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ABSTRACT
Applications that require real-time processing of high-volume 

data steams are pushing the limits of traditional data processing 

infrastructures. These stream-based applications include market 

feed processing and electronic trading on Wall Street, network 

and infrastructure monitoring, fraud detection, and command and 

control in military environments. Furthermore, as the “sea 

change” caused by cheap micro-sensor technology takes hold, we 

expect to see everything of material significance on the planet get 

“sensor-tagged” and report its state or location in real time. This 

sensorization of the real world will lead to a “green field” of 

novel monitoring and control applications with high-volume and 

low-latency processing requirements.   

Recently, several technologies have emerged—including off-the-

shelf stream processing engines—specifically to address the 

challenges of processing high-volume, real-time data without 

requiring the use of custom code. At the same time, some existing 

software technologies, such as main memory DBMSs and rule 

engines, are also being “repurposed” by marketing departments to 

address these applications.  

In this paper, we outline eight requirements that a system software 

should meet to excel at a variety of real-time stream processing 

applications. Our goal is to provide high-level guidance to 

information technologists so that they will know what to look for 

when evaluation alternative stream processing solutions. As such, 

this paper serves a purpose comparable to the requirements papers 

in relational DBMSs and on-line analytical processing. We also 

briefly review alternative system software technologies in the 

context of our requirements.

The paper attempts to be vendor neutral, so no specific 

commercial products are mentioned. 

1. INTRODUCTION
On Wall Street and other global exchanges, electronic trading 

volumes are growing exponentially. Market data feeds can 

generate tens of thousands of messages per second. The Options 

Price Reporting Authority (OPRA), which aggregates all the 

quotes and trades from the options exchanges, estimates peak 

rates of 122,000 messages per second in 2005, with rates doubling 

every year [13]. This dramatic escalation in feed volumes is 

stressing or breaking traditional feed processing systems.  

Furthermore, in electronic trading, a latency of even one second is 

unacceptable, and the trading operation whose engine produces 

the most current results will maximize arbitrage profits. This fact 

is causing financial services companies to require very high-

volume processing of feed data with very low latency. 

Similar requirements are present in monitoring computer 

networks for denial of service and other kinds of security attacks. 

Real-time fraud detection in diverse areas from financial services 

networks to cell phone networks exhibits similar characteristics. 

In time, process control and automation of industrial facilities, 

ranging from oil refineries to corn flakes factories, will also move 

to such “firehose” data volumes and sub-second latency 

requirements.

There is a “sea change” arising from the advances in micro-sensor 

technologies. Although RFID has gotten the most press recently, 

there are a variety of other technologies with various price points, 

capabilities, and footprints (e.g., mote [1] and Lojack [2]). Over 

time, this sea change will cause everything of material 

significance to be sensor-tagged to report its location and/or state 

in real time.  

Military has been an early driver and adopter of wireless sensor 

network technologies. For example, the US Army has been 

investigating putting vital-signs monitors on all soldiers. In 

addition, there is already a GPS system in many military vehicles, 

but it is not connected yet into a closed-loop system. Using this 

technology, the army would like to monitor the position of all 

vehicles and determine, in real time, if they are off course. 

Other sensor-based monitoring applications will come over time 

in non-military domains. Tagging will be applied to customers at 

amusement parks for ride management and prevention of lost 

children.  More sophisticated “easy-pass” systems will allow 

congestion-based tolling of automobiles on freeways (which was 

the inspiration behind the Linear Road Benchmark [5]) as well as 

optimized routing of cars in a metropolitan area. The processing 

of “firehoses” of real-time data from existing and newly-emerging 

monitoring applications presents a major stream processing 

challenge and opportunity. 

Traditionally, custom coding has been used to solve high-volume, 

low-latency streaming processing problems. Even though the “roll 

your own” approach is universally despised because of its 

inflexibility, high cost of development and maintenance, and slow 

response time to new feature requests, application developers had 

to resort to it as they have not had good luck with traditional off-

the-shelf system software.  

Recently, several traditional system software technologies, such 

as main memory DBMSs and rule engines, have been repurposed 

and remarketed to address this application space. In addition, 

Stream Processing Engines (e.g., Aurora [8], STREAM [4], 

TelegraphCQ [9]), a new class of system software, have emerged 

to specifically support high-volume, low-latency stream 

processing applications. 
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In this paper, we describe eight characteristics that a system 

software must exhibit to excel at a variety of real-time stream 

processing applications. Our goal is to provide information 

technologists high-level guidance so that they know what to look 

for when evaluating their options. Thus, this paper shares a 

similar goal with earlier papers that present requirements for 

relational DBSMs [10, 11] and on-line analytical processing [12]. 

We present these features as a collection of eight rules in the next 

section. We then review the alternative technologies and 

summarize how they measure up for real-time stream processing 

in Section 3. We conclude with final remarks in Section 4.

2. EIGHT RULES FOR STREAM 

PROCESSING

Rule 1: Keep the Data Moving 

To achieve low latency, a system must be able to perform 

message processing without having a costly storage operation in 

the critical processing path. A storage operation adds a great deal 

of unnecessary latency to the process (e.g., committing a database 

record requires a disk write of a log record). For many stream 

processing applications, it is neither acceptable nor necessary to 

require such a time-intensive operation before message processing 

can occur. Instead, messages should be processed “in-stream” as 

they fly by. See Figure 1 for an architectural illustration of this 

straight-through processing paradigm. 

An additional latency problem exists with systems that are 

passive, as such systems wait to be told what to do by an 

application before initiating processing. Passive systems require 

applications to continuously poll for conditions of interest. 

Unfortunately, polling results in additional overhead on the 

system as well as the application, and additional latency, because 

(on average) half the polling interval is added to the processing 

delay. Active systems avoid this overhead by incorporating built-

in event/data-driven processing capabilities. 

Rule 2: Query using SQL on Streams (StreamSQL) 

In streaming applications, some querying mechanism must be 

used to find output events of interest or compute real-time 

analytics. Historically, for streaming applications, general 

purpose languages such as C++ or Java have been used as the 

workhorse development and programming tools. Unfortunately, 

relying on low-level programming schemes results in long 

development cycles and high maintenance costs. 

In contrast, it is very much desirable to process moving real-time 

data using a high-level language such as SQL. SQL has remained 

the most enduring standard database language over three decades. 

SQL’s success at expressing complex data transformations derives 

from the fact that it is based on a set of very powerful data 

processing primitives that do filtering, merging, correlation, and 

aggregation.  SQL is explicit about how these primitives interact 

so that its meaning can be easily understood independently from 

runtime conditions.  Furthermore, SQL is a widely promulgated 

standard that is understood by hundreds of thousands of database 

programmers and is implemented by every serious DBMS in 

commercial use today, due to its combination of functionality, 

power, and relative ease-of-use. Given that millions of relational 

database servers running SQL are already installed and operating 

globally today, it makes good sense to leverage the familiar SQL 

querying model and operators, and simply extend them to perform 

processing on continuous data streams. 

In order to address the unique requirements of stream processing, 

StreamSQL, a variant of the SQL language specifically designed 

to express processing on continuous streams of data, is needed. 

StreamSQL should extend the semantics of standard SQL (that 

assumes records in a finite stored dataset) by adding to it rich

windowing constructs and stream-specific operators.

Although a traditional SQL system knows it is finished computing 

when it gets to the end of a table, because streaming data never 

ends, a stream processing engine must be instructed when to 

finish such an operation and output an answer. The window

construct serves this purpose by defining the “scope” of a multi-

message operator such as an aggregate or a join.  

Windows should be definable over time (probably the most 

common usage case), number of messages, or breakpoints in other 

attributes in a message. Such windows should be able to slide a 

variable amount from the current window (e.g., a window could 

be five ticks wide and the next window could slide by one tick 

from the current one). As a result, depending on the choice of 

window size and slide parameters, windows can be made disjoint 

or overlapping. A sliding window example is shown in Figure 2. 

Furthermore, new stream-oriented operators that are not present in 

the standard SQL are needed. An example is a “Merge” operator 

that multiplexes messages from multiple streams in a manner that 

Figure 1: “Straight-through” processing of messages 

with optional storage. 

Figure 2: Windows define the scope of operations. The 

window has a size of 4 messages and slides by 1 each time the 

associated operator is executed. Consecutive windows 

overlap.

The first requirement for a real-time stream processing 

system is to process messages “in-stream”, without any 

requirement to store them to perform any operation or 

sequence of operations. Ideally the system should also use 

an active (i.e., non-polling) processing model. 
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is sensitive to arrival times and ordering of data messages.  

Finally, the operator set must be extensible, so that developers can 

easily achieve new processing functionality within the system 

(e.g., to implement a proprietary analysis algorithm on the 

streaming data).

Rule 3: Handle Stream Imperfections (Delayed, Missing 

and Out-of-Order Data) 

In a conventional database, data is always present before it is 

queried against, but in a real-time system, since the data is never 

stored, the infrastructure must make provision for handling data 

that is late or delayed, missing, or out-of-sequence.   

One requirement here is the ability to time out individual 

calculations or computations. For example, consider a simple real-

time business analytic that computes the average price of the last 

tick for a collection of 25 securities.  One need only wait for a 

tick from each security and then output the average price. 

However, suppose one of the 25 stocks is thinly traded, and no 

tick for that symbol will be received for the next 10 minutes.  This 

is an example of a computation that must block, waiting for input 

to complete its calculation. Such input may or may not arrive in a 

timely fashion. In fact, if the SEC orders a stop to trading in one 

of the 25 securities, then the calculation will block indefinitely.   

In a real-time system, it is never a good idea to allow a program to 

wait indefinitely. Hence, every calculation that can block must be 

allowed to time out, so that the application can continue with 

partial data. Any real-time processing system must have such 

time-outs for any potentially blocking operation. 

Dealing with out-of-order data introduces similar challenges. 

Ordinarily, a time window (e.g., [9:00 – 9:01]) would be closed 

once a message with a timestamp greater than the window’s 

closing time is received. However, such an action assumes that 

the data arrives in timestamp order, which may not be the case.  

To deal with out-of-order data, a mechanism must be provided to 

allow windows to stay open for an additional period of time.  One 

solution specified in Aurora was the notion of slack [3].

Rule 4: Generate Predictable Outcomes 

A stream processing system must process time-series messages in 

a predictable manner to ensure that the results of processing are 

deterministic and repeatable.  

For example, consider two feeds, one containing TICKS data with 

fields:

TICKS (stock_symbol, volume, price, time),  

and the other a SPLITS feed, which indicates when a stock splits, 

with the format: 

SPLITS (symbol, time, split_factor). 

A typical stream processing application would be to produce the 

real-time split-adjusted price for a collection of stocks. The price 

must be adjusted for the cumulative split_factor that has been 

seen. The correct answer to this computation can be produced 

when messages are processed by the system in ascending time 

order, regardless of when the messages arrive to the system. If a 

split message is processed out-of-order, then the split-adjusted 

price for the stock in question will be wrong for one or more 

ticks. Notice that it is insufficient to simply sort-order messages 

before they are input to the system correctness can be 

guaranteed only if time-ordered, deterministic processing is 

maintained throughout the entire processing pipeline.

The ability to produce predictable results is also important from 

the perspective of fault tolerance and recovery, as replaying and 

reprocessing the same input stream should yield the same 

outcome regardless of the time of execution.

Rule 5:  Integrate Stored and Streaming Data

For many stream processing applications, comparing “present” 

with “past” is a common task. Thus, a stream processing system 

must also provide for careful management of stored state. For 

example, in on-line data mining applications (such as detecting 

credit card or other transactional fraud), identifying whether an 

activity is “unusual” requires, by definition, gathering the usual 

activity patterns over time, summarizing them as a “signature”, 

and comparing them to the present activity in real time. To realize 

this task, both historical and live data need to be integrated within 

the same application for comparison. 

A very popular extension of this requirement comes from firms 

with electronic trading applications, who want to write a trading 

algorithm and then test it on historical data to see how it would 

have performed and to test alternative scenarios. When the 

algorithm works well on historical data, the customer wants to 

switch it over to a live feed seamlessly; i.e., without modifying 

the application code. Seamless switching ensures that new errors 

are not introduced by changes to the program. 

Another reason for seamless switching is the desire to compute 

some sort of business analytic starting from a past point in time 

(such as starting two hours ago), “catch up” to real time, and then 

seamlessly continue with the calculation on live data. This 

capability requires switching automatically from historical to live 

data, without the manual intervention of a human. 

For low-latency streaming data applications, interfacing with a 

client-server database connection to efficiently store and access 

persistent state will add excessive latency and overhead to the 

application. Therefore, state must be stored in the same operating 

system address space as the application using an embedded 

database system. Therefore, the scope of a StreamSQL command 

should be either a live stream or a stored table in the embedded 

database system.   

The second requirement is to support a high-level 

“StreamSQL” language with built-in extensible stream-

oriented primitives and operators.

The third requirement is to have built-in mechanisms to 

provide resiliency against stream “imperfections”, 

including missing and out-of-order data, which are 

commonly present in real-world data streams. 

The fourth requirement is that a stream processing engine 

must guarantee predictable and repeatable outcomes. 
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Rule 6: Guarantee Data Safety and Availability 

To preserve the integrity of mission-critical information and avoid 

disruptions in real-time processing, a stream processing system 

must use a high-availability (HA) solution.  

 High availability is a critical concern for most stream processing 

applications. For example, virtually all financial services firms 

expect their applications to stay up all the time, no matter what 

happens. If a failure occurs, the application needs to failover to 

backup hardware and keep going. Restarting the operating system 

and recovering the application from a log incur too much 

overhead and is thus not acceptable for real-time processing. 

Hence, a “Tandem-style” hot backup and real-time failover 

scheme [6], whereby a secondary system frequently synchronizes 

its processing state with a primary and takes over when primary 

fails, is the best reasonable alternative for these types of 

applications. This HA model is shown in Figure 3. 

Rule 7: Partition and Scale Applications Automatically 

Distributed operation is becoming increasingly important given 

the favorable price-performance characteristics of low-cost 

commodity clusters. As such, it should be possible to split an 

application over multiple machines for scalability (as the volume 

of input streams or the complexity of processing increases), 

without the developer having to write low-level code.

Stream processing systems should also support multi-threaded 

operation to take advantage of modern multi-processor (or multi-

core) computer architectures. Even on a single-processor 

machine, multi-threaded operation should be supported to avoid 

blocking for external events, thereby facilitating low latency. 

Not only must scalability be provided easily over any number of 

machines, but the resulting application should automatically and 

transparently load-balance over the available machines, so that 

the application does not get bogged down by a single overloaded 

machine. 

Rule 8:  Process and Respond Instantaneously 

None of the preceding rules will make any difference alone unless 

an application can “keep up”, i.e., process high-volumes of 

streaming data with very low latency. In numbers, this means 

capability to process tens to hundreds of thousands of messages 

per second with latency in the microsecond to millisecond range 

on top of COTS hardware.

To achieve such high performance, the system should have a 

highly-optimized execution path that minimizes the ratio of 

overhead to useful work. As exemplified by the previous rules, a 

critical issue here is to minimize the number of “boundary 

crossings” by integrating all critical functionality (e.g., processing 

and storage) into a single system process. However, this is not 

sufficient by itself; all system components need to be designed 

with high performance in mind. 

To make sure that a system can meet this requirement, it is 

imperative that any user with a high-volume streaming 

application carefully test any product he might consider for 

throughput and latency on his target workload.  

3. SYSTEM SOFTWARE TECHNOLOGIES 

for STREAM PROCESSING 

3.1 Basic Architectures 
In addition to custom coding, there are at least three different 

software system technologies that can potentially be applied to 

solve high-volume low-latency streaming problems. These are 

DBMSs, rule engines, and stream processing engines, which we 

discuss below: 

Database Management Systems (DBMSs) are widely used 

due to their ability to reliably store large data sets and 

efficiently process human-initiated queries. Main-memory 

DBMSs can provide higher performance than traditional 

DBMSs by avoiding going to disk for most operations, given 

sufficient main memory.  

Figure 4(i) illustrates the basic DBMS architecture. 

Streaming data is entered into the DBMS directly or through 

a loading application. A collection of applications can then 

manipulate DBMS data. A client can use these pre-built 

applications, often with run-time arguments, and can also 

PrimaryPrimary

SecondarySecondary

streaming

data

checkpoints

outputs

Figure 3: “Tandem-style” hot backup and failover 

can ensure high availability for real-time stream 

processing. 

The fifth requirement is that a stream processing system 

should have the capability to efficiently store, access, and 

modify state information, and combine it with live streaming 

data. For seamless integration, the system should use a 

uniform language when dealing with either type of data.

The sixth requirement is to ensure that the applications are 

up and available, and the integrity of the data maintained at 

all times, despite failures.

The seventh requirement is that a stream processing system 

must be able to distribute its processing across multiple 

processors and machines to achieve incremental scalability. 

Ideally, the distribution should be automatic and 

transparent.

The eighth requirement is that a stream processing system 

must have a highly-optimized, minimal-overhead execution 

engine to deliver real-time response for high-volume 

applications.
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code additional ones in a general purpose language such as 

C++ or Java, using embedded SQL calls to the DBMS.

Rule engines date from the early 1970’s when systems such 

as PLANNER and Conniver were initially proposed by the 

artificial intelligence community. A later more widespread 

rule engine was Prolog (1980s), and there have been several 

more recent examples (e.g., OPS5 [7]). A rule engine 

typically accepts condition/action pairs, usually expressed 

using “if-then” notation, watches an input stream for any 

conditions of interest, and then takes appropriate action. In 

other words, a rule engine enforces a collection of rules that 

are stored in a rule base.  

Figure 4(ii) illustrates the basic rule engine model for stream 

processing. The rule base provides persistent storage for 

rules. As streaming data enters the system, they are 

immediately matched against the existing rules. When the 

condition of a rule is matched, the rule is said to “fire”. The 

corresponding action(s) taken may then produce 

alerts/outputs to external applications or may simply modify 

the state of internal variables, which may lead to further rule 

firings.

Stream Processing Engines (SPEs) are specifically 

designed to deal with streaming data and have recently 

gotten attention as a third alternative. Their basic 

architecture is shown in Figure 4(iii).

SPEs perform SQL-style processing on the incoming 

messages as they fly by, without necessarily storing them. 

Clearly, to store state when necessary, one can use a 

conventional SQL database embedded in the system for 

efficiency. SPEs use specialized primitives and constructs 

(e.g., time-windows) to express stream-oriented processing 

logic.

Next, we briefly evaluate these systems on the basis of the 

requirements we presented in Section 2.

3.2 How do they measure up? 
DBMSs use a “process-after-store” model, where input data are 

first stored, potentially indexed, and then get processed. Main-

memory DBMSs are faster because they can avoid going to disk 

for most updates, but otherwise use the same basic model. 

DBMSs are passive; i.e., they wait to be told what to do by an 

application. Some have built-in triggering mechanisms, but it is 

well-known that triggers have poor scalability. On the other hand, 

rule engines and SPEs are both active and do not require any 

storage prior to processing. Thus, DBMSs do not keep the data 

moving, whereas rule engines and SPEs do.

SQL was designed to operate on finite-size stored data and thus 

needs to be extended in order to deal with potentially unbounded 

streams of time-series data. SQL/Temporal is still in its infancy 

and, SQL, as implemented by the DBMS vendors, supports only a 

rudimentary notion of windowed operations (i.e., sort and 

aggregate). Rule languages need to be extended in a similar 

manner so that they can express conditions of interest over time. 

Moreover, rule languages also need the notion of aggregation, a 

common operation in many streaming applications. Therefore, 

SPEs support SQL-style processing on streams, whereas 

DBMSs and rule engines do not.

In rule engines and SPEs, it is possible to code operations that 

might block. Hence, any implementation of these systems should 

support time-outs. In a DBMS solution, applications have to 

explicitly specify their polling behavior to simulate the effect of 

time-outs and receive partial data. On the other hand, a DBMS 

triggering system has no obvious way to time out. Dealing with 

out-of-order data exhibits similar challenges for a DBMS. 

Overall, handling stream imperfections is much easier with 

rules engines and SPEs than with DBMSs. 

To generate predictable outcomes, an SPE or a rule engine must 

have a deterministic execution mode that utilizes timestamp order 

of input messages. DBMSs have particular difficulty with this 

requirement simply because they are passive some external 

system would have to control the order in which messages were 

stored and processed. In addition, application programs are 

fundamentally independent and their execution is controlled by an 

operating system scheduler. Enforcing some order on the 

execution of application programs is another task that would have 

to be done by some external software. 

Seamlessly integrating stored and streaming data is 

problematic for both DBMSs and rules engines. Storing state is 

what DBMSs do naturally. As argued earlier, however, DBMSs 

cannot cope well with streaming data. Even if only used for state 

storage in a streaming application, a client-server DBMS will be 

ineffective as it will incur high latency and overhead. As such, a 

DBMS solution will only be acceptable if the DBMS can be 

embedded in the application.

In contrast, a rule engine can effectively keep data moving, but 

has problems when dealing with state storage. The reason is that a 

rule engine relies on local variables for storage, and there is no 

easy way to query local variables. To cope with a large amount of 
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Figure 4: Basic architectures of (i) a database system, (ii) a rule engine, and (iii) a stream processing engine. 
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state, one must then somehow graft an embedded DBMS onto a 

rule engine. In this case, it is necessary to switch from local 

variables to a DBMS paradigm, an unnatural thing to do. Hence, a 

rule engine is ill-suited for storing significant amounts of state 

information. An SPE, on the other hand, should be able to support 

and seamlessly integrate streaming and stored data by simply 

switching the scope of a StreamSQL command from a live feed to 

a stored table. 

All three systems can incorporate appropriate mechanisms to 

guarantee data safety and availability. Similarly, there are no 

fundamental architectural impediments to prevent these systems 

from partitioning and scaling applications.

Finally, all architectures can potentially process and respond 

instantaneously; however, DBMSs are at a big disadvantage here 

as they do not employ a straight-through processing model. 

3.3 Tabular results 
In Table 1, we summarize the results of the discussion in this 

section. Each entry in the table contains one of four values: 

Yes:  The architecture naturally supports the feature. 

No: The architecture does not support the feature. 

Possible:  The architecture can support the feature. One 

should check with a vendor for compliance. 

Difficult: The architecture can support the feature, but it is 

difficult due to the non-trivial modifications needed. One 

should check with the vendor for compliance. 

SPEs offer the best capabilities since they are designed and 

optimized from scratch to address the requirements of stream 

processing. Both DBMSs and rule engines were originally 

architected for a different class of applications with different 

underlying assumptions and requirements. As a result, both 

systems fundamentally “shoehorn” stream processing into their 

own model. It is, thus, not surprising to see that they have 

fundamental limitations for this domain. In particular, neither 

system has the capability to efficiently and uniformly deal with 

both streaming and stored data.

4. CONCLUDING REMARKS 
There is a large class of existing and newly emerging applications 

that require sophisticated, real-time processing of high-volume 

data streams. Although these applications have traditionally been 

served by “point” solutions through custom coding, system 

software that specifically target them have also recently started to 

emerge in the research labs and marketplace. 

Based on our experience with a variety of streaming applications, 

we presented eight rules to characterize the requirements for real-

time stream processing. The rules serve to illustrate the necessary 

features required for any system software that will be used for 

high-volume low-latency stream processing applications. We also 

observed that traditional system software fails to meet some of 

these requirements, justifying the need for and the relative 

benefits of SPEs.
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DBMS Rule engine SPE

Keep the data moving No Yes Yes 

SQL on streams No No Yes 

Handle stream imperfections Difficult Possible Possible 

Predictable outcome Difficult Possible Possible 

High availability Possible Possible Possible 

Stored and streamed data  No No Yes 

Distribution and scalability Possible Possible Possible 

Instantaneous response Possible Possible Possible 

Table 1: The capabilities of various systems software. 
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