
Static power analysis for plower-driven synthesis

S .-Y. Yu a n
K.-H. Chen
J.-Y. JOU
S.-Y. KUO

Indexing terms. Probabilistic method, Sinzulution-bused method, Symbolic simulutor

Abstract: A new static power analysis method for
CMOS combinational circuits is presented. This
approach integrates the simulation-based method
and the probabilistic method, and can establish
the relationships between the primary inputs and
the internal nodes in the circuit. Based on the
relationships, our approach can also indicate
which internal node or input sequence consumes
the most power. It is thus suitable for performing
power estimation in the synthesis environment for
power optimisation. To the best of our
knowledge, this is the first attempt to develop a
systematic way to symbolically represent the
relationships between the primary inputs and the
power consumption at every internal node of a
circuit. Furthermore, by using the existing
piecewise linear delay model, as well as the
proposed algorithm, this novel method is also
very accurate and efficient. For a set of
benchmark circuits, the experimental results show
that the power estimated by our technique is
within 5%) error as compared with that by the
exact SPICE simulation, while the execution
speed is more than four orders of magnitude
faster.

1 Introduction

Power dissipation has emerged as an important design
parameter in the design of microelectronic circuits,
especially in portable computing and personal commu-
nication applications. More generally, as the density
and the size of chips and systems continue to increase,
the problem of power consumption becomes a critical
concern in VLSI design [l]. Low power design tech-
niques are becoming increasingly important in today’s
integrated circuit designs [2]. Therefore, a fast and
accurate power estimator is necessary for a low power
circuitisystem designer.

During the synthesis for low power at higher level of
abstractions such as the register transfer level, it is
almost impossible to have a very accurate estimation

~~ ~

0 IEE, 1998
ZEE Proceedings online no. 19981909
Paper received 5th January 1998
S.-Y.Yuan, K.-I-I.Chen and S.-Y.KUO are with the Department of Elec-
trical Engineering, National Taiwan University, Taipei, Taiwan, Republic
of China
J.-Y. Jou is with the Department of Electronic Engineering, National
Chiao Tung University, Hsinchu, Taiwan, Republic of China

IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 2, Murch 1998

about L e power consumption of each module. How-
ever, if the estimation model is able to correctly sort
the alternative designs according to the estimated
power, we can still have the right designs for low power
because there are relatively few alternative designs and
each design has very different trade-off among power,
area and performance. However, performing synthesis
for low power at gate level or below, the power estima-
tion with high accuracy becomes a must, because there
could be many alternative designs and it is difficult to
have estimation with relatively low accuracy but with
good fidelity [3]. Therefore, with a less accurate estima-
tion of power, we may optimise the circuits in the
wrong spots such that we cannot lower the power con-
sumption with minimum overheads in terms of area
and performance.

There are quite a few approaches proposed [4-61 to
reduce the inefficiency of the SPICE while maintaining
acceptable estimation errors. The PowerMill approach
[4] is a transistor-level power simulator, which uses an
event-driven simulation algorithm to increase the speed
by two to three orders of magnitude over SPICE.
Although the PowerMill is relatively accurate, it is still
not suitable for power-driven synthesis. This is because,
when power optimisation is performed, the circuits will
be modified frequently. Power estimation should be
done incrementally to speed up the process. The simu-
lation-based approach cannot be used in this situation.
Switch-level simulation techniques are, in general,
much faster than circuit-level simulation techniques,
but are not as accurate or versatile. Standard simula-
tors, such as IRSIM [6], can be easily modified to
report the switched capacitance (thus the dynamic
power dissipation) during a simulation run.

However, the approaches mentioned above suffer
three major problems as power simulation tools. First,
they must simulate the ‘chosen patterns’ with many
iterations to determine the average power consumption
of each node, which slows down the simulation speed.
Also, the average results strongly depend on the ‘cho-
sen patterns’, and we may get biased simulation results.
Secondly, if the PIS are not fully independent, the
choices of patterns need much more attention and the
number of patterns needed is large. Thirdly, due to the
nature of simulation-based simulators, they cannot
provide enough power information such as the percent-
age of glitch power of each node’s power consumption,
the difference between generation of glitches and pass-
ing of glitches, the source node of a glitch, or the cause
of the glitch. Thus, these approaches can leave the user
or synthesiser in a vague situation to improve or resyn-
thesise a circuit.

89

In this paper, we will develop a new method which
retains the advantages of both the simulation-based
methods and the probabilistic methods. This power
analyser can estimate the total power consumption due
to the circuit itself as well as the power consumption
due to the transition, and the spike at every internal
node in the circuit efficiently and accurately. Further-
more, this new approach can not only establish the
relationships between the primary inputs and the inter-
nal nodes in the circuit but also increase the efficiency
of the simulation-based method. Ghosh proposed a
symbolic simulator based on the binary decision dia-
gram (BDD) [7]. The major difference between our
method and the method in [7] is that we use the idea of
cube representation to simplify the process of simula-
tion. By using the idea of a cube, we can get much
more information from the simulation than the method
in [7]. To the best of our knowledge, our approach is
the first attempt to develop a systematic way to sym-
bolically represent the relationships between the pri-
mary inputs and the power consumption at every
internal node of a circuit. The simulation results show
that our new method provides much more information
on power consumption than other methods. The
approach can thus be integrated into a synthesis envi-
ronment to determine where it can be improved or
resynthesised for low power. Thus, this method is very
suitable for performing power estimation in the synthe-
sis environment for power optimisation.

2

2. I Power dissipation model
It is well known that the dynamic power estimation
formula is P = ll2aCV"fhere P is the average power,
a is the switching activity, V is the supply voltage, f is
the frequency, and C is the load capacitance of the gate
[8, 91. We use an ideal gate (e.g. AND, OR, etc.) and
equivalent input and output capacitances to model a
real gate. Using [l], we can estimate C.

Power dissipation model and definitions

P = +olCV2f

* C = v2 Xactua~-node-transztzon-number

- 1 actual-node-transztzon-number
- 2 max-node-transztzon-number XCV"&L

(1)
2 x P x szmulatzon- tzme

We also established the database of mutiple-SPICE-
simulation-based thresholds [101 to approach the piece-
wise linear delay model, which will further improve the
precision and efficiency of the simulation. The simula-
tion result was very accurate and efficient in [lo]. The
error percentage is less than 5% as compared with the
HSPICE simulation, while the execution speed is more
than three orders of magnitude faster. For some cir-
cuits, the speedups are even more than four orders of
magnitude larger. However, a large number of different
input sequences is required for [lo], and this simula-
tion-based method was still very time consuming. Fur-
thermore, the information on the average power
consumption is not enough for performing power opti-
misation in the synthesis environment. In other words,
with only these average power values derived from the
simulation-based method, we cannot efficiently figure
out where the most power is consumed and why.
Therefore, it is necessary to combine a simulation-
based method with a probabilistic method. In the fol-
lowing discussions, we will develop a new method
based on the static analysis approach. This method

90

cannot only construct the relationships between the pri-
mary inputs and the internal nodes in the circuit but
also increase the efficiency of the simulation-based
method.

2.2 Node probabilities
The signal probability p (X) of a node X is defined as
the probability that node X has a value of logic 1. Let
us now define three special probabilities P I , Po, and Ps.
Assume that node X is the output of a gate g . Thus,
the switching probability of X , P,(X), is equal to 2 x
p (X) x (1 ~ p(X)) and is defined as the probability that
node X will switch from low to high or high to low if
any input(s) of gate g changes. The holding-one proba-
bility of X, Pl(x), is equal to p(2J2 and is defined as
the probability that node X will hold in high (one) if
any input(s) of gate g changes. The holding-zero proba-
bility of X , Po(X), is equal to (1 - P (X)) ~ and is defined
as the probability that node X will hold in low (zero) if
any input(s) of gate g changes.

We define a cube with n elements as: <PK(PI,) (PIl) ,
PK(P12) (PI2), ..., PK(PIn) (PIn)>, given a circuit with n
primary inputs (Plj, j = 1, ..., n), m primary outputs
(POk, k = 1, ..., m), and many internal nodes. The
probability of this cube is: PK(PIi) (PIL), where
K(PIi) can be 1, 0, or S. Here we assume that the pri-
mary inputs are uncorrelated for the sake of easy
explanation.

C

Fig. 1
1.010.3

Example circuit

For example, in Fig. 1, a, b, c are PIS, f is PO, and d,
e are internal nodes.

Assume the AND/OR gate has a delay time of 1.5
units, the NOR gate has a delay time of 1.0 unit, and
the inertial of each gate is 0.3 units. Given the signal
probabilities of the primary inputs a, b, and c, we can
determine Pl(a), Po(a), Ps(a), ..., Ps(c). By applying the
symbolic simulation approach, we can further calculate
the Pl(a), Po(d), Ps(d), ..., P s m . For example, let C,(d)
= <P,(a), Pl(b), I> for internal node d, the cube Cl(d)
means that to have internal node d in the holding-one
state, the primary input node a and node b must be
both in the holding-one state and the node c can be in
any of the three states. The probability P,(d) is equal to
Pl(U) x P,(b) x 1.

2.3 Definitions of symbols and cubes
Since each element of the cube represents the corre-
sponding input, we do not have to write the X explic-
itly. Therefore, we introduce simple notations to be
used in the cube as follows:
(i) 1: the probability of any particular PI in the hold-
ing-one state.
(ii) 0: the probability of any particular PI in the hold-
ing-zero state.
(iii) s or b: the probability of any particular PI in the
switching state. All the PIS with the same switching
direction (i.e. low to high (high to low)), are repre-
sented as s (b), while all other PIS with opposite switch-
ing direction are represented as b (s) .

IEE Proc -Comput. Digit Tech , Vol. 145, No. 2, March 1998

(iv) S(i) or B(i): the probability of any particular PI in
the switching state (i is just a sequence index). How-
ever, the effect of this switching is blocked by some
gates between the PIS and the node under considera-
tion, and hence no transition is generated by the
switching of PIS at this node. Thus, this switching state
is less restrictive than s or b. We call this a don’t-care
switching state.
(v) -: this input is not related to the cube. We call this
a don’t-care state. The probability is one.
For the determination of the effect of a spike, we
extend the cube by adding two fields, the beginning
time and the lasting time, to describe the timing infor-
mation. The beginning time represents the starting time
of the action and the lasting time represents how long
such an action will last. We will simply call the hold-
ing-one cube as the 1-cube (represented as C,(X)), the
holding-zero cube as the 0-cube (represented as Co(X)),
the switching cube as the S-cube (represented as
Cs(x>), and the spike cube as the G-cube (represented
as CG(x>). The 1-cube and the 0-cube specify the condi-
tions and probabilities for any particular node to hold
in the 1 state and the 0 state respectively. Thus, their
beginning times are always set to 0.0 and their lasting
times are always set to 00. For the S-cube, the begin-
ning time is set to the time when the switching starts
and the lasting time is set to 00. The G-cube’s beginning
time is the beginning time of the first calculated switch-
ing, and its lasting time is the spike duration time. For
example, assume that there is a node y whose Cs(y) =
<1.35, w, s, b, 1, S(I), -, B(l), S(2)>. The circuit has
seven PIS (PIl ... PI7). The cube Csb) means that one
of the cases to make node y switch is to let PI, in the
switching state, PI, in the switching state with a switch-
ing direction opposite to the switching direction of PI1,
PI3 in the holding-one state, PI, in the don’t-care
switching state, PI, in the don’t-care state, PI, in the
don’t-care switching state with opposite switching
direction to PI,, and PI7 also in the don’t-care switch-
ing state not related with any other PIS. The switching
will start at time = 1.35 units.

The symbols 0, 1, and s are similar to Pya, P:’, Pio ,
and PI1l proposed in [7] . However, Ghosh in [7] used
the BDD representation to simulate the circuit. Instead
of BDD, we use the cube-based operation in our simu-
lator. It cannot only easily simulate the circuit but can
also provide us with much more information for syn-
thesising low-power circuits. This information includes
which internal node or which input sequence consumes
the most power. Therefore, our new proposed method
is more suitable to be used in the synthesis environ-
ment.

2.4 Definition of cube sets
We call the union of the same type of cubes a ‘cube
set’. Every node in a circuit has four cube sets (i.e. 1, 0,
S, and G cube sets). For a node X, the four cube sets
are represented as { CO(X>}7 {CI(X)>, {CdX)}, { C d X) } .
For example, {Cs(d)} = {<1.5, CO, 1, s, ->, <1.5, 00, s,
1, ->, <1.5, 00, s, s, ->}, and {CGy>} = {<2.5, 0.5, s, s,
s >, ...). The {Cs(4] has three S-cubes in it. Each rep-
resents a different PI combination to make node d
switch. The example G-cube in the {C,Cf>} means that
the node f will have a spike after a delay of 2.5 time
units and the spike-duration is 0.5 time unit, if all the
PIS switch in the same direction.

3 Operators and algorithm

We will, in this Section, define operations at the cube
level, the cube set level, and the logic node level,
respectively. All higher level operations are built upon
the lower level operations.

3. I Cube level operators
The proposed operators for cubes are intersection (n,
e.g. A f l B), bar(-, e.g. A), and don’t-care (dc, e.g.
&(A)). Given an OR gate g with a gate delay of 1.3
time units and inertial delay of 0.3 time unit, its fanout
is node z and its fanins are node x and node y . The
nodes x, y , and z are all internal nodes. Assume a 1-
cube in {C,(X)} is <O.O, 00, 1, -, S(1), B(l), s> and an
S-cube in {C,(Y)} is <1.4, CO, 1, S(2), S(2), s, ->. The
main function of the fl operator is to find the PI state
which is compatible with the PI-part of both cubes.
The procedure is explained as follows and is illustrated
in Fig. 2.

b-s
< 0.0, m , 1 , - , S(1), B(1), s > I-cubeof nodex

n < 1.4, m , I , S(2) , S(2) , s 1- > S-cube of node y
b-b with delay 1.3 and initial 0.3

4 2 . 7 , 0 0 , 1 , b , b , s ,s>l-cubeofnodez
Fig. 2 Intersection example

(i) PI,: s n - = S.
(ii) PI,: B(1) fl s * s. Since s is more restricted than
B(1), the result is s.
(iii) PI3: S(l) fl S(2) = b f l S(2) - b. Since B(1) in PI4
position of the first cube is changed to s, the S(1) in PI3
position of the first cube has to be changed to b, which
is opposite to s, and S(2) in PI3 position of the second
cube is also changed to b.
(iv) PI,: - n S(2) = - fl b + 6 , since the S(2) in PZ3
position of the second cube has been changed to b.
(VI PI^: 1 n 1 + 1.

We can see that the f l operation is not a straightfor-
ward element-wise AND operation on cubes. Because
the result of intersection is in the 1-cube set of node z ,
the cube cannot contain s (or b) and the beginning time
must be reset to 0.0. So we apply the dc operator on
the intersection result, such that dc(c2.7, w, 1, 6 , b, s,
s<) - ~ 0 . 0 , 00, 1, B(I), B(l), S(1), S(1)>. Another
operator is the bar (cube). It inverts all switching/
don’t-care switching elements in a cube onlv. For v

example, given the delay time d of an inverter,
< O S , w, 1, s, -, B(2), b, S(l)> - < O S + d, w, 1, b,
-S(2), s, B(1)>.

r r

Fig.3

a+

b
1.5/0.3

1.510.3
C “-L

1 .o 1 1.0/0.3
0.0

Example spike (glitch generated)

- f

3.2 Spike determination
A spike is generated by two different signals going
through the same gate with different arrival times and
opposite transition directions. In Fig. 3, we show a

91 IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 2, March 1998

ted at nodef. Here we assume the parame-
of Fig. 3 are the same as Fig. 1.

is determined as:
(i) beginning time = the smaller of the beginning times
of the two cubes + the delay of this gate,
(ii) lasting time = absolute value of the difference of the
two cubes’ beginning times,

ction of the two cubes’ PI-part

the CGcf) can be obtained by: CS(d) n
w, s, s-> n ~ 1 . 0 , a, -, b, b> 3 <1S, w,
1.0, 00, -, s, s> 3 <1.0 + 1.5,ll.S -

l.OI,s,s,s>. When all the primary inputs a, b, c make
transitions in the same direction, the spike will be gen-
erated at node f at time = 2.5 time units after the PI
transitions (add a delay of 1.5 time units since 11.5 -

> 0.3), and this spike will last for a time = 0.5 time
unit .

~

Y x*z

n. glitch passed through
glitch

Fig. 4 Another spike example (glitch pass through)

Fig. 4 shows another example which will pass a
spike. Our method can determine this spike by inter-
secting C,(x) with CGb).

ons of cube level

basic ideas of the key operations at
the cube level, let us formally define all the operators
needed in our approach. Assume d is a gate’s delay and
i is a gate’s inertial.

3.3.7 bar(d,i,; Compare the lasting time of a cube
with i. If the lasting time is less than i, the result of this
operator is an empty cube. Otherwise, add a delay of d
units to the beginning time of the cube, keep the origi-
nal lasting time in the cube, and change the PI-part
based on the rules as shown in Table 1.

Table 1: Operation rules of bar

Bar Changeto

1 1

0 0
S b

b S

S (i) B (i)

Hi) S (i)

3.3.2 dc: Reset the beginning time to 0.0, and the
lasting time to 00. Scan the PI-part to find the smallest
i E N such that neither S(z) nor B(i) is in the PI- part.
Change the symbol s to S(i) and the symbol b to B(z).

.’ Intersect two cubes and obtain a new
cube. In the new cube, the beginning time = d +
Max(beginning times of the two cubes), the lasting time
= w, and the PI-part is the result of applying n opera-
tor on the PI-parts of the two cubes.

92

3.3.4 n(d, i, I): If both g times are less than i,
the result is an empty cube; otherwise, the way to
derive the new cube is:

begmning time =d+ the larger beginning
tim- of t h e two cube-

Oas t ina t ime = t he smaller las t ing t lme
{ timing fields

of the two cubes;

P I - p a r t : Interaectio; of t h e P I - p a r t s of t he two cubes

3.3.5 n(d, i, 2): If the difference between the two
cubes’ beginning times is less than i, the result LS an
empty cube; otherwise, the way to derive the new cube
is:

beginning t imc =d+ t h c smallcr beginning
t ime of t he two cubes,

lasting tunc = difference of t he two cubes’
beginning t imes

t iming fields (
P I - p a r t Intersection of the PI part9 of t he two cubes

3.4 Formal definitions of cube-set level
operators
Let Cu, Cv and Cw be three cube sets. Union is the
ordinary union operator on sets. For the cube set (1, 0,
S, G), there are six operators.
(i) ~ (d , i): Cu = CJd,z) = union of (Vv E Cv, (v))
(ii) DC: Cu = DC(Cw) = union of (Vw E Cw, dc
(iii) x (~ : Cu = Cv x (4 Cw 2 union of {Vv E Cv,Vw E

(iv> x(~,~,~): Cu = Cv x(d,i,l) Cw = union of {Vv E Cv,Vw

(v) x (~ , ~ , ~) : Cu = Cv x (~ , ~ , ~) Cw = union of {Vv E Cv,Vw

(vi) +: Cu = Cw + Cv = union of {Cv and Cw}

3.5 Operators at the node level
We will develop the operators only for the two input
AND, OR, and NOT gates. The operators for all other
complex gates can be built based on this foundation.

3.5. I operator NOT Given an inverter with input a
and output c and with delay d and inertial i, the corre-
sponding cube set of output c is calculated as follows:
(9 C C d C)) = {Co(a>>, CCO(C>S = {C,(a>>
(ii) {C~(C)} = iC,o(d~z) {C,(C>} = { c G (~) > (~ J)

3.5.2 operator AND: Given an AND gate with
inputs a and b and output c and with delay d and iner-
tial I , the corresponding cube sets of output c is calcu-
lated as follows:

cw, v q d) w>

E Cw, v q d , i , l) w>

E cw,v n(d , i ,2) w)

3.6 Partitioning and cube reduction
algorithm
To store the cube and cubeset completely, the memory
may not be enough. If we can reduce the number of
PIS, we can reduce the size of individual cube and
cubeset. Also, if we can reduce the number of cubes,
we can surely reduce the memory requirement. We
solve the problem with two steps: partitioning the cir-
cuit into groups, then reducing the number of cubes
dynamically.

3.6.1 Partitioning into groups: We first determine
the distances between different POs, then divide POs
into several groups by using the distance information.
Then, the grouped POs, the PIS and the internal nodes
that have fanouts to these POs are put into the same
partition. Note that we have not lost any information
at this step. We just separate the unrelated PIS and
internal nodes into different groups to reduce the
unnecessary calculations.

d(z,y) = 1,

The distance is defined as:
if 3 gate g, such that 2 (or y) is g’s

fanin, and the other is g’s fanout.

3.6.2 Cube reduction algorithm: When a prede-
fined memory usage limitation is reached, the dynamic
cube reduction algorithm is executed to average the C1
and CO cubeset of some frontier nodes. Make them as
new PIS and have a new simulation starting from these
nodes. Since the most important cubesets are C, and
CG, we focus on how to reduce these cube sets.

3.7 Algorithm
Given a netlist, we first sort the gates in the netlist top-
ologically. We then apply the corresponding operators
defined previously to each gate based on the topologi-
cal order. The complexity of traverse is proportional to
the number of gates. The overall algorithm is shown
below.
Static-power-analysis

c
Read netlist;
Read technology file;
Sort nodes topologically;
Partition the netlist by predefined distance;
for (each partition) do

{
for (each node in this partition) do

if (memory limit is reached) do
cube-reduction;
Apply node level operations to this node;

c

1
J

1
Report results;

1

IEE Proc -Comput Digit Tech, Vol 145, No 2, Murch I998

4 Experimental results

The proposed analyser based on the above power esti-
mation model and delay model has been implemented
in C on a SUN SPARCstation 10 with 7000
codes. The transistor models used are the m
TSMC 0 . 8 ~ SPDM CMOS technology. Table 2
shows the full timing data of the basic gates derived
from the SPICE simulation by applying the method
proposed in [lo]. We run the SPICE and the proposed
analyser on the circuit shown in Fig. 5 to evaluate the
quality and efficiency of the method. Table 3 shows the
detail simulation results the power consu

h

Fig .5 Exumple circuit

Table 2: Full specification of timing data

Fanin Equ out ca
Delay
(ns)

Equ inp cb
Threshold
(ns)

inv 1 0.5 0.4 0.065 0.0
and 2 1.36 0.26 0.195 0.065
and 3 1.29 0.26 0.195 0.065
nand 2 0.37 0.25 0.13 0.065
nand 3 0.41 0.26 0.13 0.065

or 2 1.45 0.37 0.195 0.065

or 3 1.53 0.37 0.195 0>065

nor 2 0.54 0.37 0.13 0.065

nor 3 0.62 0.36 0.13 0.065
a stands for equivalent output capacitance, unit: le-13f

stands for equivalent input capacitance, unit: le-13f

Table 3: Simulation results on an example circuit

Proposed method (mW)
Node Error (%)

(mW) real spike total
~

d 0.157 0.174 0 0.174 10.83
e 0.238 0.218 0.044 0.262 10.08
f 0.156 0.174 0 0.174 11.54
g 0.192 0.168 0.021 0.189 -1.56

0.106 -10.17 h 0.118 0.106 0

I 0.282 0.218 0.087 0.305 8.21
i 0.105 0.098 0 0.098 -6.67

k 0.176 0.118 0.059 0.177 0.57

0 0.070 0.045 0.023 0.068 -2.86

total 1.494 1.319 0.234 1.553 3.95

From the cube sets derived above, we can easily
determine the number of real transitions Es(sw) and the
number of spikes EG(sw>. Therefore, E t o t (s w) = Es(sw)
+ EG(sw). The simulation results of all the nodes by the
SPICE and the proposed method are shown in Table 3.
The estimation on the total power consumption by the
proposed method has an error of about 4% compared
with that by the SPICE simulation.

93

Table 4: Simulation results

SPICE ProDosed method
Number Error

T m e (s) (mW) of gates Power
Speedup

Power Time (s) (%I Circuit Events Inputs Outputs

(mW)

decoder 64 3 4 6 0.5344 106 0.520 0.055 -2.62 1927

1 b-adder

Ib-mul t

adder2

decoder2

c17

cs27

cs208

cs298

c880

c432

csl196

c1355

c1908

c2670

64 3 2

256 4 4

64 3 2

256 4 8

1024 5 3

1000 7 4

100 19 10

100 17 20

100 60 26

36 7
- 31 31

- 41 32

- 33 25

- 157 64

-

10

14

16

19

6

10

102

164

447

267

623

682

1049

1385

1.569

1.543

1.457

1.765

0.4731

1.429

6.52

25.77

71.65
-
-
-
-
-

141.5

884

161

1110

1270

2197

6320

10161

44600
-
-

-

-

-

1.609

1.510

1.483

1.821

0.458

1.71

6.60

24.67

74.32

73.14

76.33

126.45

213.62

378.12

0.109

0.549

0.136

0.718

0.165

0.275

7.30

8.77

41.41

28.72

85.38

58.36

241.0

258.0

2.54

-2.14

1.78

3.17

3.17

0.96

1.23

-4.27

3.73
-

-

-
-

-

1298

1610

1183

1546

7697

7989

866

1159

1077
-
-

-
-

-

Table 4 shows the simulation results on several cir-
cuits when exhaustive simulation is performed using
both the SPICE and our analyser. These test bench-
marks include decoders, full adders, and a multiplexer.
The ‘cs*’ benchmarks (cs27 .. cs1196) are the ISCAS-89
sequential circuits in which the feedback loops and FFs
are taken out. The ‘c*’ benchmarks (c17 .. c2670) come
from the ISCAS-85 benchmark circuits. All the pri-
mary inputs are assumed to be temporally and spatially
independent and with a signal probability of 0.5 in the
experiments. Our analyser can be four orders faster
than the SPICE with less than 5% error. Better accu-
racy could be further achieved by fine tuning the G-
cube calculation algorithm. From the cs208 to c2670,
we use 50 groups of 100 random patterns for SPICE
simulation and then average the power of the different
50 groups to compare with our simulation. Due to the
partitioning, the results of our simulator for these
benchmarks are three orders faster than the SPICE.
However, we must remember that the result of SPICE
is from the average of 50 groups of 100 random pat-
terns. It means that the proposed method is more effi-
cient than the SPICE method. From the c432 to c2670,
it takes an enormous time to get the results of SPICE
simulation results. The simulation time of a single
input pattern is more than three days. Therefore, the
results by the SPICE simulation are ignored.

Since our analyser can recalculate the results by using
the existing cube sets, whenever the transition density
of any node is changed, our algorithm has the incre-
mental capability which the SPICE does not have.
Therefore, our estimator is particularly useful in the
synthesis environment for power optimisation.

5 Conclusions and future work

We have proposed a novel static power analyser for
CMOS combinational circuits. The analyser can esti-
mate the power consumption of a circuit very fast (4
orders faster than SPICE) and very accurately (with a
5% error compared with SPICE). The analyser is also
applicable for different delay models with or without
inertial delays. Furthermore, it can distinguish func-

94

tional transitions from spikes and has incremental
capability. Last but not least, the analyser can identify
the input transitions which cause the large power con-
sumption so that power optimisation can be appropri-
ately applied to improve the circuit. Therefore, this
analyser is very useful in the synthesis environment for
low power.

One of the main future pieces of work is to solve the
spatial and temporal dependency of the primary inputs.
By giving different weights to different cubes of the S-
cube set and the G-cube set, which means the patterns
of some cubes may appear more frequently in the input
vector than others, we can calculate the temporal
dependency approximately. Using a table looltup
method instead of the simple multiplication to calculate
the E(sw), which means different primary inputs are
not independent of each other, we can approximate the
spatial dependency among different primary inputs.
Another direction of future works is to expand this
approach to cover other abstraction levels such as cir-
cuit level and functional level by extending the symbols
and the definitions of cube and cube operations.

6 Acknowledgment

This research was supported by the National Science
Council, Taiwan, ROC under Grant NSC 84-2213-
E005-035.

7 References

1 NAJM, F.N.: ‘A survey of power estimation techniques in VLSI
circuits’, ZEEE Trans., 1994, VLSI-2, (4), pp. 446455

2 LANDMAN, P.E.: ‘Low-power architectural methodologies’.
Technical report, Dept. of EECS, University of California, Berke-
ley, 1994

3 GAJSKI, D., DUTT, N., WU, A., and LIN, S.: ‘High-level syn-
thesis introduction to chip and system design’ (Kluwer, 1992)

4 CHANDRAKASAN, A.P., and BRODERSEN, R.W.: ‘Low
power digital CMOS design’ (Kluwer Academic Publishing Co.,
1995)

5 DENG, C.: ‘Power analysis for CMOS/BiCMOS circuits’. Pro-
ceedings of 1994 international workshop on Low powev design,
1994, pp. 308-318

6 SALZ, A., and HOROWITZ, M.A.: ‘IRSIM: An incremental
MOS switch-level simulator’. Proceedings of the 26th Design auto-
mation conference, 1989, pp. 173-178

IEE ProcComput. Digit. Tech., Vol. 145, No. 2, Mavch 1998

7 GHOSH, A., DEVADAS, S., KEUTZER, K., and WHITE, J.: 9 DRESIG, F., LANCHES, PH., RETTIG, O., and BAITING-
ER, U.G.: ‘Simulation and reduction of CMOS power dissipation
at logic level’. Proceedings of 1994 European conference on
Design automation, 1994, pp. 341-346

8 WESTE, N., and ESHRAGHIAN, K.: ‘Principles of CMOS 10 CHEN, K.-H., YUAN, S.-Y., JOU, J.-Y., and KUO, S.-Y.:
‘Cell-based power estimation for CMOS combinational circuits
using a logic simulator’. The 7th VLSI DesignKAD symposium
proceedings, 1996, pp. 81-84

‘Estimation of average switching activity in combinational and
sequential circuits’. 29th ACM/IEEE Design automation confer-
ence, 1992, pp. 253-259

VLSI design’ (Addison-Wesley Publishing, Reading, MA, 199 3)

IEE Proc.-Comput. Digit. Tech.. Vol. 145, No. 2, March 1998 95

