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Abstract: A new static power analysis method for 
CMOS combinational circuits is presented. This 
approach integrates the simulation-based method 
and the probabilistic method, and can establish 
the relationships between the primary inputs and 
the internal nodes in the circuit. Based on the 
relationships, our approach can also indicate 
which internal node or input sequence consumes 
the most power. It is thus suitable for performing 
power estimation in the synthesis environment for 
power optimisation. To the best of our 
knowledge, this is the first attempt to develop a 
systematic way to symbolically represent the 
relationships between the primary inputs and the 
power consumption at every internal node of a 
circuit. Furthermore, by using the existing 
piecewise linear delay model, as well as the 
proposed algorithm, this novel method is also 
very accurate and efficient. For a set of 
benchmark circuits, the experimental results show 
that the power estimated by our technique is 
within 5%) error as compared with that by the 
exact SPICE simulation, while the execution 
speed is more than four orders of magnitude 
faster. 

1 Introduction 

Power dissipation has emerged as an important design 
parameter in the design of microelectronic circuits, 
especially in portable computing and personal commu- 
nication applications. More generally, as the density 
and the size of chips and systems continue to increase, 
the problem of power consumption becomes a critical 
concern in VLSI design [l]. Low power design tech- 
niques are becoming increasingly important in today’s 
integrated circuit designs [2]. Therefore, a fast and 
accurate power estimator is necessary for a low power 
circuitisystem designer. 

During the synthesis for low power at higher level of 
abstractions such as the register transfer level, it is 
almost impossible to have a very accurate estimation 
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about L e  power consumption of each module. How- 
ever, if the estimation model is able to correctly sort 
the alternative designs according to the estimated 
power, we can still have the right designs for low power 
because there are relatively few alternative designs and 
each design has very different trade-off among power, 
area and performance. However, performing synthesis 
for low power at gate level or below, the power estima- 
tion with high accuracy becomes a must, because there 
could be many alternative designs and it is difficult to 
have estimation with relatively low accuracy but with 
good fidelity [3]. Therefore, with a less accurate estima- 
tion of power, we may optimise the circuits in the 
wrong spots such that we cannot lower the power con- 
sumption with minimum overheads in terms of area 
and performance. 

There are quite a few approaches proposed [4-61 to 
reduce the inefficiency of the SPICE while maintaining 
acceptable estimation errors. The PowerMill approach 
[4] is a transistor-level power simulator, which uses an 
event-driven simulation algorithm to increase the speed 
by two to three orders of magnitude over SPICE. 
Although the PowerMill is relatively accurate, it is still 
not suitable for power-driven synthesis. This is because, 
when power optimisation is performed, the circuits will 
be modified frequently. Power estimation should be 
done incrementally to speed up the process. The simu- 
lation-based approach cannot be used in this situation. 
Switch-level simulation techniques are, in general, 
much faster than circuit-level simulation techniques, 
but are not as accurate or versatile. Standard simula- 
tors, such as IRSIM [6], can be easily modified to 
report the switched capacitance (thus the dynamic 
power dissipation) during a simulation run. 

However, the approaches mentioned above suffer 
three major problems as power simulation tools. First, 
they must simulate the ‘chosen patterns’ with many 
iterations to determine the average power consumption 
of each node, which slows down the simulation speed. 
Also, the average results strongly depend on the ‘cho- 
sen patterns’, and we may get biased simulation results. 
Secondly, if the PIS are not fully independent, the 
choices of patterns need much more attention and the 
number of patterns needed is large. Thirdly, due to the 
nature of simulation-based simulators, they cannot 
provide enough power information such as the percent- 
age of glitch power of each node’s power consumption, 
the difference between generation of glitches and pass- 
ing of glitches, the source node of a glitch, or the cause 
of the glitch. Thus, these approaches can leave the user 
or synthesiser in a vague situation to improve or resyn- 
thesise a circuit. 
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In this paper, we will develop a new method which 
retains the advantages of both the simulation-based 
methods and the probabilistic methods. This power 
analyser can estimate the total power consumption due 
to the circuit itself as well as the power consumption 
due to the transition, and the spike at every internal 
node in the circuit efficiently and accurately. Further- 
more, this new approach can not only establish the 
relationships between the primary inputs and the inter- 
nal nodes in the circuit but also increase the efficiency 
of the simulation-based method. Ghosh proposed a 
symbolic simulator based on the binary decision dia- 
gram (BDD) [7]. The major difference between our 
method and the method in [7] is that we use the idea of 
cube representation to simplify the process of simula- 
tion. By using the idea of a cube, we can get much 
more information from the simulation than the method 
in [7]. To the best of our knowledge, our approach is 
the first attempt to develop a systematic way to sym- 
bolically represent the relationships between the pri- 
mary inputs and the power consumption at every 
internal node of a circuit. The simulation results show 
that our new method provides much more information 
on power consumption than other methods. The 
approach can thus be integrated into a synthesis envi- 
ronment to determine where it can be improved or 
resynthesised for low power. Thus, this method is very 
suitable for performing power estimation in the synthe- 
sis environment for power optimisation. 

2 

2. I Power dissipation model 
It is well known that the dynamic power estimation 
formula is P = ll2aCV"fhere P is the average power, 
a is the switching activity, V is the supply voltage, f is 
the frequency, and C is the load capacitance of the gate 
[8, 91. We use an ideal gate (e.g. AND, OR, etc.) and 
equivalent input and output capacitances to model a 
real gate. Using [l], we can estimate C. 

Power dissipation model and definitions 

P = +olCV2f 

* C = v2 Xactua~-node-transztzon-number 

- 1 actual-node-transztzon-number 
- 2 max-node-transztzon-number XCV"&L 

(1) 
2 x P x szmulatzon- tzme 

We also established the database of mutiple-SPICE- 
simulation-based thresholds [ 101 to approach the piece- 
wise linear delay model, which will further improve the 
precision and efficiency of the simulation. The simula- 
tion result was very accurate and efficient in [lo]. The 
error percentage is less than 5% as compared with the 
HSPICE simulation, while the execution speed is more 
than three orders of magnitude faster. For some cir- 
cuits, the speedups are even more than four orders of 
magnitude larger. However, a large number of different 
input sequences is required for [lo], and this simula- 
tion-based method was still very time consuming. Fur- 
thermore, the information on the average power 
consumption is not enough for performing power opti- 
misation in the synthesis environment. In other words, 
with only these average power values derived from the 
simulation-based method, we cannot efficiently figure 
out where the most power is consumed and why. 
Therefore, it is necessary to combine a simulation- 
based method with a probabilistic method. In the fol- 
lowing discussions, we will develop a new method 
based on the static analysis approach. This method 
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cannot only construct the relationships between the pri- 
mary inputs and the internal nodes in the circuit but 
also increase the efficiency of the simulation-based 
method. 

2.2 Node probabilities 
The signal probability p ( X )  of a node X is defined as 
the probability that node X has a value of logic 1. Let 
us now define three special probabilities P I ,  Po, and Ps. 
Assume that node X is the output of a gate g .  Thus, 
the switching probability of X ,  P,(X), is equal to 2 x 
p ( X )  x (1 ~ p(X) )  and is defined as the probability that 
node X will switch from low to high or high to low if 
any input(s) of gate g changes. The holding-one proba- 
bility of X, Pl(x), is equal to p(2J2  and is defined as 
the probability that node X will hold in high (one) if 
any input(s) of gate g changes. The holding-zero proba- 
bility of X ,  Po(X), is equal to (1 - P ( X ) ) ~  and is defined 
as the probability that node X will hold in low (zero) if 
any input(s) of gate g changes. 

We define a cube with n elements as: <PK(PI,) (PIl) ,  
PK(P12) (PI2), ..., PK(PIn) (PIn)>, given a circuit with n 
primary inputs (Plj, j = 1, ..., n), m primary outputs 
(POk, k = 1, ..., m), and many internal nodes. The 
probability of this cube is: PK(PIi) (PIL), where 
K(PIi) can be 1, 0, or S. Here we assume that the pri- 
mary inputs are uncorrelated for the sake of easy 
explanation. 

C 

Fig. 1 
1.010.3 

Example circuit 

For example, in Fig. 1, a, b, c are PIS, f is PO, and d, 
e are internal nodes. 

Assume the AND/OR gate has a delay time of 1.5 
units, the NOR gate has a delay time of 1.0 unit, and 
the inertial of each gate is 0.3 units. Given the signal 
probabilities of the primary inputs a, b, and c, we can 
determine Pl(a),  Po(a), Ps(a), ..., Ps(c). By applying the 
symbolic simulation approach, we can further calculate 
the Pl(a),  Po(d), Ps(d), ..., P s m .  For example, let C,(d) 
= <P,(a), Pl(b),  I> for internal node d, the cube Cl(d) 
means that to have internal node d in the holding-one 
state, the primary input node a and node b must be 
both in the holding-one state and the node c can be in 
any of the three states. The probability P,(d) is equal to 
Pl(U) x P,(b) x 1. 

2.3 Definitions of symbols and cubes 
Since each element of the cube represents the corre- 
sponding input, we do not have to write the X explic- 
itly. Therefore, we introduce simple notations to be 
used in the cube as follows: 
(i) 1: the probability of any particular PI in the hold- 
ing-one state. 
(ii) 0: the probability of any particular PI  in the hold- 
ing-zero state. 
(iii) s or b: the probability of any particular PI in the 
switching state. All the PIS with the same switching 
direction (i.e. low to high (high to low)), are repre- 
sented as s (b), while all other PIS with opposite switch- 
ing direction are represented as b (s) .  
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(iv) S(i) or B(i): the probability of any particular PI in 
the switching state (i is just a sequence index). How- 
ever, the effect of this switching is blocked by some 
gates between the PIS and the node under considera- 
tion, and hence no transition is generated by the 
switching of PIS at this node. Thus, this switching state 
is less restrictive than s or b. We call this a don’t-care 
switching state. 
(v) -: this input is not related to the cube. We call this 
a don’t-care state. The probability is one. 
For the determination of the effect of a spike, we 
extend the cube by adding two fields, the beginning 
time and the lasting time, to describe the timing infor- 
mation. The beginning time represents the starting time 
of the action and the lasting time represents how long 
such an action will last. We will simply call the hold- 
ing-one cube as the 1-cube (represented as C,(X)), the 
holding-zero cube as the 0-cube (represented as Co(X)), 
the switching cube as the S-cube (represented as 
Cs(x>), and the spike cube as the G-cube (represented 
as CG(x>). The 1-cube and the 0-cube specify the condi- 
tions and probabilities for any particular node to hold 
in the 1 state and the 0 state respectively. Thus, their 
beginning times are always set to 0.0 and their lasting 
times are always set to 00. For the S-cube, the begin- 
ning time is set to the time when the switching starts 
and the lasting time is set to 00. The G-cube’s beginning 
time is the beginning time of the first calculated switch- 
ing, and its lasting time is the spike duration time. For 
example, assume that there is a node y whose Cs(y) = 
<1.35, w, s, b, 1, S(I), -, B(l), S(2)>. The circuit has 
seven PIS (PIl ... PI7). The cube Csb) means that one 
of the cases to make node y switch is to let PI, in the 
switching state, PI, in the switching state with a switch- 
ing direction opposite to the switching direction of PI1, 
PI3 in the holding-one state, PI, in the don’t-care 
switching state, PI,  in the don’t-care state, PI, in the 
don’t-care switching state with opposite switching 
direction to PI,, and PI7 also in the don’t-care switch- 
ing state not related with any other PIS. The switching 
will start at time = 1.35 units. 

The symbols 0, 1, and s are similar to Pya, P:’, Pio ,  
and PI1l proposed in [7] .  However, Ghosh in [7] used 
the BDD representation to simulate the circuit. Instead 
of BDD, we use the cube-based operation in our simu- 
lator. It cannot only easily simulate the circuit but can 
also provide us with much more information for syn- 
thesising low-power circuits. This information includes 
which internal node or which input sequence consumes 
the most power. Therefore, our new proposed method 
is more suitable to be used in the synthesis environ- 
ment. 

2.4 Definition of cube sets 
We call the union of the same type of cubes a ‘cube 
set’. Every node in a circuit has four cube sets (i.e. 1, 0, 
S, and G cube sets). For a node X, the four cube sets 
are represented as { CO(X>}7 {CI(X)>, {CdX)}, { C d X ) } .  
For example, {Cs(d)} = {<1.5, CO, 1, s, ->, <1.5, 00, s, 
1, ->, <1.5, 00, s, s, ->}, and {CGy>} = {<2.5, 0.5, s, s, 
s >, ... ). The {Cs(4] has three S-cubes in it. Each rep- 
resents a different PI combination to make node d 
switch. The example G-cube in the {C,Cf>} means that 
the node f will have a spike after a delay of 2.5 time 
units and the spike-duration is 0.5 time unit, if all the 
PIS switch in the same direction. 

3 Operators and algorithm 

We will, in this Section, define operations at the cube 
level, the cube set level, and the logic node level, 
respectively. All higher level operations are built upon 
the lower level operations. 

3. I Cube level operators 
The proposed operators for cubes are intersection (n, 
e.g. A f l  B), bar(-, e.g. A), and don’t-care (dc, e.g. 
&(A)). Given an OR gate g with a gate delay of 1.3 
time units and inertial delay of 0.3 time unit, its fanout 
is node z and its fanins are node x and node y .  The 
nodes x, y ,  and z are all internal nodes. Assume a 1- 
cube in {C,(X)} is <O.O, 00, 1, -, S(1), B(l), s> and an 
S-cube in {C,(Y)} is <1.4, CO, 1, S(2), S(2), s, ->. The 
main function of the fl operator is to find the PI state 
which is compatible with the PI-part of both cubes. 
The procedure is explained as follows and is illustrated 
in Fig. 2. 

b-s 
< 0.0, m , 1 , - , S(1), B(1), s > I-cubeof nodex 

n < 1.4, m , I , S(2) , S(2) , s 1- > S-cube of node y 
b-b with delay 1.3 and initial 0.3 

4 2 . 7 , 0 0 , 1 ,  b , b , s ,s>l-cubeofnodez 
Fig. 2 Intersection example 

(i) PI,: s n - = S. 
(ii) PI,: B(1) fl s * s. Since s is more restricted than 
B(1), the result is s. 
(iii) PI3: S(l) fl S(2) = b f l  S(2) - b. Since B(1) in PI4 
position of the first cube is changed to s, the S(1) in PI3 
position of the first cube has to be changed to b, which 
is opposite to s, and S(2) in PI3 position of the second 
cube is also changed to b. 
(iv) PI,: - n S(2) = - fl b + 6 ,  since the S(2) in PZ3 
position of the second cube has been changed to b. 
(VI  PI^: 1 n 1 + 1. 

We can see that the f l  operation is not a straightfor- 
ward element-wise AND operation on cubes. Because 
the result of intersection is in the 1-cube set of node z ,  
the cube cannot contain s (or b) and the beginning time 
must be reset to 0.0. So we apply the dc operator on 
the intersection result, such that dc(c2.7,  w, 1, 6 ,  b, s, 
s<) - ~ 0 . 0 ,  00, 1, B(I), B(l), S(1), S(1)>. Another 
operator is the bar (cube).  It inverts all switching/ 
don’t-care switching elements in a cube onlv. For v 

example, given the delay time d of an inverter, 
< O S ,  w, 1, s, -, B(2), b, S(l)> - < O S  + d, w, 1, b, 
-S(2), s, B(1)>. 

r r 

Fig.3 

a+ 

b 
1.5/0.3 

1.510.3 
C “-L 

1 .o 1 1.0/0.3 
0.0 

Example spike (glitch generated) 

- f  

3.2 Spike determination 
A spike is generated by two different signals going 
through the same gate with different arrival times and 
opposite transition directions. In Fig. 3, we show a 
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ted at nodef. Here we assume the parame- 
of Fig. 3 are the same as Fig. 1. 

is determined as: 
(i) beginning time = the smaller of the beginning times 
of the two cubes + the delay of this gate, 
(ii) lasting time = absolute value of the difference of the 
two cubes’ beginning times, 

ction of the two cubes’ PI-part 

the CGcf) can be obtained by: CS(d) n 
w, s, s-> n ~ 1 . 0 ,  a, -, b, b> 3 <1S, w, 
1.0, 00, -, s, s> 3 <1.0 + 1.5,ll.S - 

l.OI,s,s,s>. When all the primary inputs a, b, c make 
transitions in the same direction, the spike will be gen- 
erated at node f at time = 2.5 time units after the PI 
transitions (add a delay of 1.5 time units since 11.5 - 

> 0.3), and this spike will last for a time = 0.5 time 
unit . 

~ 

Y x*z 

n. glitch passed through 
glitch 

Fig. 4 Another spike example (glitch pass through) 

Fig. 4 shows another example which will pass a 
spike. Our method can determine this spike by inter- 
secting C,(x) with CGb). 

ons of cube level 

basic ideas of the key operations at 
the cube level, let us formally define all the operators 
needed in our approach. Assume d is a gate’s delay and 
i is a gate’s inertial. 

3.3.7 bar(d,i,; Compare the lasting time of a cube 
with i. If the lasting time is less than i, the result of this 
operator is an empty cube. Otherwise, add a delay of d 
units to the beginning time of the cube, keep the origi- 
nal lasting time in the cube, and change the PI-part 
based on the rules as shown in Table 1. 

Table 1: Operation rules of bar 

Bar Changeto  

1 1 

0 0 
S b 

b S 

S ( i )  B ( i )  

Hi)  S ( i )  

3.3.2 dc: Reset the beginning time to 0.0, and the 
lasting time to 00. Scan the PI-part to find the smallest 
i E N such that neither S(z) nor B(i) is in the PI- part. 
Change the symbol s to S(i) and the symbol b to B(z). 

.’ Intersect two cubes and obtain a new 
cube. In the new cube, the beginning time = d + 
Max(beginning times of the two cubes), the lasting time 
= w, and the PI-part is the result of applying n opera- 
tor on the PI-parts of the two cubes. 

92 

3.3.4 n(d, i, I): If both g times are less than i, 
the result is an empty cube; otherwise, the way to 
derive the new cube is: 

begmning time =d+ the larger beginning 
tim- of t h e  two  cube-  

Oas t ina  t ime = t he  smaller las t ing t lme 
{ timing fields 

of the two cubes;  

P I - p a r t :  Interaectio; of t h e  P I - p a r t s  of t he  two cubes 

3.3.5 n(d, i, 2): If the difference between the two 
cubes’ beginning times is less than i, the result LS an 
empty cube; otherwise, the way to derive the new cube 
is: 

beginning t imc  =d+ t h c  smallcr beginning 
t ime of t he  two  cubes,  

lasting tunc  = difference of t he  two cubes’ 
beginning t imes 

t iming fields ( 
P I - p a r t  Intersection of the PI part9 of t he  two  cubes 

3.4 Formal definitions of cube-set level 
operators 
Let Cu, Cv and Cw be three cube sets. Union is the 
ordinary union operator on sets. For the cube set (1, 0, 
S, G), there are six operators. 
(i) ~ (d ,  i): Cu = CJd,z) = union of (Vv E Cv, (v)) 
(ii) DC: Cu = DC(Cw) = union of (Vw E Cw, dc 
(iii) x ( ~ :  Cu = Cv x (4 Cw 2 union of {Vv E Cv,Vw E 

(iv> x(~,~,~):  Cu = Cv x(d,i,l) Cw = union of {Vv E Cv,Vw 

(v) x ( ~ , ~ , ~ ) :  Cu = Cv x ( ~ , ~ , ~ )  Cw = union of {Vv E Cv,Vw 

(vi) +: Cu = Cw + Cv = union of {Cv and Cw} 

3.5 Operators at the node level 
We will develop the operators only for the two input 
AND, OR, and NOT gates. The operators for all other 
complex gates can be built based on this foundation. 

3.5. I operator NOT Given an inverter with input a 
and output c and with delay d and inertial i, the corre- 
sponding cube set of output c is calculated as follows: 
(9 C C d C ) )  = {Co(a>>, CCO(C>S = {C,(a>> 
(ii) {C~(C)} = iC,o(d~z) {C,(C>} = { c G ( ~ ) > ( ~ J )  

3.5.2 operator AND: Given an AND gate with 
inputs a and b and output c and with delay d and iner- 
tial I ,  the corresponding cube sets of output c is calcu- 
lated as follows: 

cw, v q d )  w> 

E Cw, v q d , i , l )  w> 

E cw,v  n(d , i ,2 )  w) 



3.6 Partitioning and cube reduction 
algorithm 
To store the cube and cubeset completely, the memory 
may not be enough. If we can reduce the number of 
PIS, we can reduce the size of individual cube and 
cubeset. Also, if we can reduce the number of cubes, 
we can surely reduce the memory requirement. We 
solve the problem with two steps: partitioning the cir- 
cuit into groups, then reducing the number of cubes 
dynamically. 

3.6.1 Partitioning into groups: We first determine 
the distances between different POs, then divide POs 
into several groups by using the distance information. 
Then, the grouped POs, the PIS and the internal nodes 
that have fanouts to these POs are put into the same 
partition. Note that we have not lost any information 
at this step. We just separate the unrelated PIS and 
internal nodes into different groups to reduce the 
unnecessary calculations. 

d(z,y) = 1, 

The distance is defined as: 
if 3 gate g,  such that 2 (or y) is g’s 

fanin, and the other is g’s fanout. 

3.6.2 Cube reduction algorithm: When a prede- 
fined memory usage limitation is reached, the dynamic 
cube reduction algorithm is executed to average the C1 
and CO cubeset of some frontier nodes. Make them as 
new PIS and have a new simulation starting from these 
nodes. Since the most important cubesets are C, and 
CG, we focus on how to reduce these cube sets. 

3.7 Algorithm 
Given a netlist, we first sort the gates in the netlist top- 
ologically. We then apply the corresponding operators 
defined previously to each gate based on the topologi- 
cal order. The complexity of traverse is proportional to 
the number of gates. The overall algorithm is shown 
below. 
Static-power-analysis 

c 
Read netlist; 
Read technology file; 
Sort nodes topologically; 
Partition the netlist by predefined distance; 
for (each partition) do 

{ 
for (each node in this partition) do 

if (memory limit is reached) do 
cube-reduction; 
Apply node level operations to this node; 

c 

1 
J 

1 
Report results; 

1 
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4 Experimental results 

The proposed analyser based on the above power esti- 
mation model and delay model has been implemented 
in C on a SUN SPARCstation 10 with 7000 
codes. The transistor models used are the m 
TSMC 0 . 8 ~  SPDM CMOS technology. Table 2 
shows the full timing data of the basic gates derived 
from the SPICE simulation by applying the method 
proposed in [lo]. We run the SPICE and the proposed 
analyser on the circuit shown in Fig. 5 to evaluate the 
quality and efficiency of the method. Table 3 shows the 
detail simulation results the power consu 

h 

Fig .5 Exumple circuit 

Table 2: Full specification of timing data 

Fanin Equ out ca 
Delay 
(ns) 

Equ  inp cb 
Threshold 
(ns) 

inv 1 0.5 0.4 0.065 0.0 
and 2 1.36 0.26 0.195 0.065 
and 3 1.29 0.26 0.195 0.065 
nand 2 0.37 0.25 0.13 0.065 
nand 3 0.41 0.26 0.13 0.065 

or 2 1.45 0.37 0.195 0.065 

or 3 1.53 0.37 0.195 0>065 

nor 2 0.54 0.37 0.13 0.065 

nor 3 0.62 0.36 0.13 0.065 
a stands for equivalent output capacitance, unit: le-13f 

stands for equivalent input capacitance, unit: le-13f 

Table 3: Simulation results on an example circuit 

Proposed method (mW) 
Node Error (%) 

(mW) real spike total 
~ 

d 0.157 0.174 0 0.174 10.83 
e 0.238 0.218 0.044 0.262 10.08 
f 0.156 0.174 0 0.174 11.54 
g 0.192 0.168 0.021 0.189 -1.56 

0.106 -10.17 h 0.118 0.106 0 

I 0.282 0.218 0.087 0.305 8.21 
i 0.105 0.098 0 0.098 -6.67 

k 0.176 0.118 0.059 0.177 0.57 

0 0.070 0.045 0.023 0.068 -2.86 

total 1.494 1.319 0.234 1.553 3.95 

From the cube sets derived above, we can easily 
determine the number of real transitions Es(sw) and the 
number of spikes EG(sw>. Therefore, E t o t ( s w )  = Es(sw) 
+ EG(sw).  The simulation results of all the nodes by the 
SPICE and the proposed method are shown in Table 3. 
The estimation on the total power consumption by the 
proposed method has an error of about 4% compared 
with that by the SPICE simulation. 
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Table 4: Simulation results 

SPICE ProDosed method 
Number Error 

T m e ( s )  (mW) of gates Power 
Speedup 

Power Time (s) (%I  Circuit Events Inputs Outputs 

(mW) 

decoder 64 3 4 6 0.5344 106 0.520 0.055 -2.62 1927 

1 b-adder 

Ib-mul t  

adder2 

decoder2 

c17 

cs27 

cs208 

cs298 

c880 

c432 

csl196 

c1355 

c1908 

c2670 

64 3 2 

256 4 4 

64 3 2 

256 4 8 

1024 5 3 

1000 7 4 

100 19 10 

100 17 20 

100 60 26 

36 7 
- 31 31 

- 41 32 

- 33 25 

- 157 64 

- 

10 

14 

16 

19 

6 

10 

102 

164 

447 

267 

623 

682 

1049 

1385 

1.569 

1.543 

1.457 

1.765 

0.4731 

1.429 

6.52 

25.77 

71.65 
- 
- 
- 
- 
- 

141.5 

884 

161 

1110 

1270 

2197 

6320 

10161 

44600 
- 
- 

- 

- 

- 

1.609 

1.510 

1.483 

1.821 

0.458 

1.71 

6.60 

24.67 

74.32 

73.14 

76.33 

126.45 

213.62 

378.12 

0.109 

0.549 

0.136 

0.718 

0.165 

0.275 

7.30 

8.77 

41.41 

28.72 

85.38 

58.36 

241.0 

258.0 

2.54 

-2.14 

1.78 

3.17 

3.17 

0.96 

1.23 

-4.27 

3.73 
- 

- 

- 
- 

- 

1298 

1610 

1183 

1546 

7697 

7989 

866 

1159 

1077 
- 
- 

- 
- 

- 

Table 4 shows the simulation results on several cir- 
cuits when exhaustive simulation is performed using 
both the SPICE and our analyser. These test bench- 
marks include decoders, full adders, and a multiplexer. 
The ‘cs*’ benchmarks (cs27 .. cs1196) are the ISCAS-89 
sequential circuits in which the feedback loops and FFs 
are taken out. The ‘c*’ benchmarks (c17 .. c2670) come 
from the ISCAS-85 benchmark circuits. All the pri- 
mary inputs are assumed to be temporally and spatially 
independent and with a signal probability of 0.5 in the 
experiments. Our analyser can be four orders faster 
than the SPICE with less than 5% error. Better accu- 
racy could be further achieved by fine tuning the G- 
cube calculation algorithm. From the cs208 to c2670, 
we use 50 groups of 100 random patterns for SPICE 
simulation and then average the power of the different 
50 groups to compare with our simulation. Due to the 
partitioning, the results of our simulator for these 
benchmarks are three orders faster than the SPICE. 
However, we must remember that the result of SPICE 
is from the average of 50 groups of 100 random pat- 
terns. It means that the proposed method is more effi- 
cient than the SPICE method. From the c432 to c2670, 
it takes an enormous time to get the results of SPICE 
simulation results. The simulation time of a single 
input pattern is more than three days. Therefore, the 
results by the SPICE simulation are ignored. 

Since our analyser can recalculate the results by using 
the existing cube sets, whenever the transition density 
of any node is changed, our algorithm has the incre- 
mental capability which the SPICE does not have. 
Therefore, our estimator is particularly useful in the 
synthesis environment for power optimisation. 

5 Conclusions and future work 

We have proposed a novel static power analyser for 
CMOS combinational circuits. The analyser can esti- 
mate the power consumption of a circuit very fast (4 
orders faster than SPICE) and very accurately (with a 
5% error compared with SPICE). The analyser is also 
applicable for different delay models with or without 
inertial delays. Furthermore, it can distinguish func- 
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tional transitions from spikes and has incremental 
capability. Last but not least, the analyser can identify 
the input transitions which cause the large power con- 
sumption so that power optimisation can be appropri- 
ately applied to improve the circuit. Therefore, this 
analyser is very useful in the synthesis environment for 
low power. 

One of the main future pieces of work is to solve the 
spatial and temporal dependency of the primary inputs. 
By giving different weights to different cubes of the S- 
cube set and the G-cube set, which means the patterns 
of some cubes may appear more frequently in the input 
vector than others, we can calculate the temporal 
dependency approximately. Using a table looltup 
method instead of the simple multiplication to calculate 
the E(sw), which means different primary inputs are 
not independent of each other, we can approximate the 
spatial dependency among different primary inputs. 
Another direction of future works is to expand this 
approach to cover other abstraction levels such as cir- 
cuit level and functional level by extending the symbols 
and the definitions of cube and cube operations. 
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