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Abstract

This thesis deals with network traffic monitoring. We provide an overview of
existing network traffic monitoring approaches. Notable software implemen-
tations of said approaches are described. The network traffic monitor best
matching specified criteria is chosen. A network traffic analysis method is
implemented for the chosen network traffic monitor. The analysis method is
used to show the differing behavior of two distinct network traffic monitor-
ing approaches (deep packet inspection and flow monitoring). Properties of
the chosen network traffic monitor, along with performance measurements,
are discussed.
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Chapter 1

Introduction

Two principal methods of network traffic monitoring exist — flow-based
monitoring and deep packet inspection. The Institute of Computer Science
of Masaryk University (ICS MU) has long history of using flow-based moni-
toring. This thesis aims to give an overview of deep packet inspection with
the goal to extend traffic analysis capabilities at ICS MU. Hence, this work
is intended for readers familiar with flow-based monitoring, keen to learn
about deep packet inspection.

This thesis focuses on the Bro Network Security Monitor and is divided
in the following chapters.

We present two major approaches to network traffic monitoring in Chap-
ter 2. Varying differentiations of the approaches are explained.

Chapter 3 describes deep packet inspection (DPI) and analyzes its parts.
There are multiple approaches to DPI and we show differences between
them. The last section of the chapter discusses selection of the most suitable
DPI implementation. We chose Bro as the most promising instance of DPI.

Chapter 4 introduces a network topology mapping method. The method
is used to show properties of DPI in practice, as well as to compare properties
of two versions of the method — one with DPI and one that is flow-compliant.
Thus, the principles described theoretically in chapters two and three are
implemented and evaluated. Various aspects of the method show the impor-
tance of selected capabilities in network traffic monitoring tools. DPI and
extensibility are the two most important ones. Performance measurements
show how Bro compares with a flow-based network traffic monitor. The
chapter closes with summary of the most important findings.

The final, fifth, chapter presents conclusions about deep packet inspection
and the Bro Network Security Monitor.
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Chapter 2

Network Monitoring Approaches

Network monitoring can be either active or passive. Passive network moni-
toring reads data from the line, without affecting the traffic. Active network
monitoring adds option to modify the data on the line [1]. This thesis deals
with passive network monitoring.

Passive network monitoring exists in several forms. Simple monitoring
may be easy for manual assessment as the amount of data monitored and
produced is small. However, faults and attackers can slip through unde-
tected. Monitoring of all sorts of details about the network and its traffic
bears a similar hurdle — information about faults and attackers are gathered,
but there is so much information that it gets lost in the sea. Also, the more
data captured, the more technologically demanding it is to save and handle
the data. Therefore, various ways of doing network monitoring compete
with each other, as each has different tradeoffs, being targeted for different
purposes, environments, and users.

This chapter looks at existing approaches to network traffic monitoring,
their architecture, and properties.

traffic    captured data    results   packet capture analysis

Figure 2.1: General architecture of network monitoring.

The process of network monitoring consists of two major steps — traffic
duplication and traffic analysis. Section 2.1 describes traffic duplication.
Section 2.2 describes various approaches to the analysis.

2.1 Traffic Duplication

All types of network traffic monitoring have one common property — the
traffic from the line is duplicated so that the copy can be analyzed. The
duplication can take place in one of two modes — inline or mirroring [2]. A
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2. NETWORK MONITORING APPROACHES

traffic duplication device in inline mode is placed in link. In mirroring mode,
the duplication facility is already a built-in feature of a router or switch.

There are several ways of traffic mirroring; port mirroring, TAP and a
TAP-like setup using bypass NICs. The following subsections describe each
way.

2.1.1 Port Mirroring

Port mirroring is a functionality usually available in enterprise-oriented
network switches and routers [3]. The traffic passing through selected ports
of the switch or router is mirrored to another selected port. The port used
for output of the duplicated traffic is usually called mirror port or SPAN
port (Switched Port ANalyzer).

monitoring devicerouter

Figure 2.2: Principle of port mirroring. Both directions of the monitored
link are transmitted in one direction over the mirror port.

There are two downsides of mirror ports. First, if the sum throughput
of the traffic is larger than the mirror port can transmit, the mirror port
becomes congested and drops packets. A full-duplex traffic is transmitted
in one direction over the mirror port. That is up to twice the bandwidth of
a single port for two ports serviced by the switch, and even more if more
than two ports are serviced [4]. Second, most switches do not have enough
computational power to handle both switching and mirroring. The switch’s
primary function is prioritized and the mirroring may not work properly
during periods of peak traffic.

2.1.2 Test Access Port

Test Access Port (TAP) is a packet capture device positioned in inline mode
since the observed line is split. A TAP device is connected between the split
parts of the line and the traffic is duplicated. Single TAPs duplicate the traffic
to a single output, consisting of two physical ports for both downlink and

3



2. NETWORK MONITORING APPROACHES

uplink of the full-duplex link. Regeneration TAPs duplicate the traffic into
multiple outputs. Aggregation TAPs merge both channels into one output
port. There are three types of TAPs — copper, fiber, and virtual.

router

monitoring device

router

Figure 2.3: Traffic mirroring using Test Access Port. Both directions of the
monitored link are transmitted separately.

Passive copper TAPs connect directly to the line. Since passive TAPs
are not powered, a power outage cannot introduce a fault on the line. A
disadvantage to passive copper TAPs is that only 10-Mbps and 100-Mbps
connections are possible to tap this way. The passive connection distorts the
signal in such a way that it’s not possible to tap a gigabit Ethernet passively
[5]. A patent by NetOptic presents a method that uses an active gigabit
TAP equipped with capacitors to maintain the connection while the built-in
bypass relays are switching [6].

Active copper TAPs function in a way resembling the approach in the
preceding subsection. The signal going through the TAP is actively retrans-
mitted and duplicated and no signal distortions are introduced, short of
the negligible delay caused by the electronic circuitry. Downside of this
approach is that power failure of the TAP causes a failover relay to switch,
introducing a several hundred microseconds long delay [7].

Passive optical TAPs divert a percentage of the original signal to the
mirrored output. The fact that no power failure of the TAP can occur is
an advantage. A disadvantage lies in the fact that the signal in the line is
weakened by the TAP [8].

Regeneration optical TAPs divert a very small fraction of the original
signal to the mirrored output and amplify it to the full strength. A power
failure just disables the mirrored output and introduces no faults on the line.

4



2. NETWORK MONITORING APPROACHES

2.1.3 TAP-like Setup Using a Bypass NIC

Setup using a network interface card (NIC) integrates traffic mirroring with
traffic analysis. The observed line is split. Both ends in the split are connected
to two NIC interfaces. The NIC is installed in a computer. The interfaces
are configured in software as a network bridge. Acting as a bridge allows
the split line to still function properly. Having the traffic pass through the
computer allows traffic observation. This setup is positioned in inline mode,
similarly to a TAP.

software

router

router

NIC interface 1

NIC interface 2

Figure 2.4: Inline mirroring using two interfaces of a NIC.

Mirroring using NIC is possible using consumer-grade NICs. This intro-
duces a point of failure. Once the software or hardware fails, the line is not
connected anymore.

Specialized, so-called bypass NICs exist. Bypass NICs have the ability to
bypass the two network interfaces whenever a failure occurs; e.g., a software
crash or power loss [9].

router

router

NIC interface 1

NIC interface 2

softwarebypass

Figure 2.5: Bypass NIC in bypass mode bridges the connection in hardware
so as not to break the connection.
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2. NETWORK MONITORING APPROACHES

A disadvantage is that the computer is locked in the particular location
and cannot be moved without interrupting the connection.

2.2 Packet Capture

Packet capture has three meanings in no particular order. First, it is an
interactive approach to network monitoring. Second, packet capture is a
packet trace file. Third, it is the act of capturing packets from network link.
The capture can be saved to a file or read directly by a network traffic
analyzer in real time. Methods relying on packet capture as a source of
packets for analysis are described in section 2.3 and section 2.4. The terms
packet capture, capture, and packet trace are used interchangeably with the
three aforementioned meanings; the particular meaning being clear from
context [10].

2.2.1 Packet Capture as a Packet Duplication Method

Network traffic is captured from an observation point. It is not necessary that
the capture is temporally and spatially dependent on subsequent analysis
since the captured data can be saved to a file. This can be a temporary file as
a part of the whole network monitoring process or it can be saved to a file
for later use explicitly. The captured data is the same as it was on the line.

The process of making a packet capture can be both manual and auto-
matic [11].

2.2.2 Packet Capture as a Network Monitoring Approach

The packet capture network monitoring approach consists of two basic steps;
first, creating the packet capture file, and second, performing network traffic
analysis on the captured file.

NIC PCAP
GUI

CLI
user

Figure 2.6: The packet capture approach to network monitoring is interac-
tive rather than automated.

Packet capture as a network monitoring approach can be both manual
and automated. The automated approach is used for malware behavior

6



2. NETWORK MONITORING APPROACHES

recording and analysis [11]. Additional manual analysis of selected packet
captures from such an automated system may also be possible [12]. The
fully-manual approach is presented in the following paragraphs.

The Layer 3 of the OSI model is usually used so that the traffic is seen as
a series of IP packets. The captured traffic in this representation can then be
viewed, searched in, or filtered [13]. It is also possible to filter the packets
before capturing the packet trace [14].

Both graphical user interface (GUI) and command line interface (CLI) are
used. In some setups, automation through scripting of the actions is possible.
This is merely intended as a help for the human user and not designed to
implement a complicated automated system. An intrusion detection system
(IDS) may be considered to be a complicated automated system. In the
context of packet capture analysis, even an IDS-like scripted functionality is
still intended for individual interactive analysis [15].

The accessibility of full network data for free viewing and searching
is unsurpassed among all the architectural approaches mentioned in this
chapter. The interactivity and access to any part of the traffic data can be
an immense advantage. The user can search for highly specific artifacts
without having to program anything and without being constrained by
more automated software. It is useful for dealing with new traffic patterns
— such as new malware or unknown communication protocols [12]. The
interactivity is, however, a disadvantage when the pattern is already known,
and the work is repetitive and automatable. The approach doesn’t scale and
it becomes burdensome to search through large amounts of data.

PCAP [16] is a commonly used file format for storage of the captured
traffic. Tshark [17] and tcpdump [18] are examples of software operated
through CLI. Wireshark [19] is an example of software with GUI. Wireshark’s
architecture is shown on Figure 2.7.

NIC PCAP

wireshark
(GUI)

tshark
(CLI)

userdumpcap 

Figure 2.7: Wireshark is a GUI application, while tshark is a CLI application.
Both use the same underlying dumpcap tool.
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2. NETWORK MONITORING APPROACHES

2.3 Deep Packet Inspection

Automation is a characteristic feature of deep packet inspection (DPI), espe-
cially in comparison to manual packet capture and analysis described in the
previous section.

Deep packet inspection is a technique of seeing the payload of IP packets.
It is, however, also used to denote those architectural approaches to network
traffic monitoring that use DPI in an automated fashion; DPI is incorporated
into inherently automated systems.

Traffic capture and further analysis can be either separate processes in
both time and space or they can be integrated in one process pipeline, as
shown on Figure 2.8. The packet capture approach can serve as a source of a
PCAP file for further DPI-based analysis [20].

NIC

PCAP

logsDPI engine

Figure 2.8: DPI-based approaches analyze network traffic directly and
usually can also analyze a PCAP file in the same way.

There are two major types of DPI-based analysis — pattern matching and
event-based analysis. Both are used in various IDS/IPS (Intrusion Detection
Systems / Intrusion Prevention Systems).

2.3.1 Pattern Matching

Pattern matching is a DPI method that involves searching through full
network data for known sequences of bytes or for regular expression matches
[21]. The principle of operation is shown on Figure 2.9. The search can be
limited to specific parts of packets or to specific packets.

The relative simplicity is an advantage of this approach, which is why it
is a popular type of DPI. Describing the sought data by sequences of bytes
or by regular expressions is often straightforward.

This strength, however, becomes a problem when we want to search for
patterns that are not possible or feasible to describe using regular expres-
sions. If the data has to be decoded before further pattern matching and the
decoding functionality is not already built in the network security monitor,

8



2. NETWORK MONITORING APPROACHES

it is usually impossible to craft a regular expression that also does the de-
coding. Compression may serve as an example of such decoding necessary
before the pattern matching.

Complicated decision logic is also infeasible to do using just regular
expressions. Example task; alert on expired SSL certificates on HTTPS con-
nections coming from a specified list of IP addresses and from nowhere else.
Translating detection of SSL certificate data to regular expressions might be
impossible. The check whether a specific certificate belongs to a list might
result in a complicated regular expression. Even if the first problem is amelio-
rated by an SSL decoder, the second one still stands. One step further, if the
list of cues is dynamically changing at runtime, conversion of the algorithm
to a regular expression becomes impossible at all — an example for that
might be a threshold-based detection, e.g., alerting on hosts receiving more
than 10 DNS errors per hour.

Today’s network traffic monitors employing the pattern matching DPI
method usually decode the most used protocols [22].

NIC

PCAP

Packet
decoder

Pattern
matching

logs

Figure 2.9: Packets are first decoded into representations that can be
matched.

The pattern matching approach is slow, compared to the flow observation
approach in the section 2.4. A concrete pattern matching implementation
for 10 Gbps requires hardware acceleration using FPGA [23, p. 115–116].
In contrast, a concrete flow observation implementation with no hardware
acceleration handles 40 Gbps [24]. Compared to the event-based approach in
the next subsection, the pattern matching approach is also rather simplistic.

There are numerous algorithms for pattern matching. Pattern matching
algorithms in the context of network monitoring are described by J. Kelly [25].
Besides algorithms, there are software packages for pattern matching, ready
to be built into other software — Flex and MultiFast for instance. Use of
Flex and MultiFast in the context of network traffic analysis is researched by
T. Šíma [26].

Snort [27] and Suricata [28] are software implementations of pattern
matching DPI. ngrep [29] is a command line utility for pattern matching in
captured packet traces.

9



2. NETWORK MONITORING APPROACHES

2.3.2 Event-based Analysis

The previous subsection describes cases where pattern matching is clearly
an insufficient technique. Its inability to perform decoding or multiple steps
of decision making is addressed in the architectural approach of event-based
analysis.

In the approach of DPI with event-based analysis, packets are processed
into events that are in turn processed by scripts [30]. Scripts may implement
complex processing algorithms and add new DPI-related functionality.

NIC
Packet

decoder
Event

generator

logs
Scripting

enginePCAP

Figure 2.10: DPI with event-based analysis.

Such an architectural approach replaces the pattern matching part with
algorithms implemented as a computer program. The algorithms can be both
stateful and stateless. Stateless algorithms are just an immediate reaction or
chain of reactions to specific events. Stateful algorithms can use program
variables to remember state between event occurrences.

Bro Network Security Monitor [31] is a network monitor with such an
architecture.

2.4 Flow Observation

An approach differing from the ones described in preceding sections is
flow observation. The contents of the packets are not analyzed beyond
information from packet headers. These information are aggregated into
flows. RFC 7011 [32] provides the following definition of a flow: "A Flow is
defined as a set of packets or frames passing an Observation Point in the
network during a certain time interval. All packets belonging to a particular
Flow have a set of common properties."

The following five-tuple is used as the common property distinguishing
flows from each other: source IP address, destination IP address, source IP
port, destination IP port, Layer 4 protocol.

In the architectural approach of flow observation, the network traffic
monitor stores information about the observed flows — like the identifying

10



2. NETWORK MONITORING APPROACHES

5-tuple, number of transmitted bytes and packets and L4 protocol flags —
but it does not analyze nor store the payload.

Because the data itself is not handled, flow observation has several ad-
vantages. Since the payload is not analyzed, flow observation is faster than
the other approaches on the same hardware. Also, not storing the payload
results in considerably less data stored than in the case of packet capture
mentioned in section 2.2. Not processing the payload also makes it less of
a privacy concern, compared to packet capture or DPI. Flow data may be
used to comply with data retention laws [33].

Figure 2.11 shows the flow observation architecture. Upon observation,
packets are sent to a metering process. The metering process identifies flows
and counts their statistics. From this point on, the original packets are not
processed. The metering process sends the information about flows to an
export process after a certain period of time. The metering and export pro-
cesses usually reside together on a network probe. The export process sends
the finalized flow information to a collector for storage and subsequent
processing.

Observation

Metering

Export

Collector

Analysis

flows

flows

stored flows

packets

Figure 2.11: Flow observation architecture.

There are two notable formats for the transmission of flow information
— NetFlow [34] developed by CISCO and IPFIX [35] developed by IETF.
Some of the existing software flow exporters are nProbe [36] softflowd [37],
YAF [38], and FlowMon [39]; selected flow collectors are nProbe [36], nf-
dump [40], flowd [41], IPFIXcol [42], and SiLK [43].
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Chapter 3

Network Security Monitoring Implementations

The previous chapter serves as an overview of network monitoring ap-
proaches. This chapter presents concrete software implementations of the
aforementioned approaches.

The section 3.1 presents representative software implementations of the
packet capture approach. The section 3.2 presents implementations of the
deep packet inspection approach. The section 3.3 lists flow-based software
implementations.

The section 3.4 chooses Bro for evaluation. Bro is a network security
monitor utilizing deep packet inspection. The choice was made with respect
to the circumstances mentioned in the chapter 1. The evaluation of Bro is
described in the chapter 4.

3.1 Packet Capture Representatives

3.1.1 Tcpdump

Tcpdump is a command line tool for packet capture analysis. Tcpdump can
analyze both live traffic using the libpcap library and captured packet traces
in PCAP format. Packets may be filtered both before and after the capture.
Filtering before the capture can be done using BPF (Berkeley Packet Filter).
Filtering after capture can be achieved using tcpdump’s filters, described
later in this section.

Data are printed out in text format. The output displays individual
packets with information that include source and destination addresses, L4
protocol used, and L4 protocol flags. Figure 3.1 show output listing two
packets.

Packets to be displayed can be filtered using expressions. Filters can be
imposed on source and destination addresses, ports, L3 and L4 protocols,
and L4 protocol flags. Addresses can be expressed in format of individ-
ual addresses or in CIDR notation. Multiple rules in the expression can be
composed using boolean operators. The example on Figure 3.1 uses three

12



3. NETWORK SECURITY MONITORING IMPLEMENTATIONS

filters. src host 10.0.2.15 selects only packets originating in the IP ad-
dress 10.0.2.15. dst port 22 selects only packets destined for the port 22.
Finally, tcp[13] = 2 selects packets in which the decimal value of the 14th
byte is 2. The filters are composed using the and word, which means only
packets that meet all the criteria pass through the filter.

$ tcpdump -r pcap -n \
"src host 10.0.2.15 and dst port 22 and tcp[13] = 2"

reading from file pcapfile, link-type EN10MB (Ethernet)
20:20:40.512613 IP 10.0.2.15.54346 > 192.168.1.42.22: Flags [S],
seq 3123841387, win 29200, options [mss 1460,sackOK,TS val 509640
ecr 0,nop,wscale 7], length 0

20:20:41.356843 IP 10.0.2.15.45749 > 192.168.1.41.22: Flags [S],
seq 1764864395, win 29200, options [mss 1460,sackOK,TS val 509851
ecr 0,nop,wscale 7], length 0

Figure 3.1: Example of a tcpdump filter and tcpdump’s output.

Tcpdump needs root privileges to open the network interface. Operation
without full root is possible using SUID or Linux capabilities. Granting the
tcpdump executable cap_net_raw and cap_net_admin capabilities allows
tcpdump to be run as a regular user.

3.1.2 Wireshark

Wireshark is a graphical tool for packet capture analysis. While Wireshark
and tcpdump are implementations of the same architectural approach, their
underlying ideas differ. Tcpdump is as close to the raw data as possible,
while Wireshark strives to provide higher-level representation of the same
data.

Wireshark can analyze both live traffic using the libpcap library and
captured packet traces in PCAP format. Captured packets can be filtered
both during and after the capture. Filtering after capture can be achieved
using filter expressions. Filtering during capture can be done using BPF.

Data are displayed as text arranged in a scrollable colored list and ex-
pandable boxes. Wireshark’s main window has two frames. The upper frame
displays list of captured packets with their basic attributes displayed. A line
may be colored, based on the protocol the individual packet belongs to.
When the user selects packet in the upper frame, this particular packet is
displayed in the lower frame. The lower frame’s representation includes

13



3. NETWORK SECURITY MONITORING IMPLEMENTATIONS

several boxes that can be expanded and collapsed. The boxes contain various
attributes of the packet as well as representations of the packet’s data in ISO
OSI layers’ data the packet is part of. Also, related data from other packets
may be displayed there — HTTP TCP stream for instance.

Packets displayed in the upper frame can be filtered using expressions
entered in the text box on the top of the window. The expression vocabulary
is richer that the one of tcpdump.

NIC PCAP

wireshark
(GUI)

tshark
(CLI)

userdumpcap 

root user

Figure 3.2: Wireshark architecture showing privilege separation.

Wireshark uses a separate program to capture the traffic — dumpcap.
The reason is to allow separation of privileges [44]. Wireshark can be run
as a regular user and only dumpcap has to be given special permissions.
Dumpcap needs root privileges to open the network interface. Operation
without the user having root access is possible using either SUID or Linux
capabilities. Granting the dumpcap executable cap_net_raw and cap_net_

admin capabilities allows dumpcap to be run as a regular user without SUID.

3.2 Deep Packet Inspection Representatives

3.2.1 Snort

Snort is an intrusion detection system performing deep packet inspection
using pattern matching.

The pattern matching is implemented in the form of rules [45]. Rules
are structured text files describing network traffic data of interest. Typically,
rules are used to generate alerts when a security-related incident occurs, such
as malware activity, attack, or breach of security policies. A rule contains
information specifying when the rule should be triggered. An important
part of these information is one or more patterns that are searched in the
network traffic. The pattern can be a sequence of characters or bytes or a
regular expression.
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rule header alert tcp any any -> 192.168.1.0/24 111 \
rule options (content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.3: Snort rule structure — the rule header and rule options [46].

Snort rules have a specific structure. The beginning of the rule before the
parentheses describes which network flows the rule refers to. This is called
the rule header. The rule header specifies the action the rule should perform
(alert for instance), L3 protocol and source/destination IP addresses and
ports on which to match. Variables may be used in place of IP addresses. The
rest of the rule inside the parentheses is called the rule options. Figure 3.3
shows the rule structure. Rule options specify content on which the rule
matches and other properties of the rule — its name, classification type, etc.
The most important part of the rule is the content keyword that specifies
a pattern to be found in the packet’s payload. The content keyword’s
function can be further changed using modifiers. For instance, modifiers
offset, distance, depth, and within control in which areas of the packet
the rules are matched [47]. Figure 3.4 shows these keywords used in a rule.
Text or binary strings are used in the content patterns. The pcre keyword
allows the use of regular expressions. Figure 3.5 features a rule that uses a
regular expression.

alert tcp $EXTERNAL_NET 5050 -> $HOME_NET any \
(msg:"POLICY-SOCIAL Yahoo IM successful chat join"; \
flow:to_client,established; \
content:"YMSG"; depth:4; nocase; \ first 4 bytes
content:"|00 98|"; depth:2; offset:10; \ 11th and 12th byte
\ The patterns must be at the specified place of the payload for a successful match.
\
metadata:ruleset community; classtype:policy-violation; \
sid:2458; rev:9;)

Figure 3.4: Example of a rule using the depth and offset keywords [48].

Snort has three special keywords, byte_test, byte_jump, and byte_

extract, that allow to adjust the pattern matching based on data in an
individual packet [49]. The first two keywords behave as patterns that match
when their conditions are true. byte_test performs arithmetic (<, ≤, =, >,
≥) and bitwise (AND, OR) comparisons on sequences of bytes. An example
is shown on Figure 3.6. byte_jump puts a space before the next pattern with
size inferred from payload’s byte value. If the jump is possible, byte_jump
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also behaves as a match. This behavior can be used to match packets with a
specific length based on specific data in the payload. byte_extract converts
specified bytes into a numerical variable that can be used later in the rule.
These keywords do not allow more complicated decoding or processing, as
mentioned in the section 2.3.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
(msg:"MALWARE-CNC Win.Trojan.CryptoLocker variant connection"; \
flow:to_server,established; \
content:"/crypt_1_sell"; fast_pattern:only; http_uri; \
\ simple pattern allowing fast packet preselection
\
pcre:"/\/crypt_1_sell\d\d-\d\d.exe$/Ui"; \
\ perl-compatible regular expression confirming or rejecting the match
\
metadata:impact_flag red, policy balanced-ips drop, \
policy security-ips drop, ruleset community, service http; \

reference:url,www.virustotal.com/en/file/d4b16269c9849c33a7bb\
2fdc782173a00e99db12a585689618dde3f4c6fcb101/analysis; \

classtype:trojan-activity; sid:28044; rev:3;)

Figure 3.5: Example of a rule using the pcre keyword [48].

alert tcp $EXTERNAL_NET $FILE_DATA_PORTS -> $HOME_NET any
(msg:"BROWSER-IE Microsoft Internet Explorer bitmap\
BitmapOffset integer overflow attempt";\
flow:to_client,established; flowbits:isset,file.bmp;\
file_data; content:"BM";\
byte_test:4,>,2147480000,8,relative,little;\
metadata:ruleset community, service ftp-data, service http,\
service imap, service pop3; reference:bugtraq,9663;\
reference:cve,2004-0566; reference:url,technet.microsoft.com\
/en-us/security/bulletin/ms04-025; classtype:attempted-user;\
sid:2671; rev:18;)

Figure 3.6: Example of a rule using the byte_test keyword in a check for
a buffer overflow [48].

There are multiple attack classifications defined in Snort and rules can be
assigned to them using the classtype keyword. Categorizing attacks helps
to organize the event data produced by Snort. Figure 3.7 shows several rules
with various classification.
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alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any \
(msg:"BROWSER-OTHER Mozilla Netscape XMLHttpRequest \
local file read attempt"; flow:to_client,established; \
file_data; content:"new XMLHttpRequest|28|"; \
content:"file|3A|//"; nocase; metadata:ruleset community, \
service http; reference:bugtraq,4628; \
reference:cve,2002-0354; \
classtype:web-application-attack; sid:1735; rev:13;)

alert tcp $EXTERNAL_NET 5050 -> $HOME_NET any \
(msg:"POLICY-SOCIAL Yahoo IM successful chat join"; \
flow:to_client,established; content:"YMSG"; depth:4; \
nocase; content:"|00 98|"; depth:2; offset:10; \
metadata:ruleset community; \
classtype:policy-violation; sid:2458; rev:9;)

Figure 3.7: Example of various classification types in Snort [48].

The Snort’s architecture allows the implementation of so-called prepro-
cessors [50]. Preprocessors read the packet before rule evaluation, serially in
the order specified by Snort’s configuration. This allows implementation of
additional rule keywords. Moreover, preprocessors allow implementation
of functionality more complicated than just pattern matching, such as data
decoding and anomaly detection. For instance, the Normalizer preprocessor
converts equivalent values to a unified format with the goal of making IDS
evasion harder. Snort’s architecture including the preprocessors is depicted
on Figure 3.8.

There are several preprocessors for anomaly detection available. Frag3
and stream5 preprocessors are integrated in the official Snort distribution
and detect protocol anomalies. SPADE [51], PHAD [52], and snortad [53] are
3rd party preprocessors detecting traffic anomalies.

Frag3 detects anomalies in IP packet fragmentation. Different operat-
ing systems implement IP packet defragmentation in different ways. An
attacker can try to evade the IDS by exploiting the inconsistency between IP
packet defragmentation implementations of the IDS and the attacked system.
Frag3 is aware of the varying implementations and applies the appropri-
ate defragmentation algorithm for the particular destination. This is called
target-based analysis.

Stream5 is quite similar to frag3 in its use of target-based analysis. Differ-
ent operating systems have differing implementations of TCP, e.g., whether
to allow data in SYN TCP packets or how overlapping TCP segments are
handled. Stream5 also provides TCP stream reassembly for use by other
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Snort’s components.
SPADE (Statistical Packet Anomaly Detection Engine) used to be a Snort

preprocessor for anomaly detection. SPADE was funded by DARPA (Defense
Advanced Research Projects Agency) and disappeared from the Internet
after funding cuts [51]. SPADE analyzes network activity using probabilities
of destination ports based on destination addresses. Although SPADE’s
source code was released under GNU GPL, we were unable to find a copy.

PHAD (Packet Header Anomaly Detection) is a standalone application
that detects anomalous values outside of expected ranges for fields in L2, L3,
and L4 packets [54]. PHAD uses nonstationary model; the longer an unusual
activity has not been seen, the higher is the severity of a new anomaly [55].
There is an implementation of PHAD as a Snort preprocessor [56].

SnortAD is a project consisting of two programs — Snort preprocessor,
called simply preprocessor, and a standalone application called profilegener-
ator analyzing preprocessor’s logs. Preprocessor is able to detect anomalies
solely based on minimum and maximum bounds for absolute numbers of
packets or bytes in the whole traffic, and for several similar types of values.
Profilegenerator implements the Holt-Winters method [57].

Packet Capture

Packet Decoding

Preprocessors

Detection

Output

Preprocessor 1

Preprocessor 2

Preprocessor 3Rules

Figure 3.8: Snort architecture [58]. The preprocessors allow processing
patterns not supported by the rules.

Snort preprocessors are usually implemented in C. They allow imple-
mentation of similar concepts to those that can be implemented in the
event-based architecture. It is, however, more complicated to share com-
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mon primitives in the additional preprocessors than it is in the event-based
Bro Network Security Monitor, which is described in the section 3.2.

Snort needs root privileges to open the network interface. It is possible
to configure Snort to drop its privileges to a non-root user once it opens the
network interface.

Snort is a single-threaded application. Multithreaded Snort setups work
in the following way: The monitored traffic is divided by flows into multiple
parts; each part of the traffic is fed to a single Snort instance [59].

3.2.2 Suricata

Suricata is an intrusion detection system performing deep packet inspection
using pattern matching.

rule header alert tcp any any -> 192.168.1.0/24 111 \
rule options (content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.9: Suricata rule structure — the rule header and rule options. Same
as the Snort rule structure.

Suricata uses similar rules to Snort and is compatible with Snort rules.
The rule structure is the same for both Snort and Suricata (Figure 3.3). The
difference between the two is in the keywords and protocols that can be
specified. Suricata allows specification of several L7 protocols on top of
the L3 protocols supported by Snort — http, ftp, tls, smb, and dns [60].
Some keywords behave differently than in Snort — for instance, the fast_
pattern:only keyword doesn’t make a difference in processing, unlike in
Snort. Some keywords are supported only by Suricata, such as the iprep
keyword for matching IP reputation data and the dns_query keyword for
analyzing only the DNS response body.

Suricata’s architecture is similar to Snort’s one with a difference. What
corresponds to the preprocessor part in the Snort’s architecture is divided
in two in Suricata — decoding and detection. We found out about this by
studying the source code [61]. Decoding modules add information to the
internal representation of packets in Suricata. Detection modules rely on this
internal representation and provide keywords for use in rules. Overview of
the Suricata’s architecture is shown on Figure 3.10.
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Packet Capture

Output

Decoder 1

Decoder 2

Rules
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Detection 1
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Figure 3.10: Suricata’s architecture. The decoding and detection modules
allow processing patterns not originally supported by the rules.

Each packet is first processed in decoding functions and then in detection
modules. Decoding functions read the packet and save the decoded data into
an internal representation of the packet. The decoding functions are called
one at a time on the packet. Extending the decoding functionality is possible
by implementing a new decoding function and placing it into the decoding
pipeline. The decoding pipeline starts with the source of captured packets,
then L2 is decoded, and then protocols on higher layers are decoded.

Upon decoding, the packets pass detection. The detection is governed
by rules and depends on the decoding step. The rules are matched with the
internal packet representation. The matching process is broken into several
detection modules in all of which the matching takes place. Unlike decod-
ing, detection is parallelized and one packet can be processed in multiple
detection modules at the same time. Extending the detection functionality is
possible by implementing a new detection module and registering it in the
table of detection methods.

Suricata is written in C and the modules for Suricata have to be written
in C. There are no plans supporting C++. C requires greater programming
expertise than the Bro language. Therefore, this property makes Suricata not
the best prototyping tool available.

Suricata needs root privileges to open the network interface. It is possible
to configure Suricata to drop its privileges to a non-root user once it opens
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the network interface. This option is similar to Snort.
Suricata is multithreaded out of the box. Even though it’s not as fast as

Snort on a single-CPU computer, Suricata is designed to scale on comput-
ers with tens of CPUs [62]. The multithreading approach is different from
Snort. Multithreaded Snort setups divide the monitored traffic by flows into
multiple parts, each processed by an individual Snort instance. Suricata,
on the other hand, doesn’t require the traffic balancing since it manages
multithreading itself. This approach makes it more user-friendly.

3.2.3 Bro

Bro [31] is a network security monitor performing deep packet inspection
using event-based analysis.

In contrast to Snort and Suricata, Bro is primarily not rule-driven. Instead,
it implements a Turing-complete scripting environment [30]. Rule-based
detection as well as arbitrary detection algorithms can be implemented in
this environment. Bro detection rules are described by scripts.

NIC
Packet

decoder
Event

generator

logs
Scripting

enginePCAP

execute

files

Figure 3.11: Bro architecture.

The Bro’s scripting environment uses the Bro programming language. It’s
an interpreted, typed language. What makes it special are domain-specific
types. For example, the addr type holds an IP address [63]. Variables of
structured types are reference type variables. This makes processing of large
sets or tables efficient, since only the references are copied, not the data itself.
There are two types of collections — sets and tables. Loops are available in
the form of iteration through collections. The Bro programming language
lacks other forms of loop control, presumably serving as a deterrent against
overly complex algorithms. This is a reasonable requirement for network
traffic monitoring when the processing is done in real time. And that exactly
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is the most significant goal of Bro — to allow real-time network traffic
analysis and save already processed results to log files.

The default installation of Bro contains many scripts implementing vari-
ous sorts of traffic analysis. Some of the items the default Bro setup monitors
are:

• Bidirectional flows,

• DHCP leases,

• DNS queries and responses,

• MD5 and SHA1 hashes of files transmitted over unencrypted protocols,

• HTTP requests and user agents,

• port scans,

• email headers from SMTP traffic,

• successful and unsuccessful SSH connections,

• SSL certificates,

• SYSLOG messages,

• traffic tunnels.

The full list of monitored areas is in the Bro documentation.
Since the preinstalled scripts usually expose an API in the form of events,

they can be used by user scripts, extending the default functionality.
The core of Bro, implemented in C, processes network traffic, performs

DPI and generates events about what’s happening in the traffic. Events
generated by the core are listed in the bif files [64]. Many events are gener-
ated, spanning L2 through L7. Examples are a new ARP packet, closed TCP
connection, HTTP request, etc. In other words, this type of DPI performs
semantic matching of network events instead of simple pattern matching, as
opposed to Snort and Suricata. Majority of the events provide context, typi-
cally in the form of information about the relevant connection. The events
are then processed by the Bro scripts.

Bro scripts use so-called event handlers to listen to the events. The usual
reactions to events vary. On the one hand, the simplest possible processing
saves the event information to a log file. On the other hand, some scripts
implement fairly complex processing and generate additional types of events.
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This further extends DPI abilities of Bro. Scripts can handle events generated
both by the core and by other scripts.

module helloworld;
event bro_init() {

print "Hello world!";
}

Figure 3.12: A simple Hello world! script.

The scripting engine hosts the scripts and dispatches events generated
both by the scripts and the core to the scripts listening to these events. It
also allows operations like file access and execution of applications native
to the operating system. This functionality can be used by advanced scripts.
File access may be used to fetch information from external sources, e.g., a
blacklist. Execution facility may be used for many purposes. One example
is reporting issues to a ticket managing software via email. The sendmail
executable can be used by such a script. Another example is automatic
triggering of a remotely triggered black hole by executing a program that
does the blackholing.

The Bro’s architecture is shown on Figure 3.11. Figure 3.12 shows a very
short module that just writes "Hello world!" to the standard output when
Bro starts.

Figure 3.13 shows commented code that manipulates data structures and
dispatches two events. It is an excerpt from the database.bro script, which
is part of Appendix A.

Bro scripts are organized in so-called modules. A module can be imple-
mented wholly in one file or can be broken into several files. Two identifiers
with the same name in two different modules do not collide with each other.
Cross-module references can be made using the name name_of_module::
name_of_identifier.

A module can define types, variables, functions, and event handlers.
These entities can be either local to the module or globally accessible from
other modules.

It is possible to define custom types using enum, set, table, vector, and
record. Enum in Bro is similar to enum in other languages. Set is similar
to HashSet<T> in C# in its functionality [65], albeit the syntax is different.
Table is similar to Dictionary<TKey,TValue> in C# [66] with the differ-
ence that C# allows only one key while Bro allows multiple keys. To present
this feature on an example, Figure 3.14 shows declaration of a table indexed
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by two addr type keys. Such a table can be comfortably used to store infor-
mation relevant to unidirectional communication between pairs of hosts.
Vector is a table indexed by count. Count is the name for int in Bro. Record
is similar to C# class [67] that contains only fields [68]. Both Bro record and
C# class are reference types, meaning assignment of its instance copies only
the reference (pointer), not the whole instance. This can be compared to C#
struct which is a value type, meaning assignment of its instance copies the
whole instance.

## Private function that updates the IP-MAC database.
function internal_mac_table_update(ip: addr, mac: string){

## A new instance of a set.
local new_exp_set_addr: expiring_set_addr;

## Add the IP->MAC mapping to the database if it is not in
## there yet.
if (ip !in database::ip_to_mac)

database::ip_to_mac[ip] = mac;

## Add the new instance of a set to the MAC->IP database
## if there is no set for the MAC yet.
if (mac !in database::mac_to_ip)

database::mac_to_ip[mac] = new_exp_set_addr;

## Add the MAC->IP mapping set. (Does nothing if it already
## is in the database.)
add database::mac_to_ip[mac][ip];

## Call the events so that any listeners have the chance to
## know something happened. The arguments contain information
## for the currently processed IP-MAC mapping.
event database::mac_table_update_event_single(ip, mac);
event database::mac_table_update_event_fullip(ip, mac,

mac_to_ip[mac]);
}

Figure 3.13: Demonstration of data manipulation and event dispatching.

Variables can use both built-in types and custom types — described in
the previous paragraph — defined both in the same module and in other
modules. Regarding visibility, there are three types of variables — those local
to functions and event handlers, global variables visible in its own module
only, and global variables visible by all modules.

The visibility of global identifiers is controlled by the export section and
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the global keyword.

## Declaration of a table indexed by two values.
global profiles: table[addr, addr] of individual_profile

&write_expire = alias_expiration ;

Figure 3.14: Table indexed by 2 indices. A part of the database.bro script.

Functions and event handlers in Bro are similar but distinct. Function,
using the function keyword in code, is a part of code that can be only
explicitly called by other parts of code. In other words, you would have to
specifically know about a function to be able to call it. Event handler, using
the event keyword in code, is too a part of code that can be called. The
distinction lies in the fact that the caller doesn’t have to be aware of an event
handler’s existence in order to call it. The caller of an event handler just
executes an event. All event handlers handling this particular event are then
called. It’s the scripting engine, not the event’s caller, that has to be aware of
each event handler.

Bro can be run both as a single-threaded application and as a multi-
threaded distributed application. The single-threaded mode is called stan-
dalone while the multithreaded one is called cluster. If Bro is used as a plat-
form for development of proof-of-concept methods, the standalone mode is
usually more appropriate than the cluster mode. Development for the clus-
ter mode is more difficult than for the standalone mode because additional
functionality has to be used by scripts [69].

#fields note
#types count
PacketFilter::Dropped_Packets
tor_detection::alert
SSL::Invalid_Server_Cert
domain_flux::alert
correlation::apt_detection_one_step
correlation::apt_detection_two_steps
correlation_same_host::apt_detection_one_step_same_host

Figure 3.15: An excerpt from the notice.log file showing various notice
types in use, both built-in and custom.

Snort uses classtypes to differentiate between various types of alerts,
as shown on Figure 3.7. Bro allows scripts to generate notices of arbitrary
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types informing or alerting about current affairs. Figure 3.15 shows custom
and built-in notice types. For instance, the built-in SSL module detected an
invalid certificate and the tor_detection module generated an alert.

Bro needs root privileges to open the network interface. Operation with-
out full root is possible thanks to Linux capabilities. Granting the bro exe-
cutable cap_net_raw and cap_net_admin capabilities allows Bro to be run
as a regular user.

3.3 Flow-based Observation Representatives

The section 2.4 mentions that flow-based observation architecture contains
two main components — a flow exporter and a flow collector. This section
covers representative implementations of both flow exporters and flow
collectors.

3.3.1 Flow Exporters

nProbe

nProbe [70] is a commercial open-source flow exporter. Data can be exported
in NetFlow v5, NetFlow v9, and IPFIX formats. nProbe has an application
visibility (nDPI) ability, which is used for detection of application-specific
protocols. This information is saved in a custom column in NetFlow v9 or
IPFIX format. It is difficult to obtain nProbe source code for free.

YAF

YAF [38] is an open-source flow exporter. Data is exported in the IPFIX
format. A passive OS fingerprinting functionality based on the p0f software
can be compiled into YAF. YAF supports modules that implement DPI.
However, YAF doesn’t provide DPI in default setup.

QoF

QoF [71] is a fork of YAF. It removes all payload inspection abilities and
instead focuses on passive performance measurements.

ipt-netflow

ipt-netflow [72] is a plugin for iptables for flow export. Data can be exported
in NetFlow v5, NetFlow v9, and IPFIX formats. There’s no special functional-
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ity besides standard network flows. There’s also no apparent focus towards
high-throughput networks. ipt-netflow is open-source.

pmacct

pmacct [73] is an open-source flow exporter and flow collector. Data can be
exported in NetFlow v5, NetFlow v9, sFlow v5, and IPFIX formats. Supports
high-throughput networks thanks to PF_RING. No DPI-related functionality
is available in pmacct.

softflowd

softflowd [37] is an open-source flow exporter performing export to NetFlow
v1, v5, and v9 formats. There is no apparent effort to provide anything on
top of regular NetFlow data export.

3.3.2 Flow Collectors

nProbe

nProbe is not only a flow exporter, it is also a flow collector. Available storage
backends are MySQL, SQLite, text files, and binary files. The nProbe flow
collector was created because its author deemed other collectors available at
the time to be too cumbersome to use.

IPFIXcol

IPFIXcol [74] is an IPFIX collector designed for high-throughput networks.
IPFIXcol claims to be flexible. Storage backend can be customized using
output plugins. IPFIXcol also allows implementation of so-called IPFIX
mediators, used for processing of the collected data before it hits the collector.

flowd

flowd [41] is a NetFlow v1, v5, v7, and v9 collector. It is created under the
UNIX philosophy to do just one thing. The collected data is saved in a
binary format. flowd is provided with Perl and Python interfaces for reading
the binary data. flowd strives for security using privilege separation of
components. flowd is open-source and freely available.
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nfdump

nfdump [40] consists of several tools. The nfcapd tool listens to NetFlow v5,
v7, v9 streams and saves them to nfcap files. The nfdump tool can be used
for analysis of nfcap files. nfdump uses similar filter syntax to tcpdump.
nfdump is open-source and freely available.

pmacct

pmacct [75] as a collector has several storage backends available. It can use
MySQL, PostgreSQL, SQLite, MongoDB, BerkeleyDB, and flat files. Among
other formats, it can collect NetFlow v1–v9 and IPFIX. pmacct is open-source
and freely available.

SiLK

SiLK [43] is a collector for NetFlow v5, v9, and IPFIX data. It is designed
for high-throughput networks. SiLK consists of multiple tools and plugins
for filtering, analysis, and processing of flow data. SiLK is open-source and
freely available.

3.4 Choice of Software for Evaluation

Among other things, this thesis deals with the selection of a network traf-
fic monitor suitable for DPI. The following criteria are evaluated for each
mentioned traffic monitor:

• Prototyping. Is the network traffic monitor suitable for creation of
method prototypes?

• User-friendliness. Does the network traffic monitor allow development
in an easy to use way?

• Extensibility. Is it possible to extend the existing functionality of the
network traffic monitor in a reasonable way?

• High-throughput network support. Does the network traffic monitor
support networks with high throughput?

The descriptions of individual network traffic monitors in this chapter
indicate answers to these criteria. Table 3.1 shows the summary.
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Monitor Prototyping User-friendly Extensible
Tcpdump No No No
Wireshark No No No
Snort No No Somewhat
Suricata No No Somewhat
Bro Yes Yes Yes

Table 3.1: Bro is a suitable tool for creation of prototypes.

We chose Bro because it is a perspective technology for prototyping and
implements DPI in a way different than pattern matching.
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Chapter 4

Network Topology Mapping Method in Bro

This chapter demonstrates DPI properties on a detection method imple-
mented in Bro. The chapter first introduces DPI capabilities of Bro and sets
them in the context of the previous chapter. The detection method is then
introduced and it’s explained how it demonstrates the importance of DPI. A
comparison table of DPI and flow-based versions of the method is shown.

4.1 Bro’s DPI-related Capabilities

The section 3.2 presents general characteristics of the Bro Network Security
Monitor. This section shows concrete DPI-related features on code snippets,
similarly to those shown on Figure 3.3 through Figure 3.7.

4.1.1 Signature Matching

Despite Bro not being in the group of pattern-matching DPI-capable network
traffic monitors — it is an event-based network traffic monitor — it sup-
ports pattern matching [76]. Thus, its functionality is generally a superset of
pattern-matching network traffic monitors.

Figure 4.1 shows a so-called signature instructing Bro to perform regular
expression matching in packet payload. This particular signature is used by
Bro to detect FTP events.

signature dpd_ftp_client {
ip-proto == tcp
payload /(|.*[\n\r]) *[uU][sS][eE][rR] /
tcp-state originator

}

Figure 4.1: An example of signature from the ftp/dpd.sig file.

Since Bro is event-driven, each and every match generates an event that
is then further processed by event handlers.
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DPI Events

Only a small fraction of Bro’s functionality is implemented using the sig-
natures. Most of DPI-based detection in Bro is built around events. The
ubiquity of events in Bro results in a predictable structure of any subsequent
processing — handle an event, read information from the event, process the
information, and optionally generate another event. An example of an event
handler is shown on Figure 4.2.

# Listens to updates and logs the result
event database::ttl_table_update_event_single (

ip: addr, ttl: count, tcpwin: count, synsize: count) {
check_ip(ip);

}

Figure 4.2: An example of an event handler. A part of the natdet.bro
script, which is part of Appendix A.

The code shows a so-called event handler. The body of the handler is
executed every time this event is generated. The arguments contain informa-
tion relevant to the particular instance of the event. The code can read the
arguments to get details about what just happened.

Since the default installation of Bro offers a wide range of flow-based
and DPI-based events, scripts can take advantage of them without having to
use signatures or having to look directly in the raw packet payload.

Data Processing

Immediate handling of network data is only a part of the big picture. Bro
has a set of specialized data types that can be used and arranged in arbitrary
patterns. They are a part of the Bro programming language.

Figure 4.3 shows a complicated data structure that is used in the method
further described in the section 4.2. Each type on the picture is used in the
declaration of the successive type, resulting in a tree-like structure for storing
data. Then a table with two indices of a specialized built-in type is declared.
The table stores the previously defined tree-like structures.
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## Declaration of complicated types.
## Each type is used by the type declaration that follows.

type profile_set: record {
bifl_out: count;
bifl_out_ports_src: set[count];
bifl_out_ports_dst: set[count];
sifl_out: count;
sifl_out_ports_src: set[count];
sifl_out_ports_dst: set[count];
ports_src: set[count];
ports_dst: set[count];
out_byt: count
out_pkt: count;

};

type proto_stats_struct: record {
tcp: profile_set;
udp: profile_set;

};

type individual_profile: record {
data: profile_set;
proto: proto_stats_struct;
timestamp: time;

};

## addr is a type holding IPv4 or IPv6 address
global profiles: table[addr, addr] of individual_profile;

Figure 4.3: User-defined types can be further used in other user-defined
types. A part of the database.bro script.

Records are types resembling C# classes that contain only fields. Each
field in the record can be of any previously declared type. Sets are collection-
like types of any specified type. Tables are array types of any specified type,
indexed by any number of any specified types. All types — built-in and
user-defined — are treated as equal. As long as types are declared before first
use, and types can be used inside other types. Sets and tables can be assigned
an expire attribute that causes individual stored items to be automatically
deleted after a specified time.

The whole type system can be put in use by creating a data structure
closely matching the needs of a particular algorithm. The network topology
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mapping method, introduced in section 4.2, uses a complicated structure of
types that effectively mimics a hierarchical database [77]. Other pieces of
the structure mimic a key-value store. All with automatic data expiration
and using the specialized native types, such as addr for storing IPv4/IPv6
addresses.

Given the fact the scripting engine is connected with the specialized type
system and the events providing traffic data, we consider data processing in
Bro to be an integral part of its DPI capabilities.

4.2 Method Description

We chose an actual network traffic processing method to show the properties
of DPI. The method used for the demonstration is called a network topology
mapping method. It is a set of algorithms passively analyzing network
data and identifying devices on the network. In the section 4.4 we compare
capabilities of two versions of the network topology mapping method — the
flow-based one and the DPI-based one. The flow-based version is inferior to
the DPI-based version and cannot identify some important features in the
network topology.

Method

Base module

Network traffic

Method Method Method Method

Database module

Graph module

Output graph module

Figure 4.4: Architecture of the network topology mapping method.

The whole network topology mapping method comprises of five layers,
shown on Figure 4.4, not counting the data source. The base layer captures
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network traffic and uses only relevant information. The information are
stored in the database layer which provides a hierarchical database and
key-value stores. The graph layer serves as an abstraction of the database
for the method layer — it allows for selection of subsets from the database
layer based on criteria provided by the method layer. The method layer
hosts number of individual detection modules, each detecting one type of
device. Data from the individual detection modules are then used in the
output_graph module that produces pictures of the network topology in
the graphviz [78] file format.

4.2.1 Base Layer

The base layer abstracts data captured from the concrete underlying events
and sends it into the database layer.

The connection_state_remove event provides information about fin-
ished bidirectional flows. This event largely reports flow-based information.
Although it also conveys data from DPI analysis — such as protocols and
services used by the connection — we deliberately made the choice to ignore
it in this case. There are two reasons for that. First, we wanted to realistically
show what can be done without DPI and what cannot be done without DPI.
Therefore, the method uses flow-based techniques to determine the services
running on the connection. Second, the choice to use only flow-based data
has been warranted by the wider context of the method’s development,
which is out of the scope of this thesis.

The connection_SYN_packet event provides information about SYN
packets using DPI, in contrast with the previously mentioned event. The
first SYN packet of a TCP connection conveys information vital to TCP
fingerprinting [79]. Three attributes of the SYN packet are processed — IP
TTL, SYN packet size, initial TCP window size. Although these information
are not in the TCP payload per se, they are not detected by flow-based
network traffic monitors and DPI capabilities are necessary.

The information from the connection_SYN_packet event are stored
in an expiring table. There it waits up to a few minutes for the relevant
connection to be closed and the information from both events are then
paired and sent to the database layer. In case of a long connection, the SYN
packet table entry will have been expired by the time it can be paired with
the closed connection. This is of no great concern as the method doesn’t
need 100% of connections to be paired with the SYN packet. The reason for
pairing the information is that the network topology mapping method will
harbor an individual detection method that specifically needs this pairing in
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the future. In the context of this thesis, it just shows what can be easily done
in Bro. Figure 4.5 shows the correlation.

event connection_state_remove(c: connection) {
local corrl_dat_tmp : correlated_syn_data;
if (c$id in corr_syn_tbl) {

corrl_dat_tmp = corr_syn_tbl[c$id];
delete corr_syn_tbl[c$id];
database::profiles_table_update(c, corrl_dat_tmp, T);

} else {
database::profiles_table_update(c, corrl_dat_tmp, F);

}
}

Figure 4.5: Code performing the correlation of L3 and L4 data. A part of
the profilecapture.bro script.

The base layer captures DNS queries and sends them to the database
layer. There is currently no module at the method layer to take advantage
of DNS query data. This is not to be taken as deficiency in the method’s
implementation for this thesis. The opposite is true — the network topology
mapping method is planned to be further developed for a specific purpose
that is anticipated to be in need of DNS query data. The current method’s
implementation is designed with this in mind and is capable of DNS query
capture well in advance. Data about DNS queries are provided by the dns_
request event, which is clearly in the domain of DPI.

The last group of events used for data capture are DHCP::dhcp_ack, arp_
reply, dhcp_request, and dhcp_inform. These events use DPI to provide
information about DHCP and ARP messages. The base layer uses them to
extract information about MAC–IP address pairings. There are flow-based
network traffic monitors that are able to extract MAC–IP pairings directly
from the network frames. Bro lacks this ability [80]. The reason for that is
that Bro is intended to be used at network borders, presumably resulting
in seeing just the two neighboring routers. This assumption proved to be
true on the ICS MU network the testing was performed on. Nevertheless,
we consider the lack of this feature to be a deficiency.

4.2.2 Database Layer

The database layer accepts updates from the base layer and offers the data
to the graph and method layers. The database layer itself does no processing.
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Data are stored in two ways — in a hierarchical database and in key-value
stores. The table, set, and record types are used for that. Items in the
databases automatically expire so that out-of-date data doesn’t pollute the
analysis.

The hierarchical database stores statistics about pairs of communication
from the destination to the source. Some of the statistics are numbers of trans-
mitted packets, used ports, and number of unidirectional and bidirectional
flows. Unidirectional flow is regarded as communication without reply in
this context, while bidirectional flow signifies communication where reply
followed a request. The source is deemed to be the party that initiated the
communication. Since the statistics are stored in several instances, aggre-
gated by different L4 protocols, the database has a hierarchical structure.

The key-value stores save other data, such as TCP fingerprints, TTL
values, and IP–MAC pairs.

The key-value stores are accessed directly by the method layer. The
hierarchical database can be accessed through the graph layer.

4.2.3 Graph Layer

The graph layer allows the method layer to query data from the hierarchi-
cal database. It can filter the data based on criteria evaluated deep in the
hierarchy. Since the hierarchical database contains pairs of communication,
the graph layer can treat the pairs as edges in a graph. For instance, the
filter_profiles_subgraph_by_addr_src() function selects the directed
graph component accessible from the node specified by an IP address.

The functions receive and return the same format of data and can be
easily chained. Since Bro uses reference type variables, data is not copied in
the process, only the references are. This puts a constrain on the method layer
not to change the data, because the only original copy is always referenced.
We don’t consider this to be an issue. The real-time processing deserves
as much performance as it can get and careful handling of the data is not
difficult in the network topology mapping method.

4.2.4 Detection modules

The following individual detection modules are used in the whole network
topology mapping method:

• DNS client/server identification,

• DHCP client/server identification,
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• FTP client/server identification,

• HTTP client/server identification,

• SSH client/server identification,

• NTP client/server identification,

• printer client/server identification,

• email client/server identification,

• router identification,

• NAT identification,

• operating system identification.

Operating system identification is particularly useful as one of the tech-
niques of NAT identification. As nearly any network contains at least a router
or a router with NAT, the last three methods (router, NAT, OS detection) are
significantly more important than the others. And as it turns out, they also
need DPI capabilities more than the other methods.

The two following subsections describe each detection module. The
modules can be categorized as flow-compliant and DPI-dependent.

4.2.5 Flow-compliant Version

DNS Client/Server Identification

DNS client/server detection is based on the existence of a bidirectional flow
to the port 53 on the server.

DHCP Client/Server Identification

DHCP client/server detection is based on the existence of UDP communica-
tion from the port 68 on the client to the port 67 on the server.

FTP Client/Server Identification

FTP client/server detection is based on the existence of a TCP bidirectional
flow to the port 21 on the server.

FTP uses port 21 for transmission of control data and port 20 for transmis-
sion of file data. Monitoring communication of port 20 would be redundant
in this detection method, hence only port 21 is monitored.
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HTTP Client/Server Identification

HTTP client/server detection is based on the existence of a TCP bidirectional
flow to at least one of the ports 80, 443, 8080, 8443 on the server, as these are
the most commonly used HTTP and HTTPS ports.

SSH Client/Server Identification

SSH client/server detection is based on the existence of a TCP bidirectional
flow to the port 22 on the server.

NTP Client/Server Identification

NTP client/server detection is based on the existence of a UDP bidirectional
flow to the port 123 on the server.

Printer Client/Server Identification

Printer client/server detection is based on the existence of a bidirectional
flow to at least one of the ports 515, 631, 9100 on the server, as these are the
most commonly used printer service ports.

Email Client/Server Identification

Email client/server detection is based on the existence of a bidirectional flow
to at least one of the ports 25, 110, 143, 465, 587, 993, 995 on the server, as
these are the most commonly used email service ports.

4.2.6 DPI-enhanced Version

While the above detection modules don’t need DPI at all, the other detection
modules cannot work without DPI.

DNS Query Monitoring

DNS Query Monitoring is not done by any detection module yet, as stated
in the description of the base layer earlier. However, the data is already
captured by the base layer and saved by the database layer. Therefore, we
consider this functionality being on the same level of importance as already
implemented detection modules.

DNS query monitoring can help identify various classes of devices. For
example, computers running Ubuntu usually contact security.ubuntu.
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com some time after start. Computers running Microsoft Windows usually
contact ctldl.windowsupdate.com. Identification of these operating sys-
tems can be also done using the TCP fingerprinting method, described later.
The DNS query monitoring method is, however, able to identify other types
of devices that may look too similar to the TCP fingerprinting method. For in-
stance, some Xerox printers try to connect to xeroxdiscoverysupernode1.
com through xeroxdiscoverysupernode3.com domains [81]. Android has
similar TCP fingerprints to GNU/Linux but can be identified by look-
ing up android.clients.google.com. Furthermore, some devices look
up manufacturer-specific addresses, such as update.sonymobile.com.

It is obvious that this detection method doesn’t work without DPI.
Bro allows implementation of DNS query monitoring in an elegant man-

ner. The dns_request event provides data about DNS requests in a struc-
tured way. The method is interested only in the query field and others are
ignored.

Operating System Detection Using TCP Fingerprinting

Passive operating system fingerprinting requires data not present in flow-
based network traffic monitors: TCP SYN packet size, initial TCP window
size, and IP TTL value. In the context of the network topology mapping
method, passive OS fingerprinting is most useful for detection of routers
hiding multiple devices behind a NAT.

C. Smith and P. Grundl [82] recommend use of two of the three aforemen-
tioned attributes for fingerprinting. S. Bellovin [83] uses IP ID sequences to
discover hosts behind NAT. Some operating systems use monotonous series
of IP ID values, while others use randomly scattered values. NAT detection
then relies of observation of multiple parallel series or of a monotonous series
with scattered values. However, Bellovin shows the problems in IP ID-based
detection. Most notably, packet sampling and discontinuous monitoring
make reliable detection difficult. Nmap [84] has a large database of device
and OS fingerprints. Empirical results on ICS MU network showed unrelia-
bility of nmap’s guesses. Moreover, nmap mainly uses an active approach to
fingerprinting while my work requires a passive one. A new fingerprinting
strategy without these shortcomings was devised for the network topology
mapping method.

The following text describes how a list of known fingerprints was created
and how these known fingerprints are then used in the network topology
mapping method.
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Building The Fingerprint List

A static list of well known fingerprints is necessary for actual detection of
a yet-unknown operating system. The following method of building such
a list was proposed. This was a one-off procedure and only its result is
incorporated into the network topology mapping method. Figure 4.6 shows
a summary of the procedure.

flow

HTTP UA

SYN packet

Fingerprint candidate

ip  OS
     candidate 1
     candidate 2
     candidate 3
            ...

ip  OS
     candidate 1
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            ...

OS check
1 OS 
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discard

fp  OS
     fingerprint 1
     fingerprint 2
     fingerprint 3
            ...

1

2

Figure 4.6: The principle of fingerprint discovery. First, L3, L4, L7 data is
correlated. Second, consistent fingerprints are selected.

First, 883540 connections on the ICS MU network were captured in the
form of fingerprint candidates. L3, L4, and L7 data was correlated to capture
an HTTP user agent and the first TCP SYN packet of the corresponding
connection. The user agents were then categorized into groups of operating
systems running the application that sent the user agent. Most applications
directly or indirectly imply the used operating system in the user agent string.
Those user agents that do not do so were assigned to a special, unknown,
OS category.

Second, the fingerprint candidates from the previous step were processed
into a database of IP addresses and associated fingerprints. If an IP address
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used user agents belonging to more than one OS, the host was marked
as "do not process further". This was necessary to filter data that may be
inaccurate. For instance, a faked user agent still associates to the underlying
operating system’s true fingerprint. Some users choose to fake the user
agent of their web browser. However, not all applications expose the fake
user agent and usually run out of users’ control. The motivation behind
discriminating against IP addresses exhibiting multiple operating systems
was to remove incorrect pairings of L3/L4 fingerprints and corresponding
operating systems.

Third, the data from the previous step was processed in hourly segments.
One reason for that was hourly segmentation of Bro logs. The other reason
was to allow the use of data from computers that were rebooted into another
operating system. The hour in which the reboot occurred would be marked
as "do not process" but the hours before and after that would be used by the
algorithm, provided no more reboots occurred for that IP.

Fourth, the hourly data from the previous step was merged and sorted.
Further, it was manually inspected, cleaned, and formatted. Although the
input dataset is rather large, the output is small. The results are shown in
Table 4.1.

The result is a set of fingerprints that can be used to determine the
operating system used to make a connection. Use of multiple operating
systems on the same IP address at the same time signifies the presence of
NAT. The dataset used for OS detection is based on real, recent data and thus
works well on contemporary networks. Although HTTP information had
to be parsed for building of the fingerprint dataset, subsequent detection
only needs data from the first TCP packet. Still, these data — TCP SYN
packet size, initial TCP window size, and IP TTL value — are not reported
by flow-based network traffic monitors and DPI-capable network traffic
monitor is necessary for the detection.

It is worth noting that such a detection is not perfect. However, it is
not realistically possible to get a large number of fingerprints with guar-
anteed correct mapping to operating systems. The described method thus
worked on a best-effort basis, using data with the highest degree of probable
correctness.
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IP IP TTL TCP Window Size SYN packet size OS
IPv4 128 16384 48 windows
IPv4 128 22592 48 windows
IPv4 128 60984 48 windows
IPv4 128 63443 52 windows
IPv4 128 64240 48 windows
IPv4 128 64512 48 windows
IPv4 128 65535 48 windows
IPv4 128 65535 52 windows
IPv4 128 8192 48 windows
IPv4 128 8192 52 windows
IPv4 128 8192 52 winphone
IPv4 64 12400 60 android
IPv4 64 13140 60 android
IPv4 64 13880 60 android
IPv4 64 14600 60 android
IPv4 64 14600 60 ios
IPv4 64 14600 60 linux
IPv4 64 16384 64 bsd
IPv4 64 29200 60 android
IPv4 64 29200 60 linux
IPv4 64 42900 60 android
IPv4 64 42900 60 ios
IPv4 64 4380 60 android
IPv4 64 5840 60 android
IPv4 64 5840 60 ios
IPv4 64 5840 60 linux
IPv4 64 64240 64 ios
IPv4 64 65535 60 android
IPv4 64 65535 60 linux
IPv4 64 65535 64 blackberry
IPv4 64 65535 64 ios
IPv4 64 65535 64 osx
IPv6 128 8192 72 windows
IPv6 64 14400 80 linux
IPv6 64 28800 80 linux
IPv6 64 65535 72 windows
IPv6 64 65535 84 osx
IPv6 64 8192 68 windows
IPv6 64 8192 72 windows

Table 4.1: Resulting TCP fingerprints. Extracting IP TTL, TCP window size
and SYN packet size from TCP SYN packet makes it possible to detect the
operating system running on the source of the SYN packet.
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TCP Fingerprinting in the Topology Mapping Method

The OS detection module in the network topology mapping method uses the
static list of well known fingerprints and corresponding operating systems
shown in Table 4.1 to determine possible operating systems running on
observed IP addresses.

Each connection that includes the fingerprint information (IP TTL, TCP
window size, SYN packet size) is used in fingerprinting the originator of the
connection.

A set of possible operating systems is assembled for each IP address.
Some fingerprints are shared between multiple operating systems while
others are more specific. Thus, each fingerprint has an associated set of
possible operating systems. The detection module processes all observed
fingerprints for the particular IP address and creates an intersection of the
sets. The intersection resulting in one or more operating systems signifies
that one of these OSes runs on the IP address. The intersection resulting in
an empty set signifies use of multiple operating system in such a way that
no fingerprint is shared between used OSes.

NAT Detection

NAT (Network Address Translation) is used to allow multiple devices oper-
ate on the same IP address. The internal side of the network typically has
addresses in a private address range. The router keeps track of connections
and accordingly translates addresses in packets passing between the two ad-
dress spaces. There are several types of NAT. All NAT types behave similarly
from the outside as far as NAT detection is concerned.

The NAT detection method identifies IP addresses used by NAT-enabled
devices, such as routers or computers sharing the network connection.

Multiple detection techniques are used in this method:

• detection of multiple OS fingerprints,

• detection of multiple IP TTL values.

M. Zalewski [85] offers a superset of the aforementioned functionality.
The p0f tool itself was, however, not used. The reason for a clean imple-
mentation is that p0f is not suitable in the wider context of this work. The
network topology mapping method doesn’t exist merely as a showcase for
this thesis. It was originally created for a specific application favoring sim-
plicity. The NAT detection method in its current form is sufficiently powerful,

43



4. NETWORK TOPOLOGY MAPPING METHOD IN BRO

simple and language-agnostic. It also nicely integrates in the architecture
on Figure 4.4, requiring only the very few selected kinds of data. p0f, on
the other hand, has dependencies on the received data as well as on the
programming language used — full packet capture is required out of box
and it’s programmed in C.

NAT detection based on operating system detection uses the aforemen-
tioned OS detection module. If an IP address is associated to a non-empty
set of possible operating systems, this step doesn’t detect NAT. Likewise, if
there is no set of OSes associated to the IP, no NAT detection takes place. If
the IP address is associated to an empty set of possible operating systems,
NAT is detected in this step. This principle is described above in the text
about OS detection.

NAT detection based on IP TTL values checks whether multiple originat-
ing IP TTL values are observed for an IP address. If they are, NAT is detected
in this step. IP TTL values are analyzed only in TCP connections. Therefore, a
traditional UDP/ICMP traceroute doesn’t affect NAT detection. However,
TCP traceroute does affect the detection and the host performing TCP
traceroute is mistakenly detected as NAT. We admit this is a shortcom-
ing of the method and yet have to find an acceptable solution. Use of TCP
traceroute is not common.

There is one case where router detection doesn’t work, i.e. reports a
false negative: If two or more machines with similar OSes are at the same
distance behind a NAT-enabled router which itself generates no additional
traffic. Similar OSes have similar fingerprints and thus the first step of
NAT detection fails, and uniform distance behind the otherwise mute NAT
ensures the second step fails as well, since all originating IP TTL values are
the same.

Router Detection

Routers (without NAT enabled) are detected based on IP–TTL mappings. If
more than one IP address is used by one MAC address, the MAC address is
considered to be a router.

This technique could also be used to detect ARP spoofing attacks. Anomaly
detection is not incorporated into the network topology mapping method at
the moment. The architecture of the the network topology mapping method
is, however, open to the implementation of anomaly detection. This is an
example of one feature it may have in the future.

Mere detection of routers is not the only task the module does. It is
possible to observe the hop distance from the network probe to any IP
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address, provided some observed traffic originated from the IP address.
The distance calculation is based on the difference between the observed IP
TTL value and the presumed initial TTL (iTTL) value of the originating IP
packets. The detection method groups IP addresses behind a router based
on the observed hop distance. In other words, the groups reveal shadows of
otherwise invisible topology behind routers.

4.2.7 Output Graph Module

The output graph module gathers information from all previously men-
tioned modules and builds a graph of the network’s visible topology. The
graph is saved as image in the graphviz file format, intended to be processed
by fdp [78].
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Figure 4.7: Sample graph in the format produced by the output graph
module.
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The output graph contains devices detected with the detection modules
with the following criteria; for each pair of communicating addresses, at least
one of the addresses has to be in the monitored subnet (Masaryk University
network in my case) in order for the communication pair to be included
in the output graph. Moreover, if the graph is too large to be displayed,
a threshold is introduced; the communication pair is included only if the
number of bidirectional flows for the pair is higher than the threshold. The
threshold value is automatically tuned so that the output graph is not too
large. Bidirectional flow means a communication where a response follows
a request. Detected NATs are added as lone nodes if they didn’t make it
through the filter otherwise.

Routers are displayed as boxes in the output graph. Devices behind
a router are displayed as nodes inside the corresponding box. Groups of
devices based on the observed distance behind the router are displayed in
nested boxes. The principle is visually explained on Figure 4.7.

4.3 Evaluation of the Network Topology Mapping Method

The network topology mapping method detects topology of a network. This
is useful in networks with no prior knowledge of their topology. The method
is intended to be used by security administrators in environments requiring
quick construction of computer networks and short timespans between
planning and usage. The possibilities are vast but a simple example may be
construction of a network for a conference, a fair, or a similar event. Other
class of possible uses is where the data from the network topology mapping
method is fed into an anomaly detection method, analysing suspicious
changes in the network’s topology.

The method detects well-known services used on the network, e.g., DNS,
DHCP, FTP, HTTP, SSH, NTP, printers, and email servers. It also detects
how servers and clients of these services connect together through routers.
NATs are detected, as they may be of special interest for security adminis-
trators, especially if usage of NATs is prohibited on the monitored network.
Operating systems are also detected.

The method detected misconfigured devices on our network, by showing
us which DNS server was used by which host.

Information is presented using pictures of the topology. A user of the
method therefore doesn’t have problems interpreting the results.
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4.4 Comparison of DPI-enhanced and Flow-based Method

This section uses the method introduced in section 4.2 to show practical
difference of capabilities between flow-based approach and DPI-enhanced
approach to the same detection method.

The flow-compliant subset of the method detects various types of servers
and clients. There is no way of detecting operating systems and NATs. Router
detection is debatable since some flow-based network traffic monitors do
capture MAC addresses and inability of Bro to do so is just a technical
limitation of Bro. Also, there is not a single feature supported by the flow-
compliant method that is not supported by the DPI-enhanced method.

The DPI-enhanced method also detects operating systems and NATs, on
top of client and server detection. Using good enough DPI-enabled network
traffic monitor doesn’t limit anyone from using flow-oriented techniques.

Table 4.2 shows features supported by either version of the method. It is
clear that choosing a DPI-enabled network traffic monitor is advantageous,
compared to the flow-compliant version.

Method Flow-compliant DPI-enhanced
DNS Yes Yes
DHCP Yes Yes
FTP Yes Yes
HTTP Yes Yes
SSH Yes Yes
NTP Yes Yes
Printer Yes Yes
Email Yes Yes
Router Partially1 Yes
NAT No Yes
OS No Yes
DNS Query No Yes

1 Without distance grouping; only in network security monitors that support MAC detection.

Table 4.2: Table of methods supported by flow-compliant and DPI-enhanced
versions of the method.

The feature disparity between the two versions of the method are readily
apparent in Figure 4.8. The methods barred from function by the lack of
DPI-enhanced capabilities are the most important ones.
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Figure 4.8: The picture shows differences in the overall detected topology.
The top graph is generated only with information available using flow-
compatible techniques in Bro, whereas the bottom graph takes advantage
of important DPI-enhanced detection capabilities to show routers, depicted
as boxes. The textual contents of the graphs do not matter.
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4.5 Bro Development Experience

We chose Bro as the most viable network traffic monitor in the section 3.4. We
have gathered experience with Bro during the development of the method
described in the section 4.2.

Bro is user-friendly, with the exception of a few counterintuitive parts.
For instance, nowhere in the official documentation is stated that the Bro
language uses function scope for variables — like JavaScript and unlike
Java, C#, C, and other languages. Similarly, nowhere in the documentation is
explained that Bro uses so-called duck typing [86] for record types. Mistak-
enly using the wrong record-derived type doesn’t cause the Bro interpreter
to report an incompatible type right away. Instead, it produces seemingly
nonsensical errors while trying to assign records with fields that don’t
match. We found out about this behavior in the course of programming in
Bro. There is no relevant documentation we are aware of. However, once
these features are documented, the described behavior no longer poses a
problem. The scoping works as expected from a function-scoped language.
The type system works as expected from a duck-typed language. Bro is more
flexible than a strictly strongly typed language. The duck typing for records,
for example, allows processing of externally-provided data without having
to reference the original type declaration. Any compatible type declaration
is equal under the duck typing scheme. The strong typing for non-record
types prevents most type mismatch errors. All of this makes development
easier.

Once the poorly documented details are found out, the Bro programming
environment is pleasant and easy to use. The code of the network topology
mapping method, which is a part of this thesis, is several thousand lines
long and contains comments explaining various features. The code and the
thesis can therefore serve as an addendum to the official documentation and
help other developers at ICS MU.

We mentioned what is considered to be a deficiency in Bro in the sec-
tion 4.2 — the inability to extract MAC and IP addresses from network
frames. A third-party script [87] partially solves this problem by extracting
this information from ARP and DHCP packets. Tests showed that this works
well in small networks. However, further tests revealed that this approach
doesn’t work in large networks, such as the one at ICS MU. The probe at the
ICS MU network is positioned between two routers. Any ARP and DHCP
traffic happens behind one of the routers but doesn’t reach the probe. The
two routers surrounding the probe don’t use ARP and DHCP between each
other. We devised a partial workaround that uses a short shell script trans-
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forming tcpdump’s output into Bro programming code. This generated code
is then inserted into a prepared module that plugs into the architecture of
the network topology mapping method. It sends observed mappings to
the database, resulting in correct router detection and partial detection of
devices behind routers. The network topology mapping method is flexible
and works with even such partial data, displaying devices not detected
behind a router anyway. Figure 4.9 explains the situation.

router MAC 20:fd:aa:aa:aa:aa, nearest dist=2

dist=12

router MAC 00:1f:aa:aa:aa:aa, nearest dist=1
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Figure 4.9: The bottom node outside of any box is not detected as being
behind a router.
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4.6 Performance Measurements

Two kinds of performance measurements were made. One is a comparison
between Bro and a flow-based monitor on a specific method implemented
similarly in both traffic monitors. The second one is a standalone perfor-
mance test showing how Bro with the network topology mapping method
performs.

4.6.1 Performance Comparison

A relatively simple method was implemented in two network traffic moni-
tors — Bro and FlowMon exporter (flowmonexp) [88]. The method detects
expired SSL certificates seen in the monitored traffic.

The Bro version used the built-in script expiring-certs.bro included
in the default Bro distribution.

The other version is a plugin built on top of the otherwise flow-based
flowmonexp program. The plugin has been developed by Martin Bajaník in
his Bachelor’s thesis [89].

It is worth noting that implementing this functionality in Bro was trivial,
whereas the flowmonexp version took a substantial amount of work.
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Figure 4.10: Performance of Bro in bare mode and flowmonexp in packets/s.

A capture of real traffic was taken, full.pcap. Two more files were
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filtered from full.pcap. The only443.pcap contains only packets to or
from the port 443. The no443.pcap contains only packets that are neither to
or from the port 443. Table 4.3 lists size of the PCAP files. Each file was cached
into RAM before Bro performance measurement. In case of flowmonexp, a
specialized benchmark plugin which explicitly loaded the PCAP into RAM
was used.

Bro offers so-called bare mode in which only modules necessary for the
task run. The certificate detection module was designed to be compatible
with bare mode.

File Number of packets Size in MiB
full.pcap 409950 254
only443.pcap 63153 54
no443.pcap 346797 201

Table 4.3: PCAP files used for performance measurements.

Bro Bro (bare) flowmonexp
File x̄ s x̄ s x̄ s
full.pcap 573.9 4.6 1999.0 21.1 19980.0 2079.7
only443.pcap 875.4 15.3 1081.2 102.4 15342.0 1544.2
no443.pcap 506.8 5.5 2117.3 200.3 23763.5 2697.0

Table 4.4: Average (x̄) and standard deviation (s) of performance in Mbit/s.

Each piece of software was tested 5 times on each PCAP file and the av-
erage and standard deviation values were calculated. Table 4.4 and Table 4.5
show the performance of the two implementations in Mbit/s and packets/s
respectively.

Bro Bro (bare) flowmonexp
File x̄ s x̄ s x̄ s
full.pcap 110415 880 384602 4054 3844164 400134
only443.pcap 122041 2128 150733 14273 2138910 215279
no443.pcap 104228 1122 435488 41189 4887652 554715

Table 4.5: Average (x̄) and standard deviation (s) of performance in pack-
ets/s.

Figure 4.10 shows a graph comparing performance of Bro in bare mode
with flowmonexp. It is apparent that Bro is several times slower than flow-
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monexp. Therefore, Bro may not be the best choice for production-grade
method implementations. Its status as a great prototyping tool remains
unchallenged, however.

4.6.2 Standalone Bro Performance

The network topology mapping method has been tested on the same full.
pcap file as mentioned in the previous subsection. Periodic timers in the
method were removed for the test and were instead triggered exactly once
using the bro_done event that triggers upon finishing reading the input
PCAP file.

The PCAP file was cached into RAM before the performance measure-
ment. The measurement was repeated 5 times and the mean value was
calculated. Results showing throughput in Mbit/s and in packets/s are
shown in Table 4.6.

Mbit/s packets/s
x̄ s x̄ s

181.2 6.7 34931 1337.0

Table 4.6: Average (x̄) and standard deviation (s) of performance in pack-
ets/s and Mbit/s of the network topology mapping method.

By its nature, the network topology mapping method still works even
when packets are dropped due to high load. The amount of traffic on the
network monitored by the development server is sometimes several times
as high, with no bad effect on the detection.

All performance measurements were made on a machine with Intel Xeon
E5530 at 2.4 GHz, 12 GB of DDR3 RAM, and 64-bit Debian 7.5.

4.7 Desirability of DPI

We used a real-world scenario to show the importance of deep packet inspec-
tion. The section 4.4 shows how a concrete method cannot work properly
without DPI.

The Institute of Computer Science at Masaryk University wields great
expertise in flow-based methods and network monitoring techniques. In
sections 4.2 through 4.5 we show that choosing the right DPI-enabled traffic
monitor doesn’t bar the developer from using flow-based techniques. This
allows existing experience to not be wasted. More importantly, an appropri-
ate DPI-enabled traffic monitor allows for experimentation in development
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of flow-based methods, as well as experimentation in adding DPI-enhanced
features. This makes the development comparatively quicker than using
traditional approaches. Only the final version of a method has to be im-
plemented in a flow-based network traffic monitor. DPI-enhanced analysis
sometimes is possible in flow-based network traffic monitors but requires
a substantial amount of work. The traditional approach to development of
new methods has been to program all iterations for the flow-based network
traffic monitor, which takes more time. We hope this thesis will change that
and saves valuable developers’ time.

Given all the previously stated facts, my stance is that DPI is a desirable
feature in network traffic monitors.

4.8 Suitability of Bro

We implemented a useful method in the Bro Network Security Monitor.
The method was designed according to requirements of ICS MU. Bro was
therefore tested in circumstances specific to ICS MU. Bro withstood the test
well and proved to be an indispensable tool for effective development of
fully functional prototypes. Although Bro has lower performance than some
flow-based network traffic analyzers and is thus not appropriate for use in
production environment, other characteristics make it a good prototyping
tool. Namely, the memory-safe programming language and event-driven
architecture make rapid development possible.

Bro meets the expectations set in the section 3.4. We showed that imple-
mentation of a non-trivial method in Bro is possible and fairly easy. This
proves the point that Bro is ready to be used as a prototyping tool for devel-
opment and testing of novel methods at ICS MU.
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Conclusion

This work shows how deep packet inspection is useful in network traffic
analysis and how Bro is useful in development of new detection methods.
ICS MU currently uses only flow-based network traffic monitoring. This
thesis makes the first step in introducing DPI to ICS MU, along with a new
way of method prototyping.

We gave an introduction to network traffic monitoring approaches and
presented their individual implementations. We chose Bro Network Security
Monitor as the network traffic monitor suitable for the needs of ICS MU.
Bro is able to perform deep packet inspection and provides extensibility
through a specialized programming language. We implemented a network
traffic analysis method in the chosen network traffic monitor. Finally, we an-
alyzed properties of the chosen network traffic monitor on real-life problems
provided by the traffic analysis method. The traffic analysis method auto-
matically discovers topology of the monitored network, e.g. types of devices
and services running on the network, and how they connect together.

We show Bro serves well as a prototyping tool. Our positive experience
is not limited to the network topology mapping method. A high-profile
OpenSSL vulnerability named Heartbleed was published during work on
this thesis [90]. We used Bro to analyze a typical successful attack. We then
implemented an experimental detection method in a matter of hours after
becoming aware of Heartbleed. The detection method prototype allowed
us to start protecting our assets in a very short time. The flexible nature of
Bro allowed us to go a week back in time with the attack detection, as we
analyzed existing Bro logs using the same detection method implemented
in Bro.

We conclude that Bro is a viable tool for efficient development of network
traffic analysis methods using both flow-based and DPI-based techniques.
This work documents how to develop for Bro and provides several thousand
lines worth of commented source code in the Bro programming language.
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Appendix A

List of attachments

The IS MU archive contains the following electronic attachments:

• Thesis.

• Source code and documentation for the network topology mapping
method.

• Source code and documentation for the TCP fingerprint analyzer.

The PDF version of the thesis is licensed under the CC BY-SA 4.0 license.
The source code and accompanying documentation are licensed under the
CC0 1.0 license. License notices and full license text are bundled in the
electronic attachments.
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