
An adaptive network slicing for LTE Radio Access
Networks

Pedro H. A. Rezende and Edmundo R. M. Madeira
Institute of Computing

University of Campinas (Unicamp)
Campinas, São Paulo, Brazil

Emails: pedrohenrique@lrc.ic.unicamp.br, edmundo@ic.unicamp.br

Abstract—5G mobile systems are envisioned to satisfy the
service requirements from a diversity of vertical industries.
Network Slicing, which is a promising technology to be integrated
into 5G systems, enables multiple virtual networks to be created
on top of a physical substrate. These multiple virtual networks
(or network slices) are tailored according to the users’ needs.
The consolidation of multiple technologies, such as SDN and
NFV, provides all the elasticity, programmability and modularity
necessary to manage network slices. In this paper, we present
a Slice Optimizer component as an extension to LTE’s evolved
NodeB to realize the concept of network slicing on LTE Radio
Access Networks. This proposed component communicates with
an SDN Controller to receive information regarding the network
slices and adapts the slices according to the network state.
Simulations were performed to validate the Slice Optimizer and
highlight the benefits that can be achieved with our proposal,
such as the improvement of user’s QoS experience due to a more
efficient use of network resources.

Index Terms—Network Slicing, 5G, LTE, SDN, QoS provision-
ing.

I. INTRODUCTION

Upcoming 5G mobile systems are intended to satisfy the
needs of a variety of vertical industries such as healthcare,
media, manufacturing and automotive. Each vertical industry
has its own service requirements, including ultra-low latency,
high mobility and always-on connectivity. As a consequence,
the “one-size-fits-all” architectural approach existent in today’s
networks is incapable to address this diversity of vertical
markets.

One of the key technologies expected to be integrated into
5G systems is Network Slicing [1]. Network Slicing allows
multiple virtual networks to be created on top of a common
physical substrate, being mutually independent, instantiated
on-demand and with independent management. These virtual
networks (or network slices) are tailored to meet the needs
of each vertical market. Software Defined Networks (SDN)
[2] and Network Functions Virtualization (NFV) [3] are two
enablers of Network Slicing. They provide all the elasticity,
programmability and modularity necessary to manage network
slices. It is expected that SDN and NFV will play a big role
on future 5G mobile systems.

The contributions of this paper are twofold. First, we
introduce Slice Optimizer (SO), a novel component, embedded
in LTE’s evolved NodeB (eNB), responsible to realize the
concept of network slicing in the LTE downlink channel. Sec-
ond, we show that the SO can dynamically reassign resources
to network slices according to the network state, improving
the Quality of Service (QoS) perceived by the users. The
SO receives information regarding network slices from an
Orchestrator, which is embedded in an SDN Controller. LTE
networks serve as a cornerstone for the development of upcom-
ing 5G mobile systems. The implementation and simulations

to validate the SO are performed in the Network Simulator
3 (NS-3)[4], and the results confirm the effectiveness of our
proposal.

The remainder of this paper is organized as follows. Section
II presents some background concepts on Wireless Software
Defined Networks and LTE Downlink Scheduling. Section
III shows some related work. Section IV shows our system
architecture and the proposed extension, whereas Section V
details their implementation. Section VI presents the consid-
ered scenario and the results derived from simulations. Finally,
Section VII concludes the paper.

II. BACKGROUND

This section introduces Wireless Software Defined Net-
works and provides an overview of LTE Downlink Scheduling.

A. Wireless Software Defined Networks
Software Defined Networks (SDN) propose the separation

between two planes in IP Networks, the first is responsible
for controlling the network and the second is responsible
for forwarding flows according to rules enforced by the
first. In this way, the hardware belonging to the forwarding
plane becomes simplified, performing a reduced number of
functions. The control plane is consolidated in a software
component, named controller, facilitating policy enforcement
and network configuration. The controller communicates via
its Southbound Application Programming Interface (API) with
devices composing the forwarding plane. The controller can
offer services to higher-level components such as network
applications through its Northbound API.

The efforts on SDN so far have mostly focused on wired
network. However, wireless networks can also benefit from
SDN. Such benefits include: improving end-user connectivity,
localization and QoS enforcement; increasing the security of
the wireless network; and helping to allocate communication
channels as well as to reduce the interference among access
points [5].

B. LTE Downlink Scheduling
The LTE packet scheduler is responsible for allocating

radio resources to the user equipments (UEs). The scheduler
operates at the MAC layer of the eNB. The frame structure
of the downlink air interface contains ten subframes of 1 ms
each, which is also the transmission time interval (TTI) [6].

In each subframe, the scheduler makes the scheduling deci-
sion based on some information such as Radio Link Control
(RLC) buffer status, QoS received by upper layers and the
Channel Quality Indicator (CQI) reported by the UE. QoS con-
straints can be provided by the Evolved Packet System (EPS)

bearer, which is associated with a QoS Class Identifier (QCI).
To maximize the UEs throughput, the Adaptive Modulation
and Coding (AMC) block selects the proper modulation and
coding scheme (MCS). The Hybrid Automatic Repeat Request
(HARQ) is responsible for the retransmission of lost packets.

III. RELATED WORK

In [7], the authors propose a slicing scheme to slice an LTE
network into many virtual networks. These virtual networks
are held by different Service Providers (SP) and the minimum
amount of resources blocks allocated to each SP is defined
by a service contract. The authors in [8] propose a joint
resource provisioning and admission control scheme with the
goal to maximize the total rate of network slices based on
their users’ channel state information. The main difference
between our paper and these two works is that we rely on an
SDN architecture.

In [9], the authors expose a network slicing management
and orchestration framework. The proposed framework can
be employed by network operators to automate, deploy and
configure multiple infrastructure resource domains. The au-
thors in [10] propose a framework responsible to perform the
negotiation, selection and assignment of slices to end users in
5G networks. However, none of these works validated their
proposed frameworks through simulation or experiments.

The authors in [11] present CellSlice, which is a system
responsible to realize the concept of network slicing in the
RANs of WiMax technology. The work proposed in [12] aims
to virtualize the infrastructure of WiFi networks, allowing
the creation of multiple virtual WLANs. Each virtual WLAN
offers different types of service. Different from [11] and [12],
in our work we focus on the LTE technology.

In this paper, we propose a component responsible to
perform network slicing on the RAN of LTE networks. The
proposed component receives information from an SDN Con-
troller. We validated our component using different number
of UEs and network policies; and we analyzed four different
QoS metrics in the experiments: delay, jitter, packet loss and
throughput.

IV. SYSTEM ARCHITECTURE AND PROPOSED EXTENSION

In this section, we present our system architecture and
our proposed component, called Slice Optimizer (SO), as
an extension to the eNB. Fig.1 depicts our system model
consisting of two major elements, the SDN Controller and the
eNB. The eNB has three interfaces, one wireless interface,
which provides the wireless connectivity between the eNB
and the UEs, and two wired interfaces, connecting the SDN
Controller and the Evolved Packet Core (EPC) to the eNB. In
this paper, the SDN Controller is constrained to communicate
only with one or more eNBs and, therefore, no communication
exist between the SDN Controller and the LTE EPC. The
Controller is only responsible for the slicing aspects and,
therefore, the EPC is still responsible for the security, billing
and so forth.

The SDN Controller is responsible for the life cycle man-
agement and control of the slices, such as their creation, in-
stantiation, orchestration and deactivation. For the instantiation
of new slices, templates could be used for most common type
of services [13]. These templates would be available to mobile
users via the Controller’s Northbound API, being accessed by
a User Application.

Northbound API

 Southbound API

Slice 1

 Slice 2

Slice N

...

Service
Templates

Operator
Policies

Orchestrator

User
Application

Operator
Application

LTE EPC

SDN
Controller

Fig. 1: System Architecture with some slices instantiated.

The Operator Application is used by the network operators
to define policies. The prioritization of real-time services like
remote surgery over non-real-time services is an example of
such policies. Different from the traditional approach, the SDN
Controller through its Orchestrator module is responsible for
allocating the air resources to UEs. The Orchestrator relies
on the operators’ policies and on templates chosen by the
end users to allocate the radio resources to each slice. In our
proposal, the resources are allocated to each slice in subframes,
meaning that all the resource blocks in a subframe have to be
assigned to a single slice.

The Orchestrator can allocate more than one subframe
to a slice per frame. Moreover, since a frame contains ten
subframes, the orchestrator can allocate at maximum ten slices
per frame. The resource allocation process executed in the
orchestrator produces as an output an Allocation Array (AA)
of size 10, where the index is the subframe number and the
value is the slice identifier. The AA has size 10 because a
frame is composed of 10 subframes. The orchestrator can
reallocate these resources and create a new AA periodically if,
for example, a new policy is added by the network operator.

After allocating the resources to slices, the orchestrator
sends a message containing the AA and a set of slices
descriptors to the SO via a southbound control protocol like
OpenFlow, NetConf or FlexRan [14]. The slice descriptor
consists of a set of fields representing the slice: the slice
identifier; a set of tuples (IMSI, QCI) to differentiate types
of traffic (flows) from the same UE, where IMSI is the
International Mobile Subscriber Identity used to identify the
UE, and the QCI stands for QoS Class Identifier; and the
slice priority. The slice priority is defined according to policies
determined by the network operator.

After receiving the message sent by the SDN Controller’s
Southbound API, the SO is responsible to process this message
and store the AA and the slices descriptors into the Slices’
Storage. The role of the SO is to select the best slice to be
scheduled in the current subframe, and not necessarily choose
the slice defined in the AA. The best slice is the one defined in
the AA for the current subframe whenever this slice has data
to transfer; otherwise, the best slice is the one with highest

priority that has data to transfer. In such manner, the SO
can reduce the wastage of downlink channel resources that
could happen if, for example, there is a sudden change of
the network state or whenever the SDN Controller does not
apply a proper policy to allocate the radio resources. Moreover,
relying on the SO to select the best slice according to the
network state releases the SDN Controller from creating new
AAs frequently, which could give some scalability problems
in the case that the SDN Controller needs to reallocate radio
resources for hundreds or thousands of eNBs at the same time.

Fig.2 illustrates the SO along with the communication of
entities relevant for downlink MAC scheduling. The basic
information for the operation of SO are: a set of slices
descriptors; an AA representing which slice is allocated to
each subframe; the current subframe and the buffer status
of each tuple (IMSI, QCI). The buffer status represents the
amount of data remaining to be transferred and it is updated
by the RLC entity whenever there is new data to be transferred.

Fig. 2: Slice Optimizer and entities relevant for downlink MAC
scheduling.

V. IMPLEMENTATION DETAILS

In this section, we provide the implementation details of the
Slice Optimizer along with the SDN Controller in NS-3. NS-3
is a discrete-event network simulator in which the simulation
core and models are implemented in C++ language. We also
used the embedded NS-3 LTE module [15]. To implement our
proposal, we have created three C++ classes, each of them
representing the SDN Controller, Orchestrator and the Slice
Optimizer. NS-3 does not have any protocol implemented for
the communication between the SDN Controller and the eNB.
For this reason, all the communications between these three
classes are just C++ function calls. In our implementation, a
slice is a set of flows having the same application type.

The SDN Controller class provides two external APIs, one
to receive policies from the Operator Application as well to
offer Service Templates to the User Application; and another
API to communicate with the Slice Optimizer. Currently, there
are only three templates implemented: VoIP, video (streaming)
and file transfer; which means we have only three slices, one
for each application type. There are two policies implemented,
one to prioritize VoIP over video and another to prioritize
video over VoIP. The prioritized traffic receives 5 subframes
while the other gets 4 from the 10 subframes available in each
frame. In both policies, the file transfer is treated as the lowest
priority traffic, receiving only 1 subframe.

The Orchestrator is a module residing in the SDN Controller
responsible for the creation of the AA based on policies and
requested service templates; and for sending the AA created
as well as the slices descriptors to the SO. The creation of

AA by the Orchestrator is relatively simple. First it verifies
the requested templates with the aim to know the slices that
have UEs registered to them. If all slices have UEs registered,
the operator checks its policies, giving 5 subframes to the
slice that has the highest prioritized traffic, 1 subframe to the
file transfer slice and 4 subframes to the remaining slice. The
orchestrator uses a function to randomly distribute these slices
in the AA, always respecting the number of subframes to each
slice. If the VoIP slice has no requested templates, the video
slice receives 9 subframes of the AA; and vice-versa. If the
VoIP and video slices do not have any requested templates,
the file transfer slice receives 10 subframes of the AA.

Before discussing the SO implementation details, it is
important to mention that the NS-3 simulator does not fully
support per-flow scheduling mechanism. This means that
even if more than one EPS bearer is defined per UE, only
one is used. As a consequence, in our implementation we
considered only one EPS bearer per UE, which means the
IMSI is enough to verify the buffer status of each UE and,
therefore, only the IMSI value from the tuples (IMSI, QCI)
is going to be provided to the scheduler. Nevertheless, the
QCI will be utilized later when the NS-3 simulator fully
implement per-flow scheduling mechanism. Furthermore, NS-
3 provides several downlink packet schedulers; however, we
only implemented the communication between the SO and the
Proportional Fair (PF) packet scheduler. The PF uses the Radio
Network Temporary Identifier (RNTI) to identify UEs while
the SO and the Controller use the IMSI. In this case, we have
implemented a function in the PF to translate these RNTIs to
IMSIs and vice-versa.

The SO, which is a class embedded in the eNB, provides
two APIs, one to receive messages from the SDN Controller,
and another to communicate with the LTE scheduler. The
Slices Storage is just a C++ Map used to store the slice
identifier as key and the slice descriptor as value.

Traditionally, in every subframe, the LTE scheduler is
responsible for allocating resource blocks to UEs. In our im-
plementation, the scheduler, before allocating resource blocks
to the UEs, requests the SO which slice will be scheduled in
this subframe. The SO, in turn, selects the best slice to be
scheduled in this subframe according to Algorithm 1.

The Algorithm 1 receives from the scheduler the follow-
ing arguments: an integer representing the current subframe
(subFrame) and a set containing the buffer status of all
UEs (bufferStatusSet). In Line 2, the slice’s identifier
representing the slice defined in AA (allocationArray) in
this current subframe is assigned to sliceID. In Line 3, the
sliceID is used as a key in sliceStorage, which in turn
returns the corresponding slice descriptor (actualSliceDesc).
The for loop from lines 5 – 8 returns to the scheduler
the UEs (IMSIs) from actualSliceDesc if at least one UE
from actualSliceDesc has data waiting to be transferred.
Otherwise, the algorithm goes to Line 9.

The variables maxTraffic and maxPriority represent
respectively the sum of traffic to be transferred and the
priority of the best slice so far. The for loop from lines 11
– 24 iterates over all slices, except the one defined in the
allocationArray, to select the best slice. In every iteration,
a slice descriptor is chosen (sliceDesc). If its priority, repre-
sented as slicePriority, is lower than the maxPriority, the
algorithm proceeds to the next slice descriptor. Otherwise, the
algorithm sums the traffic waiting to be transferred in all UEs

belonging to the corresponding sliceDesc, and assigns this
sum to sumTraffic (Lines 16 – 18). If the sumTraffic is
equal to 0, the algorithm proceeds to the next slice descriptor.
Otherwise, if this sumTraffic is higher than maxTraffic,
or whenever SlicePriority is higher than maxPriority, the
algorithm goes to Lines 22-24. In these lines, the best slice
will be updated by the current sliceDesc. Then, the algorithm
proceeds to the next for-loop iteration. After iterating over all
slices descriptors, Algorithm 1 returns to the scheduler a set
containing the UEs (or IMSIs) belonging to the best slice.

As can observed by Algorithm 1, the best slice is the one
defined in AA for this subframe whenever this slice has data
to be transferred; otherwise, the best slice is the one which
has highest priority and data waiting to be transferred. After
receiving the set, the scheduler according to its own scheduling
policy allocates the resource blocks only to this set.

Algorithm 1 Select Slice to be scheduled.
1: procedure SELECTSLICE(subFrame, bufferStatusSet)
2: sliceID ← allocationArray[subFrame]
3: actualSliceDesc← slicesStorage[sliceID]
4: dataTraffic← 0
5: for each IMSI in actualSliceDesc.ues do
6: dataTraffic← bufferStatusSet[IMSI]
7: if dataTraffic > 0 then
8: return actualSliceDesc.ues
9: maxTraffic← 0

10: maxPriority ← 0
11: for each sliceDesc in slicesStorage− {actualSliceDesc} do
12: slicePriority ← sliceDesc.Priority
13: sumTraffic← 0
14: if slicePriority < maxPriority then
15: continue
16: for each IMSI in sliceDesc.ues do
17: dataTraffic← bufferStatusSet[IMSI]
18: sumTraffic +← dataTraffic
19: if sumTraffic = 0 then
20: continue
21: if sumTraffic >= maxTraffic or slicePriority >

maxPriority then
22: maxPriority ← slicePriority
23: maxTraffic← sumTraffic
24: bestSliceDesc← sliceDesc
25: return bestSliceDesc.ues

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our im-
plementation using two network slicing schemes: static and
dynamic. In the static slicing, the Orchestrator populates the
AA and sends it to the SO, which in turn is obligated to
provide the scheduler the slice defined by the AA in the current
subframe, even if there is no data to transmit on the slice
in this subframe. In the dynamic slicing (Algorithm 1), the
Orchestrator also populates the AA and sends it to the SO,
but the SO only provides to the scheduler the slice defined
by the AA in the respective subframe if the slice has data to
transfer; otherwise, the SO assigns to the scheduler the highest
priority slice that has data to transfer.
A. Simulation Scenario

The simulation scenario is composed of a single cell, one
eNB, one EPC, one SDN Controller, one traffic generator
and several users receiving VoIP, FTP and Video traffic. The
scenario has three slices. Slices 1, 2 and 3 are for VoIP, FTP
and Video traffic, respectively. There are several UEs, varying
from 10 to 40, with increments of 10. Each UE receives traffic
from only one application. The traffic generator, which sends
traffic to the eNB via the EPC, is responsible for generating the
data traffic to be delivered to the UEs. The wired connection
between the traffic generator and the EPC has bandwidth of
100Gb/s and latency of 1 ms. The VoIP traffic is mapped

to QCI 1 (Guaranteed Bit Rate - Conversational Voice), the
FTP traffic is mapped to QCI 9 (Non-Guaranteed Bit Rate -
Video (Buffered Streaming) or TCP-Based Application) and
the Video traffic is mapped to QCI 4 (Guaranteed Bit Rate
- Non-Conversational Video (Buffered Streaming)). Table I
outlines the traffic model employed in the simulation.

TABLE I: Traffic Model.

Application VoIP FTP Video

Slice 1 2 3
Description G.7111 TCP Bulk2 MPEG 43

BitRate 64 Kbps N/A 525 Kbps
QCI 1 9 4

Percentage of UEs 60% 10% 30%
1 On/Off Model. OnTime = 0.352; OffTime = 0.650
2 Defined in: http://www.nsnam.org/doxygen/tcp-bulk-send 8cc source.html.
3 Trace-based. We used the N3Talk trace, which is available in http://www-

tkn.ee.tu-berlin.de/research/trace/ltvt.html.

Two different operator policies were evaluated. One pri-
oritizing the Video slice over the VoIP slice, producing an
AllocationARRAYA (AAA); and another policy that pri-
oritizes the VoIP slice over the Video slice, creating an
AllocationARRAYB (AAB). The policy was not changed
during the simulation, which means the SDN Controller did
not create a new AA throughout the simulation. To simulate
a suburban scenario, we used the Kun 2600 MHz Propagation
Loss Model and a fading model generated with the fading-
trace-generator.m script, which is provided by the NS-3. The
HARQ process is enabled. Table II summarizes the main
configuration parameters used in this paper.

TABLE II: Simulation Parameters.

Parameter Value
System Type Single Cell
Cell Radius 100 m

System Frequency 2655 MHz
Propagation Model Kun 2600 MHz Propagation Loss Model

eNB TX power 30 dBm
UE TX power 10 dBm

System Bandwidth 5 MHz (25 Physical Resource Blocks)
MAC scheduler Proportional Fair

RLC Mode Unacknowledged Mode (UM)
RLC Buffer Size 30 Kbytes

UE Speed 3 Km/h
Allocation ARRAYA (3, 1, 2, 1, 3, 3, 1, 3, 1, 3)
Allocation ARRAYB (1, 1, 2, 1, 3, 3, 1, 3, 1, 3)

Number of Replications 34
Simulation Duration 120 s

B. Simulation Results
The figures presented in this section show average values

for four QoS metrics: delay, jitter, packet loss and throughput.
We performed 16 experiments, one for each combination of
AAs, slicing scheme and number of UEs. The 95% confidence
intervals are presented in the figures. Notice that they are
small.

Figure 3 exposes the average QoS values per UE for AAA.
The AAA prioritizes the video slice over the VoIP slice.
Figures 3(a) and 3(b) depict respectively the average packet
delay (APD) and average packet jitter (APJ) per UE. As can
be seen in these figures, the dynamic scheme considerably
reduces the APD and the APJ for slices 2 and 3 in comparison
to the static scheme, not mattering the number of UEs in
the network. Also, the dynamic scheme slightly decreases the
APD and the APJ for slice 1. The dynamic scheme provides
better results because subframes not used by a slice are given

10 20 30 400
10
20
30
40
50
60
70

Av
er
ag

e
Pa

ck
et
 D
el
ay

 (m
s) Dynamic− Slice 1

Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(a) Average Packet Delay.

10 20 30 400
4
8

12
16
20
24
28

Av
er
ag

e
Pa

ck
et
 Ji
tte

r (
m
s) Dynamic− Slice 1

Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(b) Average Packet Jitter.

10 20 30 400.00

0.03

0.06

0.09

0.12

0.15

Pa
ck
et
 L
os
s (

%
)

Dynamic− Slice 1
Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(c) Average Packet Loss.

10 20 30 400
200
400
600
800

1000
1200
1400
1600
1800

Th
ro
ug

hp
ut
 (k

b/
s)

Dynamic− Slice 1
Static− Slice 1
Dynamic− Slice 2

Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(d) Average Throughput.

Fig. 3: Average QoS values per UE in each Slice as a function of the number of UEs for AAA.

to another slice. Therefore, packets will be served faster by the
scheduler when the dynamic scheme is employed, reducing the
time a packet will stay in the RLC buffer and, consequently,
decreasing the APD.

Similarly, since packets are served faster by the scheduler
when the dynamic scheme is used, the jitter will decrease as
there will be a reduction of the delay variation. For the scenario
with 40 UEs, the APDs for slice 2 and slice 3 are respectively
44 ms and 64 ms using the static scheme, while the APDs
for the same slices in the dynamic scheme are 30 ms and
32 ms, respectively. Likewise, for the same scenario, the APJ
decreases around 38% for slice 2 and 30% for slice 3 when
the dynamic scheme is employed.

Figure 3(c) depicts the average packet loss (APL) rate per
UE. The packet loss rate is less than 0.15% for all slices, not
mattering the slicing scheme used and the number of UEs in
the network. As shown in Figure 3(a), the APD of slice 3
using static scheme is considerable. However, even with this
APD, the packets rarely fill completely the RLC buffers and,
therefore, only a small number of packets are being dropped
by the RLC entity.

In Figure 3(d) the average throughput (AT) per UE is pre-
sented. As can be seen in the figure, in slices 1 and 3 there is
no considerable difference in using static or dynamic schemes.
Nevertheless, in slice 2, the AT increases in all scenarios
when the dynamic scheme is employed. This happens, because
the TCP traffic always tries to get more resources and, as a
consequence, when the SO realizes that the slices 1 and 3 do
not have data waiting to be transmitted in the current subframe,
the SO allocates the subframe to the FTP traffic, increasing
its throughput. In the scenario with 40 UEs, using dynamic
slicing, the AT per UE in slice 2 is 38% higher than the AT
per UE in the same slice using static slicing.

Figure 4 presents the average QoS values per UE for AAB .
The AAB prioritizes the VoIP slice over the video slice.
Figures 4(a) and 4(b) expose the APD and the APJ per UE,
respectively. Both figures are similar to Figures 3(a) and 3(b);
however, in Figures 4(a) and 4(b), the APD and APJ of slice
3 increases substantially when the static scheme is employed,
especially in the scenario with 40 UEs. This happens, because
the slice 3 has only four subframe in policy AAB , while the
same slice has five subframes in policy AAA. Therefore, in
the static scheme using policy AAB , the scheduler serves a
lower amount of packets from slice 3 and, consequently, the
APD and APJ greatly increases. On the other hand, using the
dynamic scheme, the SO allocates unused subframes to slice
3, reducing the APD and APJ. In the scenario with 40 UEs, the
APD and APJ of slice 3 in the static scheme are respectively
5 and 2 times higher in comparison to the same scenario in
the dynamic slicing.

In Figure 4(c) the APL per UE is illustrated. The figure
is in logarithmic scale. The figure is similar to Figure 3(c);
nevertheless, in the scenario of 40 UEs, the APL greatly
increases in slice 3 using the static scheme, reaching 5.5%.
The reason of this increase is due to the high APD in slice 3,
as showed in Figure 4(a). Since packets are waiting a long time
to be scheduled in slice 3 using the static scheme, the RLC
buffers become full and, consequently, packets are dropped. In
contrast, in the dynamic scheme, packets are served faster by
the scheduler and therefore the RLC buffers do not become
full, since unused subframes are used by the slices.

Figure 4(d) presents the AT per UE. The main difference
between this figure and Figure 3(d) is that in the scenario of
40 UEs, using the dynamic scheme, the AT of UEs belonging
to slice 3 is 8% higher. This happens, because a good amount
of packets from slice 3 are dropped in the scenario of 40 UEs

10 20 30 400

50

100

150

200

250

300

Av
er
ag

e
Pa

ck
et
 D
el
ay

 (m
s) Dynamic− Slice 1

Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(a) Average Packet Delay.

10 20 30 400
4
8

12
16
20
24
28

Av
er
ag

e
Pa

ck
et
 Ji
tte

r (
m
s) Dynamic− Slice 1

Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(b) Average Packet Jitter.

10 20 30 40
10−2

10−1

100

Pa
ck
et
 L
os
s (

%
)

Dynamic− Slice 1
Static− Slice 1
Dynamic− Slice 2
Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(c) Average Packet Loss.

10 20 30 400
200
400
600
800

1000
1200
1400
1600
1800

Th
ro
ug

hp
ut
 (k

b/
s)

Dynamic− Slice 1
Static− Slice 1
Dynamic− Slice 2

Static− Slice 2
Dynamic− Slice 3
Static− Slice 3

(d) Average Throughput.

Fig. 4: Average QoS values per UE in each Slice as a function of the number of UEs for AAB .

when the static scheme is employed, as shown in Figure 4(c).
As can be seen by the results in this section, the dynamic

slicing implemented in the SO gives a better QoS experience
to users in comparison to the static slicing, in both policies
evaluated and all scenarios. The dynamic slicing outperforms
the static scheme since the former uses more efficiently the
radio subframes than the latter. In this way, the SO can adapt
to the network state and, even if the network operator does not
apply a proper policy in the network, the SO can still offer a
good QoS experience to end users.

VII. CONCLUSION

In this paper, we have proposed an extension to LTE’s eNB
called Slice Optimizer aiming to realize the concept of network
slicing in LTE networks. The Slice Optimizer is responsible
to feed the eNB’s scheduler with network slicing information.
The Slice Optimizer can reassign resources to network slices
according to the network state, not relying solely on informa-
tion provided by the SDN Controller. Simulations show that
the Slice Optimizer adapts to the network state, using more
efficiently the network resources and, consequently, improving
users’ QoS experience. As future work, we plan to integrate
virtualized network functions into the slices and perform
simulations with varying traffic conditions.

ACKNOWLEDGMENT

The authors would like to thank CAPES for the Ph.D. grant.
This work is part of the INCT of the Future Internet for Smart
Cities (CNPq 465446/2014-0, CAPES 88887.136422/2017-00
and FAPESP 2014/50937-1).

REFERENCES

[1] J. Ordonez-Lucena et al., “Network Slicing for 5G with SDN/NFV: Con-
cepts, Architectures, and Challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, May 2017.

[2] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[3] R. Mijumbi et al., “Network Function Virtualization: State-of-the-Art
and Research Challenges,” IEEE Communications Surveys Tutorials,
vol. 18, no. 1, pp. 236–262, Firstquarter 2016.

[4] “ns-3 network simulator.” [Online]. Available: https://www.nsnam.org/
[5] C. Chaudet and Y. Haddad, “Wireless Software Defined Networks:

Challenges and opportunities,” in 2013 IEEE International Conference
on Microwaves, Communications, Antennas and Electronic Systems
(COMCAS 2013), Oct 2013, pp. 1–5.

[6] O. Grndalen et al., “Scheduling Policies in Time and Frequency Do-
mains for LTE Downlink Channel: A Performance Comparison,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3345–3360,
April 2017.

[7] M. I. Kamel, L. B. Le, and A. Girard, “LTE Wireless Network Virtual-
ization: Dynamic Slicing via Flexible Scheduling,” in 2014 IEEE 80th
Vehicular Technology Conference (VTC2014-Fall), Sept 2014, pp. 1–5.

[8] S. Parsaeefard et al., “Joint resource provisioning and admission control
in wireless virtualized networks,” in 2015 IEEE Wireless Communica-
tions and Networking Conference (WCNC), March 2015, pp. 2020–2025.

[9] A. Devlic et al., “NESMO: Network slicing management and or-
chestration framework,” in 2017 IEEE International Conference on
Communications Workshops (ICC Workshops), May 2017, pp. 1202–
1208.

[10] V. K. Choyi et al., “Network slice selection, assignment and routing
within 5G Networks,” in 2016 IEEE Conference on Standards for
Communications and Networking (CSCN), Oct 2016, pp. 1–7.

[11] R. Kokku et al., “CellSlice: Cellular wireless resource slicing for active
RAN sharing,” in 2013 Fifth International Conference on Communica-
tion Systems and Networks (COMSNETS), Jan 2013, pp. 1–10.

[12] K. Guo, S. Sanadhya, and T. Woo, “ViFi: Virtualizing WLAN
Using Commodity Hardware,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 18, no. 3, pp. 41–48, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2721896.2721905

[13] N. Nikaein et al., “Network Store: Exploring Slicing in Future 5G
Networks,” in Proceedings of the 10th International Workshop on
Mobility in the Evolving Internet Architecture, ser. MobiArch ’15. New
York, NY, USA: ACM, 2015, pp. 8–13.

[14] X. Foukas et al., “FlexRAN: A Flexible and Programmable Platform for
Software-Defined Radio Access Networks,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’16, 2016, pp. 427–441.

[15] “Ns-3 lte-epc network simulator (lena).” [Online]. Available:
http://networks.cttc.es/mobile-networks/software-tools/lena/

