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It is common practice to evaluate the strength of forecasting methods using collections of
well-studied time series datasets, such as the M3 data. The question is, though, how diverse
and challenging are these time series, and do they enable us to study the unique strengths
and weaknesses of different forecasting methods? This paper proposes a visualisation
method for collections of time series that enables a time series to be represented as
a point in a two-dimensional instance space. The effectiveness of different forecasting
methods across this space is easy to visualise, and the diversity of the time series in
an existing collection can be assessed. Noting that the diversity of the M3 dataset has
been questioned, this paper also proposes a method for generating new time series with
controllable characteristics in order to fill in and spread out the instance space, making our
generalisations of forecasting method performances as robust as possible.

© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction with series lengths ranging from 14 to 126, and were
observed annually, quarterly or monthly (apart from 174
“other” series, whose frequencies of observation were not
provided). Methods that work well on this data set may

overfit data with similar data structures. Thus, testing

The M3 data (Makridakis & Hibon, 2000) are used
widely for testing the performances of new forecasting
algorithms. These 3003 series have become the de facto

standard test base in forecasting research. When a new
univariate forecasting method is proposed, it is unlikely
to receive any further attention or be adopted unless it
performs better on the M3 data than other published
algorithms.

We see several problems with this approach. The M3
dataset was a convenience sample that was collected
from several disciplines, namely demography, finance,
business and economics. All of the data were positive,
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algorithms on this data set will tend to favour forecasting
methods that work well with data from these domains,
and of these lengths and frequencies. Furthermore, there
is no guarantee that the series will be in any way
“representative” of the types of data that are found within
those domains, as is noted in the subsequent discussion of
the M3 data (Ord, 2001). Finally, given that 15 years have
elapsed since the M3 results were published, it is highly
likely that the patterns seen within typical time series
will have changed over time, even within the collection
constraints of the competition.

There has been no attempt in the published M3 results
to study why some methods perform better on certain
series than other methods. Is it just chance, or do some time
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series have particular features that make them particularly
amenable to being forecast by one method rather than
another? In discussing the M3 results, Lawrence (2001)
wrote,

What is needed now is analysis to determine what are
the specific time series characteristics for which each
technique is generally best and also what are the time
series characteristics for which it does not really matter
which technique (or set of techniques) is chosen.

Given that the M3 time series might share some specific
characteristics, conclusions based on these data might only
hold for other series with these particular characteristics
(Clements & Hendry, 2001).

Similar comments apply to other collections of time
series. How do we know that any time series collection
covers the range of possible time series patterns, or is
somehow representative of the types of data that we are
designing forecasting methods to handle?

This paper proposes a new approach that aims to
answer some of these questions. The methodology is
an adaptation of previous work by the authors on
the objective assessment of combinatorial optimisation
algorithms (Smith-Miles, Baatar, Wreford, & Lewis, 2014)
and the generation of new test instances (Smith-Miles &
Bowly, 2015), which is extended to the time series and
forecasting domains for the first time here.

Our approach involves computing the “features” of each
time series. For example, we measure the autocorrelation
at lag 1, the seasonal period, and the spectral entropy.
These, and several other features, are all numerical
quantities that are computed on each time series, and
we then study the “feature space” of the collection of
time series. By studying the feature space rather than the
raw time series, we convert the data from temporal to
static. We also convert a large collection of time series
of different lengths to a data set that comprises a small
number of features for each series. Thus, each time series is
represented as a point in a high-dimensional feature space,
which can be reduced to a two-dimensional instance space
using dimension-reduction techniques.

The idea of characterising a time series as a feature vec-
tor is not new, and has been used for classifying time se-
ries (e.g., Fulcher & Jones, 2014; Fulcher, Little, & Jones,
2013; Nanopoulos, Alcock, & Manolopoulos, 2001), clus-
tering time series (e.g., Fulcher et al., 2013; Wang, Smith,
& Hyndman, 2006), and identifying outlying or anomalous
time series (e.g., Hyndman, Wang, & Laptev, 2015). This
paper generates a two-dimensional instance space of time
series and uses it to explore the properties of a given col-
lection of time series, in this case, the M3 dataset. We study
the distribution of features across the space in order to ob-
tain an understanding of the similarities and differences
between the time series, and to assess the diversity of the
collection. We also investigate whether the location in the
instance space, given by the features, can predict forecast-
ing method performances. Finally, we identify gaps in the
instance space and develop new methods for generating
time series with controllable features by evolving time se-
ries to lie at given target locations.

The nature and number of the features to be used
depends on the problem context and their discriminatory

quality (Nanopoulos et al., 2001). We have suggested a
small number of features that we think are useful for
studying the M3 data. However, there may be many other
features that would also be useful and would provide
different information from those we have chosen. For other
collections of time series, other sets of features will need
to be used. For example, Hyndman et al. (2015) use a set
of 18 features that are designed for the identification of
anomalous time series of web traffic. Fulcher et al. (2013)
and Fulcher and Jones (2014) use thousands of features
for reduced representations of time series data and their
analysis methods, thus extending our ability to capture
nuanced characteristics of time series.

Section 2 defines the features that we have chosen for
the M3 data and shows how principal components analysis
can be used to reduce the dimensions of the feature space
in order to enable a visualization of the space of the time
series via a two-dimensional instance space.

The scatterplot of the first two principal components
suggests that there may be regions of the feature space
that are not covered well by the M3 data. Thus, Section 3
uses a genetic algorithm to generate new time series that
are designed to fill the “gaps” in the feature space of the
M3 data. In this sense, we are contributing a broader and
more diverse collection of M3-like time series for testing
the performances of forecasting methods.

2. Time series features

Depending on the research goals and domains, previous
studies have developed a variety of time series features
for the characterisation of time series (e.g., Deng, Runger,
Tuv, & Vladimir, 2013; Fulcher & Jones, 2014; Kang, Belusi¢,
& Smith-Miles, 2014, 2015; Morchen, 2003; Nanopoulos
et al,, 2001; Wang et al., 2006). This paper considers six
features, which are selected because we believe that they
provide useful information about the M3 data.

The forecasting methods that performed best on the
M3 data were those that modelled the trend and seasonal
components of the data explicitly (Makridakis & Hibon,
2000), so we have selected methods that measure those
characteristics. In addition, we have also included a
measure of “forecastability”, as suggested by Goerg (2013),
and a measure of variance-stability, based on a Box-Cox
transformation.

In the following descriptions, our time series is denoted
by {x1, ..., Xx,}, observed at times 1, ..., n.

Spectral entropy F;. Entropy-based measures have been
used widely in non-linear analysis for assessing
the complexity of signals (e.g., Bandt & Pompe,
2002; Fadlallah, Chen, Keil, & Principe, 2013;
Zaccarelli, Li, Petrosillo, & Zurlini, 2013) and
measuring the “forecastability” of a time series
(Garland, James, & Bradley, 2014; Goerg, 2013;
Maasoumi & Racine, 2002). We use the spectral
entropy measure thatis included in the R package
ForeCA (Goerg, 2013, 2014), which is an estimate
of the Shannon entropy of the spectral density
fx(X) of a stationary process x;:

Fi=— | f()logh(M)dx,

-7



Y. Kang et al. / International Journal of Forecasting 33 (2017) 345-358 347

where fx(k) is an estimate of the spectrum
of the time series. Because f;(1) describes the
importance of frequency A within the period
domain of x¢, the Shannon entropy represents the
relative contributions of different frequencies. A
relatively small value of F; suggests that {x;}
contains more signal and is more forecastable.
On the other hand, a relatively large value of
F; indicates more uncertainty about the future,
which suggests that the time series is harder to
forecast.

Strength of trend F,. A trend exists when there is a long-
term change in the mean level of a time series
(Hyndman & Athanasopoulos, 2014). We mea-
sure the strength of the trend by first decompos-
ing a time series x; into the trend, season and
remainder using an STL decomposition (Cleve-
land, Cleveland, McRae, & Terpenning, 1990):
Xx; = St + T; + R;. The strength of the trend of the
time series is then measured by comparing the
variances of the de-trended and de-seasonalised
series R; and the de-seasonalised series x; — S;
(Wang et al., 2006):

var(Ry)

KB=1— —M—.
var(x; — St)

Strength of seasonality F3. A seasonal pattern exists when
a time series is influenced by seasonal factors,
such as the quarter or month of the year.
Similarly to the measure of the trend, the
strength of the seasonality in x; can be estimated
by comparing the variances of the de-trended
and de-seasonalized series R; and the de-trended
series Y; — T; (Wang et al., 2006):

var(R;)

FF=1— ——.
var(x; — T;)

Seasonal period F4. The seasonal period is an important
feature, since it explains the length of the peri-
odic patterns in a time series. When the period is
unknown, it can be estimated from the data us-
ing, for example, the findfrequency () func-
tion from the forecast package in R (Hyndman,
2016), which removes any trend and finds the
maximum of the spectral density from the best-
fitting autoregressive model based on the AIC.
The location of the maximum is then rounded to
the nearest integer. However, this is not neces-
sary for most time series, as the period is usually
known. For the M3 data, the period is given by
F, = 4 for quarterly data, F;, = 12 for monthly
data, and F;, = 1 for annual data. For the small
number of “other” time series, we also set F; = 1.

First order autocorrelation Fs. The first order autocorrela-
tion measures the linear relationship between a
time series and the one-step lagged series. It is
affected strongly by the trend and seasonality,
so we compute the autocorrelations in the de-
trended and de-seasonalized series {R;}:

Fs = Corr(R;, R;_1).

Table 1
Summary of the six features that are used to characterize a time series.
Feature Description
F; Spectral entropy
F, Strength of trend
F3 Strength of seasonality
F4 Seasonal period
Fs First order autocorrelation
Fg Optimal Box-Cox transformation parameter

A higher absolute value of F5 means that future
values of R; are more dependent on past values,
which, to some extent, indicates the predictabil-
ity of a time series after adjusting for the trend
and seasonality.

Optimal Box-Cox transformation parameter F; A trans-
formation can be useful when the variance of a
series changes with its level. One popular family
of transformations is the “Box-Cox transforma-
tions” (Box & Cox, 1964), which are defined as

_ |log(xr), ifA=0,
YE= 1 = 1)/x,  otherwise.

A good value of A is one which makes the vari-
ation in a series approximately constant across
the whole series. We choose 1 € (0, 1) in order
to maximise the profile log likelihood of a linear
model fitted to x;. A linear time trend is fitted for
non-seasonal data, while a linear time trend with
seasonal dummy variables is used for seasonal
data. This value measures the degree of change
of variation in the data. The value of A that max-
imises the profile log-likelihood is denoted by Fg.

These six features enable any time series, of any
length, to be summarised as a feature vector F =
(F1, Fy, F3, F4, Fs, Fs)'. Their descriptions are summarised
in Table 1. Fig. 1 shows pairwise scatterplots or conditional
histograms of the six features in the lower half, and their
correlations or conditional boxplots in the upper half.
The diagonal shows either a bar plot or a kernel density
estimate for each feature.

Once the set of features has been computed for each
time series in the collection, we use a dimension reduction
method to project them all onto a two-dimensional space
in order to allow a easy visualisation of the data. For the
sake of simplicity, this paper uses principal components
analysis, although we note that other methods may also
be appropriate, especially given the non-linearity between
the trend and entropy that is seen in Fig. 1.

The two principal component axes both show linear
combinations of the six raw features. For the M3 data,
the first two principal components with the largest
eigenvalues explain 60.20% of the variation in the data, and
are described algebraically as:

PC1

PC2

0.614 —0.588 0.321 0.258 —0.292 —0.150 )
0.210 0.000 —0.307 —0.687 —0.608 —0.114| °

The horizontal axis (PC1) increases with the spectral
entropy and decreases with the trend. The vertical axis
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Fig. 1. Pairwise scatterplot of the six features calculated on the M3 time series. The period of a time series x; in M3 may be 1, 4, or 12, depending on its
periodic pattern. The entropy feature measures the forecastability of x,. Trend and seasonality are the strength of the trend and seasonality components
in x;. ACF is the first order autocorrelation, calculated on the de-trended and de-seasonalized series of x;. Lambda is the optimal Box-Cox transformation

parameter, which is a measure of the variance-stability of x;.

(PC2) is related negatively to period and ACF, while the
seasonality increases with PC1 and decreases with PC2. The
Box-Cox transformation parameter is not related strongly
to either of the first two principal components.

We project each series onto the coordinate system
given by these first two axes in order to generate the
time series instance space shown in the top panel of
Fig. 2, where we highlight 12 points, labelled a-l, that
populate distinct parts of the instance space; the actual
time series are shown in the bottom panel. It is shown
that time series with visually similar properties do indeed
populate distinct parts of the space. Instances that are close
to each other in this instance space have similar values
for the six features. The Pearson correlation coefficient
between instance distances in six-dimensional space
versus distances in two-dimensional space is 0.84. The

projection causes some loss of information, but does not
alter much of the topology of instance similarity. The two-
dimensional instance space enables an easier discovery of
interesting time series structures, and we consider it to
be a useful representation of the instances. Note here that
Fig. 2 demonstrates the existence of two ‘clusters’, since the
discrete period feature leads to a separation of the dataset
into monthly data in one cluster and the remaining data in
the other cluster, making the space more explicit. Note also
that the distributions of the trend and the seasonality are
both highly skewed from the kernel density estimates in
Fig. 1, and therefore their correlations with other features
may be distorted when PCA is performed. The inclusion of
more data or more features can change the appearance of
the space.
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Fig. 2. Top panel: Instance space of M3 time series. PC1 and PC2 are the first two principal components, projected from the six-dimensional feature space.
Points a-1, are also shown, and represent 12 examples of actual series in M3. Bottom panel: Actual M3 time series with locations a-1 shown in the top panel.

Interesting properties of instances are demonstrated
in their feature distributions across the instance space in
Fig. 3. Time series in the lower left quadrant are easier
to forecast, with lower spectral entropy values and higher
trends. Most of the time series in M3 are trended and have

low seasonality values, which is consistent with the ker-
nel density estimate shown in Fig. 1. Outlying series can
be observed, such as the monthly series on the far right
of the plot that have low trend but high seasonality and
high entropy. We also see clearly where yearly, quarterly
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Fig. 3. Distribution of the features’ values across the instance space. Given a time series x; in M3, the entropy feature measures its forecastability. The
trend and seasonality are the strength of the trend and seasonality components in x,. The period of x; is 1, 4, or 12, depending on its periodic pattern. ACF
is the first order autocorrelation, calculated on the de-trended and de-seasonalized series of x,. Lambda is the optimal Box-Cox transformation parameter,

which is a measure of the variance-stability of x;.

and monthly series lie in the instance space and how their
degree of seasonality varies by looking at the distribution
of their seasonal period features. Time series in the lower
left quadrant have higher first order autocorrelation values
after being de-trended and de-seasonalized. The Box-Cox
transformation parameter is not as representative as other
features from its distribution, as can also be seen from
Eq. (1).

More interestingly, the current time series in the M3
dataset have failed to fill the entire instance space: there
are more instances in the left part of the space, but sparser
areas towards the right side. s it possible to generate more
instances in order to fill and extend the whole space? Can
we generate a more diverse and useful set of time series
than the current M3-competition series? The following

sections provide some insights regarding this question by
presenting a method for the generation of new time series
instances with controllable features in targeted locations
in the instance space.

3. New time series generation in instance space

We increase the diversity and evenness of the instance
space by evolving new instances in locations in which
target points are set. Once a target point has been set, our
goal is to evolve a new time series instance which is as close
as possible to the target point when projected to the two-
dimensional instance space. The process relies on a genetic
algorithm, which starts from randomly selected initial time
series and uses a combination of selection, crossover and
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mutation to evolve time series that project as close as
possible to the target point. The population is composed
of a number of individual time series, each of which
is evaluated by a fitness function. Aiming to reach the
location of a target point, we require the fitness function
of a time series to increase while its Euclidean distance
to the target point decreases, for a close analogy with
the genetic algorithm’s maximisation of a fitness function.
Only the fittest individuals reproduce, passing their
characteristics to their offspring. The initial populations
are then improved through a repeated application of the
selection, crossover and mutation operators until the final
population is achieved with a maximised fitness.

For each given target point T;,i = 1, 2, ..., Ny, where
N; is the number of targets to be set, we first generate
an initial population of time series. The number of time
series in the population is given by the population size
N,. The initial population can be generated randomly,
thus allowing the entire range of possible solutions in the
search space. It can also be seeded with time series in the
neighbourhood of the target point in order to accelerate
convergence. Then, the following steps enable us to evolve
new time series:

1. Calculate the feature vector for each time series j €
{1,2,...,N,} in the current population. Project the
feature vector onto the two-dimensional instance space
using Eq. (1). Denote the two-dimensional projection of
instance j by PC;.

2. Calculate the fitness of each member in the current
population:

Fitness(j) = —,/(IPG; — T;|?).

3. Evolve the next generation based on crossover, muta-
tion and the survival of the fittest individual premise
in order to improve the average fitness of each genera-
tion. In the crossover process, the offspring time series
are formed with the crossover probability by combining
different parts of the samples from their parental time
series, which are partitioned by a random integer in the
range of the time series length. The mutation process
alters the values of some samples in the parental time
series randomly using the mutation probability.

These steps are iterated until the whole process meets
one of the following convergence criteria:

e The maximum of the fitness function is at least —0.01.

e The number of iterations reaches 3000.

e The number of consecutive generations without any
improvement in the best fitness value reaches 200.

From the final population, we then select the instance
that is closest to the target point (i.e., has the largest fitness
value) as the evolved time series for the corresponding
target. The new time series instance generation process
described above is implemented using the R package GA
(Scrucca, 2012).

The instance space in Fig. 2 allows us to observe the
ranges of the first two principal component axes, PC1 and
PC2, and we now evolve yearly, quarterly and monthly
series separately according to the procedure above. Our
target points are set to be a 32 x 32 grid with 1024 points,

which are bounded within one unit wider than the upper
and lower bounds of PC1 and PC2. This allows us to evolve
new series that lie outside the boundaries of the current
space and to find a more general boundary for the instance
space. We then use a genetic algorithm to generate 1024
previously unknown yearly, quarterly and monthly time
series that are evolved by maximising the fitness function
so that the evolved series are as close as possible to
the target points when projected to the two-dimensional
space. Since the evolutionary process only generates time
series with certain lengths, we evolve yearly, quarterly
and monthly time series, with lengths of 30, 60 and 120,
respectively. This means that we go through the above
evolution process 3 x 1024 = 3072 times and generate
1024 yearly series with length 30, 1024 quarterly series
with length 60, and 1024 monthly series with length 120.
These lengths were chosen as round numbers that are close
to the upper quartile of lengths in the corresponding M3
series.

Given a target point T;,i = 1, 2, ..., 1024, we generate
1024 yearly series by setting the crossover probability to be
0.8 and the mutation probability to be 0.4. The size of the
initial population is set to N, = 20. These 20 initial series
are selected from the M3 data but exclude any series with
distance from the target T; that is less than 0.3, to avoid a
full replication of the M3 data. Specifically, we randomly
select 10 yearly time series from those whose distances to
T; are greater than 0.3, as well as the 10 closest time series
to T; other than those that are closer in distance than 0.3.
For each selected series, if its length is greater than the
targeted length (which is 30 for yearly data), it is truncated
to the target length; otherwise, it is reflected to create a
series of the target length.

The initial populations for the evolution of quarterly
and monthly series are similar, meaning that they are
seeded in areas in which optimal solutions are likely to
be found. Their lengths are truncated or reflected to 60
for quarterly data and 120 for monthly data. Fig. 4 shows
the 1024 target points that we set and indicates where the
evolved yearly, quarterly and monthly time series lie in the
two-dimensional space.

The first thing to notice is that there are large parts of
the target space where we have not been able to generate
series. Although much larger margins are allowed when
target points are set, they still shrink to smaller, well-
defined regions for all of the evolved yearly, quarterly and
monthly series.

This suggests that yearly, quarterly and monthly data
have natural boundaries within this two-dimensional in-
stance space, probably due to constraints on combinations
of features. For example, Fig. 1 suggests that it is impossi-
ble to have a series with a very low spectral entropy and
very low trend, and it is clearly impossible to have a series
with both a high seasonality and a period of 1. Also note
that there is a small area in the M3 instance space to the
left of the evolved yearly data boundary that is not reached.
That group of data is actually from the “OTHER” category
in M3, and the series are much longer than those for the
evolved yearly data. We find that shorter series cannot get
very low entropy feature values for the M3 data (figures
not shown here). Being much shorter, the evolved yearly
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panels show the 1024 evolved quarterly and monthly time series, respectively. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

series cannot reach the very far left area, since the hori-
zontal axis (PC1) is positively related to the entropy fea-
ture. These kinds of constraints are presumably what lead
to the apparent boundaries seen in Fig. 4.

It is also apparent that the evolved series are more
evenly distributed away from the boundaries, while the M3
data have a higher density on the left side of the space.
New series are evolved in the top right of the yearly and
quarterly parts of the space, and the bottom right side of
the monthly part.

As a validation procedure for the evolution process, we
selected six known time series at random, two from each
of the yearly, quarterly and monthly series respectively,
which are shown in the top panel of Fig. 5 as points A-F. Can
we use the locations of these known time series as target
points, then evolve new time series that lie near these
targets? The bottom panel of Fig. 5 shows the six target
time series on the left and the corresponding evolved ones
on the right. As expected, they look similar in terms of their
time series characteristics.

Extending this idea, we next attempted to generate new
time series that live at empty locations in the instance
space. Setting six new target points, shown as points G-Lin
the top panel of Fig. 6, the bottom panel plots show the six
M3 time series that are closest to the target points on the
left and the six newly generated time series on the right.

They have different characteristics from any of the existing
M3 time series.

4. Comparison of time series forecasting methods in the
instance space

The No-Free-Lunch theorem was proposed for super-
vised machine learning by Wolpert (1996) and for search
and optimisation by Wolpert and Macready (1997). It tells
us that there is never likely to be a single method that fits
all situations. Similarly, there is no one time series fore-
casting method that will always perform best. Even for one
particular time series, no one technique is consistently su-
perior to all others (Lawrence, 2001). Petropoulos, Makri-
dakis, Assimakopoulos, and Nikolopoulos (2014) wrote, “as
there are ‘horses for courses’, there must also be forecast-
ing methods that are more tailored to some types of data”,
and measured the extent of the effects of seven time se-
ries features on the forecasting accuracy. Smith-Miles et al.
(2014) proposed a method for comparing and visualising
the strengths and weaknesses of different graph colouring
algorithms across an instance space. Here, we consider six
general time series forecasting methods in order to demon-
strate the potential of the instance space for algorithm per-
formance visualisation. These are:
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Table 2
MASE values of the six methods on the M3 data.

Forecasting method Yearly Quarterly Monthly Other  All

Naive 3.17 1.46 1.17 3.09 1.79

Seasonal naive 3.17 143 1.15 3.09 1.76

Theta 277 1.11 0.89 227 143

ETS 2.88 1.19 0.86 1.82 143

ARIMA 2.96 1.19 0.88 1.83 1.46

STL-AR 2.95 1.91 127 1.94 1.83

e Naive: using the most recent observation as the forecast Table 3
for all future periods MASE values of the six methods on the evolved series.

e Seasonal naive: forecasts are equal to the most recent Method Yearly Quarterly Monthly All
observation from the corresponding time of year. For Naive 151 2.32 1.64 1.82
yearly data, this is equivalent to the naive method. Seasonal naive 151 1.19 1.33 1.34

e The Theta method, which performed particularly well Theta 144 1.35 1.07 1.28
in the M3-Competition (Assimakopoulos & Nikolopou- ETS 1.69 1.30 1.04 134

petitic _ p p ARIMA 1.44 1.29 0.93 122
los, 2000; Makridakis & Hibon, 2000). We apply the STL-AR 141 1.07 1.34 127

method as implemented in the stheta function from
the forecTheta package (Fiorucci, Louzada, & Yiqi, 2016).

e ETS: exponential smoothing state space modelling
(Hyndman, Koehler, Snyder, & Grose, 2002), which
is used widely as a general forecasting algorithm for
trended and seasonal time series.

e ARIMA: autoregressive integrated moving average
models, as implemented rin the automated algorithm
of Hyndman and Khandakar (2008).

e STL-AR: an AR model is fitted to the seasonally adjusted
series obtained from a STL decomposition (Hyndman &
Athanasopoulos, 2014), while the seasonal component
is forecast using the seasonal naive method. The two
forecasts are summed to obtain forecasts of the original
time series.

Unless noted above, all methods are implemented in the
forecast package (Hyndman, 2016).

We begin by showing how well these methods work
for forecasting the M3 data. Table 2 shows MASE values
(Hyndman & Koehler, 2006) for each method and each
group of time series. The scaling factor used for the yearly
and “other” data was the average in-sample MAE after
applying a naive forecasting method; that used for the
monthly and quarterly data was the average in-sample
MAE after applying a seasonal naive forecasting method.
All of the methods were estimated using the training
data that were made available to the M3 competitors,
while the MASE values were computed using the hold-out
(test) samples that were not available to the original M3
competitors. Both parts of each time series are available in
the Mcomp package for R (Hyndman, 2013). On average,
the Theta method performed the best for the yearly and
quarterly data, while ETS performed the best for the
monthly and other groups of time series.

For each series, we compute the minimum MASE value
achieved from all six methods. Fig. 7 highlights the areas
in which we get low, middle, and high minimum MASE
values (defined by the 20th and 50th percentiles), thus
showing which parts of the instance space are easiest to
forecast. As the left panel shows, instances with low mini-
mum MASE values lie mainly in the bottom and left of the
yearly, quarterly and monthly data. We see from the mid-
dle panel that yearly and quarterly instances with middle

minimum MASE values do not reach into the right hand
side of the space. The right panel tells us that the quar-
terly and monthly series with high minimum MASE values
are mainly around the top right hand sides. These results
are consistent with the distribution of spectral entropy in
Fig. 3, which is an indicator of forecastability.

Table 3 shows how well the forecasting methods
perform on the evolved data. ETS still performs the best for
monthly data, as with the M3 data, but the STL-AR method
performs the best for yearly and quarterly data, unlike with
the M3 data. The ARIMA method does the best overall, and
ETS comes fourth, despite doing the best on average for the
M3 data.

This highlights the idiosyncratic nature of the M3 data,
and demonstrates that the particular collection of time
series will affect any conclusions that are drawn. Because
the evolved series are dense around the perimeter of the
instance space but relatively sparse in the interior of the
space, the best-performing methods are not the same as
for the M3 data. It is worth remembering that the M3 data
are not a representative sample of any larger population of
time series, but were merely a convenience sample of the
data available to Makridakis and Hibon. Presumably, the
results could have been different again if a different sample
of time series had been selected instead.

We find the instance space a useful visualisation for
understanding how the different features of time series
affect the performances of different forecasting algorithms,
since the locations of instances are determined by their
features. Does the location also determine the performance
of a forecasting method and the relative performances of
different forecasting methods?

Fig. 8 shows MASE values for each forecasting method
and time series of the M3 data. The MASE values were
capped at four to make them easier to visualise properly.
The plots show which particular regions of the instance
space were forecast best by each method. While there
are no regions where one method always has low MASE
values, or where one method clearly dominates all other
methods, the figure does suggest that there are regions of
the instance space where some methods are best avoided.
For example, the STL-AR performs worse on the quarterly
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Fig. 5. Top panel: locations of the six target points that correspond to six known time series in the M3 instance space; bottom panel: the six known time
series in M3 (on the left), and their corresponding evolved new series using the genetic algorithm (on the right).

series than using ARIMA directly, and the Naive method The figure also suggests that the instance space could
cannot forecast the bottom right hand sides of the monthly be used to identify appropriate methods for a given series.
data well, since they have a high seasonality, as was shown This could then lead to a meta-forecasting algorithm where

by Fig. 3. the features of a time series are computed and used to
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Fig. 6. Top panel: locations of the six new target points that live at empty locations in the M3 instance space; bottom panel: the six time series in M3
which are closest to the six target points (on the left), and the newly evolved series using the genetic algorithm (on the right).

select a suitable forecasting method without the need to
test a large collection of methods on the given time series.
In a forecasting environment where very large numbers
of forecasts have to be computed quickly, this should

lead to substantial efficiency improvements, in which case
forecasting performance metrics that balance accuracy
and computation times can be considered. We leave the
specifics of such an algorithm to a later paper.
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Fig. 8. The distribution of out-of-sample MASE values of the M3 data in the instance space for the six forecasting methods. The MASE values were capped
at four to make them easier to visualise properly.
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5. Conclusions

We have represented a collection of time series as
points in a feature space. This has allowed us to propose
several interesting analysis tools that provide insights into
large collections of time series.

First, we can identify unusual time series which have
very different combinations of features to other time series
in the collection. We can also see clustering and other
structures within the feature space, showing possible sub-
groups of time series and regions where there are many
similar time series.

Second, we have proposed an algorithm for generating
new time series with controllable characteristics. This
can be used to generate either new time series with
characteristics that are similar to those of the collection of
existing time series, or new time series which have specific
locations in the feature space, including regions with no
existing time series. This allows us to explore the complete
feature space of possible time series, and provides a way of
testing new methods without over-fitting models on the
existing collection of time series.

Third, we have used this algorithm to show that
conclusions based on the M3 competition data will not
necessarily hold for other collections of time series with
different distributions in the feature space.

Finally, we have shown that some forecasting methods
perform better in some regions of the feature space
than other methods. This introduces the possibility of
developing meta-forecasting algorithms that choose a
specific forecasting method based on the location of a time
series in the instance space.

While we have used the M3 data as a vehicle of
illustration here, our proposed approach is general and
can be applied to any large collection of time series.
Further, the specific features that we have chosen here
are only illustrative, and appropriate features that measure
characteristics of interest will depend on the particular
nature of the time series collection and the purpose of the
subsequent analysis.
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