
Solidity
CHEAT SHEET

FURTHERMORE:
Blockchain Certification Training

It is a contract-oriented high level language for implementing smart
contracts. It was influenced by C++, JavaScript and Python and is
designed to target the EVM

S o l i d i t y

Contracts in solidity are similar to classes in object oriented
language.
A contract can be created using “new” keyword.

contract L {
function add(uint _p, uint _q) returns (uint) {
return _p + _q;
}
}
contract M {
address p;
function f(uint _p) {
p = new L();
}
}

C o n t r a c t s

It is a computer protocol which is used to streamline the process of
contracts by digitally enforcing, verifying and managing them.

S m a r t C o n t r a c t s

• Remix: It is a browser based IDE with integrated compiler and
solidity run-time environment without server side components.

• Solium: A linter to identify and fix style security issues in solidity.
• Doxity: Used in solidity as a documentation generator.

R e m i x , S o l i u m & D o x i t y

• Solograph: Used to visualize solidity control flow and highlight
potential security vulnerabilities.

• Solidity Assembly: An assembly language which is used without
solidity & inline assembly inside solidity source code

S o l o g r a p h & A s s e m b l y

• Gas: A measurement roughly equivalent to the computational
steps

• Block Gas limit: It is used to control the amount of gas
consumed during the transactions

G a s & B l o c k G a s L i m i t

S o l i d i t y C o m p i l e r

• ABI: A data encoding scheme called “Application Binary
Interface” (ABI) is used in for working with smart contracts.

• WEI: The smallest denomination or base unit of Ether

A B I & W E I

block.blockhash(uint numberOfBlock) returns (bytes32): hash
function of the given block which works for the 256 most recent
blocks excluding the current block
block.coinbase (address): shows miner’s address of current block
block.number (uint): number of current block
block.gaslimit (uint): gaslimit of the current block
block.timestamp (uint): timestamp of current block
msg.gas (uint): the gas that remains
msg.value (uint): the amount of WEI sent along with the message
msg.sender (address): address of the message sender (current call)
msg.sig (bytes4): first four bytes of the call data
now (uint): timestamp for the current block
tx.origin (address): the sender of the transaction (whole call chain)

G l o b a l V a r i a b l e s

Used to specify certain conditions under which the source files can
or cannot run.
Example:
• pragma solidity ^0.2.32

This code compiles with a compiler function >=0.2.32
• A pseudocode example for pragma syntax

'pragma' Identifier ([^;]+) ';'

P r a g m a

Interface in solidity are defined as contracts, but the function bodies
are omitted for the functions.
Example:
pragma solidity ^0.22;
interface Token
{

function transfer(address recipient, uint amount);
}

I n t e r f a c e

•Boolean:
true or false
Logical: ! (Logical negation), && (AND) , || (OR)
Comparisons: == (equality), != (inequality)

•Integer: Unsigned Integer, and Signed integer
Comparisons: <= (Less than or equal to), < (Less than), == (equal to),
!= (Not equal to), >= (Greater than or equal to), > (Greater than)
Arithmetic Operators: + (Addition), - (Subtraction), Unary –, Unary +,
*(Multiplication), %(Division), ** (Exponential), << (Left shift),
>>(Right shift)

• Address: Holds an Ethereum address (20 byte value).

Operators: Comparisons: <=, <, ==, !=, >= and >
Balance:
• <address>.balance (unit256): balance of address in WEI
Transfer and send:
• <address>.transfer(uint256 amount): send given amount of Wei

to Address, throws on failure
• <address>.send(uint256 amount) returns (bool): send given

amount of Wei to Address, returns false on failure

•Global functions:

• keccak256(…) returns (bytes32)- computes the ethereum SHA-3
hash associated with the arguments

• sha256(…) returns (bytes32) – Computes the SHA-256 argument
hash

• mulmod(uint a, uint b, uint c) returns (unit) : It computes
(a*b)%c, if the multiplication gets executed using arbitrary
precision, thus not wrapping around 2**256

• addmod(uint p, uint q, uint m) returns (uint): Computes
(p+q)%m

• ecrecover(bytes32 _hash, uint8 _v, bytes32 _r, bytes32 _s)
returns (address): recovers the address linked with the public
key and if an error occurs, zero is returned

• ripemd160(…) returns (bytes20): computes the RIPEMD-160
(tightly packed) argument hash

• <address>.balance (uint256) : Returns the balance of the
specified address in WEI

• <address>.send(uint256 amount) returns (bool): It sends the
specified number of WEI to the address given, on failure it
returns false as an output

• <address>.transfer(uint256 amount): Sends specified number of
WEI to the particular address, on failure throws

•Access Modifiers:

• Public: Accessible from the current contract, inherited contracts
and externally

• Private: Accessible only from the current contract
• Internal: Accessible only from current contract and contracts

inheriting from it
• External: Can be accessed externally only

D a t a T y p e s

• Voting: When the contract is quiet complex, it uses voting
contract, it shows how delegated voting can be done so that vote
counting is automatic and completely transparent at the same time

• Delegate call: It is a reusable library code that can be applied to a
contracts storage in solidity.

• Logs: A feature called logs is used in solidity to implement events.
• NPM: It is a convenient and portable way to install Solidity

compiler.
• Truffle: It is a test bed that will allow to easily test and compile the

smart contract.
• Inheritance: In solidity inheritance is more syntactic. In the final

compilation the compiler copies the parent class members to
create the bytecode of the derived contract with the copied
members.

• This: This is a keyword that refers to the instance of the contract
where the call is made.

• msg.sender: This function refers to the address where the contract
is being called from.

• Pure: It is a modifier which assures not to be read from or modified
• View: In solidity, view is a function that promises to not modify the

state of the contract.
• Suicide: It is a alias for self destruct function, that is used to destroy

the current contract.
• Delete: Delete is used to delete all elements in an array.
• Block.coinbase(address): It refers to the miner’s address of the

current block.
• Address(contractVar).send(amount): If a built-in send function

needs to be used, it can be accessed using this function.
• Super: It is used to refer the contract that is higher by one level in

the inheritance hierarchy.

I m p o r t a n t T e r m s

From- 0x712
To-0x145
Data -0x614

Contract 0x145
{
Contract2.myFuncti
on
}

Msg
tx.origin – 0x712
msg.sender – 0x712
msg.gas – 5
msg.value
msg.data

Msg
tx.origin- 0x712
msg.sender-0x712
msg.gas-10
msg.value
msg.data- 0x614

Contract2
function
myFunction() {
--
}

Block<blocknumber>

T r a n s a c t i o n E x a m p l e

https://intellipaat.com/
https://intellipaat.com/blockchain-training-course/

