MASARYK UNIVERSITY
Facurry or INFORMATICS

PSJT IS INFO

&V’% ’?4?
s KA
O)
= =
& <
ES N

2 &

5
74 MASS

Modern obfuscation techniques

MasTER’s THESIS

Roman Oravec

Brno, Fall 2021

MASARYK UNIVERSITY
Facurry or INFORMATICS

PSJY IS INFO

&V’% ’?4?
s RAY
©)
= S
& <
ES N

2 &

\,i) /
g Mas

Modern obfuscation techniques

MasTER’s THESIS

Roman Oravec

Brno, Fall 2021

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Roman Oravec

Advisor: Mgr. et Mgr. Jan Krhovjék, Ph.D.

Acknowledgements

I want to thank my advisor, Mgr. et Mgr. Jan Krhovjék, Ph.D., for
giving me the freedom in exploring a field I am interested in, as well
as his guidance and advice. I would also like to express my gratitude
to my close ones for supporting me throughout the process of writing
this thesis.

iii

Abstract

In the context of cybersecurity, obfuscation is a method of manipu-
lating a computer program with the intention to obscure its inner
workings. Various obfuscation techniques have found their use as a
means to protect intellectual property and to prevent code tampering,
as well as to achieve malicious purposes, such as creating malware
that can circumvent detection mechanisms. In this thesis, we examine
multiple commonly used obfuscating techniques and freely available
tools that implement them. We also discuss the possibilities of the
LLVM Pass Framework for obfuscating programs during compilation.
In the practical part, we have implemented several obfuscating trans-
formations, leveraging the LLVM Pass Framework. The quality of the
implemented transformations has been tested and evaluated with
respect to selected metrics. Lastly, we have examined and tested the
possibility of using our implementation to obfuscate programs written
in C/C++ for Android OS.

iv

Keywords

obfuscation, LLVM, compilers, security, Android, C++

Contents

1 Introduction

2.1 Obfuscating Transformations
211 Opaquepredicates
2.1.2 Instructions Substitution
2.1.3 Garbage Code Insertion
2.1.4 Dead codeinsertion
2.1.5 Mixed Boolean-Arithmetic.

Flattening

2.2 Evaluating Obfuscating Transformations

3.1 LLVM Compiler Architecture
3.2 LLVM Intermediate Representation

4.3 UPX (Ultimate Packer for eXecutables)

Instructions substitution

53.1 Encoding and decoding functions

5.4.1 Arithmetic opaque predicates
5.4.2 Symbolic memory opaque predicates

Instructions substitution

2 Obfuscation
2.1.6 Control Flow
3 LLVM
4 Existing tools
4.1 Obfuscator-LLVM .
42 Tigress
5 Design
51
5.1.1 Rewrite rules
5.2 Opaque constants .
5.3 String obfuscation .
5.4 Bogus Control Flow
6 Implementation
6.1
6.2 Opaque constants .
6.3 String obfuscation .
6.4 Bogus Control Flow

15
15
17

21
21
23
24

27
27
28
28
30
31
31
32
32

35
35
37
37
38

vii

6.5 Limitations and possible extensions

7 Testing and Evaluation
71 Potency
7.1.1 The potency of individual passes
712 Combining thepasses
72 Resilience. 0oL
73 Cost

8 Obfuscation on Android OS
9 Conclusion
Bibliography

A Building and running the passes

viii

55

59

63

1 Introduction

When distributing proprietary software, the authors usually face the
challenge of providing its functionality to the users without disclosing
too many details about the implementation, while they also want to
prevent any unauthorized attempts to modify their product. They want
to protect their intellectual property, forbid the users from illegally
distributing their products, and prevent the competition from stealing
their ideas, namely the algorithms.

One of the solutions to this issue is to execute the critical parts of
the software on the remote server, and sell it to the users as a service.
A similar approach is to use a digital rights management (DRM)
solution that remotely verifies that the software running on the user’s
machine is legitimate. However, both of these approaches require
internet connection, which is deemed unnecessary from the users’
point of view in case of software that could be used offline without this
measure of protection (e.g., single-player games, graphics software).
It might negatively affect the user experience in case of failure on the
server side, as in the recent case of Denuvo, when the unavailability
of this DRM service prevented many users from playing several video
game titles [1].

A different solution for this problem is obfuscation. By obfuscating
a program, the developers aim to modify it in a way that preserves
its functionality, but makes it harder to understand, or reverse engi-
neer, either manually or with the help of tools for automated analysis.
As shown by Barak et al. [2], it is not possible to create a perfect ob-
fuscation and with enough time and resources, any program can be
deobfuscated. However, the goal of obfuscation is to discourage a re-
verse engineer from analyzing or tampering the code, by transforming
a program in a way that any such attempts would be infeasible.

Obfuscation is also widely used by malicious actors, who aim to
produce malware that can bypass automated analysis tools, e.g. an
antivirus software. Furthermore, their goal is to confuse a reverse
engineer so that it would take more time and resources to analyze the
malware and develop countermeasures. Both malicious and benign
parties keep trying to come up with more advanced obfuscating trans-
formations as well as new reverse engineering techniques, and the

1. INTRODUCTION

result is a form of a cat-and-mouse game that accelerates the research
in this area.

In a pivotal paper published in 1997 [3], Collberg et al. proposed
a variety of obfuscating transformations, together with recommenda-
tions on how to categorize and evaluate them. Many techniques used
in the present are based on the ones described in this paper. Most of
them can be sorted into two categories — control obfuscation and data
obfuscation. Techniques in the first category manipulate the flow of
control in the program, either by breaking up or merging computa-
tions, randomizing their order, or adding redundant code. The latter
category includes transformations that obscure data such as character
strings and constants, for example by changing their encoding or mak-
ing the program compute them during runtime, and thus not storing
them statically as a part of the executable file.

Obfuscation can be considered as a part of the compilation process.
The LLVM Framework [4] provides a convenient way to manipulate
a program in an automated manner with transformation passes. A
program compiled with LLVM s first transformed into an intermediate
representation, then the transformations can be applied, and finally,
machine code is generated. The original purpose of the transformation
passes is to perform optimization to make the resulting program more
efficient. However, it also allows developers to automatically obfuscate
a program. As a part of this thesis, we aim to examine the possibilities
of this framework and use it to implement obfuscating transformations.
Furthermore, we are going to evaluate them in terms of resilience
against reverse engineering attempts, and also their impact on the
program performance. We are also going to explore the possibility
of using the implementation to obfuscate executables compiled for
devices with ARM processors running Android OS.

The structure of the thesis is as follows: chapter 2 introduces vari-
ous obfuscating transformations and a way to evaluate their qualities,
Chapter 3 describes the LLVM Framework with a focus on its com-
ponents that are useful for implementing obfuscation, in Chapter 4,
freely available tools for obfuscation are being discussed, Chapters 5,
6 and 7 deal with the design, implementation and evaluation of the
obfuscating transformations, and 8 describes the possibilities of using
obfuscation based on the LLVM Framework on Android OS, together
with a practical example.

2

2 Obfuscation

This chapter describes some of the obfuscation techniques from a
general point of view, as those principles can be applied to obfuscate a
program on the source code, intermediate representation, or machine
code level. The subsequent chapters will deal with implementation
details for applying those methods to a program represented in the
LLVM Intermediate Representation.

2.1 Obfuscating Transformations

Collberg et. al [3] formally define an obfuscating transformation as fol-
lows:

Definition 2.1.1 (Obfuscating transformation).
Let P =5 P’ be a transformation of a source program P into a target
program P'. P L Plisan obfuscating transformation, if P and P’ have

the same observable behavior. More precisely, in order for P L Pio
be a legal obfuscating transformation, the following conditions must
hold:

e If P fails to to terminate or terminates with an error condition,
then P’ may or may not terminate.

e Otherwise, P/ must terminate and produce the same output as
P.

This definition states that applying the transformations should
preserve the input-output behavior of the program, but allows the ob-
fuscated version of the program to produce some additional behavior,
for example performing calls to the operating system or creating new
files.

The transformations may, and usually do, increase the computa-
tional complexity and memory requirements of the program.

2. OBFUSCATION

2.1.1 Opaque predicates

Opaque predicates are common but effective constructs used for ob-
tuscation. Constructing an opaque predicate consists of transforming
a simple boolean expression into a complex one.

Definition 2.1.2 (Opaque predicate). A predicate P is opaque at point
p in a program, if its outcome is known at obfuscation time. We write
PP (P,) if P always evaluates to False (True) at p, and P} if P may
sometimes evaluate to True and sometimes to False [5].

Based on the possible values of an opaque predicate, we can dis-
tinguish two types:

Invariant opaque predicates. The value of the predicate is fixed,
i.e. the obfuscator knows whether it evaluates to True or False, but its
outcome is hard to deduce for the reverse engineer performing static
analysis.

Two-way opaque predicates. This type of predicates can evalu-
ate either to True or False for all possible inputs. Collberg et al. [3]
suggested using two-way opaque predicates as a branching point to
two functionally identical branches, which can be created by cloning
a single branch and applying different obfuscations on both of them.
This makes the static analysis of the program harder while preserving
the original functionality.

Apart from types, opaque predicates can be categorized according
to the methods of their construction:

Arithmetic-based opaque predicates. They are constructed using
hard-to-solve mathematical formulas and used to hide invariant prop-
erties of the predicate. The obfuscator uses a mathematical identity
that always evaluates to the same boolean value. In Collberg’s taxon-
omy [3], this type of predicate falls into the trivial category, because
the deobfuscator can deduce its value by performing a static analysis
restricted to a single basic block! of a control flow graph.

This kind of predicates is used in the Obfuscator-LLVM in the Bogus
Control Flow pass, which adds a new basic block to the Control Flow
Graph, but the branch leading to this new block is never taken.

1. Basic block is a sequence of instructions executed one-after-the-other with no
branching[6]

4

2. OBFUSCATION

Mixed Boolean-Arithmetic opaque predicates. This method is
based on a technique described by Zhou et al. [7]. MBA uses linear
identities involving Boolean and arithmetic operations. MBA is further
discussed in Section 2.1.5.

Alias-based opaque predicates. This is one of the resilient meth-
ods proposed by Collberg et al. [5] based on aliasing, i.e. state of a
program where a particular memory location is referenced to by mul-
tiple pointers. When there is a possibility of aliasing, the static analysis
might be much harder. In some cases, static alias analysis might be
even undecidable [8].

Opaque predicates designed by Collberg et al. are constructed
using two linked lists and two global pointers pointing into them. The
opaque predicate then checks whether two pointers are aliasing, which
always results in False since the two global pointers are constructed
to always refer to nodes within different lists.

Environment-based opaque predicates. This method uses system
calls or library calls which guarantee that the result of a predicate using
such calls will always be either True or False.

An example of such opaque predicate is calling the strcpy? func-
tion from the C standard library and comparing the returned value
(pointer to the destination array) with the first argument supplied to
the function.

Bi-opaque predicates. This method of constructing opaque predi-
cates has been recently introduced by Xu et al. [9]. The advantage of
bi-opaque predicates is that they are resilient against symbolic execu-
tion engines, such as Triton®, angr* and BAP°. The tool® developed by
Xu et al. is built on Obfuscator-LLVM, but replaces the trivial arithmetic-
based opaque predicates with more resilient symbolic opaque predi-
cates, which exploit various weaknesses of symbolic execution. The
bi-opaque property means that these predicates can introduce false pos-
itives to the analysis, which may make the reverse engineer falsely
recognize legitimate predicates as opaque predicates.

https://www.cplusplus.com/reference/cstring/strcpy/
https://triton.quarkslab.com/

https://angr.io/
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/zzrcxb/fusor

ANl N

2. OBFUSCATION

Opaque predicates can be used to enhance other obfuscation meth-
ods, for example, the dead code insertion, described in 2.1.4.

2.1.2 Instructions Substitution

Instructions substitution is one of the most simple obfuscation tech-
niques. The principle of this method is to replace instructions contain-
ing binary arithmetic operations, such as addition and subtraction,
and binary boolean operations, such as logical AND or XOR, with
more complicated sequences of code, which yield the same result.

Despite its simplicity, this technique is still used in current obfus-
cation tools. For example, Obfuscator-LLVM uses simple substitutions
using expressions composed exclusively of arithmetic operations to
substitute addition and subtraction, and expressions composed of
boolean operations to substitute boolean XOR, AND, and OR. Below
are some of the substitutions implemented in Obfuscator-LLVM:

x+y— —(=x+(-y))
=y -+ (-y)

xVy—= (xAy)V(xdy)
xdy— (mxAy)V(xA-y)

In contrast, Tigress implements obfuscations that transform stan-
dard binary operators with more complex expressions in MBA (2.1.5)
form. A list of such identities can be found in [10], where the authors
suggest using them to build efficient low-level operations for manip-
ulating bit strings and numbers. Zhou et al. described a method to
create and use such identities in [7], while also showing that there is
an unlimited number of them.

This technique increases code diversification and it can be further
improved by randomly choosing from several identities which can be
used to substitute an instruction.

It is also important to note that the compiler can optimize out this
kind of transformation, therefore it should not be used for source-level
obfuscation. It also implies that it should be run after the optimization
passes if we are obfuscating at the intermediate representation level.

A reverse engineer could use an optimizer on the obfuscated binary
tile to get rid of this transformation and reduce the complexity of the

6

2. OBFUSCATION

code for easier analysis. However, increased diversification of the code
can still be useful, for example, to bypass an antivirus engine that is
performing a static analysis of a program based on its signature, e.g.,
looking for known malicious patterns and sequences of instructions.

A rather bizarre example of this obfuscation technique is The
M/o/Vfuscator’, created by Chris Domas. This is a tool inspired by
the idea, that the assembly instruction mov is Turing-complete. It is
able to compile a program written in C language into assembly code
composed exclusively of mov instructions. The resulting Control-flow
graph looks like a straight line and it would be probably very hard
and time-consuming to reverse engineer. However, this obfuscator is
rather a proof of concept than a practical tool, due to its impact on the
performance of the compiled program.

There is an even more extreme obfuscator worth mentioning, called
trapcc®. It produces programs that are able to run without executing a
single instruction of the CPU, leveraging Intel’s Memory Management
Unit (MMU) fault handling mechanism. However, this is probably
not considered an instructions substitution transformation in the true
sense.

2.1.3 Garbage Code Insertion

This technique consists of inserting arbitrary instructions into the
program without making an impact on the execution of the program.
The total number of different programs possible through garbage
insertion is limited from above by the total number of free bits available
for program space, which is limited only by available memory for
program storage and is clearly enormous [11].

Similarly to instructions substitution, described in 2.1.2, the in-
serted code can be optimized out, therefore it should be applied after
optimizing the program and it might get easily removed by a reverse
engineer who is analyzing the program.

This technique could be used to bypass simple automated malware
analysis engines, as it breaks the signature of the program. The garbage
instructions get executed, which adds complexity while performing

7. https://github.com/xoreaxeaxeax/movfuscator
8. https://github.com/jbangert/trapcc

2. OBFUSCATION

dynamic analysis of the program, but on the other hand, it might
impact the performance.

A simple example of this technique is inserting NOP instruction
into the assembly code. It does not have an impact on the program
execution, but it’s still reachable by the control flow of the program.
A more advanced way to apply this method, described in [11], is to
insert spurious calls to the operating system, which could lead the
attacker to analyze a large amount of garbage code and increase the
time needed to perform the analysis.

Yadegari et al. [12] proposed a generic automated approach for
deobfuscation of executable code based on taint analysis, which tracks
the flow of values from the program’s inputs to its outputs. This
method can identify instructions that do not affect the execution of
the program and remove the garbage instructions from the code.

2.1.4 Dead code insertion

Dead code insertion is a technique similar to garbage code insertion,
described in 2.1.3. The main difference is that the dead code adds a
branch to the control flow of the program, but this branch is never
taken during the execution of the program.

This method was first introduced by Collberg et al. [3]. The paper
suggests, that there is a strong correlation between the perceived
complexity of a piece of code and the number of predicates it contains.
This technique could be further enhanced by using opaque predicates
(2.1.1) — for example, adding a condition with an opaque predicate,
which creates a branching point between a valid and a dead branch.
The predicate would always evaluate to True, making it impossible
for the control flow of the program to reach the redundant branch.

Another way to further confuse the reverse engineer, described in
[3], is to add dummy blocks of code to the redundant branches. For
example, one can clone a sequence of instructions from a valid block
of code, introduce a bug into it and place it into the redundant (dead)
branch.

This transformation can be removed by utilizing optimization fea-
tures including in modern compilers, as well as performing the au-
tomated deobfuscation approach proposed by Yadegari. et al. [12].
An attack proposed by Salem and Bansescu [13], which is based on

8

2. OBFUSCATION

machine learning and pattern recognition algorithms to identify ob-
fuscating transformations in the program, might also prove useful to
a reverse engineer trying to remove this type of obfuscation.

2.1.5 Mixed Boolean-Arithmetic

A mixed Boolean-arithmetic expression (MBA) is composed of in-
teger arithmetic operations on n-bit words (+, —, X, +) and bitwise
operations (A, V, @,). Zhou et al. [7] present a method to generate
an unlimited supply of MBA transforms based on MBA expressions,
MBA identities, and invertible functions, which can be used to obscure
secret constants, intermediate values, and algorithms, while preserv-
ing the original functionality. It is also a useful technique for creating
opaque predicates (2.1.2).

The resulting MBA expressions are dependent on program input,
so they can not be simplified by a compiler optimization.

There is a practical example in [7] of encoding a constant value K =
0x87654321 as a multiterm polynomial MBA function f(x1, ..., X) = K
for arbitrary xi, ..., x.

The example uses a polynomial

f(x) = 727318528x% 4 3506639707x + 6132886 (mod 23?)

with K as an input, which results in the value 1704256593. Since f
is an invertible function, f ~! returns the original value of K. To make
f~1 dependent on the input of the program, the following linear MBA
identity is combined with f1:

2y ==2(xV(-y—1) - ((=2x =)V (-2y —1)) =3
Note that the result of the right-hand side does not depend on the
value of x, which can be an arbitrary integer from the program.
To further obfuscate the MBA expression, another identity is ap-

plied:

x+y=(xdy) —((-2x—-1)V(-2y—-1)) -1

2. OBFUSCATION

Combining these identities, function f and its inverse, results in
a very complex expression that is able to produce the original value
of K during runtime, but is hard to analyze without debugging the
program. The resulting encoding of K can be found in the appendix
of [7].

Guinet et al. presented a tool called arybo [14], which analyzes
the operations performed by MBA expressions at the bit-level. The
tool is able to significantly simplify MBA expressions, thus presenting
a possibility to circumvent this type of obfuscation.

2.1.6 Control Flow Flattening

This transformation was first described by Wang et al. in [15]. The
goal of this technique is to obscure targets of the branches between
the basic blocks and thus to make the analysis of a program more
difficult.

First, the basic blocks of the function are put on the same nesting
level, preceded by a new block, usually referred to as the dispatcher.
The dispatcher contains code that works as a switch statement, used to
determine which basic block is going to be executed next. In addition
to the dispatcher, a routing variable also needs to be created. Each time
one of the original basic blocks terminates its execution, the routing
variable is updated and the flow of control is transferred back to the
dispatcher, which forwards the control flow to the next basic block, in
accordance with the value stored in the routing variable.

The main issue with control flow flattening is finding a way to
make the information about the dispatcher, the routing variable, and
its updating, difficult to analyze. In its naive implementation, where
the routing values are hardcoded during the obfuscation (as in Figure
2.1), it’s easy to analyze the code of the basic blocks and reconstruct
the original control flow graph.

In [15], Wang et. al suggest the use of global pointers, as in some
cases, analysis of pointers can be proven to be NP-hard [16]. In contrast,
the authors of [17] propose using one-way functions, which are always
hard to analyze.

Another issue with this obfuscation method is the computational
overhead it introduces due to additional operations performed by
the dispatcher. Johansson et. al [18] proposed a novel method using

10

2. OBFUSCATION

Start

1 2 3 0
True False \ 4 v
@ Print a Print b
A 4 A 4
var = 2 var = 3 var = 0 var = 0
A 4 h 4 A A

Figure 2.1: Flowchart of a simple program returning a maximum of two
numbers, before and after flattening. Notice that the comparison and
print statements are on the same level of nesting after being flattened.

lightweight dispatchers, which present a similar level of complexity
for the reverse engineer as analyzing a flattened program augmented
with cryptographic hash functions, while reducing the overhead by
one or more orders of magnitude.

2.2 Evaluating Obfuscating Transformations

Determining the usefulness of an obfuscating transformation is a
complex task. When designing and evaluating an obfuscating trans-
formation, one needs to consider multiple criteria, such as how hard
would it be for an adversary (e.g., a reverse engineer) to understand
the functionality of an obfuscated program P’, how hard would it be
to construct a deobfuscator, or how much resources would a deobfus-

11

2. OBFUSCATION

cator need to reconstruct the original program P, given P’ as an input.
Unless the deobfuscation process is fully automated, these criteria will
never be fully objective, since they will always, at least partly, depend
on the cognitive abilities of the attacker.

Collberg et al. proposed some metrics [3], which can be used to
quantify and approximate the quality of obfuscation methods. They
have defined the following three criteria:

e Potency consists of various metrics which were originally de-
signed to be used to measure software complexity in the field of
software engineering, for example, the number of operators and
operands in P, number of predicates (cyclomatic complexity)
in a function, or a nesting level of conditional statements in a
function.

e Resilience is measured on a four-point scale, ranging from trivial
to one-way. The value of resilience depends on two parameters —
programmer effort — how much time would a programmer need
to construct a deobfuscator to reduce the potency of a transfor-
mation, and deobfuscator effort — time and space complexity of a
deobfuscator which can reduce the potency of a transformation.
Programmer effort is based on the scope of the transformation,
from local to inter-process, while deobfuscator effort could be ei-
ther polynomial or exponential.

e Cost of a transformation measures how much execution time
and space overhead would a transformation introduce to the
obfuscated program. This value is also measured on a four-point
scale, ranging from free (transformation adds a constant over-

head) to dear (P’ requires exponentially more resources than
P).

Mohsen and Pinto [19] proposed using Kolmogorov complexity
[20] to measure the quality of obfuscation. Kolmogorov complexity
can be described as the shortest length of a program, which can pro-
duce a given object (e.g., a binary string, or an obfuscated program).
Due to the undecidability of the halting problem, exact Kolmogorov
complexity can not be computed. However, it can be estimated using
compression algorithms. More specifically, Kolmogorov complexity is
the lower bound of a compression algorithm.

12

2. OBFUSCATION

The idea to use Kolmogorov complexity to quantify the quality
of obfuscation is based on an assumption that obfuscation produces
irregularities in the obfuscated code (e.g., by inserting opaque predi-
cates, or cloning and diversifying basic blocks), thus making it less
comprehensible for the adversary. A program that contains more reg-
ular patterns can be compressed with a higher rate, and thus has a
lower Kolmogorov complexity. In contrast, an obfuscated program
would have higher Kolmogorov complexity, which implies that it is a
useful metric for evaluating obfuscation, as shown in [20].

13

3 LLVM

The LLVM Project started as a research project at the University of
Illinois focused on creating a compiler framework designed to sup-
port transparent, life-long program analysis and transformation for
arbitrary programs, by providing high-level information to compiler
transformations at compile-time, link-time, run-time, and idle time
between runs [4].

The name LLVM was originally an abbreviation for Low Level Vir-
tual Machine. Since the project has little in common with what is cur-
rently perceived as a virtual machine, the meaning of the abbreviation
has been later removed to avoid confusion, so now LLVM is the full
name of the project’.

The project consists of various sub-projects, such as LLVM Core
libraries providing source and target-independent optimizer and code
generator, implementation of the C++ standard library with full sup-
port for C++11 and C++14, Clang — a compiler for C, C++, and
Objective-C, and the LLDB debugger.

3.1 LLVM Compiler Architecture

The LLVM compiler pipeline consists of three main phases. First, the
frontend parses the input code, which includes validation of syntax
and semantics and diagnosing errors. If the code is valid, the fron-
tend creates a representation of the code in the LLVM Intermediate
Representation (IR) format, which is discussed in further detail in the
following section.

Various analysis and transformation passes can be run on the IR.
Analysis passes are used to gather some higher-order information
about the IR without mutating it, e.g., generate the Control Flow Graph.
Transformation passes mutate the IR in some way, for example deleting
dead code. Transformation passes can use the results generated by
the analysis passes.

The part of a compiler that is responsible for these tasks is typically
called the optimizer. The main goal of the optimizer is to gather infor-

1. https://llvm.org/

15

https://llvm.org/

3. LLVM

Source IR _ IR Target
- Front End Optimizer Back End —
Program

Y
Y
Y

Program]

Compiler

Figure 3.1: A high-level illustration of a three-phase compiler [22]

mation about the runtime behavior of the program and apply it to
improve the final code generated by the compiler. The most common
goal of the optimizer is to make the program run faster. However,
depending on the application, there can be other goals of optimization
which would have higher priority. In the case of embedded systems,
it could be reducing the size of the compiled code or analyzing the
energy consumption of the program in order to make it more energy-
efficient[21].

Lastly, the backend takes the IR as an input, executes passes like
instruction selection and register allocation, and produces native ma-
chine code for the target architecture. This compiler pipeline is usually
referred to as a three-phase compiler.

The design of the LLVM compiler provides much flexibility, given
that the IR is source and target-independent, therefore the optimiza-
tion passes can be applied while compiling source code of any pro-
gramming language which has an LLVM frontend. Some of the sup-
ported languages are C and C++, Go, Haskell, Rust, and Swift.

LLVM backends, which generate the machine code from the in-
termediate representation, also support various target architectures,
such as x86, ARM, and PowerPC.

For the purpose of obfuscation, the focus of this thesis is the middle
section of the pipeline. Even though the optimizer works only with
the intermediate representation form, which is passed to the backend
afterward, transformations applied in this phase have an impact on
the structure of the final executable file.

16

3. LLVM

3.2 LLVM Intermediate Representation

The LLVM IR is a low-level language similar to assembly. However,
it provides various abstractions which remove target-specific instruc-
tions and features. It uses a set of infinite temporary registers and
the Single Static Assignment (SSA) form, which means that it needs to
tulfill two constraints:

1. Each definition has a distinct name,
2. Each use refers to a single definition.

The single-assignment property of the namespace allows the com-
piler to sidestep many issues related to the lifetimes of the values,
for example, because names are never redefined or killed, the value
of a name is available along any path that proceeds from that opera-
tion. These two properties simplify and improve many optimization
techniques[22].

The Intermediate Representation is organized into modules — each
module corresponding to a single source file (also referred to as trans-
lation unit). During the compilation process, separate modules are
linked with the LLVM Linker, also called LLD, to produce the exe-
cutable file. Modules generally contain functions and global variables,
both of which are called global values. Global values are represented by
a pointer to a memory location and their identifiers begin with the ‘@’
character. In addition to global value identifiers, there are also local
identifiers, prefixed with the "%’ character. They are typically used to
register names and types.

Listing 1 shows a simple program in LLVM IR, which can be used
to further introduce the LLVM IR syntax. On the first line, there is
a definition of a global variable, a constant string, named .str. It
consists of 12 characters, size of each of them is 8 bits. The private
keyword states that this value is only directly accessible by objects in
the current module and unnamed_addr indicates that the address is
not significant, only the content. Constants marked like this can be
merged with other constants if they have the same initializer.

The module defines two functions — foo and main — starting on
lines 3 and 20 respectively. Every function definition starts with the
define keyword and specifies the function’s return type (a 32-bit

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

3. LLVM

@.str = private unnamed_addr constant [12 x i8] c"Hello world\00",

«— align 1

define i32 @foo() {
entry:
%add add i32 7, 42
%cmp = icmp sgt 132 Yadd, 56
br il %cmp, label %if.then, label %if.end

if.then:

br label %return

if.end:

br label %return

return:
%retval.0 = phi 132 [7, %if.then], [%add, %if.end]
ret i32 Yretval.O

define i32 @main() {
entry:
%call = call i32 Q@puts(i8* getelementptr inbounds([8 x i8], [8 x
— i8]* @.str, i64 0, i64 0))
%calll = call i32 @foo()
ret i32 0

declare dso_local i32 @puts(i8x)

Listing 1: Example of a short LLVM IR module. Some parts, such as
target architecture information, metadata, and comments, have been
omitted for better readability. Also, the compiler optimizations have
been disabled.

18

3. LLVM

integer in this case). There is also an external declaration of the puts
function, which is called in the main function to print the "Hello world"
string. The main function then performs a call to the foo function and
terminates by returning zero. The foo function consists of multiple
basic blocks. Every basic block is prefixed with its name and a colon,
and ends with a terminator instruction, such as br (branch) and ret
(return). The function simply adds two integers (7 and 42), compares
the result with another integer, and transfers the control flow to the
next basic block, based on the result of the comparison.

The SSA form, described at the beginning of this section, introduces
a special type of instructions, called phi instructions. They appear at
the point where different paths of control flow merge, as we can see at
line 16 in Listing 1. The phi instruction assigns a value to the virtual
register named %retval.0, depending on the block from which the
control entered the current block. If the control entered from the
%»if .then block, value 7 is assigned. Otherwise, the control entered
from the %if.end block and the value stored in the virtual register
’add is chosen.

The example code in Listing 1 has been generated and tweaked to
present a simple and readable form of the LLVM IR. First, clang was
used to produce a human-readable form of the IR:

$ clang -S -emit-1llvm -c example.c -00 -Xclang
-disable-00-optnone -fno-discard-value-names
-0 example.ll

The -00 flag tells clang to not perform any optimizations on the file.
However, to be able to additionaly apply passes using opt, we need to
include the -Xclang -disable-00-optnone flags. Thanks to the -fno-
discard-value-names flag, the IR contains meaningful names of the
registers and basic blocks, instead of numbers only (e.g., %1, %2).

Then the opt tool is used to apply the mem2reg pass on the IR to
transform it into a more simple form by promoting memory references
into register references?:

$ opt -mem2reg -S example.ll -o example.ll

2. https://1lvm.org/docs/Passes.html#mem2reg-promote-memory-to-register

19

https://llvm.org/docs/Passes.html##mem2reg-promote-memory-to-register

4 Existing tools

4.1 Obfuscator-LLVM

Obfuscator-LLVM is an open-source project initiated in 2010. It aims
to provide increased software security through code obfuscation and
tamper-proofing!. The project is a fork of the LLVM compilation suite,
therefore it works with the LLVM IR, utilizing LLVM'’s possibility of
writing custom transformation passes. It supports all programming
languages and target platforms that are currently supported by LLVM.

The open-source version of the project implements three obfuscat-
ing transformations:

1. Instructions Substitution is the most simple obfuscating transfor-
mation included in the project. It replaces simple binary oper-
ations with more complex ones, as described in Section 2.1.2.
Obfuscator-LLVM supports the substitution of integer additions
and subtractions and the Boolean operators AND (&), OR (|)
,and XOR (”). For example, the expression a = b A ¢ is substi-
tuted as a = (b @ —c) A b. Some of the operations have multiple
substitution candidates, which are chosen randomly to increase
code diversity. A full list of the implemented substitutions can be
found in [23]. The substitutions are rather simple and according
to the authors, this transformation can easily be circumvented
by re-optimizing the generated code.

2. Bogus Control Flow modifies the control flow graph by inserting
a new basic block before an existing one. The new basic block
ends with an opaque predicate (2.1.1), which always evaluates
to True, making a conditional jump to the original basic block.
The original basic block is also cloned, randomly filled up with
various junk instructions, and inserted to the False branch lead-
ing from the new basic block. This cloned block is never reached,
because of the invariant opaque predicate. The weakness in the
implementation of this transformation is that it uses just a single

1. Preventing a user from modifying the software against the manufacturer’s
wishes.

21

4. EXISTING TOOLS

opaque predicate:
(y <10||x-(x—1) mod2=0)

The two global variables, x and y, which are declared to con-
struct this predicate, can also give a hint on where the opaque
predicates are, which would make it easier for a reverse engineer
to overcome this transformation.

3. Control Flow Flattening is implemented in a naive way, as de-
scribed in Section 2.1.6 — by hard-coding the routing values
during the obfuscation process. This implementation provides
some resilience against automated analysis tools, e.g. signature-
based malware scanners, but it does not propose a significant
challenge for a reverse engineer or automated tools performing
a more complex static analysis.

Apart from the aforementioned obfuscating transformations, this
tool also implements a transformation pass for basic block splitting.
This pass introduces additional complexity to the transformations
manipulating the control flow.

The authors also added a feature to tag specific functions, which
are supposed to be obfuscated, in the source code of the program. This
way, the developers can reduce the negative performance impacts on
the program they are obfuscating, by omitting non-crucial functions
from the obfuscation process.

The commercial version of Obfuscator-LLVM used to implement
additional, more advanced capabilities, such as code tamper-proofing
and procedures merging, mentioned in [23]. However, according to
the wiki on the project GitHub repository?, the commercial version is
no longer available since the end of 2016.

The GitHub repository, containing the open-source version, is not
being maintained since then as well. The authors of the project appar-
ently founded a startup named Strong.Codes, which has been later
acquired by Snap Inc. [24].

2. https://github.com/obfuscator-1lvm/obfuscator/wiki

22

https://github.com/obfuscator-llvm/obfuscator/wiki

4. EXISTING TOOLS

4.2 Tigress

Tigress is a source-to-source obfuscator for C language, developed by
Collberg?® as a research project at the University of Arizona. Compared
to Obfuscator-LLVM, while supporting only C language, Tigress seems
to be a much more powerful obfuscation tool with a wide variety of
implemented transformations, such as:

1. Jitting (just-in-time compilation) turns the function to be ob-
fuscated into a new one, which generates the machine code
of the original function dynamically when it is executed. An-
other similar transformation supported by Tigress is JitDynamic,
which continuously modifies and updates the generated code at
runtime. This version works at the granularity of basic blocks,
decoding them when they need to be executed and subsequently
re-encoding them.

2. Virtualization turns a function into an interpreter with a custom
set of virtual instructions for each function*. From the randomly
generated instruction set, Tigress generates a bytecode program
(array) that is specialized for the obfuscated function. Tigress
then selects one of eight dispatch functions (e.g., a switch state-
ment, nested conditional statements, jump statements etc.) and
produces an output program. This transformation can be fur-
ther enhanced by using opaque predicates, inserting bogus code,
encoding constant values, and dynamically encoding the array
containing the program bytecode, using the same mechanism
as [itDynamic.

3. Flattening implements a slightly more advanced approach to flat-
ten the control flow graph than the transformation implemented
in Obfuscator-LLVM. Four kinds of block dispatchers are avail-
able —basic implementation using switch statement, direct goto
statements and indirect ones using a jump table, and call dis-
patch, which creates a new function out of every basic block and
uses a table of function pointers to jump to them. Obfuscation
of the routing variable, which points to the next basic block to

3. The co-author of [3], [5] and others
4. https://tigress.wtf/virtualize.html

23

https://tigress.wtf/virtualize.html

4. EXISTING TOOLS

be executed, can be also enhanced by using opaque predicates
(2.1.1).

Furthermore, Tigress also provides transformations like splitting and
merging functions, encoding literals, data, arithmetic operations, ex-
ternal calls, and branch targets. To harden the program against static
analysis tools based on alias analysis, it replaces direct function calls
with indirect ones, storing function addresses in a global array.

Tigress also contains a transformation to prevent taint analysis.
To hide a variable from tainting, it inserts a block of code that copies
its value in a loop, bit by bit, to a new one. This way, the original
tainted variable may be discarded. Currently, this transformation can
be applied only on a small set of variables, such as argc and argv in
maln.

4.3 UPX (Ultimate Packer for eXecutables)

UPX is an open-source software used for packing binary executable
files. It is not primarily developed to be used for obfuscation. It creates
an executable that is composed of three parts:

1. Compressed executable,

2. Empty section, in which the executable is unpacked during run-
time. It has the same size as the original unpacked executable.

3. Stub, which is an entry point of the packed executable. It allocates
memory for unpacking the executable during runtime, extracts
the original file, resolves imports, restores file permissions, and
jumps to the entry point of the original file.

Thanks to its portability and support of a wide variety of exe-
cutable formats, UPX is popular among malware authors. Since the
compression dramatically changes the file signature, packing a mali-
cious executable can be used to fool many automated tools for malware
analysis.

However, because of the popularity of UPX in the malware com-
munity, executables packed with this software might get automatically
flagged as suspicious by antivirus scanners (e.g., by looking for spe-
cific strings in section headers — UPX0, UPX1). The original program

24

4. EXISTING TOOLS

can be also easily unpacked with upx -d. One of the simple tricks
used by malware authors is to modify the packed file in a way that
breaks the unpacking method. For example, by modifying the section
header names, the automatic unpacking method will fail, but the stub
will still be able to unpack and execute the original binary [25].

Since UPX is open-source, malware authors can always modify
the original source code to create a custom version of UPX. It is still
possible to obtain the original executable packed by a custom UPX,
since it needs to be unpacked at some point during execution, therefore
the problem is reduced to finding the unpacking stub and extracting
the original file from memory, when it gets unpacked.

To obfuscate malware, UPX is typically used as one of the multiple
layers of obfuscation, together with various techniques to prevent
debugging and tampering the code.

25

5 Design

The obfuscating transformations designed for this thesis are built on
the foundations from Obfuscator-LLVM, while improving its currently
available transformations and writing some new ones from scratch.
Thanks to the modularity of the LLVM pass framework, each of the
transformation passes can be applied independently, or combined in
a sequence.

Selected transformations are have been designed with regard to
their resilience against reverse engineering and impact on perfor-
mance.

5.1 Instructions substitution

While applying basic rewrite rules for binary operations, such as the
ones implemented in Obfuscator-LLVM, one can easily deobfuscate
the expressions with an optimizing pass included in LLVM’s clang,
for example, the InstCombine! pass, which is supposed to "Combine
instructions to form fewer, simple instructions." However, when the
rewrite rules include MBA (2.1.5) expressions applied multiple times,
the optimization fails to reconstruct the original expressions, as the
experimental results in [26] show.

Based on the method for generating MBA identities proposed
by Zhou et al. [7], Eyrolles has generated a list of all rewrite rules
composed of three boolean expressions [26]. We have decided to
implement a selection of those rules in the obfuscator. For each binary
operation, the rewrite rule is picked randomly out of three possibilities.
to increase code complexity and diversity. Below are the rewrite rules
implemented in the pass.

1. http://1lvm.org/docs/Passes.html#instcombine-combine-redundant-instructions

27

http://llvm.org/docs/Passes.html##instcombine-combine-redundant-instructions

5. DEsIGN

5.1.1 Rewrite rules

Addition:
x+y—=2xVy) - (x®dy)
x+y—(x®-y)+2(xVy)+1
x+y— (xBy)+2y—2(-xAy)

Subtraction:
x—y—=2(xA-y)— (xDy)
x—y— (-x+y)A-(-x+y)
X—Yy—=>xANy—-xAYy

XOR:
x®y— (xVy)—(xAy)
x®@y— (xVy) —y+(-xAy)
x@y = (xVy)— (-xVy)+ ()

AND:
XAy = (mxVy) ——x
xANy— (xVy) = (~xAy) — (x A-y)
xNy = —(x@y)+y+ (xA-y)

OR:
xVy— (xA-y)+y
xVy— (x®y)+y—(-xAy)
xVy— (x@y)+ (xVy) — (-x)

5.2 Opaque constants

To prevent the reverse engineer from extracting constant numerical
values from the program, we have decided to implement a method
proposed by Zhou and Main [7] to obscure the data by combining
MBA identities (2.1.5) with invertible polynomials.

Let:

28

5. DEsIGN

e f be an invertible polynomial over Z/(2"Z)

o g=f"

e L an MBA expression non-trivially equal to zero, for example
E=x+y—(xVy) - (mxVy)+(-x)

e C a constant to be obfuscated.

To obfuscate C, we can encodeitas C = g(E + f(C)). The following
example will show how the process works in practice. Suppose we
are performing calculations in Z/ (2"") with 32-bit words?, f is a linear
function with coefficient 2 being an odd integer, so that it is invertible
mod 232 and b is an arbitrary integer, while all integer values are 32
bits large:

C = 123456
a = 1337
b=42

x = 1307300694
y = 2583472541
f(x) =ax+b=1337x +42
g(x) =a x4 (—a"1b)
= 1337 1x + (—133771 . 42)
= 1185372425x 4+ 1753965702
E=x+y—(xVy)— (—xVy)+ (—-x)

Then we can encode C as:

2. All calculations are mod 232.

29

5. DEsIGN

f(C) = 1337 - 123456 + 42 = 165060672 + 42
E = 1307300694 + 2583472541 — 3724540895
— 3153898941 + 2987666601 = 0

C=gx+y—(xVy)— (-xVy)+ (-x) + f(C))
= ¢(0 + 165060672 + 42)
= 1185372425 - 165060714 + 2541001594

= 123456 mod 232

The intermediate results of the functions f, g, and the MBA expres-
sion E are calculated during runtime, which makes it much harder
to obtain the value of C during static analysis. The values of a,b, x,y
can be either randomly generated during compilation (obfuscation)
time, or by injecting a call to a random number generator that executes
during runtime. The third option is to use suitable program inputs or
function arguments, which would hinder deobfuscation techniques
based on taint analysis>.

For the purposes of testing and demonstration of this obfuscation
method, we have chosen to generate the values of 4, b, x, y — by using
a random number generator during the compilation time.

5.3 String obfuscation

Strings, i.e. sequences of characters, are present in most of the ex-
isting programs. They are used to improve accessibility for the user
interacting with the program, or to produce meaningful logging and
error messages for the developers. For the reverse engineer, strings can
present a valuable source of information about the program. They can
be easily viewed in common decompiler and disassembler software,
as well as displayed in bash by using strings* command.

LLVM provides a convenient way to obfuscate all strings used
in the program. During the obfuscation, the strings can be encoded

3. Tracking flow of values in the program and identifying values and variables that
influence program’s outputs, as well as the control flow of the program.
4. https://linux.die.net/man/1/strings

30

https://linux.die.net/man/1/strings

5. DEsIGN

using an arbitrary function that transforms them. Then, a decoding
function is injected into the LLVM IR module. During runtime, the
decoding function is used to obtain the original strings. This approach
provides resilience against static analysis, while also introducing more
complexity when performing dynamic analysis.

The encoding and decoding functions can be different for each
obfuscated program, which gives us a choice to either reduce the
computational overhead by using an efficient and simple encoding
and decoding function, or to strengthen the obfuscation by using more
complex functions. When a keyed function is used, the key needs to
be included in the obfuscated program. A possible way to harden this
transformation is to use other obfuscation methods, such as the one
mentioned in the previous section (5.2), to hide the key.

5.3.1 Encoding and decoding functions

For the purposes of hiding the strings, we have designed two simple
functions, which can be used either individually, or combined, if we
apply the pass multiple times. The first one shifts every character
in the string by 13, e.g., it changes every character 4, represented in
decimal as 97, to character 1, represented in decimal as 110.

The second, more complex function, uses a key, which is repre-
sented as a string. It iterates over the characters in the obfuscated string
and performs a bitwise XOR, using a character on the correspond-
ing position in the key string as a second operand. If the obfuscated
string exceeds the length of the key, the function loops back to the
first character of the key string. To add more confusion, this function
obfuscates the string terminator (represented by decimal 0) as well.

5.4 Bogus Control Flow

Bogus Control Flow pass is one of the passes included in Obfuscator-
LLVM (4.1). The weakness of the original implementation is that it
uses just a simple opaque predicate with two global variables, both
initiated to zero. Any experienced reverse engineer could probably
detect this type of opaque predicate by just simply looking at the

31

5. DEsIGN

disassembled program, while automated tools based on symbolic
execution would definitely identify the predicate and simplify it.

We have decided to improve this pass by replacing the weak opaque
predicate with two types of stronger ones.

5.4.1 Arithmetic opaque predicates

Predicates of this type are composed of mathematical formulas which
are always True (invariant). They include basic arithmetic operations
(+, —, X, +) and remainder operations. MBA (2.1.5) is not used here,
because running the Instructions Substitution pass would turn the
simple operations into MBA anyways, therefore implementing them
here as well would result in redundancy and decreased modularity.
Following formulas, taken from [27], are included in the pass:

x £ 7y —1

0# (x*+1) mod7
0# (x¥*+x+7) mod 81
0 # (4x*> +4) mod 19

To further harden these predicates, we use input arguments of the
obfuscated function for the variables x and y. Since the formulas are
always true for an arbitrary integer, the predicate will always lead to
a correct block. Using the function arguments in the opaque predicate
may prevent various deobfuscation tools and techniques based on
taint analysis (e. g. [12]) from detecting and removing the predicate.

When the function does not have suitable arguments, one or two
global variables (depending on the number of available integer argu-
ments) are created and initialized to a random value instead.

5.4.2 Symbolic memory opaque predicates

This type of opaque predicate is based on the ideas first proposed by
Collberg et al. [5]. The exact method to construct is described in [9].
This is the technique which we have decided to use®.

5. A deprecated, proof-of-concept implementation of this method can be found at
https://github.com/hxuhack/symobfuscator

32

https://github.com/hxuhack/symobfuscator

5. DEsIGN

The predicate is constructed by creating two arrays and using an
input value of the obfuscated function. The remainder r after the
division of the input value by the size of the first array is used as an
index to get the rth element from the first array. This element then
serves as an index to the second array, which yields an element from
the second array that can be used to construct the opaque predicate.

Since the value of the resulting element from the second array
depends on the input symbol, detecting and removing this type of
opaque predicate presents a hard problem (first described by King
[28]) for deobfuscation tools based on symbolic execution.

33

6 Implementation

One way of integrating new passes using the LLVM framework is
to include them in the LLVM source tree and build LLVM from the
source to use them during the compilation and obfuscation. The other
way is to build an out-of-tree pass, which means to compile the source
code of the pass separately, in an arbitrary destination, and load it
with the LLVM opt tool to apply it on an LLVM IR module. We chose
the out-of-tree method, as it is more convenient and straightforward
to use.

To make the transformations more diverse, the passes use a random
number generator based on the 64-bit Mersenne Twister by Matsumoto
and Nishimura (std: :mt19937), together with the std: :random_de-
vice interface to generate non-deterministic random numbers.

Instructions on how to build and use the implemented passes are
included in Appendix A.

6.1 Instructions substitution

Implementation of this pass is based on a tutorial [29] created by
developers from Quarkslab, which shows how to write a simple obfus-
cating transformation that substitutes an addition operation with an
MBA expression. The pass iterates over instructions in a basic block,
searching for instructions of BinaryOperator type that operate with
integers. To build a new instruction, the IRBuilder class is used.

For each substituted instruction, the pass generates a random num-
ber from a uniform integer distribution in a range from 1 to 3 (number
of available substitutions for each operation) using the random num-
ber generator described at the beginning of this chapter. After the
new instructions are generated and their result is stored in a new
virtual register, we call the ReplaceInstWithValue() function, which
replaces all uses of the original instruction in the basic block, and
removes the original instruction.

This pass can be applied to the module multiple times, recursively
generating more complex MBA expressions with each iteration. List-
ings 2 and 3 show how a simple instruction —%add = add 132 %a, %b

35

10

11

12

13

14

6. IMPLEMENTATION

—which performs addition and stores the result in %add, gets obfuscated
after two iterations of this pass.

h2

xor i32 %a, %b
%3 or i32 %a, %b
%4 = mul i32 2, %3
%add = sub i32 %4, %2

Listing 2: IR code after using the substitution:
x+y—=2(xVy) — (xBy).

%2 = xor i32 %a, -1
%3 = xor i32 %a, -1
%4 = or i32 %3, %b

%5 = or i32 %a, %b

%6 = sub i32 %5, %4
%7 = add i32 %6, %2
%8 = or 132 %a, %b

%9 = mul i32 2, %8
%10 = sub i32 0, %9
%11 = add i32 %10, %7
%12 = sub i32 0, %11
%13 = sub i32 0, %9
%14 = add i32 %13, %7
%15 = sub 132 0, %14
%add = and i32 %15, %12

Listing 3: IR code from Listing 2 after substituting:
x®y = (xVy) = (bxVy) + ()
x—y = (x4 y)A(ox+y)

36

6. IMPLEMENTATION

6.2 Opaque constants

The boilerplate code for this pass is from the Quarkslab developers’
blog [30]. However, the core principles and scope of obfuscation are
fundamentally different. As described in Section 5.2, this pass obfus-
cates unsigned 32-bit integer values.

The main loop iterates over instructions of a basic block, ignoring
those which are either a call to a function, switch, or a GEP! instruction.
When a suitable instruction is found, the pass checks whether some
of its operands are constant 32-bit positive integers. Afterward, the
program proceeds to build an expression described in Section 5.2.
To find the modular inverse of a, boost: :integer: :mod_inverse()
function from the Boost? library is being used.

Some of the values, most importantly, the multiplication of the
obfuscated constant by the coefficient a in function f, are computed
during compilation time. Other parts, such as the expression E and
composition of functions f and g, are created using the IRBuilder,
which is instantiated with the first template argument being NoFolder.
This template argument specifies a class used for constants. The de-
fault option — ConstantFolder — performs constant folding during
compilation time, which could possibly weaken this obfuscating trans-
formation, therefore NoFolder is used.

6.3 String obfuscation

Implementation of this pass is partly based on a tutorial [31] for build-
ing an LLVM pass for string obfuscation. The pass iterates over global
variables in the IR file, since all strings in LLVM IR, are stored as global
variables. When a global variable that contains a string is encountered,
it is encoded, so it does not appear in its original form in the resulting
binary.

Both encoding and decoding functions have to be provided in a
separate LLVM IR module, named codec.bc. They have to be named

1. Get Element Pointer — used to get the address of a subelement of an aggregate
data structure.
2. https://www.boost.org/

37

https://www.boost.org/

6. IMPLEMENTATION

encode and decode and their arguments need to be of type unsigned
char *.

For each encoded string, a call to a decoding function is created
and inserted into the IR file. More specifically, a decode_stub () func-
tion, which contains a call to a decoding function for every string, is
injected at the beginning of the main () function in the obfuscated pro-
gram. This approach has some disadvantages. At some point during
the execution of the program, all of the strings will appear decoded.
However, this transformation is still useful to hinder static analysis,
as well as dynamic analysis, especially when the decoding function
is obfuscated with other transformations. The second disadvantage
is that the obfuscated program needs to have a main() function, oth-
erwise the decode_stub() function can not be injected. This second
issue could possibly be solved by searching for other entry points of a
program, apart from main().

The main advantage of our implementation is that the user can
define arbitrary encoding and decoding functions (but also needs to
ensure they are working correctly®). Both functions are first loaded
from a separate LLVM module (bitcode file) using the ParseIRFile ()
function. Then, the functions can be stored in an object of Function
type. While the decode () function is simply injected into the IR mod-
ule, the encode () function is directly executed during the obfuscation,
by utilizing the ExecutionEngine abstract interface.

To harden this obfuscation pass, we tell the compiler to always
inline the decode function, by adding the AlwaysInline attribute to it
in the pass. This modification does not appear explicitly in the bitcode,
since the inlining will be performed by the backend and the result is
observable only in the compiled program.

6.4 Bogus Control Flow
The code for splitting and cloning the basic blocks is taken from the

original Bogus Control Flow pass in Obfuscator-LLVM, with just a
slight modification.

3. For example when obfuscating a program written in a language with different
terminating characters than ’\0".

38

6. IMPLEMENTATION

The original code had a bug in function AddBogus (), which is re-
sponsible for splitting the basic blocks, creating new branches, and
inserting placeholder instructions, which are later replaced by an
opaque predicate. The bug is related to the exception handling mecha-
nism in LLVM IR — when a basic block might throw an exception, the
terminator instruction at the end of the block is the invoke instruction,
which can either lead to a regular basic block, or a special basic block
that starts with the landingpad instruction and handles the thrown
exception. The label of this block is marked with unwind keyword.

However, when the block with the landingpad is obfuscated, a
new block, which starts with the opaque predicate, is inserted before
the original one. This causes a situation when the unwind label leads to
a block that does not start with the landingpad instruction, generating
an invalid IR module. Also, the new block with the landingpad in-
struction does not have an incoming edge marked as unwind, coming
from an invoke instruction. Both of those facts result in a compilation
€error.

Luckily, the VerifierPass was able to detect this erroneous behav-
ior and display a corresponding error message. To fix this issue, we
have added a check at the beginning of the AddBogus () function, to
find out whether a block contains a landingpad instruction so that
such blocks can be skipped and not obfuscated.

Our main contribution to this pass are the getSimple0OP() and
getSymOP () functions, which construct the opaque predicates that are
described in Section 5.4. First, the pass iterates through the obfuscated
function arguments and stores those which are 32-bit integers.

If such arguments are found, they are used to create an opaque
predicate. In the getSimple0OP () function, the values of the obfuscated
function arguments are divided by INT8_MAX (127) and the remain-
ders are used as the values for x and y in the formulas. This way, we
prevent a situation when a result of some of the operations might
overflow the type of the value where it is being stored, while we also
reduce the computational overhead of the obfuscated program. One of
the four formulas is then picked randomly to construct the predicate,
which is inserted into the basic block afterward.

The implementation of the getSymOP () function is more complex.
First, it allocates two arrays of integers on the stack and initializes their
values (a range from 0 to array size minus one). Then, a remainder of

39

10

6. IMPLEMENTATION

a division of the input argument by the size of the first array is stored
in a virtual register by creating a srem (signed remainder) instruction.
This register is then used as the second index in a getelementptr*
instruction, indexing the first array. An element pointed to by the
result of this getelementptr instruction is then stored into a new
virtual register, which is used as an index for a second getelementptr
instruction, indexing the second array:.

Loading an element from the second array like this allows us to
construct an invariant opaque predicate by creating an icmp (integer
comparison) instruction with the two operands, one being the loaded
element, the other one is the size of the arrays. Since the values stored
in the arrays are not larger than the size of the arrays, this comparison
has an invariant result and can be used as an opaque predicate.

Listing 4 shows a snippet of the generated IR code that performs
described operations (initialization of the arrays %arr1 and %arr2 is
omitted). The obfuscated function is main () with standard arguments
(int argc, char *argv[]), therefore the symbolic value used in this
case is %argc.

%allocalnst = alloca 132

store i32 Yargc, i32* Yallocalnst

%loadInst = load i32, i32* %allocalnst

%load64 = sext i32 YloadInst to i64

%0 = srem i64 %load64, 8

%idx_1 = getelementptr inbounds [8 x i64], [8 x i64]* Yarrl, i32 O,
< 164 %0

%1 = load i64, i64%* %idx_1

%idx_2 = getelementptr inbounds [8 x i64], [8 x i64]* Jarr2, i32 0,
< 164 %1

%2 = load i64, i64x* %idx_2

%ArrOpq = icmp ne i64 %2, 8

Listing 4: IR code for constructing symbolic opaque predicates.

4. https://1lvm.org/docs/GetElementPtr.html

40

https://llvm.org/docs/GetElementPtr.html

6. IMPLEMENTATION

6.5 Limitations and possible extensions

The passes have been implemented as a proof-of-concept for demon-
stration and testing purposes. Following ideas can be implemented to
improve the project and bring it closer to a form of a usable product.

e To make the obfuscation more user-friendly, a scheduling pass
can be implemented, which would run individual passes, to-
gether with LLVM optimization passes, in a sequence specified
by the user.

e More control over the obfuscation process can be provided to
the user by introducing additional command-line options, e.g.,
to control the extent of each transformation, or to specify what
types of opaque predicates shall be used.

e For deterministic results, a random number generator that could
be seeded with a value provided by the user can be used instead
of the current RNG.

e For real-world projects, it would be useful to allow the user to
annotate functions that are supposed to be obfuscated. Obfus-
cating only a selected subset of functions in a project would
probably lead to a smaller overhead from the obfuscation.

e To further improve the security of the binary against reverse
engineering, redundant information, such as debugging sym-
bols, can be removed by using the 11vm-strip® tool, or its GNU
alternative.

5. https://1lvm.org/docs/CommandGuide/llvm-strip.html

41

https://llvm.org/docs/CommandGuide/llvm-strip.html

7 Testing and Evaluation

In this chapter, we are going to evaluate the obfuscation techniques
based on the criteria and metrics described in Section 2.2 and test the
obfuscation on selected samples of code. The test programs consist
of a C++ implementation of SHA-512 hash function!, a C++ imple-
mentation of AES-CBC? with 128-bit key, and an implementation of
QuickSort? algorithm in C.

7.1 Potency

For testing potency, we are going to compute the software complex-
ity metrics of the obfuscated bitcode, and compare it to the non-
obfuscated version.

Except for the Bogus Control Flow pass, the transformations do
not significantly change the Control Flow Graph of the program, since
the passes obfuscating constants and substituting instruction operate
only in the scope of individual basic blocks, while the pass obfuscating
strings manipulates global variables in the bitcode. It also injects a call
to decode the string, but this operation does not change the CFG in a
significant way. Therefore, we are going to use instruction count (1)
and Kolmogorov complexity (y2) as metrics to evaluate the potency
of obfuscations, and avoid other metrics which are mostly influenced
by the changes of the CFG.

To obtain the values, we use the obfuscation-metrics tool*, which
includes an implementation of a simple LLVM analysis pass that parses
the IR module and outputs the metrics. To compute Kolmogorov
complexity, the tool uses the z1ib: :compress() function, which is
included in the LLVM libraries.

Table 7.1 shows the changes in software complexity metrics after
applying obfuscation, which allows us to estimate the potency of the
transformations. Values in the table show a ratio of metrics of an
obfuscated and a non-obfuscated program. Substitution x2 shows

https://github.com/martynafford/sha-2
https://github.com/kkAyataka/plusaes
https://www.programiz.com/dsa/quick-sort
https://github.com/b-mueller/obfuscation-metrics

Ll N

43

https://github.com/martynafford/sha-2
https://github.com/kkAyataka/plusaes
https://www.programiz.com/dsa/quick-sort
https://github.com/b-mueller/obfuscation-metrics

7. TEsTING AND EvaLuaTION

the effects of applying the Instruction Substitution pass twice. String
obfuscation 1 and 2 refer to the two different string encoding functions
— based on bit rotation and bitwise XOR, respectively. The last four
rows show the changes of the metrics after applying multiple passes
sequentially. The ordering of the passes is discussed in detail in Section
7.1.2.

7.1.1 The potency of individual passes
Instructions substitution

The Instructions substitution pass has been applied to the test program
in two iterations. Comparing the change of the metrics in the first and
the second iteration, we can see that applying the transformation
multiple times does increase 1 more than ;. This result implies that
while the size of the program grows larger with each application of this
pass, some regular patterns probably start to appear in the obfuscated
program.

Opaque constants

The results for the pass creating the opaque constants show that it
has a relatively high potency. Structure and other specifics of the
obfuscated programs might be a factor that contributes to this result.
Even though we have used only one pair of functions to build the
expressions for this obfuscation (as described in Section 5.2), this pass
inserts a substantial amount of new instructions, while also generating
random operands for some of them, resulting in a significant increase
of both metrics.

String obfuscation

String obfuscation comes out as the least potent transformation, but
this result might be caused by the low number of strings in the obfus-
cated programs. Slightly higher potency in the case of using the string
encoding and decoding functions based on bitwise XOR is caused by
these functions being more complex, compared to the ones based on
the rotation of bits.

44

7. TesTING AND EvaLuaTION

Bogus control flow

Bogus Control Flow is the most potent pass, as it not only injects new
instructions, but also duplicates the basic blocks and creates randomly
initiated global variables. The significant increase of y; is probably
caused by the creation of the symbolic memory opaque predicates
(Section 5.4.2), as it inserts an alloca instruction for each element of
the arrays created in this process. On the other hand, metric y, might
be mostly influenced by the creation of the randomized global vari-
ables, similarly as in the case of the Opaque constants transformation.

7.1.2 Combining the passes

After evaluating each pass individually, we have determined the fol-
lowing sequence in which we apply all of the passes:

String obfuscation® — Bogus — Opaque constants — Substitution.
The reasoning behind choosing this order of the passes is following:

e The String obfuscation pass injects new functions, which are not
obfuscated, therefore it is reasonable to apply this pass first, so
the subsequent passes can obscure these functions.

e Bogus Control Flow pass creates clones of the basic blocks, which
would be easily identifiable without subsequent obfuscation. The
opaque predicates are hardened and diversified by applying the
substitution pass.

e Expressions for hiding the constants also benefit from being
applied before the substitution pass, same as the opaque predi-
cates.

e Instructions substitution pass has basically the smallest scope
— transforming single instructions. Since it might improve the
resilience and potency of all the other passes, it is applied last.

5. We have used the encoding and decoding functions based on bitwise XOR, since
they have proved to have a higher potency.

45

7. TEsTING AND EvaLuaTION

Table 7.1 shows that a combination of the passes results in signifi-
cantly higher potency. We also present the values of 31 and y; when
the passes have been applied in a reverse order, where it is clearly
visible how the particular ordering of the passes can influence the po-
tency. In this case, the values are significantly lower than the original
sequence.

Due to the randomness of the obfuscation (e.g., randomly selecting
the instruction substitution, randomly generating values for opaque
constants), there is a slight variance in the resulting metrics when
comparing obfuscated codes originating from the same program, af-
ter applying the same transformation in multiple independent runs.
However, the variance was only around 4%, therefore we do not in-
clude the individual results of multiple independent applications of
the transformations in the table.

There is a noticeable pattern among all of the results in Table
7.1. The number of instructions (1) always increases more than Kol-
mogorov complexity (y). This implies that the transformations have
a larger influence on the size of the program, but they do not add
irregularities to the program at the same rate. We suppose that this
ratio can be made more even, if we add more diversity to the transfor-
mations, for example by implementing more substitution candidates
for the instructions, creating arrays of various sizes for the symbolic
memory opaque predicates, or by inserting random sequences of junk
instructions into the cloned blocks in the Bogus Control Flow pass.

46

7. TesTING AND EvaLuaTION

Table 7.1: Changes in software complexity metrics after applying ob-
fuscation. Values show a ratio of metrics of an obfuscated and a non-
obfuscated program.

Program SHA-512 AES QuickSort
Metric M1 \ H2 H1 ‘ H2 M1 ‘ H2

Substitution 137 | 1.07 | 1.09 | 1.04 | 1.23 | 1.03
Substitution x2 225 | 126 | 1.34 | 1.13 | 1.82 | 1.11
Opaque constants 266 | 1.86 | 3.29 | 240 | 3.76 | 1.96

String obfuscation 1 1.05 | 1.04 | 1.01 | 1.02 | 1.19 | 1.12
String obfuscation 2 1.09 | 1.05 | 1.02 | 1.03 | 1.35 | 1.16
Bogus Control Flow 352 | 223 | 428 | 349 | 7.18 | 3.40

Str 2 + Bogus 372 | 235 | 440 | 3.64 | 1064 | 4.44
Str 2 + Bogus + Const | 14.26 | 8.08 | 19.16 | 16.23 | 32.43 | 12.27
All 26.98 | 11.03 | 36.05 | 23.12 | 57.88 | 16.23
Reverse order 810 | 424 | 950 | 7.05 | 2157 | 7.84

7.2 Resilience

Resilience is a metric that reflects the difficulty of creating an automatic
deobfuscator and its time and space requirements for deobfuscating
a program. Since implementing a deobfuscator is a time-consuming
task and the results would be vague and subjective (depending on the
abilities of the reverse engineer creating the deobfuscator), we will
only discuss specifics of the transformation in the context of creating
a hypothetical automatic deobfuscator.

Instructions substitution

We consider Instructions substitution pass to have high resilience,
since there are no fully automated tools that could reliably simplify
MBA expressions. This is mostly due to the fact that there is no clearly
defined scale to measure what expressions are easy or hard to com-
prehend by humans. To implement a deobfuscator, a reverse engineer
would first need to identify all of the rewriting rules used to obfuscate
the binary operations, and then it might be possible to use pattern
matching to restore the original instructions. Security of MBA expres-
sions against reverse engineering is further discussed in [7], where

47

7. TEsTING AND EvaLuaTION

the authors experimented with analytical math tools (Mathematica
and Maple) in order to prove their assumption that MBA expressions
can not be automatically simplified.

Opaque constants

Opaque constants are created using the MBA expressions as well,
therefore this transformation has a similar degree of resilience as
Instructions substitution. However, in our implementation, we have
used just a single MBA identity combined with linear functions, so
this pattern might be identified easily, especially when used without
any subsequent obfuscation. The resilience (as well as potency) of
this transformation could be increased by implementing more MBA
identities and using a variety of linear and polynomial functions to
construct the expressions.

String obfuscation

String obfuscation might be easily identifiable, since the calls for de-
coding the strings at runtime are injected into the main() function.
Therefore we consider the resilience of this transformation to be weak.
However, the resilience may also vary depending on the decode func-
tion used. Since the strings do not appear in the obfuscated binary,
this transformation is still resilient against simple tools that perform
static analysis, or automated tools running in an environment where
they do not have permission to execute binaries.

Bogus Control Flow

In Bogus Control Flow pass, we have focused on creating resilient
opaque predicates. To construct arithmetic opaque predicates, we use
either the function input values or create global variables. In the case of
global variables, the opaque predicate might be easily identifiable and
removed during static analysis. We have also tested the resilience of
the symbolic memory opaque predicates with an angr script (Listing
7.2) on a simple crackme program, which takes a string argument
from the standard input, compares it with a hard-coded string, and
outputs the result. Surprisingly, angr was able to find the solution

48

10

11

12

13

14

7. TesTING AND EvaLuaTION

within seconds, despite the obfuscation. However, detecting opaque
predicates and removing bogus basic blocks might still be a challenge
for a deobfuscator based on symbolic execution, as the authors of [9]
argue. Generally, we consider this transformation to be relatively weak
in resilience.

def solve(elf_binary):
project = angr.Project(elf_binary)
arg = claripy.BVS('arg',b8%4)
initial_state = project.factory.entry_state(args=[elf_binary,arg])
simulation = project.factory.simgr(initial_state)
simulation.explore(find=is_successful)
if len(simulation.found) > O:

print(simulation.found[0] .solver.eval(arg,cast_to=bytes))

def is_successful(state):
output = state.posix.dumps(sys.stdout.fileno())
if b'Correct' in output:
return True

return False

Listing 5: A snippet of the angr script used to solve a simple crackme.
The script has been adapted from [32].

7.3 Cost

Program obfuscation always requires a compromise between the qual-
ity, or strength of the transformations, and its impact on the program
performance. In this section, we are going to use the test programs
to evaluate how much our transformations impact their computation
time by using the Bash time® built-in utility. Particularly, we are going
to measure the total number of CPU seconds that the process spent in
user mode.

6. https://man7.org/linux/man-pages/manl/time.1.html

49

https://man7.org/linux/man-pages/man1/time.1.html

7. TEsTING AND EvaLuaTION

For SHA-512 and AES test programs, we have generated random
input bytes with openssl rand. In each iteration, we have stored the
input as a file and passed it to the test program. From figures 7.1 and
7.2, it is visible that the computation time increases with the size of the
input. The graphs also show a relation between the performance over-
head and potency of the obfuscation — applying all transformations
in the order defined in Section 7.1.2 resulted in the slowest computa-
tion time, while obfuscating strings and substituting instructions with
MBA expressions had the smallest performance impact.

While testing the QuickSort program, we have discovered that
obfuscating this program with the Bogus Control Flow pass and exe-
cuting it on an array containing more than 12370 elements results in a
stack overflow. After applying all of the transformations, the program
could not handle more than 5550 elements in the array. For this reason,
we have excluded the Bogus Control Flow pass from Figure 7.3.

We believe that this issue is caused by the creation of symbolic
memory opaque predicates, which involves allocating two arrays on
the stack for each predicate, combined with the recursive nature of the
QuickSort algorithm. A possible fix for this issue would be to utilize
the LLVM Pass Framework to detect recursive functions in a module
and use this analysis to avoid inserting symbolic memory opaque
predicates into such functions.

We have also noticed that without the Bogus Control Flow pass,
applying the passes in the order String obfuscation — Opaque constants —
Instructions substitution resulted in better performance of the obfus-
cated program, than when this order has been reversed. We have
tested the same combinations of passes (omitting the Bogus Control
Flow pass) and the results were similar — worse performance in case
of the reverse order. However, the metrics y1 and p» have been slightly
higher (~ 15%) for the programs obfuscated with the original order-
ing of the transformations. This leads us to a conclusion that the cost of
a transformation does not always grow proportionally to its potency.

Another important finding from measuring the computation time
is that the performance impact of all tested transformations is constant
in regard to the input size, which can be seen in the Figures 7.1, 7.1
and 7.3.

50

7. TesTING AND EvaLuaTION

Performance of SHA-512

32.0

8.0 .
variable

All
—— All Reverse

Time [s]

%

- Bogus
20 -=— Constants
—— Substitution
Strings
None

05

1x10" 2x10° 3x107 4x10° 5x10° 6x10" 7x10’ 8x10° 9x10° 1x10°
Input size in bytes

Figure 7.1: Performance of a program computing the SHA-512 hash
function. The passes plotted as All and All Reverse have been applied
in the order described in Section 7.1.2.

Performance of AES-CBC encryption

64.00

16.00

variable
All
—— All Reverse
- Bogus
—=- Constants
—— Substitution
Strings
None

Time [s]

0.25

1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10° 8x10° 9x10° 1x10’
Input size in bytes

Figure 7.2: Performance of a program performing AES encryption
with a 128-bit key in CBC mode. The passes plotted as All and All
Reverse have been applied in the order described in Section 7.1.2.

51

7. TEsTING AND EvaLuaTION

Performance of QuickSort

4.00

variable

All
— All Reverse
—- Constants
-= Substitution
—— Strings

None
0.50

0.25

1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10° 8x10° 9x10° 1x10'
Number of array elements
Figure 7.3: Performance of a QuickSort algorithm. The passes plotted
as All and All Reverse have been applied in the order described in

Section 7.1.2, except for Bogus Control Flow pass, which has been
omitted.

52

8 Obfuscation on Android OS

Android applications are usually written in Java, which is not sup-
ported by the LLVM framework. However, developers have an option
to create certain parts of an application using C and C++, for example,
to include high-performance libraries in games and other computa-
tionally intensive applications. It also allows the developers to reuse
various C and C++ libraries or to manage native activities and access
physical device components, such as sensors and touch input. The
native libraries can be packaged into an Android application package
file (APK) using the Gradle build system. The Java code can then call
functions in the native library through the Java Native Interface (JNI)
framework!.

Another advantage of using native libraries on Android is the
possibility of using an obfuscator based on LLVM to obscure critical
components of the application and make it infeasible for potential
attackers to reverse engineer them. For example, Snapchat uses this
approach to secure a binary that generates the X-Snapchat-Client-
Auth-Token, which is used in the authentication process between the
client and the server in each request [33].

To test whether our passes can be used for Android software, we
have created an Android Virtual Device (AVD) with Android 7.1.1
(API version 25), that emulates an ARM Application Binary Interface.

For testing purposes, we have used a modified version of the Quick-
Sort implementation that prints the sorted array. Since Android has
a Linux kernel, we can execute compiled binaries without creating a
full Android application.

Using the default LLVM tools does not produce executable files
compatible with the Android system running on ARM architecture.
However, the Android Native Development Kit (NDK) includes pre-
built versions of LLVM tools like Clang, which are needed to produce
a program that can be executed in the AVD. We have used android-
ndk-r23b, which is the latest version of the Android NDK.

To emit the LLVM bitcode, we have used armv7a-linux-
androideabil6-clang, which can be found after unpacking the NDK
zip at toolchains/1lvm/prebuilt/linux-x86_64/bin/. Using this

1. https://developer.android.com/ndk/guides
53

https://developer.android.com/ndk/guides

8. OBFUSCATION ON ANDROID OS

clang -S -emit-1llvm gs.c -o gsort_arm.ll

clang -S -emit-1lvm gs_main.c -o gs_main_arm.1l

1lvm-link gs_main_arm.ll gsort_arm.ll -o gs_arm_linked.1ll

opt -load 1libObfConstPass.so -obfconst -S gs_arm_linked.ll -o
<~ qs_arm_const.1ll

clang -fPIE -pie gs_arm_const.ll -o gs_link_const

adb push gs_link_const /data/local/tmp

adb root

adb shell chmod +x /data/local/tmp/qs_link_const

adb shell /data/local/tmp/qgs_link_const 10

Listing 6: The sequence of shell commands to obfuscate the QuickSort
program, compile it for ARM, and execute in the AVD.

version of Clang, we can generate the IR bitcode as described in Sec-
tion 3.2. Afterward, we can use an obfuscating pass, which is loaded
and applied using the opt tool from the LLVM framework. Lastly, we
create the resulting binary by using the NDK Clang again. In this step,
we need to run Clang with -fPIE and -pie flags, to ensure that the
resulting program will be a Position-Independent Executable file (PIE).

To test the program in the Android OS environment, we pushed
the binary to the AVD using adb push. When the executable is pushed
to /data/local/tmp and its permissions are set correctly, it can be
executed and we can see the output in adb shell.

If we are compiling multiple source files to create a single exe-
cutable, we use 11vm-1ink, which is also included in the NDK pack-
age.

Following the procedure described above, we have tested the ob-
fuscating passes. All obfuscated versions of QuickSort produced a
sorted array as an output. That proves that this form of obfuscation is
also usable on Android devices. To use the obfuscation with bigger
projects, or to produce native libraries and include them in an APK,
this process can be automated by integrating it with a suitable build
system (e.g. CMake).

54

9 Conclusion

In this work, we have explored obfuscation techniques that can be
used to increase the security of compiled code against reverse engi-
neering and other methods of analysis. Currently, a large amount of
obfuscating transformations exists. We believe that the transforma-
tions described in this thesis are among the most used ones, as they
(or their variants) can be found both in obfuscation tools we have ana-
lyzed, as well as in multiple research papers that deal with obfuscation
or the countermeasures against it.

We conclude that the use of Mixed Boolean-Arithmetic expressions
is relevant and has a big potential for designing obfuscating transfor-
mations. Regarding manipulation of the control flow of a program,
the most important element is the design of resilient opaque predi-
cates. Reverse engineers currently tend to leverage the capabilities of
various tools based on symbolic execution and taint analysis, which
aid them with understanding an obfuscated program. Therefore, the
main focus of the research in the area of obfuscation is shifting towards
countermeasures against such tools.

We have also identified and analyzed three freely available tools
which can be used for obfuscation. Obfuscator-LLVM has only a small
set of capabilities and we reflect that the transformations offered by this
tool are rather weak in potency and resilience. However, it provides a
basis for implementing obfuscators based on the LLVM Framework.
In contrast, Tigress offers various advanced transformations, but a
big disadvantage of this tool is that it is limited only to programs
implemented in C, since it performs the transformations on the source
code level. UPX has the advantage that it works on the machine code
level, but since its main purpose is not obfuscation, its capabilities
are rather limited. Despite this fact, it is a commonly used tool for
obfuscating malware.

Based on the transformations and tools we have examined, we
have designed implemented four obfuscating passes using the LLVM
Framework. For two of the passes, we have used the MBA expressions,
since we believe that they offer a great deal of potency and resilience,
while not affecting the performance of a program in a significant way.
They provide a convenient way to make the program more complex by

55

9. Concrusion

substituting simple instructions and encoding constants, while they
also improve the qualities of other transformations.

For the implementation of the Bogus Control Flow pass, we have
used the source code from Obfuscator-LLVM to manipulate the basic
blocks and branches, but we have replaced the original opaque predi-
cate with two types of more advanced predicates. The implementation
of String obfuscation pass provides an easy way to create and inject
custom encoding and decoding functions into the program, and thus
offers a great potential for various extensions.

We have evaluated the transformations in terms of potency, re-
silience, and cost. The results show that an increase in the size of the
program (in terms of instructions count) does not always increase
its perceived complexity', therefore measures to increase the code
diversity, such as the use of randomness, are crucial. Based on the
results, we also conclude that applying the transformations in a dif-
terent order influences the resulting program in a significant way; i.e.
different ordering of the passes results in different degrees of potency
and performance impact. Since high potency does not always correlate
with high performance overhead, we suggest that the ordering of the
passes should always be based either on experimenting, or specific
heuristics with respect to the nature of the transformations, to achieve
optimal results. The cost of the implemented transformations has been
proved to be constant — the size of the input increases the computation
time of the obfuscated program proportionally to the increase with
the non-obfuscated version.

Lastly, we have successfully tested our implementation on a pro-
gram compiled for Android OS. However, since the transformations
manipulate the program drastically, specific cases when the obfuscated
program fails in this environment on ARM architecture might emerge.
We would like to emphasize that obfuscation on the bitcode level is a
complex process and using any transformations for real-world projects
always requires rigorous testing.

We reckon that there exist multiple commercially available obfus-
cating tools that provide more advanced transformations than the
ones described and implemented in this work. However, we believe
that this thesis can serve as a good starting point, or a reference, for

1. In other words, how it complicates the task of reverse-engineering the program.

56

9. ConcLusion

other researchers, developers, and reverse engineers interested in this
area. Together with the implementation details, it can aid with devel-
oping and experimenting with new obfuscating transformations, and
help to spark innovative ideas.

57

Bibliography

1. Denuvo Runs Into Problems Again, Games Were Unplayable This
Weekend - theGeek.games. 2021. Available also from: https: //
thegeek.games/2021/11/09/denuvo-irdeto-drm/.

2. BARAK, Boaz; GOLDREICH, Oded; IMPAGLIAZZO, Russell;
RUDICH, Steven; SAHAI, Amit; VADHAN, Salil; YANG, Ke. On
the (Im)possibility of Obfuscating Programs. IACR Cryptology
ePrint Archive. 2001, vol. 2001, p. 69. 1sBN 978-3-540-42456-7. Avail-
able from por: 10.1145/2160158.2160159.

3. COLLBERG, C.; THOMBORSON, C.; LOW, Douglas. A Taxon-
omy of Obfuscating Transformations. In: 1997.

4. LATTNER, Chris; ADVE, Vikram. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In: Pro-
ceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04). Palo Alto, California, 2004.

5. COLLBERG, Christian, THOMBORSON, Clark; LOW, Douglas.
Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs.
In: San Diego, California, USA: Association for Computing Ma-
chinery, 1998, pp. 184-196. POPL "98. 1sBNn 0897919793. Available
from por: 10.1145/268946 . 268962.

6. AHO, A.V,;LAM, M. S;; SETHI, R.; ULLMAN, J. D. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
2006.

7. ZHOU, Yongxin; MAIN, Alec; GU, Yuan X.; JOHNSON, Harold.
Information Hiding in Software with Mixed Boolean-Arithmetic
Transforms. In: Jeju Island, Korea: Springer-Verlag, 2007, pp. 61—
75. WISA'07. 1sBN 354077534X.

8. RAMALINGAM, G. The Undecidability of Aliasing. ACM Trans.
Program. Lang. Syst. 1994, vol. 16, no. 5, pp. 1467-1471. 1ssnx 0164-
0925. Available from por: 10.1145/186025. 186041.

59

https://thegeek.games/2021/11/09/denuvo-irdeto-drm/
https://thegeek.games/2021/11/09/denuvo-irdeto-drm/
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/186025.186041

BIBLIOGRAPHY

9. XU, Hui; ZHOU, Yangfan; KANG, Yu; TU, Fengzhi; LYU, Michael.
Manufacturing Resilient Bi-Opaque Predicates Against Symbolic
Execution. In: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 2018, pp. 666—677.
Available from por: 10.1109/DSN.2018.00073.

10. WARREN, Henry S. Hacker’s Delight. 2nd. Addison-Wesley Pro-
fessional, 2012. 1sBN 0321842685.

11. COHEN, Frederick B. Operating System Protection through Pro-
gram Evolution. Comput. Secur. 1993, vol. 12, no. 6, pp. 565-584.
1ssN 0167-4048. Available from por: 10. 1016 /0167 -4048(93)
90054-9.

12. YADEGARI, Babak; JOHANNESMEYER, Brian; WHITELY, Ben;
DEBRAY, Saumya. A Generic Approach to Automatic Deobfus-
cation of Executable Code. In: 2015 IEEE Symposium on Security
and Privacy. 2015, pp. 674-691. Available from por: 10.1109/SP.
2015.47.

13. SALEM, Aleieldin, BANESCU, Sebastian. Metadata Recovery
from Obfuscated Programs Using Machine Learning. In: Pro-
ceedings of the 6th Workshop on Software Security, Protection, and
Reverse Engineering. Los Angeles, California, USA: Association for
Computing Machinery, 2016. SSPREW ’16. 1sBN 9781450348416.
Available from por: 10.1145/3015135.3015136.

14. GUINET, Adrien; EYROLLES, Ninon; VIDEAU, Marion. Arybo:
Manipulation, Canonicalization and Identification of Mixed Boolean-
Arithmetic Symbolic Expressions. In: GreHack 2016. Grenoble,
France, 2016. Proceedings of GreHack 2016. Available also from:
https://hal.archives-ouvertes.fr/hal-01390528.

15. WANG, Chenxi; DAVIDSON, Jack; HILL, Jonathan; KNIGHT,
John. Protection of software-based survivability mechanisms. In:

2001 International Conference on Dependable Systems and Networks.
2001, pp. 193-202.

16. LANDI, William. Undecidability of Static Analysis. 1992, vol. 1,
no. 4, pp. 323-337. 1ssn 1057-4514. Available from por: 10.1145/
161494 .161501.

60

https://doi.org/10.1109/DSN.2018.00073
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1145/3015135.3015136
https://hal.archives-ouvertes.fr/hal-01390528
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501

BIBLIOGRAPHY

17.

18.

19.

20.

21.

22.

23.

24.

25.

CAPPAERT, Jan; PRENEEL, Bart. A general model for hiding
control flow. In: Proceedings of the tenth annual ACM workshop on
Digital rights management. 2010, pp. 35—42.

JOHANSSON, Bjorn; LANTZ, Patrik; LILJENSTAM, Michael.
Lightweight dispatcher constructions for control flow flattening.
In: Proceedings of the 7th Software Security, Protection, and Reverse
Engineering/Software Security and Protection Workshop. 2017, pp. 1-
12.

MOHSEN, Rabih; PINTO, Alexandre Miranda. Evaluating obfus-
cation security: A quantitative approach. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2016, vol. 9482, pp. 174-192. 1sBN
9783319303024. 1ssn 16113349. Available from por: 10.1007/978-
3-319-30303-1_11.

KOLMOGOROV, A N. On tables of random numbers. Theoretical
Computer Science. 1998, vol. 207, pp. 387-395.

GRECH, Neville; GEORGIOU, Kyriakos; PALLISTER, James; KER-
RISON, Steve; MORSE, Jeremy; EDER, Kerstin. Static Analysis of
Energy Consumption for LLVM IR Programs. In: Proceedings of
the 18th International Workshop on Software and Compilers for Embed-
ded Systems. Sankt Goar, Germany: Association for Computing
Machinery, 2015, pp. 12-21. SCOPES "15. 1sBN 9781450335935.
Available from por: 10.1145/2764967 . 2764974.

COOPER, Keith D.; TORCZON, Linda. Engineering a compiler /.
2nd ed. Amsterdam ; Elsevier/Morgan Kaufmann, 2012.

JUNOD, Pascal; RINALDINI, Julien; WEHRLI, Johan; MICHIELIN,
Julie. Obfuscator-LLVM - Software Protection for the Masses. In:
2015 IEEE/ACM 1st International Workshop on Software Protection.
2015, pp. 3-9. Available from por: 10.1109/SPR0.2015. 10.

Swiss startup protects SnapChat. 2017. Available also from: https:
//www.startupticker.ch/en/news/july-2017/swiss-startup-
protects—snapchat.

A Simple UPX Malware Technique. 2020. Available also from: https:
/ / www . mosse - security . com/ 2020 /09 /29 /upx - malware -
evasion-technique.html.

61

https://doi.org/10.1007/978-3-319-30303-1_11
https://doi.org/10.1007/978-3-319-30303-1_11
https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1109/SPRO.2015.10
https://www.startupticker.ch/en/news/july-2017/swiss-startup-protects-snapchat
https://www.startupticker.ch/en/news/july-2017/swiss-startup-protects-snapchat
https://www.startupticker.ch/en/news/july-2017/swiss-startup-protects-snapchat
https://www.mosse-security.com/2020/09/29/upx-malware-evasion-technique.html
https://www.mosse-security.com/2020/09/29/upx-malware-evasion-technique.html
https://www.mosse-security.com/2020/09/29/upx-malware-evasion-technique.html

BIBLIOGRAPHY

26.

27.

28.
29.

30.

31.

32.

33.

62

EYROLLES, Ninon. Obfuscation with Mixed Boolean-Arithmetic
Expressions : reconstruction, analysis and simplification tools. 2017.
PhD thesis.

MING, Jiang; XU, Dongpeng; WANG, Li; WU, Dinghao. LOOP:
Logic-Oriented Opaque Predicate Detection in Obfuscated Bi-
nary Code. [N.d.]. 1sBN 9781450338325. Available from por: 10.
1145/2810103.2813617.

KING, James C. Symbolic Execution and Program Testing. 1976.

GUELTON, Serge; GUINET, Adrien. Building, Testing and De-
bugging a Simple out-of-tree LLVM Pass. 2015. Available also
from:https://1lvm.org/devmtg/2015-10/slides/GueltonGuinet-
BuildingTestingDebuggingASimpleOutOfTreePass.pdf.

MERLINI, Adrien. Turning Regular Code Into Atrocities With LLVM.
2015. Available also from: https : / /blog . quarkslab . com /
turning-regular-code-into-atrocities-with-1lvm.html.

Build your first LLVM Obfuscator. 2020. Available also from: https:
//polarply.medium.com/build-your-first-1lvm-obfuscator-
80d16583392b.

Solving easy CTFs with Angr and Symbolic Execution. [N.d.]. Avail-
able also from: http : / / blog . k3170makan . com / 2019 / 12/
symbolic-execution-0x0-solving-easy.html.

Reverse Engineering Snapchat (Part I): Obfuscation Techniques. [N.d.].
Available also from: https://hot3eed.github.i0/2020/06/18/
snap_pl_obfuscations.html.

https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1145/2810103.2813617
https://llvm.org/devmtg/2015-10/slides/GueltonGuinet-BuildingTestingDebuggingASimpleOutOfTreePass.pdf
https://llvm.org/devmtg/2015-10/slides/GueltonGuinet-BuildingTestingDebuggingASimpleOutOfTreePass.pdf
https://blog.quarkslab.com/turning-regular-code-into-atrocities-with-llvm.html
https://blog.quarkslab.com/turning-regular-code-into-atrocities-with-llvm.html
https://polarply.medium.com/build-your-first-llvm-obfuscator-80d16583392b
https://polarply.medium.com/build-your-first-llvm-obfuscator-80d16583392b
https://polarply.medium.com/build-your-first-llvm-obfuscator-80d16583392b
http://blog.k3170makan.com/2019/12/symbolic-execution-0x0-solving-easy.html
http://blog.k3170makan.com/2019/12/symbolic-execution-0x0-solving-easy.html
https://hot3eed.github.io/2020/06/18/snap_p1_obfuscations.html
https://hot3eed.github.io/2020/06/18/snap_p1_obfuscations.html

A Building and running the passes

Building and testing have been done using LLVM 9. The pass for
obfuscating constants (11vm-pass-obfconst) requires the C++ boost
library.

To build the out-of-tree obfuscating passes, simply execute the
following shell commands from the root directory:

mkdir build
cd build
cmake ..

make

Each pass will be compiled into a sub-directory of /build. To
obfuscate a program, first generate a bitcode module, either in .11 or
.bc format:

clang -S -emit-1lvm <path to program source>

Then, each of the passes can be dynamically loaded with opt and
used to obfuscate the program:

opt -load /build/llvm-pass-<pass-name>/<compiled pass> -<pass flag>
< —S <path to bitcode file> -o <output bitcode file>

For example, to apply Instructions substitution (MBA) pass, exe-
cute the following:

opt -load /build/llvm-pass-mba/libMbaPass.so -mba -S foo.ll -o
— foo_obfuscated.1ll

Afterwards, use clang (or clang++) to obtain the obfuscated bi-
nary.

63

A. BUILDING AND RUNNING THE PASSES

clang foo_obfuscated.ll -o foo_obfuscated

If the project you want to obfuscate contains multiple source files,
you can either obfuscate the bitcode files separately and link them

with 11vm-1ink, or link them first and obfuscate the resulting bitcode
file.
Following flags must be used to apply corresponding passes:

e MBA (Substitution): -mba

e Bogus Control Flow: -bogus

e Constant obfuscation: -obfconst
e String obfuscation: -obfstring

To use the String obfuscation pass, a codec.bc file needs to be
present in the directory from which the opt tool is being executed. It
can be generated by executing:

clang -c -emit-1lvm <path to codec source> -o codec.bc

Two example implementations of codec are included in the 11vm-
pass-obfstring directory. The source code needs to contain functions
named encode and decode and they need to have a single argument
of type unsigned char *.

64

	Introduction
	Obfuscation
	Obfuscating Transformations
	Opaque predicates
	Instructions Substitution
	Garbage Code Insertion
	Dead code insertion
	Mixed Boolean-Arithmetic
	Control Flow Flattening

	Evaluating Obfuscating Transformations

	LLVM
	LLVM Compiler Architecture
	LLVM Intermediate Representation

	Existing tools
	Obfuscator-LLVM
	Tigress
	UPX (Ultimate Packer for eXecutables)

	Design
	Instructions substitution
	Rewrite rules

	Opaque constants
	String obfuscation
	Encoding and decoding functions

	Bogus Control Flow
	Arithmetic opaque predicates
	Symbolic memory opaque predicates

	Implementation
	Instructions substitution
	Opaque constants
	String obfuscation
	Bogus Control Flow
	Limitations and possible extensions

	Testing and Evaluation
	Potency
	The potency of individual passes
	Combining the passes

	Resilience
	Cost

	Obfuscation on Android OS
	Conclusion
	Bibliography
	Building and running the passes

