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ABSTRACT
Bytecode is used in software analysis and other approaches due to
its advantages such as high availability and simple specification.
Therefore, to leverage these advantages in training languagemodels
with bytecode, it is important to clearly recognize the character-
istics of the naturalness of bytecode. However, the naturalness of
bytecode has not been actively explored.

In this paper, we experimentally show the naturalness of byte-
code instructions and investigate their characteristics by empirically
assessing 10 Java open-source projects. Consequently, we demon-
strate that the bytecode instructions are more natural than source
code representations and less natural than abstract syntax tree rep-
resentations at a method-level. Furthermore, we found that there
is no correlation between the naturalness of bytecode instructions
and source code representations at a method-level. Our study sup-
ports that researchers need to deal with the characteristics of the
naturalness of bytecode instructions in a different view from source
code. We expect that these findings will be helpful for future work
to study automated software engineering tasks such as automated
debugging and vulnerability detection that use bytecode models.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Computing methodologies → Natural language pro-
cessing; • General and reference→ Surveys and overviews.
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1 INTRODUCTION
Bytecode is commonly used in software analysis and other ap-
proaches due to its advantages. For example, bug detection tools
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such as SpotBugs [6] and Google Error Prone [1] adopt JVM byte-
code analysis because bytecode syntax is hardly changed and well-
structured rather than high-level languages. Moreover, when the
source code is not available or the information to be gathered in the
analysis is only visible at the level of bytecode, adopting bytecode
is an unavoidable choice [3, 10]. Therefore, to leverage these advan-
tages in training language models with bytecode, it is important to
clearly recognize the characteristics of the naturalness of bytecode.

However, the naturalness of bytecode has not been actively ex-
plored even if language modeling approaches based on the bytecode
had been suggested. Kim et al. [9] proposed a method crash pre-
diction technique by using bytecode instructions. Bryksin et al.
[2] proposed a Kotlin compiler anomaly detection approach by
using a language model trained with bytecode instructions. Their
approaches assumed the naturalness of bytecode instructions. How-
ever, to our knowledge, the naturalness of bytecode instructions
has not been experimented before. In contrast, the naturalness of
source code has been in the spotlight with various source code
representations by setting different abstract levels [5, 7, 8].

In this paper, we experimentally show the naturalness of byte-
code instructions and investigate their characteristics. To explore
the naturalness of bytecode, we first examine the naturalness of
bytecode instructions in terms of cross-entropy. In addition, we
study the relationship between the naturalness of bytecode instruc-
tions, source code, and abstract syntax tree (AST) representations
to identify similarities and differences between them. If the natural-
ness of bytecode instructions is strongly correlated to source code
or AST representations, we can take advantage of the findings from
the previous studies about their characteristics. However, if not, we
have to deal with the characteristics of the naturalness of bytecode
instructions in a different view from source code.

Consequently, we demonstrate that the bytecode instructions
are more natural than source code representations and less natural
than AST representations at a method-level. Furthermore, we found
that there is no correlation between the naturalness of bytecode
instructions, source code, and AST representations at a method-
level. Based on the findings, it is needed to explore the naturalness of
bytecode instructions’ characteristics, including relations between
defects and the naturalness of bytecode and the complementary
aspects between the naturalness of bytecode and source code. After
understanding the characteristics, we can suggest more efficient and
diverse approaches considering the use of bytecode, source code,
and AST representations when we train various machine learning
and deep learning models for software engineering. We expect
that these findings will be helpful for future work to study various
automated software engineering tasks such automated debugging
and vulnerability detection that use bytecode models [2, 9, 11].
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Table 1: The ten Projects used in the empirical study

Name Version # Byt. Mthd. # Src. Mthd. Matched
arthas 3.5.5 637 4,383 202
dbeaver 21.3.5 41,901 36,668 27,403
dubbo 3.0.67 9,793 20,790 6,804

EventBus 3.3.1 1,027 527 367
guava 31.0.1 2,722 11,661 1,406
jadx 1.3.3 8,178 8,696 5,350

retrofit 2.9.0 309 238 142
RxJava 3.1.3 25,625 32,492 19,651

spring-boot 2.6.4 24,619 38,645 15,317
zxing 3.4.1 1,923 2,563 847

2 BACKGROUND
One of the representative statistical language models is an n-gram
model. Given a word sequence that consists of𝑚 words,𝑤1𝑤2 ...𝑤𝑚 ,
the n-grammodel computes the probability of each word as follows:
𝑃 (𝑤1:𝑚) =∏𝑚

𝑖=1 𝑃 (𝑤𝑖 |𝑤1:𝑖−1) , where 𝑃 (𝑤1:𝑚) is the probability of
words. The n-gram model approximates the product of the prob-
ability based on a Markov property of order 𝑛 − 1, which makes
it faster. However, the n-gram models suffer from an issue caused
by data sparsity [7]. To mitigate the data sparsity issue, smoothing
techniques have been introduced and widely used. The Modified
Kneser-Ney smoothing technique shows the best performance to
improve the n-gram model in the source code domain [7]. In addi-
tion, Karampatsis et al. [8] represented that big code does not imply
big vocabulary and byte-pair encoding is more effective than other
approaches to deal with the issue. For the source code modeling
by using n-gram models, Jimenez et al. [7] found that different tok-
enizers lead to different levels of naturalness, and a proper choice
of 𝑛-order is 4 or 5 for 8 tokenizers.

3 RESEARCH QUESTIONS
To explore the naturalness of bytecode instructions, we address the
following research questions.

• 𝑅𝑄1: Do bytecode instructions have naturalness?
• 𝑅𝑄2: Is the naturalness of bytecode correlated with the nat-
uralness of source code?

How natural are bytecode instructions? Is the naturalness ob-
served at a similar degree to the naturalness of source code? These
questions have not been investigated before. We investigate the
degree of naturalness of bytecode instructions at a method-level
and then compare the naturalness of bytecode with the naturalness
of source code. If we can observe the similarity of naturalness be-
tween bytecode and source code, we can use bytecode naturalness
as the alternative to source code naturalness when we cannot access
the source code. If not, we need to further investigate the unique
meanings of bytecode of software to properly adopt it.

4 METHODOLOGY
4.1 Data Collection
For the empirical study, we collected source code, bytecode and AST
representations from 10 Java projects as listed in Table 1. To collect
the projects, we searched for GitHub projects written in ‘Java’. Then,

we select the top-10 projects based on the number of ‘stars’ that
Java language takes the major portion of the implementation, and
clone them to obtain the source code data. For the bytecode data,
we build every project by using open JDK 11 and disassemble the
generated class files into assembly to read bytecode instructions by
using ASMTools 7.0. To collect ASTs, we used JavaParser 3.24.2.

4.2 Data Preprocessing
4.2.1 Extracting Methods and Static Linking. To assess the natural-
ness of bytecode instruction, source code, and AST representations
at a method-level, we extract the methods of each disassembled
bytecode file and source code file. We adopt a method-level for our
investigation because the most fine-grained units of a sequence of
instructions could be found in a method. In the case of compiling
lambda expressions, the compiler generates dummymethods within
the class file for the lambda expressions. For inner classes including
anonymous classes, new class files are created for the inner classes.
To keep the consistency of method bodies between the source code
and bytecode, we statically merge the separated lambda expression
into the method that contains the lambda expressions. In addition,
we also merge methods in the separated inner class files into the
original method that includes the inner classes’ methods.

Then, we assign key values for every method based on each
method signature, the name of each class, and the name of a parent
directory. By using the name of the class and the directory, we
distinguish methods that have the same method signature.

4.2.2 Tokenization. In language modeling, tokenization is one of
the most important steps because the language model computes
the probability of sequences composed of tokens. Jimenez et al. [7]
investigated the impact of using different tokenizers and abstraction
levels for source code and found the probability of sequences is
affected by the visit strategies such as depth-first search (DFS) or
breadth-first search (BFS) [7].

Based on this finding, we adopt the four different AST and two
different source code representations used in the previous study [7]:
1) BFS based ASTs, 2) pruned BFS (PBFS) based ASTs, 3) DFS based
ASTs, 4) pruned DFS (PDFS) based ASTs, 5) Java grammar (JG)
based source code representation, and 6) UTF non-alphanumeric
delimiter based source code representation. Pruned versions of the
AST representations remove nodes that serve a structural purpose,
e.g., every variable name is preceded by a node of type 𝑁𝑎𝑚𝑒𝐸𝑥𝑝𝑟

[7]. We exclude the other two representations containing comments
used in the previous study because comments are removed after
compiling. Bytecode is tokenized as a sequence of instructions
following the previous studies [2].

Tokenizers applied to AST representations and JG tokenizer
are implemented based on the JavaParser, and we use Terrior 5.6
tokenizer to implement the UTF tokenizer.

4.3 N-Gram Model Configurations
We build n-gram models for every project separately by using
KenLM [4] as KenLM provides the Modified Knerser-Ney smooth-
ing technique, a well-adopted smoothing technique in the source
code corpus. For a model configuration, we select the n-order from
2 to 6 because the cross-entropy value of source code and AST
representations converges at the n-order of 4 or 5 [7].
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Table 2: Average numbers of unique tokens in each project (Uniq.), and median (Med.), mean (Avg.), and standard deviation
(Std.) of cross-entropy values of methods in the dataset computed by bigram, trigram, 4-gram, 5-gram, and 6-gram models

bigram trigram 4-gram 5-gram 6-gram
Uniq. Med. Avg. Std. Med. Avg. Std. Med. Avg. Std. Med. Avg. Std. Med. Avg. Std.

Inst. 152.9 9.15 10.54 9.75 6.19 7.82 9.21 4.86 6.75 8.45 4.23 6.23 8.15 4.04 5.99 8.04
BFS 64.9 6.34 7.58 5.36 4.82 5.61 4.14 4.02 4.64 4.14 3.5 4.19 3.91 3.1 3.96 3.96
PBFS 62.5 5.86 7.03 5.11 4.33 5.1 4.01 3.74 4.44 3.73 3.35 4.08 3.57 3.06 3.91 3.60
DFS 64.9 3.83 4.39 2.52 3.33 3.84 2.50 2.68 3.09 1.90 2.53 2.88 1.84 2.35 2.73 1.86
PDFS 62.5 4.45 5.06 4.22 3.33 3.83 3.06 3.07 3.51 2.38 2.82 3.23 2.20 2.67 3.11 2.25
JG 17168.5 30.36 55.15 122.44 14.9 37.73 89.12 13.08 35.64 86.88 12.01 34.3 85.87 11.75 33.89 85.61
UTF 9879.3 99.61 532.2 1825.6 60.98 444.27 1550.0 58.03 423.88 1522.8 57.7 420.99 1520.6 57.31 420.37 1520.4

4.4 Evaluating Naturalness
4.4.1 Evaluation Metric. To evaluate the naturalness of bytecode,
source code, and AST representations, we adopt cross-entropy as
an evaluation metric. The degree of cross-entropy implies how
the model is ‘surprised’ by a test sequence based on their trained
sequences. Lower cross-entropy values mean the test sequence
is more natural and predictable. If a given sentence, 𝑠 , composed
of𝑚 words and the n-gram model is trained with n-order, 𝑛, the
cross-entropy values are computed as follows:

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑠) = − 1
𝑚

∑𝑚
𝑖=1 𝑃 (𝑤𝑖 |𝑤𝑖−𝑛+1:𝑖−1).

4.4.2 Evaluation Strategies. For each project, we divide the data
into two groups, which are unmatched methods and matched meth-
ods. The matched methods are ones that have the same key in
bytecode methods and source code methods. Then, we split the
matched methods into 10 folds to evaluate the naturalness of the
methods with ten iterations. For each iteration of evaluation, 10% of
matched methods are used as a test set and the others (unmatched
methods and 90% of remaining matched methods) are used to train
the model. For instance, if a project has 100 bytecode methods, 200
source code methods, and 50 matched methods, a bytecode model
will be trained by 95 instances except for the 5 matched methods for
each iteration. At the same time, a source code model will be trained
by 195 instances except for the 5 matched methods. This is for ac-
quiring training instances at most and assessing the naturalness
within a whole software, not just for the matched methods.

5 RESULTS
5.1 Dataset
Table 1 shows the statistics of the processed project data. Each
column represents the project name, its version, the number of
methods in bytecode (# Byt. Mthd), the number of methods in
source code (# Src. Mthd.), and the number of matched methods
(Matched). We can observe the differences among the number byte-
code, source code, and matched methods. One of the reasons is due
to the excluded source code in the build process of projects accord-
ing to the configurations. The characteristics of bytecode discussed
in Section 4.2.1 is another reason. In addition to the characteristics,
there are methods such as ‘init<>’ generated by a compiler. These
methods cannot be matched with ones in the source code.

5.2 RQ1: Degree of the Naturalness
5.2.1 Protocol. To address RQ1, we measure the cross-entropy
values based on the methodology discussed in Section 4. Then,

we compare the median and mean of the cross-entropy values
generated by the language models adopting the bytecode tokenizer,
the four AST tokenizers, and the two source code tokenizers.

5.2.2 Result. Table 2 shows the average number of unique tokens
in each project, and median, mean, and standard deviation of cross-
entropy values of methods in the dataset computed by bigram,
trigram, 4-gram, 5-gram, and 6-gram models in each column. The
first column of the table represents the tokenizers discussed in
Section 4.2.2 and Inst. (third row) is the tokenizer for the bytecode
instructions. The overall results indicate that every representation
shows the naturalness of software, including bytecode instructions.
The median of bytecode instructions decreases from 9.15 to 4.04
and the mean decreases from 10.54 to 5.99 as the n-order increases.
In addition, the bytecode instructions are more natural than two
source code representations (i.e. 𝐽𝐺 and𝑈𝑇𝐹 ) and less natural than
the rest of AST representations (𝐵𝐹𝑆 , 𝑃𝐵𝐹𝑆 , 𝐷𝐹𝑆 , 𝑃𝐷𝐹𝑆).�
�

�
�

Finding 1: Bytecode instructions have naturalness. In addition,
the bytecode instructions show less naturalness than AST, but
more naturalness than source code.

5.3 RQ2: Correlations of the Naturalness
5.3.1 Protocol. First, we rank the matched methods of each project
from the most natural one to the least natural one by using the
cross-entropy values. Second, we compute rank correlations among
the cross-entropy values generated by the language models adopt-
ing the bytecode tokenizer, the four AST tokenizers, and two source
code tokenizers. We used the two representative measures, Spear-
man’s 𝑟ℎ𝑜 and Kendall’s 𝑡𝑎𝑢 as in the previous study [7].

The absolute value of 𝑟ℎ𝑜 and 𝑡𝑎𝑢, which are correlation coeffi-
cients of the Spearman test and Kendall test respectively, indicates
how strongly the pair are correlated to each other ranging from
0 to 1. In this study, if a strong correlation is observed, it implies
that two different models evaluate one method to a similar degree
in terms of naturalness. After we compute the correlation coeffi-
cient, the median value is evaluated over ten projects’ correlation
coefficients whose p-value is less than 0.05.

5.3.2 Result. Figure 1 represents the rank correlation between all
tokenizer pairs generated by bigram to 6-gram models. The upper
triangle gives the median of the 𝑟ℎ𝑜 and the lower triangle gives
the median of the 𝑡𝑎𝑢.

First, we can observe there is a negligible correlation between
bytecode instructions and all other representations (less than or
equal to 0.19) in terms of the Spearman correlation coefficients in
every n-order configuration. The similar trend is also observed in
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(a) bigram (b) trigram

(c) 4-gram (d) 5-gram (e) 6-gram

Figure 1: Rank correlation matrices between every tokenizer pair from bigram to 6-gram models. The upper triangle gives the
median value of the Spearman rank correlation coefficients and the lower diagonal represents the median value of the Kendall
rank correlation coefficients over all projects.

the Kendall correlation coefficients. This observation indicates that
the rank of the natural methods assessed by bytecode instructions
is very different from any other representation.�
�

�
�

Finding 2: The naturalness of bytecode instructions is not cor-
related to AST and source code representations in our empirical
settings. It implies that the naturalness of bytecode instructions
has different characteristics from ones of other representations.
Interestingly, there is no clear correlation between the source

code and the AST representations. We can observe the different
results from the previous study [7] that found strong correlations
between source code representations at a file-level. We can find
𝐵𝐹𝑆 , 𝑃𝐵𝐹𝑆 , and 𝑃𝐷𝐹𝑆 tokenizers as the most correlated in 4-gram
(Fig. 1 (c)), 5-gram (Fig. 1 (d)), and 6-gram (Fig. 1 (e)), but still, they
have a negligible or weak correlation. In addition, we could find
that using different n-order affects the degree of correlations. In
our observation, 4-gram (Fig. 1 (c)) show the largest Spearman
coefficients (0.26 between 𝐵𝐹𝑆 and 𝑃𝐷𝐹𝑆), and 6-gram (Fig. 1 (e))
represent the largest Kendall coefficients (0.17 between 𝐷𝐹𝑆 and
𝐵𝐹𝑆) rather than others, but we cannot find any trend.�
�

�
�

Finding 3: At a method-level, there is no clear correlation even
between the source code representations and AST representa-
tions. Considering the previous study [7], this implies that adopt-
ing different granularity leads to different results.

6 CONCLUSION AND FUTUREWORK
We experimentally show that the bytecode has naturalness. In
addition, we observed that the naturalness of bytecode has different
characteristics compared to the naturalness of source code and AST
representations. The replication package is available here1. Based
on the findings, we will extend our study as follows:

• Exploring deeper the characteristics of the naturalness of
bytecode such as the naturalness of bytecode generated from
different high-level languages.

• Proposing defect and vulnerability prediction approaches
based on the naturalness of different software representa-
tions, including bytecode instructions and other source code
and AST representations.

• Designing neural machine translation-based automated pro-
gram repair at a bytecode-level.
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