

MASARYKOVA UNIVERSITY

FACULTY OF INFORMATICS

A CLIENT HONEYPOT

MASTER ’S THESIS

BC. VLADIMÍR BARTL

BRNO , FALL 2014

i

STATEMENT OF AUTHORSHIP

Hereby I declare that this thesis is my original work, which I accomplished

independently. All sources, references and literature I use or refer to are

accurately cited and stated in the thesis.

Signature:..

 ii

ACKNOWLEDGEMENT

I wish to express my gratitude to RNDr. Marian Novotny, Ph.D. for governance

over this thesis. Furthermore, I wish to thank my family and my girlfriend

for their support throughout the process of writing.

TUTOR: RNDr. Marian Novotny, Ph.D.

 iii

ABSTRACT

This thesis discusses a topic of malicious software giving emphasis on client side

threats and vulnerable users. It gives an insight into concept of client honeypots

and compares several implementations of this approach. A configuration of one

selected tool is proposed and tested in the experiment.

KEYWORDS

client honeypot, low-interaction, high-interaction, malware, attacker, exploit,

vulnerability, Cuckoo Sandbox

1

TABLE OF CONTENTS

1 INTRODUCTION .. 3

1.1 MOTIVATION .. 4

1.2 CONTRIBUTION .. 6

2 BACKGROUND THEORY ... 7

2.1 WHAT IS HONEYPOT ... 8

2.1.1 DEFINITION OF A HONEYPOT .. 9

2.1.2 SERVER VS. CLIENT HONEYPOT ... 9

2.1.3 HONEYPOT BY INTERACTION LEVEL... 11

2.1.4 HONEYPOT BY DEPLOYMENT ENVIRONMENT ... 13

2.2 ATTACKERS ... 14

2.2.1 TARGETS OF ATTACKS .. 16

2.2.2 POSSIBLE MOTIVES .. 16

2.2.3 STRUCTURE OF AN ATTACK ... 17

2.3 MALWARE ... 18

2.3.1 TYPES OF MALWARE ... 19

2.3.2 ATTACK VECTORS .. 21

2.3.2.1 HTML .. 23

2.3.2.2 JavaScript .. 23

2.3.2.3 SQL Injection ... 24

2.3.2.4 Cross-site scripting ... 25

2.3.2.5 Buffer Overflow.. 27

2.3.2.6 Drive-by download attack ... 28

2.3.3 PROTECTION TOOLS .. 32

2.3.3.1 AVG Web TuneUp .. 32

2.3.3.2 McAfee SiteAdvisor .. 33

2.3.3.3 Sandboxie ... 34

2.3.4 ANALYSIS TOOLS .. 36

2.3.4.1 urlQuery.net .. 36

2.3.4.2 VirusTotal.com ... 38

2.3.4.3 Malwr.com ... 39

2.3.4.4 herdProtect.com .. 42

2.3.5 MALWARE RESOURCES REPOSITORIES .. 44

3 HANDS ON CLIENT HONEYPOT .. 46

3.1 LOW INTERACTION ... 46

3.1.1 HONEYC .. 46

3.1.2 THUG ... 47

3.1.3 YALIH .. 50

 2

3.2 HIGH INTERACTION .. 53

3.2.1 CAPTUREHPC .. 53

3.2.2 STRIDER HONEYMONKEY .. 55

3.2.3 CUCKOO SANDBOX .. 56

3.2.4 HONEYSPIDER NETWORK 2.0 .. 60

3.3 COMPARING HONEYCLIENTS .. 66

4 CUCKOO SANDBOX ... 69

4.1 DETAILED DESCRIPTION ... 69

4.1.1 ARCHITECTURE & MODULARITY ... 69

4.1.2 STARTING AN ANALYSIS ... 71

4.1.3 AN ANALYSIS .. 72

4.1.4 OUTPUT OF AN ANALYSIS ... 73

4.1.5 WEB FRONT-END .. 74

4.2 DEPLOYING THE HONEYPOT ... 76

4.2.1 HOST OPERATING SYSTEM AND SOFTWARE .. 76

4.2.2 GUEST VM SYSTEMS INSTALLATION .. 77

5 EXPERIMENT .. 80

5.1 CONFIGURATION OF CUCKOO INSTANCE ... 80

5.2 DEFINING THE EXPERIMENT .. 82

5.3 PROCESS OF THE EXPERIMENT ... 82

5.4 OUTPUT ... 84

5.5 SAMPLE ANALYSIS .. 87

5.6 EVALUATION ... 90

6 SUMMARY .. 91

 3

1 INTRODUCTION

The trends of the modern age of humanity are making a tremendous use

of computer technology as well as of the Internet. The escalation of everyday

use is exponential. A different kind of computer can be seen almost in every type

of an electronic device, but not limited only to these devices. Computers are

being operated by a vast amount of people with greatly diverse levels

of knowledge and operation skills, beginning with children and unskilled daily

users through educated staff, up to highly skilled experts. To prevent misuse,

leak of information, personal damage, or even financial harm, we need to ensure

respective security of these systems. The security of systems highly depends

on the skills and awareness of the user and the proper utilization of a computer.

The goal is to achieve equal level of security for every possible user interacting

with a computer. At this point, a complex problem begins.

There needs to be an appropriate promotion and education of computer

abilities and habits amongst users because the sufficient level of confidential

security is not possibly achievable just by securing the systems, although it

should be the first step to begin with. Security teams of skilled engineers are

constantly trying to improve systems and provide desired security.

The spectrum of techniques and tools available is extensive. One of these

techniques is a Honeypot on the servers’ side of the network or a Client

Honeypot on the clients’ side, which is the main topic of this thesis.

The work is divided into six chapters. The chapter following

the introduction is about giving the basic explanation of honeypots and

categorizing them into several groups. Afterwards, essential information about

attackers is presented as well as details on malware (malicious software)

regarding types, threats posed and tools to protect from it or analyze it.

The third part of the thesis is about a more detailed description of selected

available client honeypots referring to architecture signatures and operation

principles. At the end of the section there is a comparison of attributes of these

selected honeypots. The fourth chapter is dedicated to an exhaustive

explanation of the framework that was selected to host the experiment.

It contains a thorough description of the project, deployment and configuration

means. The fifth chapter defines the experiment to prove the configuration

of honeypot environment, shows the process of experiment and presents

 4

the evaluation of the data collected during the experiment. The final chapter

summarizes the whole thesis.

1.1 Motivation

The motivation for this work is simple enough. It is the spreading

of cyber-crime targeting vulnerable users who often do not even suspect

something unwanted or even harmful is happening to them. The purpose

of the thesis is to explore options on how to contribute to detection and

prevention of various threats waiting for end-users on the Internet. The gained

knowledge can be further processed to create and apply necessary measures

to improve users’ security in the wild of the Internet.

In the time frame of the past 10 years the number of Internet users has

grown massively – from 14.1% of the population in 2004 amounting to a bit less

than 1 billion users to more than 38% in 2014 which stands for 2.75 billion users

[13]. Nowadays, theoretically every third person living on the Earth is connected

to the Web either by using a desktop computer, a laptop, a tablet

or a smartphone. Due to this fact, the attack surface1 is growing bigger and

bigger and it is easier for criminal minds to exploit and take advantage

of assaulted users. Hand in hand with users, the number of webpages is growing

as well as the number of opportunities to attack users directly or by using

different, third party, webpages they visit. In regards to worldwidewebsize.com

the estimated size of the indexed web is at least 2.06 billion webpages [31].

Although not all of these pages are active all the time, there are plenty

of opportunities for users with hostile intentions.

Even though the focus of attackers might have expanded to mobile

platforms as they became more popular in the last 2-3 years, the number

of computer threats has not lowered significantly. “As of January 2013

the National Vulnerability Database 2 (NVD) listed 53 489 vulnerabilities

affecting 20 821 software products from 12 062 different software vendors.

[27]” In the past 10 years on average 4 660 security vulnerabilities were

1 attack surface refers to sum of such points in OS or application software

that could be used by an unauthorized user to penetrate into the system
2 http://nvd.nist.gov

http://nvd.nist.gov/

 5

disclosed to general public audience per year. Figure 1.1 depicts the tendency

in vulnerabilities disclosure, number of products and vendors showing

a decreasing trend after the peak year of 2006. Nevertheless, year 2012 shows

a turnaround back to an increasing count of vulnerabilities. Also, an important

fact to mention is that not all of the vulnerabilities pose the same danger.

The second chart in the figure 1.1 shows rates of the criticality of vulnerabilities

– the lower is the better.

The referred report also introduces the distribution of vulnerabilities

amongst software vendors where a small number of vendors are in possession

of the majority of disclosures. Mainly vendors of popular, everyday use,

software are on the top spots of this chart, e.g. Adobe (Flash, Reader), Mozilla

(Firefox, Thunderbird), Oracle (Java), Microsoft (Word, Excel) and others. [27]

Based on these facts, there is a strong need to search for and fight against all

of these threats to make the Internet a safer place mainly for unskilled users.

Figure 1.1 Distribution of Vulnerabilities and Criticality [27]

 6

1.2 Contribution

The contribution of the thesis is to clearly lay out and summarize

the theory that stands behind the entire field of honeypotting – how it

originated and what the trends and developments are. The thesis will properly

explain the definition of a honeypot, but more importantly the definition

of a client honeypot, in hand with the principal division of honeypots based

on the interaction level. Explanations of matters that are closely associated

with the area of cyber-attacks are given. The thesis describes cyber-criminals,

malware and threats that are posed to vulnerable users, but also tools that can

be used to contribute to user’s protection against these threats and tools that

can check web resources in a sense of maliciousness.

Following the essential-theory part, the chapter describing several

selected honeypots gives a closer look to the actual implementation

of the honeypot hypothesis as it is seen by various security experts and

enthusiasts. This part covers low-interaction as well as high-interaction

solutions. The chapter is concluded with a comparison of reviewed honeyclients.

Throughout the Internet there is a quantity of information available

about all sorts of various aspects connected to the problem of cyber-security,

yet none of them gives an easily-understandable summary of essential terms

and concepts in a complementary security level like client honeypot is.

The contribution of this thesis is to create a text that is easy to understand

and is sufficiently fetching to motivate a common user to join the efforts

in malware research using honeypots. In the thesis we will show that even a user

without expert-like skills is able to set-up his own test environment at home.

The thesis also shows how a test environment using a honeyclient can be

configured. The setup is subsequently used to perform an experiment. There

is a chapter devoted to describe the experiment and the results extracted from

it.

 7

2 BACKGROUND THEORY

The chapter is dedicated to the necessary theoretical foundation behind

honeypots. At first, a proper definition of the term is presented in hand

with an explanation what a honeypot is, because the idea of a honeypot can be

interpreted in several manners depending on the reader’s point of view.

Then a division of honeypots based on the logic of operation is shown. Namely

we discuss an older server-side approach as opposed to a newer client-side,

followed by a division based on the interaction level of honeypots. Later this

chapter covers basic information about a, examining their motives and targets.

The last part of the second chapter is addressed to the information about

malware, specifically types, threats and tools to mitigate risks or analyze it.

At the beginning of the Internet era, websites consisted only of static

content so the visitor could only view what was embedded in websites hosted

on servers. Thanks to that reason attackers aimed at assaulting these servers,

e.g. tried to tamper the information that was displayed or steal non-public

content. Around year 2004 a term Web 2.0 was established [42]. It does not

refer to a particular software or technology rather to a set of applications

and mainly a point of view, in general, how the Internet is seen. It means that

the Internet became dynamic, more interactive and the user is offered

an opportunity to create a certain part of the content on his own, e.g. interactive

responses to web application queries, blogs, forums, Wikipedia. In other words,

a greater collaboration between users themselves became possible. For that

purpose technology on the client’s side such as Ajax, Flash, JavaScript

and others was introduced. Such an approach established a wide space for new

attack types as well as the target of attacks started to switch from servers

to users. An attacker can decoy a code into a webpage or a web application that

will execute itself after a user navigates to that web resource or performs

the attacker’s pre-defined action while browsing. The trick is that the execution

is hidden and happens in the background without the user’s consent. In this

way, a successful attack is capable of making a user to perform disadvantageous

actions or recover diverse intelligence.

 8

2.1 What is Honeypot

First of all, the main idea of a honeypot is a computer security tool,

which is flexible and widely adjustable to many different scenarios. The simplest

solution, in the form of a low-interaction server-side honeypot, starts only with

the emulation of chosen services, e.g. HTTP, Telnet, FTP, to give an attacker

essential responsiveness and basic interactivity. The goal of the set-up is

to search for well-known attacks and exploits. This approach merely collects

data of a specific narrow profile, strictly bound to the type of service that

is being emulated. On the other side stands a high-interaction honeypot which

exposes a complete, properly functional operating system to an attacker. Thus,

the attacker is allowed to cause significant harm to the exposed system

if the system is not kept under close surveillance. This might even involve

a sequence of events leading to a connection of the attacked system into

the attacker’s botnet3 in order to spread malware, send spam messages or abuse

other systems in a similar manner. The advantage of this strategy is the scope

of collected data, which is rather wide and gives security personnel a better

insight into the attacker’s ambitions. However, analysis of such data is more

of a nuisance and requires a greater amount of time and experience. This kind

of honeypot set-up has a possibility to catch a zero-day attack4. Server-side

honeypot is a dedicated system deployed on the network; it has no production

value which is the main difference in comparison to Intrusion Detection System

(IDS) 5 . [28] No production value means that no traffic should reach the

honeypot for the purpose of ordinary communication. For that reason, all the

traffic spotted on a honeypot is, with high probability, an attempted attack,

simply the actions of attacker. This is an advantage, because the amount

of captured data is considerably lower, hence the need to filter a vast amount

3 botnet is a network of compromised computers that is remotely

controlled by the attacker
4 zero-day attack stands for using a new system or application

vulnerability to breach into the system, which was previously not known
by security community

5 IDS is a security software, which automates the intrusion detection
process of monitoring the events happening on network that may be violating
predefined security policies or well-known best practices [30]; usually they are
deployed on the systems with production value, so the amount of data to control
is extensive and high number of false detects appears

 9

of data to find symptoms of intrusion or attack diminishes. Still, mistakes are

possible and occasionally a false positive alert may be raised. False positive

refers to mislabeling the traffic as an attack although it is benign

communication traffic. The rate of triggering false positives principally depends

on the configuration of the honeypot.

Important fact to know is that honeypots are definitely not there

to replace any other known security measure. They bring the chain of security

measures to a higher level. Honeypots help to study the signs and behaviors

of malware and thus contribute to the creation of new definitions for security

software like antivirus engines or to creation of tools to prevent from,

or alternatively remove the malware infection.

2.1.1 Definition of a Honeypot

Honeypots have a wide range of applications which depend on the type

of data about attacks we demand to collect. For that reason the meaning of the

term honeypot may not be uniform. One of the first publications on the topic

of honeypots, written by Lance Spitzner, has defined a honeypot as follows:

“A honeypot is security resource whose value lies in being probed,

attacked, or compromised. [33]”

The definition says that a honeypot is a tool to lure assailants so they believe

they are interacting with a real system or a real user that they can compromise

them and gain some kind of benefit. Yet, most often, it is a dedicated system

with the purpose to mislead the attacker and uncover the actions he would

normally perform to invade a system. An analysis of collected tracks helps

to understand such behavior and design appropriate countermeasures to better

defend against threats and attackers, not only for researchers, but mainly

for ordinary users.

2.1.2 Server vs. Client honeypot

The initial viewpoint of honeypots was the use on the server’s side.

It means that an attacker was interested in exploiting a server which might

 10

be utilized to store sensitive private data or even confidential corporate

intelligence. Thus, server-side honeypot served as a quiet decoy on the network

waiting for an adversary to connect and bring the criminal thoughts into action.

Upon this connection the honeypot was observing actions performed

and recording all relevant details. Figure 2.1 is a schematic illustration of this

perspective. It is useful, for example, in catching computer malware known

as worm6 because a honeypot is passively waiting for an adversary (malware)

to reach it. Such was the initial motivation for honeypots forming around year

2000 when most famous worms were caught in the wild, e.g. Melissa (1999),

ILOVEYOU (2000), Nimda (2001) or CodeRed (2001) [35].

On the other side stands a client honeypot, which is often referred

to as honeyclient. The principal idea of honeypot’s definition remains the same

for client honeypot as well. As a consequence of following security research

and vendors evolving their software, servers became more secure and therefore

harder to exploit as well as the change of attitude towards the Web with

introduction of Web 2.0, as mentioned before. Naturally, attackers tried to find

easier targets and their aim extended to ordinary unskilled end-users of the

6 worm is a class of malicious code which is capable of self-replicating

without any user interaction; the main areas of assault are system memory and
hard-disk drive where it replicates endlessly causing the sluggish
responsiveness of the computer by draining its resources and occasionally
denial of service (DoS); after infecting a computer, the worm takes over the
control of information-transport features and propagates to other computers
on the network [5]

Figure 2.1 Server honeypot scheme

 11

Internet. The number of possible victims in a form of users is much greater than

the number of servers on the network, it is practically immeasurable. Thus, the

attack surface is outspread because of diverse environments existing on the

network and multiple attack vectors7 discovered which method to use to breach

into a system.

On the contrary to passive server-side honeypot, a honeyclient is

an active security resource which crawls the Web. The ambition is to find

malware waiting on the websites for users’ interaction as shown in figure 2.2.

This kind of malware may be embedded into a webpage on purpose, with clear

malicious intention, or it may be injected by attacker into, otherwise benign,

website without any knowledge of webpage’s administrator. Honeyclients

emulate certain behavioral patterns of users in order to trigger malware

execution since assaulters try to protect themselves from being detected

by using various evasion techniques.

2.1.3 Honeypot by interaction level

Honeypots are divided into two main groups by level of interaction they

provide to the perpetrator. The usage of appropriate level strongly impacts

the amount and scope of data collected about probes. The basic approach

7 attack vector is a mechanism used by attacker to gain access

to a computer

Figure 2.2 Client honeypot scheme

 12

is to provide only low level of possible interaction, giving an attacker only

suitable responses. That is achieved by emulating system services or chosen

vulnerabilities in order to catch desired malware. The evaluation of threats

happens by matching suspicious behavior with pre-defined signatures. In case

actions match precisely the threat is detected otherwise it cannot be classified

with confidence. Due to the necessity of pre-defined signatures, this type

of honeypot cannot be used to reveal zero-day attacks, i.e. it can only detect

known problems. Such attitude is beneficial in a sense of speed because

honeypot is capable of evaluating many more webpages than high-interaction

honeypot within the same time frame. The data collected is of specific profile

and is suitable for attack detection rather than examination of attacker habits

and intentions. Furthermore, an experienced attacker is able to detect such set-

up and may change his behavior or most likely leave without revealing anything

about him. Despite that, low-interaction honeypots are easier to deploy as there

is no need to install and configure additional services. Administration

and maintenance is also easier because the host system cannot get infected

as it is emulating the services and not directly exposing them. Thus, after

detecting a threat the honeypot does not need to be cleaned and reverted

to healthy state which is usually a time consuming procedure. The use of low-

interaction approach can also be called static analysis. That is due to the fact

that malware is only being evaluated based on the pre-defined signatures, which

are stationary and have precisely defined boundaries of what can be detected.

High-interaction honeypot utilizes entire operating system’s

functionality including its services, applications, other components and exposes

them to the attacker which gives him more freedom in choices where and how

to strike. The system is being closely monitored, e.g. system registry entries,

process creation/termination, file system, network activity, etc. in order to spot

differences resulting from attacker - honeypot interaction. That is why the scope

of collected data is broad and the amount is voluminous, hence the analysis

is more challenging. It requires time and experience, but the outcome is the

ability to capture zero-day attacks and holding such knowledge is required in a

process of signatures creation that are used in low-interaction and intrusion

prevention paradigms. This kind of activities can be labeled as dynamic

analysis. Thanks to the complete operating system behind the setup where

 13

a honeypot is arranged, there are practically no limits for the possibilities

of detection. The researcher can dynamically investigate the changes made

to the system while the malware is being executed.

One of the drawbacks is the effort needed to set up and run high-

interaction honeypot. The work of administrator is more demanding due to high

scalability of environment where we can install additional vulnerable

applications which may come in different versions. Additionally, maintenance

is more complex as well because the need to reset a healthy state after

examining malicious activity emerges. Table 2.1 summarizes the outline

differences between high and low interaction approach. The setup

of a combination of both interaction approaches is also possible in order

to create a versatile tool for analysis.

 low-interaction high-interaction

services emulated real

set up easy complex

maintenance easy demanding

attacks well-known zero-day

velocity speedy slow

2.1.4 Honeypot by deployment environment

A honeypot can be deployed into different environment types. That can

be either physical setting or using virtual software emulation of hardware.

One outlook is to set up a honeypot directly into an operating system

of a physical computer yet this attitude has a big disadvantage. That drawback

shows up as soon as the computer gets infected by any malware. Because there

is no fast and easy-to-use revert option to previous healthy state available,

the re-installation of the whole operating system and all the services

 Table 2.1 Summary of main differences by interaction level

 14

is a necessity. The alternative to omit reverting to clean state before navigating

to any other website is out of the question for the reason that the ability

to impartially determine the harmfulness of the next website has changed,

thence the threat may be overlooked. This line of action is truly time and energy

consuming. Although it is not entirely pointless because virtual environment

can be detected (e.g. checking system registry keys, running system processes)

causing the attack not to trigger. This is one of methods how attackers try

to avoid unmasking as it is unusual for a normal user to use virtual emulation

of an operating system while browsing the Internet.

A virtually emulated environment appears to be more useful for the sake

of honeypots. It has some advantages to make the honeypot deployment

and usage more effective. The most notable is the ease of machine’s state

changing. Furthermore, the number of realizable set-ups in identical

or different configurations we are able to deploy and thus save time, labor and

resources is an important advantage as well. From just single set-up up

to distributed networks of honeypots identified as honeynet. Because the

intention of honeypot is to get infected in order to gather information about

malware, good computer systems’ administration is essential. Since malware is

capable of leaving unnoticeable tracks, the need to revert a healthy state

is obligatory otherwise abilities of honeypot may be corrupted. Virtual

environment tools change state by using saved snapshots of the system which

is an automated process and is significantly faster than manual revert.

Nowadays, a few tools for virtual emulation are available, e.g. VMware,

VirtualBox, User-Mode Linux. The decision depends on the honeypot

administrator or honeypot developer if any virtualization tool is implemented

directly into the honeypot solution.

2.2 Attackers

In order to effectively prevent and defend from danger on the Internet

it is useful to know who may be the source of malign activities. In the context

 15

of computer security, users with malicious intentions are called hackers 8 .

However, these users can be further classified as:

White hats. Security experts who break a system’s security for the purpose

of penetration testing and revealing vulnerabilities, often labelled as ethical

hackers. White hats have permissions to access computer system.

Black hats. These are users who have malicious plans for the sake

of gaining profit from the assaulted system or damaging the system’s

functionality, i.e. cyber-criminals. Black hats have no permissions to access

computer system.

…and divided into groups by the level of their knowledge:

Script kiddies. These attackers (mostly youths) lack extensive knowledge

about computing and use mainly tools or scripts that were made by skilled

hackers, i.e. these attackers do not understand adequately what is actually

happening in the background. Thanks to automation of the hacking process

the quantity overcomes the quality of assaults.

Advanced black hats. Skilled attackers with extensive knowledge about

systems and computing who are capable of finding new threats in applications,

creating scripts and exploits used by script kiddies, or can aim to penetrate

a desired system of higher value (probably better secured). Thanks

to the experience these black hats are often excellent at covering tracks of their

attacks. Moreover, black hats are not used to reveal their achievements or share

tools and techniques. Thus, if such expertise is disclosed it may not be

applicable to another skilled hacker. [33]

Naturally, there is also a layer between these two groups where hackers

with moderate skills and knowledge are, who can roughly understand what

scripts do and how programs work, but are not able to code them on their own.

Due to the fact that pre-made programs are easy to use, the number of script

kiddies is significantly higher than the number of advanced hackers. However,

due to the level of severity, attacks by advanced hackers are considered to be far

more dangerous for the reason that such attacks do not necessarily follow well-

8 the original meaning of the term says that a hacker is a user with

advanced skills in computing/programming, not only the user with malicious
intentions

 16

known, easier-to-detect patterns and are easily missed by security systems. Due

to the overwhelming growth of the Internet users, the quantity of attacks by

script kiddies on weakly secured systems should not be underestimated.

2.2.1 Targets of attacks

It is important to realize that everyone connected to the network can

be a target for any kind of attack. Assuming that one’s computer is not valuable

enough to become a target is wrong. Even if a computer does not possess

valuable information it can be utilized by an attacker, for example to execute

sub-sequential attacks or to store some previously stolen information.

By studying victims a lot of useful information can be learned. Mainly motives

and tactics can be discovered which may be helpful to predict future

occurrences or future targets of the attacks. Targets are divided into two main

groups that are thoughtfully linked to the kind of attackers abusing them:

Targets of Opportunity. The goal is to hack as many systems as possible.

Generally, these are the targets for less sophisticated assailants who tend to use

automated tools to scan large networks in pursuance of a single (or a small set)

vulnerability to exploit it.

Targets of Choice. The goal is to penetrate a desired system while chasing

certain higher value information, e.g. credit cards, corporate confidentialities,

government espionage. Such targets are mostly followed by skilled hackers.

Considering that black hats are distinguished in covering their tracks, they can

reside in a system for a longer period of time without being discovered. Even

after finding out about the residence, it is no trivial process to track the attacks

down to the actual source.

2.2.2 Possible motives

The spectrum of different attackers’ motives is wide and is truly known

only to the attacker himself. Despite that, it is meaningful to make an effort and

investigate the attacker’s motivation. Such investigation may be profitable

in the sense that if the victim is solely a target of random (impersonal) attack

 17

than the incident may be considered the last as well. On the other hand,

if the reasons for the attack were more personal a victim might need to await

reoccurrence of the attack in the future. Therefore, the victim may carry out all

means necessary to better protect him. Another notable fact is that attackers

often invade computers with the motivation to gain accessibility for later visits.

An acronym MECEES, established by Dr. Max Kilger from Honeynet

Project can be applied to divide motivation as follows: [15]

Money probably the most driving motivation for black hats

Ego satisfaction of overcoming the technical (or security)

barriers, powerful code creation, innovations

Entertainment personal amusement which is feasible after

exploitation

Cause in other words hacktivism, i.e. pursue for promotion

of certain political view, ideology, or information

ethics (form of a protest)

Entry to social group showing off a level of expertise to gain access into

a group

Status acknowledgement amongst the hacking community,

besides money the strongest motivator

2.2.3 Structure of an attack

The composition of an attack can be split into 4 steps that occur during

the attack.

1. Investigation and enumeration

The point of investigation is to recognize possible security flaws

in the focused system. There are several techniques available, such as social

engineering, (spear) phishing, pharming. Skilled attacker can even obtain

such security-threatening information just by reading user’s (corporation’s)

website. Enumeration process is sorting out the useful part of investigated

information.

 18

2. Intrusion

This is the phase of penetration into the system or network when an intruder

gains control over the assaulted system or network.

3. Malware injection

After a successful penetration, an attacker can inject malicious code into

the system in order to ensure continuous control over the system,

or alternatively to achieve the goal why he attacked the system.

4. Clean up

When the goal is accomplished or the system is set up for further visits,

attacker works on deleting the evidence of his visit. This can be done by,

for example, deleting event logs, upgrading of outdated software, or similar.

2.3 Malware

The word malware is an abbreviation of expression malicious software,

sometimes a word badware is used as well. This term gives reference to a wide

range of different software, most likely of poisonous nature. The purpose

of such programs is to cause harm to an unprotected (vulnerable) computer

system and gain some sort of leverage. It may be served in varying forms,

for instance virus, Trojan, spyware, adware, to follow certain scenarios

or pursue specific kind of information on the assaulted user’s computer.

Malware is strongly connected with terms vulnerability as well as exploit.

In this place the definitions of these terms are presented as Microsoft interprets

them:

“Vulnerabilities are weaknesses in software that enable an attacker

to compromise the integrity, availability, or confidentiality of the software

or the data that it processes. Some of the worst vulnerabilities allow attackers

to exploit the compromised system by causing it to run malicious code without

the user’s knowledge. [22]”

Simply said, vulnerability is a weak point which is being focused

on by assailants in order to deliver exploit and execute it. Every known

vulnerability has a standardized number, for easier referral and data exchange

 19

amongst software, and is listed in Common Vulnerabilities and Exposures

(CVE) list maintained by MITRE Organization9.

“An exploit is malicious code that takes advantage of software

vulnerabilities to infect, disrupt, or take control of a computer without the user’s

consent and typically without their knowledge. Exploits target vulnerabilities

on operating systems, web browsers, applications, or software components that

are installed on the computer. [22]”

In this subchapter we introduce relevant types of such software and attack

vectors used to deploy.

2.3.1 Types of malware

Malicious software can be partitioned into three different classes by

the maliciousness of their nature against users. [37]

1. Nuisance malware – Spyware, Adware

Spyware. It is a kind of badware which is not necessarily malicious

in a manner of posing some direct threat to users. By design, it is software

which monitors user’s Internet behavior and browsing habits and sends

gathered information back to assaulter who can misuse it on his own or sell

it to third party. The main focus of spyware is to collect confidential data

such as usernames, passwords, or identity details. Leakage of such

information is dangerous and misuse can be menacing.

Adware. That is a subcategory of spyware family. It collects browsing habits

and adjusts advertisements accordingly showing various pop-up windows.

It is often able to redirect user to different webpages, or it can take over

browser’s home page attribute and change it which makes a user navigate

to unwished-for websites.

Presence of such software in user’s computer is vexatious and may have

a significant impact on the computer’s performance and stability.

9 http://cve.mitre.org

http://cve.mitre.org/

 20

2. Controlling malware – Trojan, Rootkit, Ransomware

Trojan horse. A Trojan is a harmful application designed to trick a user

to believe that a file is of desirable or beneficial content. It is designed

to provide attacker with remote access, or even create a backdoor 10

on the assaulted system. Unlike worm, Trojan does not reproduce nor does

it self-replicate. Thus, it must be carried as a part of another program,

unwanted download as a result of visiting a compromised webpage,

or received via messaging and subsequently activated, i.e. by opening

message attachment. After successful infection, the attacker may alter

or steal data, for example credit card details, personal identity information,

or install and launch other undesired software such as input keylogger

in order to track user’s input like login credentials. Trojans are versatile

in the sense that they provide multiple types of infection after executing and

create a lot of options for perpetrator to command and abuse the system.

For that reason Trojan-like malware is currently a leading threat

on the Internet.

Rootkit. More advanced than Trojan. It is a piece of malware that benefits

from taking over a user account within the system that has administrator

rights. This way, the attacker has full permissions to execute any desired

operation. The advantage against Trojans is that rootkits are crafted

in accordance with the ability to hide themselves inside of the system

on the sub-OS level. Rootkit possesses functionality to avoid detection

by conventional means (e.g. hiding running process from the system’s

processes list) and thus retaining attacker’s option to abuse a system

repeatedly. Certain variations are possible to defend against removal by re-

starting killed processes or re-creating deleted parts of the package. It is

no simple routine to remove a rootkit from a system; occasionally a full

reinstallation may be needed.

Ransomware. It is a malware that uses Trojan methodology to infiltrate

a user’s system. After infecting, malware either encrypts selected users’ files,

or completely restricts the admission to the system. By such means abusers

try to extort ransom fee from the assaulted person who wants to regain

10 backdoor is a method to bypass usual access control procedure

 21

access to his files or system. That is a powerful variety of malware due

to the fact that encryption is based on asymmetrical formula; therefore

the decryption key is known only to the abuser. This means that by refusing

to pay the blackmail fee a user will surrender all affected files due to inability

to decrypt them without the decryption key owned by attacker.

3. Destructive malware

This category covers malware which is distributed with intention to disrupt

systems’ operation, for example by erasing data stored on the computer’s

hard-drive, or making hardware inoperable (wiping BIOS flash memory).

Destructive malware is a label indicating programs with such objectives.

History showed us that a computer worm (as described in section 2.1.2) has

frequently had a destructive nature. Besides, ransomware or a Trojan

carrying a deadly payload can be classified under this category.

2.3.2 Attack vectors

The majority of malware attacks rely on the so-called click fraud

scenario. A cyber-criminal crafts some content which looks to be of certain

value, however on the backend a deceptive action takes place. It is a common

way to obfuscate malicious plans and seduce an unexperienced user to trigger

vicious actions. Attack vector denotes a mechanism, vulnerability that is abused

by attacker to exploit the system or network and gain access to resources needed

to accomplish desired actions. This section presents some of the well-known

attack practices used in the wild.

Phishing. It is a fraudulent technique that makes use of messaging

environment like email or instant messaging. The hacker sends out thousands

of messages (emails) to a number of recipients as big as possible. Messages are

likely to include links which will navigate users to a disguised website that was

pre-made to look just like the genuine website, however maintained by the

attacker who is able to collect trusting users’ information.

Spear phishing. It is a phishing practice that focuses on selected persons

only. The messages are crafted directly for particular recipients and are sent

solely to those people. The attacker often looks for publicly accessible

 22

information about the victims he wants to address. This method is popular

to deliver payload when targeting a specific organization as one of incautious

employees is likely to execute the malicious content, attachment of the email

and thus invite malware into the organization’s systems.

Email. Emailing is a popular channel for malware distribution. Practically,

anybody can send an email message to anybody else. There are no restrictions

by default, taking into account the fact that email can be considered publicly

available information, thus attacker can contact his victim directly. On the other

hand, there is no genuine sender identification who thence can pretend to be

whoever. Emails can transmit attachments of various types and make it easier

to distribute malicious files. Email scams bet on users to fail in reviewing

the authenticity of the content and mainly of the sender and to click

on embedded redirection link or attachment beforehand. One advantage

of email channel is that malware cannot activate itself; it is dependent on user’s

interaction.

Weak Authentication. This is a common problem of the secured areas all

over the Internet. Users tend to protect their accounts using passwords that are

easy-to-remember, e.g. birthdays, pet names, common phrases. These

passwords are easily guessable in several minutes by brute-force using

dictionary attack 11 . The other deficiency is that systems’, websites’

administrators do not demand the use of strong passwords. Even worse is

the situation when the security mechanism is implemented incorrectly and has

various security flaws to abuse.

Internet Social Engineering. A term used to describe various fraudulent

techniques used by attackers who try to trick users into revealing the personal

information about them that can help attackers in conducting a successful

assault and achieve the desired goal. For example, above-mentioned phishing is

one of the Internet’s social engineering techniques.

11 Dictionary attack is an assault using pre-built list of known passwords

and common words, phrases for a particular language; it is a trial-and-error
approach

 23

2.3.2.1 HTML

HyperText Markup Language is a defined standard for webpages

creation. Rather than programming language, HTML is a markup language

defining the logical structure of websites. Thus, it does not have enough

potential to exploit vulnerabilities on its own; despite the fact that there were

several issues known in the past. [21] The language is used to create structure

for website’s content and to embed various files into website, which is later

displayed to a visitor. For such purpose HTML tags are used that denote

elements within the page. Furthermore, scripts can also be embedded into pages

in order to provide some sort of reactive behavior to interact with user’s actions.

[45] A script does not need to be included directly into a page, a URL pointing

to the actual script can be provided which is then accessed remotely. In addition

to objects embedding, there is a possibility to insert another webpage into

the original page. Due to the capability of setting the display attributes of such

inserted webpage, it can be completely hidden from a vulnerable visitor. That is

often used when the inserted page is of malicious nature.

Web browsers are user applications that can read and interpret

the content of HTML page in order to display it in human-readable form. Based

on the fact that HTML is not a programming language, HTML does not provide

enough possibilities for attackers to exploit vulnerabilities. Rather it gives

attackers possibilities to decoy malicious resources into webpages that have

the potential to exploit users’ systems.

2.3.2.2 JavaScript

JavaScript is an object oriented interpreted scripting language that was

developed to provide responsive content to users’ actions within webpages

and is executed solely within a web browser. [43] JavaScript is written in text-

form and needs to be embedded directly into HTML body and therefore gives

a user extensive set of possible actions. Due to such large scale of actions,

JavaScript gives an attacker a lot of scenarios how to gain advantage over

assaulted user. For instance, by using JavaScript it is possible to steal session

cookie and impersonate an authenticated user, it is possible to invoke a URL

redirection to an arbitrary destination address, or manipulate the properties

 24

of objects in the Document Object Model (DOM) 12 tree. [9] Because DOM

standardization defines many different event handlers, an attacker can use

these as a trigger to kick off the malicious action, e.g. start the redirection

on mouseover event over some picture on the webpage, supply the drive-by

download on a keypress on the keyboard, or steal the session cookie when a web

form is submitted. Even an existing object can be manipulated and misused

to download malicious content from a remote site; such can be achieved

by adjusting the property of an object pointing to a malicious URL. JavaScript is

also able to work with objects, i.e. files of various types that can be embedded

into webpages. Due to the variety of file types, the supplementary browser plug-

ins exist that help a browser to properly display the content to a visitor. Every

available plug-in has a unique identification number, which makes it easier

for an attacker to provide malicious content to a browser and summon a desired

plug-in which has a known vulnerability to exploit. [40]

This fact makes JavaScript versatile and complex enough to attack not

only web browser engines, but also add-ons thus broadening the possible attack

surface. Thanks to all the possibilities, JavaScript is a favorite attack vector

for client-side attacks.

2.3.2.3 SQL Injection

SQL Injection (SQLI) attack is a wide-ranging issue in modern era

of dynamic web content. On the backend of every meaningful web application,

there is a database which stores relevant data needed for proper functionality.

The data is often created by users who use various input fields throughout

the webpage in order to forward information to the table. SQLI is a kind

of attack that targets these databases in order to steal or manipulate stored

intelligence. What is more, in certain cases attacker is able to erase contents

12 DOM is an API for HTML and XML documents; DOM defines

the logical structure of documents and is in a form of a tree or forrest
(connected trees); it also defines the way a document is manipulated, i.e.
accessed, changed, deleted, or added; throughout the development lifecycle a lot
of functionality was added, today’s Level 3 DOM specification supports various
event handlers, such as click, mouseover, drag, keyboardpress, resize, change,
submit and similar [46]

 25

of the table. In simple words, the problem dwells in the web application that is

programmed insecurely and does not validate user’s input sufficiently.

Web application is a mediator between a user and a backend database.

Authenticated users are allowed to view or alter records of the database.

On the other hand, a hacker has no such authenticity, but still wants to interact

with the database and its records. There are multiple ways how to determine

if the particular database is vulnerable for some type of SQL injection.

Afterwards, the attacker delivers a masterminded SQL command using one

of available input areas. Due to the reason that the inputted SQL command

is not properly reviewed and sanitized, the SQL query containing user input

is passed directly to the backend database where it is executed. This way

a hacker fools SQL interpreter to execute unplanned commands.

This attack can be prevented only by proper input validation, encoding

and use of up-to-date software where known security flaws are fixed.

The following Cross-site scripting attack can be partially seen as a variation

of SQL injection.

2.3.2.4 Cross-site scripting

In the recent years Cross-site scripting (XSS) became one of the most

used client-side attacks. Several sources report that nearly half of the overall

amount of attacks was based on XSS. At first, an attacker needs to abuse

a legitimate webpage and entangle a malicious script inside the page. The attack

itself takes place when a user visits a webpage and a dynamically generated

response is sent to the user’s browser where it is interpreted and executed.

The malicious trap is either reflective or persistent. [3]

Persistent cross-site scripting attack is illustrated in the figure 2.3.

The attacker abuses a web server in order to store a malicious script. The script

is not harmful for the server, yet it is dangerous for users visiting the server.

This security flaw occurs mainly when the web application does not properly

inspect and sanitize user input. As a common example an arbitrary message

board can be considered, how a Facebook’s user profile wall can be seen as well.

The attacker posts a message and appends a script code to the end of his

 26

message. The script code is hidden due to the reason that it is embedded

in HTML tags that are by default not displayed to visitors. However, when

a visitor requests to view the webpage a response containing all HTML code

is sent to his browser. Upon receiving, the browser interprets all content

received and executes the script since it came from a trusted source. The script

redirects a user somewhere else, or steals his session cookie 13 for example.

This way various kinds of unwanted behavior can be achieved in order to assault

unaware users.

Reflective cross-site scripting attack can begin when a user clicks

on a hyperlink received via email, for instance. The hyperlink may look

trustworthy, yet it encapsulates the malicious script. Nowadays, services

to shorten web URLs are broadly used, thus it is even easier for attacker

to prepare a malicious hyperlink and broadcast it to users. It is enough

to introduce the link with some video in order to invoke user’s curiosity who will

eventually click on the link. After the web resource, to which the link points,

is opened, user’s web browser interprets and executes the script. This attack

is called reflective due to the fact that the web application only reflects

the malicious script back to the user’s browser where the action is executed

as shown in the figure 2.4.

13 Session cookies are often being stolen by attackers so they can

impersonate the victim and pretend to be a legitimate user

Figure 2.3 Persistent XSS

Figure 2.4 Reflective XSS

 27

2.3.2.5 Buffer Overflow

Buffer overflow defect is caused by imprecise application coding in hand

with deficient input validation. It means that the input of larger size is passed

to the buffer than is the allocated size of the buffer. As a consequence,

data stored in memory addresses behind the buffer boundaries are overwritten.

This way attacker’s arbitrary injected code can be granted the same system

privileges as the application whose data were attacked. The C, C++

programming languages are often targeted by buffer overflow attacks due

to the fact that languages do not have a by-default checking mechanism. [17]

Merely, the first to exploit buffer overflow vulnerability was the well-known

Morris worm in 1988, which exploited UNIX finger service. [32]

For the purpose of explanation, we will use the stack-based buffer

overflow due to the reason that the vulnerability’s principle is, in fact, very

similar in other buffers as well. A buffer is a continuous block of memory that

holds a multiple instances of the same data type. As shown in the figure 2.5,

a stack is a Last-In-First-Out (LIFO) logical structure for the buffer - the last

appended record to the top of the stack will be the first record to be taken

for processing in following appropriate step. The stack can either grow down

(from higher memory addresses towards lower), or up depending on the

implementation based on the CPU manufacturer. The functionality of a stack

is to allow recursive function calls, i.e. the stack stores return address, function

arguments and local variables. The set of data belonging to the same function is

called stack frame. When a function is called by a program, a new stack frame

Figure 2.5 A stack

 28

is created and pushed to the top of the stack. A register called stack pointer

holds the current address of the top of the stack. Moreover, there is an auxiliary

frame pointer register that holds a fixed position within the stack, in order

to provide easier access to the stored variables. It is helpful due to the fact that

the top of the stack is constantly changing by pushing and removing of new

stack frames.

As mentioned, stack frame also stores the return address of a function.

That means when a function is called, its instructions are stored on a different

address within the memory. Therefore the actual function who invoked the call

needs to store the address of the instructions where to follow after the return

from invoked function. The stack-buffer overflow vulnerability happens when

the unchecked longer buffer input rewrites the variables’ allocated space.

This way, the input will rewrite the stored return address within the stack

frame. After a return to the function, this fact will either cause a program crash,

or in case the input was specifically crafted it will allow the attacker to jump

to a desired address in memory where the arbitrary code can be executed.

Thus, an attacker can gain privileged control of the system. However,

an attacker can aim only on rewriting the contents of variables, or arguments

to conduct malicious actions. [9]

To avoid this attack from occurring, a programmer should use safe

libraries that re-implement vulnerable functions of C language and ensure

proper input validation as well as buffer size verification during, for example,

copying of buffers. Likewise, the implementation of the stack may be helpful

in terms to disallow a direct code execution from within the stack boundaries,

or an early detection of attempted attack can mitigate the risk of an actual

attack.

2.3.2.6 Drive-by download attack

A drive-by download attack is a complex process that encapsulates

several afore-mentioned techniques into a single continuous event. Mostly,

all of the attackers aim to launch a drive-by download on the victim’s computer.

Drive-by download attack occurs when arbitrary content is downloaded into

user’s computer without user’s consent and happens during the action that acts

 29

to be benign [6]. This way attacker abuses unsuspecting users and executes

malware program in the victim’s system in order to steal information or connect

the assaulted PC to the botnet, for example. Figure 2.6 illustrates events that

happen during an attack. There are 4 main phases that can be distinguished

in most drive-by attacks.

1. Malware placement

The first activity of an attacker is to place a malicious script somewhere

on the Internet {1}. This can be done either by crafting a dedicated webpage

or application for such purpose, or by abusing a genuine website and injecting

a malicious script. In case a webpage is created, the attacker needs to lure

Internet users to visit the page. For this purpose, email spam containing

redirection link can be used as well as blog or forum posts. Otherwise, attackers

try to abuse popular pages with high amounts of visitors that are often returned

amongst best results of search engines.

2. Webpage visit

When a user navigates to such webpage {2}, the content of the webpage is

sent back to him in hand with the embedded malicious script {3}. The received

data is processed by user’s web browser; displayed and executed {4}. During

the procedure, if prepared in such manner, the script can scan user’s system

to obtain information about versions of operating system, installed browsers,

plug-ins and other software. That happens because assaulters try to serve

matching exploits that are specific for particular vulnerabilities. Moreover,

information about geolocation or visit uniqueness, for example, can be used

to make selection whether to attempt the attack or supply a benign webpage

to avoid detection of malicious intents. In case an attack is undertaken, a chain

of redirections may occur to hide traces of malicious sources {5}. The final spot

is the attacker’s web storage where an exploit is saved and from which it is

distributed to user’s machine {6}.

3. Vulnerability exploit

When a user’s visit is evaluated by an attacker, desired vulnerability

is found and the decision to serve the exploit is made, the exploit is delivered

and executed {6}. Thus, the control over user’s system can be acquired.

The successful exploitation can be accomplished, for instance, by making

 30

the processor to jump to a shellcode, a delivered payload, which was injected

into the memory space allocated for browser.

4. Malware execution

At this point, the shellcode instructs the system to visit attacker’s storage

{5} to download the malicious content together with the content the user

was looking for while initiated the visit {3}. Once the malicious payload was

executed, the attacker is able to perform nearly arbitrary actions.

As an illustration we mention the ability to start a keylogger to steal credentials,

or download additional malware to preserve steady control over the system {7}.

The drive by attack has some challenges for attackers as well as security

personnel trying to detect the attack and prevent it from happening. There are

various detection approaches, but all of them have the common biggest

challenge which is performance. Malware researchers try to achieve as good

performance as possible in order to be able to evaluate higher number

of websites. The amount of websites on the Internet is changing every minute

and the change is rather fast and dynamic. Once a website has been evaluated

and flagged as benign there is no guarantee that the website will stay benign

for the rest of its lifespan, thus the need of re-visiting and re-evaluating

of websites is demanding. Moreover, advanced blackhats are able to craft their

malicious web resources in a way to serve and attempt exploitation only under

Figure 2.6 Drive-by download attack

 31

specific circumstances, e.g. particular version of browser and plug-in

combination, and otherwise serve a benign variation of the website. That is why

a single visit with a single setting may miss the awaiting malware. As already

mentioned, another noteworthy challenge for security community is the ability

to overcome and unveil attackers’ masquerading techniques. Attackers tend

to use obfuscation of JavaScript code so the Intrusion Detection Systems are not

able to evaluate the meaning of transmitted code in plain text and miss

the detection, i.e. a false negative. Recently, also encryption of exploit code

starts to appear making the detection even more difficult and demanding.

In addition, the encryption makes it also much harder to analyze the intercepted

code which is useful in helping to understand attacker’s plans. The level

of analysis difficulty is determined by the encryption type and encryption key

used by attacker. In some cases attackers use location-related parameters

as a part of decryption key, thus when a malware is deployed from a different

location than it is meant to, the decryption key is computed incorrectly

and decrypted exploit code does not make sense.

From attacker’s point of view, there are several challenges as well.

The foremost challenge is to seduce a user to visit the malicious webpage. This

can be achieved in various ways; nonetheless the goal is to lure as many unique

visitors as possible. Following challenge is to correctly evaluate user’s system

in order to find vulnerabilities. For advanced hackers, finding unknown

vulnerabilities and launching zero-day attacks is a challenge. During an actual

exploit attempt an attacker is challenged to locate the shellcode he injected into

the memory and is desired to be executed for the sake of a successful exploit

delivery. To ease this task, attackers append shellcode injection with NOP14

(no operation) instruction sequences. Ultimately, the ability to avoid detection

is a great challenge. For example, skills to disclose a visit by virtual machine that

pretends to be a genuine user are supporting for such task as well as delayed

exploitation, or visit uniqueness.

14 NOP instruction has no operational value besides upon executing this

instruction, the pointer is passed to the following instruction in the queue
for processing

 32

2.3.3 Protection tools

These tools are just another layer in computer’s security that can be

achieved by a user. Such tools are guiding users where it is safe to browse

or otherwise. Moreover, a conventional antivirus engine should be running

on the user’s system. There is a plenty of vendors implementing their detection

techniques and operation principles for the purpose of achieving users’

respective security. The antivirus engine is able to monitor system’s behavior

and the files that are in transmission between user’s computer and external

sources. However, such engines can only detect previously-known threats that

are defined using signatures issued by engine’s developers and behavioral

heuristics to the certain extent. Thus, antivirus engines are not prone to detect

all malicious activity and can be circumvented. The biggest struggle for antivirus

companies is the fact that viruses are constantly evolving. This way

an antivirus may miss to detect slightly altered virus which can attempt

an attack before the definition was added to vendor’s database and updated

in end-user’s computer.

2.3.3.1 AVG Web TuneUp

AVG Company offers a free browser extension that can help users

to navigate the Internet more safely and brings some features as well. Currently,

the plug-in can be downloaded for Windows based computers running Internet

Explorer, Google Chrome or Mozilla Firefox. There is a database behind this

plug-in which bears rating information gathered from continuous scan

of the Internet. The rating is later displayed to a user and has three levels

of severity as figure 2.7 shows. More information can be display for a website

a user is viewing. Web TuneUp plug-in is capable of blocking popular

information trackers that collect browsing data of users. There are three areas

of possible tracking that can be blocked. Additionally, a browser clean up

functionality is also a part of the plug-in which makes the deletion of files

related to browsing history more straightforward.

 33

2.3.3.2 McAfee SiteAdvisor

McAfee SiteAdvisor comes in a form of a web browser plug-in,

specifically for Mozilla Firefox, Microsoft Internet Explorer and Google Chrome.

McAfee uses a set of computers to crawl the Internet and scans for malicious

activity. The service classifies visited sites with 4 different categories.

Classification is stored in a database. After user installs the plug-in into his

browser and navigates the web, a classification based on a record from

the database is shown for every visited website and helps the user to determine

the safety of website. The plug-in also shows notifications near every hyperlink

embedded in a website as figure 2.8 illustrates.

The McAfee site ratings are determined by analyzing multiple areas such

as downloads that occur, emails that are received after signing up, browser

exploits, links redirection. There is a subscription option available for website

developers, which provides their website with scans by McAfee on a regular

basis. Often popular e-commerce websites sign in for this feature to provide

security for visitors, because after passing the test a website is marked McAfee-

SECURE site. SiteAdvisor also works with most popular web search engines like

Yahoo, Bing, Google, etc. displaying security ratings on search result pages

to help protect users. [19]

Figure 2.7 AVG Web TuneUp

 34

Figure 2.8 McAfee SiteAdvisor [19]

 The advantage of this service is its easy installation and immediate

availability as well as it covers a broad range of websites. However, it is not

prone to false positives or false negatives which may occur. This drawback

happens because of a long time-span between repeated scans; therefore it is not

guaranteed that the website is still safe.

2.3.3.3 Sandboxie

Sandboxie is a piece of software designed to secure computer user’s

operating system and mitigate the risk of getting infected by malware. The tool

creates a virtual layer inside the operating system, a so-called sandbox.

As illustrated in the figure 2.9, standard behavior is that applications have

access to computer’s memory resources with operating system’s consent and are

allowed to make changes. These changes, such as file creation or modification,

are stored in persistent memory distributed throughout different memory

addresses. On the contrary, Sandboxie allocates a monolithic block of memory

where all system modifications are recorded under a close supervision

by the toolkit; the areas of operating system are as follows: files, hard-disk

services, registry keys, processes and threads, drivers, and objects of inter-

process communication. The full list in hand with detailed hierarchy can be

found on the tool’s website. [29] This way, user applications (web browsers,

email and chat clients, games, etc.) are launched within the boundaries

 35

of a sandbox where it is easier to monitor actions that take place while

particular program is running.

Developers also implemented necessary mechanisms to prevent events

when a potentially malicious application, running in a sandbox, could hijack

non-sandboxed programs and thus infiltrate the system. Moreover, programs

in sandboxed mode are prohibited to load system drivers, which is useful

to avoid installation of rootkits. Thanks to the highly customizable set

of settings, it is possible to exclude user files that are allowed to be read

by programs from sandbox environment.

A user can create multiple sandbox instances at the same time, which

may be useful to isolate different programs and diminish the impact

on the system that may occur in case of malware execution. If malicious

software is noticed to be running, it is easy to clean-up the sandbox with a few

clicks of a mouse. In this manner, all files in the particular sandbox are deleted

and the threat is dismissed. In computer security context, Sandboxie may be

seen as a sort of a virtual machine embedded into the system due to possibilities

it offers. Although, this tool may be powerful in defending against threats it is

not wise to abandon conventional security measures like anti-virus engines

considering the fact that security holes occur time to time that allow attacker

to bypass sandboxes environment and to penetrate into the actual operating

system.

Figure 2.9 Sandboxie memory use logic [29]

 36

For malware researchers an add-on called Buster Sandbox Analyzer15

can be of interest. This package is built upon the actual Sandboxie and gives

a spectator overview of actions happening in the system during an application

run.

2.3.4 Analysis tools

There are tools available for download and offline use after installation,

as well as there are tools that can be used right after opening the webpage

of the respective service. Hereby are presented some tools that work

on demand.

2.3.4.1 urlQuery.net

By visiting the website http://urlquery.net, you can access a free online

service to test a given URL for suspicious or malicious behavior. Developers try

to contribute their own detection engine in addition to use of other detection

tools, for instance Intrusion Detection Systems using a default set of signatures

yet leaving out unrelated services and protocols of IDS like FTP, SMTP, ICMP

and similar. [36] Figure 2.10 shows a sample result page after scanning

a webpage containing malicious content. The report is split into categories

of information regarding the threat discovered. At first, general information

about the submitted URL and UserAgent16 field of the browser used to visit the

URL are shown. Later on, a documentation concerning security is displayed,

fields giving more detailed explanation about

 alerts raised by IDS

 whether the URL was found on a blacklist of URLs

 if a file is offered for download upon visiting a URL, accompanied

by VirusTotal rating in case a file is present

15 http://bsa.isoftware.nl/
16 UserAgent field carries identification information regarding

the version of user’s web browser; it is often used for sorting the web content
passed to users due to different capabilities of a particular browser

http://bsa.isoftware.nl/

 37

 section devoted to JavaScript code found on the visited webpage where

a user can see the complete code of executed scripts just by clicking

on a chosen branch

 section (not shown in the figure) observing all HTTP transactions (request

– response) is present and depicts all redirects during a visit of a website

At the moment of writing of this thesis, developers were working on providing

users with an API, but it was still closed for beta testing.

Figure 2.10 urlQuery.net report page

 38

2.3.4.2 VirusTotal.com

VirusTotal is another free online service where you can submit

a suspicious link or a file to conduct detailed analysis in order to determine

whether the resource is or is not malicious. However, VirusTotal works more

as an information aggregator than a scanning framework itself and neither does

it work like a conventional antivirus software solution. It utilizes information

gathered by various antivirus products, website scanning engines or file

characterization tools of which antiviruses like AVG, ESET, Avira, Symantec

or Kaspersky can be mentioned. [39] The full list of antiviruses, scanners

and tools utilized can be found on the VirusTotal’s website. Moreover,

a community network was started in 2010. It allows users to comment on files

and URLs which is a good contribution to improve system’s accuracy,

for example avoiding false positives by users conducting a deep malware

analyses and sharing their findings with other users.

As an outcome of VirusTotal’s design, the service is supporting wide

range of file formats for scan, e.g. Windows executables, PDFs, images,

JavaScript. Another advantage is that malware signatures are as fresh as they

are issued by antivirus developers. Every single scan generates dataset that is

stored in database. After submitting a resource that has been scanned any time

before, the latest report is shown to the user. Additionally, there is an option

to re-scan the resource at the moment of submission. User also has an option

to search the database for a malware based on its hash string, specifically MD5,

SHA1, SHA256 functions. There are several possibilities how to submit

a resource for scan. The main method is to use web interface where you can

choose a desired option and receive results as quick as possible because the web

interface has the highest scanning priority assigned. The next method to submit

a resource is by using an email where a suspicious file is sent as an attachment

and the report is replied to the user by email. Furthermore, the project’s team

has implemented extensions for Mozilla Firefox, Google Chrome and Internet

Explorer to integrate its functionality within web browsers and make the usage

faster. Standalone software is available as well - a file uploader that makes files

submission more straightforward. For the purpose of automating the process,

an API is ready to use. However, the free variant is limited to 4 requests per one

minute, making a total of 5760 requests a day. It is possible to ask for a private

 39

API key which has no such request limitations in addition to providing a bigger

set of data concerning the scanned resource. [38]

Figure 2.11 shows how a report of a malicious resource looks like after

submitting it via web interface. In this case, the sample was already scanned and

upon submitting the hash was found in the database hence the report was

loaded and displayed.

2.3.4.3 Malwr.com

Malwr.com online scanning service is also free for public use. The goal is

similar to the goal of VirusTotal.com website, yet it utilizes different scanning

Figure 2.11 VirusTotal.com report page

 40

and operations principle. This website is founded by security researchers that

are developing high-interaction Cuckoo Sandbox honeypot, which is described

in more detail in section 3.2.3. Due to this fact, Malwr.com website uses mainly

this honeypot to conduct a dynamic analysis of submitted samples, but also

compares the sample against collected intelligence of VirusTotal service and

appends the findings to the analysis result. By the words of founders, it is a non-

commercial project that does not make any profit from files uploaded by users

and aims at public sharing of these files. Despite that, developers value user’s

privacy and the decision whether a file is shared (available for download

by other users) or not, depends on the uploader’s choice. As an addition

to submitting files directly from the website’s interface, there is an API available

for automation of submission process. Upon creating a user’s account, a private

API key is generated for the account. The API is not limited to a number

of submissions, yet it is desirable to treat this opportunity wisely and not

to drain resources of the offered service.

Samples submitted to the service are identified based on their MD5 hash.

After signing in, users are able to search for previously submitted malware.

The main search criterion is the hash string of MD5, SHA1, SHA256

and SHA512 functions. Additionally, it is possible to specify other search

criterions, such as filename, file type, signatures or string contained, opened

registry keys and others. While visiting the website, users are able to browse

results of recent submissions that are ordered chronologically beginning from

the latest one. The list contains hash string, filename, file type and number

of detections by antivirus engines.

The particular analysis result contains extensive information about

the sample. The output is split into several areas:

Quick Overview. Shows basic file details, gives possibility to download

the sample (if shared by uploader), behavioral signatures, screenshots of virtual

machine during the analysis and files, registry keys and mutexes17 accessed

by the file.

17 Mutex is a synchronization object that is responsible to ensure mutual

exclusion of multiple threads trying to access the same shared file at once

 41

Static Analysis. Shows memory addresses admissions, imports of libraries,

strings discovered and antivirus engines detections.

Behavioral Analysis. Shows exhaustive details about actions taken

by executables in sense of network, filesystem, registry, services,

synchronization activity by processes captured on the system level.

Network Analysis. Shows details about contacted network places,

specifically domains, hosts, HTTP, IRC or SMTP.

Dropped Files. Hash strings, file types information of files which download

was invoked during sample execution and stored in local storage.

Community comments.

Figure 2.12 Malwr Quick Overview page

 42

Figure 2.7 partially illustrates the Quick Overview info tab of a submission

of a malicious file. There is a helpful feature available – user may receive

an email notification after the analysis of user’s submitted file is completed.

That may be advantageous because submissions are processed depending

on their priority and the queue may become quite lengthy.

2.3.4.4 herdProtect.com

The project called herdProtect is approaching the malware-defense

problem a bit differently. Due to the fact that a single antivirus engine is not

able to be 100% effective, herdProtect crafted a platform that utilizes 68

antimalware engines to scan and protect user’s computer. Despite that,

herdProtect is not a full-plan antimalware protection tool. It is designed to serve

as a complementary level of protection to one of actual antivirus engines which

should be protecting a user’s computer. At the moment of writing, the tool was

only capable of scanning on demand, i.e. no real-time protection

in the background was a part of the tool. In addition to small antivirus

companies, practically all of the major vendors are present. The complete list

of used engines can be seen on the project’s website.

Likewise the previously-mentioned online services in this section,

also herdProtect website offers possibility to search for stored results

in the database of already conducted analyses. Although this is not the main

purpose of the service, there is a section of the website called knowledge base.

It gives a user not only the search capability but also the possibility to browse

stored threats that are split into several categories such as detections, URLs,

domains, or publishers. On the contrary to the previously-mentioned web

services, herdProtect does not offer a possibility to submit a voluntary user

input, i.e. URLs to visit, single or multiple files to upload for malware

verification. It only collects files that are detected to be suspicious or unknown

during the computer scans. Similarly, there is a community section which

is held in a Questions & Answers fashion. Anyone visiting the website is free

to post questions and to provide answers to existing questions.

The main goal of the project is to build a platform that provides scanning

functionality. The service can be downloaded directly from the project’s website.

 43

Figure 2.13 herdProtect.com result page

After the installation is completed, the tool is able to start scanning. The scan

monitors active objects within the operating system. Active objects, as defined

by developers, are processes, modules, drivers and similar, that are running

or have the ability to automatically execute. The tool takes a snapshot of such

file and removes user’s personal information. The scan process consists

of 4 steps: [10]

 44

1. At first, herdProtect simply compares the hashes of the sample

with the stored signatures in the database.

2. If no match is found, the tool extracts static and behavioral information

about the active object and compares it with the database of relevant

information.

3. In case no match is found in previous step, the tool will analyze the sample

in the sandbox environment with all of 68 engines. Due to the fact that all

scanning takes place in the cloud environment, the sample is sent from

user’s computer to the herdProtect machines and is reported back

to the user once the scan is completed.

4. Additionally, herdProtect uses standard industry scanning techniques

for detecting offline and binary patched files and rootkits.

If a match is found during the scan process, herdProtect does additional

verification in order to exclude false positive detections. Otherwise, the file

is flagged for further observation and is re-analyzed when the signatures

of antivirus engines are updated. The figure 2.13 depicts results of an analysis

of a randomly chosen malicious file. If relevant, the result contains a section

where variations of the file or related files are listed.

2.3.5 Malware resources repositories

The Internet offers a quantum of various malware repositories where

a user can find and download samples so he can look into the behavior and

analyze the threats. Most commonly, samples are look-able based on the file

hashes. The download may be conditional – based on the uploaders decision

to share the sample or not, for example. Honeypots are complementing matter

for computer security, because they help to study the malware in order to form

new signatures for instance, and thus help to strengthen the security against

malware. Here we mention some of the websites that give a user a chance

to download samples.

malwr.com. Gives user a possibility to search by hashes of samples as well

as browse recent submissions. The sample sharing depends on the uploader

whether he allows his submission to be downloadable.

 45

virustotal.com. Gives user possibility to search for samples, yet by default

the sharing is not allowed However, user can request for admission

to the download section.

contagiodump.blogspot.cz/2010/11/links-and-resources-for-

malware-samples.html. A blogpost containing links to multiple repositories.

malware-traffic-analysis.net/index.html. A blog with descriptions

about updates regarding the newest threats that are thoroughly analyzed. URLs

where threats had been spotted can be found in the posts as well as links

to alternative repositories sharing samples and analyses.

zeustracker.abuse.ch/monitor.php. List of domains that are known

to serve ZeuS18 infection and files associated with this threat.

forums.malwarebytes.org/index.php?/forum/51-newest-malware-

threats/. Official forum of Malwarebytes anti-spyware software vendor where

community shares and comments can be found.

exploit-db.com. User friendly collection of malware samples.

vxheaven.org. A portal collecting not only samples but also an extended

intelligence about viruses such as magazines, whitepapers, tutorial and various

utilities.

virusshare.com. Large repository of malware samples to support malware

analysis and security community. There are several millions of samples stored.

malware.dontneedcoffee.com. A research community’s blog where

detailed description about exploits is posted regularly.

shadowserver.org. A project focused on collecting information regarding

viruses and cyber-threats rather than sharing samples. The website also bears

various statistical data attacks, botnets, scan, viruses and similar.

18 ZeuS is a wide-spread Trojan horse malware

 46

3 HANDS ON CLIENT HONEYPOT

The following chapter presents several honeypot solutions which were

selected for a closer look. The presented solutions cover static analysis approach

of low-interaction honeypots as well as dynamic analysis approach of high-

interactions honeypots.

3.1 Low Interaction

In this section there are three low-interaction client honeypots presented

in more detail. Implementations called HoneyC, Thug and Yalih are described.

3.1.1 HoneyC

HoneyC is one of the first honeyclients, which started to form this sector

of computer security. It is a project of Christian Seifert that originated in 2006.

Nowadays, this project is not alive but a downloadable version is still present

on the website of the project. We state this honeyclient for a reference and to see

how the entire field developed since then. The honeyclient operates in a manner

of low-interaction attitude and instead of having a fully-fledged system

in the background it only emulates some services to pretend basic user

interaction.

The client honeypot consists of three main components: Queuer, Visitor

and Analysis Engine. The responsibility of the Queuer is to arrange a set

of webpages that the Visitor will visit and gather data for analysis. The Visitor is

a unit that actually opens webpages and interacts with servers. The Analysis

Engine compares received responses with a set of Snort19 signatures in order

to determine the maliciousness of a visited website. [2]

Due to the fact that HoneyC is published under General Public license,

a user is free to alter the components and to craft them to better suit the needs

of the user. For example, to make Queuer build the set of servers by crawling

the Internet, or by interacting with API of one of the available search engines

19 Snort is a Intrusion Detection System software; https://www.snort.org

https://www.snort.org/

 47

and query the API for search results that may be attractive to find exploits.

Alternatively, criterions to evaluate maliciousness can be changed in Analysis

Engine. However, the implementation is now outdated and there are more

complex solutions available, which are presented in subsequent sections.

3.1.2 Thug

Thug is a low-interaction honeyclient project that is written in Python

programming language and is still in development by Angelo Dell’Aera. Thug’s

focus is to emulate browser’s behavior in order to detect client-side attacks.

It utilizes signature matching principle for the sake of analysis.

The implementation uses Google V820 JavaScript engine to analyze malicious

JavaScript code and Libemu 21 library to detect shellcode. As mentioned,

the principal area for Thug is browser-application emulation. It focuses

on emulation of four most popular browsers these days, i.e. Internet Explorer,

Google Chrome, Mozilla Firefox and Safari. The UserAgents, called browser

personalities in this particular case, are available in different release versions

to broaden the scope of analysis possibilities, which is in line with the fact that

attackers tend to serve different content to different browser versions.

To supplement the variety, personalities are even available with a different

underlying operating system, e.g. Chrome is available as it would be installed

in Windows XP, Windows 7, Linux, MacOS X. In order to keep-up with the most

recent threats, the personalities of web browser on portable devices are

available for emulation. Currently, there are several Android OS devices

and Apple iPad that can pretend different browsers and various versions of iOS.

In regards to browser plug-ins that experience the highest number of attack

attempts, Thug is able to emulate Adobe PDF, Shockwave Flash and Java

in versions specified by Thug’s administrator. Moreover, a user can define

DOM-based events through a parameter for submission query and thus extend

the emulation capabilities.

20 V8 is Google’s open source JavaScript engine used in Chrome web

browser; more information can be found at https://code.google.com/p/v8/
21 Libemu is a library for basic x86 emulation and shellcode detection

specifically designed for use in IDS and honeypots; more information can be
found at http://libemu.carnivore.it/

https://code.google.com/p/v8/
http://libemu.carnivore.it/

 48

The installation process is a bit lengthy due to the higher amount

of dependencies, but there are user-created scripts that can be found

on the Internet to make the installation easier. Once the required packages are

installed, the honeypot is ready to run right after it has been unpacked from

distribution archive. The usage is straightforward and listing 1 shows an output

from help query to demonstrate available options.

At the time of writing of this thesis, Thug is only able to accept a single

URL as an input. There is no automation mechanism as a part

of the implementation. This can be solved easily. For this purpose, for example,

a simple bash script that accepts a .txt file as an input, where a single URL-per-

line is stored, reads the URL and passes it to Thug for processing is completely

sufficient. The figure 3.1 shows a sample output during Thug run upon visiting

a malicious webpage that was launched in the test environment during

experimentations with honeyclient. Additionally, Thug package that is available

Listing 1 Output from Thug’s help query

 49

Figure 3.1 Sample from Thug run

for download contains sample exploit files that may help a user to test

functionality of the honeypot.

After visiting a webpage, Thug creates a report that differs based on the

content of the particular webpage and the configuration set by administrator.

It is capable of saving HTML content as well as CSS content of the website,

images or JavaScript elements executed on the website. In case the submitted

link points to a downloadable content like .zip or .exe files and similar,

the honeypot stores the content on the hard-drive and thus allows the user

to proceed with investigation of potentially malicious content with the help

of other tools serving for this purpose. At the same time, Thug performs

an analysis and saves the outcome. The honeyclient creates a file using JSON

template 22 that stores exact configuration used to visit a webpage and states

the behavior or exploits discovered on the webpage. Furthermore, another file

22 A structured text file to store high amouts of information based

on a pre-defined template; https://code.google.com/p/json-template/

https://code.google.com/p/json-template/

 50

in .xml structured format regarding to the analysis can be created using MAEC

language23. There is also a graph of redirections which may be hidden from

a user, which occurred during the visit of a webpage. You can see an example

in the figure 3.2.

3.1.3 Yalih

Yalih is an abbreviation that stands for “Yet another low interaction

honeyclient”. The name is self-explanatory in this case. Honeyclient is written

in Python programming language and has several capabilities, and all of them

match the description of low-interaction honeypots, which we clarified

previously. It is designed to detect malware mainly by looking for familiar

patterns. [18] Signatures are downloaded from databases of AVG and ClamAV

antivirus engines that were chosen by developers and are complemented

by signatures from Yara tool (more information in section 4.1.1).

As we can see in the listing 2, Yalih is able to accept different types

of input. It is possible to provide a single URL link as well as a file containing

a set of URLs, or a local folder containing single or multiple files for analysis.

23 MAEC is a standardized language (free for public use) for sharing

structured information about malware based upon attributes such as behaviors,
artifacts, and attack patterns. MAEC aims to improve communication about
malware by eliminating the inaccuracy that exists in malware descriptions and
by reducing reliance on signatures. [24] For exhaustive information look into
the referenced paper.

Figure 3.2 Graph of redirections

 51

Moreover, honeyclient has extended functionality and is able to scan provided

email account, extract URLs from messages in mailbox folders and visit

discovered links in order to check for malicious activity. User needs to supply

login credentials into the configuration file and provide the mailbox address,

e.g. imap.google.com for Gmail account. Another interesting feature is

the ability to query search engine of Bing search service. User inputs a keyword

that will be searched by Bing and afterwards links from the first 100 results will

be examined; there is also a setting to determine a number of links from

the beginning of search results that will be omitted from examination, as it is

highly probable that the most popular links are benign. In case user does not

have a particular input for the honeyclient, there is an option to scan malware

URLs retrieved from blacklist databases. Yalih queries three different websites

for their database of malicious or suspicious webpages and scans them

accordingly. The list of webpages is saved in the computer and it can be used

later as an input for another honeypot, for example.

Likewise in the previous honeypot, also Yalih is able to emulate several

different web browsers, but the list is not so rich. Mozilla Firefox and Internet

Explorer have the most versions amongst others. When a downloadable

executable is encountered, it is stored for the sake of further investigation.

Listing 2 Output from Yalih's help query

 52

A possibility to configure a proxy is available that is useful to tamper with

the geolocation assigned to the IP address that is used to run Yalih. That is

helpful when a user would like to investigate malware presence that may be

hiding when a visit from incorrect (from the malware’s point of view) location

happens. Figure 3.3 shows an output from running Yalih.

Yalih implements some good ideas, which absent in other available

implementations, e.g. retrieving and scanning of links from blacklists,

or following links found in an email account, but there is a lot of work still to be

done in the future. Better optimization of the process, unification of output

produced by honeyclient. For example, more sophisticated reporting could

be implemented, because at the moment only a common debug log is produced

and files are being retrieved from visited websites. Alternatively, more antivirus

databases can be added in order to supply broader set of signatures

for scanning.

Figure 3.3 Sample from Yalih run

 53

3.2 High Interaction

This subchapter presents solutions that focus on high-interaction

paradigm providing the malware with complete operating system to interact

with. These tools utilize dynamic analysis in order to evaluate submitted

samples.

3.2.1 CaptureHPC

CaptureHPC is a honeyclient developed at Victoria University

of Wellington, New Zealand. It was originally released in 2006 as one of the first

implementations of high-interaction client side honeypots. The main signature

of this honeypot is a server – client architecture. The central server component

is responsible for event handling and tasks distribution amongst multiple client

components which actually conduct the work. i.e.visit webpages, or utilize any

user application in common in order to classify the interaction. Thus, it is not

difficult to extend framework’s performance and it is done by adding client

component instances. Figure 3.4 demonstrates the CaptureHPC set-up along

Figure 3.4 CaptureHPC framework scheme

 54

with data flow inside of the framework environment. Client components are

launched as virtual machines running Windows operating system. Thanks

to various settings possibilities, administrator is able to define, for example,

how long a visit would last before the machine shuts down and proceeds

to the next URL.

Detection principle has the same outlines as high-interaction honeypots

have. The operating system is closely monitored, in this case processes,

filesystem, registry entries, in order to spot changes during the application run.

Naturally, there are events that are of normal benign behavior, e.g. file

manipulation in browser cache folder. These events need to be excluded from

the final classification of a resource. For this purpose, framework supports

exclusion lists. [1] An example of such list regarding file modifications made by

Capture client’s process is shown in the listing 3. Entries in the list are

constructed as regular expressions. Malicious classification then depends

on the occurrence of system modifications outside the excluded area.

Notwithstanding, CaptureHPC was introduced earlier; it still is

a powerful tool to detect malicious behavior of user applications. Due to the fact

that the framework monitors a complete set of events, which are hidden from

unaware user, happening inside of a system, it collects relevant data. Gathered

intelligence usually needs a human analysis to support the final decision.

This honeyclient implementation is utilized by the HoneySpider Network 2.0

framework that is also described later in this chapter.

The honeyclient implementation is powerful due to the fact that it gives

a broad observation of events that happened in the system. The cost for

the amount of information is the time needed to conduct a single analysis.

Listing 3 File operations exclusion list

 55

Present-day implementations have much better overall process handling and

give even more details about application execution.

3.2.2 Strider HoneyMonkey

Strider HoneyMonkey is a research project founded by Microsoft

for the purpose of detecting and analyzing websites hosting malicious code.

The framework makes use of high-interaction honeypots interconnected

via virtual environment on several physical machines. Thanks to benefits

of virtualization (mentioned in section 2.1.4) the project utilizes various

configurations of exposed systems, from completely unpatched to (nearly) fully

up-to-date systems. HoneyMonkey operates in three stages:

1. Each HoneyMonkey starts by visiting the same large list of URLs in one

unpatched VM (virtual machine) with redirection detection switched off.

In case of an exploit is detected the machine switches into one-URL-per-VM

mode to re-test suspicious links.

2. Found exploit-URLs from the previous stage are being rescanned while

recursive redirection tool is enabled, in order to resolve all URLs connected

to the exploit.

3. Last stage scans URLs from stage 2 on updated machines to detect threats

trying to exploit latest vulnerabilities (optionally zero-day attacks). [41]

This way, researchers are able to look for sites that focus on specific

vulnerabilities. Additionally, even zero-day attacks can be detected due

to the use of (nearly) fully patched systems. When an updated system is being

successfully exploited, it means a zero-day attack has been found.

As researchers state, the detection is being held in so-called black-box.

After a HoneyMonkey visits a URL it waits for a predefined period of time

to allow the exploit to trigger, as it may be delayed in order to hide from

detection. During the visit of a webpage the system is monitored for file creation

outside the black-boxed area, process creation, registry entries changes

and a report is generated which signals about exploitation. [41]

The whole process is supported by some other tools like Strider

GhostBuster Rootkit Detection which helps to detect hidden processes,

 56

i.e. rootkits, and similar. Unfortunately, HoneyMonkey project is not available

for download and public use as it is an internal project of Microsoft to help

the company to improve security and develop secure applications.

3.2.3 Cuckoo Sandbox

Cuckoo Sandbox is a live open-source high-interaction honeypot project

and is still being actively developed and improved. The framework is written

mainly in Python language, but also takes advantage of C language. Developers

of the project started a website based on Cuckoo Sandbox - www.malwr.com

as described in subsection 2.3.4.3, which is available for public use to analyze

malware samples and URL links.

Cuckoo is built on the host – guest (server – client) paradigm which is

characteristic for high-interaction honeypots and the environment architecture

is shown in the figure 3.5.

The Cuckoo host machine is connected to both Internet and internal

virtual network which interconnects guest virtual machines and acts as the

central processing unit that manages the overall malware analysis. The host

machine submits malware samples and distributes them amongst guest stations

where the actual analysis takes place. The host is also responsible for analysis

Figure 3.5 Cuckoo Architecture

 57

reports creation and holds the reported data in raw format as well as parsed into

database structure (if configured). The guest system is a pre-crafted operating

system with Python programming language environment and instances

of vulnerable software packages which are to be monitored for exploits.

For the ease of use, a snapshot of guest system is made and is restored

to the default state before every single analysis in order to be capable to monitor

every single activity of a particular malware execution. Such analysis

environment makes it possible to deploy multiple instances of analysis stations

for the sake of improving speed and vulnerabilities variability of analyses.

The Cuckoo honeypot’s monitoring competences are designed to capture

various data so one may evaluate submitted samples and the competences are

as follows:

 win32 API calls raised by processes belonging to malware

 files modification

 memory dumps of processes belonging to malware

 network traffic dumps in PCAP format

 screenshots of VM during the malware execution

 full memory dumps of virtual machines

Above-mentioned information is automatically processed and overall result

is presented to a Cuckoo user. Additionally, a complementary analysis can be

made by investigating recorded raw data which may be beneficial to avoid false

positives or negatives or to uncover malware’s behavior, yet it requires advanced

knowledge. [8]

The installation process is thoroughly described in the user’s manual

available on the project’s website. The Cuckoo host machine is preferred to have

a GNU/Linux based operating system and for the sake of best performance

the guest stations are preferred to have Windows XP Service Pack 2/3, but also

newer versions of Windows OS will work. The subsequent configuration

consists of creating a default state snapshot(s) for virtual machine(s) and proper

configuration of the host machine. The whole framework is based on core

components which are extended with modules, thus it is possible to integrate

almost arbitrary functionality into the framework and enhance the overall

solution. Due to this fact, the configuration possibilities highly depend

 58

on the possibilities of modules integrated. By default, there are 6 main

configurable areas: basic settings for framework itself, settings of interaction

with virtualization software, settings for Volatility 24 tool regarding memory

dump analysis, configuration of processing modules that define in which way

the raw data will be analyzed and lastly settings regarding reporting of acquired

information.

Once the Cuckoo framework is successfully installed, a user can submit

a malware sample for analysis. The submission can be achieved in several ways.

Listing 4 shows available options for submission of a file using

/cuckoo/utils/submit.py utility.

As a part of the framework, there is a small web interface, which serves mainly

for displaying results of analyses, but it also provides a possibility to submit

a sample and supply some arguments as well. For the automation purpose,

developers implemented an API and an option to manage tasks using Python

functions in case an advanced user would like to create his own scripts.

File types for analysis are defined as packages in order to preserve

framework’s modularity. Thus, it is possible to create user packages and extend

file types analysis compatibility. Upon submitting a sample for analysis, a user

24 For description see section 4.1.1

Listing 4 Cuckoo submission options

 59

is advised to pass a parameter to the submission query in order to identify

the package and make Cuckoo adjust monitoring and analysis settings properly.

Nonetheless, Cuckoo is able to determine which package to use, but this

mechanism is not necessarily reliable. Most common file types have already

been created by developers and Cuckoo is ready to analyze these packages: [8]

 applet, jar – analyzing Java applets and Java JAR files

 bin – analyzing binary data like shellcode

 dll – analyzing dynamically linked libraries

 doc, xls – analyzing Microsoft Word and Excel documents

 exe – analyzing Windows executables; in case of an installer, Cuckoo is

capable of detecting the win32 buttons of the installation process and

mimic user’s mouse movements and install provided software package;

this is also useable when an executable is retrieved from a provided URL

 html, ie – analyzing Internet Explorer’s behavior while opening a supplied

HTML file, URL respectively

 pdf – analyzing PDF documents

 ps1, vbs – analyzing PowerShell language, VisualBasic scripts

 zip – analyzing zip archives (accepts password-protected archives as well)

Every package has some options that can be switched on in order to alter

the nature of the analysis done using the package.

Results of conducted analyses are stored in raw format as well as parsed

by reporting modules. Moreover, Cuckoo is possible to compare results against

pre-defined signatures and mark analyzed samples for better results

interpretation and orientation. Signatures can be created by users and currently

there is a set of user-created signatures available for download from Cuckoo’s

community space; a script for downloading these signatures is a part

of the framework. As a full report several files are created: an overall debug log

file of actions that took place during execution, a network dump file (if enabled),

a full memory dump of the analysis machine (if enabled), all files that appeared

in Cuckoo during the analysis, raw logs, reports (as defined in configuration)

and screenshots. Cuckoo is able to create report files in JSON format, HTML,

MAEC and export to MongoDB, which is utilized to display results using

a webpage.

 60

3.2.4 HoneySpider Network 2.0

Honeyspider Network 2.0 is a joint project of Polish and Dutch cyber-

security centers. The team puts their efforts to build a highly-scalable system

capable of crawling the web and monitoring systems, which are used to visit

webpages, to spot exploits and uncover malware websites. The main focus

is intensified on web browsers as a vulnerable user application and a drive-by

download attack vector. However, the framework is tailored with an intention

to possess abilities to analyze different file types such as .pdf, .exe, .swf, .doc.

The framework is built on modularity principle that combines

functionality of low-interaction as well as possibility to add functionality

of high-interaction client honeypots and is illustrated in the figure 3.6. As we

can see, there is a central controlling unit that makes use of attached modules

that are utilized for the actual analysis.

Figure 3.6 HSN 2.0 architecture

 61

The overall operation of the framework is controlled by so-called

services, which are the components of the framework that accept some input,

process it and create an output for subsequent service, in case the service’s

nature is the creation of any output. The pattern of a single input stream, called

job, is defined by a workflow, i.e. sort of an XML-structured document.

An example workflow is shown in the listing 5. The job is divided into smaller

tasks that are performed on the objects, which is a set of attributes. Services can

add attributes to existing objects or create new objects. [12]

There are several tags used in the workflow that define the particular part

of the processing stream. A bit more detailed description is:

Description. An explanation of the actual workflow shown in the web

interface.

Listing 5 Sample HSN2.0 workflow

 62

Process. Delimits a possible way of objects’ flow and is used to pass objects

to a specific flow. A process is partitioned into specific services.

Service. Determines which service treats an object. Basic approach is that

information added to objects by a service is subsequently used by another

service. The service uses additional tags to control the flow – parameter and

output. The complete list of supported parameters can be found in Data

Contract document [16]. The output tag redirects newly created objects

to a particular process.

Conditional. Tag supports the flow control by adding a conditional

expression expr which needs to be met by any object in order to proceed

to the service defined inside of the tag.

As mentioned before, the framework consists of various services that are

responsible for processing data in a sense of management or evaluation. Full list

of supported services can be found in Data Contract document [16].

Nonetheless, we mention some of the essential services.

File Feeder service. This service takes a text file containing a list of URLs

(single URL per line) as an input and creates a separate object for every line

as an output for the subsequent process. [11]

Web Client service. Webclient is a crawler service, i.e. it emulates behavior

that pretends to be a visit of an ordinary user. It is capable of downloading

resources embedded in a webpage such as HTML, JavaScript, images,

documents, or clicking on hyperlinks. For every downloaded file a new object

is created, hence it can be further analyzed by another suitable service.

The configuration possibilities are extensive; therefore we are able to adjust

the behavior accordingly to a desired scenario. JavaScript present in any

webpage is responsible for a part of dynamic content that originates after

a script execution. The functionality of webclient service allows intercepting

such scripts before they are executed by interpreting engine. Moreover,

arguments of eval 25 call can be saved at runtime in order to observe de-

obfuscated subject of scripts. This approach helps to create suitable data

25 Eval function interprets contents of the script and executes them with

the priviliges of the user who initiated the call; improper use may create security
holes that can be abused by code injection atacks

 63

to process by analyzers. In the previous description it was mentioned that

the service is capable of creating new objects. These objects are of two different

classes:

 objects that originated from links and redirects that turned up after initial

visit, which are of type url due to the relation to succeeding webpages,

 objects that are created for different files that were downloaded, which are

of type file that is supported by MIME26 type specification of the content

as determined by service’s internal mechanism, not simply copied

the classification from the visited website.

Due to the ability to push attributes from parent to child objects, a certain

combination of settings makes it possible to effectively emulate a single

browsing session, when in fact the processing is carried out by distinct instances

of webclient service. [16]

Reporter service. Reporter is responsible for saving data in CouchDB

database behind the framework. Information about the object is stored

as a JSON document based on a pre-defined JSON template. The service must

be present in every section where any data about processed objects needs to be

recorded. This service does not generate any new objects. [11]

JavaScript Analyzer service. The service is capable of analyzing

JavaScript source code without the need of code execution. Analyses are

conducted upon contexts of JavaScript code. The service makes use of Weka

Toolkit 27 and pattern matching techniques. The service examines contexts

of code in order to find suspicious or malicious keywords inside of the code. It is

possible to extend the list of such keywords by supplying parameters

to the service inside of the utilized workflow. Furthermore, it is possible

to provide a whitelist of context hashes that will be omitted from suspicious

or malicious classification. Service adds some attributes to processed objects,

for example the final classification of harmfulness. [14] Figure 3.7 shows

malicious classification by JavaScript analyzer of a visited web link.

26 standardization of formatting non-ASCII files in the Internet in order

to provide files transfer regardless of the operating system in use;
http://tools.ietf.org/html/rfc2046

27 http://www.cs.waikato.ac.nz/ml/weka/

http://tools.ietf.org/html/rfc2046
http://www.cs.waikato.ac.nz/ml/weka/

 64

Shellcode scanners. Framework can make use of two different

components in order to detect shellcode injected by malware by executing

the binary content. One uses scizzle package which is no longer available for free

and the other uses scdbg 28 application which can be downloaded from

the referenced website.

Razorback nuggets. The component employs an open-source collection

of utilities that are meant to ease data processing in order to detect various

events. The HSN 2.0 framework utilizes 6 nuggets out of the whole set. These

are capable of - scanning .swf and .pdf files, MS Office files, passing the files

for scan using ClamAV antivirus engine, comparing the MD5 hash against

VirusTotal database, extracting files from archives for further processing.

However, the Razorback framework has more utilities to offer; more specific

description can be found in the referenced source. [25]

Honeyclient services. The framework is prepared to accept and cooperate

with Thug and/or Cuckoo honeyclients during malware classification. A user

needs to have these honeypots installed and configured, in hand with respective

28 http://sandsprite.com/blogs/index.php?uid=7&pid=152

Figure 3.7 JavaScript analyzer malicious classification

http://sandsprite.com/blogs/index.php?uid=7&pid=152

 65

Figure 3.8 Web interface submission utility

package inside of the HSN 2.0 framework to gain the possibility to utilize them

as framework’s services, which only passes the input for processing to these

honeypots.

Capture-HPC service. This service utilizes slightly modified

implementation of CaptureHPC high-interaction honeyclient that was described

in section 3.2.1. In order to utilize this service, a user needs to add a dedicated

computer which will run this service and configure the framework accordingly

to interconnect both machines to be able to collect results effectively

and interpret them using the web interface provided. The service needs to be

added to the workflow respectively, so the analysis process can utilize

the functionality of the high-interaction honeypot solution.

 66

The installation and configuration process is described on the project’s

webpage29. Configuration of Capture-HPC component is a bit more demanding,

but a link to a website with detailed description is to be found on the webpage

as well.

There are two possible ways how to operate HSN 2.0. One is a command-

line interface that allows user to submit jobs or query for jobs details, manage

workflows. The alternative way is to use web interface which is depicted

in the figure 3.8. The latter way gives a user ways to submit jobs, schedule jobs

or view results of analyses.

There is a pre-made virtual appliance available for download from

the project’s website. This virtual machine image was pre-built by developers

and is configured accordingly so the user is ready to utilize the framework right

after download.

3.3 Comparing honeyclients

In previous subchapters we have introduced several selected honeypots.

Firstly we described HoneyC, Thug and Yalih that operate on low-interaction

principle and utilize the emulation of services to detect malicious web resources.

Subsequently, there are high-interaction honeyclients, namely CaptupeHPC,

Strider HoneyMonkey, Cuckoo Sandbox and Honeyspider Network 2.0. Every

implementation has some advantages as well as drawbacks. The comparison is

summarized in the table below where plus (+) and minus (-) signs are used

for classification. Number of signs means the overall assessment regarding

the respective criterion. For example, Cuckoo Sandbox collects the broadest set

of data regarding the analysis and therefore the amount of data criterion has

+++ score. On the contrary, HoneyC project is abandoned for a long time

and for that reason status criterion has --- score.

29 http://www.honeyspider.org/Installation.html

http://www.honeyspider.org/Installation.html

 67

ease of use

threats

stability

speed

amount

of data

status
lo

w
 i

n
te

ra
ct

io
n

HoneyC - --- - + -- ---

Thug + + + ++ ++ +++

Yalih ++ + - +++ + ++

h
ig

h
 i

n
te

ra
ct

io
n

Capture

HPC

--

++

-

--

++

Honey

Monkey

n/a

++

+++

-

+++

n/a

Cuckoo - +++ ++ -- +++ +++

Honey

spider

++

--

+

-

Table 3.1 Comparison of selected client honeypots

Previous comments on all of chosen honeypots in their respective

subchapters give more information grounding the evaluation provided by this

table. HoneyC is one of the first honeypots and now is long outdated, therefore

it cannot be measured with most up-to-date solutions. Thug proved to be a good

current low-interaction honeypot, although there is still work to do.

Development of Yalih is somehow stalled, due to the fact that the honeypot’s

repository was not updated since the first publication. Yalih is the fastest

of reviewed solution which was able to scan roughly 8000 links in several hours,

but did not produce that much data for further analysis. CaptureHPC is similar

to HoneyC as for the development status, yet this solution can still be used.

Thanks to the principle it uses, where there is no need for signatures,

but a strong skill of the operator who is responsible to observe gathered

information and evaluate its harmfulness. HoneyMonkey project was referred

 68

to give a notice that also corporate sphere is engaging in this area of security.

HoneySpider Network started as a potentially strong project with big ideas,

but unfortunately it looks that developers have postponed it at the moment.

The scalability was robust, which reflected on lower stability and slight troubles

with operation configuration. Cuckoo is the most up-to-date project that is still

under development and people responsible are continuously contributing

to the solution in order to bring new features and performance improvements.

Moreover, the community of enthusiasts around Cuckoo is growing bigger

and people start to take into account the need for such sort of research in order

to bring security to a higher level. The speed of Cuckoo is significantly slower

compared to Thug, for example, where scanning of several hundreds

of samples/links may take up to a whole day (this also depends on the time-out

settings of the setup). On the other hand, the amount of collected information is

large-scaled and gives the researcher required data to dig in and make proved

conclusions. Cuckoo Sandbox was chosen to conduct an experiment which is

a part of the thesis and is described in the fifth chapter.

 69

4 CUCKOO SANDBOX

As mentioned in the previous chapter, Cuckoo Sandbox is an open-

source project that is still being actively developed and improved by computer-

security research enthusiasts. It has a growing community and a number

of people who are contributing to the project and thus are extending

the honeypot’s functionality with new modules. This honeypot was chosen

for the sake of the experiment in this thesis for four reasons, i.e. functionality,

stability, user-friendly interaction and development status.

4.1 Detailed description

The main framework’s architecture was outlined in section 3.2.3. We will

utilize this principle in the experiment. In the present, some members from

community are working to make it possible to utilize Cuckoo and deploy several

server machines controlled centrally and thus multiply the operational set-up to

achieve higher performances. However, in the experiment we will stay with the

conventional architecture and deploy a solo server machine to control analyses

on three virtual machine clients.

4.1.1 Architecture & modularity

Cuckoo Sandbox is organized into 6 main elements. Every element is

configurable and is responsible for respective part of operations. The sandbox

is divided into:

Cuckoo – general behavioral configuration; for example, defines which

virtualization software is used, bears information about result-server address,

limits for number of processing threats and processing time-outs

Auxiliary – subsidiary modules that are run synchronously with malware

analysis; at the moment, by default only tcpdump is available

Machinery – defines aspects for selected virtualization software; list

of details regarding used client machines

 70

Memory – settings for Volatility module’s plug-ins that parse and analyze

memory dumps saved during malware execution process

Processing – switching on/off of processing modules that dissolve raw data

from malware execution; e.g. behavioral, static, network analyses, or dropped

files

Reporting – switching on/off of modules responsible for human-readable

reports generation; Json, HTML, Maec, MongoDB

Cuckoo has the ability to function with VirtualBox, VMware, ESx and KVM

virtual emulation software. The choice is completely up to the administrator.

Moreover, the configuration files are easily editable to append functionality

of user-created modules and support the settings or switching of such modules.

There are supplementary packages worth mentioning that bring

additional functionality to overall performance of Cuckoo.

tcpdump 30 . Linux distribution of network packet analyzer with ability

to dump network communication and store it in .pcap format; wide range

of various information can be extracted from dumps; we will use this package

in the Cuckoo setup in order to monitor network activity of malware.

volatility31. Open-source bundle for forensic analysis of RAM memory;

it can analyze both Windows and Linux memory dumps and has an extensive

set of plugins that denote possibilities of the package; the memory analysis

is rather complex and demanding process and is a topic on its own, thus it will

not be extensively covered in the following experiment.

yara 32 . Tool with the goal to unify malware classification through

the definition of common patterns that are followed by malware families and

creation of signatures based on these unveiled rules; formulation of rules is out

of scope of this thesis, but we will use some signatures that can be downloaded

from Cuckoo’s community.

30 http://www.tcpdump.org/
31 https://github.com/volatilityfoundation/volatility
32 http://plusvic.github.io/yara/

http://www.tcpdump.org/
https://github.com/volatilityfoundation/volatility
http://plusvic.github.io/yara/

 71

zer0m0n33. It is a supplementary driver which is able to perform a kernel-

level analysis of malware execution, thus strengthening the detection abilities

of Cuckoo in case the malware is smart enough to detect the VM mockery.

vmcloak34. Software package from one of Cuckoo’s developers, which value

lies in automation of the process of VM generation; this way it helps researcher

to save significant amount of time that is needed to set up guest VMs and

makes large deployments much easier with the help of wide configuration

possibilities it has; however, the setup of our environment is not big enough

for this tool to be significantly useful.

4.1.2 Starting an analysis

There are five ways how a user can start the actual analysis through

Cuckoo. The most straightforward is to utilize the Submission utility

in command line environment, supply the resource for scan and append some

arbitrary parameters in order to specify the actual sample or the nature

of analysis, e.g. forced time-out interval, package type, machine selection,

operating system time of the guest machine, memory dump creation (if disabled

by default). Following is an option to launch analysis using REST API which

comes useful when a user wants to automate the submission process,

e.g. in order to set-up a webpage where another user could scan his samples.

The service starts listening on a given port of an IP address and forwards tasks

to Cuckoo framework in terms of creating and extracting acquired information,

as well as reporting the current state and setup of the whole framework. This

functionality can be combined with a simple script for example, which will help

a user to avoid one by one submission of resources to scan. The possibility

to submit a sample for analysis is also present in both web interfaces that can be

used with Cuckoo (more information in section 4.1.4). Lastly, developers

implemented a possibility for Cuckoo to integrate with SQL databases such

as MySQL, PostregSQL to maintain the stream of samples using Python

functions that can be, for example, embedded into scripts.

33 https://github.com/conix-security/zer0m0n
34 http://vmcloak.org/

https://github.com/conix-security/zer0m0n
http://vmcloak.org/

 72

4.1.3 An analysis

The type of analysis is defined by analysis package that is selected.

To a certain extent, Cuckoo is capable of determining the package type in case

this information is not provided by user. However, it is better to supply this

analysis parameter, especially when the sample is a file, not a URL. Packages

that are available in Cuckoo have been described in section 3.2.4. The project’s

documentation also contains some notes regarding the creation of user-defined

packages to supplement the efforts of enthusiasts. In our experiment set-up we

modified the ie.py package that is suitable for examination of Internet

Explorer’s behavior upon visiting a webpage. We added path to Mozilla Firefox

executable as well as Google Chrome in order to gain ability to open desired

webpages in these web browsers and monitor events. Few lines were added into

the file in cuckoo/analyzer/windows/modules/packages/ named ie.py:

#Mozilla Firefox

iexplore = os.path.join(os.getenv("ProgramFiles"), "Mozilla Firefox", "firefox.exe")

#Google Chrome

iexplore = os.path.join(os.getenv("USERPROFILE"), "Local Settings", "Application

Data", "Google", "Chrome", "Application", "chrome.exe")

In a situation when a visited web location presents some downloadable

content, Cuckoo is able to click the dialogue windows and submit the file

for analysis. What is more, in case of an executable Cuckoo is also able

to proceed with the installation and actually install the downloaded software

package and monitor what is happening during the installation process. This

functionality is encoded in module called human.py.

The actual analysis is supported by cuckoomon.dll which is a dynamic

link library file that is injected into Windows guest system before every analysis

begins. This file is responsible for the Windows-side monitoring and reports

findings and interceptions to the Cuckoo host system.

 73

4.1.4 Output of an analysis

The analysis process creates an amount of files depending on the actual

nature of the malware sample submitted and the configuration set

for the processing of gathered data. Files are stored in a dedicated folder,

where a new subfolder is created for every single analysis. The structure is

illustrated in the figure 4.1.

File named analysis.log is a general debug log file that bears information

about events such as process spawning, file creation, or errors that might have

occurred during the analysis run. A file named dump.pcap stores information

collected by the network sniffer and bears records about network

communication, in case the network analysis is enabled in overall configuration.

If created, the memory.dmp file is a full memory dump of the execution

machine, which can be deeply examined for events that took place while

the sample was executed. Inside of the files directory, there are files which were

collected by Cuckoo that were processed, created or appeared on the guest

machine in any other way, e.g. JavaScript, cookies. The subfolder logs stores

raw logs generated by Cuckoo in .bson format. On the other hand, reports folder

holds reports generated from the raw data and the contents of the folder depend

Figure 4.1 Results folder tree

 74

on the report processors enabled in the framework’s configuration. Lastly,

the folder shots is used to save screenshots that were captured during

the analysis, which are helpful to see what was happening on the screen while

the sample is executed. The time delay between screenshots is, by default, set

to 1 second, but can be easily altered.

4.1.5 Web front-end

Cuckoo Sandbox can be enriched with two different web interfaces that

help user to display results in more fancy way and to maintain tracks

of conducted analyses.

The older, simpler interface is easy to launch, with no need of installation

or configuration, directly from the Cuckoo application directory under /utils

subfolder. Figure 4.2 shows the submission page of both web interfaces,

with the older one located on the left side.

Figure 4.2 Sumbission page of both interfaces

 75

Figure 4.3 Homepage of new interface

There is also a bit more complex interface available, which utilizes

Django application and accumulates data in MongoDB on the background.

Therefore, it is necessary to have these packages installed and configured as well

as allowed within the settings of Cuckoo. The newer interface allows a user

to search amongst analysis results. Moreover, in assistance of WSGI35 interface

this web interface can be deployed on web servers like Apache, Unicorn,

or Nginx in order to give users access to the platform via web. The configuration

of infrastructure needed for this deployment is out of scope of this thesis.

The homepage of new interface is depicted in the figure 4.3.

35Python‘s Web Server Gateway Interface to interconnect web server and

web application or framework; https://www.python.org/dev/peps/pep-0333/

https://www.python.org/dev/peps/pep-0333/

 76

4.2 Deploying the honeypot

The following subchapter explains the actual process of installation

of underlying systems needed to set up the experimental framework.

4.2.1 Host operating system and software

The operating system for the Host machine is chosen to be Debian 7.7.0

(debian-7.7.0-amd64-lxde), the latest stable release with LXDE desktop

environment. The Cuckoo Sandbox is intended to have the best performance

on GNU/Linux system such as Ubuntu or Debian. [4] The installation of the OS

is extensively covered on the distribution’s website 36 . Operating system is

installed on a mainstream home PC with following parameters:

Asus P8Z77-M PRO

Intel Core i5-3470 @ 3.20 GHz

8 GB RAM DDR3

80 GB hard-drive for OS

80 GB hard-drive for results storage

After the OS is installed, there is a need to complement the functionality

with additional packages. Many of packages are installed automatically

by package manager aptitude because the necessary packages are dependent

on the chosen ones. Packages installed via aptitude manager using

$sudo apt-get install command are as follows:

python, python-pip, python-dev, python-dpkt, python-markupsafe python-magic,

python-gridfs, python-sqlalchemy, python-bson, libtool, automake, autotools-dev,

m4, ia32-libs, curl, tcpdump, dkms, virtualbox-4.3

An alternative python-oriented package manager holds several of used

distributions that are installed using $sudo pip install command:

jinja2, pymongo, bottle, pefile, maec==4.0.1.0, django==1.7.1, chardet, vmcloak,

pycrypto

All of the packages can be downloaded in source code from projects’

websites, then compile the code and install the package manually.

36 https://www.debian.org/index.html

https://www.debian.org/index.html

 77

Some of required packages are not available in aptitude or PyPI managers and

need to be added manually. These packages are:

pydeep and dependency ssdeep-2.1237, yara 3.1.0, volatility 2.3.1, distorm338

Finally, necessary dependencies for Cuckoo Sandbox are installed.

The Cuckoo package is available for download on the project’s website (in stable

and development builds). It is sufficient to extract the downloaded archive and

grant permissions to a (created) system user to operate with VirtualBox

software; at this point Cuckoo is ready to start working.

The particular configuration of Cuckoo Sandbox used for experimenting

is described later in subchapter 5.1.

4.2.2 Guest VM systems installation

Preparation of the Guest system, that will actually do the exploratory

part of the work, requires patience due to the high time heftiness. The proper

arrangement should not be underestimated, due to the fact that advanced

malware is able to detect the mock-up and avoid the attack attempt. Moreover,

in terms of software it is also important to install various outdated versions with

vulnerabilities. In order to plausibly reproduce a genuine computer system

it may be useful to store some user files in the system, e.g. pictures, photos,

videos, documents and similar. Additionally, the presence of software that is not

often a target of attacks and is not intended to be monitored may be

complementary in order to create virtual machine impersonation. Such pre-

attack scans are, in case of targets of opportunity, automated. That is thanks

to the high number of attacks that cyber-criminals try to conduct. In case

of targets of choice, the perpetrator is considered to be skilled sufficiently

to determine a counterfeit, thus such cloaking cannot be sufficient.

The Guest operating system used in virtual machines is Microsoft

Windows 7. An outdated Windows XP was considered to be a part

of experimental set-up, but during the recent half a year the usage shares

dropped drastically from about 30% in January 2014 to as low

37 https://github.com/kbandla/pydeep; http://ssdeep.sourceforge.net/
38 https://code.google.com/p/distorm/

https://github.com/kbandla/pydeep
http://ssdeep.sourceforge.net/
https://code.google.com/p/distorm/

 78

as 14% November 2014. [26] This may be a consequence of end of official

support for this system from Microsoft that was closed with product’s lifecycle

on 8.4.2014. [44] This decision was made not only because Cuckoo has the best

performance and stability with this kind of OS, but mainly due to the fact that

Windows is the most used operating system in the present day. Based

on the data from StatCounter website, the Windows OS has more than 85%

of overall market share. [34]

Windows 7

For the sake of experiment on Windows 7 platform we will use three

virtual guests with identic configuration. A clean installation of Windows 7

is performed. Automatic Windows updates are turned off as well as Windows

Firewall feature as advised by developers. This is due to the fact that firewall

may be disrupting the communication between Cuckoo client and Cuckoo

server. To ensure correct operations following software is necessary:

python 2.7.7, python image library 1.1.7 (PIL), internet explorer (IE)

8.0.6001.18702 (default version)

From the Cuckoo environment’s point of view, there is a need to copy agent.py

file from Cuckoo’s distribution package and paste it into the guest system. It is

necessary to execute this file afterwards, because it ensures the communication

between host and guest stations. Moreover, user software was installed to grant

the honeypot possibilities to work with user files. Installed applications are:

adobe reader 10.1.4, microsoft office 2007 (12.0.4518.1014)

We also adjusted settings of Internet Explorer browser and Internet Options

of the operating system in order to lower security measures that could prevent

execution of malware.

To avoid easy detection of VirtualBox emulated environment

the installation of VirtualBox Guest Additions software package was omitted.

The reason for omitting is the fact that the package adds several drivers, e.g.

video, shared folders, to the system, which are useful for a basic user to ease

interaction with VM. On the other hand, the presence of the package makes

it easier to detect virtual environment thanks to presence of particular registry

 79

keys or processes that are created by the package. Figure 4.4 shows an output

from pafish 39 utility. Multiple factors that reveal presence of virtual

environment are successfully masked besides the actual size of hard-drive

in guest systems, which is smaller than 60 GB in this case. This is due

to the limitations of available physical hard-drive which is not big enough

to store three virtual machines with 60 GB virtual hard-drive for each machine.

39 Paranoidfish is a tool that checks several aspects within Windows

system in order to detect presence of virtual environment;
https://github.com/a0rtega/pafish

Figure 4.4 Paranoid fish anti-vm detection

https://github.com/a0rtega/pafish

 80

5 EXPERIMENT

The fifth chapter is discussing the experiment that was conducted

on the configured environment which is described in the previous chapter and

also showcases the actual utilization of Cuckoo Sandbox malware research tool.

It illustrates several malware samples and findings that came up from analysis.

5.1 Configuration of Cuckoo instance

This subchapter shows the specific reading of configuration files

in Cuckoo Sandbox as they are used in the setup for experiment. As mentioned

in honeypot’s description, there are 6 configuration files to adjust, yet we omit

one that contains features of memory dump analysis. This area of analysis is not

considered in the experiment due to the high consumption of resources such

as storage space and timespan which takes to process a single analysis.

Nonetheless, memory dump analysis is a powerful domain in sense of unveiling

malicious activity, but it takes a skilled expert in order to announce reliable

conclusions and additionally it is more useful in investigation and classification

of zero-day threats. Important values of configurable aspects as well as those

that were changed in comparison to pre-set values are as follows:

cuckoo.conf

version_check = off #Cuckoo update check on start-up

machinery = virtualbox #virtual environment in use

memory_dump = off #creation of memory dumps

reschedule = off #re-scheduling of incompletely processed tasks

default_timeout = 150 sec #amount of seconds for the analysis, killed afterwards

critical_timeout = 300 #max interval before VM is terminated no matter what

auxiliary.conf

sniffer_enabled = yes #creation of network communication dump

tcpdump = /path/to/package #location of sniffer package within the host system

interface = vboxnet0 #network interface to sniff on

 81

virtualbox.conf

mode = gui #VirtuaBox mode in which guests will run

machines = cuckoo1, cuckoo2, cuckoo3 #list of VMs

[cuckoo1] #section for specific VM

label = wse1 #name of VM in VirtualBox

platform = windows #OS in VM

ip = 192.168.56.110 #IP address of VM

snapshot = final #snapshot’s name that should be restored on every run

(optional) tags = win7, ... #user specified tags to better categorize large setups

[cuckoo2], [cuckoo3] sections respectively as they are of same setup as [cuckoo1]

processing.conf

analysisinfo = yes #information about analysis, e.g. time, machine

behavior = yes #behavioral info about processes running

debug = yes #events captured in guest VM, e.g. process spawning

dropped = yes #information about dropped files on guest VM

memory =no #memory dumps

network = yes #info about network communication

static = yes #imports into .dll files

strings = yes #strings embedded in examined files

targetinfo = yes #additional info about sample, e.g. hashes, size

virustotal = yes #evaluation of file discovered on VirusTotal

reporting.conf

jsondump = yes #creation of .json report

reporthtml = yes #creation of .html report

mmdef = no #report findings from memory dump

maec40_enabled = no #report creation in MAEC format

mangodb_enabled = yes #store reports into MongoDB

For the sake of automation of start-up of Cuckoo’s services a simple bash

script was created and is sufficient to accomplish this task. After

the configuration of Cuckoo is completed, we can execute the script and launch

the framework so it can wait for submission of desired resources we want

 82

to analyze. Automation of submission of samples for analysis is also simply

achievable with help of a bash script.

5.2 Defining the experiment

The goal of the experiment is to demonstrate that the prepared set-up

and configuration is proper and works correctly giving a user data regarding

performed analyses that can be investigated. Moreover, the experiment shows

possibilities of Cuckoo and reveals some statistics gathered from collected data.

The statistics were extracted with a help of a script written in Python language,

which searched through created .json reports and collected desired data.

Resources for experiment in a form of URLs were retrieved from

http://malwareurls.joxeankoret.com/normal.txt list 40 on 10.12.2014. For the

sake of downloading malware, the VirusTotal’s repository was utilized.

With the default public access account a user does not have admission to these

resources, yet it is possible to request permission. Moreover, a tiny utility called

maltrieve41 was also used to retrieve malicious content. It is capable of scanning

malware repositories, retrieve knowledge and store it for further processing.

With the correct configuration, the utility can push downloaded content directly

to the running instance of Cuckoo Sandbox.

5.3 Process of the experiment

During the experiment we analyzed a total number of 2464 resources out

of which 1303 were potentially malicious URLs and 1161 were various malware

samples. Out of the overall amount only 19 analyses did not finish successfully,

i.e. the created .json report was incomplete and findings from these reports

were not accounted in the final report. This split is depicted in the figure 5.1

as well as the distribution between particular virtual machines. Cuckoo1 was

responsible for 904, Cuckoo2 for 722 and Cuckoo3 did 778 analyses.

40 The list is provided by an enthusiast malware researcher for non-

commercial use and is daily updated
41 https://github.com/technoskald/maltrieve

https://github.com/technoskald/maltrieve

 83

The breakdown of file types of analyzed samples can be seen in the figure

5.2. Based on the computed SHA256 hash of files analyzed, there were 991

unique files and 170 were duplicates of already analyzed files. The highest

amount of analyses were Windows 32bit executables, which reflects the reality

in a sense that .exe file format is the one which is the most popular to transmit

malware over the Internet.

In the end, the framework did on average 28 analyses per hour which

amounts to 672 analyses per day. However, while processing URLs

the framework was a bit faster processing around 42 links per hour, but on the

other hand processing of files averaged around 22 files per hour.

778

722

904

1161

1303

19

2464

0 500 1000 1500 2000 2500

Breakdown of analysis

resources

corrupted reports

URLs

files

Cuckoo1 analyses

Cuckoo2 analyses

Cuckoo3 analyses

Figure 5.1 Split of resources

Number of

11

16

32

45

65

98

122

126

646

170

991

0 200 400 600 800 1000

Breakdown of filetypes

Unique files

Duplicates

PE32 executable

PDF document

pcap dump

HTML document

MS word document

MS excel document

zip,rar archives

MS powerpoint doc

Other

Number of

Figure 5.2 Filetypes of resources in experiment

 84

5.4 Output

Results extracted from the experiment are presented in this subchapter.

The overall process of experiment produced 116.7 GB of data in two

independent runs in forms of collected files, executed binaries, raw reports and

processed reports in human-readable form.

Thanks to the integration of VirusTotal’s findings into created reports,

we can assess scanned resources with more confidence. The figure 5.3 shows

results compared against VitusTotal, 1808 resources had at least one positive

detections by any of present antivirus engines, 378 resources were not yet

submitted for scan or previously scanned at the moment of query for results,

271 resources had zero positives which makes them clean with high probability.

In total, all malicious resources had 24006 positive detections which

approximates for 13.28 detections per malicious resource. As previously

mentioned in the framework’s description, there are some signatures available

for download which may mark recognized patterns from samples examination

that are present in final reports. The figure 5.4 shows the split of all signatures

matched during the experiment. In total, 1441 of resources performed a check

of machine’s system preferences; however this behavior was also observed with

benign resources. More than 500 resources carried out steps that try to ensure

automatic launch at Windows start-up, which may, for example, help

an attacker to restore access to the computer automatically after a reboot.

Almost 300 resources stole personal information stored within user’s web

browser application. On 17 occasions, examined malware checked for presence

of anti-debug or forensic tools which are often used by malware researches

10

271

378

1808

0 250 500 750 1000 1250 1500 1750 2000

Breakdown of virustotal reports

detected

not yet submitted

clean

missing reports

Number of resources

Figure 5.3 Scanned resources on VirusTotal

 85

7

41

434

11

408

1468

1512

3

4

13

15

17

273

536

1441

1808

0 200 400 600 800 1000 1200 1400 1600 1800

Breakdown of signatures

virustotal detection

fingerprint

autorun

infostealer

anti-debug

anti-vm

Zeus

firewall bypass

regedit locker

network_http

network_bind

network_icmp

network_irc

packer_entropy

packer_upx

packer_polymorphic

Number of matches

Figure 5.4 Signatures matched

for the sake of investigation. This way attackers try to avoid detections.

Moreover, in 15 cases a check for virtual machine environment was

encountered. The actual Zeus banking Trojan was noticed 13 times. Settings

of local firewall were attempted to be changed 4 times and 3 times malware

locked user’s access into Windows registry keys editor. Significant amount

of resources performed some network communication, specifically in 1512 cases

at least one HTTP request was made, in 1468 cases the examined resource

started listening on a network port in order to intercept some traffic, in 408

cases the resource sent a message via ICMP42 protocol and in 11 cases a resource

attempted to connect to IRC channel, which may sign an attempt to connect

the machine into an existing botnet. In the process of experiment an overall

number of 3115 unique domain addresses was contacted by resources examined.

The recent phenomenon with attackers trying to mask the actual content of

malicious files was also encountered in around 20% of all analyses. In 434

42 ICMP is a network protocol used to exchange messages amongst

devices regarding service state and is not typically used by user applications
[23]

 86

binaries excessive entropy was noticed to be present, which is a sign that the file

may contain either compressed or encrypted data. The UPX packer 43

for executables compression was found in 41 files and 7 times the binary

replicated itself in a slightly modified version within the system.

Additionally, created .json reports hold information about particular

antivirus engine detections in case of scanned files. In case of potentially

malicious URLs information about the presence of the URL in blacklists

or similar databases can be extracted from reports. There are 57 different

antivirus engines and 42 different databases or URL scanning engines present

in all collected reports. Figure 5.5 shows numbers of detections of files where

top 5 vendors by number of detections are present and are complemented with

popular vendors amongst users.

43 http://upx.sourceforge.net/

73

172

187

224

273

382

416

419

425

426

432

443

444

491

0 100 200 300 400 500

Breakdown of detections by AV engine

Avast

McAfee

Avira

AVG

Ad-aware

Kaspersky

ESET-NOD32

Sophos

Fortinet

Microsoft

Symantec

Malwarebytes

ClamAV

SUPERAntiSpyware

Number of detections by

Figure 5.5 Detections of files by AV engine

http://upx.sourceforge.net/

 87

Similarly, figure 5.6 displays detections of scanned URLs as identified

by scanning engines or malware blacklists.

5.5 Sample Analysis

For the reason that a proper analysis in Cuckoo Sandbox should be

accompanied by some evaluation of a researcher, in this subchapter we will have

a closer look on a chosen threat that was encountered amongst resources that

were scanned during the process of experiment.

18

70

72

123

195

337

493

611

740

751

777

1168

0 200 400 600 800 1000 1200

Breakdown of detections of URLs

Fortinet

Sophos

SCUMWARE_org

Avira

ESET

Clean MX

Bitdefender

Google Safebrowsing

Number of detections by

Figure 5.6 Detections of URLs

Figure 5.7 HTTP request to remote location

 88

Figure 5.8 Download process of offered resource

A resource for download was offered during the visit to a potentially

malicious URL located at:

http://artasoimaritului.ro/wp-content/uploads/2014/01/pdf.exe

Cuckoo Sandbox has distinguished this activity and proceeded with

the download and execution of presented executable. The HTTP request used

to contact the remote location of malicious file is illustrated in the figure 5.7.

The figure 5.8 is a screenshot captured on the machine which illustrates the

described activity. The link was detected by 13 different intelligence collectors

Figure 5.9 Function calls for files creation

 89

to be of malicious nature. After the download finished, 3 different files were

stored on the local hard-drive, 2 out of which were executables which spawned

new processes. The figure 5.9 shows functions calls recorded that were

responsible for creation of files on the local storage. Due to the fact that

the resource was instructed to be run directly after the download, the file was

stored in the location for temporary Internet Explorer files. The second dropped

file was stored into the ApplicationData folder of the system. The figure 5.10

presents spawned processes as well as created mutexes for executables in order

to ensure necessary resources of the computer’s CPU. Mutex is often used

by malware to help avoid double infection, or alternatively to ensure

synchronization of multiple malware elements. It can be used to distinguish

malicious nature of executed files thanks to the names of these mutexes which

Figure 5.10 Spawned processes and created mutexes

Figure 5.11 Functions calls for process spawning, creation of mutex and regkey

 90

tend to have irregular names that are characteristic for certain malware. [47]

The figure 5.11 displays functions calls that arranged spawning of processes,

creation of mutexes and registry keys, where malware’s necessary information

is stored.

The dropped executable was marked by 50 antivirus engines

on VirusTotal’s website as a Trojan horse malware that is used to spread Zeus

banker infection. The described example detection reflects known patterns that

are used by this malware in terms of location where the dropped file is stored,

the location of created registry keys and also mutexes, which are named with

random regular expressions in length of 32 characters. [7][20] The severity

of this threat is high due to its capabilities to steal user’s personal information

regarding credentials for emails, baking applications and other various

accounts. Such is achieved via, for example, deployed key-logger, capturing

of screenshots, cookies and more.

5.6 Evaluation

The experiment demonstrated how Cuckoo Sandbox operates and what

the options it provides to its user are. It is a powerful engine that accumulates

wide spectrum of modular extensions in order to provide comprehensive

overview of events that take place in the system when a file is processed,

i.e. executed, loaded, opened or visited for example. It is implemented in a way

to closely cooperate with databases of already collected intelligence

and compare the analyzed resources against this knowledge. This way it can

quickly propose an evaluation of a sample and direct the researcher towards the

conclusion, however the final resolution should be made by the researcher.

Thanks to the nature and scope of the data it collects, it gives the analyst

a possibility to examine unknown suspicious resources and occasionally reveal

zero-day vulnerabilities. Additionally, in such cases collected data can serve

as a basis for creation of signatures for revealed malware.

 91

6 SUMMARY

The main topic of the thesis is a Client Honeypot, which is a tool that

helps users to closely investigate potentially malicious resources that can be

found circulating over the Internet posing threat to vulnerable users. The thesis

discusses theoretical aspects of this area of computer security and gives

thorough background on the most important parts, thus accumulates

the intelligence in one place. There are several of publicly known

implementations described in the thesis, which gives a reader an overview

on the current state of art. For the reference also outdated solutions, which were

forming the field as it is known today, are presented to deliver a possibility

to compare features now and then. After the description of honeyclients,

a single solution was chosen to serve a reader with very close review

of a powerful honeypot as well as to show off the setup process and propose

a configuration of environment. Later, an actual experiment is conducted using

the configured environment that shows how actual operations work and what

are the outcomes of them.

The experiment revealed that the problem of maliciousness on the

Internet is ongoing as well as the diversity of techniques used by assailants

in order to abuse vulnerable users and the applications they use on daily basis.

Moreover, it proved the suggested configuration of the environment as well as

the usefulness and necessity of malware research, which does not require

powerful computer and can be done, in fact, by everyone interested.

The main problem, which is a reason for tools like honeyclients

to originate, is malicious software that abuses Internet users all over the world.

The thesis tries to engage unfamiliar users to join the efforts of malware analysis

and investigation. Awareness about the problem is one of the key elements

in the fight against malware. The penetration of modern computer technology is

becoming bigger and more and more criminals convert into abusing cyber-

space. Moreover, the arriving young generation of users is better aligned with

computers and see many opportunities in utilization of World Wide Web,

thus the number of cyber-criminals raises daily. In order to keep-up with

criminals, the research of their actions needs to become more robust as well.

The more people join the research the better the defense can be implemented

 92

in antivirus engines for example. On the other hand, to mitigate risks of getting

attacked by malware, users need to be educated about proper conduct on the

Internet. Additionally, users can fortify themselves by using different secure

passwords on every respective account they have, update the software they use

as soon as the newer version is released, or audit the permissions of their user

accounts within the system to lower the number of options an attacker has after

he penetrates into the system.

The complexity and every-day updating of malware opens wide space

for possible future work. The fight against malicious software needs to keep up

and adjust dynamically in hand with the actual trends in malware. The field

of honeypotting can be, for instance, enriched with new techniques to mitigate

the rate of successful escape of malware from triggering when a virtual

environment is detected. Augmented implementation of functionality to scan

email inboxes carefully and investigate links retrieved, as abundant share

of malware is distributed via spam messages, can be beneficial, or the field can

be enhanced by utilizing large distributed setups in order to strengthen

the performance and reliability of malware research.

 93

BIBLIOGRAPHY

[1] About Capture Client Honeypot [online]. [quoted 4.4.2014] Available

from <https://projects.honeynet.org/capture-hpc/wiki/AboutCapture>

[2] About HoneyC [online]. [quoted 2.12.2014] Available from:

<https://projects.honeynet.org/honeyc/wiki/AboutHoneyC>

[3] Cross Site Scripting (XSS) Attack [online]. [quoted 27.9.2014] Available

from <https://www.acunetix.com/websitesecurity/cross-site-scripting/>

[4] Cuckoo Foundation. Preparing the Host [online]. [quoted 24.11.2014]

Available from: <https://cuckoo.readthedocs.org/en/latest/installation/

host/>

[5] The Difference between a Computer Virus, Worm and Trojan Horse

[online]. 28.10.2004. [quoted 28.3.2014] Available from

<http://www.webopedia.com/DidYouKnow/Internet/virus.asp>

[6] EGELE, Manuel; ENGIN, Kirda; KRUEGEL, Christopher. Mitigating

Drive-by Download Attacks: Challenges and Open Problems. Available

from <http://www.iseclab.org/papers/inetsec09.pdf>

[7] ESET Virus Radar: Win32/Spy.Zbot.AAU [online]. [quoted 4.1.2015].

Available from <http://www.virusradar.com/en/Win32_Spy.Zbot.AAU/

description>

[8] GUARNIERI, Claudio; TANASI, Alessandro; BREMER, Jurriaan;

SCHLOESSER, Mark. Cuckoo Sandbox Book, Release 1.1. 29.10.2014.

Available from <https://readthedocs.org/projects/cuckoo/downloads/

pdf/stable/>

[9] GÖBEL, Jan Gerrit; DEWALD, Andreas. Client-Honeypots: Exploring

Malicious Websites. Oldenbourg Wissenschaftsverlag GmbH, 2011. ISBN

978-3-486-70526-3

[10] herdProtect Anti-malware: About [online]. [quoted 19.4.2014] Available

from <http://www.herdprotect.com/about.aspx>

[11] Honeyspider Network 2: Services [online]. [quoted 15.4.2014] Available

from <http://www.honeyspider.net/Services.html>

[12] Honeyspider Network 2: Workflows [online]. [quoted 15.4.2014]

Available from <http://www.honeyspider.net/Workflows.html>

[13] Internet live stats: Internet Users [online]. [quoted 25.3.2014]. Available

from <http://www.internetlivestats.com/internet-users/>

[14] JACEWICZ, Pawel. Specification of HSN 2.0 JavaScript Static Analyzer.

Last edited 8.11.2012. Available from <http://www.honeyspider.net/

docs/HSN2_js_static_analyzer.pdf>

https://projects.honeynet.org/capture-hpc/wiki/AboutCapture
https://projects.honeynet.org/honeyc/wiki/AboutHoneyC
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://cuckoo.readthedocs.org/en/latest/installation/host/
https://cuckoo.readthedocs.org/en/latest/installation/host/
http://www.webopedia.com/DidYouKnow/Internet/virus.asp
http://www.iseclab.org/papers/inetsec09.pdf
http://www.virusradar.com/en/Win32_Spy.Zbot.AAU/description
http://www.virusradar.com/en/Win32_Spy.Zbot.AAU/description
https://readthedocs.org/projects/cuckoo/downloads/pdf/stable/
https://readthedocs.org/projects/cuckoo/downloads/pdf/stable/
http://www.herdprotect.com/about.aspx
http://www.honeyspider.net/Services.html
http://www.honeyspider.net/Workflows.html
http://www.internetlivestats.com/internet-users/
http://www.honeyspider.net/docs/HSN2_js_static_analyzer.pdf
http://www.honeyspider.net/docs/HSN2_js_static_analyzer.pdf

 94

[15] KILGER, Max. The Honeynet Project: Motivations for Malicious Online

Behavior and Consequent Emerging Cross-National Cyberthreats. July,

2010.Available from <http://icc.ite.gmu.edu/csga2010/Max_Kilger.ppt>

[16] LASOTA, Krzysztof; PAWLINKSI, Pawel. Data Contract Specification for

HSN 2.0 Services. Last edited 5.12.2012. Available from

<http://www.honeyspider.net/docs/HSN2_data_contract.pdf>

[17] LEVY, Elias (Aleph One). Smashing the Stack for Fun and Profit

[online]. Phrack Magazine No. 49. 11.8.1996. Available from

<http://phrack.org/issues/49/14.html#article>

[18] MANSOORI, Masood; WELCH, Ian; FU, Qiang; Yalih, Yet Another Low

Interaction Honeyclient. 2014. Available from <http://crpit.com/

confpapers/CRPITV149Mansoori.pdf>

[19] McAfee website: How it works [online]. [quoted 14.3.2014]. Available

from <http://www.siteadvisor.com/howitworks/index.html>

[20] Microsoft Malware protection Center: Win32/Zbot [online]. [quoted

4.1.2015] Available from <http://www.microsoft.com/security/portal/

threat/encyclopedia/entry.aspx?Name=Win32/Zbot>

[21] Microsoft Security Bulletin MS08-078. 18.12.2008. Available from

<https://technet.microsoft.com/en-us/library/security/ms08-078.aspx>

[22] Microsoft Security Intelligence Report, Volume 15. January through

June 2013. Available from <http://www.microsoft.com/en-

eg/download/details.aspx?id=40871>

[23] Microsoft Support: Internet Control Message protocol (ICMP) Basics

[online]. [quoted 19.12.2014] Available from

<http://support.microsoft.com/kb/170292>

[24] MITRE CORPORATION, The. The MAEC Language Version 4.0.1

Specification. 15.11.2013. Available from <http://maec.mitre.org/

language/version4.0.1/MAEC_Language_Specification_11-15-2013.pdf>

[25] MULLEN, Patrick; PETNEY, Ryan. Razorback. Last updated 4.8.2010.

Avaliable from <http://sourceforge.net/projects/razorbacktm/files/

Presentations/razorback-slides-1.1.pdf/download>

[26] NetMarketShare: Desktop Top Operating System Share Trend [online].

[quoted 15.12.2014] Available from <http://www.netmarketshare.com>

[27] NSS Labs. Vulnerability Threats Trends: A Decade in Review,

Transition on the Way. February 2013. Pages 4-8. Available from

<https://www.nsslabs.com/reports/vulnerability-threat-trends>

[28] PROVOS, Niels; THORSTEN, Holz. Virtual Honeypots: From Botnet

Tracking To Intrusion Detection. Pearson Education Inc., 2008. ISBN

0-321-33632-1

http://icc.ite.gmu.edu/csga2010/Max_Kilger.ppt
http://www.honeyspider.net/docs/HSN2_data_contract.pdf
http://phrack.org/issues/49/14.html%23article
http://crpit.com/confpapers/CRPITV149Mansoori.pdf
http://crpit.com/confpapers/CRPITV149Mansoori.pdf
http://www.siteadvisor.com/howitworks/index.html
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Zbot
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Zbot
https://technet.microsoft.com/en-us/library/security/ms08-078.aspx
http://www.microsoft.com/en-eg/download/details.aspx?id=40871
http://www.microsoft.com/en-eg/download/details.aspx?id=40871
http://support.microsoft.com/kb/170292
http://maec.mitre.org/language/version4.0.1/MAEC_Language_Specification_11-15-2013.pdf
http://maec.mitre.org/language/version4.0.1/MAEC_Language_Specification_11-15-2013.pdf
http://sourceforge.net/projects/razorbacktm/files/Presentations/razorback-slides-1.1.pdf/download
http://sourceforge.net/projects/razorbacktm/files/Presentations/razorback-slides-1.1.pdf/download
http://www.netmarketshare.com/
https://www.nsslabs.com/reports/vulnerability-threat-trends

 95

[29] Sandboxie [online]. Available from <http://www.sandboxie.com>

[30] SCARFONE. Karen; MELL, Peter. Guide to Intrusion Detection and

Prevention Systems (IDPS). National Institute of Standards and

Technology Special Publication 800-94, February 2007. Available from

<http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf>

[31] The Size of the World Wide Web (The Internet) [online]. [quoted

25.3.2014]. Available from <http://www.worldwidewebsize.com/>

[32] SPAFFORD, Eugene H. The Internet Worm Program: An Analysis.

8.12.1988. Available from <http://spaf.cerias.purdue.edu/tech-

reps/823.pdf>

[33] SPITZNER, Lance. Honeypots: Tracking Hackers. Pearson Education

Inc., 2003. ISBN 0-321-10895-7

[34] StatCounter Global Stats: Top 7 desktop Oss on Nov 2014 [online].

[quoted 24.11.2014] Available from <http://gs.statcounter.com/

?PHPSESSID=drd7u86f66gr1djns6fki1k0i0#desktop-os-ww-monthly-

201411-201411-bar>

[35] Top 10 Worms [online]. [quoted 28.3.2014] Avialable from

<http://www.secpoint.com/Top-10-Worms.html>

[36] urlQuery website: About urlQuery [online]. [quoted 26.3.2014].

Available from <http://urlquery.net/about.php>

[37] VERACODE. Common Malware Types: Cybersecurity 101 [online].

12.10.2012. [quoted 27.9.2014] Available from <https://

www.veracode.com/blog/2012/10/common-malware-types-

cybersecurity-101>

[38] VirusTotal website: About VirusTotal [online]. [quoted 25.3.2014].

Available from <https://www.virustotal.com/en/about/>

[39] VirusTotal website: Credits & Acknowledgements [online]. [quoted

25.3.2014]. Available from <https://www.virustotal.com/

en/about/credits/>

[40] W3schools.com: HTML Plug-ins [online]. [quoted 11.10.2014] Available

from <http://www.w3schools.com/html/html_object.asp>

[41] WANG, Yi-Min et al. Automated Web Patrol with Strider

HoneyMonkeys: Finding Web Sites That Exploit Browser

Vulnerabilities. Microsoft Research, Redmond. Available from

<http://research.microsoft.com/en-us/um/redmond/projects/strider/

honeymonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-

ready.pdf>

[42] Web 2.0 (or Web 2) [online]. March 2011. [quoted 5.4.2014] Available

from <http://whatis.techtarget.com/definition/Web-20-or-Web-2>

http://www.sandboxie.com/
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.worldwidewebsize.com/
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://gs.statcounter.com/%0b?PHPSESSID=drd7u86f66gr1djns6fki1k0i0#desktop-os-ww-monthly-201411-201411-bar
http://gs.statcounter.com/%0b?PHPSESSID=drd7u86f66gr1djns6fki1k0i0#desktop-os-ww-monthly-201411-201411-bar
http://gs.statcounter.com/%0b?PHPSESSID=drd7u86f66gr1djns6fki1k0i0#desktop-os-ww-monthly-201411-201411-bar
http://www.secpoint.com/Top-10-Worms.html
http://urlquery.net/about.php
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.virustotal.com/en/about/
https://www.virustotal.com/en/about/credits/
https://www.virustotal.com/en/about/credits/
http://www.w3schools.com/html/html_object.asp
http://research.microsoft.com/en-us/um/redmond/projects/strider/honeymonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-ready.pdf
http://research.microsoft.com/en-us/um/redmond/projects/strider/honeymonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-ready.pdf
http://research.microsoft.com/en-us/um/redmond/projects/strider/honeymonkey/NDSS_2006_HoneyMonkey_Wang_Y_camera-ready.pdf
http://whatis.techtarget.com/definition/Web-20-or-Web-2

 96

[43] What is JavaScript? [online]. [quoted 6.10.2014] Available from

<https://developer.mozilla.org/en-US/docs/Web/JavaScript/

About_JavaScript>

[44] Windows lifecycle fact sheet [online]. [quoted 15.12.2014] Available from

<http://windows.microsoft.com/en-us/windows/lifecycle>

[45] The World Wide Web Consortium (W3C): HTML & CSS [online].

[quoted 11.10.2014] Available from <http://www.w3.org/standards/

webdesign/htmlcss>

[46] The World Wide Web Consortium (W3C): What is the Document Object

model? [online]. 1.10.1998. [quoted 6.10.2014] Available from

<http://www.w3.org/TR/REC-DOM-Level-1/introduction.html>

[47] ZELTSER, Lenny. SANS Digital Forensics and Incident Response Blog:

Looking at Mutex Objects for malware Discovery and Indicators of

Compromise [online]. 24.7.2012. [quoted 4.1.2015]. Available from

<http://digital-forensics.sans.org/blog/2012/07/24/mutex-for-

malware-discovery-and-iocs>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_Javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_Javascript
http://windows.microsoft.com/en-us/windows/lifecycle
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/TR/REC-DOM-Level-1/introduction.html
http://digital-forensics.sans.org/blog/2012/07/24/mutex-for-malware-discovery-and-iocs
http://digital-forensics.sans.org/blog/2012/07/24/mutex-for-malware-discovery-and-iocs

