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Abstract

Distributed lock services are extensively utilized in dis-

tributed systems to serialize concurrent accesses to shared

resources. The need for fast and scalable lock services has be-

come more pronounced with decreasing task execution times

and expanding dataset scales. However, traditional lock man-

agers, reliant on server CPUs to handle lock requests, ex-

perience significant queuing delays in lock grant latency.

Advanced network hardware (e.g. programmable switches)

presents an avenue to manage locks without queuing delays

due to their high packet processing power. Nevertheless, their

constrained memory capacity restricts the manageable lock

scale, thereby limiting their effect in large-scale workloads.

This paper presents FISSLOCK, a fast and scalable dis-

tributed lock service that exploits the programmable switch

to improve (tail) latency and peak throughput for millions of

locks. The key idea behind FISSLOCK is the concept of lock

fission, which decouples lock management into grant deci-

sion and participant maintenance. FISSLOCK leverages the

programmable switch to decide lock grants synchronously

and relies on servers to maintain participants (i.e., holders

and waiters) asynchronously. By using the programmable

switch for routing, FISSLOCK enables on-demand fine-

grained lock migration, thereby reducing the lock grant

and release delays. FISSLOCK carefully designs and im-

plements grant decision procedure on the programmable

switch, supporting over one million locks. Evaluation us-

ing various benchmarks and a real-world application shows

the efficiency of FISSLOCK. Compared to the state-of-the-

art switch-based approach (NetLock), FISSLOCK cuts up

to 79.1% (from 43.0%) of median lock grant time in the

microbenchmark and improves transaction throughput for

TATP and TPC-C by 1.76× and 2.28×, respectively.

1 Introduction

Distributed lock services are essential building blocks for

coordinating concurrent access to shared resources in nu-

merous distributed systems, such as OLTP databases [23,

62, 67], file systems [18, 51], and rich cloud-based sys-

tems [1, 22, 25, 52]. Modern distributed systems commonly

rely on fine-grained locks to concurrently access near-billion-

scale datasets, such as files and directories [57, 58, 61],

database tuples [10, 12, 14], and knowledge graphs [2, 4, 15].

With the prevalence of affordable high-performance net-

works (e.g., RDMA) and high-capacity persistent memory

(e.g., Intel Optane) in modern datacenters, it is not uncom-

mon to see microsecond-scale execution time in distributed

in-memory systems [20, 60, 66, 71–73, 78] (see Table 1). As

a result, the overhead of granting locks (10–100µs) becomes

non-trivial (e.g., comparable to task execution time) and even

dominates the end-to-end performance [62, 75, 76].

Distributed lock managers [6, 13, 30, 54, 55, 65, 76] are

commonly designed in a centralized manner to handle lock

requests and grant locks. This makes it easy to enable pow-

erful features such as latency predictability [31, 38, 46], star-

vation freedom [36], and performance isolation [76]. Specif-

ically, before and after accessing a set of objects, the corre-

sponding locks must be acquired from and released to the

lock manager, which acts as a central point for granting and

managing locks. Traditional lock managers rely on commod-

ity servers to serve lock requests, which imposes one net-

work round-trip overhead in granting locks and often incurs

significant queueing delay due to limited request processing

throughput of the server CPUs.

To overcome these drawbacks, it has recently been pro-

posed to use the programmable switch as a centralized lock

manager to host part of locks [76], as it offers lower la-

tency and higher throughput than servers for packet process-

ing. Further, using the switch to handle lock requests halves

the network overhead due to its central network location.

However, due to the limited switch memory (typically just

a few MB), only a small fraction of locks (e.g., less than

10,000 [76]) can be hosted on a programmable switch for

large-scale workloads. This is mainly because the variable-

size metadata of a lock—a set for holders and a queue for

waiters—consumes several hundred bytes of switch mem-

ory. Moreover, the performance of existing switch-based ap-

proaches is heavily dependent on the workloads, which must

be both highly skewed and predictable to achieve significant

improvement. It is also difficult, or even impossible, to dy-

namically update the data plane model of a programmable

switch for exchanging locks.

Key insight. The centralized lock manager can be di-

vided into two phases: synchronous grant decision and asyn-

chronous participant maintenance. Making a grant decision

is based solely on the fixed-size metadata (lock mode),



Table 1: Task execution time of distributed in-memory systems.

Systems Workload Exec. Time

Txn. Processing [37, 73] TPC-C / TATP 7 / 2.8µs

File System [18, 51] Read / Write / Mkdir 1 / 10 / 20µs

Key-value Store [71, 78] Search / Insert / Delete 8 / 15 / 12µs

Online Trading [20] Trade Execution 10µs

while maintaining participants also requires the remaining

variable-size metadata (holders and waiters).

Our approach. Armed with the above insight, we design

FISSLOCK, a switch-centric lock managing system that also

leverages programmable switches but in a new way to of-

fer significant performance improvement (both latency and

throughput) and memory efficiency for millions of locks.

The key idea is lock fission, which decouples grant decision

and participant maintenance procedures of the lock manager

and deploys the two parts on the programmable switch and

commodity servers, respectively. Specifically, the switch acts

as the decider that immediately makes a decision and replies

to the requester if the lock is granted. Meanwhile, the lock

request is further routed to the server, hosting the agent of

the lock, for updating lock holders and waiters with rich se-

mantics. The main advantages of lock fission are three-folds.

First, it stores only a small, fixed-size lock mode in switch

memory to accelerate millions of locks, which is two orders

of magnitude larger than existing switch-based approaches.

Second, it leverages high-speed, line-rate request processing

of the switch to concurrently grant locks with lower latency

and higher throughput than server-based approaches. Third,

it delegates lock management tasks (i.e., maintaining holders

and waiters) to the server of the lock holder, enhancing load

balance and data locality for diverse workloads.

FISSLOCK proposes the first design of the lock fission pro-

tocol, which splits the lock manager into a centralized, sta-

tionary decider on the switch, and migratable agents for each

lock on the servers. The protocol introduces new workflows

for acquiring and releasing locks, which allow for halfway re-

sponses from the switch when acquiring grantable locks and

migrating agents among servers to exploit locality and bal-

ance lock management loads. FISSLOCK further addresses

the anomalies in the protocol caused by network exceptions

using incarnation checks.

FISSLOCK stores small fixed-size metadata (e.g., lock

mode) for each lock in the switch memory. By carefully de-

signing on-switch metadata structure, a single switch with a

few MB of memory can host millions of locks. To implement

the decider of the lock fission protocol on an ASIC-based

programmable switch (e.g., Intel Tofino [16]), FISSLOCK de-

vises a 6-stage pipeline to process four types of packets in the

protocol. Each stage employs one or more match-action units

in the switch data plane to perform simple operations that a

programmable switch can afford, such as metadata matching

and updating, and packet destination selection.
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Fig. 1: Distributed lock management.

We implemented FISSLOCK from scratch on a Tofino

switch [16] and evaluated it using a microbenchmark, two

transaction benchmarks, and a real-world application. Our

experimental results show that FISSLOCK cuts up to 79.1%

(from 43.0%) of median lock grant time in the microbench-

mark and improves the transaction throughput of TATP [12]

and TPC-C [14] by 1.76× and 2.28×, respectively, com-

pared to the state-of-the-art switch-based approach (Net-

Lock [76]). We built a Redis-backed mobile banking applica-

tion [11] with FISSLOCK, which is one order of magnitude

faster than Redis’s official implementation (RedLock [5]).

Contributions. We summarize our contributions as follows:

• An in-depth analysis of performance issues in existing

lock manager designs for modern distributed in-memory

systems (§2).

• A new centralized lock management scheme, lock fission,

which decouples grant decision and participant mainte-

nance to embrace the best of both programmable switches

and servers (§3).

• A switch-centric lock manager design that enables the

lock fission protocol (§4) and implements grant decision

for millions of locks on the programmable switch (§5).

• A prototype implementation and evaluation that demon-

strates the efficacy of FISSLOCK over state-of-the-art (§7).

2 Background

2.1 Distributed Lock Management

The distributed lock service commonly uses a centralized

lock manager (LM) to handle all requests and grant the lock

for various applications, such as transactions and file systems.

As shown in the left part of Fig. 1, before reading or updat-

ing the protected data, applications—through the lock client

(LC)—acquire the lock in shared or exclusive mode by send-

ing the request to the lock manager, and waits until the lock

manager grants the lock. After accessing the data, applica-

tions release the lock to the lock manager asynchronously.

The lock manager maintains the metadata of locks (meta)

identified by a unique lock ID. The metadata of each lock

contains a mode of lock (mode), a set of lock holders (hold-

ers), and a queue for waiters (wqueue) [13]. The mode is a

small, fixed-size flag (2 bits) that represents the current lock

state (i.e., free, exclusive, or shared) and decides the grant of

locks. Both holders and wqueue require large, variable-size

data structures (up to hundreds of bytes) that represents the

current lock participants and enables flexible locking policies

(e.g., priority and fairness).
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Fig. 2: The architecture of programmable switches (PS) and the

internal structure of match-action units (MAU).

The lock manager can run on dedicated servers to avoid

interference with applications [54, 55, 65] (called SrvLock).

However, it may not scale well with fast-growing applica-

tion workloads and datasets. Therefore, the lock manager

can also be partitioned and co-located with applications to

further exploit locality [6, 13, 30] (called ParLock), but it

may suffer from load imbalance under skewed workloads.

Recently, the programmable switch has been proposed to

handle skewed workloads by managing a small fraction of

hot locks (e.g., less than 10,000) directly on the switch

(i.e., NetLock [76]), because it provides higher throughput

than servers, halves the network latency, and saves server re-

sources. However, due to the limited memory resources of

programmable switches (a few MB), just a part of the work-

load can be accelerated, and the rest will be downgraded to

server-based solutions. The right part of Fig. 1 illustrates the

above three solutions for distributed lock management.

2.2 Programmable Switch (PSwitch)

Programmability is becoming a trend in modern network

switch design, with support from major manufacturers like

Cisco [3], Broadcom [33], and Intel [16]. Compared with

commodity servers, programmable switches possess orders

of magnitudes higher throughput (several billion packets

per second) and lower delay (less than 1µs) for packet

processing [34]. Yet, only very limited memory resources

(a few MB) are available. As shown in Fig. 2, modern

programmable switches have a general-purpose CPU with

DRAM (i.e., the control plane) attached to the switch ASIC

(i.e., the data plane) via a PCIe bus. The control plane hosts

a Linux-based operating system that manipulates the switch

ASIC as a device. The data plane is programmable via P4

Language [19], which describes the logic of packet parsing,

processing, and forwarding. Specifically, packet processing

is realized as pipelines of match-action units (MAUs), which

perform pre-defined packet modifications (actions) accord-

ing to the value of specific fields in the packet header. In-

coming packets can be either forwarded to a single egress

port (unicast) or replicated to multiple egress ports (multi-

cast). Each MAU reads and updates user-defined data stored

in register arrays (hundreds of KB) once for each packet,

and conditionally modifies packet header fields according to

match-action tables (up to over 1 MB).
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Fig. 3: The end-to-end median and 90th percentile latency break-

down with different task execution times (1µs, 10µs, and 20µs) un-

der update-heavy (UH) and read-mostly (RM) workloads (left), and

the lock grant time distribution under read-mostly Uniform (Uni.)

and Zipfian (Zipf.) workloads when using different LMs (right).

Testbed: An 8-node cluster with an Intel Tofino switch. Workload:

A microbenchmark with one million locks (see §7.1 for details).

2.3 Performance Analysis

Grant time becomes increasingly important. The end-to-

end latency of typical distributed tasks is mainly composed

of execution time and lock acquire/release time. Lock re-

lease time is irrelevant as locks are typically released asyn-

chronously. Lock acquire time consists of two parts—wait

time and grant time, which denotes the duration that the

request is suspended in wqueue and the rest, respectively.

Nowadays, microsecond-scale execution time becomes com-

mon in distributed in-memory systems [18, 51, 60, 66, 71–

73, 78]. Meanwhile, the rapidly increasing size of datasets

(e.g., millions of objects per thread [29, 66]) dramatically en-

larges the lock space, resulting in lower lock contention rate

and less wait time. Consequently, grant time becomes non-

negligible in the end-to-end task latency. As shown in Fig. 3

(left), grant time accounts for a significant portion of the me-

dian and tail end-to-end task latency under workloads with

varied read-write ratio and skewness, while wait time is neg-

ligible because of the low lock contention.

Despite its importance, grant time has not drawn enough

attention in existing lock manager designs, in which we ob-

serve three major performance issues (see Fig. 3 (right)).

Issue#1: Unstable latency. All existing approaches rely on

server CPUs to process (partial or all) lock requests, intro-

ducing significant queueing delay that makes the grant time

unstable. Since the server receives and processes packets in

batches, the handling latency of requests is proportional to

their positions in the batch. Due to the limited packet pro-

cessing power of server CPUs, this results in non-trivial grant

time variance, from a few µs to over 100µs in our testbed.

Note that requests handled by the switch do not exhibit ap-

parent queueing delay because of line-rate processing.

Issue#2: Limited acceleration. Both ParLock and NetLock

adopt fast-path request handling to accelerate a part of lock

requests, but the portion of accelerated requests is rather lim-

ited. ParLock partitions the locks to handle some lock re-

quests locally, which saves 1 RT as compared with SrvLock.

However, the portion of locally handled requests is inversely



proportional to the cluster size (e.g., 12.5% in our 8-node

setup). NetLock manages hot locks on the programmable

switch, halving the required round trips and eliminating

queueing delay. However, due to limited switch memory ca-

pacity, the switch can only manage thousands of locks, which

are insufficient for protecting million-scale datasets without

exhibiting significant contention (see §7.7). When managing

1 million locks, even with workload profiling in advance,

NetLock only accelerates 1% and 27% of grants under the

Uniform and Zipfian workloads, respectively, as most re-

quests are handled by the lock server instead of the switch.

Issue#3: Workload sensitivity. The performance of Par-

Lock and NetLock are sensitive to workload attributes,

which results in their dependence on prior knowledge of the

workload. ParLock partitions locks statically, which incurs

severe load imbalance problem under skewed workloads. In

our experiment on the Zipfian read-mostly workload, 56.7%

of requests are processed by one server, which throttles the

LM and results in extremely high grant time. Due to the lim-

ited switch capacity, NetLock prefers skewed workloads and

heavily relies on workload profiling for detecting hot locks.

It falls back to SrvLock on occasions that the workload is

uniform or has dynamic patterns (e.g., e-commerce).

3 Approach and Overview

System model and design goals. FISSLOCK is a distributed

lock management system that uses programmable switches

to accelerate the processing of millions of locks across

diverse workloads. It is designed for distributed in-memory

systems that rely on a centralized lock service to coordinate

concurrent access of microsecond-scale tasks to large-scale

shared datasets. Unlike lock-based coordination services

like Zookeeper [32] and Chubby [21], which aim for reliable

but coarse-grained coordination, FISSLOCK is not designed

to achieve high availability. Instead, FISSLOCK has three

high-level design goals:

• Efficiency: Grant locks in single-digit microseconds to

meet the common needs of microsecond-scale tasks.

• Pervasiveness: Unleash full-scale acceleration for million-

scale locks, making it feasible for large-scale systems.

• Robustness: Ensure good yet stable performance for

diverse or dynamic workloads without prior knowledge.

Key insight. The lock management can be divided into two

phases: grant decision and participant maintenance. The de-

cision phase determines whether the lock can be granted with

regard to the current lock mode, while the maintenance phase

manages lock participants (i.e., holders and waiters) accord-

ingly. We recognize two key insights that motivate the split

design of a centralized lock manager. First, decision making

must be synchronous (i.e., executed before handling other

requests) to ensure the correctness of lock semantics, while

participant maintenance can be asynchronous to shorten the
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Fig. 4: The lock fission scheme (left) and the system architecture of

FISSLOCK (right).

critical path of granting a lock. Second, decision making re-

lies solely on the fixed-size metadata (shared or exclusive),

while participant maintenance also requires the remaining

variable-size metadata (holders and waiters).

Our approach. We propose lock fission as a technique

that decouples decision and maintenance in terms of both

functionality and metadata. Specifically, the lock manager is

split into a centralized decider and multiple per-lock agents

(see Fig. 4 (left)). The decider records each lock’s mode

and makes granting decisions for lock requests accordingly,

while the agent stores and maintains the remaining lock meta-

data (e.g., holders and waiters) of the corresponding lock.

The lock acquisition request is first sent to the decider, which

makes decisions and replies instantly if the lock is granted.

Simultaneously, the decider forwards the request to the re-

sponsible lock agent, which updates holders and waiters ac-

cording to the decision. Release requests are also sent to the

decider and forwarded to the agent. When the last holder re-

leases, the agent grants the lock to the next holder or frees

the lock. In both cases, the decider is notified in advance to

update the lock mode.

Lock fission provides the opportunity to accustom work-

load attributes without prior knowledge. By recording the

resident machine ID (mid) of each lock’s agent, the decider is

always able to route requests to the latest location of agents,

which supports the dynamic migration of lock agents among

machines. To balance the request handling load among ma-

chines, agents are on-demand dispatched to the lock holder’s

machine. When the lock is freed or transferred to waiters, the

agent is deconstructed or migrated to the waiter’s machine.

The migration of agents also enables most release requests

to be processed by local agents, thereby shortening the net-

work path of lock release operations.

Lock fission meets the design goals by exploiting the

packet processing strengths of programmable switches and

the high memory capacity of commodity servers simultane-

ously. First, metadata for decision is small, fixed-size data,

which enables decision making for million-scale locks with

limited switch memory capacity. Second, since maintenance

is decoupled with decision, servers are not involved in the

lock granting critical path, which eliminates the queueing de-

lay. Third, lock fission does not require any prior knowledge

of the workload and resolves the load imbalance problem by

dynamic lock agent migration.



D

C

GA

A

D

C

GA

A

A

D

C

A

A

½ RTT 0 RTT

A

D

C

F

D

C

A

A

½ RTT

3 5

GA

88

A

D

C

A

D

C

A

D

C

Timeline

6 7

½ or 1 RTT ½ or 1 RTT

8 95 73 41 2

A

D

C

6

8

PS

M2

M1

Packet : grant lock A ACQUIRE R RELEASE F FREE G GRANTC Client D Decider A Agent M
M

R

Racquire : 1 2 3 54

release : 6 7 8 9

GA

G

Fig. 5: The lock acquisition and release workflow in the lock fission protocol.

System overview. FISSLOCK is a switch-centric lock man-

agement system that applies lock fission to enable effi-

cient and centralized management of million-scale locks. As

shown in Fig. 4 (right), FISSLOCK is composed of lock

clients (LC), a decider (Dr), and lock agents (A). Lock clients

are libraries that encapsulate lock acquire/release requesting

functionalities into APIs. The decider resides on the switch

for accelerating lock grants and routing requests to agents.

Each machine owns an agent pool that manages all agents

on it. Lock requests forwarded from the decider are received

by the agent pool, which finds the responsible agent for each

request and hands over the request. The agent subsequently

updates the lock metadata.

Applications acquire locks via the LC, which sends the re-

quest to the decider, or if the lock agent can be found locally,

the lock agent. The decider makes decision and replies in-

stantly, multicasting the request to the lock agent’s resident

machine at the same time. Packets arriving at machines are

dispatched to the lock client (grant replies) and the agent

pool (lock requests), which wakes up application tasks and

calls agent functions to update the lock metadata respectively.

When the lock is released, similar to the acquire case, the

request is forwarded to or directly handed over to the lock

agent. If the lock needs to be granted to the next holder, the

agent is transferred along with the lock ownership.

4 FISSLOCK

This section describes the lock fission protocol implemented

by FISSLOCK. Although the design principles of lock fission

are independent of specific lock mechanisms used, we elabo-

rate on the read-preferring design as an example, and briefly

discuss the write-preferring design in §6.

4.1 Lock Operation Workflow

Fig. 5 illustrates the nine possible workflows (➀–➈) for ac-

quiring and releasing locks in the lock fission protocol. The

branches executed in each workflow are marked on the pseu-

docode presented in Fig. 6, Fig. 7, and Fig. 8.

Lock acquisition workflow (➀–➄). To acquire a lock, the

lock client (C) sends an ACQUIRE request to the lock decider

(D) (Line 5 in Fig. 6). The decider makes a lock granting de-

cision by examining the mode of the lock (meta.mode) and

# lid|mid|tid: lock|machine|task ID

# mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

sslock_acquire(lid, mid, tid, mode)

1 if agents.find(lid) then # local agent (rare)

2     if acquire(lid, mid, tid, mode) then

3       return   # local grant

4 else # remote agent

5 net_send(ACQUIRE, {lid, mid, tid, mode})

# wait for grant

6   pkt = net_recv(GRANT, lid, mid, tid)   

7   if pkt.agent != nil then   # add agent

8     grant(lid, mid, tid, mode, pkt.agent)  

sslock_release(lid, mid, tid)

9 if agents.find(lid) then # local agent

10    release(lid, mid, tid)

11 else   # remote agent (rare)

12 net_send(RELEASE, {lid, mid, tid})

Fig. 6: Pseudocode of FISSLOCK client lib implementation.

the requested mode in the packet (pkt.mode). If the lock is

free (➀), the decider will update the lock mode and imme-

diately grant a lock with an empty agent (A) to the client

by returning a GRANT packet (Lines 2–6 in Fig. 8). After re-

ceiving the packet, the client calls the grant function of the

agent pool to initialize the agent and add it to the pool (Lines

17–19 in Fig. 7). If the lock is being held and both modes

are SHARED (➁), the decider will still immediately grant

the lock to the client and multicasts the ACQUIRE request

to the agent (Lines 8–11 in Fig. 8). The agent will add the

requester to holders later (Lines 2–4 in Fig. 7). Finally, if the

lock cannot be granted immediately (➂), the decider will for-

ward the request to the agent, and the agent will append the

requester to the wait queue (Line 6 in Fig. 7). In rare cases

(➃ and ➄), the agent is on the same machine since another

client on the machine is hosting the lock, such that the client

will locally acquire the lock by calling the acquire func-

tion of the agent pool (Line 2 in Fig. 6). The agent can make

a decision by itself—to grant (➃) or to wait (➄)—without

consulting the decider. This is because the agent always has

the latest lock mode and does not need to update the decider.

Lock release workflow (➅–➈). In the lock fission proto-

col, the agent (A) is always located on the same machine

as the current holder (e.g., the first holder of the shared lock).



# agent:

#   mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

#   holders: a set of lock holders {mid, tid}

#   wqueue: a queue of waiters {mid, tid, mode}

acquire(lid, mid, tid, mode)

1   agent = agents[lid]

2   if mode == SHARED && agent.mode == SHARED then

3     agent.holders.add({mid, tid})

4     return TRUE   # grant lock

5   else

6     agent.wqueue.append({mid, tid, mode})

7     return FALSE   # wait for grant

release(lid, mid, tid)

8   agent = agents[lid]

9   agent.holders.remove({mid, tid})

10  if agent.holders.empty() then

11    agents.remove(lid) # remove agent

12    if agent.wqueue.empty() then

13      net_send(FREE, {lid}) # free agent

14    else # transfer agent and grant lock

15      next = agent.wqueue.pop()

16      net_send(GRANT, {lid, next.mid, next.tid, 

next.mode, agent})

grant(lid, mid, tid, mode, agent)

17  agent.mode = mode

18 agent.holders.add({mid, tid})   # grant lock

19 agents.add(lid, agent)   # add agent

20 if agent.mode == SHARED then   # grant others

21 .. # pop shared waiters and add to holders

22 .. # send grant lock (w/o agent) to them

Fig. 7: Pseudocode of FISSLOCK agent pool implementation.

Therefore, when releasing a lock, its agent is highly probable

to be local to the requester. The client requests the local agent

to release a lock through calling the release function of

the agent pool (Lines 9–10 in Fig. 6). If the lock is also held

by other clients of the machine (➅), the release completes

immediately (Line 9 in Fig. 7). If there is no waiter (➆), the

agent pool will remove the local agent and send a FREE re-

quest to the decider (Lines 11–13 in Fig. 7). The decider will

free the lock and drop the packet directly (Lines 14–15 in

Fig. 8). If there are waiters (➇), the lock with its agent will be

transferred to the next holder, popping from the wait queue,

by sending a GRANT packet to the decider (Lines 15–16 in

Fig. 7). The decider updates the lock metadata and forwards

the packet to the machine of the next holder (Lines 17–19 in

Fig. 8). After receiving the packet, the client calls the grant

function of the agent pool to maintain the agent and add it to

the pool (Lines 17–19 in Fig. 7). Furthermore, if the lock

could be shared with subsequent waiters, the client will pop

them from the wait queue and add to the holders, sending a

GRANT packet to each of them (Lines 20–22 in Fig. 7). If

the client, without a local agent (e.g., one holder of a shared

lock), releases the lock (➈), it will send a RELEASE request

to the decider (Line 12 in Fig. 6). The decider will then for-

ward the request to the agent (Line 13 in Fig. 8), and the

agent will call the release function (Lines 8–16 in Fig. 7)

to release the lock, as in the above workflows (➅–➇).

# meta:

#   mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

#   mid: machine ID

process_acquire(pkt): # pkt: {lid, mid, tid, mode}

1   meta = metas[pkt.lid]

2 if meta.mode == FREE then # lock is free

3   meta = {pkt.mode, pkt.mid}   # alloc agent

# grant lock and assign (empty) agent

4     agent = {pkt.mode, {}, {}}

5     grant_pkt = pkt.append(agent)

6 forward_packet_to(GRANT, pkt.mid, grant_pkt)

7 return

8   if meta.mode == SHARED && pkt.mode == SHARED then

# grant lock

9     grant_pkt = pkt.append(nil)

10 forward_packet_to(GRANT, pkt.mid, grant_pkt)

# acquire lock on agent

11 forward_packet_to(ACQUIRE, meta.mid, pkt)

process_release(pkt): # pkt: {lid, mid, tid}

12  meta = metas[pkt.lid]

# release lock on agent

13  forward_packet_to(RELEASE, meta.mid, pkt)

process_free(pkt): # pkt: {lid}

14  metas[pkt.lid] = {FREE, nil}   # free agent

15  drop_packet(pkt)

process_grant(pkt): # pkt: {lid, mid, tid, mode, agent}

16  meta = metas[pkt.lid]

17  if pkt.agent != nil then   # transfer agent

18    meta = {pkt.mode, pkt.mid}

# grant lock and assign agent

19 forward_packet_to(GRANT, pkt.mid, pkt)

Fig. 8: Pseudocode of FISSLOCK decider implementation.

4.2 Network Exceptions

The lock fission protocol splits the lock manager into a sta-

tionary decider on the switch and migratable agents for each

lock on the servers. Since they are connected via the network,

network exceptions including lost, out-of-order, and delayed

packets may cause some anomalies. FISSLOCK addresses

these anomalies by retransmission, rerouting, and incarna-

tion checks, respectively. As requests for different locks do

not interfere with each other, we only consider out-of-order

and delayed packets pertaining to the same lock.

Lost packets. FISSLOCK uses different approaches to han-

dle the loss of packets initially sent by the switch and servers.

Server-initiated packets. FISSLOCK addresses the loss of

packets initially sent by servers through TCP-based retrans-

mission. When a server receives a packet, it sends an ac-

knowledgement (ACK) to the origin of the packet. The

switch forwards ACKs without updating on-switch meta-

data. Specifically, the destination of FREE packets (➆) is the

switch instead of servers, in which case the switch sends the

packet back as an ACK. Servers monitor the arrival of ACKs

for each packet regularly and retransmit packets that are not

ACKed within a certain time frame.

In cases where the ACK is lost or delayed, the retransmis-
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Fig. 9: Two anomalies in the protocol due to out-of-order packets.

sion mechanism can cause packet duplication, which is han-

dled by servers through TCP. To prevent duplicated packets

from corrupting on-switch metadata, the switch maintains a

sequence number for each server to signify the number of

processed packets. Servers track the number of packets sent

to the switch, excluding retransmitted ones, and embed this

number into all packets. If the incoming packet’s number

is not larger than the on-switch number, indicating that the

packet is a duplicate, the switch does not update the lock

metadata when processing the packet.

Switch-initiated packets. In workflows ➀ and ➁, the lock

request is granted by the switch instead of servers. There-

fore, the GRANT packets in these workflows are considered

switch-initiated. To avoid the complexities of monitoring

ACK arrivals and executing retransmissions on the switch,

FISSLOCK addresses the loss of switch-initiated packets in

an alternative way—by setting a fixed timeout for lock acqui-

sition operations. If an acquisition operation times out due to

the absence of the GRANT packet, the client releases the lock

(➈) and retries the acquisition operation later. When process-

ing the RELEASE packet, the switch frees the lock and drops

the packet if it originates from the agent’s server (➀). If the

RELEASE packet arrives at the agent, the agent removes the

client from holders (➁) or, if the client is not in holders (➂),

the wait queue.

Out-of-order packets. Packets with dependencies arriving

out of order may lead to two anomalies. If ACQUIRE

and RELEASE requests from the same requester are re-

ordered (Fig. 9 (left)), the agent pool will fail to process

the RELEASE request because the requester is not yet the

holder or waiter of the lock. Further, the lock will never be re-

leased after granting it to the requester. If the ACQUIRE (and

RELEASE) packet arrives before the agent is granted (Fig. 9

(right)), the agent pool will fail to process the ACQUIRE

(and RELEASE) request because the agent does not exist.

To avoid extra on-switch design, FISSLOCK resolves these

anomalies by simply sending failed requests back to the de-

cider. The decider then routes the request to the agent again,

correcting the order.

Delayed packets. The ACQUIRE packet, which is immedi-

ately granted by the decider (➁), may lead to anomalies

when it arrives after the agent has been transferred (➇) or
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Fig. 10: Two anomalies in the protocol due to delayed packets.

freed (➆). Note that the lock mode and the ACQUIRE packet

must be both shared, as the lock is immediately granted. As

shown in Fig. 10, the decider will incorrectly transfer the

lock with its agent to the next holder (➇) or grant the freed

lock to a new client (➀). The agent pool will fail to process

the delayed packet.

FISSLOCK uses incarnation checks [68] to detect anoma-

lies on the decider. Both the decider and the agent have a

per-lock incarnation that is initially zero and is incremented

when receiving a shared ACQUIRE request (➁). The agent

pool will include the expected incarnation in the GRANT and

FREE packets. When the decider receives these packets and

the lock is shared, it will check if its own incarnation matches

the incarnation in the packet. If they match, the decider re-

sets the incarnation and handles the request as normal. Oth-

erwise, it refuses the packets, and the agent pool restores

the agent to continue handling lock requests. Moreover, the

failed ACQUIRE request will also be sent back to the decider,

which will then route the request to the agent again.

4.3 Protocol Correctness

The lock fission protocol introduces two changes to the tra-

ditional reader-writer lock design: decoupling the decision

process from the lock manager and allowing lock agents to

migrate among servers. We argue the correctness of our lock

fission protocol by showing that these changes preserve the

reader-writer property [24, 53]. Specifically, we prove that

the following two invariants always hold.

Invariant 1 (reader-writer exclusion): Locks held in exclu-

sive mode do not have any other holders; locks held in shared

mode do not have any exclusive holders.

In the traditional reader-writer lock design, all acquisition re-

quests are processed by the lock manager, which maintains

Invariant 1. In the lock fission protocol, requests are either

processed by the local agent or sent to the decider. Both of

them grant or suspend lock requests following the same cri-

teria as traditional lock managers. Hence, Invariant 1 holds

as long as the local agent and the decider always have con-

sistent lock mode, and the lock mode correctly reflects the

number of holders, which we prove as follows.

Lemma 1: If the local agent exists, it has the same lock mode

as the decider.



Proof: The lock mode in the decider becomes shared or ex-

clusive when a free lock is acquired for the first time (➀) or

the lock is transferred to a shared or exclusive waiter (➇).

In both cases, the agent is carried by the GRANT packet, so

the local agent does not exist until the GRANT packet is re-

ceived by the requester’s machine. Moreover, the lock mode

in the carried agent, which subsequently becomes the local

agent, is identical to the updated lock mode in the decider.

Before the local agent is removed, the decider only receives

ACQUIRE and RELEASE packets, which do not change the

lock mode. Hence, the lock mode in the decider remains con-

sistent with the lock mode in the local agent.

Lemma 2: The lock mode in the decider always correctly re-

flects the number of holders.

Proof: We enumerate all possible lock mode transitions to

prove Lemma 2. Initially, each lock is free and has no hold-

ers. The lock mode transits from free to shared or exclusive

only when the lock is granted to a requester, which guaran-

tees that the lock has at least one holder. If the lock mode is

exclusive, subsequent ACQUIRE packets will not be granted.

Hence, exclusive locks have at most one holder. The lock

mode transits back to free only when receiving FREE packets

whose incarnation matches the decider’s incarnation, which

indicates that all holders have released the lock. Similarly,

the lock mode transits between shared and exclusive when

receiving GRANT packets that have matched incarnation. In

this case, all former holders have released the lock, and the

destination of the GRANT packet becomes the new holder.

Invariant 2 (finite wait): Waiters of the lock will be granted

in finite time.

Traditional lock managers decide to suspend a lock request

and add the requester to the wait queue simultaneously. How-

ever, in the lock fission protocol, these two operations are de-

coupled and executed by different entities, i.e., the decider

and the agent. We show that Invariant 2 still holds in the

decoupled setup, which allows the agent to migrate among

servers, by proving Lemma 3 and 4.

Lemma 3: Lock acquisition requests that are suspended will

eventually be added to the wait queue.

Proof: Lock acquisition requests may be suspended by the

agent locally (➄) or remotely (➂). In the former case (➄),

the local agent directly adds the requester to the wait queue

when suspending the request. In the latter case (➂), the

decider, after deciding not to grant the lock, forwards the

ACQUIRE request to the agent, which adds it to the wait

queue. If the agent is not present due to packet reordering,

the request is sent back to the decider. The decider then for-

wards it to the agent’s latest location, guaranteeing that it will

eventually be recorded in the agent’s wait queue.

Lemma 4: Waiters recorded in the wait queue will eventually

be granted.

Proof: All holders of a lock will eventually release it, either

Agent Pool

mode holders wqueue

mid modetid

agents

mid tidincahash(lid)

Fig. 11: The main structures in the agent pool.

locally (➅) or remotely (➈). Therefore, the number of hold-

ers will eventually become zero, unless the lock is continu-

ously granted to new shared holders (➁), which FISSLOCK

averts by adopting a starvation prevention mechanism (see

§6). When the number of holders reaches zero, at least one

waiter is granted and becomes the new holder (➇). Thus, ac-

cording to induction, all waiters will eventually be granted.

5 Design

5.1 On-server Agent Pool

Data structures. As shown in Fig. 11, the agent pool uses

a hash table to store granted agents, which is shared by all

clients on the same machine. Each agent maintains com-

plete lock metadata, including mode, incarnation, holders,

and wqueue. The holders is an unordered set of current lock

holders (mid, tid), and the wqueue is a FIFO queue of pend-

ing lock requests (mid, tid, mode). The incarnation (inca) is

used to handle delayed packets.

Agent operations. The agent pool adds an agent when re-

ceiving a GRANT packet with agent information (Lines 17–

19 in Fig. 7) and removes an agent when the lock is freed or

granted to the next holder (Line 11 in Fig. 7). Furthermore, if

the agent pool fails to process packets due to network excep-

tions (see §4.2), it sends such packets back to the decider. For

incarnation checking, the agent pool includes the expected

incarnation in the GRANT and FREE packets and restores the

agent if the decider refuses these packets.

5.2 On-Switch Lock Decider

Data structures. The metadata of all locks (metas) is stored

in register arrays of MAUs (RA in Fig. 12). When lock pack-

ets pass through the MAU, predefined actions read and up-

date lock metadata via ALUs attached to the RA. To guar-

antee line-rate packet processing, each RA can only be ac-

cessed once per packet, and the ALU is allowed to perform a

few simple arithmetic operations. Therefore, the lock decider

functionality and metadata must be split into multiple MAUs,

creating a pipeline. Each MAU stores a piece of metadata

and performs the corresponding logic. All RAs are indexed

by the lock ID (lid).

FISSLOCK carefully selects the register size of RA for

minimal memory consumption. The allowed register size in-

cludes 1 bit and a specific amount of bytes (1, 2, 4, or 8).

An intuitive design is to store all of the lock mode, machine

ID (mid), and incarnation (inca) into 1-byte RAs, while it

wastes 6 bits for each lock mode. Instead, FISSLOCK stores

the lock mode with two 1-bit RAs (free RA and r/w RA in



Table 2: Packet types used in FISSLOCK.

Type Contents

ACQUIRE lock ID and mode to be acquired, machine ID and

task ID of the requester

RELEASE lock ID to be released, machine ID and task ID of

the requester

FREE lock ID to be freed, INCA, and lock mode before free

GRANT lock ID to be granted to machine ID and task ID,

INCA, and agent of the lock (optional)

Fig. 12), indicating whether the lock is held and whether the

lock is shared, respectively. Both inca and mid use 1-byte

RAs (inca RA and mid RA in Fig. 12). Although 8 bits are

still over-sufficient, there are unfortunately no smaller regis-

ter units in the RA to store them. Packing multiple mids (or

incas) in one register is not feasible due to memory accessing

restrictions. In summary, FISSLOCK compresses the switch

memory consumption of each lock to 18 bits, which is two

orders of magnitudes smaller than prior work [76].

Using 1-byte registers for mid and inca, a single MAU

is not enough for the million-scale lock amount. Therefore,

FISSLOCK splits them into multiple MAUs, each storing a

fixed range of locks. For these MAUs, the lock ID is trans-

lated into a MAU index and an offset within the MAU (MAU-

selection stage in Fig. 12).

Packet processing pipeline. The decider is realized as a 6-

stage pipeline that processes four types of packets in FISS-

LOCK (see Table 2), where all packets share the same header

format but use different header fields. Each stage checks the

metadata in the packet or loaded from former stages for se-

lecting proper actions to execute. Actions leverage the ALUs

attached to RAs to read, update, and write back the meta-

data simultaneously. FISSLOCK organizes the MAU order

to ensure that all metadata is loaded from RAs before be-

ing used by subsequent stages. Only packet types marked in

Fig. 12 are processed in corresponding stages. The logic of

each stage is described as follows.1

MAU-selection stage translates the lock ID into the MAU in-

dex and the offset in the MAU in Fig. 12 for Check stage and

MID stage. In Check stage and MID stage, MAUs other than

the indexed MAU are skipped.

Check stage checks and updates the incarnation. ACQUIRE

packets for a shared lock increment the incarnation by 1.

GRANT packets with agent and FREE packets reset the in-

carnation if the current lock mode is exclusive2 or the incar-

nation in the packet is matched, i.e., there are no delayed

packets. Otherwise, the packet is marked as invalid and will

be skipped by the rest stages except for Destination stage.

Free stage updates the free register in RA and loads its orig-

1Stages for identifying lock packets and supporting retransmissions are not

included for convenience.
2The mode field of packet header is used to transfer the current lock mode.
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Fig. 12: The metadata of locks stored in register array of MAUs

and packet processing pipeline (data flow) in programmable switch.

inal value to the FREE flag in Fig. 12. ACQUIRE and FREE

packets set the free register to 0 (held) and 1 (free) despite

its original value, respectively, as 1-bit RAs do not support

conditional updates with regard to the original register value.

R/W stage updates the r/w register in RA. GRANT packets

update the r/w register to the next holder’s mode. ACQUIRE

packets only update the r/w register to the requester’s mode

when the lock is free (Line 3 in Fig. 8), i.e., the FREE flag is

1. This stage sets the SHARED flag in Fig. 12 that indicates

whether both the pkt.mode and the r/w register are SHARED,

which determines packet destinations later.

MID stage loads and updates meta.mid in mid RA.ACQUIRE

and GRANT packets store the pkt.mid into mid RA as the new

agent’s location when the lock is free (Line 3 in Fig. 8) and

when carrying the agent (Lines 17–18 in Fig. 8), respectively.

FREE packets reset meta.mid to 0 (Line 14 in Fig. 8).

Destination stage routes packets to correct egress ports. The

destination is controlled by two fields defined by the switch

(DEST and DEST2 in Fig. 12), which specify the ports that

the packet should be replicated and forwarded to. Both fields

can be null for dropping the corresponding packet replica.

Packets specify their destination in DEST and the multi-

casted packet’s destination in DEST2. Programmed egress

pipelines update the type of multicasted packets to GRANT.

ACQUIRE packets are forwarded to the pkt.mid when the

lock is free (Line 6 in Fig. 8), meta.mid when the request is

suspended (Line 11 in Fig. 8), and both mids when a shared

lock is granted to a shared requester (Lines 10–11 in Fig. 8).



RELEASE packets are always forwarded to meta.mid (Line

13 in Fig. 8). GRANT and FREE packets are forwarded to

pkt.mid (Line 19 in Fig. 8) and dropped (Line 15 in Fig. 8),

respectively, unless marked as invalid in Check stage, in

which case they are forwarded back to meta.mid.

5.3 Failure Handling

Failure model. FISSLOCK can tolerate individual and simul-

taneous switch and server failures, but it does not guaran-

tee availability (without data replication). Switch and server

failures are detected by a reliable external coordinator using

heartbeats. On failed servers, the granted locks are consid-

ered expired, and pending lock acquire operations are consid-

ered aborted. FISSLOCK assumes that applications will han-

dle lock expiration and aborted operations, such as manually

aborting ongoing transactions. The availability of FISSLOCK

can be achieved through existing methods that replicate the

switch data plane to backup switches [39], which are orthog-

onal to our work.

Failure recovery. Switch and server failures in FISSLOCK

may result in the loss of network packets (see Table 2),

switch states (metas), lock agent states (agents), and lock

client states (granted and pending lock requests). When

a failure is detected by the coordinator, FISSLOCK will

restart the failed switch if necessary and perform three steps

sequentially to recover the aforementioned states.

• Server data aggregation (S1). All surviving servers

pause lock operations and submit lock agent states and

lock client states to the coordinator.

• Server data recovery (S2). All surviving servers recover

the lost and inconsistent states by referring to the aggre-

gated states from the coordinator.

• Switch data recovery (S3). The switch recovers its states

by referring to lock agent states from all surviving servers.

5.4 Scale to Multiple Racks

FISSLOCK can be scaled out by partitioning locks to each

ToR switch. Each switch only handles requests for the locks

it manages and routes other requests to responsible racks.

Each machine has a global mid, which is translated by the

switch to an egress port for the next-hop switch or the ma-

chine. In the current implementation of FISSLOCK, these

translation rules are statically predetermined, which disables

on-demand scaling. However, on-demand scaling could po-

tentially be achieved by updating these rules through the

switch control plane. Although requests for remote-rack

locks may experience higher network latency, they still have

a stable grant time without any queueing delay. The imbal-

ance of loads among switches is not a significant concern, as

switches have orders-of-magnitude higher packet processing

speed than servers. Even under heavy loads, servers would

reach saturation before a hotspot switch does.

6 Implementation

We implemented FISSLOCK from scratch using roughly

1,200 lines of P4 code and 5,000 lines of C++ code.3 DPDK

is used for packet sending and receiving.

Non-linear lock IDs. The lock ID can be sparse and ineffi-

cient for indexing RAs. In this case, FISSLOCK maps lock

IDs to linear RA indexes with an RPC daemon. Lock clients

cache the mapping and embeds the RA index in packets.

Lock scales. FISSLOCK supports efficient management of

over 1 million on-switch locks. In our experiments on TPC-

C, we use them to protect billion-scale data by protecting

a range of data objects with each lock (see §7.4). To sup-

port out-of-range locks that exceed the switch capacity, FISS-

LOCK adopts ParLock as a fallback, i.e., these locks are

handled by on-server LMs, and the switch forwards their re-

quests to the server (see §7.6).

Read/Write preference. FISSLOCK is implemented as read-

preferring since it is common. For a write-preferring design,

the switch requires an additional 1-bit state ww (write-waiter)

to indicate the existence of exclusive waiters. When encoun-

tering an exclusive waiter, the decider sets ww to true, so

subsequent shared requests are not granted even if all holders

are shared. The server-side write-preferring implementation

is identical to server-based lock managers [24, 53].

Policy support. In FISSLOCK, the on-server lock agents are

tasked with enabling various lock policies (e.g., fairness), as

they determine the next holders when the current holders re-

lease the lock. For example, FISSLOCK ensures first-come-

first-served fairness by using a FIFO wait queue, which pri-

oritizes waiters that are enqueued earlier.

Starvation prevention. In the read-preferring design, FISS-

LOCK uses an additional 1-bit state per lock on the switch

to prevent readers from starving writers. This state is peri-

odically set by the agent if there exists a writer in the wait

queue and is cleared when all current holders release the lock.

In the write-preferring design, readers are not starved. When

the lock is held by a writer, all incoming lock requests are

appended to the agent’s FIFO wait queue. This guarantees

that writers are not granted ahead of preceding readers.

Deadlocks. FISSLOCK offers a lock aborting mechanism to

assist applications resolve deadlocks. Specifically, it sets a

local timeout for each lock request and aborts pending lock

requests that have not been granted after the timeout.

7 Evaluation

7.1 Experimental Setup

Testbed. The experiments were conducted on a cluster con-

sisting of four machines, each has two 12-core Intel CPUs,

128 GB of RAM, and two ConnectX-5 100 Gbps NICs. All

3The source code of FISSLOCK is available at https://github.com/

SJTU-IPADS/fisslock.

https://github.com/SJTU-IPADS/fisslock
https://github.com/SJTU-IPADS/fisslock


Table 3: Workload description.

Microbenchmark TATP TPC-C

Wkld Type Ratio Txn Type Ratio Txn Type Ratio

UH
{

R 50% GS R 35% NEW RW 45%

W 50% GD R 10% PAY RW 43%

RM
{

R 90% GA R 35% DLY RW 4%

W 10% US W 2% OS RO 4%

RO
{

R 100% UL W 14% SL RO 4%

W 0% IF W 2%

DF W 2%

NICs are connected to a Top-of-Rack (ToR) wedge100BF-

32x programmable switch, which is equipped with an Intel

Tofino ASIC [16]. Each machine hosts two logical nodes,

each has one CPU connected with one NIC used by all

threads running on it. For each node, we assign 10 cores to

application threads for issuing lock requests and receiving

grant replies, and 1 core to FISSLOCK’s agent pool for main-

taining lock metadata. Incoming packets are triaged utilizing

DPDK Flow Director and Receive Side Scaling. To further

adjust the degree of concurrency, we use coroutines in each

application thread to simulate multiple clients.

Comparing targets. We compare FISSLOCK with the state-

of-the-art centralized lock manager NetLock [76] and two

traditional server-based lock managers, namely SrvLock and

ParLock. We re-implemented NetLock following its open-

sourced artifact [9], which is not compatible with our pro-

grammable switch. The maximum number of locks that Net-

Lock manages on the switch is determined by the scripts

in its artifact. Due to the lack of open-source artifacts, we

hand-crafted ParLock following the specification of popular

commercial systems [6, 13], and used the lock server imple-

mentation of NetLock as SrvLock. ParLock uses the same

allocation of CPU cores as FISSLOCK, while NetLock and

SrvLock use one node as the dedicated lock server and the

other seven nodes as clients. For fairness, all systems are as-

signed the same total amount of CPU cores, i.e., 8 cores as

lock managers and 80 cores as lock clients.

Workloads. We use one microbenchmark to evaluate lock

granting performance, and two transaction benchmarks to

study the impact on accelerating transaction execution (see

Table 3). We trace all lock requests during a pre-execution

phase for NetLock to profile the workload. To maintain fair-

ness, we evaluate all lock managers using the same lock re-

quest traces and report the actual execution performance, like

prior work [75, 76].

Microbenchmark. We built a microbenchmark to emulate the

typical use of locks in modern distributed in-memory sys-

tems, where shared (resp. exclusive) locks are acquired be-

fore and released after data reads (resp. updates) to serialize

these operations. To study the lock granting performance of

lock managers under different read-write ratios and work-

load skewness, the microbenchmark includes three repre-

sentative workloads: update-heavy (UH), read-mostly (RM),

and read-only (RO). Each workload has both Uniform (Uni.)

and Zipfian (Zipf.) lock request distributions.

Transaction benchmarks. TATP [12] and TPC-C [14] are

evaluated to study the impact of lock managers on the end-

to-end performance of distributed in-memory systems. TATP

represents low-locality4 and read-intensive (80% of trans-

actions are read-only) workload, while TPC-C represents

high-locality (∼90% of transactions only access local ta-

bles [14, 37]) and write-intensive (8% of transactions are

read-only) workload. We use the default population size

(100,000 subscribers) for TATP and adopt the same per-

client warehouse number as prior work [29, 66] for TPC-

C. We protect a range of records with each lock to control

the total amount of locks in the benchmark. We run 160

clients for TATP and 1,200 clients for TPC-C, all clients

issue lock requests synchronously. We adopt the two-phase

locking (2PL) protocol when executing transactions. After

acquiring all locks required by each transaction, we delay

around 2µs for TATP and 10µs for TPC-C to simulate the

execution time in Table 1. Transactions executed over 10 ms

are aborted to avoid deadlocks.

7.2 Memory Consumption

We first study the switch memory usage of FISSLOCK, which

limits the maximum number of locks a programmable switch

can host. Following the internal structure of programmable

switch ASICs (see Fig. 2), two factors collectively impact the

limitation: the number of MAUs and the memory capacity of

each MAU. Let N be the number of locks in the system, C

be the per-MAU memory capacity in bits, then the amount

of MAUs required M can be described as:

M =

⌈

N

C

⌉

× 2 +

⌈

N × 8

C

⌉

× 2 + 4

where 4 MAUs are occupied by the control and comput-

ing logic of the lock decider, and others denote MAUs for

lock mode (mode), machine ID (mid), and incarnation (inca).

The switch ASIC in our testbed has 12 MAUs at the ingress

pipeline, each providing about 560 KB stateful storage (i.e.,

register array). Assuming that all MAUs are used by FISS-

LOCK and following an optimal allocation scheme (i.e., 2

MAUs for mode, 3 MAUs for mid, and 3 MAUs for inca),

the maximum number of locks that can be hosted is 1.68 mil-

lion. In contrast, NetLock can only manage a few thousand

locks on the same switch ASIC throughout our experiments.

7.3 Lock Granting Performance

We study the lock granting performance of FISSLOCK and

baselines through the grant time distribution (Fig. 13) and

lock request throughput (Fig. 14 (left)) in the microbench-

mark. All experiments use 160 clients and 1 million locks.

4Like prior work [29, 37], we do not improve the locality by deliberately

partitioning TATP tables.
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Fig. 13: The CDF of lock grant time in the microbenchmark when

using different lock managers.

Overall, FISSLOCK achieves low and stable grant time under

all workloads. Compared with baselines, it cuts down the me-

dian grant time by up to 79.5% (SrvLock), 79.1% (NetLock),

and 96.4% (ParLock), and the 90th percentile grant time by

up to 89.7% (SrvLock), 88.9% (NetLock), and 96.5% (Par-

Lock). Consequently, FISSLOCK outperforms baselines on

lock request throughput by up to 4.08× (ParLock), 4.79×

(SrvLock), and 4.99× (NetLock). The performance gain of

FISSLOCK mainly comes from three aspects: (1) the elimi-

nation of queueing delay by switch-based grant deciding, (2)

the pervasiveness of acceleration by lock fission, and (3) the

automatic load balancing by dynamic agent migration.

Uniform workloads. FISSLOCK mainly benefits from (1) and

(2) under Uniform workloads. The queueing delay dominates

the grant time of all three baseline systems, which grows to

up to 84.5µs (SrvLock), 76.2µs (NetLock), and 54.8µs (Par-

Lock) at 90th percentile. Oppositely, FISSLOCK controls the

90th percentile grant time of all workloads under 9.42µs by

eliminating queueing delay. NetLock falls back to SrvLock

under Uniform workloads because only ∼1% of requests are

handled by the switch, while FISSLOCK accelerates all re-

quests. ParLock handles around 12.5% of requests locally,

which alleviates the remote LM’s load and helps it slightly

outperform SrvLock and NetLock.

Zipfian workloads. FISSLOCK benefits from all three aspects

under Zipfian workloads. Even with workload profiling, Net-

Lock accelerates merely ∼27% of requests under Zipfian

workloads. Although these requests have slightly (0–2µs)

lower grant time than FISSLOCK because FISSLOCK de-

votes additional time to skim through the agent pool, the

other 73% of requests are still handled by the server and have

similar performance to SrvLock. Oppositely, FISSLOCK

makes grant decisions on the switch for all lock requests. Par-

Lock suffers from severe load imbalance under Zipfian work-

loads, which significantly increases its grant time. Mean-

while, FISSLOCK balances the load among servers and min-

imizes the impact of workload skewness, achieving up to
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Fig. 14: The lock request throughput in the microbenchmark, and

the transaction throughput on TATP and TPC-C with different lock

managers.

96.4% lower grant time than ParLock. The R/W lock con-

tention becomes the main restriction of FISSLOCK’s through-

put under Zipfian workloads and significantly reduces the

lead of FISSLOCK.

7.4 Distributed Transaction Performance

We study the impact of lock managers on the end-to-end la-

tency (Fig. 15) and throughput (Fig. 14 (right)) of transaction

execution with TATP and TPC-C benchmarks. We show the

latency distribution of each type of transaction individually.

TATP. TATP is a read-dominated workload containing 7

short transactions. Overall, FISSLOCK outperforms baseline

systems by 2.93× (ParLock), 2.37× (SrvLock), and 1.76×

(NetLock) on transaction throughput. Since most transac-

tions acquire only one or two locks, there were no deadlocks

throughout the test. When executing transactions that only

acquire one lock, FISSLOCK exhibits similar performance

to the microbenchmark case, i.e., the latency remains low

for 99% of GS (17.5µs), GA (15.4µs), and UL (27.7µs)

transactions. For multi-lock transactions (GD, US, IF, and

DF), the latency of FISSLOCK is proportional to the aver-

age amount of locks acquired when executing the transaction.

ParLock suffers from severe load imbalance when executing

GS, US, UL, IF, and DF transactions, which drags down its

throughput and results in lower queueing delay in GD and

GA. Moreover, the effect of ParLock’s local fast-path is less

apparent in multi-lock transactions as the possibility of lo-

cal grants is powered. NetLock has similar performance to

SrvLock because the switch LM has limited acceleration pro-

portion (17% in total), even if all rows are selected in a non-

uniform manner, because the on-switch lock proportion is

too restricted (0.09%). Queueing delay dominates the trans-

action latency of both systems.

TPC-C. TPC-C is a write-dominated workload containing

5 types of complicated transactions, where 90% of transac-

tions solely acquire local locks. Given this workload locality

information, ParLock can serve most requests with local lock

servers, achieving superior performance. To show that FISS-

LOCK can also benefit from this workload-aware optimiza-

tion, we additionally evaluate FISSLOCK-Local, which fol-

lows ParLock’s method of co-locating locks with the clients

acquiring them. Among lock managers that do not exploit
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Fig. 15: The CDF of transaction latency on TATP and TPC-C

workloads when using different LMs.

workload locality, FISSLOCK outperforms SrvLock and Net-

Lock by 2.36× and 2.28× on transaction throughput, respec-

tively. Both FISSLOCK-Local and ParLock handle over 90%

of requests locally, where they have similar performance.

However, FISSLOCK-Local still has 1.08× higher through-

put than ParLock because of better remote lock requesting

performance. We analyze the latency of write-intensive and

read-only transactions separately as follows.

Write-intensive transactions (NEW and PAY). NEW and

PAY acquire 14 and 4 locks on average. Even when ac-

quiring almost all locks remotely, FISSLOCK still achieves

fairly low and stable latency for 81% of NEW (< 125.5µs)

and 85% of PAY (< 44.5µs) transactions. The latency of

other transactions is dominated by the wait time due to lock

contention. NetLock falls back to SrvLock because only 6%

of requests to 0.3% of locks are handled by the switch, due

to sparse data accesses in large datasets [29, 66]. Both LMs

have over an order-of-magnitude higher transaction latency

than FISSLOCK because of queueing delay. ParLock and

FISSLOCK-Local have 40%–60% lower transaction latency

than FISSLOCK due to local lock request handling. FISS-

LOCK-Local exhibits a shorter tail than ParLock because of

higher remote lock acquire performance.

Read-only transactions (DLY, OS, and SL). All read-only

transactions are local, which explains the identical per-

formance of ParLock and FISSLOCK-Local. The latency

turning point of FISSLOCK appears later (96.5%, 97.7%,
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Fig. 16: The timeline of lock request throughput on a dynamic

workload (left), and the CDF of lock grant time with various lock

scales when using a uniform RM workload (right).

and 96.2% for DLY, OS, and SL) because of lower wait time

when acquiring shared locks. The performance of NetLock

and SrvLock is similar to the write-intensive case as the

queueing delay instead of wait time dominates the latency.

7.5 Dynamic Workload

To study the robustness of lock managers under dynamic

workloads, we alter the hotspot of 1 million locks every

300 ms (i.e., 2,500 hot locks). In this workload, half of the

requests target the hotspot, while the other half are evenly

distributed to the remaining locks. As shown in Fig. 16 (left),

FISSLOCK achieves a consistently high throughput of over

6 million requests per second (M rps) regardless of hotspot

changes, thanks to its pervasive acceleration. In contrast, Net-

Lock’s throughput fluctuates between 3.44 M and 4.58 M rps,

as the switch only handles half of the requests. When the

hotspot changes at 300 ms, the throughput instantly drops to

around 3 M rps, close to SrvLock (its fallback), and remains

low until the hotspot returns.5

7.6 Lock Scales

We further evaluate the lock granting performance of FISS-

LOCK as the number of locks increases, using a uniform

RM workload. We also report the result of ParLock, the

fallback approach of FISSLOCK, with 10M locks as a ref-

erence. As shown in Fig. 16 (right), as expected, the per-

formance of FISSLOCK gradually approaches that of Par-

Lock as the number of locks increases. We found that FISS-

LOCK still achieves 39.9% lower 20th percentile and 9.9%

lower 90th percentile grant time compared to ParLock for

10M locks by shipping the load of around 10% requests to

the switch and thereby relieving server CPUs. At 0–12.5

percentiles, workloads with fewer locks perform worse be-

cause almost all requests for on-switch locks are handled by

the switch, while around 12.5% of requests for out-of-range

locks are handled locally.

7.7 Lock Granularity

To justify the necessity of using fine-grained locks for large-

scale datasets, we conduct an experiment that varies the num-

ber of locks used to protect accesses to 10 million objects.

These objects are evenly distributed among the locks. As

shown in Fig. 17 (left), when using coarse-grained locks,

5Due to space limitations, we omit this part in Fig. 16 (left).
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the lock granting throughput of FISSLOCK is significantly

dragged down (up to 5.40×) by lock contention in a uniform

RM workload. NetLock achieves the peak throughput when

using around 1,000 locks due to limited switch memory.

However, the peak throughput is only 5.65 M rps due to se-

vere lock contention. In contrast, FISSLOCK unleashes full-

scale acceleration with over one million fine-grained locks,

thereby resulting in 1.99× (Uniform) and 1.26× (Zipfian)

higher peak throughput than NetLock.

7.8 Failure Recovery

To study the performance of failure recovery, we manually

inject a simultaneous failure of one switch and one server

into the experiment used in §7.7. As shown in Fig. 17 (mid),

the recovery time mainly comes from aggregating states of

surviving servers (S1) and repairing them (S2), and is propor-

tional to the number of locks due to scanning the metadata

(e.g., granted requests) of all locks. The recovery time for

switch states (S3) is trivial, as it only involves held locks.

7.9 Application: Mobile Banking

We build a mobile banking application that supports common

banking operations like balance checking (BC) and funds

transferring (FT) [7, 8]. The application server uses FISS-

LOCK following the 2PL protocol for transactions and uses

Redis-backed in-memory store [11]. It combines Redis asyn-

chronous APIs and coroutines to hide network latency and

maximize throughput when serving massive clients. We use

Redis’s official implementation of distributed locks (Red-

Lock [5]) as the baseline and use a mixed workload con-

taining 90% BC and 10% FT operations, which reflects the

user behavior that checks balance much more frequent than

transferring funds [11]. We initialize the bank with 1 million

accounts. By adjusting the number of clients that issue op-

erations, we compare accumulative throughput of all clients

and median latency of the application using FISSLOCK and

RedLock. As shown in Fig. 17 (right), the operation through-

put when using RedLock peaks at 24.8 K ops due to lock

contention. Conversely, when using FISSLOCK, the opera-

tion throughput scales to 825.4 K ops because FISSLOCK

grants and transfers locks faster. Additionally, FISSLOCK

cuts down the median latency of banking operations by at

least one order of magnitude.

8 Related Work

Distributed lock management. There have been many ef-

forts to investigate distributed lock management which are

classified into two categories, centralized LM [6, 13, 21, 30,

54, 55, 65, 76] and decentralized LM [28, 56, 73, 75]. Cen-

tralized LMs are widely used because they enable rich prop-

erties such as latency predictability [31, 38, 46], starvation

freedom [36], and performance isolation [76]. Decentralized

LMs leverage one-sided RDMA primitives to bypass the

CPU bottleneck of lock managers [28, 56, 73, 75], which

offers better performance but loses support to the properties

above. Prior work [76] uses programmable switches to host

part of locks, achieving desired performance without sacri-

ficing centralized properties. However, it assumes that the

workload is highly skewed and predictable. Differently, FISS-

LOCK can accelerate million-scale locks for diverse work-

loads without prior knowledge.

In-network optimization. The emergence of programmable

switches [3, 16, 33] inspires numerous in-network designs

for distributed systems, including distributed cache [35, 42,

47, 49, 50], consensus and concurrency control [26, 27, 34,

43, 44, 59, 76], machine learning [17, 40, 48, 63, 64, 77],

task scheduling [69, 74], and distributed data coherence [41,

45, 70]. These systems primarily leverage the stronger packet

processing power and shorter network round trip of switches

to achieve higher performance for a portion of workloads.

NetLock [76], the system most relevant to FISSLOCK, imple-

ments a full lock manager on the switch to handle requests

on hot locks. However, due to limited switch memory, the on-

switch lock manager can only optimize thousands of locks.

In contrast, FISSLOCK achieves consistent performance im-

provement for millions of locks via lock fission.

9 Conclusion

This paper presents FISSLOCK, a switch-centric lock service

that enables lock fission scheme to provide microsecond-

scale lock grant time for millions of locks. The concept of

lock fission—decoupling the locking process to align with

the characteristics of heterogeneous hardware—could be ap-

plied to other contexts. For instance, the locking process can

be decoupled differently in various heterogeneous environ-

ments, such as disaggregated memory. We leave the investi-

gation of these to future work.
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