented primitives and operators.

The third requirement is to have built-in mechanisms to

provide resiliency against stream “imperfections”,

including missing and out-of-order data, which are

commonly present in real-world data streams.

The fourth requirement is that a stream processing engine

must guarantee predictable and repeatable outcomes.

44 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

Rule 6: Guarantee Data Safety and Availability

To preserve the integrity of mission-critical information and avoid

disruptions in real-time processing, a stream processing system

must use a high-availability (HA) solution.

 High availability is a critical concern for most stream processing

applications. For example, virtually all financial services firms

expect their applications to stay up all the time, no matter what

happens. If a failure occurs, the application needs to failover to

backup hardware and keep going. Restarting the operating system

and recovering the application from a log incur too much

overhead and is thus not acceptable for real-time processing.

Hence, a “Tandem-style” hot backup and real-time failover

scheme [6], whereby a secondary system frequently synchronizes

its processing state with a primary and takes over when primary

fails, is the best reasonable alternative for these types of

applications. This HA model is shown in Figure 3.

Rule 7: Partition and Scale Applications Automatically

Distributed operation is becoming increasingly important given

the favorable price-performance characteristics of low-cost

commodity clusters. As such, it should be possible to split an

application over multiple machines for scalability (as the volume

of input streams or the complexity of processing increases),

without the developer having to write low-level code.

Stream processing systems should also support multi-threaded

operation to take advantage of modern multi-processor (or multi-

core) computer architectures. Even on a single-processor

machine, multi-threaded operation should be supported to avoid

blocking for external events, thereby facilitating low latency.

Not only must scalability be provided easily over any number of

machines, but the resulting application should automatically and

transparently load-balance over the available machines, so that

the application does not get bogged down by a single overloaded

machine.

Rule 8: Process and Respond Instantaneously

None of the preceding rules will make any difference alone unless

an application can “keep up”, i.e., process high-volumes of

streaming data with very low latency. In numbers, this means

capability to process tens to hundreds of thousands of messages

per second with latency in the microsecond to millisecond range

on top of COTS hardware.

To achieve such high performance, the system should have a

highly-optimized execution path that minimizes the ratio of

overhead to useful work. As exemplified by the previous rules, a

critical issue here is to minimize the number of “boundary

crossings” by integrating all critical functionality (e.g., processing

and storage) into a single system process. However, this is not

sufficient by itself; all system components need to be designed

with high performance in mind.

To make sure that a system can meet this requirement, it is

imperative that any user with a high-volume streaming

application carefully test any product he might consider for

throughput and latency on his target workload.

3. SYSTEM SOFTWARE TECHNOLOGIES

for STREAM PROCESSING

3.1 Basic Architectures
In addition to custom coding, there are at least three different

software system technologies that can potentially be applied to

solve high-volume low-latency streaming problems. These are

DBMSs, rule engines, and stream processing engines, which we

discuss below:

Database Management Systems (DBMSs) are widely used

due to their ability to reliably store large data sets and

efficiently process human-initiated queries. Main-memory

DBMSs can provide higher performance than traditional

DBMSs by avoiding going to disk for most operations, given

sufficient main memory.

Figure 4(i) illustrates the basic DBMS architecture.

Streaming data is entered into the DBMS directly or through

a loading application. A collection of applications can then

manipulate DBMS data. A client can use these pre-built

applications, often with run-time arguments, and can also

PrimaryPrimary

SecondarySecondary

streaming

data

checkpoints

outputs

Figure 3: “Tandem-style” hot backup and failover

can ensure high availability for real-time stream

processing.

The fifth requirement is that a stream processing system

should have the capability to efficiently store, access, and

modify state information, and combine it with live streaming

data. For seamless integration, the system should use a

uniform language when dealing with either type of data.

The sixth requirement is to ensure that the applications are

up and available, and the integrity of the data maintained at

all times, despite failures.

The seventh requirement is that a stream processing system

must be able to distribute its processing across multiple

processors and machines to achieve incremental scalability.

Ideally, the distribution should be automatic and

transparent.

The eighth requirement is that a stream processing system

must have a highly-optimized, minimal-overhead execution

engine to deliver real-time response for high-volume

applications.

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 45

code additional ones in a general purpose language such as

C++ or Java, using embedded SQL calls to the DBMS.

Rule engines date from the early 1970’s when systems such

as PLANNER and Conniver were initially proposed by the

artificial intelligence community. A later more widespread

rule engine was Prolog (1980s), and there have been several

more recent examples (e.g., OPS5 [7]). A rule engine

typically accepts condition/action pairs, usually expressed

using “if-then” notation, watches an input stream for any

conditions of interest, and then takes appropriate action. In

other words, a rule engine enforces a collection of rules that

are stored in a rule base.

Figure 4(ii) illustrates the basic rule engine model for stream

processing. The rule base provides persistent storage for

rules. As streaming data enters the system, they are

immediately matched against the existing rules. When the

condition of a rule is matched, the rule is said to “fire”. The

corresponding action(s) taken may then produce

alerts/outputs to external applications or may simply modify

the state of internal variables, which may lead to further rule

firings.

Stream Processing Engines (SPEs) are specifically

designed to deal with streaming data and have recently

gotten attention as a third alternative. Their basic

architecture is shown in Figure 4(iii).

SPEs perform SQL-style processing on the incoming

messages as they fly by, without necessarily storing them.

Clearly, to store state when necessary, one can use a

conventional SQL database embedded in the system for

efficiency. SPEs use specialized primitives and constructs

(e.g., time-windows) to express stream-oriented processing

logic.

Next, we briefly evaluate these systems on the basis of the

requirements we presented in Section 2.

3.2 How do they measure up?
DBMSs use a “process-after-store” model, where input data are

first stored, potentially indexed, and then get processed. Main-

memory DBMSs are faster because they can avoid going to disk

for most updates, but otherwise use the same basic model.

DBMSs are passive; i.e., they wait to be told what to do by an

application. Some have built-in triggering mechanisms, but it is

well-known that triggers have poor scalability. On the other hand,

rule engines and SPEs are both active and do not require any

storage prior to processing. Thus, DBMSs do not keep the data

moving, whereas rule engines and SPEs do.

SQL was designed to operate on finite-size stored data and thus

needs to be extended in order to deal with potentially unbounded

streams of time-series data. SQL/Temporal is still in its infancy

and, SQL, as implemented by the DBMS vendors, supports only a

rudimentary notion of windowed operations (i.e., sort and

aggregate). Rule languages need to be extended in a similar

manner so that they can express conditions of interest over time.

Moreover, rule languages also need the notion of aggregation, a

common operation in many streaming applications. Therefore,

SPEs support SQL-style processing on streams, whereas

DBMSs and rule engines do not.

In rule engines and SPEs, it is possible to code operations that

might block. Hence, any implementation of these systems should

support time-outs. In a DBMS solution, applications have to

explicitly specify their polling behavior to simulate the effect of

time-outs and receive partial data. On the other hand, a DBMS

triggering system has no obvious way to time out. Dealing with

out-of-order data exhibits similar challenges for a DBMS.

Overall, handling stream imperfections is much easier with

rules engines and SPEs than with DBMSs.

To generate predictable outcomes, an SPE or a rule engine must

have a deterministic execution mode that utilizes timestamp order

of input messages. DBMSs have particular difficulty with this

requirement simply because they are passive some external

system would have to control the order in which messages were

stored and processed. In addition, application programs are

fundamentally independent and their execution is controlled by an

operating system scheduler. Enforcing some order on the

execution of application programs is another task that would have

to be done by some external software.

Seamlessly integrating stored and streaming data is

problematic for both DBMSs and rules engines. Storing state is

what DBMSs do naturally. As argued earlier, however, DBMSs

cannot cope well with streaming data. Even if only used for state

storage in a streaming application, a client-server DBMS will be

ineffective as it will incur high latency and overhead. As such, a

DBMS solution will only be acceptable if the DBMS can be

embedded in the application.

In contrast, a rule engine can effectively keep data moving, but

has problems when dealing with state storage. The reason is that a

rule engine relies on local variables for storage, and there is no

easy way to query local variables. To cope with a large amount of

Embedded

SQL

DBMS

Embedded

SQL

DBMS

App 1App 1

SQL

DBMS

SQL

DBMS

App 2App 2 App nApp n…

streaming

data

polling

queries

Rule

Engine

Rule

Engine

Rule

Base

Rule

Base

streaming

data

outputs

alerts

SPESPE
streaming

data

outputs

alerts

(i) (ii) (iii)

Figure 4: Basic architectures of (i) a database system, (ii) a rule engine, and (iii) a stream processing engine.

46 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

state, one must then somehow graft an embedded DBMS onto a

rule engine. In this case, it is necessary to switch from local

variables to a DBMS paradigm, an unnatural thing to do. Hence, a

rule engine is ill-suited for storing significant amounts of state

information. An SPE, on the other hand, should be able to support

and seamlessly integrate streaming and stored data by simply

switching the scope of a StreamSQL command from a live feed to

a stored table.

All three systems can incorporate appropriate mechanisms to

guarantee data safety and availability. Similarly, there are no

fundamental architectural impediments to prevent these systems

from partitioning and scaling applications.

Finally, all architectures can potentially process and respond

instantaneously; however, DBMSs are at a big disadvantage here

as they do not employ a straight-through processing model.

3.3 Tabular results
In Table 1, we summarize the results of the discussion in this

section. Each entry in the table contains one of four values:

Yes: The architecture naturally supports the feature.

No: The architecture does not support the feature.

Possible: The architecture can support the feature. One

should check with a vendor for compliance.

Difficult: The architecture can support the feature, but it is

difficult due to the non-trivial modifications needed. One

should check with the vendor for compliance.

SPEs offer the best capabilities since they are designed and

optimized from scratch to address the requirements of stream

processing. Both DBMSs and rule engines were originally

architected for a different class of applications with different

underlying assumptions and requirements. As a result, both

systems fundamentally “shoehorn” stream processing into their

own model. It is, thus, not surprising to see that they have

fundamental limitations for this domain. In particular, neither

system has the capability to efficiently and uniformly deal with

both streaming and stored data.

4. CONCLUDING REMARKS
There is a large class of existing and newly emerging applications

that require sophisticated, real-time processing of high-volume

data streams. Although these applications have traditionally been

served by “point” solutions through custom coding, system

software that specifically target them have also recently started to

emerge in the research labs and marketplace.

Based on our experience with a variety of streaming applications,

we presented eight rules to characterize the requirements for real-

time stream processing. The rules serve to illustrate the necessary

features required for any system software that will be used for

high-volume low-latency stream processing applications. We also

observed that traditional system software fails to meet some of

these requirements, justifying the need for and the relative

benefits of SPEs.

REFERENCES

[1] Crossbow Technology Inc., 2005.

http://www.xbow.com/.

[2] Lojack.com, 2005. http://www.lojack.com/.

[3] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.

Aurora: A New Model and Architecture for Data Stream

Management. VLDB Journal, 2003.

[4] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I.

Nizhizawa, J. Rosenstein, and J. Widom. STREAM: The

Stanford Stream Data Manager. In ACM SIGMOD

Conference, June 2003.

[5] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey, E.

Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road: A

Benchmark for Stream Data Management Systems. In Very

Large Data Bases (VLDB) Conference, Toronto, CA, 2004.

[6] J. Barlett, J. Gray, and B. Horst. Fault tolerance in Tandem

computer systems. Tandem Computers TR 86.2., 1986.

[7] L. Brownston, R. Farrell, E. Kant, and N. Martin,

Programming Expert Systems in OPS5: Addison-Wesley,

1985.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.

Monitoring Streams: A New Class of Data Management

Applications. In proceedings of the 28th International

Conference on Very Large Data Bases (VLDB'02), Hong

Kong, China, 2002.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,

J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,

V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ:

Continuous Dataflow Processing for an Uncertain World. In

Proc. of the 1st CIDR Conference, Asilomar, CA, 2003.

[10] E. F. Codd. Does your DBMS run by the rules?

 ComputerWorld, October 21, 1985.

[11] E. F. Codd. Is your DBMS really relational?

 Computerworld, October 14, 1985.

[12] E. F. Codd. Providing OLAP to User-Analysts: An IT

Mandate. Codd and Associates, Technical Report 1993.

[13] J. P. Corrigan. OPRA Traffic Projections for 2005 and 2006.

Technical Report, Options Price Reporting Authority, Aug,

2005.
http://www.opradata.com/specs/projections

_2005_2006.pdf.

DBMS Rule engine SPE

Keep the data moving No Yes Yes

SQL on streams No No Yes

Handle stream imperfections Difficult Possible Possible

Predictable outcome Difficult Possible Possible

High availability Possible Possible Possible

Stored and streamed data No No Yes

Distribution and scalability Possible Possible Possible

Instantaneous response Possible Possible Possible

Table 1: The capabilities of various systems software.

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 47

