
Masaryk University
Faculty of Informatics

Prediction of Financial Markets
Using Deep Learning

Bachelor’s Thesis

Jiří Vahala

Brno, Spring 2016

Masaryk University
Faculty of Informatics

Prediction of Financial Markets
Using Deep Learning

Bachelor’s Thesis

Jiří Vahala

Brno, Spring 2016

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Jiří Vahala

Advisor: doc. RNDr. Tomáš Brázdil, Ph.D.

i

Acknowledgement

I would like to thank my supervisor doc. RNDr. Tomáš Brázdil, Ph.D.
for all provided support and for leading my research very closely. I
would also like to thank industrial partner Michal Kreslík, who gave
me this great opportunity. The biggest thanks go to Katarína Kejstová,
my girlfriend who supported me during writing this thesis.

iii

Abstract

We tested possible usage of fully connected neural networks for pre-
dicting FOREX market. More specifically we focused on generaliza-
tion providing methods used in neural networks. In order to facilitate
an easy grid search over the target domain, the general framework
around TensorFlow and Keras framework was built to provide flex-
ibility for executing automatically generated experiments. Because
TensorFlow and Keras do not implement autoencoders for pretrain-
ing, four implementations of different autoencoders were created and
successfully merged into official TensorFlow repository. We also in-
troduce an algorithm for finding threshold with chosen confidence
filter since predictors does not have to make predictions for all inputs
and confidence filtering marginally increases their success. Finally,
we proposed few models and deployed them into the real trading
platform where they were marked as successful predictors.

iv

Keywords

Neural networks, deep learning, prediction, FOREX, time series, Ten-
sorFlow, prediction confidence

v

Contents

1 Introduction . 1
2 Time series Forecasting . 3

2.1 Forecasting model . 3
3 Neural networks . 5

3.1 Fully connected neural network model 5
3.1.1 Activation function 6

3.2 Loss function . 7
3.2.1 Gradient . 8
3.2.2 Gradient calculation 9
3.2.3 Optimizers . 10
3.2.4 Batch . 11
3.2.5 Dropout . 12

3.3 Initialization and autoencoders 12
3.3.1 Autoencoder . 13

4 Computational tools . 15
4.1 Theano . 15
4.2 TensorFlow . 15
4.3 Deep Learning for Java . 16
4.4 CNTK . 16
4.5 Torch7 . 16
4.6 Caffe . 17
4.7 Frontend for frameworks 17
4.8 Implementation of autoencoder model variations in Tensor-

Flow’s model repository . 17
5 FOREX market . 19

5.1 Trading Mechanics . 19
5.2 Trading markets . 20
5.3 Forecasting FOREX . 20

5.3.1 Data sampling . 22
6 Application on FOREX . 23

6.1 System . 23
6.1.1 Computational framework 23
6.1.2 Experiment core 23
6.1.3 Experiment executor 26
6.1.4 Experiment setup generator 26

vii

6.2 Data . 26
6.2.1 Missing values 27
6.2.2 Normalization . 28
6.2.3 Balancing classes 28
6.2.4 Target alternation 29
6.2.5 Confidence and filtering 29
6.2.6 Cohen’s kappa coefficient 32

6.3 Results . 33
6.4 Discussion and future work 38

6.4.1 Data . 38
6.4.2 Ensemble . 40
6.4.3 Filtering optimization 40
6.4.4 Deployment . 41

7 Conclusion . 43
A Examples . 49

A.1 Experimental core . 49
A.2 Autoencoder examples . 50

viii

List of Tables

6.1 Final data set sizes 27
6.2 Fixed parameters for experimental purposes of this

thesis 34
6.3 Grid search domain 35
6.4 Example of unfiltered testing set 36
6.5 Example of filtered testing set 36
6.6 Confusion matrix with best kappa reached with proposed

grid search 38

ix

List of Figures

6.1 Data visualized by Variational Autoencoder 27
6.2 MNIST example using same settings as transformation in

Figure 6.1 for comparison with well known dataset 28
6.3 Frequency of confidences of neural network for all UP

labels. UP(Red) vs SELL and MID (Blue) 32
6.4 Frequency of confidences of neural network after filtering

with threshold confidence = 100. 33
6.5 Means (x) and standard deviations (y) of weights of first

46 input neurons 39

xi

1 Introduction

Artificial neural networks [10] have passed from their creation in
the fifties through several waves of interest and decay which lead to
overfunding or on the other side extinction in practical usage. The main
motivation behind neural networks attempts to simulate an animal
brain. Neural networks are basically simplified models of neurons
and their mutual connection, which can be adjusted by using various
algorithms to obtain a desired result for a specific task. Mostly such
tasks can be solved by minimization of error function based on the
problem. The biggest issue of neural networks was always their speed
and ability to learn using gradient descent [10]. Because of it, the
neural networks were pushed by other machine learning methods
into the background. However in 2006, an algorithm for fast training of
neural networks with more hidden layers was invented. Its basic idea
is based on smart initialization of connections between neurons using
restricted boltzmann machines [10]. Thanks to this smart initialization
neural networks experience a new renaissance.

Adaptation of connections between neurons in neural networks
is computationally very difficult problem and on usual hardware it,
might take over days. That is why new frameworks which gain from
graphic cards’s performance with CUDA (Compute unified device
architecture) technology were lately introduced. Because all modern
games are based on vectorized graphics, graphic cards tend to be
faster in vectorized calculations and CUDA technology comes with
tools providing such performance for programmers. TensorFlow is
one of the frameworks which uses CUDA and provides tools for ef-
fective defining, optimization and evaluation of mathematical tensor
based calculations including multidimensional vectors and realizing
automatic differentiation on top of them. Also, automatically perform
these calculations in parallel on classical CPU architectures but also
on GPU architectures.

More often implementations of neural networks are used in ad-
vanced applications such as image recognition, diseases diagnostics or
autonomous driving cars. Another possible application is trading on
online markets, where neural networks can replace trader in making
decisions and trading strategy. The goal of this thesis is research and

1

1. Introduction

development of training algorithms of neural networks for predicting
financial time series where speed and precision of predictions are
crucial for success.

For purposes of this thesis an experimental environment above
TensorFlow and Keras frameworks was developed for implementa-
tion of data processing, deep learning architectures and evaluation
of results. We introduce concepts which filters some predictions of
predictor out in order to increase the precision.

2

2 Time series Forecasting

Time series are sequences of data-points observed in a behavior of
some process P. We can define sequence as generated by process P as:

xt+1 = P(t) (2.1)

where t is time parameter of process P. P has its own hidden state
which cannot be observed.

The data vector xt+1 is treated as random vector. The time series can
be continuous or discrete. In case of continuous series, observations are
taken in each time instance [5]. In discrete case observations are taken
at discrete, not necessarily following(time continuum is retained),
points in time.

2.1 Forecasting model

Time series forecasting is finding a model based on observations of
specified sequence and then applying calculated model on that se-
quence to predict its future values with minimum error if possible.

There are two basic linear models proposed in literature Autore-
gressive and Moving Average [5] and its combinations and modifica-
tions like Autoregressive Moving Average (ARMA), Autoregressive
Integrated Moving Average (ARIMA), Autoregressive Fractionally
Integrated Moving Average, which generalizes ARMA, and ARIMA
models. There are also many other models which extend these models
in specific, domain based, problems.

Since linear models are easy to understand they tend to be often
implemented, however many practical real-world time series show
non-linear patterns. For such time series there have been suggested
non-linear models such Autoregresive Conditional Heteroskedasticity
(ARCH) which is generalized by Generalized ARCH (GARCH). More
proposed models, linear and non-linear, can be found at [5].

To predict process P we need to define sequence of last k vectors:

xt, . . . , xt−k (2.2)

3

2. Time series Forecasting

at time t, which we call lookback. Lookback is cosnidered as real-
valued vector and it is composition of k last sampled data-vectors.

The goal is to find model M which minimizes error E:

E =
t*

∑
t=t0

Et (2.3)

where:
Et(M(xt, . . . , xt−k), P(t)) (2.4)

where Et : (Rn, Rn)→ Rn is error for prediction at time t.
In this thesis, we approximate model M using neural network.

4

3 Neural networks

Artificial neural networks (NNs) are machine-learning formalism in-
spired by the animal brain with basic structural and functional unit -
artificial neuron. The idea is to reverse-engineer how animals learn to
perform some tasks. Despite the fact that NNs are inspired by an ani-
mal brain, they are far from real biological neural networks. The basic
unit of the model is single neuron which represents some linear math-
ematical function. It is easy to see that NN lacks a lot of details and it
is very simplified. Closer models to biological brains than NNs are so
called spiking neural networks which simulate neurons as pulses of
energy[9].

There are multiple types of neural networks and they differ in
tasks which they can perform and also in their training algorithms.
All models are based on fundamental units - neurons, which are
mathematically described as operation:

y = σ(wx + b) (3.1)

where x ∈ Rn is input vector, w ∈ Rn is weight vector, b ∈ R is
bias and σ : R→ R is called activation function.

3.1 Fully connected neural network model

Consider matrix W ∈ Rn×m and vector b ∈ Rm. Furthermore let us
extend σ to be defined for vector argument as:

σ((a1, a2, ..., an)) = (σ(a1), σ(a2), ..., σ(an)) (3.2)

then we can define simple transformation Rn → Rm as:

y = σ

(
Wx + b

)
(3.3)

If σ is identity function we have linear transformation. For non-
linear σ we get non-linear model. We denote such functionality as l-th
layer which we use as a building block for layered models:

5

3. Neural networks

y(l) = σ(l)
(

W(l)y(l−1) + b(l)
)

(3.4)

Let us define fully connected neural network model with L layers.
Call W(0), . . . , W(L) as weights and b(0), . . . , b(L) as biases where
both, biases and weights, are parameters of model, furthermore let us
call σ(0), . . . , σ(L) activation functions, then:

y(0) = σ(0)
(

W(0)x + b(0)
)

(3.5)

y(l) = σ(l)
(

W(l)y(l−1) + b(l)
)

(3.6)

is a function TN(x) = y(l) represented by neural network and is
considered as transformation TN : Rn → Rm. It is common to mark
topology as list of numbers, where each number represent count of
numbers in one layer, so for example neural network with 100 input
neurons, 10 hidden neurons and 20 output neurons can be marked as
[100-10-20].

It has been shown that fully connected network with sigmoidal
activation functions and two hidden layers can approximate any con-
tinuous function on subset of R [16]. Fully connected networks are
the simplest models of neural networks which are used today for
performing classification and regression tasks, yet they perform well.

3.1.1 Activation function

For many decades, neural networks were using strictly sigmoidal
functions with typical examples of sigmoid or hyperbolic tangent.
Sigmoid function:

y =
1

1 + e−x (3.7)

Hyperbolic tangent:

y =
ex − e−x

ex + e−x (3.8)

6

3. Neural networks

Problem with sigmoidal functions is that they relatively quickly
saturate in its limit values. It was shown in [1] that if we take infinite
number of copies of one neuron with shared weights w and bias b
and activation sigmoid function, but each copy gets an artificial offset
from −0.5,−1.5,−2.5... sequence, then the sum of all such neurons
converges to value ln(1 + ex):

N

∑
i=1

1
1 + x−(x−i+0.5)

≈ ln(1 + ex) (3.9)

This function is called softplus and it does not suffer from vanish-
ing gradient problem. Softplus is usually approximated by so called
rectified linear unit(ReLU):

y =

0 if x ≤ 0

x if x > 0
(3.10)

Empirical experiments show that ReLU performs better than soft-
plus [10]. Many other modifications of ReLU exists, such as Leaky
ReLU, noisy ReLU, and others, but we do not consider them in this
thesis.

3.2 Loss function

One of most the important concepts of neural networks is definition
of loss(error) function which is being optimized. It is crucial to show
to the NN how well it approximates desired function with given
data and how it should adjust its parameters(weights and biases)
for better performance in next step of learning. The choice of loss
function strongly depends on application of NN with respect to given
labels. With given data set

𝒯 = {(x1, y1), (x2, y2), . . . , (xp, yp)} (3.11)

where p is number of pairs and xk ∈ Rn, yk ∈ Rm are k-th input and
output vectors of neural network respectively. Let y’k = FN(xk) and
call it prediction.

Then we can define many different loss functions:

7

3. Neural networks

Mean squared error is one of the most common loss functions used.

MSE =
1

2n

n

∑
k=1

|y|

∑
i=1

(yik − y′ik)
2 (3.12)

Mean absolute error

MAE =
1
n

n

∑
k=1

|y|

∑
i=1
|yik − y′ik| (3.13)

Mean absolute percentage error

MAPE =
1
n

n

∑
k=1

|y|

∑
i=1

∣∣∣∣yik − y′ik
yik

∣∣∣∣ (3.14)

Binary cross-entropy

crossentropy =
n

∑
i=1
−(yi log(y′i) + (1− y′i)log(1− yi)) (3.15)

Categorical cross-entropy

H = −
n

∑
i=1

yilog(y′i) (3.16)

3.2.1 Gradient

Minimizing the loss function leads to the desired model on given data.
By adjusting neural network’s parameters we can optimize the loss
function. Since loss function is defined, we can differentiate it and
perform gradient descent to find loss function optimum.

Gradient descent is a basic approach to optimizing functions. Gra-
dient is defined for some function F(x) as:

∇F(x) =
∂F
∂x

(3.17)

In order to perform gradient descent for function defined by neural
network, we can write gradient as:

8

3. Neural networks

∇E(w) =
∂E
∂w

(3.18)

where w is considered as vector of parameters (weights and biases).
To optimize neural network’s parameters, we have to define update
rule which adjusts parameters with respect to negative gradient:

w(t+1) = w(t) + ∆w(t) (3.19)
where:

∆w(t) = −ε(t)∇E(w(t)) (3.20)

where ε(t) is parameter called learning rate at time t.

3.2.2 Gradient calculation

BackPropagation is name of an algorithm which is used for calculation
of partial derivatives of E(w) which propagates error calculated on
the output of the network into hidden layers, layer by layer, so all
partial derivatives are calculated and model can adjust parameters
with respect of negative gradient of loss function[10].

Consider general loss function E. Denote wl
ij is weight of connec-

tion between neuron i in layer l and neuron j in layer l + 1. Also let bl
i

be bias for neuron i in layer l. Then derivation of loss function is:

∂E
∂wl

ij
= ∑

k

∂Ek

∂wl
ij

(3.21)

∂E
∂bl

i
= ∑

k

∂Ek

∂bl
i

(3.22)

Where Ek is error on k-th update and for each k applies:

∂Ek

∂w(l)
ij

=
∂Ek

∂y(l)ik

σ′(l)(W(l)y(l−1)
k + b(l))y(l−1)

jk (3.23)

∂Ek

∂b(l)i

=
∂Ek

∂y(l)ik

σ′(l)(W(l)y(l−1)
k + b(l)) (3.24)

9

3. Neural networks

Where for all hidden neurons:

∂Ek

∂y(l)jk

= ∑
r

∂Ek

∂y(l+1)
rk

σ′(l)(W(l+1)y(l)
k + b(l+1))wrj (3.25)

Gradient descent is the basic approach used in neural networks, but
it has many weaknesses like local minima. Other alternative techniques
were proven to be more successful, i.e. conjugate gradient [15].

3.2.3 Optimizers

Optimizer is general concept of calculating ∆w(t). There are many
ways how to calculate new update of weights. The simplest one, which
we already defined, is gradient descent but due to its problem with
getting stuck in local optima there have been invented methods alter-
nating gradient descent.

Momentum method is based on gradient descent. Next step par-
tially takes into account the previous step. This might help to avoid
local extremes.

∆w(t) = −ε(t)∇E(w(t)) + α(t)∆w(t−1) (3.26)

Where α is parameter called momentum at time t and 0 ≤ α < 1
[11].

Nesterov’s momentum method computes the gradient of the
error function and then does the cumulative parameter update. At
first are updated parameters according to direction of the old step,
after which a new gradient is computed and then the real new step is
computed using the new gradient [11].

∆w(t) = α(t)∆w(t−1) − ε(t)
∂E

∂(w(t−1) + α(t)∆w(t−1))
(3.27)

Conjugate gradient improves basic gradient descent and respects
gradient from the step at the time (t− 1). In basic gradient descent

10

3. Neural networks

direction of each new step is perpendicular to the direction of the
previous step, which might be considered as inefficient [10].

Consider:

∆w(t) = ε(t)d(t) (3.28)

where d(t) is direction of step at time t. Then:

d(t) = −∇E(w(t)) + βd(t−1) (3.29)
and β is parameter calculated as:

β =
(∇E(w(t))−∇E(w(t−1)))∇E(w(t))

∇E(w(t))∇E(w(t))
(3.30)

Rprop is a heuristic which is trying to balance sizes of steps
between weights at NN by assigning learning rate to each weight.

ε
(t)
ij =

η+ε

(t−1)
ij if ∂E

∂wij

(t−1) ∂E
∂wij

(t)
> 0

η−ε
(t−1)
ij if ∂E

∂wij

(t−1) ∂E
∂wij

(t)
< 0

ε
(t−1)
ij otherwise

(3.31)

where 0 < η− < 1 < η+, then:

∆w(t)
ij =

− ε

(t)
ij if ∂E

∂wij

(t)
> 0

+ε
(t)
ij if ∂E

∂wij

(t)
< 0

0 otherwise

(3.32)

It was shown at [12] that Rprorp significantly reduces learning
steps compared to original gradient descent algorithm.

There are other widely-used algorithms for optimization like RM-
SProp, Adagrad or Adam [10]

3.2.4 Batch

The parameters can be updated with different frequencies. There are
three possibilities how to update parameters of NN:

11

3. Neural networks

1. Full-batch: the gradient is calculated on all provided data in-
stances so the gradient calculation is statistically precise. Disad-
vantage of full-batch approach is poor performance.

2. Online: the gradient is calculated after each data instance pro-
vided to NN. If data instances are randomly picked from dataset
then we call this approach stochastic gradient descent. Disadvan-
tage of stochastic gradient descent is poor estimate of gradient
for each weight update. On the other hand, thanks to inaccurate
gradient descent, local extremes might be easily avoided.

3. Mini-batch: is a method combining online and full-batch ap-
proaches. The gradient is calculated from the stochastically picked
subset of data instances which provides a better gradient esti-
mate and also a better performance with slightly inaccurate
gradient descent[13].

Chosen frequency of weights updates is crucial and significantly
affects optimizing algorithms.

3.2.5 Dropout

Dropout is a technique where, with probability p, randomly selected
neurons are switched off during training steps in order to improve
generalization. Dropout causes that during each iteration of training
selected subset of neurons is switched off leaving each training step
different subnetwork functional. [3]

r(l) ∼ Bernoulli(p) (3.33)

y(l+1) = σ(l+1)(W(l+1)(y(l)r(l)) + b(l+1)) (3.34)

3.3 Initialization and autoencoders

The neural network is very sensitive to its initialization, which can
strongly affects the progress and output of training process. There
were proposed many different layers initializing algorithms in [25]
which take into account number of neurons in each layer so the average

12

3. Neural networks

calculated potential of each neuron in hidden layers tends to be around
zero at the begining of training. In recent years, the key of neural
network research is so called deep-learning which was started with
pre-training of networks. Pre-training is the initialization of weights
and biases between two sets of neurons using weights and biases
found with feature extractor. It was shown in [4] that pre-training
used as initialization of each layer in the neural network can lead to
better results than random initialization of weights. Such process is
called greedy layer-wise pretraining with fine tuning. On the other
hand there is an opinion that with activation functions which do not
suffer from vanishing gradient signal pre-training networks is not
necessary since weights from a greedily pre-trained network are not
equal to weights from training all layers together.

3.3.1 Autoencoder

Autoencoder is a type of fully connected neural network where input
has the same dimension as output FA : Rn → Rn and error function
is defined as:

MSE(xk, FA(xk)) (3.35)

Autoencoder can be trained with back-propagation in the same way
as typical fully connected neural network defined earlier in this thesis.
The key idea is to find a transformation which can encode informa-
tion obtained from input in smaller number of dimensions with the
strongest features and then reconstruct (decode) it back with minimal
error [10].

Autoencoder as function FA can be written more specifically as
composition of two functions:

z = encoder(x) (3.36)
y = decoder(z) (3.37)

FA = decoder(encoder(x)) (3.38)

where encoder and decoder are fully connected neural networks
and where encoder : Rn → Rm and decoder : Rm → Rn. A usual
form of autoencoder has only one hidden layer. There are variations

13

3. Neural networks

of autoencoder such as denoising autoencoder using standard noise
or masking noise [10] and variational autoencoder[18]. Trained au-
toencoder can be then used as data transformation (feature extractor)
using only encoder function.

14

4 Computational tools

The speed of implementation of NN is crucial for its training and
evaluating and with increasing importance of NNs in the machine-
learning fiel. Since NNs revival after 2006 many developer groups
have started creating frameworks implementing tools for building
neural networks. In recent years, there have been developed many
frameworks supporting neural network training. There are two major
approaches to implementation of such framework, one which compiles
symbolically modeled calculation using fast math libraries and second
one which maps calculations on the already pre-compiled source code.

4.1 Theano

Theano framework is one of the first frameworks which combines
advantages of a computer algebra system with advantages of an opti-
mizing compiler. It was developed by the research group at University
of Montreal, but it has been open-sourced on github repository 1.
Theano provides a way to model symbolic calculation and then com-
piling it using mathematical libraries like BLAS or LAPACK. Theano
gains from systems with GPUs wich can be used in parallel computing.
Since Theano was introduced in 2011, it has a large community of
researchers and active users. For scientific community, Theano comes
with support of Python language.

4.2 TensorFlow

TensorFlow(TF) is open-sourced framework developed by Google
based on experiences with framework DistBelief which was first one,
that Google had developed for purposes of Google Brain project. The
main research field of Google Brain is the use of very-large scale
deep neural networks in Google’s products. User defines dataflow-like
model and TF maps it onto many different hardware platforms from
Android platforms to massively distributed systems with hundreds
of CPU/GPU units. [14] The latest release of TF is 0.8.0 version, which

1. Theano repository www.github.com/theano

15

www.github.com/theano

4. Computational tools

means that final API is not fixed yet and there might be some changes.
The sources can be found at github repository 2. Unlike Theano, TF
provides public API not only for Python but also for C++, which makes
it easier to deploy models into business applications.

4.3 Deep Learning for Java

Deep Learning for Java (also Deeplearning4j or as abbreviation DL4J)
is, according to creators in Skymind company, first commercial frame-
work for deep learning written in Java for Java and Scala environments.
With its integration of Hadoop and Spark, DL4J aims to usage in busi-
ness applications rather than usage as a research tool. DL4J is also
open-sourced 3 as maven[23] project so it is easily integrated into pro-
duction. Internally DL4J runs on JBlass and provides automatic data
parallelism on multiple GPUs.

4.4 CNTK

Microsoft has its own tool for neural networks called CNTK. It sup-
ports both C++ and Python for modeling and evaluation. The created
models can be also executed from C# code. CNTK can scale-up up to
8 GPUs, which is second highest number of supported parallel GPUs
at the same time. CNKT is open-source project released on web site 4

in April 2015.

4.5 Torch7

Is a scientific computing framework for LuaJIT. The initial release was
in 2002. Many huge companies like Facebook or Twitter uses Torch7 on
daily basis for data mining and machine learning. It is based on tensor-
like calculations modeling in Lua. Thanks to it, it is very modular and
provides an easy way to create computations on CPU and GPU. As
almost all other frameworks Torch7 is open source project based on 5.

2. TensorFlow repository www.github.com/tensorflow
3. DL4J repository https://github.com/deeplearning4j/
4. CNTK repository https://github.com/microsoft/cntk
5. Torch repository https://github.com/torch

16

www.github.com/tensorflow
https://github.com/deeplearning4j/
https://github.com/microsoft/cntk
https://github.com/torch

4. Computational tools

4.6 Caffe

Caffe was developed on Berkeley College and today has many con-
tributors on Github. Caffe contains the implementation of fast convo-
lutional neural networks in C/C++. Caffe supports Python API for
modeling networks, but it is only specialized in image processing.
Caffe cannot handle other tasks such time series or text processing.

4.7 Frontend for frameworks

There are many other tools and frameworks for training neural network
models. They differ in supported languages. environments and also
most importantly in speed of computations.

Keras Due to complexity of some frameworks, there has been created
front-end frameworks for easier modeling of neural network graphs.
One of them is Keras which front end in Python provides layer-wise
modeling of neural networks. It was initially developed as front-end
for Theano framework, since Theano’s mechanics might be considered
complicated but recently was extended to be generic front-end for TF
too. Keras has huge community around for its simplicity, usability and
Python support.

Others The latest boom of neural networks started many projects
aiming to neural networks. There are many other frameworks specially
for neural networks. Bigger list of neural networks frameworks and
tools can be found at [24].

4.8 Implementation of autoencoder model variations
in TensorFlow’s model repository

TensorFlow framework has been released during work on this thesis in
version 0.5. As was said it is general tool for tensor calculus but it was
lacking many different algorithms as examples. After communication
with authors, there was implemented Autoencoder [17], Denoising
Autoencoder using standard noise[10], Denoising Autoencoder using

17

4. Computational tools

vector masking[10] and Variational Autoencoder [18] for needs of this
thesis using TensorFlow framework. All these implementations were
successfully merged into official TensorFlow Github repository 6 as
example models.

6. https://github.com/tensorflow/models

18

https://github.com/tensorflow/models

5 FOREX market

FOREX is an abbreviation for Foreign Exchange which is also com-
monly known as Forex Trading, Currency Trading, Foreign Exchange
Market or shortly FX. Forex is international, decentralized market sys-
tem for trading currencies world wide [6] and is the biggest and most
liquid market in the world[7]. Currencies are traded in pairs of two
currencies a and b with some ratio r commonly marked as a/b = r.
The currency a is called base currency the b currency is called quote
currency. The notation stands that one unit of a is equal to r units of b,
conversely rb units are equal to one unit of a. Typical example is pair
EUR/USD = 1.23456 which means that one Euro is equal to 1.23456
U.S Dollars.

FOREX trades 24 hours a day, 7 days a week as trading moves
across borders and around globe with the time. Estimated daily vol-
ume in April 2013 was $5.3 trillion [8], an exact volume is unknown
since there are many market places and some might be even not known.
All subjects that exchange currencies such as banks, traders, investors,
companies but also individuals going on vacation participate on Forex
Trading which makes FOREX decentralized and non-controlled mar-
ket.

5.1 Trading Mechanics

Pip Pip is the smallest price movement that one currency pair can
make. Different currency pairs may have different size of Pip.

Tick A single tick represents smallest possible update of price on
FOREX market. Frequency of tick updates depends on many factors
like daily and hourly liquidity, liquidity during news, number and
quality of connected FOREX marketplaces etc. Frequency can vary
from minutes to microseconds. Each tick updates price of traded
currency by trader.

Asks, bids and spread Markets are created when two or more sub-
jects have a disagreement on value and an agreement on price. The

19

5. FOREX market

actual price is not one number but two numbers changing constantly.
These numbers are called bid and ask and represent the maximum
price that a buyer is willing to pay for and minimum price that a seller
is willing to sell for, respectively. A trade is done when ask equals bid
so buyer and seller agree on the price of the currency pair. Usually,
ask is higher than bid and difference between those two numbers is
called spread which is the key indicator of liquidity of currency pair -
the smaller spread is, the better liquidity. [6]

Leverage Leverage is widely known concept associated with trad-
ing. Leverage enables trader to trade significantly larger amounts of
volume even if he does not possess the capital equivalent to the nomi-
nal traded size. Missing capital is provided by broker. The leverage
increases profits but deepens losses.

Commissions Theoretically, FOREX is a zero-sum game. Every sin-
gle profit of one trader is taken as loss of another one. The problem
are commissions which must be, together with the spread, overcome
to make the profit on the trade.

5.2 Trading markets

Although FOREX is decentralized there are some main currency ex-
change markets: London, New York, Sydney and Tokyo. During work-
ing week, there is always at least one main currency exchange market
opened. During weekends, all main marketplaces are closed so liq-
uidity drops down. It is possible to trade on markets online thanks to
intermediary companies called brokers. The broker is subject that en-
ables trading using its trading platform for which is usual that trader
gets higher spreads as payment for using broker’s services.

5.3 Forecasting FOREX

Each market can be observed and predicted on different time levels.
It would not make sense to observe difference between bid and ask
if predicting one month ahead, on the other hand, if predicting few

20

5. FOREX market

seconds into future, the difference between bid and ask can play a
huge role in the prediction because its impact is immediate.

Financial market, in general, can be seen in its simplest form as the
sequence of numbers where each number is the average of lowest ask
and highest bid price, as two numbers representing bid and ask prices
in parallel or as market depth.

Market depth is a list of all bids and asks opened as a trading
position at each time stamp. It is the full information about one specific
marketplace. Distribution of orders (bids and asks) can be build up
from market depth.

For purposes of following the section, let us define some basic
notation:

Pa(t) = lowest ask price at time t (5.1)
Pb(t) = highest bid price at time t (5.2)
P(t) = (Pa(t) + Pb(t))/2 (5.3)

Ext(t1, t2) = general feature vector from time t1 to time t2 (5.4)
(5.5)

Time based discretization The most common way to discretize mar-
ket is to make market info snapshots at some specific time. This specific
time can be as small as seconds to minutes, hour, days or even months.
It is the simplest discretization of market and many financial plots,
like candles or bars, are based on it. Feature vector in time based
discretization with smallest time unit n can be written as:

x = Ext(t− n, t) (5.6)
Usually

t mod n = 0 (5.7)

Price change based discretization Another possible manner of vi-
sualizing the market is to make market info snapshots after predefined
delta price. It is not that usual as time based discretization. Feature
vector in price change based discretization with smallest price delta d
can be written as:

21

5. FOREX market

x = Ext(t1, t2) when P(t2) > P(t1) + |d| (5.8)

if d is equal to one pip, then we get sequence of pure ticks.

5.3.1 Data sampling

We can define sampled i-th pair p of data vector xi and target vector
yi as:

pi = (xi, yi) (5.9)

where xi is a composition of last k data vectors and yi is data vector
from next time interval:

xi = Ext(ti−1, ti), Ext(ti−2, ti−1), . . . , Ext(ti−k−1, ti−k) (5.10)
yi = Ext(ti, ti+1) (5.11)

Vector x is example of lookback defined earlier. With given data pairs
let 𝒯 be set of sampled pairs:

𝒯 = {(x1, y1), (x2, y2), . . . , (xp, yp)} (5.12)

where p is number of valid sampled pairs and xk ∈ Rn, yk ∈ Rm, same
as defined earlier.

22

6 Application on FOREX

The practical part of this thesis has been created by industrial partner
of faculty and its target is to predict FOREX based time series, more
precisely to predict very short trends on FOREX market.

6.1 System

Experimental environment was created on freshly installed Linux op-
erating system, more specifically Ubuntu 15.10, with gcc version 5.2.1,
running on Linux kernel 4.2.0-19 generic. A workstation powering
all experiments includes Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz
processor, 32GB of DDR3 RAM and two GeForce GTX 960 graphic
cards both with 4GB of GDDR5 VRAM.

6.1.1 Computational framework

When deciding what framework we would use for running computa-
tions, TensorFlow(TF) was released on version 0.5.0 and with its more
simplicity than Theano (which was our second candidate because its
wide community and many already implemented models) we decided
to use TF. Huge plus for TF are facts that Google, Inc. is behind it and
its ability to distribute calculation over more GPUs at once, however
this feature was not available in 0.5.0 but was promised by officials
and released in version 0.8.0.

We also gained from advantages of Keras framework which was
updated to support TF shortly after TF’s release. Keras is highly mod-
ular, neural networks front-end running on top of TF and originally
Theano. Its approach to neural networks is layer-based, which means,
that each new functional layer is applied on top of already defined
layers.

6.1.2 Experiment core

We built our own system for experimental purposes which surrounded
Keras implementation of multi layer perceptron. Since Keras does not

23

6. Application on FOREX

support pretraining methods, we had to implement them using TF.
Here is example of experiment setup:

with t f . device ("/cpu : 0 " i f len (sys . argv) <= 1
e lse sys . argv [1]) :

data_params = {
" path " : {

" dirPath " : "/data/path " ,
" X_tra in " : " l b _ t r a i n . csv " ,
" X_valid " : " l b_va l id . csv " ,
" X_ tes t " : " l b _ t e s t . csv " ,
" Y_tra in " : " l a b e l s _ t r a i n . csv " ,
" Y_valid " : " l a b e l s _ v a l i d . csv " ,
" Y_ tes t " : " l a b e l s _ t e s t . csv "

} ,
" c e n t r a l i z e " : True ,
" b a l a n c e _ t r a i n _ c l a s s e s " : " cut_down " ,
" s tandard_no ise_sca les " : None ,
" c u t _ t r a i n i n g _ s e t _ r a t i o " : 0 . 0 ,
" t a r g e t s _ a l t e r n a t o r " :

[" EpsTargetAlternator " , { " eps " : 0 . 0 2 }] ,
}

model_params = {
" model " : "MLP" ,
" topology " : [1024 , 128 , 64 , 32] ,
" dropout " : [0 . 5] ,
" h idden_ac t iva t ions " : [" re lu " , " re lu " , " re lu " , " sigmoid "] ,
" h idden_in i t " : [" p r e t r a in "] ,
" ou tput_ac t iva t ion " : " l i n e a r " ,
" ou tpu t_ in i t " : " zero " ,
" l o s s_ func t i on " : "mse" ,
" opt imizer " :

["Adam" , { " l e a rn ing_ ra t e " : 0 . 0 0 1 }]
}

learning_params = {
" device " : "/cpu : 0 " i f len (sys . argv) <= 1

e lse sys . argv [1] ,

24

6. Application on FOREX

" pretraining_params " : {
" pre−t r a in ing_ba t ch_s i z e " : 2 ** 8 ,
" nb_pre−t ra in ing_epoch " : 100 ,
" nb_pre−t ra in ing_track ing_epoch_index " : 1 ,
" pre−training_machine " :

" masking_autoencoder " ,
" pre−t ra in ing_opt imizer " :

["Adam" , { " l e a rn ing_ ra t e " : 0 . 0 0 0 1 }] ,
" dropout_probabi l i ty " : 0 . 8 ,
" v i sua l i ze_space " : Fa l se

} ,
" t r a in ing_ba t ch_s i z e " : 2 ** 7 ,
" t e s t i n g _ b a t c h _ s i z e " : 2 ** 17 ,
" tracking_epoch_index " : 1 ,
" nb_training_epoch " : 5 ,
" con f idence_ca l cu la to r " : [" MaxDiff " , { }] ,
" f i l t e r _ t o _ b a s i s _ p o i n t _ t a r g e t " :

[9000 , 7000 , 5000 , 2000 , 1000 , 500] ,
" comparator " : KappaComparator () ,
" use_bus iness_ labe l s " : False ,
" keras_verbos i ty " : 2

}
resul ts_params = {

" s tor ing_path " : "/ r e s u l t s /path/" ,
" f i l e _ p a t h " : _ _ f i l e __ ,
" save_ t ra in_ log " : True ,
" save_val id_ log " : True ,
" s ave_ac t i va t i ons " : True ,
" t rack_data_f low " : True ,

}

s t a r t _ t i m e = time . time ()

execute_experiment (
data_params = data_params ,
learning_params = learning_params ,
model_params = model_params ,
resul ts_params = resul ts_params)

Experiment setup takes all important parameters for experiment
execution so user does not have to care about any functional code. It is

25

6. Application on FOREX

layer by layer wise so each layer can have different setup. All features
from Keras 1.0.2 are supported.

6.1.3 Experiment executor

With two GPUs in the workstation, we wanted to use them both in
parallel. We have developed a simple python script called Scheduler
for purpose of mapping experiments on GPUs. Scheduler takes the
queue of python scripts and executes them individually on GPUs. We
have ended up with one process per one GPU.

It is possible to run more processes on one GPU using partial
VRAM allocation which TF framework offers, but TF in the newest
version 0.8.0 still lacks method for calculating real VRAM consumption
before the actual allocation of the tensor graph, which causes a lot
of program fails. Inability to get real memory consumption led us to
safer solution with mapping only one process per GPU but there is
still a chance that the process will fail on memory allocation.

6.1.4 Experiment setup generator

For grid search purposes we have created python script called JobGen-
erator. The JobGenerator was automatically generating independent
python scripts for automatic execution. JobGenerator is meta-program
which has string template of experiment setup, default value for each
parameter and domain values, which is only part that user must care
of for grid-search. It fills template’s parameters and generated new
python file with the name according to filled domain values. With au-
tomatic execution on GPUs provided by Scheduler it is very powerful
tool.

6.2 Data

The industrial partner provided three data-sets, training set, validation
set and test set, all sampled from FOREX market in temporal order. All
provided data are anonymous since they contain sensitive information,
so a source of the data and all features of data vectors are unknown.

One data vector consists of 460 features and its label consists of 3
values - UP, MID, DOWN. Figure 6.1 shows the visualization of projec-

26

6. Application on FOREX

Table 6.1: Final data set sizes
set size

training 881889
validation 49947

testing 17638

tion of data into two dimensional space using Variational Autoencoder
with five hidden layers. Used topology was [460-500-400-2-400-500-
460]. Figure 6.2 shows the same technique applied on the MNIST
dataset for comparison purposes. The visualization shows how incon-
sistent and noisy our problem is compared to widely known and, for
comparing models, commonly used MNIST dataset.

Figure 6.1: Data visualized by Variational Autoencoder

6.2.1 Missing values

Some data vectors were missing values. We have decided to get rid of
such vectors since random noise or average values might be problem-
atic in such application.

27

6. Application on FOREX

Figure 6.2: MNIST example using same settings as transformation in
Figure 6.1 for comparison with well known dataset

6.2.2 Normalization

Since many inputs in dataset differ rapidly in mean and standard
deviation, we used usual transformation of input data:

X′ij =
Xij − µj

σj
(6.1)

where:

µj =
∑k

i=1 Xij

k
(6.2)

σj =
∑k

i=1(Xij − µj)

k
(6.3)

to prevent dominating of some features over others.

6.2.3 Balancing classes

The majority of labels belongs to MID class. We were experimenting
with no alternating counts of data and it turns out that balancing

28

6. Application on FOREX

classes on same number of occurrences helps. Such operation can be
done only on the training set. Let c be number of all given classes,
then balancing classes is done by sampling new dataset from given
one with calculated probability p as:

cm = min(c) (6.4)
p = cm/c (6.5)

for each vector in each class.

6.2.4 Target alternation

In this thesis, we are using the standard sigmoid function as the last
activation function in the neural network. We have encountered a
problem with saturation of standard target values and created a target
alternator module which transfers target values by adding some ε to
low target values and subtracting ε from correct target value. For exam-
ple it transforms vector (1.0, 0.0, 0.0) to vector (1.0− ε, 0.0+ ε, 0.0+ ε)
where ε was experimentally set up to 0.02 for sigmoid function.

Another method is to have only linear units at the output layer
and multiply target vector by constant. The idea is to spread neuron
activations over a wider interval.

6.2.5 Confidence and filtering

The industrial partner has informed us that our predictor does not
need to make predictions for all cases in the testing set. We introduced
calculators of confidences and algorithm for finding the proper thresh-
old for which predictor ignores all prediction signals and its output
is emtpy value. The idea behind confidences is to minimize missed
predictions and obtain better precision for each class in confident data
predictions.

Max confidence Max confidence calculator is very easy and basic
confidence calculator. It takes maximum from activations of all output
neurons.

confidence = max(y) (6.6)

29

6. Application on FOREX

Max diff confidence Max diff confidence calculator takes the two
highest activations of output neurons and returns their difference

confidence = max(y)− second_max(y) (6.7)

Ternary mid diff confidence Calculating confidence of UP and DOWN
classes from MID class is another possible filter. Basic idea is to predict
only UP and DOWN since MID is not interesting class because the
market is not moving in any direction. Ternary mid diff confidence
calculator can also be interpreted as MID class when neither UP nor
DOWN is predicted.

diff1 = y1 − y2 (6.8)
diff2 = y3 − y2 (6.9)

confidence = max(diff1, diff2) (6.10)

Let Y be activations of output neurons on validation set. Then we
can calculate the vector of confidences:

confidencek = θ(Yk) (6.11)
where θ is confidence calculator such that θ : Rm → R and m is

number of output neurons.
Finding a threshold of confidence for picked calculator is done on

validation set. Since it is not iterative process it does not need to be
optimized on two sets like training of model does. Consider objective
O which we want to optimize by adjusting the threshold. O can be for
example precision over a number of cases. To adjust the threshold, all
confidences are sorted from the highest one to the lowest one. Then
we drop one by one vector with the lowest confidence and recalculate
statistics and O. The threshold, which maximizes O is then picked
and ready to test on the testing set. Algorithm 1. is pseudo code for
finding the threshold.

Optimizing threshold and finding best confidence calculator can
be in general considered as another machine-learning problem where
input values are output activations from neurons and where target
labels stays the same with new error function O. For that we need five
datasets instead of three.

30

6. Application on FOREX

Algorithm 1 Threshold optimization algorithm
1: function CalcConfidences(Y)
2: con f idenceVector ← {}
3: for vector in Y do
4: con f idenceVector.add(θ(vector))

return con f idenceVector
5: end function
6: function FindThreshold(Y)
7: con f idenceVector ← CalcConfidences(Y)
8: con f idenceVector ← Sort((con f idenceVector, Y))
9: O← CalcStats(Y)

10: bestCon f idenceThreshold← 0
11: for i← con f idenceVector.length downto 1 do
12: Remove(Y, i)
13: Remove(con f idenceVector, i)
14: O_tmp = CalcStats(Y)
15: if O_tmp is better than O then
16: O← O_tmp
17: bestCon f idenceThreshold← con f idenceVector[i]

return bestCon f idenceThreshold
18: end function

31

6. Application on FOREX

Threshold can also be included as a parameter in learning process
of original model with new loss function O. We did not yet experi-
mented with last variant since threshold significantly affects results
and it would most certainly become the most important parameter in
the whole model.

Figure 6.3: Frequency of confidences of neural network for all UP
labels. UP(Red) vs SELL and MID (Blue)

In Figure 6.3 we can see positive effect of filtering by network’s
confidence. Figure 6.4 shows detailed look on already filtered predic-
tions.

6.2.6 Cohen’s kappa coefficient

Evaluation of models for their comparison were performed by using
Cohen’s kappa coefficient (κ). κ is a measure of difference between ob-
served agreement on classes from the expected agreement on classes,
standardized to lie in ⟨−1, 1⟩, where 1 is perfect agreement, 0 is com-

32

6. Application on FOREX

Figure 6.4: Frequency of confidences of neural network after filtering
with threshold confidence = 100.

pletely randomized agreement and -1 is agreement worse than chance,
ie. potencial systematic disagreement. [2] Kappa is calculated as:

κ =
1− po

1− pe
(6.12)

where po is observed agreement and pe is expected agreement.

6.3 Results

Using JobGenerator and Scheduler, we were able to generate and exe-
cute over 3000 experiments in few months, providing local grid search
during research. After running a significant number of experiments
we have fixed some parameters which will not be changed from now
on.

The grid-searched domain was: topology, dropout, hidden initial-
ization and the pre-training number of epochs. Such domain was

33

6. Application on FOREX

Table 6.2: Fixed parameters for experimental purposes of this thesis
hidden activation ReLU
last layer initialization zeros
output activation sigmoid
target alternator additive ε = 0.02 (6.2.4)
loss function MSE
optimizer Adam(β1 = 0.9, β2 = 0.999, ε = 10−8)
batch size 28

training epochs 100
confidence calculator Ternary mid diff (6.2.5)
filter target optimization 10 %
pre-training batch size 28

pre-training machine autoencoder
pre-training optimizer Adam(α = 10−5, β1 = 0.9,

β2 = 0.999, ε = 10−8)

picked in order to search for neural network setup which leads to
generalization after data filtering, since given data are considered as
very noisy. Using ReLU units, which were proven as functions with
no vanishing gradient signal [10], we wanted to find optimal topol-
ogy with initializing weights and biases by pre-training using simple
Autoencoders and without it using Glorot normal initialization [25].
Topology itself is very important for generalization. Huge networks
can very easily overfit but it is believed that deeper networks can per-
form better feature extraction. Dropout has been developed as very a
effective technique to reduce overfitting of neural network, we have de-
cided to see the difference between neural networks without dropout
and with dropout as [3] suggests.

Example of confusion matrix calculated on unfiltered testing set in
Table 6.4 shows that process is able to find a solution which is better
than random. Cohen’s kappa coefficient calculated from Table 6.4 is
0.122 which is clearly better than random (kappa 0.000). Precisions of
the classes are: UP - 0.390, MID - 0.500, DOWN - 0.370. Besides kappa,

34

6. Application on FOREX

Table 6.3: Grid search domain
Topology 64

64 - 32
64 - 32 - 16
128
128 - 64
128 - 64 - 32
128 - 64 - 32 - 16
128 - 64 - 32 - 16 - 8
256
256 - 128
256 - 128 - 64
256 - 128 - 64 - 32
256 - 128 - 64 - 32 - 16
256 - 128 - 64 - 32 - 16 - 8

Dropout 0.0
0.5

Pretrain epoch 8
16
32

Learning rate 10−3

10−4

10−5

10−6

Initialization Glorot normal
pretraining

35

6. Application on FOREX

Table 6.4: Example of unfiltered testing set
UP MID DOWN

UP 2458 1163 2123
MID 1967 2252 2158

DOWN 1870 1088 2559

Table 6.5: Example of filtered testing set
UP MID DOWN

UP 528 0 431
MID 277 0 371

DOWN 331 0 613

the precision of each class is also a very important quality indicator of
results.

After filtering, the confusion matrix might radically changed. Change
depends on picked confidence calculator. In Table 6.5 we used Ternary
mid diff confidence calculator resulting into vanishing MID class. We
can observe that kappa equals 0.118 which is worse than kappa score
on unfiltered test result. This is caused by Ternary mid diff. Precision
of UP and DOWN classes rises on 0.464 and 0.433 respectively.

With right filtration, we were able to get precision over 0.7 and 0.64
for UP and DOWN classes respectively.

Learning rate

Learning rate occurs in all described gradient descent algorithms
and it can significantly affect results of the learning process. We have
tested learning rates 10−3 , 10−4, 10−5 and 10−6. The best results were
achieved with learning rate 10−4. Learning rate 10−3 showed unstable
learning and on the other hand, learning rates 10−5 and 10−6 showed
tendencies to dominate over one class. There were cases when such
small learning rates worked but in general performance was worse
than 10−4. This might be fixed by more epoch given to the training
algorithm.

36

6. Application on FOREX

Dropout

Dropout is a relatively new concept in neural networks and should
prevent overfitting model on the training set. We tested 0.0 and 0.5
levels of dropout which means that during training 0% and 50% of
neurons are randomly switched off. For neural networks with rela-
tively small number of connections and one or two hidden layers the
dropout 0.5 has no significant effect on unfiltered validation and test
set, however, combined with filtering dropout 0.5 ended up worse
than neural network without dropout (dropout 0.0). On the other
hand, neural networks with five or six hidden layers seemed to gain
from dropout in unfiltered and filtered cases. Dropout defect with
smaller networks could be caused by smaller number of parameters
so model cannot get overfitted easily.

Topology

Topology is one of the most discussed parameters of neural networks.
It highly affects the performance of learning and final model. We have
tested topologies from one hidden layer up to 6 hidden layers also
with different widths from 64 to 256 neurons in first hidden unit. Each
next hidden layer was two times smaller than the previous one, so one
possible topology has 128, 64, 32 neurons in first, second and third
hidden layer respectively. The biggest network had over 160 thousands
of connections. We were not able to run bigger networks due to mem-
ory issues. Results for topologies differs rapidly and there is a strong
correlation based on used dropout and already mentioned problems
between dropout and number of connections. Wider networks with
no dropout has similar kappa and class precision as deeper networks
with 50% dropout.

Weights initialization

The important question is if initialization of neural network by stack-
ing autoencoders [10] improves the performance of the neural network.
We used simple autoencoders with different number of training epochs
(8, 16, 32) and compared results with static the Glorot normal [25]
initialization. Different epoch numbers were used due to lack of early

37

6. Application on FOREX

Table 6.6: Confusion matrix with best kappa reached with proposed
grid search

UP MID DOWN
UP 410 0 266

MID 206 0 233
DOWN 236 0 409

stopping for pretraining. Unlike statically initialized networks, pre-
trained networks tends to be more stable when dropout for supervised
training is used in combination with deeper topologies, on the other
hand, some network instances ended up with no usable results, pre-
dicting only one class for all cases. There were also network instances
which were able to train deeper architectures without pretraining.

If we consider kappa as only quality indicator of model, after
described grid search, we were able to reach kappa 0.144, UP and
DOWN class precision 0.481 and 0.450 respectively as Table 6.6 shows.
The final target was set up on 9.978% of the total test set. Property of
the model was topology 256-128-64-32-16-8, using pretraining with 16
epochs as initialization of weights, dropout 0.0 and learning rate 10−4.

Despite the fact that model with the highest kappa was found
using pretraining, pretraining itself seems to bring no actual quality
value to trained model. Models without pretraining were also capa-
ble of similar results. It is possible that 100 learning epochs is not
enough and more epoch with lower learning rate may suffice. Pre-
training most likely does not work because pretraining is considered
as generalization[10] technique and pure generalization is not enough
for given problem.

6.4 Discussion and future work

6.4.1 Data

Most of the models had similar performance and many models had no
problem to overfit training set almost perfectly. It might be signal that
proposed metodic still have reserves and the problem is with noisy
data. Introducing more different features might help with noise, on the

38

6. Application on FOREX

other hand, some features might be dropped out. We have picked one
of the successful models and analyzed means and standard deviations
of weights for input neurons.

Figure 6.5: Means (x) and standard deviations (y) of weights of first
46 input neurons

Figure 6.5 shows that many features have marginally smaller stan-
dard deviation than others, also their means are very close to zero. We
can deduct from such picture that many features could be avoided,
which might lead to clearer data and training mechanisms could find
better models.

MID class avoiding

It is better to predict MID class instead of DOWN class when the true
class is UP and vice versa. In this thesis, we used three classes for
predictions. Since predicting MID class is not necessary, getting rid of
all MID class vectors might help trainers to find the best function sepa-
rating UP and DOWN classes and then applying confidence threshold
on such function might get better binary prediction UP vs DOWN.

39

6. Application on FOREX

6.4.2 Ensemble

Ensembles are considered stronger than single models. We did not try
to build ensemble models in this thesis. One way to build ensemble
is simple voting of more models and picking the elected class. From
back analysis of activations we know that proposed models makes
predictions at different input vectors which means that models are
actually different and since all models are better than random guessing,
voting of many models will lead to the more successful ensemble.

Since predictor does not have to make predictions for all input
vectors, there are many alternatives how to build the ensemble. One
way is to have set of models where all models already have its own
threshold. Another possibility is to have a set of models without the
thresholds and find one final threshold for the sum of activations of
all models. Combination of both approaches is also possible.

Another way to build better predictor might be AdaBoost algo-
rithm which combines many so called weak learners into one model.

6.4.3 Filtering optimization

Proposed methodics for optimizing filtration might be considered as
wrong since the confidence threshold is optimized on the validation
set where is also optimized neural network itself. Model optimization
is stopped on validation set which means that model is little overfitted
not only on the training set but also on the validation set. We observed
that the left percentages of the testing set were unstable and for 10%
targets we sometimes got +- 4%. It is very likely due to optimizing
filter on the same set that the model was.

In order to find best the filter, we might consider it as another
machine learning process with ideally two new data sets. Such model
could take activations from predictor and optimize filtered predictions
using different loss function. Especially with more detailed catego-
rization of output classes (UP high, UP low, MID, DOWN low, DOWN
high) filtering becomes nontrivial task which might be easily solved
using machine learning techniques.

40

6. Application on FOREX

6.4.4 Deployment

Based on the experiences from all the experiments we proposed few
models which were successfully deployed for our industrial partner
into production and the partner confirmed that models were success-
fully predicting the market, yet there are many things to improve.

41

7 Conclusion

Financial market prediction is one of the hardest machine learning
problems. Some financial markets, like FOREX, for example, are even
considered as Brownian motion. For machine learning process it
means that the data are very noisy and it is very hard to find some
inefficiency of market (inefficiency of market = anything that is not
entirely randomized) in the data.

We trained fully connected neural networks to predict time se-
ries sampled from FOREX market. Prediction consisted of classes UP,
DOWN, MID. Trained models were compared using Cohen’s kappa co-
efficient and class precision. We have executed over 3000 experiments
grid-searching for useful settings of neural networks. In this thesis,
we have focused on the analysis of the influence of dropout, topology,
pretraining with a different number of epoch, static initialization and
learning rate.

For massive grid-search, we had to build our own system for cre-
ating and executing experiments. The system was built on top of
frameworks TensorFlow and Keras, leaving the user with the only
configuration file to care of. The system was able to run parallel tasks
on graphics cards for better performance.

Since it is not necessary to make prediction for all vectors, we have
introduced confidence calculators and filtering method to filter out
predictions that were not confident enough.

We have derived from experiments that the neural network setup
is not crucial for model success and it is more important to work with
data and post filtering methods. There were no huge differences be-
tween topologies of neural networks, although deeper architectures
sometimes had problem with getting some useful results. The bests re-
sults were attained with static initialization same as with pre-training.

After few months of experimenting, we proposed few models
which were successfully deployed for our industrial partner into the
production and tested by making predictions for the real trading
system.

43

Bibliography

[1] NAIR Vinod, Geoffrey HINTON. Rectified Linear Units Improve
Restricted Boltzmann Machines [online]. 2010. http://www.cs.
toronto.edu/~fritz/absps/reluICML.pdf [cit. 2016-05-15]

[2] VIERA Anthony J., Joanne M. GARRETT. Understanding
Interobserver Agreement: The Kappa Statistic [online]. 2005.
http://virtualhost.cs.columbia.edu/~julia/courses/
CS6998/Interrater_agreement.Kappa_statistic.pdf [cit.
2016-05-08]

[3] SRIVASTAVA Nitish, Geoffrey HINTON, Alex KRIZHEVSKY, Ilya
SUTSKEVER, Ruslan SALAKHUTDINOV. Dropout: A Simple Way
to Prevent Neural Networks from Overfitting [online]. 2014. https:
//www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf [cit.
2016-05-03]

[4] ERHAN Dumitru, Yoshua BENGIO, Aaron COURVILLE, Pierre-
Antoine MANZAGOL, Pascal VINCENT. Why Does Unsupervised
Pre-training Help Deep Learning? [online]. 2010. http://www.jmlr.
org/papers/volume11/erhan10a/erhan10a.pdf [cit. 2016-05-03]

[5] ADHIKARI Ratnadip, R. K. AGRAWAL. An Introductory
Study on Time Series Modeling and Forecasting [online]. 2013.
http://www.realtechsupport.org/UB/SR/time/Agrawal_
TimeSeriesAnalysis.pdf[cit. 2016-04-27]

[6] Forex Tutorial: The Forex Market. Investopedia. [online]. http://
www.investopedia.com/university/forexmarket/ [cit. 2016-03-
28].

[7] Co je FOREX?. Svět obchodování na FOREXu [online]. http://www.
fxstreet.cz/co-je-forex.html [cit. 2016-04-23].

[8] Bank for International Settlements. Triennial Central Bank Survey of
foreign exchange turnover in April 2013 - preliminary results released
by the BIS [online]. 2013. http://www.bis.org/press/p130905.
htm [cit. 2016-04-23].

45

http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://virtualhost.cs.columbia.edu/~julia/courses/CS6998/Interrater_agreement.Kappa_statistic.pdf
http://virtualhost.cs.columbia.edu/~julia/courses/CS6998/Interrater_agreement.Kappa_statistic.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
http://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf
http://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf
http://www.realtechsupport.org/UB/SR/time/Agrawal_TimeSeriesAnalysis.pdf
http://www.realtechsupport.org/UB/SR/time/Agrawal_TimeSeriesAnalysis.pdf
http://www.investopedia.com/university/forexmarket/
http://www.investopedia.com/university/forexmarket/
http://www.fxstreet.cz/co-je-forex.html
http://www.fxstreet.cz/co-je-forex.html
http://www.bis.org/press/p130905.htm
http://www.bis.org/press/p130905.htm

BIBLIOGRAPHY

[9] VREEKEN Jilles. Spiking neural networks, an introduction, 2002.
http://eda.mmci.uni-saarland.de/pubs/2002/spiking_
neural_networks_an_introduction-vreeken.pdf [cit. 2016-05-
18]

[10] GOODFELLOW Ian, Yoshua BENGIO, Aaron COURVILLE. Deep
Learning 2016. http://www.deeplearningbook.org/ [cit. 2016-05-
18]

[11] SUTSKEVER I., J. MARTENS, G DAHL, G HINTON. On
the importance of initialization and momentum in deep learning
[online]. 2013 https://www.cs.utoronto.ca/~ilya/pubs/2013/
1051_2.pdf [cit. 2016-04-05].

[12] REIDMILLER Martin, BRAUN Heinrich. A Direct Adaptive
Method for Faster Backpropagation Learning: The RPROP Algorithm
[online]. 1993. http://deeplearning.cs.cmu.edu/pdfs/Rprop.
pdf [cit. 2016-04-05].

[13] HINTON Geoffrey, SRIVASTAVA Nitish, SWERSKY
Kevin. Overview of mini-batch gradient descent [online]. 2014
http://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf [cit. 2016-04-05].

[14] ABADI Martin, AGARWAL Ashish, BAHRAM Paul, BREVDO
Eugene et. [online]. TensorFlow: Large-Scale Machine Learning on
heterogenous Distributed Systems [online]. 2015 http://download.
tensorflow.org/paper/whitepaper2015.pdf [cit. 2016-03-30].

[15] LECUN Yann, Leon BOTTOU, Genevieve B. ORR,
Klaus-Robert Müller. Efficient BackProp [online]. 1998.
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
[cit. 2016-04-03].

[16] CYBENKO. G., Approximations by superpositions of sigmoidal func-
tions [online]. 1989. https://www.dartmouth.edu/~gvc/Cybenko_
MCSS.pdf [cit. 2016-03-30].

[17] BALDI Pierre, Autoencoders, Unsupervised Learning, and Deep
Architectures [online]. 2012 http://www.jmlr.org/proceedings/
papers/v27/baldi12a/baldi12a.pdf [cit. 2016-04-28].

46

http://eda.mmci.uni-saarland.de/pubs/2002/spiking_neural_networks_an_introduction-vreeken.pdf
http://eda.mmci.uni-saarland.de/pubs/2002/spiking_neural_networks_an_introduction-vreeken.pdf
http://www.deeplearningbook.org/
https://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf
https://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf
http://deeplearning.cs.cmu.edu/pdfs/Rprop.pdf
http://deeplearning.cs.cmu.edu/pdfs/Rprop.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
https://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://www.jmlr.org/proceedings/papers/v27/baldi12a/baldi12a.pdf
http://www.jmlr.org/proceedings/papers/v27/baldi12a/baldi12a.pdf

BIBLIOGRAPHY

[18] KINGMA Diederik, Max WELLING, Auto-Encoding Variational
Bayes [online]. 2013. http://arxiv.org/pdf/1312.6114v10.pdf
[cit. 2016-04-28].

[19] BASTIEN F., P. LAMBLIN, R. PASCANU, J. BERGSTRA, I. GOOD-
FELLOW, A. BERGERON, N. BOUCHARD, D. WARDE-FARLEY
and Y. BENGIO. Theano: new features and speed improvements. NIPS
2012 deep learning workshop.

[20] BERGSTRA J., O. BERULEUX, F. BASTIEN, P. LAMBLIN, R. PAS-
CANU, G. DESJARDINS, J. TURIAN, D. WARDE-FARLEY and
Y. BENGIO. Theano: A CPU and GPU Math Expression Compiler”.
Proceedings of the Python for Scientific Computing Conference
(SciPy) 2010. June 30 - July 3, Austin, TX (BibTeX)

[21] BERGSTRA James, Olivier BREULEUX, Frédéric BASTIEN, Pas-
cal LAMBLIN, Razvan PASCANU, Guillaume DESJARDINS,
Joseph TURIAN, David WARDE-FARLEY, Yoshua BENGIO.
Theano: A CPU and GPU Math Compiler in Python [online].
2010 http://www.iro.umontreal.ca/~lisa/pointeurs/theano_
scipy2010.pdf [cit. 2016-04-28].

[22] Deep Learning Theano at a Glance [online]. http://deeplearning.
net/software/theano/introduction.html [cit. 2016-04-29]

[23] Apache Maven Project Apache Maven Project [online]. https://
maven.apache.org/ [cit. 2016-04-29]

[24] Teglor Deep Learning Libraries by Language [online]. http://www.
teglor.com/b/deep-learning-libraries-language-cm569/
[cit. 2016-04-30]

[25] GLOROT Xavier, Yoshua BENGIO. Understanding the difficulty
of training deep feedforward neural networks [online]. 2010. http://
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
[cit. 2016-05-03]

47

http://arxiv.org/pdf/1312.6114v10.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://deeplearning.net/software/theano/introduction.html
http://deeplearning.net/software/theano/introduction.html
https://maven.apache.org/
https://maven.apache.org/
http://www.teglor.com/b/deep-learning-libraries-language-cm569/
http://www.teglor.com/b/deep-learning-libraries-language-cm569/
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

A Examples

A.1 Experimental core

Experiment

1. Make sure that numpy, sklearn and scipy libraries are installed.

2. Install TensorFlow 0.8.0 by following installation instructions1

3. Install Keras from2

(a) git clone https://github.com/fchollet/keras
(b) git checkout 1.0.2
(c) python3 setup.py install

4. Provide any data for classification. Make sure that it is divided
into three datasets (train, valid, test). Put them into directory.

5. Setup proper data path and file names in sub-dict "path" of
"data_params" dictionary.

6. Setup storing path in "results_params" dictionary.

7. Change all wanted parameters. Not all setups make sense.

∙ It is possible to have different dropouts, activation functions
and initializations for each layer.
∙ By setting list of "filter_to_basis_point_target", more mod-

els with different filtering are created.
∙ Supported features of Keras
∙ Switching between random initialization and pre-training

is done by setting hidden_init as "pretrain"

8. Run Experiment.py in Python 3 interpreter.

1. TF Installation https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/g3doc/get_started/os_setup.md
2. Keras repo: https://github.com/fchollet/keras

49

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
https://github.com/fchollet/keras

A. Examples

A.2 Autoencoder examples

1. Install TensorFlow by following installation instructions3

2. Clone repository 4

3. Go into "models" directory

4. Run any runner file using Python 2 interpreter.

Experiment generator Experiment generator is meta-program.

1. Change default arguments.

2. Setup SearchParamsDomain dictionary for grid-search.

3. Run in Python 3 interpreter.

3. TF Installation https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/g3doc/get_started/os_setup.md
4. TF Models https://github.com/tensorflow/models

50

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
https://github.com/tensorflow/models

	Introduction
	Time series Forecasting
	 Forecasting model

	Neural networks
	 Fully connected neural network model
	 Activation function

	 Loss function
	 Gradient
	 Gradient calculation
	 Optimizers
	 Batch
	 Dropout

	 Initialization and autoencoders
	 Autoencoder

	Computational tools
	 Theano
	 TensorFlow
	 Deep Learning for Java
	 CNTK
	 Torch7
	 Caffe
	 Frontend for frameworks
	 Implementation of autoencoder model variations in TensorFlow's model repository

	FOREX market
	 Trading Mechanics
	 Trading markets
	 Forecasting FOREX
	 Data sampling

	Application on FOREX
	 System
	 Computational framework
	 Experiment core
	 Experiment executor
	 Experiment setup generator

	 Data
	 Missing values
	 Normalization
	 Balancing classes
	 Target alternation
	 Confidence and filtering
	 Cohen's kappa coefficient

	 Results
	 Learning rate
	 Dropout
	 Topology
	 Weights initialization

	 Discussion and future work
	 Data
	 MID class avoiding

	 Ensemble
	 Filtering optimization
	 Deployment

	Conclusion
	Examples
	 Experimental core
	 Autoencoder examples

