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An algorithm based on the Relaxation Redistribution Method (RRM) is proposed

for constructing the Slow Invariant Manifold (SIM) of a chosen dimension to cover

a large fraction of the admissible composition space that includes the equilibrium

and the initial state. The manifold boundaries are determined with the help of the

Rate Controlled Constrained Equilibrium (RCCE) method, which also provides the

initial guess for the SIM. The latter is iteratively refined until convergence and the

converged manifold is tabulated. A criterion based on the departure from invariance

is proposed to find the region over which the reduced description is valid. The global

realization of the RRM algorithm is applied to constant pressure auto-ignition and

adiabatic premixed laminar flames of hydrogen-air mixtures.
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I. INTRODUCTION

The detailed reaction mechanisms of practical fuels contain hundreds of species partic-

ipating in hundreds to thousands of chemical reactions. In addition to the large number

of variables that need to be accounted for, disparate time scales introduce stiffness and

increase the computational cost of numerical simulations. On the other hand, time scales

associated with transport phenomena cover a narrower range of typically slower time scales.

When the coupling of flow phenomena with chemical kinetics is of interest, changes due to

the fastest time scales can be assumed to be equilibrated, and, after a short transient, the

system dynamics evolve on a manifold of lower dimension. Dimension reduction can then

be employed to decrease the computational cost by representing the chemical system with

a smaller number of variables describing the slow dynamics.

Dimension reduction techniques search for a systematic way to decouple the fast and

slow dynamics. More specifically, these methods aim at approximating the Slow Invariant

Manifold (SIM), i.e. the lower dimensional sub-manifold in the phase space to which all

solution trajectories are attracted after a short transient. Detailed classification and reviews

of model reduction approaches for chemical kinetics and dynamical systems in general can

be found in1–4.

For the purposes of this work, low-dimensional manifold construction techniques can be

broadly classified into two categories5. The first category is based on time scale analysis to

identify the slow and fast modes of the system. The Computational Singular Perturbation

(CSP) method proposed an iterative refinement procedure aiming at approximating the

basis vectors spanning the slow and fast subspaces6. Based on the spectral decomposition of

the Jacobian, which recovers the CSP basis at leading order, the Intrinsic Low Dimensional

Manifold (ILDM) method7 constructs a first-order approximation of the slow manifold8.

The second category includes geometrical approaches for the SIM construction. For

example, the thermodynamic properties which are known functions of the system state

can be used to determine the low dimensional thermodynamic manifolds, which are ‘good’

in the sense that they are not folded, multi-valued, discontinuous, non-realizable or non-

smooth4. The Rate-Controlled Constrained Equilibrium (RCCE) method assumes that the

variables evolve from the initial to the equilibrium (steady) state through a sequence of

quasi-equilibrium states, which can be computed by minimizing a thermodynamic Lyapunov
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function under appropriate predefined constraints9,10. The temporal evolution of the system

can be expressed as a function of the rate of change of the constraints. Similarly, an invariant

constrained equilibrium edge (ICE) manifold is constructed from trajectories emanating from

the constrained equilibrium edge, which can be defined by an RCCE-like approach; the local

species reconstruction can be obtained with the help of preimage curves11. Trajectories

which are closest to equilibrium are alternative candidates for the slow manifold. In the

minimal entropy production trajectories (MEPT) approach, entropy production is used as

an indicator to discriminate the trajectories12. The manifolds obtained using thermodynamic

functions, which often are neither slow nor invariant5, are only approximations of the SIM.

Other constructive methods are based on the iterative solution of the partial differen-

tial equations defining the slow manifold (e.g.13), on finding the invariant manifold con-

necting the equilibrium state to (usually unphysical) saddle points5,14, and on trajectory-

optimization variational approaches12,15, which was recently applied for the construction of

a two-dimensional SIM for syngas combustion16.

Formally, the slow dynamics can be described by the film equation (see Sec. II), which

in the general case can be solved iteratively starting from an initial guess that is gradually

relaxed to the slow manifold. The Method of Invariant Grids (MIG) for chemical kinetics

defines the slow manifold as a collection of discrete points in concentration space, which lie

on the steady solution of the film equation17.

In the spirit of the MIG, the Relaxation Redistribution Method (RRM) was proposed

as a way to construct slow manifolds of any dimension by refining an initial guess (initial

grid) until it converges to a neighborhood of the SIM18. In its local realization, stability

of the RRM refinements provides a criterion for finding the dimension of the local reduced

model18. This dimension may become large when extending the manifold to cover the whole

composition space (up to the full system dimension in the hydrogen combustion example

considered in18). As such, the local formulation of RRM requires smart storage/retrieval

tabulation methods for computational efficiency.

In this paper, we propose an RRM-based method for the construction and tabulation of

manifolds of fixed pre-selected dimension. For this purpose, RCCE is employed to obtain

an initial guess for the manifold and the manifold boundary, which is kept fixed while the

RRM algorithm is applied to the interior points. For the region within the RCCE-defined

boundary where the slow dynamics can be described by a SIM with the chosen dimension,
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the algorithm converges to the slow invariant manifold. An indicator for the quality of

the reduction is proposed based on a measure of the manifold invariance. For the region

where a higher-dimensional reduced description is required, the algorithm still converges to

a manifold which approximates the invariant manifold better than the RCCE manifold of

the same dimension. The algorithm is applied to hydrogen-air mixtures and the tabulated

reduced description is validated in homogeneous systems as well as in a laminar premixed

flame.

The paper is organized as follows. In Section II, the basic notion of the slow invari-

ant manifold and the film equation of dynamics are briefly discussed, and the features of

the RRM method are presented using a singularly-perturbed nonlinear system of ordinary

differential equations. In Section III, detailed reaction kinetics is reviewed briefly. The

initialization of the slow manifold, the refinement procedure based on RRM and the use of

pre-tabulated manifold are presented in Section IV. Finally, the results of RRM manifold for

auto-ignition and laminar premixed flame of hydrogen-air mixture are presented in Section

V.

II. SLOW INVARIANT MANIFOLD AND RRM

Consider an autonomous system satisfying the Cauchy-Lipschitz existence and uniqueness

theorem with a single stable fixed point (unique equilibrium) whose detailed (microscopic)

dynamics are described by the evolution of its state vector N(t) in a ns-dimensional phase

space S, N(t) ∈ S ⊂ Rns ,
dN

dt
= f(N) (1)

where f is a vector valued function, f : S → Rns .

A domain U ⊂ S is a positively invariant manifold if every trajectory of system (1)

starting on U at time t0 remains on U for any t > t0. Therefore, N(t0) ∈ U implies

N(t) ∈ U for all later times t > t0.

The dynamics of (1) is typically characterized by different time scales. For significant

time scale disparity, after an initial transient solution, trajectories are quickly attracted to a

lower dimensional manifold where they continue to evolve at a slower time scale towards the

steady state Neq ∈ S. This positively invariant manifold is the SIM1, and its construction

can be based on the definition of fast and slow sub-spaces within the phase space19–21.
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Neglecting the initial fast transient, the long-time dynamics can be described by a (pos-

sibly significantly) smaller number of the slowly-evolving macroscopic variables ξ, which

can be used to parametrize the SIM. The nd < ns macroscopic variables ξ belong to an

nd-dimensional space Ξ, and can be used for the description of the reduced dynamics of

(1). The manifold parametrization space Ξ can be spanned by different combinations of the

state variables, N ∈ S. A microscopic state N located on the low-dimensional manifold

is shown schematically in Fig. 1(a). More formally, any point x on W satisfies x = F (ξ)

where F : Ξ → S maps points ξ ∈ Ξ on the manifold parametrization space onto the

corresponding point on the manifold W which is embedded in the phase space S (see1).

The evolution of a state N can be decomposed into the slow component along TW, the

tangent space of W, and its complement in the transverse direction (Fig. 1(a)),

f(N(ξ)) = f(N(ξ))‖TW + f(N(ξ))⊥TW
(2)

The slow and fast components are defined, respectively, as

f(N(ξ))‖TW = Pf(N(ξ)) (3)

f(N(ξ))⊥TW
= ∆(N(ξ)) = f(N(ξ))−Pf(N(ξ)) (4)

in terms of an ns × ns projection matrix P and the defect of invariance ∆(N(ξ)).

By definition, W is a positively invariant manifold if any state that is initially on W

remains on it during the subsequent time evolution. Hence, relaxation will only proceed

along the tangent space and the normal component should be zero,

∆(N(ξ)) = 0, ξ ∈ Ξ (5)

Equation (5) is known as the invariance condition, which can be solved for the unknown

slow invariant manifold. In the method of invariant manifold (MIM), the SIM is the stable

solution of the so-called film extension of dynamics1,

dN(ξ)

dt
= ∆(N(ξ)) (6)

which defines an evolutionary process guiding an initial guess for the manifold towards the

slow invariant manifold. In numerical realizations, manifolds are usually represented by a

grid (discrete set of points), as proposed in the method of invariant grid (MIG)17. Due to

the locality of MIM construction, we make no further distinction between manifold and grid.
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If the initial grid is subjected to the system dynamics, the distance between the grid

nodes shrinks and the whole grid contracts to a neighborhood around the equilibrium state.

The key idea of RRM is to alternate a relaxation step with an appropriate movement that

counterbalances shrinking. One iteration step of RRM is shown schematically in Fig. 1(b).

After relaxation, the nodes of the initial grid (filled circles) evolve to different positions

(open circles) and the macroscopic coordinates change. The increased density of the grid

points close to equilibrium can result in a reduction of the grid spacing. To prevent this,

the redistribution step brings the macroscopic coordinates ξ back to their previous values

by interpolation between the inner relaxed states and extrapolation for grid points outside

the contracted boundaries. The converged solution is the manifold containing all the states

for which further relaxations result in movement only along the manifold.

In order to clarify the aforementioned notions, the singularly-perturbed dynamical system

proposed in22 is considered with N = (x, y)T

dx

dt
= 2− x− y (7a)

dy

dt
= γ(
√
x− y) (7b)

For x(t), y(t) ∈ R, x(t) ≥ 0 and γ � 1, the system evolves from any initial condition (x0, y0)

towards the fixed point at (1, 1).

For γ = 20, choosing ξ = x to parametrize the manifold and y = 1− x as the initial grid,

after a single integration step (relaxation) with δt = 0.07, the initial grid (open squares)

contracts significantly (Fig. 2(a), open circles). Redistribution is then applied to find the

y values at the original locations of the parametrizing macroscopic coordinates by linear

interpolation between relaxed states on the interior grid and linear extrapolation at the

boundary (two leftmost star symbols). The RRM converges to the slow invariant manifold

after 10 iterations for a tolerance of 10−4 (Fig. 2(b), solid line).

The defect of invariance ∆ can be used as an indicator for the time after which the

reduced description becomes accurate. For the chosen parametrization, the kernel of the

projector P is (1, 0). P is spanned by its image, which is the tangent subspace to the

manifold, TW = imP, and the orthogonal to the kernel. Hence,

P =

 1

dy
dx

 (1, 0) =

 1 0

dy
dx

0

 (8)
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From (4), the defect of invariance is then

∆ = (I − P )f =

 0

dy(ξ)
−dξ (2− ξ − y(ξ)) + γ

(√
ξ − y(ξ)

)
 (9)

In this case, the manifold is smooth and dy(ξ)
dξ

along the manifold can be accurately approx-

imated numerically by second order central differences.

In order to compare the manifold and its invariance with the ILDM, the Jacobian J of

(7)

J =

 −1 −1

γ
2
√
x
−γ

 (10)

is needed. The symmetrized Jacobian J sym = JJT , which offers the advantage of real

eigenvalues, λ, and orthogonal eigenvectors, v, can be used to define the fast and slow

invariant subspaces of (7)23,24. Let us define the matrix V with a column partitioning given

by the eigenvectors of J sym ordered according to decreasing values of the corresponding

eigenvalues, V = (vslow,vfast) and its inverse V −1 =
(
ṽslow, ṽfast

)T
. For γ � 1, the

ILDM manifold, yILDM , obtained by setting the inner product of ṽfast with f 7,24 equal to

zero has the approximate form

y =
√
x. (11)

The ILDM manifold is plotted in Fig. 2(b) (dashed line) together with several trajectories

(dot-dashed lines) and the RRM manifold (solid line). Trajectories initialized at the leftmost

boundary of the ILDM (open squares) and RRM (open circles) manifolds are also shown.

In this case, the ILDM manifold is neither invariant nor slow, except close to the steady

state. On the other hand, different solution trajectories are quickly attracted (Fig. 3(a)) to

the RRM manifold, which is also seen to be invariant.

For the initial condition (x0, y0) = (0.1, 1.0), the temporal evolution of the state and

the Euclidean norm of ∆ for the RRM and ILDM manifolds of system (7) are plotted in

Fig. 3(a). The defect of invariance for the RRM manifold is an order of magnitude lower than

for ILDM, implying that the RRM manifold is a better approximation for the SIM. As it can

be seen from Fig. 3(b), the trajectory is attracted to the RRM manifold at (x, y) ' (0.4, 0.6).

At this location, the defect of invariance for the RRM manifold is less than 0.03, while for

ILDM it is approximately 0.6.
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III. CHEMICAL KINETICS

Consider a homogeneous mixture of ideal gases consisting of ns species and ne elements

reacting under constant pressure p in a closed system. The number of moles are represented

by the vector N = (N1, N2, · · · , Nns)
T and the change in the chemical composition of the

species, results from r reversible reactions between the ns reactants Mi

ns∑
i=1

ν ′ikMi 

ns∑
i=1

ν ′′ikMi, k = 1, · · · , r (12)

where ν ′ik and ν ′′ik are the stoichiometric coefficients of species i in reaction k for the reactants

and products, respectively. The rate of progress of reaction k is

qk = kfk

ns∏
i=1

[Xi]
ν′ik − krk

ns∏
i=1

[Xi]
ν′′ik , k = 1, · · · , r (13)

where [Xi] denotes the molar concentration of species i and kfk and krk are the forward and

reverse rate constants having the modified Arrhenius form

kfk = AkT
βk exp

(−Ek
RcT

)
(14)

with Ak, βk, Ek and Rc being the pre-exponential factor, temperature exponent, activation

energy and ideal gas constant, respectively. The forward and reverse rate constants are

related via the equilibrium constant, Kck(T )

krk =
kfk
Kck

(15)

The rate equation for species i is given by

d[Xi]

dt
=

r∑
k=1

(ν ′′ik − ν ′ik)qk, i = 1, · · · , ns (16)

Using the reactor volume V , the change in the mole number of species i can be rewritten in

the form of equation (1)
dN

dt
= f(N) (17)

The ne elemental conservation constraints can be expressed in terms of an ne×ns elemental

constraints matrix, E, as25

EN = ξe (18)
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where ξe is specified by the initial composition and Eji denotes the number of atoms of

element j in species i.

In a constant pressure adiabatic system the reactions proceed at constant enthalpy and

the temperature evolution is governed by

dT

dt
= − 1

ρcp
Σns
i=1hiω̇iWi

where, ρ is the mixture density and Wi, hi and ω̇i molecular weight, enthalpy and produc-

tion/destruction rate of species i. According to the second law of thermodynamics, the

system under consideration is equipped with a convex state function, the entropy S, which

attains it global maximum at equilibrium. The negative of entropy, which for ideal gases

mixtures under isobaric and isenthalpic conditions takes the form18

G = −S = −
∑ns

i=1Xi

(
si(T )−Rc ln(Xi)−Rc ln

(
p

pref

))
W

(19)

is a thermodynamic Lyapunov function for the dynamics defined by (17) in terms of si, the

specific entropy of species i, W =
∑ns

i=1XiWi the mean molecular weight, p and pref , the

system and reference pressure; Xi = Ni/
∑ns

j=1Nj is the mole fraction of species i.

The equilibrium composition, Neq, is the solution of the constrained minimization prob-

lem:

min G

s.t. EN = ξe
(20)

This Lyapunov function can be exploited not only to compute the equilibrium, but also for

the derivation of the reduced description as described in the next section.

IV. CONSTRUCTION OF THE REDUCED DESCRIPTION

The local realization of the Relaxation Redistribution Method18 constructs and tabulates

SIMs with dimension nd adaptively varying in different regions of the phase space. Adapta-

tion of the dimension is based on the failure of the algorithm to converge after a fixed number

of iterations, which is taken as an indicator that the SIM dimension should be increased.

However, the computational cost associated with the manifold representation on a grid

and the retrieval of information from high dimensional tables imposes restrictions on the

dimensionality of the slow manifold, the target being a two- or three-dimensional table4. A
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low-dimensional SIM is usually limited to a small neighborhood of phase space around the

equilibrium point, leaving open the problem of its extension to cover all admissible states26.

In this paper, the global realization of the RRM with an a priori chosen manifold di-

mension is employed. In particular, an RCCE manifold, which provides ‘good’ manifolds

as discussed in the introduction, with dimension up to three is used to define the initial

SIM. The initial approximation is subsequently refined using RRM. For regions of the phase

space in the neighborhood of the equilibrium, the method converges to the SIM. For states

farther away, where no SIM with the chosen dimension exists, the refined Quasi-Equiibrium

Manifold (QEM) defined below provides an accurate extension as will be shown in section

V. In addition to the parametrization of the SIM, the initial RCCE manifold defines the

boundaries which are kept fixed during the application of RRM.

A. Initialization: the quasi-equilibrium manifold

For systems equipped with a Lyapunov function, a reduced description can be obtained

based on the notion of the Quasi-Equilibrium Manifold (QEM)1 (known as Constrained

Equilibrium Manifold (CEM) in the combustion literature9,10). QEM assumes that the sys-

tem relaxes to equilibrium through a sequence of quasi-equilibrium states at a rate controlled

by a set of appropriate slowly-varying constraints ξ1,9,10,27. Since the Lyapunov function G

decreases in time, a QEM can be interpreted as the constrained minimum of G.

In addition to the elemental conservation constraints (Eq. (18)), QEM imposes a priori

nd linear constraints on the system state defining the slow macroscopic variables

ξd = (Bd)N (21)

Bd is an nd × ns matrix with rows obtained from the coefficients of the linear combinations

of the number of moles providing the nd slow parametrizing variables ξd. Thus, the total

number of constraints amounts to nc = ne+nd, and the QEM is the map NQEM(ξ), obtained

by solving the following constrained convex minimization problem

min G

s.t. BN = ξ
(22)

Here, B = [E Bd] is the nc×ns constraint matrix and ξ = [ξe ξd] the constraint vector with

nc elements. The ns-dimensional state N can then be parametrized by the nc variables ξ.
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For model reduction purposes, nc � ns.

In closed reactive systems, the elemental mole numbers must be conserved. Hence, EN =

ξe is fixed upon definition of the fresh mixture condition. The constraint matrix Bd can

be selected on the basis of numerical results of detailed solutions for similar problems, as

suggested for example in28. Alternatively, a suitable parametrization can be extracted using

the spectral decomposition of the Jacobian matrix evaluated at the equilibrium point29. It

should be pointed out that a QEM is typically neither an invariant nor a slow manifold27.

The choice of a good set of constraints can be challenging. In addition to intuition and

the mentioned approaches, CSP analysis of detailed simulations can aid in the selection28.

The Level Of Importance (LOI), which finds the species associated with the short time scales

by means of a combined species lifetime and sensitivity parameters, has also been used in

the RCCE context30.

The RCCE method, which is based on the QEM approach can be used either as proposed

originally31–33, or in combination with other methods34. The most commonly employed

slowly-changing constraints are the total number of moles (TM), the total number of radicals

referred to active valence (AV), and free oxygen (FO), which refers to the reactions where

the O-O bond is broken27. These RCCE linear constraints for hydrogen/air combustion are

specified in Table I. The RCCE manifold is unique and infinitely differentiable, and can be

used even for states far from equilibrium25,35. In this paper, we exploit the QEM notion only

to construct the initial approximation of the SIM and to define the manifold boundaries.

B. The global Relaxation Redistribution algorithm

As discussed in section II, the boundaries of the initial grid shrink during relaxation. In

the local RRM, reconstruction of the boundary points by re-stretching the relaxed grid to

the fixed boundaries is done by linear extrapolation. However, such an approach cannot

always guarantee physically meaningful values for the species concentrations. In order to

avoid these difficulties, the boundary of the SIM can be fixed to the initial guess provided

by the QEM, and the RRM procedure is applied only to the interior grid points.

The embarrassingly simple steps for the computation of the global manifold proceed as

follows:

1. Choose the manifold dimension nd and select the parametrizing variables ξi
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2. Construct the nd-dimensional QEM, NQEM(ξd), by solving the minimization problem

(22). This manifold corresponds to constructing the initial grid indicated by the solid

line with filled circles in Fig. 1(b).

3. Fix the grid boundaries to the boundaries of QEM

4. Relax the interior grid nodes by integrating

dN

dt
= f(NQEM(ξd)) (23)

for a fixed time step ∆t to obtain Nrelax. As shown schematically in Fig. 1(b) (filled

circles relaxing towards the open circles), this equation expresses the temporal evolu-

tion of composition confined onto the SIM. The new locations of the relaxed nodes in

the manifold parametrization space Ξ are then obtained from

ξdr = (Bd)Nrelax (24)

5. Redistribute the grid nodes back to the original locations in the manifold parametriza-

tion space.

Nrelax(ξdr)→ NRRM(ξd) (25)

using interpolation through the scattered relaxed nodes. This is similar to finding the

filled squares in Fig. 1(b), with the difference that boundaries are fixed and there is

no extrapolation between the relaxed nodes.

6. Repeat steps 4-5 until the grid points do not change appreciably.

It should be pointed out that the reduced descriptions obtained by this algorithm are

closely related to the ICE-PIC approach suggested by Ren et al. in11, as both procedures

construct invariant manifolds forced to pass by the same boundary points (QEM boundary

points).

C. Rate equations for the slow variables

Once the slow invariant manifold is constructed, the temporal evolution of the reduced

system along the SIM can be recast in the following general form in terms of the macroscopic
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slow variables ξd chosen to parametrize the SIM:

dξd

dt
= (Bd)Pf(NRRM(ξd)) (26)

If the slow invariant manifold is known with high accuracy, the vector field f is perfectly

aligned with the manifold’s tangent space and the state would never depart from the mani-

fold. In most computational applications of practical interest, however, SIM approximations

with different levels of accuracy are employed, and the chosen parametrization cannot com-

pletely decouple the fast and slow components. In these cases, (Bd)f does not lie on the

tangent space of the SIM and a projector P is needed to bring the state back to the manifold.

Different projectors have been proposed in the literature. The ILDM projector recovers

the fast subspace to leading order, and the kernel of the projector is constructed using the

fastest eigenvectors of the local Jacobian. Higher order approximations can be constructed

using the CSP basis vectors. Details on the ILDM and CSP projectors can be found in6,7.

Another option for P is the thermodynamic projector36, which can be constructed on the

basis of the local tangent space to the SIM and the derivatives of a thermodynamic Lyapunov

function (19)37.

In the classical RCCE method, it is assumed that states of the system always remain

on the QEM and the rate equations for the slow parametrizing variables is close to the

tangent space of the manifold27. The ns-dimensional composition space is decomposed into

the nd-dimensional represented subspace spanned by the rows of Bd and its orthogonal

complement, the unrepresented subspace of dimension ns − nd. The projection matrix then

becomes the ns×ns-dimensional identity matrix which implies that the rate of change in the

unrepresented subspace is negligible. Therefore we rely upon the fact that fast motions are

expected to mostly occur in the null space of the Bd matrix. For a more detailed analysis

of this projector see38. The same approach was used in the applications of the next section.

The following steps describe the implementation of reduced chemistry in a reacting flow

simulation: (a) From the specified composition at time tn, Nn = N(tn), and the thermo-

dynamic conditions, the values for the parametrizing variables can be found using equation

(21),

(Bd)Nn = ξdn (27)

(b) The rate equations (26) for ξd, are advanced in time to find ξdn+1, where NRRM
n are the

projected values of N(tn) on the SIM.
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The reduced model can be tabulated in terms of either the reduced state NRRM or of

the projected right hand side of the evolution equations (Bd)f(NRRM). In the former case,

interpolation of the tabulated data is used to retrieve the composition vector corresponding

to ξdn+1. In the latter, the right hand side of (26) is obtained directly to proceed with the

integration of the reduced system and the compositions can be obtained separately in a

post-processing step.

The overall computational cost for the integration of the full system of ns differential

equations is thus replaced by the cost of integrating nd differential equations and of interpo-

lation. The following practical issues should be pointed out: (i) Choosing the appropriate

constraints with respect to the initial composition is important. The kernel of Bd should

not be spanned by the f(NRRM
n (ξd)) vector, since in that case dξd

dt
becomes zero and there

is no temporal evolution of ξd; (ii) Interpolation can affect the result strongly as shown in39.

This effect can be controlled by refining the table and/or using appropriate interpolation

methods, albeit at higher computational cost; (iii) By construction, the approach presented

here guarantees that the equilibrium will be accurately captured by the reduced description.

This appears to not always be the case with reduced mechanisms proposed in the literature;

(iv) In problems like the ignition delay time considered in the next section, the projection

of the initial state on the manifold is crucial for the comparison with the prediction of the

detailed reaction mechanism. In the literature, the comparison is often made by taking the

initial state to lie on the manifold. In the auto-ignition validation of the next section good

results are obtained by comparing the detailed solution with those obtained by projecting

the initial state on the manifold using the constrained equilibrium assumption.

V. VALIDATION AND DISCUSSION

A. Auto-ignition of homogeneous mixtures

The global RRM method is applied to a homogeneous H2/air mixture using the detailed

reaction mechanism of Li et al.40 (ns = 9 species and 21 reactions) at atmospheric pressure

and different initial temperatures T0.

The initial reactant composition is that of a stoichiometric mixture (N0
H2

= 1.0, N0
O2

= 0.5

and N0
N2

= 1.881 mole), while the remaining species are assigned the chemically insignifi-
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cant positive values N = 10−12 mole to ensure strictly positive species compositions at the

constrained equilibrium state and guarantee the existence and uniqueness of the solution to

the minimization problem (22)27. The equilibrium point (steady state) can be computed

by minimizing the Gibbs function under constant pressure and enthalpy. Then, the initial

and equilibrium states are projected on the manifold parametrization space, Ξ, using (21).

Different combinations of constraints for hydrogen combustion have been investigated in the

literature27,35. The TM and AV constraints (Table I) have been found to give better agree-

ment with respect to ignition delay times for a wide range of /thermodynamic conditions

and are chosen for the ξ parameterization. Starting from a sufficiently large range in the

parametrization space that contains the initial and steady states, the CEQ code41,42 is used

for the construction of the RCCE-based initial manifold as discussed in section IV B. The

code computes the constrained equilibrium state by minimizing the Gibbs function under

fixed pressure and enthalpy; the projection of the computed initial manifold on Ξ is shown

in Fig. 4.

The boundary nodes are then fixed, and the RRM procedure is applied to the interior

nodes. For the redistribution step, the linear Shepard method implemented in the SHEP-

PACK package43 is used for interpolation,

NRRM(ξd) =

∑ngp

k=1 αk(ξ
d)Nrelax(ξdr)∑ngp

k=1 αk(ξ
d)

(28)

where ngp is the total number of grid points and the weights αk(ξ
d) are defined as

αk(ξ
d) =

1

‖ξd − ξd(k)r ‖22
(29)

For initial temperature T0 = 1500 K, the two-dimensional RCCE and global RRM man-

ifolds for selected species are plotted in Fig. 5 together with the trajectory obtained using

the detailed mechanism (thick solid line). For the major species, the global RRM manifold

brings only a slight improvement over the RCCE manifold, while for HO2 and H2O2 the

improvement is significant. As it can be seen in Fig. 5, the RCCE manifold is not invariant.

This is more clearly seen in the temporal evolution of the temperature and species mass

fractions, plotted in Fig. 6. Good agreement is found with the detailed description for the

temperature and major reactants as well as the radicals with high enough concentration.

Far away from equilibrium, the RCCE manifold strongly underpredicts the concentration

of HO2 and H2O2. The time history of the weighted root mean square norm as used for
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error estimation in44 of the defect of invariance vector is plotted in Fig. 7 together with the

temperature profiles computed using the detailed and reduced descriptions. After 40µs,

the defect drops below 10−4 and the detailed and reduced models are in good agreement.

This illustrates that the defect of invariance is a convenient indicator of the accuracy of the

reduced description. During the initial transient, a higher-dimensional manifold should be

used.

The number of right hand side function evaluations nfe during integration can be used as

an indicator for the stiffness. Figure 8 shows the temperature and nfe obtained by using the

stiff ODE integrator DVODE44 with an output time step δt = 10−5 (the integrator adapts

the time step during integration from time t to t + dt). The initial composition for the

detailed mechanism was the stoichiometric mixture, while for the reduced description its

projection on the RRM manifold was used. With the exception of a single time instant close

to ignition, nfe is lower for the reduced model during the whole integration interval.

At a lower initial temperature T0 = 1000 K, the 2-D manifold can no longer provide an

accurate reduced description (Fig. 9). The construction of a 3-D slow manifold is straight-

forward starting from an initial manifold constructed using all constraints of Table I. The

results obtained with RCCE with two (open squares) and three (open circles) constraints,

the RRM 2-D (dot-dashed line) and 3-D (dashed line) manifolds are compared with the

detailed evolution (solid line) in Fig. 9. While the 3-D RCCE manifold results in small im-

provement, the increase in the manifold dimension of the RRM manifold leads to very good

agreement with respect to the prediction accuracy of the ignition delay time and the tem-

poral evolution of temperature and species, with the exception of the YH2O2 profile which

displays a noticeable deviation from the detailed mechanism profile. The ignition delay

times, τig, defined as the time corresponding to the inflection point of the temperate profile

are summarized in Table II.

The magnitude of the real part of the six non-trivial eigenvalues of the Jacobian matrix

during the temporal evolution for T0 = 1000 K and T0 = 1500 K are reported in Fig. 10.

The absolute value of the inverse of the eigenvalues determine the time scales of the chemical

modes and the ratio λf/λs of the most to the less negative eigenvalues is an estimation for

the stiffness. For T0 = 1000 K, the gap is λf/λs ' 8.5× 108, while for T0 = 1500K the ratio

becomes λf/λs ' 5.6×105, reflecting the higher stiffness at lower temperatures. In addition,

if time scales 1/|λ| shorter than 10−4 [s] are considered as fast, the initial slow subspace of
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the T0 = 1000 K case is three dimensional while, for T0 = 1500 K, a 2-D slow manifold

can be used. Eigenvalues with positive real part indicating explosive behavior were found

initially in both cases and time intervals where the eigenvalues cross and become complex

pairs were observed during the evolution from the initial to the equilibrium state. Manifolds

of higher dimensions would be needed to capture more accurately the reduced dynamics

in these intervals, as was done in the adaptive version of RRM18. Careful examination

of Fig. 10 for T0 = 1500 K reveals that eigenvalue crossings correspond to jumps in (a)

the defect of invariance vector (Fig. 7) and (b) the number of source term evaluations nfe

(Fig. 8). The effect of eigenvalues crossing on the quality of reduced model is discussed in45.

It nevertheless appears that these short intervals do not affect the quality of the manifold

significantly.

B. Premixed laminar flame

The steady, atmospheric, adiabatic, one-dimensional laminar premixed flame of a stoi-

chiometric hydrogen/air mixture and multi-component transport properties was considered

in order to study the ability of the 2-D RRM manifold constructed from the homogeneous

auto-ignition of an unburnt mixture at Tu = 700 K to reconstruct the unrepresented vari-

ables in a case where transport phenomena play a dominant role. A similar procedure was

used for the validation of the ICE-PIC manifold by Ren el al.11.

In this case, the manifold parametrization becomes important since in the general case

of non-unity Lewis numbers it is difficult to solve the partial differential equations even

when the parametrizing variables are linear combinations of the original variables46. Here,

the quasi-equilibrium manifold was constructed using the mole fractions of H2O and H2 as

slow constraints (ξ1 = XH2O and ξ2 = XH2). The RRM refinement process was applied

starting from the QEM to find the global two dimensional manifold for Tu = 700 K. The

species concentrations as a function of the distance, x, is computed using PREMIX from

the CHEMKIN application suite47. The local values of XH2 and XH2O from the detailed

chemistry 1-D flame structure were used to reconstruct the remaining species using the

RRM manifold.

The agreement for the major species and temperature between the detailed solution and

the reconstruction is excellent (Fig. 11). The largest differences are observed for the H2O2
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radical and they can be mainly attributed to the incorrectly predicted value of QEM at the

“cold” (unburned mixture) boundary. In addition to low dimensionality effects, molecular

diffusion in laminar flames can drive the compositions away from the manifold, potentially

contributing in the differences observed in the O and H radicals profiles. Similar observations

are reported in the literature, where different methods of projecting the diffusion term onto

the manifold were studied (see, for example,48,49).

VI. CONCLUSIONS

In this paper we presented an algorithm based on the Relaxation Redistribution Method

(RRM) for the construction of the Slow Invariant Manifold (SIM) of an a priori chosen

dimension which covers a large fraction of the admissible composition space that includes

the equilibrium as well as the initial state.

The manifold parametrization and boundaries are determined with the help of the Rate

Controlled Constrained Equilibrium (RCCE) method, which also provides the initial guess

for the SIM. The guess is iteratively refined and the converged manifold is tabulated. The

method is easy to implement and robust to use for the construction of reduced manifolds of

high dimensionality, which were found to be invariant over extended regions of the admissible

space. A criterion based on the departure from invariance is proposed to find the region

over which the reduced description is valid. The accuracy of the method was assessed

by comparing trajectories for auto-ignition calculations of homogeneous H2/air mixtures

at different initial temperatures T0. At T0 = 1500 K, a 2-D manifold is found to capture

accurately both the ignition delay time and the temporal evolution of all the species and

shows significant improvement with respect to the low concentration species (HO2 and H2O2)

compared to an RCCE manifold. At T0=1000 K, a 3-D manifold is needed to reproduce

accurately the detailed dynamics with the exception of the pre-ignition profiles of H2O2.

The significant reduction in the number of source term evaluations indicates that the

reduced descriptions are less stiff. However, similar to all other reduction methods based

on tabulation, fast table searching and interpolation algorithms are essential for the overall

efficiency of the reduced scheme.

The 2-D RRM manifold can reconstruct the laminar premixed flame structure fairly

accurately compared with the results obtained with the detailed mechanism, indicating that
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it can be used in multidimensional simulations where transport properties play a dominant

role.
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TABLE II. Comparison of ignition delay times deduced from detailed and reduced models.

Method τig(sec)

Detailed 0.000213

RCCE TM+AV 0.000169

RCCE TM+AV+FO 0.000178

RRM 2D 0.000170
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(a) (b)

FIG. 1. (a) Schematic of the motion decomposition which is exploited in the construction of the

slow manifold; (b) Relaxation Redistribution algorithm: the effect of slow motions are neutralized

via redistribution.
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FIG. 2. (a) The effect of applying a single RRM step on the nodes of the initial grid; (b) comparison

between ILDM manifold, RRM manifold and sample trajectories γ = 20.
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FIG. 5. Comparison of the RCCE (left column) and RRM (right column) manifolds for T0 = 1500

K. (2: fresh mixture; ?: equilibrium point; −: detailed kinetics trajectory).
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FIG. 6. Time histories of the temperature and species mass fractions for H2/air autoignition with

unburnt temperature T0 = 1500K.
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FIG. 11. Comparison of the temperature and species mole fractions profiles computed by PREMIX

(lines) and reconstructed using the 2-D RRM manifold (symbols) for unburnt mixture at T0 = 700

K.
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