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Chapter 1

Introduction

Fatti non foste a viver come bruti ma per seguir virtute e canoscenza
You were not made to live like beasts, but to follow virtue and knowledge.

(Dante Alighieri)

1.1 Learning and Intelligent Optimization:
a prairie fire

Almost by definition, optimization, the automated search for improving solutions, is a tireless power for contin-
ually improving processes, decisions, products and services. This is related to decision making but goes far beyond
that. Decision making picks the best among a set of possible solutions which is given, optimization actively creates
new solutions.

Optimization fuels automated creativity and innovation. It looks like a manifest contradiction, because creativity

1
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is usually not related to automation. This is why the message you will find in this book is disruptive, far from trivial,
even irritating and provoking for people believing that machines are only for shallow mechanical and repetitive tasks.

Starting from Galileo Galilei (1564-1642), to change the world with science, not only to interpret it with philoso-
phy, one needs measurements and experiments. “Measure what is measurable, and make measurable what is not so.”
Measurements start shy and humble but permit a gradual and pragmatic conquering of the world as far as production
means and quality of life are concerned.

Almost all business problems can be formulated as finding an optimal decision x by maximizing a measure
goodness(x). For a concrete mental image, think of x as a collective variable x = (x1, . . . , xn) describing the settings
of one or more knobs to be rotated, choices to be made, parameters to be fixed. In marketing, x can be a vector of
values specifying the budget allocation to different campaigns (TV, newspaper, web, social), and goodness(x) can be
a count of the new customers generated by the campaign. In website optimization, x can be related to using images,
links, topics, text of different size, and goodness(x) can be the conversion rate from a casual visitor to a customer. In
engineering, x can be the set of all design choices of a car motor, goodness(x) can be the miles per gallon traveled.

Formulating a problem as “optimize a goodness function” also encourages decision makers to use quantitative
goals, to understand intents in a measurable manner, to focus on policies more than on implementation details.
Getting stuck in implementations, to the point of forgetting goals, is a plague infecting businesses and limiting their
speed of movement when external conditions change.

Automation is the key: after formulating the problem, deliver the goodness model to a computer which will create
and search for one or more optimal choices. And when conditions or priorities change, just revise the goals quantified
by the goodness measure, restart the optimization process, et voilà. To be sure, CPU time is an issue and globally-
optimal solutions are not always guaranteed, but for sure the speed and latitude of the search by computers surpass
human capabilities by a huge and growing factor.

But the awesome power of optimization is still largely stifled in most real-world contexts. The main reason
blocking its widespread adoption is that standard mathematical optimization assumes the existence of a function to
be maximized, in other words, an explicitly defined model goodness(x) associating a result to each input configuration
x. Now, in most real-world business contexts this function does not exist or is extremely difficult and costly to build
by hand. Try asking a CEO “Can you please tell me the mathematical formula that your business is optimizing?”,
probably this is not the best way to start a conversation for a consultancy job. For sure, a manager has some ideas
about objectives and tradeoffs, but these objectives are not specified as a mathematical model, they are dynamic,
changing in time, fuzzy and subject to estimation errors and human learning processes. Gut feelings and intuition are
assumed to substitute clearly specified, quantitative and data-driven decision processes.

If optimization is fuel, the match to light the fire is machine learning. Machine learning comes to the rescue by
renouncing to a clearly specified goal goodness(x): the goodness model can be built by machine learning from
abundant data.

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization to
solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data
directly to decisions and actions. Prescriptive analytics is the third and final phase, beyond descriptive and predictive
analytics. With support of the right software, more power is directly in the hands of decision makers in a self-
service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms,
like the engine in a car, but the user (driver) does not need to know the inner workings of the engine in order to realize
its tremendous benefits. LION’s adoption will create a prairie fire of innovation which will reach most businesses
in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and
embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.

The questions to be asked in the LION paradigm are not about mathematical goodness models but about
abundant data, expert judgment of concrete options (examples of success cases), interactive definition of success cri-
teria, at a level which makes a human person at ease with his mental models. For example, in marketing, relevant data
can describe the money allocation and success of previous campaigns, in engineering they can describe experiments
about motor designs (real or simulated) and corresponding measurements of fuel consumption.
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1.2 Searching for gold and for partners
Machine learning for optimization needs data. Data can be created by the previous history of the optimization
process or by feedback by decision makers.

Figure 1.1: Danie Gerhardus Krige, the inventor of Kriging.

To understand the two contexts, let’s start with two concrete examples. Danie G. Krige, a South African mining
engineer, had a problem to solve: how to identify the best coordinates x on a geographical map where to dig gold
mines [242]. Around 1951 he began his pioneering work on applying insights in statistics to the valuation of new
gold mines by using a limited number of boreholes. The function to be optimized was a glittering Gold(x), the
quantity of gold extracted from a mine at position x. For sure, evaluating Gold(x) at a new position x is very costly.
As you can imagine, digging a new mine is not a quick and simple job. But after digging some exploratory mines,
engineers accumulate knowledge in the form of examples relating coordinates x1, x2, x3. . . to the corresponding
gold quantities Gold(x1), Gold(x2), Gold(x3). Krige’s intuition was to use these examples (data about the previous
history of the optimization process) to build a model of the function Gold(x), let’s call it GoldModel(x), which
could generalize the experimental results by predicting output values for each position x. The model could be used
by an optimizer to identify the next point to dig, by finding the position xbest maximizing the estimated gold output of
GoldModel(x).

Think of this model as starting from “training” information given by pins at the boreholes locations, with height
proportional to the gold content found, and building a complete surface over the geographical area, with height at a
given position proportional to the estimated gold content (Fig. 1.2). Optimizing means identifying the highest point
on this model surface, and the corresponding position where to dig the next mine.

This technique is now called Kriging and it is based on the idea that the output value at an unknown point should be
the average of the known values at its neighbors, weighted by the neighbors’ distance to the unknown point. Gaussian
processes, Bayesian inference, splines refer to related modeling techniques.

For the second example about getting feedback by decision makers, let’s imagine a dating service: you pay and
you are delivered a contact with the best possible partner from millions of waiting candidates. In Kriging the function
to be optimized exists, it is only extremely difficult to evaluate. In this case, it is difficult to assume that a function
IdealMate(x) exists, relating individual characteristics x like beauty, intelligence, etc. to your individual preference.
If you are not convinced and you think that this function does exist, as homework you are invited to define in precise
mathematical terms the IdealMate function for your ideal partner. Even assuming that you can identify some building
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Figure 1.2: Kriging method constructing a model from samples. Some samples are shown as dots. Height and color
of the surface depend on gold content.

blocks and make them precise, like Beauty(x) and Intelligence(x), you will have difficulties in combining the two
objectives a priori, before starting the search for the optimal candidate. Questions like: “How many IQ points are
you willing to sacrifice for one less beauty point?” or “Is beauty more important than intelligence for you? By how
much?” will be difficult to answer. Even if you are tortured and deliver an initial answer, for sure you will not trust the
optimization and you will probably like to give a look at the real candidate before paying the matching service and be
satisfied. You will want to know the x and not only the value of the provisional function IdealMate(x) that the system
will optimize. Only after considering different candidates and giving feedback to the matching service you may hope
to identify your best significant other.

In other words, some information about the function to be optimized is missing at the beginning, and only the
decision maker will be able to fine-tune the search process. Solving many if not most real-world problems requires
iterative processes with learning involved. The user will learn and adjust his preferences after knowing more and
more cases, the system will build models of the user preferences from his feedback. The steps will continue until the
user is satisfied or the time allocated for the decision is finished.

1.3 All you need is data
Let’s continue with some motivation for business users. If this is not your case you can safely skip this part and
continue with Section 1.7.

Enterprises are flooded with data in digital form. Big data is a popular term to refer to abundant and partially
structured data. By the way, data used to be much bigger with respect to available storage in the seventies and eighties
so that the term “big data” now is more related to marketing hype than to reality: a single PC will easily deal with all
data produced by all apart from the biggest companies.

With the explosion in social network usage, rapidly expanding e-commerce, and the rise of the internet of things,
the web is creating a tsunami of structured and unstructured data, driving billions in spending on information tech-
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nology. Recent evidence also indicates a decline in the use of standard business intelligence platforms as enterprises
are forced to consider a mass of unstructured data that has uncertain real-world value. For example, social networks
create vast amounts of data, most of which resists classification and the rigid hierarchies of traditional data. How do
you measure the value of a Facebook Like? Moreover, unstructured data requires an adaptive approach to analysis.
How does the value of a Like change over time? These questions are driving the adoption of advanced methodologies
for data modeling, adaptive learning, and optimization.

LION tools deal with software capable of self-improvement and rapid adaptation to new data and revised business
objectives. The strength in this approach lies in abilities that are often associated with the human brain: learning from
past experiences, learning on the job, coping with incomplete information, and quickly adapting to new situations.

This inherent flexibility is critical where decisions depend on factors and priorities that are not identifiable before
starting the solution process. For example, what factors should be used and to what degree do they matter in scoring
the value of a marketing lead? With the LION approach, the answer is: “It doesn’t matter.” The system will begin to
train itself, and successive data plus feedback by the final user will rapidly improve performance. Experts —in this
case marketing managers— can further refine the output by contributing their points of view.

1.4 Beyond traditional business intelligence
Every business has three fundamental needs from their data:

1. to understand the current business processes and to review past performance;

2. to predict the effect of business decisions;

3. to improve profitability by identifying and implementing informed and rational decisions about critical business
factors.

Traditional descriptive business intelligence excels at recording and visualizing historical performance. Building
these maps meant hiring a top-level consultancy or on-boarding of personnel specifically trained in statistics, analysis,
and databases. Experts had to design data extraction and manipulation processes and hand them over to programmers
for the actual execution. This is a slow and cumbersome process when you consider the dynamic environment of most
businesses.

As a result, enterprises relying heavily on BI are using snapshots of performance to try to understand and react to
conditions and trends. Like driving a car by looking into the rear view mirror, it’s most likely that you’re going to hit
something. For the enterprise, it appears that they already have hit a wall of rigidity and lack of quick adaptation.

Predictive analytics does better in trying to anticipate the effect of decisions, but the real power comes from the
integration of data-driven models with optimization, the automated creation of improving solutions. Prescriptive
analytics leads from the data directly to the best improving plan, from data, to actionable insight, to actions!

1.5 Implementing LION
The steps for fully adopting LION as a business practice vary depending on the current business state, and most
importantly, on the state of the underlying data. It goes without saying that it is easier and less costly to introduce the
paradigm if data capture has already been established. For some enterprises, legacy systems can prove quite costly to
migrate, as there is extensive cleaning involved. This is where skilled service providers can play a valuable role.

Beyond cleaning and defining the structure of the underlying data, the most important factor is to establish a
collaboration between the data analytics team and their business end-user customers. By its nature, LION presents
a way to collectively discover the hidden potential of structured and semi-structured data stores. The key in having
the data analytics team work effectively alongside the business end-user is to enable changing business objectives to
quickly reflect into the models. The introduction of LION methods can help analytics teams generate radical changes in
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the value-creation chain, revealing hidden opportunities and increasing the speed by which their business counterparts
can respond to customer requests and to changes in the market.

The job market will also be disrupted. Software learning from human examples will infer the rules we tacitly apply
but do not explicitly understand. This will eliminate barriers to further automation and substitute machines for workers
in many tasks requiring adaptability, common sense and creativity, possibly putting the middle class at risk[367].

The LION way is a radically disruptive intelligent approach to uncover hidden value, quickly adapt to changes
and improve businesses. Through proper planning and implementation, LION will help enterprises to lead the com-
petition and avoid being burned by wild prairie fires, and will help individuals to remain competitive in the high-skill
job market.

1.6 Teaching and learning in Internet times

Figure 1.3: A professor teaching “ex cathedra” in a University.

Books were made by hand in the middle ages, carefully written by amanuensis on parchment made from animal
skins. In addition to hundreds of killed animals, a total of some man years were required for a single illustrated copy.
The University institution, universitas magistrorum et scholarium – “community of teachers and scholars”, the first
one founded in 1088 in Bologna, was created to make knowledge cheaper and accessible to more people, and, by the
way, more free . A professor used to stay in front of an audience to read a book “ex cathedra” to the students for
subsequent discussion and deepening. For most of them, this was the only way to get knowledge.

We think that books still have a role is this era of information-at-your-fingertips, but a different one with respect
to the ages before internet and the web. Nobody needs books to get detailed knowledge, demonstration of theorems,
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pieces of software, original research papers. But human people need a global vision and connected ideas to solve
problems in a professional manner. A book is like a mental map to orient our steps in a foreign territory. In a
tourism analogy one needs to know the whole “meaning” of Trentino-South Tirol, its peaks (cathedrals in the Alps),
its abundance of public mountain huts, the pleasure of dining together with people hiking and climbing from all
over the world, in order to be motivated to spend a vacation here. Then the dots can be easily connected with web
reservations, train schedules, getting the proper boots, etc.

Our goal is to give a clear map of machine learning and intelligent optimization, some concrete and connected
ideas that will stick to your mind and that will guide you in the search for details and software when they are needed.
On the contrary, if too much effort is spent on details, they will be easily forgotten some days after your university
exam is passed. As an example, one can easily find software for realizing a specific ML model from examples, but
the lack of a global vision about how to proceed can lead to catastrophic mistakes like confusing training error with
generalization error, or putting the random ID of a customer in the inputs to derive some marketing measure, or picking
a sub-symbolic neural-network model when a human explanation of a diagnosis is required.

Needless to say, the definition of what is basic and what is detail is personal and subject to discussion. Our choice
is based on tens of courses on the subject but we take the full responsibility for the lack of completeness in this huge
territory covering machine learning and optimization.

If one does not know to which port one is sailing, no wind is favorable (Ignoranti quem portum petat, nullus suus
ventus est - Seneca).

1.7 A “hands on” community approach

Because this book is about (machine) learning from examples we need to be coherent: most of the content follows
the learning from examples and learning-by-doing principle. The different techniques are introduced by presenting
the basic theory, and concluded by giving the “gist to take home.” Experimentation on real-world cases is encouraged
with the examples and software in the book website. This is the best way to avoid the impression that LION techniques
are only for experts and not for practitioners in different positions, interested in quick and measurable results.

Some of the theoretical parts can be skipped for a first adoption. But some knowledge of the theory is critical both
for developing new and more advanced LION tools and for a more competent use of the technology.

We tried to keep both developers and final users in mind in our effort.
Accompanying data, instructions and short tutorial movies by us and by our community of readers will be posted

on the book’s website:

http://intelligent-optimization.org/LIONbook/.

A sign of gratitude goes to the many contributors to our effort. Let’s start from photos and drawings. Venice
photo by Carlo Nicolini for LION4@VENICE 2010. Dante’s painting in the Introduction by Domenico di Michelino,
Florence, 1465. Mushroom basket image by George Chernilevsky. Brain drawing in the Neural Networks chapter by
Leonardo da Vinci (1452 − 1519). Deep network for clustering figure by Geoffrey Hinton. Photo of prof. Vapnik in

http://intelligent-optimization.org/LIONbook/
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the SVM chapter from Yann LeCun. Extreme Learning Machine image by Guangbin Huang. Reservoir architecture
image by Herbert Jaeger. Venice painting in the Democracy chapter by Canaletto, 1730. Painting in the Clustering
chapter by Michelangelo Buonarroti (Sistine Chapel), 1541. Wikipedia has been mined for some explanatory images,
while the authors and their sons contributed to the wikipedia project with additional images and definitions. Hopfield
network figure by Gorayni, energy landscape by Mrazvan22. Lagrange multipliers figure from Nexcis (wikipedia).
Reschensee photo in reservoir chapter by Markus Bernet. Frog image by André Karwath. Hopfield network images
by Alejandro Cartas Ayala. Viterbis’ algoritm figure by Luz Abril Torres-Méndez. Fig. 24.10 from Randall Munroe
xkcd webcomic. Dart photo in Chapter 25 by Harris Morgan. Initial figure of Satisfiability chapter from Squidsoup
art group installation.

Last but not least, we are happy to acknowledge the growing contribution of our readers to the quality of this book
including Patrizia Nardon, Fabian Pedregosa, Fred Glover, Alberto Todeschini, Yaser Abu-Mostafa, Marco Dallar-
iva, Enrico Sartori, Danilo Tomasoni, Nick Maravich, Marco Zugliani, Dinara Mukhlisullina, Rohit Jain, Jon Lehto,
George Hart, Markus Dreyer, Yuyi Wang, Gianluca Bortoli, Davide Pedranz, Stefano Fioravanzo. Cartoons are cour-
tesy of Marco Dianti. We are always pleased to communicate with our readers. Please email us with comments,
suggestions or errata and we will be glad to add your name in the next edition. You find a contact form and email
addresses in our LIONlab website:

http://intelligent-optimization.org/.

Addendum to Version 3.0

You are now reading version 3.0 of this book: the main changes with respect to the previous version are:

• A new section on hashing (Sec. 2.2) and locality-sensitive Hashing (LSH) and approximated nearest neighbors
(Sec. 2.3). Hashing is one of the most useful tricks in computer science, but not widely known to ML users.

• The addition of more details related to entropy and mutual information (Sec. 7.6), including generalization to
continous variables.

• The addition of a new section about projection pursuit (Sec. 20.6) in Chapter 20 dedicated to linear projections.

• The addition of a new Chapter about Feature extraction and Independent Component Analysis (ICA) (Chapter
21)
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Chapter 2

Lazy learning: nearest neighbors

Natura non facit saltus
Nature does not make jumps

If you still remember how you learned to read, you have everything it takes to understand learning from examples,
in particular supervised learning. Your parents and your teachers presented you with examples of written characters
(“a”, “b”, “c”, . . . ) and told you: This is an “a”, this is a “b”, . . .

For sure, they did not specify mathematical formulas or precise rules for the geometry of “a” “b” “c”. . . They just
presented labeled examples, in many different styles, forms, sizes, colors. From those examples, after some effort
and some mistakes, your brain managed not only to recognize the examples in a correct manner, which you can do via
memorization, but to extract the underlying patterns and regularities, to filter out irrelevant “noise” (like the color) and
to generalize by recognizing new cases, not seen during the training phase. A natural but remarkable result indeed.
It did not require advanced theory, it did not require a PhD. Wouldn’t it be nice if you could solve business problems
in the same natural and effortless way? The LION unification of learning from data and optimization is the way and
we will start from this familiar context.
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Figure 2.1: Mushroom hunting requires classifying edible and poisonous species.

In supervised learning a system is trained by a supervisor (teacher) giving labeled examples. Each example is
an array, a vector of input parameters x called features with an associated output label y.

The authors live in an area of mountains and forests and a very popular pastime is mushroom hunting. Popular
and fun, but deadly if the wrong kind of mushroom is eaten. Kids are trained early to distinguish between edible and
poisonous mushrooms. Tourists can buy books showing photos and characteristics of both classes, or they can bring
mushrooms to the local Police and have them checked by experts for free.

Let’s consider a simplified example, and assume that two parameters, like the height and width of the mushrooms
are sufficient to discriminate them, as in Fig. 2.2. In general, imagine many more input parameters, like color, geo-
metrical characteristics, smell, etc., and a much more confused distribution of positive (edible) and negative cases.

Lazy beginners in mushroom picking follow a simple pattern. They do not study anything before picking; after
all, they are in awesome Trentino for vacation, not for work. When they spot a mushroom they search in the book for
images of similar ones and then double-check for similar characteristics listed in the details. This is a practical usage
of the lazy “nearest neighbor” method of machine learning.

Why does this simple method work? The explanation is in the Natura non facit saltus (Latin for “nature does
not make jumps”) principle. Natural things and properties change gradually, rather than suddenly. If you consider
a prototype edible mushroom in your book, and the one you are picking has very similar characteristics, you may
assume that it is edible too.

Disclaimer: do not use this toy example to classify real mushrooms, every classifier has a probability of making
mistakes and false positive classifications of mushrooms (classifying it as non-poisonous when in fact it is) can be very
harmful to your health.
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Figure 2.2: A toy example: two features (width and height) to classify edible and poisonous mushrooms.

2.1 Nearest Neighbors Methods

The nearest-neighbors basic form of learning, also related to instance-based learning, case-based or memory-
based, works as follows. The labeled examples (inputs and corresponding output labels) are stored and no action
is taken until a new input pattern demands an output value. The system is a lazy learner: it does nothing but store
labelled examples until the user interrogates them. When a new input pattern arrives, the memory is searched for
examples which are near the new pattern, and the output is determined by retrieving the stored outputs of the close
patterns, as shown in Fig. 2.3. Over a century old, this form of data mining is still being used very intensively by
statisticians and machine learners alike, both for classification and for regression problems.

A simple version is that the output for the new input is simply that of the closest example in memory. If the task
is to classify mushrooms as edible or poisonous, a new mushroom is classified in the same class as the most similar
mushrooms in the memorized set.

Although simple, surprisingly this technique is effective in many cases. It pays to be lazy! Unfortunately, the time
to recognize a new case can grow in a manner proportional to the number of stored examples unless less lazy methods
are used. Think about a student who is just collecting books, and then reading them only when confronted with a
problem to solve.

A more robust and flexible technique considers a set of k nearest neighbors instead of one, not surprisingly it
is called k-nearest-neighbors (KNN). The flexibility is given by different possible classification techniques. For
example, the output can be that of the majority of the k neighbors outputs. If one wants to be on the safer side, one
may decide to classify the new case only if all k outputs agree (unanimity rule), and to report “unknown” in the other
cases. This can be suggested for classifying edible mushrooms: if “unknown” contact the local mushroom police for
guidance.

If one considers regression (the prediction of a real number, like the content of poison in a mushroom), the output
can be obtained as a simple average of the outputs corresponding to the k closest examples.

Of course, the vicinity of the k examples to the new case can be very different and in some cases it is reasonable
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Figure 2.3: Nearest neighbor classification: a clear situation (left), a more confusing situation (right). In the second
case the nearest neighbor to the query point with the question mark belongs to the wrong class although most other
close neighbors belong to the right class.

that closer neighbors should have a bigger influence on the output. In the weighted k-nearest-neighbors technique
(WKNN), the weights depend on the distance.

Let ` be the number of labeled examples and k ≤ ` be a fixed positive integer, and consider a feature vector x. A
simple algorithm to estimate its corresponding outcome y consists of two steps:

1. Find within the training set the k indices i1, . . . , ik whose feature vectors xi1 , . . . ,xik are nearest (according to
a given feature-space metric) to the given x vector.

2. Calculate the estimated outcome y by the following average, weighted with the inverse of the distance between
x and the stored feature vectors:

y =

k∑
j=1

yij
d(xij ,x) + d0

k∑
j=1

1

d(xij ,x) + d0

; (2.1)

where d(xi,x) is the distance between the two vectors in the feature space (for example the Euclidean distance),
and d0 is a small constant offset used to avoid division by zero. The larger d0, the larger the relative contribution
of far away points to the estimated output. If d0 goes to infinity, the predicted output tends to the mean output
over all training examples.

The WKNN algorithm is simple to implement, and often achieving low estimation errors. Unfortunately it requires
massive amount of memory, and lots of computation in the prediction phase. To reduce memory consumption one can
cluster the examples, by grouping similar cases together. Only the prototypes (centroids) of the identified clusters are
then stored. More details in the chapter about clustering.

As we will see in the following part of this book the idea of considering distances between the current case and the
cases stored in memory can be generalized. Kernel methods and locally-weighted regression generalize the nearest-
neighbors idea in a flexible and smooth manner; the distant points are not brutally excluded, all points contribute to
the output but with a significance (“weight”) related to their distance from the query point.
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2.2 From brute-force to smarter lookups: Hashing
Up to now, the topic of nearest neighbors looked simple. But we did not consider CPU time, in particular when the
number of stored items ` and/or the input dimensionality d become large. A brute-force method to find a nearest
neighbor calculates all possible distances to identify the smallest one, in time O(` d), i.e., growing linearly in ` d.

If you are not familiar with the asymptotic notation, the letter O (also referred to as order of the function) de-
notes the “growth rate” and determines how a function value grows for very large inputs and apart from a constant
multiplicative term. In detail, f(x) ∈ O(g(x)) if there exists c > 0 and x0 such that f(x) ≤ cg(x) whenever x ≥ x0.

Worst-case situations, corresponding to malicious counter-examples, are loved by theoreticians but can be very
rare in most practical situations. Worst-cases situations can be like small flies on an elephant of highly probable
well-behaved cases. Can we develop faster methods, at least on average if not in the worst case?

The answer is yes, provided that we invest in supporting data structures, or if we tolerate approximated results.
The topic is rapidly getting complex, so that you may want to skip this Section at a first reading. On the other hand,
finding closest neighbors is so central in machine learning that we cannot resist mentioning some basic tricks and
results.

Examples of applications in very large databases include finding duplicate pages on the Web (for more efficient
search engines), image retrieval (from multi-dimensional image descriptors), music retrieval, computational biology
and drug design, computational linguistics, etc.

Let’s start from a radical simplification: imagine that the potential query points are picked only from the set of
` stored examples. Why should one search for items which are already known? Well, one may want to retrieve
information associated with the items, like output labels, or values. For example, imagine to set up a telephone
directory which associates names with telephone numbers. A generalization is the so-called dictionary data structure
in computer science, storing key-value pairs (k, v) so that, when a key k is given, the corresponding value v is returned.
“Brute-force” means comparing all possible stored keys with the query k and returning the corresponding v as soon
as the correct key is found.

To understand how hard this search can be, imagine a telephone directory with randomly placed names, where the
only effective strategy to search a name is to scan the whole directory from the beginning until a match is found.

Now, if names are alphabetically ordered, one can open the directory at an approximated good starting point, to
then proceed gradually to search before or after the opening page depending on what one finds there. This is much
faster than searching through all pages, on average (the worst case can be in a town with most citizens sharing the
same family name).

A better supporting data structure (like an alphabetically ordered index) means more work at the beginning, but a
faster lookup. Binary search can be used for the lookup: the content at the middle position in the index is retrieved:
if the key comes before (in alphabetical order), the search is recursively executed on the first half of the list, if the key
comes later, the search is recursively executed on the second half of the list.

For a uniform distribution of keys, binary search in an `-entry directory passes fromO(`) toO(log `) lookup time1,
on average. This is already a huge improvement for large numbers of stored keys. An index in a database (like in most
SQL databases) is built precisely with this purpose. Can we do better? Can we search for a key, out of a set of `, in a
time which is approximately constant, on average?

Yes, we can: by using hashing, one can retrieve stored items in almost constant time, a very surprising result
at first. To “hash” means to chop into small pieces, mince, mix up, from Latin ascia (ax). The idea is surprisingly
simple: take your key k and “chop it” in a brutal (but deterministic!) manner to obtain an integer number. Consider
the integer as an index, or an address, and store the corresponding value v at that address in memory. If one uses a
function hash(k) which is fast to compute, lookup is fast: hash the key to get the address, retrieve the stored key at
the calculated address.

Are we done? Almost. If you got your coffee this morning you may notice that hashing could produce, by chance,
the same integer address for two different keys (Fig. 2.4). These collisions need to be dealt with, otherwise some
values get lost. The solution is to have, at the obtained address, not only the space for a single value, but for a bucket

1If you know enough about logarithms, you may ask: “what base?” But remember, the asymptotic notation discards multiplicative constants



14 CHAPTER 2. LAZY LEARNING: NEAREST NEIGHBORS

06

05

07

15

.
.
.

Value storageAddressHash functionKeys

Lisa Smith

John Smith

Sam Doe

Sandra Dee

00

01

02

03

04

555−6789

????????

555−1234

Figure 2.4: A collision when hashing names.

Bucket array

hash(k1) PPqhash(k4) -

hash(k5) �
�1

hash(k2) -

hash(k3) -

-k1 v1 -k4 v4 -k5 v5

-k2 v2

-k3 v3

B
B

B
B

B
B
B
B

B

Figure 2.5: Open hashing scheme: items (configuration, or compressed hashed value, etc.) are stored in “buckets.”
The index of the bucket array is calculated from the configuration.

containing all key-value pairs for the keys hashed there, so that one can still identify the correct value in spite of the
collision.

In the telephone directory example, hash(name) could give the number of a directory page (our physical bucket),
which is big enough to contain all name-telno pairs to be stored there.

Hashing should be designed to make collisions rare and to spread the stored keys approximately in a uniform
manner onto a given range of integers. This is why it is called hashing after all, the “ax” will scatter keys in a pseudo-
random way onto a range of integers. To avoid wasting memory, the range of integers should be a small multiple of
the total number ` of stored items.

The storage of labeled examples through a hash table requires CPU time for lookup that is approximately constant
with respect to the number of items to store.

An example of a memory configuration for the hashing scheme is shown in Fig. 27.5. From the key k one obtains
an index into a “bucket array.” The items (ki with associated information vi etc.) are then stored in linked lists starting
from the indexed array entry. Each cell contains the address of the next one (or null if it is the last cell), this is called
chaining. Both storage and retrieval require an approximately constant amount of time if: i) the number of stored
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items is not much larger than the size of the bucket array, and ii) the hashing function scatters the items with a uniform
probability over the different array indices. More precisely, given a hash table with m slots that stores ` elements, a
load factor α = `/m is defined. If collisions are resolved by chaining, searches take O(1 + α) time, on average.

2.3 Locality-sensitive Hashing (LSH) and approximated nearest neighbors
When hashing is used to map from a set of keys to the corresponding values, one is dealing with memorization and
databases, not with machine learning and generalizing.

Returning to the nearest-neighbors for ML context just considered in Sec. 2.1, imagine now that the query q is a
point placed in the d-dimensional space Rd, and not necessarily equal to one of the stored points. Standard hash tables
fail: remember that a hash function is intentionally meant to randomize things, and the new point q will be hashed to
an index without any clear relationship with the index of nearby points in Rd.

Locality-Sensitive Hashing (LSH) considers specialized versions of hashing, designed to preferentially map
close items to the same bucket, with a probability which is higher for nearby points than for distant ones [336].

LSH is the first example of a randomized algorithm. A randomized algorithm contains calls to a random number
generator, and its output is studied with probability and statistics. LSH does not guarantee an exact answer to a nearest-
neighbor query but it provides a high-probability guarantee that it returns the correct answer or one close to it.
By investing more computational effort, the probability can be pushed as high as desired. Because a small probability
of failure in identifying the exact nearest neighbors is acceptable for most ML applications, LSH is becoming a widely
used tool for very-large-scale applications.

Let’s assume that one wants to guarantee with a probability equal to 1−δ that the nearest neighbor will be retrieved
for any query point, in a large database.

A possibility is to consider randomized linear projections of points in Rd as hashing functions. If you are not
familiar with projections, consider points in 3 dimensions, projected onto a plane by a torch. Rendering a multidimen-
sional sphere onto a two-dimensional page is a good example (Fig.2.6). Or read Chapter 20 for more details.

The motivation for LSH is based on the idea that, if two points are close together, they will remain close together
after a “projection” operation. On the contrary, if two points are far apart, for most random projections they will
remain distant: they will be mapped to close positions only for rare choices of the orientation of the projection. LSH
therefore differs from conventional and cryptographic hash functions because it aims at maximizing the probability
of a “collision” for similar items.

One creates projections from a number of different random directions, keeps track of the nearby projected
points, those falling in the same buckets and notes the points that appear close to each other in more than one projection.
Finally, one scans the remaining candidate list to identify the closest point. To limit the probability of failure (of
returning a wrong nearest neighbor), one can adjust the number of randomized projections.

The starting point and intuition is simple, the technical details and analysis are complex and can be found in [109].
We just sketch a random projection algorithm to understand the main building blocks.

If q is a query point, a randomized scalar projection is obtained by a scalar product:

hash(q) = p · q

in which p is a vector with components that are selected at random from a Gaussian distribution, for exampleN (0, 1).
This scalar projection is then quantized into a set of hash bins, with the intention that nearby items in the original

space will tend fall into the same bin. The resulting full hash function is given by:

hashp,b(q) =

⌊
p · q + b

w

⌋
,

where w is the width of each quantization bin, b is a random value uniformly distributed between 0 and w, and the
“floor” operator b·c maps a positive real value to an integer by eliminating the digits after the dot (e.g., b2.34c = 2).
Note that quantizing a set of real values still means that nearby points can end up in different bins if by chance they are
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Figure 2.6: Locality-sensitive hashing by projections: points that are close to each other in the high-dimensional space
are guaranteed to be close in the projection; the opposite is not always true.
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on different sides of a boundary between bins (e.g., one is mapped to 2.99999w, the other one to 3.00001w). Adding
a random value b ensures that if two such points are unlucky and sit on the opposite side of a boundary for one hash
function, they can be more lucky and end up in the same bin for a different choice of b.

The two starting facts are that:

• close points will have a large probability of falling into the same bucket:

Pr(hash(p) = hash(q)) ≥ P1 for ‖p− q‖ ≤ R1;

• points p and q that are far apart have a low probability P2 < P1 to fall into the same bucket:

Pr(hash(p) = hash(q)) ≤ P2 for ‖p− q‖ ≥ R2,

where R2 > R1.

Due to the linearity of the dot product, the difference between two image points ‖ hash(p)−hash(q)‖ has a magnitude
whose distribution is proportional to ‖p− q‖ and therefore, P1 > P2.

Since the gap between the probabilities P1 and P2 could be quite small, an amplification process is needed in order
to achieve the desired probabilities of collision, by performing k independent dot products in parallel. A far point could
end up in the same bucket for an unlucky projection, but being unlucky k times has a much smaller probability.

Within each set of k dot products, one achieves success if the query and the nearest neighbor are in the same bin in
all k dot products. This occurs with probability P k1 , which decreases as we include more dot products. To reduce the
impact of an “unlucky” quantization in any one projection, we form L independent projections and pool the neighbors
from all of these. A true near neighbor will be unlikely to be unlucky in all the L projections.

A large k (AND-ing more projections) will filter out bad (distant) points, while a large L (OR-ing the contents of
all L retrieved buckets) will ensure that we do not throw away the baby (the closest neighbors) with the dirty water.

Let’s assume that one wants to retrieve R-neighbors of a query point q (neighbors at distance less than R). The
query algorithm is:

• For each j = 1, 2, . . . , L:

1. Retrieve the points from the bucket obtained by concatenating the k integers in the j-th hash table.

2. For each retrieved point, compute the distance from q to it, and report the point if it is a correct answer (an
R-near neighbor).

3. (optional) Stop as soon as the number of reported points is more than L′.

As an additional optimization, because many bins can be empty in a k-dimensional space, one can use standard
hashing to efficiently store and retrieve only the non-empty bins.

After running the math so that the desired probability of success is guaranteed by a proper choice of k and L, the
time needed to calculate and hash the projections is O(dkL), a huge improvement with respect to the linear scan of
all points, provided that the time to deal with collisions is limited. A practical approach to choosing k is introduced in
the E2LSH package [10], by starting from estimates of CPU time obtained over a small set of sample queries.

The research in this area is still active, some of the best results have been encouraged by the need to analyze huge
amounts of data, and obtained in the last five-ten years [245, 109].

2.4 Space-partitioning data structure: k-d trees
LSH is not the only possibility to speed up search in computational geometry. Other space-partitioning data
structures have been proposed for organizing points in a d-dimensional space. Trees of boxes in Rn are a standard
way to go from a linear CPU time to one logarithmic in the number of stored points. k-d trees are a special case of
binary space partitioning trees. The root of the tree corresponds to the entire Rd space, at each node a left and right
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1. 2. 3. 4.

Figure 2.7: A k-d tree data structure.

subtrees are defined by a test on a single coordinate. If the coordinate c and threshold xc are chosen for a particular
split, all points whose c-th coordinate is less than xc will appear in the left subtree, the other points in the right
subtree. Imagine a sequence of hyperplanes perpendicular to coordinate axes leading to boxes containing two boxes,
containing two boxes... untile a single point remains. If each split divides the points approximately into two equal
parts, a logarithmic time for searching is obtained. The initial N points are divided by two, then again, ..., until
N/2s ≈ 1 which means s ≈ log2N .

A logarithmic time for searching exact matches is not particularly relevant since O(1) time can be obtained by
hashing. But k-d trees become interesting for nearest-neighbor searches.

Searching for a nearest neighbour in a k-d tree proceeds as follows: Starting with the root node, the algorithm
moves down the tree recursively, in the same way that it would if the search point were being inserted (i.e., it goes left
or right depending on whether the point is lesser than or greater than the current node in the split dimension). Once the
algorithm reaches a leaf node, it saves that node point as the “current best.” After having this bound on the minimum
distance the algorithm unwinds the recursion of the tree to check if more promising candidate subtrees exist. A decision
whether subtrees need to be examined is made by intersecting the splitting hyperplane with a hypersphere around the
search point that has a radius equal to the current nearest distance. Details vary for different implementations and
assumptions, building a static k-d tree from N points can be done in O(N logN) time, finding one nearest neighbour
in a balanced k-d tree with randomly distributed points takes O(logN) time on average, [51, 137]

Appropriate data structures can bring huge improvements with respect to brute-force techniques, but have to be
chosen and used with great care. In particular k-d trees maintain logarithmic search times only in small dimensions.
The curse of dimensionality strikes: as soon as the number of dimension d grows so that the number of points is not
sufficiently large (approximately N � 2k), most of the points in the tree will be evaluated during the search and the
efficiency becomes worse than exhaustive search (given the added overhead in building the structure). Approximate
nearest-neighbour methods like LSH should be used instead.

Never use a data structure without considering if the assumptions for its range of validity hold in your case,
or you may be greatly disappointed.
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Gist
KNN (K Nearest Neighbors) is a primitive and lazy form of machine learning: just store all training exam-
ples into memory (inputs and associated output label).

When a new input to be evaluated appears, search in memory for the K closest examples stored. Read
their outputs and derive the new output by majority or averaging. Laziness during training causes long
response times when many examples are stored.

KNN works in many real-world cases because similar inputs are usually related to similar outputs,
a basic hypothesis in machine learning. It is similar to some “case-based” human reasoning processes.
Although simple and brutal, it can be surprisingly effective in many cases.

Investing in smart data-structures is critical to obtain fast exact or approximated nearest-neighbors
searches. Hashing is a key trick, and now you can see a deeper meaning of the “hashtag” term popular
in social networks, related to searching for keys and retrieving . . . tweets. LSH (locality-sensitive hashing)
is not to be confused with psychedelic LSD, its advantages are very real in a context of big data.

Now, do not sleep motivated by this lazy-learning topic but go ahead and digest additional chapters of
this book.
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Chapter 3

Learning requires a method

Data Mining, noun 1. Torturing the data until it confesses. . .
and if you torture it long enough, you can get it to confess to anything.

Learning, both human and machine-based, is a powerful but subtle instrument. Real learning is associated with ex-
tracting the deep and basic relationships in a phenomenon, with summarizing a wide range of events through compact
models, with unifying different cases by discovering the underlying explanatory laws.

Above all, learning from examples is only a means to reach the real end: generalization, the capability of
explaining new cases, of predicting new outputs, in the same application area but not already encountered during
the learning phase. On the contrary, learning by heart or memorizing are considered very poor forms of learning,
useful for beginners but not for real experts. If the goal is generalization, estimating the performance has to be
done with extreme care. Observing the behavior of the model on the learning examples does not guarantee a proper
generalization and may lead to unjustified optimism. After all, a student who is good at learning by heart and repeating
the exact words of the teacher will not always end up being the most successful individual in life!

21
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Figure 3.1: Supervised learning architecture: feature extraction and classification.

Let’s now define the machine learning context (ML for short) so that its high voltage can be switched on without
electric shock injuries caused by improper usage and over-optimism. Furthermore, switching on ML does not imply
switching off our brain.

In fact, before starting the machine learning process, it is useful to clean and extract an informative subset or a
combination of the original data by using intuition and intelligence. Features (or attributes) are individual measurable
properties of the phenomena being observed with useful information to derive the output value. Feature selection (for
a subset) and feature extraction (for a combination) are the names of this preparatory phase (Fig. 3.1).

An input example can be the image of a letter of the alphabet, with the output corresponding to the letter symbol.
Automated reading of zip codes for routing mail, or automated conversion of images of old book pages into the
corresponding text are relevant applications, called optical character recognition. Intuition tells us that the absolute
image brightness is not an informative feature (digits remain the same under more or less light). In this case, suitable
features can be related to edges in the image, to histograms of gray values collected along rows and columns of an
image, etc. More sophisticated techniques try to ensure that a translated or enlarged image is recognized as the original
one, for example by extracting features measured with respect to the barycenter of the image (considering a gray value
in a pixel as a mass value), or scaled with respect to the maximum extension of the black part of the image, etc.
Extracting useful features often requires concentration, insight and knowledge about the problem, but doing so greatly
simplifies the subsequent automated learning phase. The analogy is with a competent professor filtering and preparing
teaching material for an effective lesson.

To fix the notation, a training set of ` tuples (ordered lists of elements) is considered, where each tuple is of the
form (xi, yi), i = 1, . . . , `; xi being a vector (array) of input parameter values in d dimensions (xi ∈ Rd); yi being
the measured outcome to be learned by the algorithm. As mentioned before, we consider two possible problems:
regression, where yi is a real numeric value; and classification, where yi belongs to a finite set.

In classification (recognition of the class of a specific object described by features x), the output is a suitable
code for the class. The output y belongs to a finite set, e.g., yi = ±1 or yi ∈ {1, . . . , N}. For example, think about
classifying a mushroom as edible or poisonous.

In regression, the output is a real number, and the objective is to model the relationship between a dependent vari-
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able (the output y) and one or more independent variables (the input features x). For example, think about predicting
the poison content of a mushroom from its characteristics.

In some applications, the classification is not always crisp and there are confused boundaries between the different
classes. Think about classifying bald versus hairy people: no clear-cut distinction exists as anxious people and sellers
of hair loss cures know very well.

In these cases there is a natural way to transform a “crisp” classification into a regression problem. To take care
of indecision, the output can be a real value ranging between zero and one, and it can be interpreted as the posterior
probability for a given class, given the input values, or as a fuzzy membership when probabilities cannot be used.
For example, if a person has a few hair left, it makes little sense to talk about a probability of 0.2 of being hairy, in this
case fuzzy membership of 0.2 in the class of hairy persons can be more appropriate. Probability is used properly when
there are experiments with uncertain outcome which can be repeated.

Having a continuous output value, for example from 0 to 1, gives additional flexibility for the practical usage of
classification systems. Depending on a threshold, a human person or a more sophisticated system can be consulted in
the more confused cases (for example the cases with output falling in the range from 0.4 to 0.6). The clear cases are
handled automatically, the most difficult cases can be handled by a human person. In optical character recognition,
consider an image which may correspond to the digit 0 (zero) or the letter O (like in Old). It may be preferable to
output 0.5 for each case instead of forcing a hard classification. A subsequent step may consider adjacent characters
or semantic information to disambiguate the two possibilities.

3.1 Learning from labeled examples: minimization and generalization

Supervised learning uses the examples to build an association (a function) y = f̂(x) between inputx and output y. The
association is selected within a flexible model f̂(x;w), where the flexibility is given by some tunable parameters
(or weights) w.

For a concrete image, think about a mincer transforming inputs into outputs, with tunable gears and levers to
regulate it. Or think about a “multi-purpose box” waiting for input and producing the corresponding output depending
on operations influenced by internal parameters. The information to be used for “customizing” the box is extracted
from the training examples. The magic of ML is that the gears are not fixed by hand but automatically, through
optimization, by showing examples of correct input-output pairs.

A scheme of the architecture is shown in Fig. 3.1, the two parts of feature extraction and identification of optimal
internal weights of the classifier are distinguished. In many cases feature extraction requires some human insight, while
the determination of the best parameters is fully automated, this is why the method is called machine learning after
all. The free parameters are fixed by demanding that the learned model works correctly on the examples in the
training set.

As a true believer in the power of optimization one defines an error measure to be minimized1, and runs (auto-
mated) optimization to determine the optimal parameters. A suitable error measure is the sum of the errors between
the correct answer (given by the example label) and the outcome predicted by the model (the output ejected by the
multi-purpose box). The errors are considered as absolute values and often squared. The “sum of squared errors”
is possibly the most widely used error measure in ML. If the error is zero, the model works correctly on the given
examples. The smaller the error, the better the average behavior on the examples.

Supervised learning therefore becomes minimization of a specific error function, depending on parameters w.
If you only care about the final result you may take the optimization part as a “big red button” to push on the
multi-purpose box, to have it customized for your specific problem after feeding it with a set of labeled examples.

If you are interested in developing new LION tools, you will get more details about optimization techniques in
the following chapters. The gist is the following: if the function is smooth (think about pleasant grassy California
hills) one can discover points of low altitude (lakes?) by being blindfolded and parachuted to a random initial point,

1Minimization becomes maximization after multiplying the function to be optimized by minus one, this is why one often talks about “optimiza-
tion”, without specifying the direction min or max.
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by sampling neighboring points with his feet, and by moving always in the direction of steepest descent. No “human
vision” is available to the computer to “see” the lakes, only the possibility to sample one point at a time. By repeating
the two steps of sampling in the neighborhood of the current point – in w space – and moving to a neighbor that
decreases the error, one builds a trajectory leading to smaller and smaller values. Amazingly, this simple process is
sufficient to reach an appropriate w∗ value for many applications.

Let’s speak mathematics. If the function to be optimized is differentiable, a simple approach consists of using
gradient descent. One iterates by calculating the gradient of the function with respect to the weights and by taking a
small step in the direction of the negative gradient. This is in fact the popular technique in neural networks known as
learning by backpropagation of the error [383, 384, 311].

Assuming a smooth function is not artificial: There is a basic smoothness assumption underlying supervised
learning: if two input points x1 and x2 are close, the corresponding outputs y1 and y2 should also be close2. If the
assumption is not true, it would be impossible to generalize from a finite set of examples to a set of possibly infinite
new and unseen test cases. Let’s note that the physical reality of signals and interactions in our brain tends to naturally
satisfy the smoothness assumption. The activity of a neuron in our neural network tends to depend smoothly on the
neuron inputs, in turn caused by chemical and electrical interactions in their dendritic trees.

Up to now, you may think that machine learning equals optimization of a performance measure on the training
examples, but one ingredient is still missing. Minimization of an error function is a first critical component, but
not the only one. If the model complexity (the flexibility, the number of tunable parameters) is too large, learning
the examples with zero errors becomes trivial, but predicting outputs for new data may fail brutally. In the human
metaphor, if learning becomes rigid memorization of the examples without grasping the underlying model, students
have difficulties in generalizing to new cases. This is related to the bias-variance dilemma, and requires care in model
selection, or minimization of a weighted combination of model error on the examples plus model complexity.

The bias-variance dilemma can be stated as follows.

• Models with too few parameters are inaccurate because of a large bias: they lack flexibility.

• Models with too many parameters are inaccurate because of a large variance: they are too sensitive to the sample
details (changes in the details will produce huge variations).

• Identifying the best model requires controlling the “model complexity”, i.e., the proper architecture and number
of parameters, to reach an appropriate compromise between bias and variance.

The issue goes back to problems related to measuring physical systems. When measuring a system one encounters
two kinds of possible errors: systematic errors (bias) and random errors (variance), as shown in Fig.3.2. Systematic
errors, leading to inaccuracy, refer to deviations that are not due to chance alone. An example occurs with a mea-
suring device that is improperly calibrated so that it consistently overestimates (or underestimates) the measurements.
Random error has no preferred direction, so we expect that averaging over a large number of observations will yield a
net effect of zero. The impact of random error, imprecision, can be minimized with large sample sizes. The precision
related to the number of significant figures in digits: it refers to the stability of that measurement when repeated many
times. If you measure height of a person with a mater stick (say 182 centimeters), it is useless to use more than 3-4
digits, nobody would answer 182.368638 cm). Bias, on the other hand, has a net direction and magnitude, so that
averaging over a large number of observations does not eliminate its effect.

Let’s now focus on machine learning and introduce the bias–variance decomposition of squared error[212].
The context is that the output is obtained by a true functional, but noisy relation of the input: yi = f(xi) + ε, where
the noise ε has zero mean and variance σ2.

The objective of ML is to find a function f̂(x), that approximates the true function y = f(x) as well as possible,
in particular by minimizing the squared error (y− f̂(x))2. Given the noise ε in the true function one must be prepared
to accept an irreducible error in any function f̂(x). If one samples from the same distribution and averages over the

2In some cases the closeness between points x1 and x2 can be measured by the standard Euclidean distance, in other cases more problem-
specific distance measures are needed.
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Figure 3.2: Difference between bias (systematic errors) and variance (random errors) when playing darts.

different choices of x1, . . . , xn, y1, . . . , yn, one can decompose the expected error on an unseen sample x as follows:

E
[(
y − f̂(x)

)2]
= Bias

[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2

Where Bias measures how the expected model output differs from the “true” f(x) value:

Bias
[
f̂(x)

]
= E

[
f̂(x)

]
− f(x)

and Var measures the scatter in the distribution of f̂(x) values around its mean:

Var
[
f̂(x)

]
= E

[(
f̂(x)− E[f̂(x)]

)2]
The irreducible error σ2 gives a lower bound on the expected error on unseen examples. The more complex and
flexible the model f̂(x) is, the lower the bias will be. However, flexibility will make the model details “move” more
when the training examples change, and hence its variance will be larger.

The preference of simple models to avoid over-complicated models has been given a fancy name: Occam’s razor,
referring to “shaving away” unnecessary complications in theories3. Optimization is still used, but the error measure
needs an integration, to take model complexity into account.

3 Occam’s razor is attributed to the 14th-century theologian and Franciscan friar Father William of Ockham who wrote “entities must not be
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It is also useful to distinguish between two families of methods for supervised classification. In one case one is
interested in deriving a “constructive model” of how the output is generated from the input, in the other case one
cares about the bottom line: obtaining a correct classification. The first case is more concerned with explaining the
underlying mechanisms, the second with crude performance.

Among examples of the first class, generative methods try to model the process by which the measured data x
are generated for the different classes y. Given a certain class, for example of a poisonous mushroom, what is the
probability of obtaining real mushrooms of different geometrical forms? In mathematical terms, one learns a class-
conditional density p(x|y), the probability of x given y. Then, given a fresh measurements x, one assigns a class y
by maximizing the posterior probability of a class given the measurement, obtained by Bayes’ theorem:

p(y|x) =
p(x|y)p(y)∑
y p(x|y)p(y)

; (3.1)

where p(x|y) is known as the likelihood of the data, and p(y) is the prior probability, which reflects the probability
of the outcome before any measure is performed. The term at the denominator is the usual normalization term to
make sure that probabilities sum up to one. A mnemonic way to remember Bayes’ rule is: “posterior = prior times
likelihood.”

Discriminative algorithms do not attempt at modeling the data generation process, they just aim at directly
estimating p(y|x), a problem which is in some cases simpler than the two-steps process (first model p(x|y) and
then derive p(y|x)) implied by generative methods. Multilayer perceptron neural networks, as well as Support Vector
Machines (SVM), are examples of discriminative methods described in the following chapters.

The shortcut implied by the second option is profound, accurate classifiers can be built without knowing or
building a detailed model of the process by which a certain class generates input examples. You do not need to be an
expert mycologist in order to pick mushroom without risking death, you just need an abundant and representative set
of example mushrooms, with correct classifications.

Understanding that one does not need to be a domain expert to bring a measurable contribution is a small step
for a man, but one giant leap along the LION way. Needless to say, successful businesses complement expertise with
humble but powerful data- and optimization-driven tools.

3.2 Learn, validate, test!
When learning from labeled examples we need to follow careful experimental procedures to measure the effective-
ness of the learning process. In particular, it is a shameful and unforgivable mistake to evaluate the performance of
the learning systems on the same examples used for training. The objective of machine learning is to obtain a sys-
tem capable of generalizing to new and previously unseen data. Otherwise the system is not learning, it is merely
memorizing a set of known patterns. This is why questions at university exams change from time to time. . .

Let’s assume we have a supervisor (a software program or an experimental process) who can generate labeled
examples with a given probability distribution. We should ask the supervisor for some examples during training,
and then test the performance by asking for some fresh examples. Ideally, the number of examples used for training
should be sufficiently large to permit convergence, and the number used for testing should be very large to ensure a
statistically sound estimation. We strongly suggest you not to conclude that a machine learning system to identify
edible from poisonous mushrooms is working, after testing it on seven mushrooms.

This ideal situation may be far from reality. In some cases the set of examples is rather small, and has to be used in
the best possible way both for training and for measuring performance. In this case the set has to be clearly partitioned
between a training set and a validation set, the first used to train, the second to measure performance, as illustrated
in Fig. 3.3. A typical performance measure is the root mean square (abbreviated RMS) error between the output of

multiplied beyond necessity” (entia non sunt multiplicanda praeter necessitatem). To quote Isaac Newton, “We are to admit no more causes of
natural things than such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we must, so far as possible,
assign the same causes.”
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Figure 3.3: Labeled examples need to be split into training, validation and test sets.

the system and the correct output given by the supervisor. The RMS value of a set of values is the square root of the
arithmetic mean (average) of the squares of the original values. If ei is the error on the i-th example, the RMS value
is given by:

RMS =

√
e21 + e22 + · · ·+ e2`

`
.

In general, the learning process optimizes the model parameters to make the model reproduce the output of the
training data as well as possible. If we then take an independent sample of validation data from the same population as
the training data, it will generally turn out that the error on the validation set will be larger than the error on the training
set. This discrepancy is likely to become severe if training is excessive, leading to over-fitting (overtraining), likely
to happen when the number of training examples is small, or when the number of parameters in the model is large.

If the examples are limited, we now face a problem: do we use more of them for training and risk a poor and noisy
measurement of the performance, or to have a more robust measure at the price of reducing the training examples? In
concrete terms: if you have 50 mushroom examples, do you use 45 for training and 5 for testing, 30 for training and
20 for testing? . . . Luckily, there is a way to jump over this embarrassing situation, just use cross-validation. Cross-
validation is a generally applicable way to predict the performance of a model on a validation set by using repeated
experiments instead of mathematical analysis.

The idea is to repeat many train-and-test experiments, by using different partitions of the original set of examples
into two sets, one for training one for testing, and then averaging the test results. This general idea can be implemented
as K-fold cross-validation: the original sample is randomly partitioned into K subsamples. K − 1 subsamples are
used for training, a single subsample is used for validation. The process is then repeatedK times (the folds), with each
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of the K subsamples used exactly once for validation. The results from the folds are then averaged to produce a single
estimation. The advantage is that all observations are used for both training and validation, and each observation is
used for validation exactly once. If the example set is really small one can use the extreme case of leave-one-out cross-
validation, using a single observation from the original sample as the validation data, and the remaining observations
as the training data (in this case K equals the number of examples).

Figure 3.4: Stratified cross-validation, examples of two classes. In normal cross-validation 1/K of the examples are
kept for testing, the slice is then “rotated” K times. In stratification, a separate slice is kept for each class to maintain
the relative proportion of cases of the two classes.

Stratified cross-validation is an improvement to avoid different class balances in the training and validation set.
It avoids that, by chance, a class is more present in the training examples and therefore less present in validation
(with respect to its average presence among all examples). With stratification, the `/K testing patterns are extracted
separately for examples of each class, to ensure a fair balance among the different classes (Fig. 3.4).

If the machine learning method itself has some parameters to be tuned, this creates an additional problem.
Let’s call them meta-parameters in order to distinguish them from the basic parameters of the model, the weights
of the “multi-purpose box” to be customized. Think for example about deciding the termination criterion for an
iterative minimization technique (when to stop training), or the number of hidden neurons in a multilayer perceptron,
or appropriate values for the crucial parameters of Support Vector Machine (SVM). Finding optimal values for the
meta-parameters implies reusing the validation set many times. Reusing validation examples means that they also
become part of the training process. We are in fact dealing with a kind of meta-learning, learning the best way to
learn. The more one reuses the validation set, the more the danger that the measured performance will be optimistic,
not corresponding to the real performance on new data. One is in practice “torturing the data until it confesses. . . and
if you torture it long enough, you can get it to confess to anything.”

In the previous context of a limited set of examples to be used for all needs, to proceed in a sound manner one has
to split the data into three sets: a training, a validation and a (final) testing one. The test set is used only once for a
final measure of performance.

Let’s note that, to increase the confusion, in the standard case of a single train-validation cycle, the terms validation
and testing are often used as synonyms.
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Figure 3.5: Each line in the matrix reports the different classifications for cases of a class. You can visualize cases
entering at the left and being sorted out by the different columns to exit at the top. Accuracy is defined as the fraction
of correct answers over the total, precision as the fraction of correct answers over the number of retrieved cases and
recall is computed as the fraction of correct answers over the number of relevant cases. In the plot: divide the cases in
the dark gray part by the cases in the light gray area.

3.3 Errors of different kinds
When measuring the performance of a model, mistakes are not born to be equal. If you classify a poisonous mushroom
as edible you are going to die, if you classify an edible mushroom as poisonous you are wasting a little time. Depending
on the problem, the criterion for deciding the best classification changes. Let’s consider a binary classification (with
“yes” or “no” output). Some possible criteria are: accuracy, precision, and recall. The definitions are simple but
require some concentration to avoid confusions (Fig. 3.5).

The accuracy is the proportion of true results given by the classifier (both true positives and true negatives). The
other measures focus on the cases which are labeled as belonging to the class (the “positives”). The precision is the
number of true positives (the items correctly labeled as belonging to the positive class) divided by the total number
of elements labeled as positive (the sum of true positives and false positives, incorrectly labeled as belonging to the
class). The recall is the number of true positives divided by the total number of elements that actually belong to the
positive class (i.e., the sum of true positives and false negatives, which are not labeled as belonging to the positive
class but should have been). Precision answers the question: “How many of the cases labeled as positive are correct?”
Recall answers the question: “How many of the truly positive cases are retrieved as positive?” Now, if you are picking
mushrooms, are you more interested in high precision or high recall?

A confusion matrix explains how cases of the different classes are correctly classified or confused as members of
wrong classes (Fig. 3.6).

Each row tells the story for a single class: the total number of cases considered and how the various cases are
recognized as belonging to the correct class (cell on the diagonal) or confused as members of the other classes (cells
corresponding to different columns).



30 CHAPTER 3. LEARNING REQUIRES A METHOD

Figure 3.6: Confusion matrix for optical character recognition (handwritten ZIP code digits). The various confusions
make sense. For example the digit “3” is recognized correctly in 632 cases, confused with “2” in 8 cases, with “5” in
10 cases, with “8” in 7 cases. “3” is never confused as “1” or “4”, digits with a very different shape.
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Gist
The goal of machine learning is to exploit a set of training examples to realize a system which will correctly
generalize to new cases, in the same context but not seen during learning.

ML learns, i.e., determines appropriate values for the free parameters of a flexible model, by automat-
ically minimizing a measure of the error on the example set, possibly corrected to discourage overly
complex models, and therefore to improve the chances of correct generalization.

The output value of the system can be a class (classification), or a number (regression). In some cases
having as output the probability for a class increases flexibility of usage.

Accurate classifiers can be built without any knowledge elicitation phase, just starting from an abundant
and representative set of example data. This is a dramatic paradigm change with respect to systems designed
by hand from domain knowledge.

ML is very powerful but requires a strict method (a kind of “pedagogy” of ML). For sure, never estimate
performance on the training set, this is a mortal sin, and be aware that re-using validation data will create
optimistic estimates. If examples are scarce, use cross-validation to show off that you are an expert ML
user.

To be on the safe side and enter the ML paradise, set away some test examples and use them only once
at the end to estimate performance.

There is no single way to measure the performance of a model, different kinds of mistakes can have very
different costs. Accuracy, precision and recall are some possibilities for binary classification, a confusion
matrix is giving the complete picture for more classes.



32 CHAPTER 3. LEARNING REQUIRES A METHOD



Part I

Supervised learning
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Chapter 4

Linear models

Most right-handed people are linear thinking, think inside the box.
(our readers are free to disbelieve our openings)

Just below the mighty power of optimization lies the awesome power of linear algebra. Do you remember your
teacher at school: “Study linear algebra, you will need it in life”? Well, with more years on your shoulders you know he
was right. Linear algebra is a “math survival kit.” When confronted with a difficult problem, try with linear equations
first. In many cases you will either solve it or at least come up with a workable approximation. Not surprisingly, this
is true also for models to explain data.

35
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Figure 4.1: Data about price and power of different car models. A linear model is shown as a line.

Fig. 4.1 plots the price of different car models as a function of their horse power. As you can expect, the bigger
the power the bigger the price, car dealers are honest, and there is an approximate linear relationship between the two
quantities. If we summarize the data with the linear model (the line) we lose some details but most of the trend is
preserved. We are fitting the data with a line.

Of course, defining what we mean by “best fit” will immediately lead us to optimizing the corresponding goodness
function.

4.1 Linear regression

A linear dependence of the output from the input features is a widely used model. The model is simple, it can be easily
trained, and the computed weights in the linear summation provide a direct explanation of the importance of the various
attributes: the bigger the absolute value of the weight, the bigger the effect of the corresponding attribute. Therefore,
do not complicate your life and consider nonlinear models unless you are strongly motivated by your application.

Math people do not want to waste trees and paper1, arrays of numbers (vectors) are denoted with a single variable,
like w. The vector w contains its components (w1, w2, ..., wd), d being the number of input attributes or dimension.
Vectors “stand up” like columns, to make them lie down you can transpose them, getting wT . The scalar product
between vector w and vector x is therefore wT · x, with the usual matrix-multiplication definition, equal to w1x1 +
w2x2 + · · ·+ wdxd.

The hypothesis of a linear dependence of the outcomes on the input parameters can be expressed as

yi = wT · xi + εi,

1We cannot go very deep into linear algebra in our book: we will give the basic definitions and motivations, it will be very easy for you to find
more extended presentations in dedicated books or websites.
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where w = (w1, . . . , wd) is the vector of weights to be determined and εi is the error. In some cases the error εi
is assumed to have a Gaussian distribution. Even if a linear model correctly explains the phenomenon, errors arise
during measurements: every physical quantity can be measured only with a finite precision. Approximations are
not needed because of negligence but because measurements are imperfect.

One is now looking for the weight vector w so that the linear function

f̂(x) = wT · x (4.1)

approximates the experimental data as closely as possible. This goal can be achieved by finding the vector w∗ that
minimizes the sum of the squared errors (least squares approximation):

ModelError(w) =
∑̀
i=1

(wT · xi − yi)2. (4.2)

In the unrealistic case of zero measurement errors and a perfect linear model, one is left with a set of linear
equations wT · xi = yi, one for each measurement, which can be solved by standard linear algebra if the system of
linear equations is properly defined (d non-redundant equations in d unknowns). In all real-world cases, measurements
have errors, and the number of measurements (xi, yi) can be much larger than the input dimension. Therefore one
needs to search for an approximated solution, for weightsw obtaining the lowest possible value of the above equation
(4.2), low but typically larger than zero.

To use a linear model, you do not need to know how the equation is minimized. True believers in optimization
can safely trust its magic problem-solving hand for linear models. But if you are curious, masochistic, or dealing with
very large and problematic cases you may consider reading Sections 4.6 and 4.7.



38 CHAPTER 4. LINEAR MODELS

4.2 A trick for nonlinear dependencies
Your appetite as a true believer in the awesome power of linear algebra is now huge but unfortunately not every case
can be solved with a linear model. In most cases, a function in the form f(x) = wTx is too restrictive to be useful.
In particular, it assumes that f(0) = 0. One can change from a linear to an affine model by inserting a constant term
w0, obtaining: f(x) = w0 +wT · x. The constant term can be incorporated into the dot product through the simple
creation of an additional dummy input fixed to 1. One defines x = (1, x1, . . . , xd), so that equation (4.1) remains
valid also for affine models.

The insertion of a constant term is a special case of a more general technique to model nonlinear dependencies
while remaining in the easier context of linear least squares approximations. This apparent contradiction is solved by
a trick: the model remains linear but it is applied to nonlinear features calculated from the raw input data instead of
the original input x. It is possible to define a set of functions:

φ1, . . . , φn : Rd → Rn

that map the input space into some more complex space, in order to apply the linear regression to the vector ϕ(x) =
(φ1(x), . . . , φn(x)) rather than to x directly.

For example if d = 2 and x = (x1, x2) is an input vector, a quadratic dependence of the outcome can be obtained
by defining the following basis functions:

φ1(x) = 1, φ2(x) = x1, φ3(x) = x2,

φ4(x) = x1x2, φ5(x) = x21, φ6(x) = x22.

Note that φ1(x) is defined in order to allow for a constant term in the dependence. The linear regression technique
described above is then applied to the 6-dimensional vectors obtained by applying the basis functions, and not to the
original 2-dimensional parameter vector.

More precisely, we look for a dependence given by a scalar product between a vector of weightsw and a vector of
features ϕ(x), as follows:

f̂(x) = wT ·ϕ(x).

The output is a weighted sum of the derived features.

4.3 Linear models for classification
Section 4.1 considers a linear function that fits the observed data, by minimizing the sum of squared errors. Some
tasks, however, allow for a small set of possible outcomes. One is faced with a classification problem.

Let the outcome variable be two-valued (e.g., ±1). In this case, linear functions can be used as discriminants, the
idea is to have an hyperplane perpendicular to the vectorw separating the two classes. A plane generalizes a line, and
a hyperplane generalizes a plane when the number of dimensions is more than three.

The goal of the training procedure is to find the best hyperplane so that the examples of one class are on a side of
the hyperplane, examples of the other class are on the other side. Mathematically one finds the best coefficient vector
w so that the decision procedure:

y =

{
+1 if wT · x ≥ 0

−1 otherwise
(4.3)

performs the classification. The method for determining the best separating linear function (geometrically a hyper-
plane) depends on the chosen classification criteria and error measures.

For what we know from this chapter about regression, we can ask that points of the first class are mapped to +1,
and points of the second classed are mapped to −1. This is a stronger requirement than separability but permits us to
use a technique for regression, like gradient descent or pseudo-inverse. Furthermore, least squares not only achieves
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separation of the two classes (if separation is possible), but robust separation, with a boundary which is far from
the examples, a leitmotif we will encounter in the following chapters. By forcing the outputs to be far (+1 and -
1) and penalizing squared errors, the fragility caused by accepting any separating hyperplane disappears. A generic
separating hyperplane may cause some examples of the two classes to have outputs very close to zero (like 0.000001
for the “+1” class, -0.000001 for the “−1” class), a small noise or measurement error on new cases will suffice to ruin
the correct classification, and have them cross the boundary to the wrong side (see also Fig 12.1).

Figure 4.2: A case where a linear separation is impossible (XOR function, left). A linear separability with a hyperplane
can be obtained by mapping the point in a nonlinear way to a higher-dimensional space.

If the examples are not separable with a hyperplane, one can either live with some error rate, or try the trick
suggested before and calculate some nonlinear features from the raw input data to see if the transformed inputs are
now separable. An example is shown in Fig. 4.2, the two inputs have 0-1 coordinates, the output is the exclusive OR
function (XOR) of the two inputs (one or the other, but not both equal to 1).

The two classes (with output 1 or 0) cannot be separated by a line — a hyperplane of dimension one — in the
original two-dimensional input space. But they can be separated by a plane in a three-dimensional transformed input
space.

4.4 How does the brain work?
Our brains are a mess, at least those of the authors. For sure the system at work when summing two large numbers
is very different from that active while playing “shoot’em up” action games. The system at work when calculating or
reasoning in logical terms is different from the system at work when recognizing the face of your mother. The first
system is iterative, it works by a sequence of steps, it requires conscious effort and attention. The second system works
in parallel, is very fast, often effortless, sub-symbolic (not using symbols and logic).

Different mechanisms in machine learning resemble the two systems. Linear discrimination, with iterative gradient-
descent learning techniques for gradual improvements, resembles more our sub-symbolic system, while classification
trees based on a sequence of “if-then-else” rules (we will encounter them in the following chapters) resemble more
our logical part.

Linear functions for classification have been known under many names, the historic one being perceptron, a name
that stresses the analogy with biological neurons. Neurons communicate via chemical synapses (Fig. 4.3). Synapses 2

2The term synapse has been coined from the Greek “syn-” (“together”) and “haptein” (“to clasp”).
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Figure 4.3: Neurons and synapses in the human brain.

are essential to neuronal function: neurons are cells that are specialized to pass signals to individual target cells, and
synapses are the means by which they do so.
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Figure 4.4: The Perceptron: the output is obtained by a weighted sum of the inputs passed through a final threshold
function.

The fundamental process that triggers synaptic transmission is a propagating electrical signal that is generated by
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exploiting the electrically excitable membrane of the neuron. This signal is generated (the neuron output fires) if and
only if the result of incoming signals combined with excitatory and inhibitory synapses and integrated surpasses a
given threshold. Fig. 4.4 can be seen as the abstract and functional representation of a single nerve cell.

4.5 Why are linear models popular and successful?
The deep reason why linear models are so popular is the smoothness underlying many if not most of the physical
phenomena (“Nature does not make jumps”). An example is in Fig. 4.5, the average stature of kids grows gradually,
without jumps, to slowly reach a saturating stature after adolescence.

Figure 4.5: Functions describing physical phenomena tend to be smooth. The stature-for-age curve can be approxi-
mated well by a tangent line (dark) from 2 to about 15 years.

Now, if you remember calculus, every smooth (differentiable) function can be approximated around an operating
point xc with its Taylor series approximation. The second term of the series is linear, given by a scalar product
between the gradient ∇f(xc) and the displacement vector, the additional terms go to zero in a quadratic manner:

f(x) = f(xc) +∇f(xc) · (x− xc) +O(‖x− xc‖2). (4.4)

Therefore, if the operating point of the smooth systems is close to a specific point xc, a linear approximation is a
reasonable place to start.

In general, the local model will work reasonably well only in the neighborhood of a given operating point. A linear
model for stature growth of children obtained by a tangent at the 7 years stature point will stop working at about 15
years, luckily for the size of our houses.

4.6 Minimizing the sum of squared errors
Linear models are identified by minimizing the sum of squared errors of equation (4.2). If you are not satisfied with a
“proof in the pudding” approach but want to go deeper into the matter, read on.
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As mentioned, in the unrealistic case of zero measurement errors and of a perfect linear model, one is left with a
set of linear equationswT · xi = yi, one for each measurement. If the system of linear equations is properly defined
(d non-redundant equations in d unknowns) one can solve them by inverting the matrix containing the coefficients.

In practice, in real-world cases, reaching zero for the ModelError is impossible, errors are present and the number
of data points can be much larger than the number of parameters d. Furthermore, let’s remember that the goal of
learning is generalization. We are interested in reducing the future prediction errors. We do not need to stress the
system too much to reduce the error on the training examples. Reaching very small or zero training error can be
counterproductive.

We need to generalize the solution of a system of linear equations by allowing for errors, and to generalize ma-
trix inversion. We are lucky that equation (4.2) is quadratic, minimizing it leads again to a system of linear equations.
Actually, one may suspect that the success of the quadratic model is related precisely to the fact that, after calculating
derivatives, one is left with a linear expression.

If you are familiar with analysis, finding the minimum is straightforward: calculate the gradient and demand that it
is equal to zero. If you are not familiar, think that the bottom of the valleys (the points of minimum) are characterized
by the fact that small movements keep you at the same altitude.

The following equation determines the optimal value for w:

w∗ = (XTX)−1XTy; (4.5)

where y = (y1, . . . , y`) and X is the matrix whose rows are the xi vectors.
The matrix (XTX)−1XT is the pseudo-inverse and it is a natural generalization of a matrix inverse to the case

in which the matrix is non-square. If the matrix is invertible and the problem can be solved with zero error, the
pseudo-inverse is equal to the inverse, but in general, e.g., if the number of examples is larger than the number of
weights, aiming at a least-square solution avoids the embarrassment of not having an exact solution and provides
a statistically sound least-squares “compromise” solution. In the real world, exact models are not compatible with
the noisy characteristics of nature and of physical measurements and it is not surprising that the least-square and
pseudo-inverse beasts are among the most popular tools.

The solution in equation (4.5) is “one shot:” calculate the pseudo-inverse from the experimental data and multiply
to get the optimal weights. In some cases, if the number of examples is huge, an iterative technique based on
gradient descent can be preferable: start from initial weights and keep moving them by executing small steps along
the direction of the negative gradient, until the gradient becomes zero and the iterations reach a stable point. By the
way, as you may anticipate, real neural systems like our brain do not work in a “one shot” manner with linear algebra
but more in an iterative manner by gradually modifying synaptic weights. Maybe this is why linear algebra is not so
popular at school?

Let us note that the minimization of squared errors has a physical analogy to the spring model presented in Fig. 4.6.
Imagine that every sample point is connected by a vertical spring to a rigid bar, the physical realization of the best
fit line. All springs have equal elastic constants and zero extension at rest. In this case, the potential energy of each
spring is proportional to the square of its length, so that equation (4.2) describes the overall potential energy of the
system up to a multiplicative constant. If one starts and lets the physical system oscillate until equilibrium is reached,
with some friction to damp the oscillations, the final position of the rigid bar can be read out to obtain the least square
fit parameters; an analog computer for line fitting!

For sure you will forget the pseudo-inverse but you will never forget this physical system of damped oscillating
springs connecting the best-fit line to the experimental data.

If features are transformed by some ϕ function (as a trick to deal with nonlinear relationships), the solution is very
similar. Let x′i = ϕ(xi), i = 1, . . . , `, be the transformations of the training input tuples xi. If X ′ is the matrix whose
rows are the x′i vectors, then the optimal weights with respect to the least squares approximation are computed as:

w∗ = (X ′TX ′)−1X ′T y. (4.6)
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Figure 4.6: Physics gives an intuitive spring analogy for least squares fits. The best fit is the line that minimizes the
overall potential energy of the system (proportional to the sum of the squares of the spring length).

4.7 Numerical instabilities and ridge regression
Real numbers (like π and “most” numbers) cannot be represented in a digital computer, they are “faked”. Each number
is assigned a fixed and limited number of bits, no way to represent an infinite number of digits like in 3.14159265...
Therefore real numbers represented in a computer are “fake,” they can and most often will have mistakes. Mistakes
will propagate during mathematical operations, in certain cases the results of a sequence of operations can be very
different from the mathematical results. Get a matrix, find its inverse and multiply the two. You are assumed to get the
identity but you end up with something different. Maybe you should check which precision your bank is using.

When the number of examples is large, equation (4.6) is the solution of a linear system in the over-determined case
(more linear equations than variables). In particular, matrix XTX must be non-singular, and this can only happen if
the training set points x1, . . . , x` do not lie in a proper subspace of Rd, i.e., they are not “aligned.” In many cases, even
though XTX is invertible, the distribution of the training points is not generic enough to make it stable. Stability
here means that small perturbations of the sample points lead to small changes in the results. An example is given
in Fig. 4.7, where a bad choice of sample points (in the right plot, x1 and x2 are not independent) makes the system
much more dependent on noise, or even to rounding errors.

If there is no way to modify the choice of the training points, the standard mathematical tool to ensure numerical
stability when sample points cannot be distributed at will is known as ridge regression. It consists of the addition of
a regularization term to the (least squares) error function to be minimized:

error(w;λ) =
∑̀
i=1

(wT · xi − yi)2 + λwT ·w. (4.7)

The minimization with respect to w leads to the following:

w∗ = (λI +XTX)−1XTy.

The insertion of a small diagonal term makes the inversion more robust. Moreover, one is actually demanding
that the solution takes the size of the weight vector into account, to avoid steep interpolating planes such as the one in
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Figure 4.7: A well-spread training set (left) provides a stable numerical model, whereas a bad choice of sample points
(right) may result in wildly changing planes, including very steep ones (adapted from [27]).

Figure 4.8: A “ridge” plot showing how weights tend to be contracted for large values of λ.

the right plot of Fig. 4.7. The term “ridge” refers to the graphical ridge pattern created when the optimal weights are
plotted as a function of λ. As you can imagine, larger λ values causes an overall shrinkage of the weights (Fig. 4.8).

If you are interested, the theory justifying the approach is based on Tichonov regularization, which is the most
commonly used method for curing ill-posed problems. A problem is ill-posed if no unique solution exists because
there is not enough information specified in the problem, for example because the number of examples is limited. It
is necessary to supply extra information or smoothness assumptions. By jointly minimizing the empirical error and
penalty, one seeks a model that not only fits well but is also simple to avoid large variation which occurs in estimating
complex models.
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You do not need to know the theory to use machine learning but you need to be aware of the problem, this will
raise your debugging capability if complex operations do not lead to the expected result. Avoiding very large or very
small numbers is a pragmatic way to cure most problems, for example by scaling your input data before starting with
machine learning.

Gist
Traditional linear models for regression (linear approximation of a set of input-output pairs) identify the best
possible linear fit of experimental data by minimizing a sum the squared errors between the values pre-
dicted by the linear model and the output values of the training examples. Minimization can be “one shot”
by generalizing matrix inversion in linear algebra (pseudo-inverse), or iteratively, by gradually modifying
the model parameters to lower the error. The pseudo-inverse method is possibly the most used technique
for fitting experimental data.

In classification, linear models aim at separating examples with lines, planes and hyper-planes. To
identify a separating plane one can require a mapping of the inputs to two distinct output values (like
+1 and −1) and use regression. More advanced techniques to find robust separating hyper-planes when
considering generalization will be the Support Vector Machines described in the future chapters.

Real numbers do not live in a computer and their approximation by limited-size binary numbers is a
possible cause of mistakes and instability (small perturbations of the sample points leading to large changes
in the results).

Some machine learning methods are loosely related to the way in which biological brains learn from
experience and function. Learning to drive a bicycle is not a matter of symbolic logic and equations but a
matter of gradual tuning and ... rapidly recovering from initial accidents.
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Chapter 5

Mastering generalized linear least-squares

Entia non sunt multiplicanda praeter necessitatem.
Entities must not be multiplied beyond necessity.

(William of Ockham c. 1285 – 1349)

Some issues were left open in the previous chapter about linear models, models with the coefficients appearing
in a linear manner (a.k.a. linear-in-the-coefficients). The output of a serious effort is not only a single “take it or
leave it” model. Usually one deals with multiple modeling architectures, with judging the quality of a model (the
goodness-of-fit in our case) and selecting the best possible architecture, with determining confidence regions (e.g.,
error bars) for the estimated model parameters, etc. After reading this chapter you are supposed to raise from the status
of casual user to that of professional least-squares guru.

In the previous chapter we mentioned a trick to take care of some nonlinearities: mapping the original input by
some nonlinear functionϕ and then considering a linear model in the transformed input space (see Section 4.2). While
the topics discussed in this Chapter are valid in the general case, your intuition will be helped if you keep in mind the

47
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special case of polynomial fits in one input variable, in which the nonlinear functions consist of powers of the original
inputs, like

φ0(x) = x0 = 1, φ1(x) = x1 = x, φ2(x) = x2, . . .

The case is of particular interest and widely used in practice to deserve being studied.
Given raw data in the form of pairs of values:

(xi, yi), i ∈ 1, 2, . . . , N,

the aim is to derive a function f(x) which appropriately models the dependence of Y on X , so that one can evaluate
the function on new and unknown x values.

Identifying significant patterns and relationships implies eliminating insignificant details like measurement noise,
stochastic errors cause by the finite-precision physical measurements. Think about modeling how the height of a
person changes with age. If you repeat measuring with a high precision instrument, you will get different values for
each measurement. A reflection of these noisy measurements is the simple fact that you are giving a limited number
of digits to describe your height, no mentally sane person would answer 1823477 micrometers when asked about his
height.

Figure 5.1: Comparison between interpolation and fitting. The number of free parameters of the polynomial (equal to
its degree minus one) changes from the number of data points (left), to three (right).

Coming back to the model, we do not demand that the function models also the noise and that the plot passes
exactly through the sample values. I.e., we don’t require that yi = f(xi) for all points. We do not deal with inter-
polation but with fitting (being compatible, similar or consistent). Losing absolute fidelity is not a weakness but a
strength, providing an opportunity to simplifying the analysis, create more powerful models and permit reasoning that
isn’t bogged down by trivia. A comparison between a function interpolating all the examples, and a much simpler
one, like in Fig. 5.1, shows the obvious difference. Occam’s razor illustrates this basic principle that simpler models
should be preferred over unnecessarily complicated ones.

The freedom to choose among different models, e.g., by picking polynomials of different degrees, is accompanied
by the responsibility of judging the goodness of the different models. A standard way for polynomial fits is by statistics
from the resulting sum-of-squared-errors.

5.1 Goodness of fit and and chi-square
Let’s start with a polynomial of degree M − 1, where M is defined as the degree bound, equal to the degree plus
one. M is also the number of free parameters (the constant term in the polynomial also counts). One searches for the
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polynomial of a suitable degree that best describes the data distribution:

f(x, c) = c0 + c1x+ c2x
2 + · · ·+ cM−1x

M−1 =

M−1∑
k=0

ckx
k. (5.1)

When the dependence on parameters c is taken for granted, we will just use f(x) for brevity. Because a polynomial
is determined by its M parameters (collected in vector c), we search for optimal values of these parameters. This is an
example of what we call the power of optimization. The general recipe is: formulate the problem as one of minimizing
a function and then resort to optimization.

For reasons having roots in statistics and maximum-likelihood estimation, described in the following Section 5.2, a
widely used merit function to estimate the goodness-of-fit is given by the chi-squared, a term derived from the Greek
letter used to identify a connected statistical distribution, χ2:

χ2 =

N∑
i=1

(
yi − f(xi)

σi

)2

. (5.2)

The explanation is simple if the parameters σi are all equal to one: in this case, χ2 measures the sum of squared
errors between the actual value yi and the value obtained by the model f(xi), and it is precisely the ModelError(w)
function described in the previous Chapter.

In some cases, however, the measurement processes may be different for different points and one has an estimate
of the measurement error σi, assumed to be the standard deviation. Think about measurements done with instruments
characterized by different degrees of precision, like a meter stick and a high-precision caliper.

The chi-square definition is a precise, mathematical method of expressing the obvious fact that an error of one
millimeter is acceptable with a meter stick, much less so with a caliper: when computing χ2, the errors have to be
compared to the standard deviation (i.e., normalized), therefore the error is divided by σi. The result is a number that
is independent from the actual error size, and whose meaning is standardized.

Now that you have a precise way of measuring the quality of a polynomial model by the normalized chi-square,
your problem becomes that of finding polynomial coefficients minimizing this error. An inspiring physical interpre-
tation is illustrated in Fig. 5.2. Luckily, this problem is solvable with standard linear algebra techniques, as already
explained in the previous chapter.

Here we complete the details of the analysis exercise as follows: take partial derivatives ∂χ2/∂ck and require that
they are equal to zero. Because the chi-square is quadratic in the coefficients ck, we get a set of M linear equations to
be solved:

0 =
∂χ2

∂ck
= 2

N∑
i=1

1

σi2

yi −M−1∑
j=0

cjxi
j

xi
k, for k = 0, 1, . . . ,M − 1 (5.3)

To shorten the math it is convenient to introduce the N ×M matrix A = (aij) such that aij = xi
j/σi, containing

powers of the xi coordinates normalized by σi, the vector c of the unknown coefficients, and the vector b such that
bi = yi/σi.

It is easy to check that the linear system in equation (5.3) can be rewritten in a more compact form as:

(AT ·A) · c = AT · b, (5.4)

which is called the normal equation of the least-squares problem.
The coefficients can be obtained by deriving the inverse matrixC = (AT ·A)−1, and using it to obtain c = C·AT ·b.

Interestingly, C is the covariance matrix of the coefficients’ vector c seen as a random variable: the diagonal elements
of C are the variances (squared uncertainties) of the fitted parameters cii = σ2(ci), and the off-diagonal elements are
the covariances between pairs of parameters.
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Figure 5.2: A fit by a line with a physical analogy: each data point is connected by a spring to the fitting line. The
strength of the spring is proportional to 1/σi

2. The minimum energy configuration corresponds to the minimum
chi-square.

The matrix (AT · A)−1AT is the pseudo-inverse already encountered in the previous chapter, generalizing the
solutions of a system of linear equations in the least-squared-errors sense:

min
c∈RM

χ2 = ‖A · c− b‖2. (5.5)

If an exact solution of equation (5.5) is possible the resulting chi-squared value is zero, and the line of fit passes
exactly through all data points. This occurs if we have M parameters and M distinct pairs of points (xi, yi), leading
to an invertible system of M linear equations in M unknowns. In this case we are not dealing with an approximated fit
but with interpolation. If no exact solution is possible, as in the standard case of more pairs of points than parameters,
the pseudo-inverse gives us the vector c such that A · c is as close as possible to b in the Euclidean norm, a very
intuitive way to interpret the approximated solution. Remember that good models of noisy data need to summarize the
observed data, not to reproduce them exactly, so that the number of parameters has to be (much) less than the number
of data points.

The above derivations are not limited to fitting a polynomial, we can now easily fit many other functions. In
particular, if the function is given by a linear combination of basis functions φk(x), as

f(x) =

M−1∑
k=0

ckφk(x)

most of the work is already done. In fact, it is sufficient to substitute the basis function values in the matrix A, which
now become aij = φj(xi)/σi. We have therefore a powerful mechanism to fit more complex functions like, for
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example,
f(x) = c0 + c1 cosx+ c2 log x+ c3 tanhx3.

Let’s only note that the unknown parameters must appear linearly, they cannot appear in the arguments of functions.
For example, by this method we cannot fit directly f(x) = exp (−cx), or f(x) = tanh(x3/c). At most, we can try
to transform the problem to recover the case of a linear combination of basis functions. In the first case, we can for
example fit the values ŷi = log yi with a linear function f(ŷ) = −cx, but this trick will not be possible in the general
case.

Figure 5.3: A polynomial fit: price of cars as a function of engine power.

A polynomial fit is shown as a curve in the scatterplot of Fig. 5.3, which shows a fit with a polynomial of degree
2 (a parabola). A visual comparison of the line against the data points can already give a visual feedback about the
goodness-of-fit (the chi-squared value). This ‘chi-by-eye” approach consists of looking at the plot and judging it to
look nice or bad with respect to the scatterplot of the original measurements.

When the experimental data do not follow a polynomial law, fitting a polynomial is not very useful and can be
misleading. As explained above, a low value of the chi-squared can still be reached by increasing the degree of the
polynomial: this will give it a larger freedom of movement to pass closer and closer to the experimental data. The
polynomial will actually interpolate the points with zero error if the number of parameters of the polynomial equals
the number of points. But this reduction in the error will be paid by wild oscillations of the curve between the original
points, as shown in Fig. 5.1 (left). The model is not summarizing the data and it has serious difficulties in generalizing.
It fails to predict y values for x values which are different from the ones used for building the polynomial.

In statistics, overfitting occurs when a model tends to describe random error or noise instead of the underlying
relationship. Overfitting occurs when a model is too complex, such as having too many degrees of freedom, in relation
to the amount of data available (too many coefficients in the polynomial in our case).

An overfitted model will generally have a poor predictive performance. An analogy in human behavior can be
found in teaching: if a student concentrates and memorizes only the details of the teacher’s presentation (for example
the details of a specific exercise in mathematics) without extracting and understanding the underlying rules and mean-
ing, he will only be able to vacuously repeat the teacher’s words by heart, but not to generalize his knowledge to new
cases.
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5.2 Least squares and maximum likelihood estimation
Now that the basic technology for generalized least-squares fitting is known, let’s consider additional motivations
from statistics. Given the freedom of selecting different models, for example different degrees for a fitting polynomial,
instructions to identify the best model architecture are precious to go beyond the superficial “chi-by-eye” method.

The least-squares fitting process is as follows:

1. Assume that Mother Nature and the experimental procedure (including measurements) are generating indepen-
dent experimental samples (xi, yi). Assume that the yi values are affected by errors distributed according to a
normal (i.e., Gaussian) distribution.

2. If the model parameters c are known, one can estimate the probability of our measured data, given the parame-
ters. In statistical terms this is called likelihood of the data.

3. Least-squares fitting is equivalent to searching for the parameters which are maximizing the likelihood of our
data. Least-squares is a maximum likelihood estimator. Intuitively, this maximizes the “agreement” of the
selected model with the observed data.

The demonstration is straightforward. You may want to refresh Gaussian distributions in Section 5.3 before pro-
ceeding. The probability for a single data point to be in an interval of width dy around its measure value yi is
proportional to

exp

(
−1

2

(
yi − f(xi, c)

σi

)2
)

dy. (5.6)

Because points are generated independently, the same probability for the entire experimental sequence (its likeli-
hood) is obtained by multiplying individual probabilities:

dP ∝
N∏
i=1

exp

(
−1

2

(
yi − f(xi, c)

σi

)2
)

dy. (5.7)

One is maximizing over c and therefore constant factors like ( dy)N can be omitted. In addition, maximizing the
likelihood is equivalent to maximizing its logarithm (the logarithm is in fact an increasing function of its argument).
Well, because of basic properties of logarithms (namely they transform products into sums, powers into products, etc.),
the logarithm of equation (5.7), when constant terms are omitted, is precisely the definition of chi-squared in equation
(5.2). The connection between least-squares fitting and maximum likelihood estimation is now clear.

5.2.1 Hypothesis testing
Statistical hypothesis testing can be used to judge the quality of a model. The fundamental question to ask is:
considering theN experimental points and the estimatedM parameters, what is the probability that, by chance, values
equal to or larger than the measured chi-squared are obtained? The above question translates the obvious question
about our data (“what is the likelihood of measuring the data that one actually did measure?”) into a more precise
statistical form, i.e.: “what’s the probability that another set of sample data fits the model even worse than our
current set does?” If this probability is high, the obtained discrepancies between yi and f(xi, c) make sense from
a statistical point of view. If this probability is very low, either you have been very unlucky, or something does not
work in your model: errors are too large with respect to what can be expected by Mother Nature plus the measurement
generation process.

Fisher introduced the concept of null hypothesis by an example[127], the now famous “lady tasting tea” experi-
ment. A lady claimed the ability to determine the means of tea preparation by taste. Fisher proposed an experiment
and an analysis to test her claim. She was to be offered 8 cups of tea, 4 prepared by each method, for determination.
He proposed the null hypothesis that she possessed no such ability, so she was just guessing. With this assumption,
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the number of correct guesses (the test statistic) formed a binomial distribution. Fisher calculated that her chance of
guessing all cups correctly was 1/70. Fisher commented: “. . . the null hypothesis is never proved or established, but is
possibly disproved, in the course of experimentation. Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.”

Let χ̂2 be the chi-squared computed on your chosen model for a given set of inputs and outputs. This value
follows a probability distribution called, again, chi-squared with ν degrees of freedom (χ2

ν), where the number of
degrees of freedom ν determines how much the dataset is “larger” than the model. If we assume that errors are
normally distributed with null mean and unit variance (remember, we already normalized them), then ν = N −M .
In the general case, the correct number of degrees of freedom also depends on the number of parameters needed
to express the error distribution (e.g., skewness). Our desired goodness-of-fit measure is therefore expressed by the
parameter Q as follows:

Q = Qχ̂2,ν = Pr(χ2
ν ≥ χ̂2).

The value of Q for a given empirical value of χ̂2 and the given number of degrees of freedom can be calculated or
read from tables1.

The reduced chi-square statistic χ2
red is simply the chi-squared divided by the number of degrees of freedom, in

our example ν = N −M . The advantage of the reduced chi-squared is that it already normalizes for the number of
data points and model complexity. Some rules of thumb follow.

• A value χ2
red ≈ 1 is what we would expect if the σi are good estimates of the measurement noise and the model

is good.

• Values of χ2
red that are too large mean that either you underestimated your source of errors, or that the model

does not fit very well. If you trust your σi’s, maybe increasing the polynomial degree will improve the result.

• Finally, if χ2
red is too small, then the agreement between the model f(x) and the data (xi, yi) is suspiciously

good; we are possibly in the situation shown in the left-hand side of Fig. 5.1. The model is ’over-fitting’ the
data: either the model is improperly fitting noise, or the error variance has been overestimated. We should try
reducing the polynomial degree2.

The importance of the number of degrees of freedom ν, which decreases when the number of parameters in
the model increases, becomes apparent when models with different numbers of parameters are compared. As we
mentioned, it is easy to get a low chi-square value by increasing the number of parameters. Using Q to measure the
goodness-of-fit takes this effect into account. A model with a larger chi-square value (larger errors) can produce a
higher Q value (i.e., be better) with respect to one with smaller errors but a larger number of parameters.

By using the goodness-of-fit Q measure one can rank different models and pick the most appropriate one. The
process sounds now clear and quantitative. If you are fitting a polynomial, you can now repeat the process with
different degrees, measure Q and select the best model architecture (the best polynomial degree).

But the devil is in the details: the machinery works provided that the assumptions are correct, provided that errors
follow the correct distribution, that the σi are known and appropriate, that the measurements are independent. By the
way, asking for σi values can be a puzzling question for non-sophisticated users. You need to proceed with caution:
statistics is a minefield if assumptions are wrong and a single wrong assumption makes the entire chain of arguments
explode.

1The exact formula is

Qχ̂2,ν = Pr(χ2
ν ≥ χ̂2) =

(
2
ν
2 Γ
(ν

2

))−1
∫ +∞

χ̂2
t
ν
2
−1e−

t
2 dt,

which can be easily calculated in this era of cheap CPU power.
2Pearson’s chi − squared test provides objective thresholds for assessing the goodness-of-fit based on the value of χ2, on the number of

parameters and of data points, and on a desired confidence level, as explained in Section 5.2.
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5.2.2 Cross-validation

Up to now we presented “historical” results, statistics was born well before the advent of computers, when calcula-
tions were very costly. Luckily, the current abundance of computational power permits robust techniques to estimate
error bars and gauge the confidence in your models and their predictions. These methods do not require advanced
mathematics, they are normally easy to understand, and they tend to be robust with respect to different distributions of
errors.

In particular the cross-validation method of Section 3.2 can be used to select the best model. As usual the basic
idea is to keep some measurements in the pocket, use the other ones to identify the model, take them out of the pocket
to estimate errors on new examples, repeat and average the results. These estimates of generalization can be used to
identify the best model architecture in a robust manner, provided that data is abundant. The distribution of results by
the different folds of cross-validation gives information about the stability of the estimates, and permits to assert that,
with a given probability (confidence), expected generalization results will be in a given performance range. The issue
of deriving error bars for performance estimates, or, in general, for quantities estimated from the data, is explored in
the next section.

5.3 Bootstrapping your confidence (error bars)

Let’s imagine that Mother Nature is producing data (input-output pairs) from a true polynomial characterized by
parameters c. Mother Nature picks all xi’s randomly, independently and from the same distribution and produces
yi = f(xi, c) + εi, according to equation (5.1) plus error εi.

By using generalized linear least squares you determine the maximum likelihood value c(0) for the (xi, yi) pairs
that you have been provided. If the above generation by Mother Nature and the above estimation process are repeated,
there is no guarantee that you will get the same value c(0) again. On the contrary, most probably you will get a different
c(1), then c(2), etc.

It is unfair to run the estimation once and just use the first c(0) that you get. If you could run many processes you
could find average values for the coefficients, estimate error bars, maybe even use many different models and average
their results (ensemble or democratic methods will be considered in later chapters). Error bars allow quantifying
your confidence level in the estimation, so that you can say: with probability 90% (or whatever confidence value you
decide), the coefficient ci will have a value between c − B and c + B, B being the estimated error bar3. Or, “We are
99% confident that the true value of the parameter is in our confidence interval.” When the model is used, similar error
bars can be obtained on the predicted y values. For data generated by simulators, this kind of repeated and randomized
process is called a Monte Carlo experiment. Monte Carlo methods are a class of computational algorithms that
rely on repeated random sampling to obtain numerical results; i.e., by running simulations many times over just like
actually playing and recording your results in a real casino situation: hence the name from the town of Monte Carlo in
the Principality of Monaco, the European version of Las Vegas.

On the other hand, Mother Nature, i.e. the process generating your data, can deliver just a single set of measure-
ments, and repeated interrogations can be too costly to afford. How can you get the advantages of repeating different
and randomized estimates by using just one series of measurements? At first, it looks like an absurdly impossible
action. Similar absurdities occur in the “Surprising Adventures,” when Baron Munchausen pulls himself and his horse
out of a swamp by his hair (Fig. 5.4), and to imitate him one could try to “pull oneself over a fence by one’s bootstraps,”
hence the modern meaning of the term bootstrapping as a description of a self-sustaining process.

Well, it turns out that there is indeed a way to use a single series of measurements to imitate a real Monte Carlo
method. This can be implemented by constructing a number of resamples of the observed dataset (and of equal size).
Each new sample is obtained by random sampling with replacement, so that the same case can be taken more than once
(Fig. 5.5). By simple math and for large numbers N of examples, about 37% of the examples (actually approximately

3As a side observation, if you know that an error bar is 0.1, you will avoid putting too many digits after the decimal point. If you estimate your
height, please do not write “182.326548435054cm”: stopping at 182.3cm (plus or minus 0.1cm) will be fine.
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Figure 5.4: Baron Munchausen pulls himself out of a swamp by his hair.

1/e) are not present in a sample, because they are replaced by multiple copies of the original cases4.
For each new i-th resample the fit procedure is repeated, obtaining many estimates ci of the model parameters.

One can then analyze how the various estimates are distributed, using observed frequencies to estimate a probability
distribution, and summarizing the distribution with confidence intervals. For example, after fixing a confidence level
of 90% one can determine the region around the median value of c where an estimated c will fall with probability
0.9. Depending on the sophistication level, the confidence region in more than one dimension can be given by rect-
angular intervals or by more flexible regions, like ellipses. An example of a confidence interval in one dimension (a
single parameter c to be estimated) is given in Fig. 5.6. Note that confidence intervals can be obtained for arbitrary
distributions, not necessarily normal, and confidence intervals do not need to be symmetric around the median.

Appendix: Plotting confidence regions (percentiles and box plots)

A quick-and-dirty way to analyze the distribution of estimated parameters is by histograms (counting frequencies for
values occurring in a set of intervals). In some cases the histogram contains more information than what is needed,
and the information is not easily interpreted. A very compact way to represent a distribution of values is by its average

4In spite of its “brute force” quick-and-dirty look, bootstrapping enjoys a growing reputation also among statisticians. The basic idea is that the
actual data set, viewed as a probability distribution consisting of a sum of Dirac delta functions on the measured values, is in most cases the best
available estimator of the underlying probability distribution [300].
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101 2 3 4 5 6 7 8 9

Figure 5.5: Bootstrapping: 10 balls are thrown with uniform probability to end up in the 10 boxes. They decide which
cases and how many copies are present in the bootstrap sample (two copies of case 1, one copy of case 2, zero copies
of case 3,. . .

c

Frequencies

(estimate of probabilities)

value

90% confidence region

Average    value

c

Figure 5.6: Confidence interval: from the histogram characterizing the distribution of the estimated c values one
derives the region around the average value collecting 90% of the cases. Other confidence levels can be used, like
68.3%, 95.4%. etc. (the historical probability values corresponding to σ and 2σ in the case of normal distributions).

value µ. Given a set X of N values xi, the average is

µ(X ) = (

N∑
i=1

xi)/N, xi,...,N ∈ X . (5.8)
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Figure 5.7: Comparison between box plot (above) and a normal distribution. The X axis shows positions in terms of
the standard deviation σ. For example, in the bottom plot, 68.27% of the points fall within plus or minus one σ from
the mean value.

The average value is also called the expected value, or mathematical expectation, or mean, or first moment, and
denoted in different ways, for example as x or E(x).

A related but different value is the median, defined as the value separating the higher half of a sample from the
lower half. Given a finite list of values, it can be found by sorting all the observations from the lowest to the highest
value and picking the middle one. If some outliers are present (data which are far from most of the other values), the
median is a more robust measure than the average, which can be heavily influenced by outliers. On the contrary, if
the data are clustered, like when they are produced by a normal distribution, the average tends to coincide with the
median. The median can be generalized by considering the percentile, the value of a variable below which a certain
percentage of observations fall. So the 10th percentile is the value below which 10 percent of the observations are
found. Quartiles are a specific case, they are the lower quartile (25th percentile), the median, and the upper quartile
(75th percentile). The interquartile range (IQR), also called the midspread or middle fifty, is a measure of statistical
dispersion, being equal to the difference between the third and first quartiles.

A box plot, also known as a box-and-whisker plot, shows five-number summaries of the set of values: the
smallest observation (sample minimum), the lower quartile (Q1), the median (Q2), the upper quartile (Q3), and the
largest observation (sample maximum). A box plot may also indicate which observations, if any, might be considered
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outliers, usually shown by circles. In a box plot, the bottom and top of the box are always the lower and upper quartiles,
and the band near the middle of the box is always the median. The ends of the whiskers can represent several possible
alternative values, for example:

• the minimum and maximum of all the data;

• one standard deviation above and below the mean of the data;

• the 9th percentile and the 91st percentile;

• . . .

Fig. 5.7 presents a box plot with 1.5 IQR whiskers, which is the usual (default) value, corresponding to about plus
or minus 2.7σ and 99.3 coverage, if the data are normally distributed. In other words, for a Gaussian distribution, on
average less than 1 percent of the data fall outside the box-plus-whiskers range, a useful indication to identify possible
outliers. As mentioned, an outlier is one observation that appears to deviate markedly from other members of the
sample in which it occurs. Outliers can occur by chance in any distribution, but they often indicate either measurement
errors or that the population has a heavy-tailed distribution. In the former case one should discard them or use statistics
that are robust to outliers, while in the latter case one should be cautious in relying on tools or intuitions that assume a
normal distribution.

Gist
Polynomial fits are a specific way to use linear-in-the-coefficients models to deal with nonlinear problems.
The model consists of a linear sum of coefficients (to be determined) multiplying products of original input
variables. The same technology works if products are substituted with arbitrary functions of the input
variables, provided that the functions are fixed (no free parameters in the functions, only as multiplicative
coefficients). Optimal coefficients are determined by minimizing a sum of squared errors, which leads to
solving a set of linear equations. If the number of coefficients is large with respect to the number of input-
output examples, over-fitting appears and it is dangerous to use the model to derive outputs for novel input
values.

The goodness of a polynomial fit can be judged by evaluating the probability of getting the observed
discrepancy between predicted and measured data (the likelihood of the data given the model parameters).
If this probability is very low we should not trust the model too much. But wrong assumptions about
how the errors are generated may easily lead us to overly optimistic or overly pessimistic conclusions.
Statistics builds solid scientific constructions starting from assumptions. Even the most solid statistics
construction will be shattered if built on the sand of invalid assumptions. Luckily, approaches based on
easily affordable massive computation like cross-validation are easy to understand and robust.

“Absurdities” like bootstrapping (re-sampling the same data with replacement, and repeating the es-
timation process in a Monte Carlo fashion) can be used to obtain confidence intervals around estimated
parameter values.

You just maximized the likelihood of being recognized as linear least-squares guru.



Chapter 6

Rules, decision trees, and forests

If a tree falls in the forest and there’s no one there to hear it, does it make a sound?

Rules are a way to condense nuggets of knowledge in a way amenable to human understanding. If “customer
is wealthy” then “he will buy my product.” If “body temperature greater than 37 degrees Celsius” then “patient is
sick.” Decision rules are commonly used in the medical field, in banking and insurance, in specifying processes to
deal with customers, etc.

In a rule one distinguishes the antecedent, or precondition (a series of tests), and the consequent, or conclusion.
The conclusion gives the output class corresponding to inputs which make the precondition true, or a probability
distribution over the classes if the class is not 100% clear. Usually, the preconditions are AND-ed together: all tests
must succeed if the rule is to “fire,” i.e., to lead to the conclusion. If “distance less than 2 miles” AND “sunny” then
“walk.” A test can be on the value of a categorical variable (“sunny”), or on the result of a simple calculation on
numerical variables (“distance less than 2 miles”). The calculation has to be simple if a human has to understand. A
practical improvement is to unite in one statement also the classification when the antecedent is false. If “distance less
than 3 kilometers” AND “no car” then “walk” else “take the bus”.

59
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Input data Set of rules

wealthy European,

if

"wealthy"

"European" AND "distance < 2 miles" then "walk"

then "use a car"

?distance 1 mile

if

Figure 6.1: A set of unstructured rules can lead to contradictory classifications.

Extracting knowledge nuggets as a set of simple rules is enticing. But designing and maintaining rules by hand
is expensive and difficult. When the set of rules gets large, complexities can appear, like rules leading to different
and contradictory classifications (Fig. 6.1). In these cases, the classification may depend on the order with which the
different rules are tested on the data and fire. Automated ways to extract non-contradictory rules from data are
precious.

Instead of dealing with very long preconditions with many tests, breaking rules into a chain of simple questions
has value. In a greedy manner, the most informative questions are better placed at the beginning of the sequence,
leading to a hierarchy of questions, from the most informative to the least informative. The above motivations
lead in a natural way to consider decision trees, an organized hierarchical arrangement of decision rules, without
contradictions (Fig. 6.2, top).

Decision trees have been popular since the beginning of machine learning (ML). Now, it is true that only small
and shallow trees can be “understood” by a human, but the popularity of decision trees is recently growing with
the abundance of computing power and memory. Many, in some cases hundreds of trees, can be jointly used as
decision forests to obtain robust classifiers. When considering forests, the care for human understanding falls in the
background, the pragmatic search for robust top-quality performance without the risk of overtraining comes to the
foreground.

6.1 Building decision trees

A decision tree is a set of questions organized in a hierarchical manner which can be represented graphically as a tree.
Historically, trees in ML, as in all of Computer Science, tend to be drawn with their root upwards — imagine trees
in Australia if you are in the Northern hemisphere. For a given input object, a decision tree estimates an unknown
property of the object by asking successive questions about its known properties. Which question to ask next depends
on the answer to the previous questions and this relationship is represented graphically as a path through the tree which
the object follows, the orange thick path in the bottom part of Fig. 6.2. The decision is then made based on the terminal
node on the path. Terminal nodes are called leaves. A decision tree can also be thought of as a technique for splitting
complex problems into a set of simpler ones, until the problem is so simple (the leaf) that the answer is ready.

A basic way to build a decision tree from labeled examples proceeds in a greedy manner: the most informative
questions are asked as soon as possible in the hierarchy. Imagine that one considers the initial set of labeled examples.
A question with two possible outputs (“YES” or “NO”) will divide this set into two subsets, containing the examples
with answer “YES”, and those with answer “NO”, respectively. The initial situation is usually confused, and examples
of different classes are present. When the leaves are reached after the chain of questions descending from the root, the
final remaining set in the leaf should be almost “pure”, consisting of examples of the same class. This class is returned
as classification output for all cases trickling down to reach that leaf.

We need to transition from an initial confused set to a final family of (nearly) pure sets. A greedy way to aim at
this goal is to start with the “most informative” question. This will split the initial set into two subsets, corresponding
to the “YES” or “NO” answer, the children sets of the initial root node (Fig. 6.3). A greedy algorithm will take a first
step leading as close as possible to the final goal. In a greedy algorithm, the first question is designed in order to get
the two children subsets as pure as possible. After the first subdivision is done, one proceeds in a recursive manner
(Fig. 6.4), by using the same method for the left and right children sets, designing the appropriate questions, and so on
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Figure 6.2: A decision tree (top), and the same tree working to reach a classification (bottom). The data point arriving
at the split node is sent to its left or right child node according to the result of the test function.
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question2 ?

YES NO

question1 ?

YES NO

Subset of cases with answer YES Subset of cases with answer NO

Original set of examples

(classes are green and yellow)

Figure 6.3: Purification of sets (examples of two classes): question2 produces purer subsets of examples at the children
nodes.

and so forth until the remaining sets are sufficiently pure to stop the recursion. The complete decision tree is induced
in a top-down process guided by the relative proportions of cases remaining in the created subsets.

question2 ?

YES NO

question3 ?

YES NO

...

Figure 6.4: Recursive step in tree building: after the initial purification by question2, the same method is applied on
the left and right example subsets. In this case question3 is sufficient to completely purify the subsets. No additional
recursive call is executed on the pure subsets.

The two main ingredients are a quantitative measure of purity and the kind of questions to ask at each node. We
all agree that maximum purity is for subsets with cases of one class only, the different measures deal with measuring
impure combinations. Additional spices have to do with termination criteria: let’s remember that we aim at general-
ization so that we want to discourage very large trees with only one or two examples left in the leaves. In some cases
one stops with slightly impure subsets, and an output probability for the different classes when cases reach a given leaf
node.

For the following description, let’s assume that all variables involved are categorical (names, like the “European”
in the above example). The two widely used measures of purity of a subset are the information gain and the Gini
impurity. Note that we are dealing with supervised classification, so that we know the correct output classification for
the training examples.
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Figure 6.5: Two distributions with widely different entropy. High entropy (left): events have similar probabilities, the
uncertainty is close to the maximum one (log n). Low entropy (right): events have very different probabilities, the
uncertainty is small and close to zero because one event collects most probability.

Information gain Suppose that we sample from a set associated to an internal node or to a leaf of the tree. We are
going to get examples of a class y with a probability Pr(y) proportional to the fraction of cases of the class present
in the set. The statistical uncertainty in the obtained class is measured by Shannon’s entropy of the label probability
distribution:

H(Y ) = −
∑
y∈Y

Pr(y) log Pr(y). (6.1)

In information theory, entropy quantifies the average information needed to specify which event occurred (Fig. 6.5).
If the logarithm’s base is 2, information (hence entropy) is measured in bits. Entropy is maximum, H(Y ) = log n,
when all n classes have the same share of a set, while it is minimum, H(Y ) = 0, when all cases belong to the same
class (no information is needed in this case, we already know which class we are going to get).
In the information gain method the impurity of a set is measured by the entropy of the class probability distribution.
Knowledge of the answer to a question will decrease the entropy, or leave it equal only if the answer does not depend
on the class. Let S be the current set of examples, and let S = SYES ∪ SNO be the splitting obtained after answering a
question about an attribute. The ideal question leaves no indecision: all elements in SYES are cases of one class, while
elements of SNO belong to another class, therefore the entropy of the two resulting subsets is zero.
The average reduction in entropy after knowing the answer, also known as the “information gain”, is the mutual infor-
mation (MI) between the answer and the class variable. With this notation, the information gain (mutual information)
is:

IG = H(S)− |SYES|
|S|

H(SYES)− |SNO|
|S|

H(SNO). (6.2)

Probabilities needed to compute entropies can be approximated with the corresponding frequencies of each class value
within the sample subsets.
Information gain is used by the ID3, C4.5 and C5.0 methods pioneered by Quinlan [301]. Let’s note that, because we
are interested in generalization, the information gain is useful but not perfect. Suppose that we are building a decision
tree for some data describing the customers of a business and that each node can have more than two children. One
of the input attributes might be the customer’s credit card number. This attribute has a high mutual information with
respect to any classification, because it uniquely identifies each customer, but we do not want to include it in the de-
cision tree: deciding how to treat a customer based on their credit card number is unlikely to generalize to customers
we haven’t seen before (we are over-fitting).
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Gini impurity Imagine that we extract a random element from a set and label it randomly, with probability propor-
tional to the shares of the different classes in the set. Primitive as it looks, this quick and dirty method produces zero
errors if the set is pure, and a small error rate if a single class gets the largest share of the set.
In general, the Gini impurity (GI for short) measures how often a randomly chosen element from the set would be
incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset 1 . It is computed as
the expected value of the mistake probability. For each class, one adds the probability of mistaking the classification
of an item in that class (i.e., the probability of assigning it to any class but the correct one: 1−pi) times the probability
for an item to be in that class (pi). Suppose that there are m classes, and let fi be the fraction of items labeled with
value i in the set. Then, by estimating probabilities with frequencies (pi ≈ fi):

GI(f) =

m∑
i=1

fi(1− fi) =

m∑
i=1

(fi − fi2) =

m∑
i=1

fi −
m∑
i=1

fi
2 = 1−

m∑
i=1

fi
2. (6.3)

GI reaches its minimum (zero) when all cases in the node fall into a single target category. GI is used by the CART
algorithm (Classification And Regression Tree) proposed by Breiman [66].

When one considers the kind of questions asked at each node, considering questions with a binary output is
sufficient in practice. For a categorical variable, the test can be based on the variable having a subset of the possible
values (for example, if day is “Saturday or Sunday” YES, otherwise NO). For real-valued variables, the tests at each
node can be on a single variable (like: distance< 2 miles) or on simple combinations, like a linear function of a subset
of variables compared with a threshold (like: average of customer’s spending on cars and motorbikes greater than 20K
dollars). The above concepts can be generalized for a numeric variable to be predicted, leading to regression trees
[66]. Each leaf can contain either the average numeric output value for cases reaching the leaf, or a simple model
derived from the contained cases, like a linear fit (in this last case one talks about model trees).

In real-world data, missing values are abundant like snowflakes in winter. A missing value can have two possible
meanings. In some cases the fact that a value is missing provides useful information —e.g., in marketing if a customer
does not answer a question, we can assume that he is not very interested,— and “missing” can be treated as another
value for a categorical variable. In other cases there is no significant information in the fact that a value is missing
(e.g., if a sloppy salesman forgets to record some data about a customer). Decision trees provide a natural way to deal
also with the second case. If an instance reaches a node and the question cannot be answered because data is lacking,
one can ideally “split the instance into pieces”, and send part of it down each branch in proportion to the number of
training instances going down that branch. As Fig. 6.6 suggests, if 30% of training instances go left, an instance with a
missing value at a decision node will be virtually split so that a portion of 0.3 will go left, and a portion of 0.7 will go
right. When the different pieces of the instance eventually reach the leaves, the corresponding leaf output values can
be averaged, or a distribution can be computed. The weights in the weighted average are proportional to the weights
of the pieces reaching the leaves. In the example, the output value will be 0.3 times the output obtained by going left
plus 0.7 times the output obtained by going right. Needless to say, a recursive call of the same routine with the left and
right subtrees as argument is a way to obtain a very compact software implementation.

As a final remark, do not confuse the construction of the decision trees (using the labeled examples, the purity
measures, the choice of appropriate questions) with the usage of a built tree. When used, a input case is rapidly tested
with a single chain of questions leading from the root to the final assigned leaf.

6.2 Democracy and decision forests
In the nineties, researchers discovered how using democratic ensembles of learners (e.g., generic “weak” classifiers
with a performance slightly better than random guessing) yields greater accuracy and generalization[315, 29]. The
analogy is with human society: in many cases setting up a committee of experts is a way to reach a decision with

1For curiosity, a more general version, known as Gini Index, Coefficient, or Ratio, is widely used in econometrics to describe inequalities
in resource distribution within a population; newspapers periodically publish rankings of countries based on their Gini index with respect to
socioeconomical variables — without any explanation for the layperson, of course.
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Figure 6.6: Missing nationality information. The data point arriving at the top node is sent both to its left and right
child nodes with different weights depending on the frequency of “YES” and “NO” answers in the training set.
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a better quality by either reaching consensus or by coming up with different proposals and voting (in other cases it
is a way of postponing a decision, all analogies have their weaknesses). “Wisdom of crowds” [353] is a recent term
to underline the positive effect of democratic decisions. For machine learning, outputs are combined by majority (in
classification) or by averaging (in regression).

Democratic ensembles seem particularly effective for high-dimensional data, with many irrelevant attributes, as
often encountered in real-world applications. The topic is not as abstract as it looks: many relevant applications have
been created, ranging from Optical Character Recognition with neural networks [29] to using ensembles of trees in
input devices for game consoles2 [105].

In order for a committee of experts to produce superior decisions you need them to be different (no groupthink
effect, experts thinking in the same manner are useless) and of reasonable quality. Ways to obtain different trees are,
for example, training them on different sets of examples, or training them with different randomized choices (in the
human case, think about students following different courses on the same subject):

• Creating different sets of training examples from an initial set can be done with bootstrap samples (Sec-
tion 5.3): given a standard training set D of size `, bootstrap sampling generates new training sets by sampling
from D uniformly and with replacement (some cases can be repeated). After ` samples, a training set is ex-
pected to have 1− 1/e ≈ 63.2% of the unique examples of D, the rest being duplicates. Think about randomly
throwing ` balls into ` boxes (recall Fig. 5.5): for large `, only about 63.2% of the boxes will contain one or more
balls. For each ball in the box, pick one version of the corresponding example. In each bootstrap training set,
about one-third of the instances are left out. The application of bootstrapping to the creation of different sample
sets is called bagging (“bootstrap aggregation”): different trees are built by using different random bootstrap
samples and combined by averaging the output (for regression) or voting (for classification).

• Different randomized choices during training can be executed by limiting the choices when picking the optimal
question at a node.

As an example of the differentiating methods just described, here’s how they are implemented in random decision
forests [183, 65]:

• each tree is trained on a bootstrap sample (i.e., with replacement) of the original data set;

• each time a leaf must be split, only a randomly chosen subset of the dimensions is considered for splitting. In
the extreme case, only one random attribute (one dimension) is considered.

To be more precise, if d is the total number of input variables, each tree is constructed as follows: a small number d′

of input variables, usually much smaller than d (in the extreme case just one), are used to determine the decision at
a node. A bootstrap sample (“bag”) is guiding the tree construction, while the cases which are not in the bag can be
used to estimate the error of the tree. For each node of the tree, d′ variables are randomly chosen on which to base the
decision at that node. The best split based on these d′ variables is calculated (“best” according to the chosen purity
criterion, IG or GI). Each time a categorical variable is selected to split on at a node, one can select a random subset
of the categories of the variable, and define a substitute variable equal to 1 when the categorical value of the variable
is in the subset, and 0 outside. Each tree is fully grown and not pruned (as may be done in constructing a normal tree
classifier).

By the above procedure we have actually populated a committee (“forest”) where every expert (“tree”) has received
a different training, because they have seen a different set of examples (by bagging) and because they look at the
problem from different points of view (they use different, randomly chosen criteria at each node). No expert is
guaranteed to be very good at its job: the order at which each expert looks at the variables is far from being the greedy
criterion that favors the most informative questions, thus an isolated tree is rather weak; however, as long as most
experts are better than random classifiers, the majority (or weighted average) rule will provide reasonable answers.

2Decision forests are used for human body tracking in the Microsoft Kinect sensor for the Xbox gaming console.
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Estimates of generalization when using bootstrap sampling can be obtained in a natural way during the training
process: the out-of-bag error (error for cases not in the bootstrap sample) for each data point is recorded and averaged
over the forest.

The relevance of the different variables (feature or attribute ranking) in decision forests can also be estimated
in a simple manner. The idea is: if a categorical feature is important, randomly permuting its values should decrease
the performance in a significant manner. After fitting a decision forest to the data, to derive the importance of the i-th
feature after training, the values of the i-th feature are randomly permuted and the out-of-bag error is again computed
on this perturbed data set. The difference in out-of-bag error before and after the permutation is averaged over all trees.
The score is the percent increase in misclassification rate as compared to the out-of-bag rate with all variables intact.
Features which produce large increase are ranked as more important than features which produce small increases.

The fact that many trees can be used (thousands are not unusual) implies that, for each instance to be classified or
predicted, a very large number of output values of the individual trees are available. By collecting and analyzing the
entire distribution of outputs of the many trees one can derive confidence bars for the regression or probabilities for
classification. For example, if 300 trees predict “sun” and 700 trees predict “rain” we can come up with an estimate of
a 70% probability of “rain.”

Gist
Simple “if-then” rules condense nuggets of information in a way which can be understood by human people.
A simple way to avoid a confusing mess of possibly contradictory rules is to proceed with a hierarchy of
questions (the most informative first) leading to an organized structure of simple successive questions called
a decision tree.

Trees can be learned in a greedy and recursive manner, starting from the complete set of examples,
picking a test to split it into two subsets which are as pure as possible, and repeating the procedure for
the produced subsets. The recursive process terminates when the remaining subsets are sufficiently pure to
conclude with a classification or an output value, associated with the leaf of the tree.

The abundance of memory and computing power permits training very large numbers of different trees.
They can be fruitfully used as decision forests by collecting all outputs and averaging (regression) or voting
(classification). Decision forests have various positive features: like all trees they naturally handle problems
with more than two classes and with missing attributes, they provide a probabilistic output, probabilities
and error bars, they generalize well to previously unseen data without risking over-training, they are fast
and efficient thanks to their parallelism and reduced set of tests per data point.

A single tree casts a small shadow, hundreds of them can cool even the most torrid machine learning
applications.
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Chapter 7

Ranking and selecting features

I don’t mind my eyebrows. They add. . . something to me. I wouldn’t say they were my best feature, though. People tell me they
like my eyes. They distract from the eyebrows.

(Nicholas Hoult)

Before starting to learn a model from the examples, one must be sure that the input data (input attributes or
features) have sufficient information to predict the outputs. And after a model is built, one would like to get insight by
identifying attributes which are influencing the output in a significant manner. If a bank investigates which customers
are reliable enough to give them credit, knowing which factors are influencing the credit-worthiness in a positive or
negative manner is of sure interest.

Feature selection, also known as attribute selection or variable subset selection, is the process of selecting a subset
of relevant features to be used in model construction. Feature selection is different from feature extraction, which
considers the creation of new features as functions of the original features.

69
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The issue of selecting and ranking features is far from trivial. Let’s assume that a linear model is built:

y = w1x1 + w2x2 + ...+ wdxd.

If a weight, say wj , is zero you can easily conclude that the corresponding feature xj does not influence the output.
But let’s remember that numbers are not exact in computers and that examples are “noisy” (affected by measurement
errors) so that getting zero is a very low-probability event indeed. Considering the non-zero weights, can you conclude
that the largest weights (in magnitude) are related to the most informative and significant features?

Unfortunately you cannot. This has to do with how inputs are “scaled”. If weight wj is very large when feature xj
is measured in kilometers, it will jump to a very small value when measuring the same feature in millimeters (if we
want the same result, the multiplication wj × xj has to remain constant when units are changed). An aesthetic change
of units for our measurements immediately changes the weights. The value of a feature cannot depend on your choice
of units, and therefore we cannot use the weight magnitude to assess its importance.

Nonetheless, the weights of a linear model can give some robust information if the inputs are normalized, pre-
multiplied by constant factors so that the range of typical values is the same, for example the approximate range is
from 0 to 1 for all input variables. If selecting features is already complicated for linear models, expect an even bigger
complication for nonlinear ones.

7.1 Selecting features: the context
Let’s now come to some definitions for the case of a classification task (Fig. 3.1 on page 22) where the output variable
c identifies one among Nc classes and the input variable x has a finite set of possible values. For example, think
about predicting whether a mushroom is edible (class 1) or poisonous (class 0). Among the possible features extracted
from the data one would like to obtain a highly informative set, so that the classification problem starts from sufficient
information, and only the actual construction of the classifier is left.

At this point you may ask why one is not using the entire set of inputs instead of a subset of features. After all,
some information shall be lost if we eliminate some input data. True, but the curse of dimensionality holds here:
if the dimension of the input is too large, the learning task becomes unmanageable. Think for example about the
difficulty of estimating probability distributions from samples in very high-dimensional spaces. This is the standard
case in “big data” text and web mining applications, in which each document can be characterized by tens of thousands
dimensions (a dimension for each possible word in the vocabulary), so that vectors corresponding to the documents
can be very sparse in the vector space.

Heuristically, one aims at a small subset of features, possibly close to the smallest possible, which contains
sufficient information to predict the output, with redundancy eliminated. In this way not only memory usage is
reduced but generalization can be improved because irrelevant features and irrelevant parameters are eliminated. Last
but not least, your human understanding becomes easier if the model is small.

Think about recognizing digits from written text. If the text is written on colored paper, maintaining the color of
the paper as a feature will make the learning task more difficult and worsen generalization if paper of different color
is used to test the system.

Feature selection is a problem with many possible solutions and without formal guarantees of optimality. No
simple recipe exists.

First, the designer intuition and existing knowledge should be applied. For example, if your problem is to
recognize handwritten digits, images should be scaled and normalized (a “five” is still a five even if enlarged, reduced,
stretched, more or less illuminated. . . ), and clearly irrelevant features like the color should be eliminated from the
beginning.

Second, one needs a way to estimate the relevance or discrimination power of the individual features and then
one can proceed in a bottom-up or top-down manner, in some cases by directly testing the tentative feature set through
repeated runs of the considered training model. The value of a feature is related to a model-construction method, and
some evaluation techniques depend on the method. One identifies three classes of methods.
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Figure 7.1: A classifier with two binary inputs and one output. Single features in isolation are not informative, both
input features are needed and sufficient for a correct classification.

• Wrapper methods are built “around” a specific predictive model. Each feature subset is used to train a model.
The generalization performance of the trained model gives the score for that subset. Wrapper methods are
computationally intensive, but usually provide the best performing feature set for the specific model.

• Filter methods use a proxy measure instead of the error rate to score a feature subset. Common measures
include the Mutual Information and the correlation coefficient. Many filters provide a feature ranking rather
than an explicit best feature subset.

• Embedded methods perform feature selection as part of the model construction process. An example of this
approach is the LASSO method for constructing a linear model, which penalizes the regression coefficients,
shrinking many of them to zero, so that the corresponding features can be eliminated. Another approach is
Recursive Feature Elimination, commonly used with Support Vector Machines to repeatedly construct a model
and remove features with low weights.

By combining filtering with a wrapper method one can proceed in a bottom-up or top-down manner. In a bottom-
up method of greedy inclusion one gradually inserts the ranked features in the order of their individual discrimination
power and checks the effect on output error reduction through a validation set. The heuristically optimal number of
features is determined when the output error measured on the validation set stops decreasing. In fact, if many more
features are added beyond this point, the error may remain stable, or even gradually increase because of over-fitting.

In a top-down truncation method one starts with the complete set of features and progressively eliminates features
while searching for the optimal performance point (always checking the error on a suitable validation set).

A word of caution for filter methods. Let’s note that measuring individual features in isolation will discard
mutual relationships and therefore the result will be approximated. It can happen that two features in isolation have
no relevant information and are discarded, even if their combination would allow perfect prediction of the output, think
about realizing an exclusive OR function of two inputs.
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As a example of the exclusive OR, imagine that the class to recognize is CorrectMenu(hamburger, dessert), where
the two variables hamburger and dessert have value 1 if present in a menu, 0 otherwise (Fig. 7.1). To get a proper
amount of calories in a fast food you need to get either a hamburger or a dessert but not both. The individual presence
or absence of a hamburger (or of a dessert) in a menu will not be related to classifying a menu as correct or not.
But it would not be wise to eliminate one or both inputs because their individual information is not related to the
output classification. You need to keep and read both attributes to correctly classify your meal! The toy example can
be generalized: any diet expert will tell you that what matters are not individual quantities but an overall balanced
combination.

Now that the context is clear, let’s consider some example proxy measures of the discrimination power of
individual features.

7.2 Correlation coefficient

Let Y be the random variable associated with the output classification, let Pr(y) (y ∈ Y ) be the probability of y being
its outcome;Xi is the random variable associated with the input variable xi, andX is the input vector random variable,
whose values are x.

Figure 7.2: Examples of data distributions and corresponding correlation values. Remember that values are divided by
the standard deviation, this is why the linear distributions of the bottom plots all have the same maximum correlation
coefficient (positive 1 or negative -1). Also, note the sudden jump from +1 to -1 in the bottom plots: the correlation
coefficient can be fragile in some cases.

The most widely used measure of linear relationship between numeric variables is the Pearson product-moment
correlation coefficient, which is obtained by dividing the covariance of the two variables by the product of their
standard deviations. In the above notation, the correlation coefficient ρXi,Y between the i-th input feature Xi and the
classifier’s outcome Y , with expected values µXi and µY and standard deviations σXi and σY , is defined as:

ρXi,Y =
cov[Xi, Y ]

σXiσY
=
E[(Xi − µXi)(Y − µY )]

σXiσY
; (7.1)
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where E is the expected value of the variable and cov is the covariance. After simple transformations one obtains the
equivalent formula:

ρXi,Y =
E[XiY ]− E[Xi]E[Y ]√

E[X2
i ]− E2[Xi]

√
E[Y 2]− E2[Y ]

. (7.2)

The division by the standard deviations makes the correlation coefficient independent of units (e.g., measuring
in kilometers or millimeters will produce the same result). The correlation value varies from −1 to 1. Correlation
close to 1 means increasing linear relationship (an increase of the feature value xi relative to the mean is usually
accompanied by an increase of the outcome y), close to −1 means a decreasing linear relationship. The closer the
coefficient is to zero, the weaker the correlation between the variables, for example the plot of (xi, y) points looks like
an isotropic cloud around the expected values, without an evident direction, as shown in Fig. 37.1.

As mentioned before, statistically independent variables have zero correlation, but zero correlation does not imply
that the variables are independent. The correlation coefficient detects only linear dependencies between two variables:
it may well be that a variable has full information and actually determines the value of the second, as in the case that
y = f(xi), while still having zero correlation.

The normal suggestion for this and other feature ranking criteria is not to use them blindly, but supported by
experimental results on classification performance on test (validation) data, as in wrapper techniques.

7.3 Correlation ratio
In many cases, the desired outcome of our learning algorithm is categorical (a “yes/no” answer or a limited set of
choices). The correlation coefficient assumes that the output is numeric, thus it is not applicable to the categorical
case. In order to sort out general dependencies, the correlation ratio method measures a relationship between a
numeric input and a categorical output.

The basic idea behind the correlation ratio is to partition the sample feature vectors into classes according to the
observed outcome. If a feature is significant, then it should be possible to identify at least one outcome class where
the feature’s average value is significantly different from the average on all classes, otherwise that component would
not be useful to discriminate any outcome.

Suppose that one has a set of ` sample feature vectors, possibly collected during previous stages of the algorithm
that one is trying to measure. Let `y be the number of times that outcome y ∈ Y appears, so that one can partition the
sample feature vectors by their outcome:

∀y ∈ Y Sy =
(
(x

(1)
jy , . . . , x

(n)
jy ); j = 1, . . . , `y

)
.

In other words, the element x(i)jy is the i-th component (feature) of the j-th sample vector among the `y samples
having outcome y. Let us concentrate on the i-th feature from all sample vectors, and compute its average within each
outcome class:

∀y ∈ Y x̄(i)y =
1

`y

`y∑
j=1

x
(i)
jy ,

and the overall average:

x̄(i) =
1

`

∑
y∈Y

`y∑
j=1

x
(i)
jy =

1

`

∑
y∈Y

`yx̄
(i)
y .

Finally, the correlation ratio between the i-th component of the feature vector and the outcome is given by

η2Xi,Y =

∑
y∈Y `y(x̄

(i)
y − x̄(i))2∑

y∈Y
∑`y
j=1(x

(i)
jy − x̄(i))2

.
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If the relationship between values of the i-th feature component and values of the outcome is linear, then both the
correlation coefficient and the correlation ratio are equal to the slope of the dependence:

η2Xi,Y = ρ2Xi,C .

In all other cases, the correlation ratio can capture nonlinear dependencies.

7.4 Chi-square test to deny statistical independence
Let’s again consider a two-way classification problem and a single feature with a binary value. For example, in text
mining, the feature can express the presence/absence of a specific term (keyword) t in a document and the output can
indicate if a document is about programming languages or not. We are therefore evaluating a relationship between
two categorical features.

One can start by deriving four counters countc,t, counting in how many cases one has (has not) the term t in a
document which belongs (does not belong) to the given class. For example count0,1 counts for class=0 and presence
of term t, count0,0 counts for class=0 and absence of term t. . . Then one can estimate probabilities by dividing the
counts by the total number of cases n.

In the null hypothesis that the two events “occurrence of term t” and “document of class c” are independent, the
expected value of the above counts for joint events are obtained by multiplying probabilities of individual events. For
example E(count0,1) = n · Pr(class = 0) · Pr(term t is present).

If the count deviates from the one expected for two independent events, one can conclude that the two events
are dependent, and that therefore the feature is significant to predict the output. All one has to do is to check if the
deviation is sufficiently large that it cannot happen by chance. A statistically sound manner to test is by statistical
hypothesis testing.

A statistical hypothesis test is a method of making statistical decisions by using experimental data. In statistics, a
result is called statistically significant if it is unlikely to have occurred by chance. The phrase “test of significance”
was coined around 1925 by Ronald Fisher, a genius who created the foundations for modern statistical science.

Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. De-
cisions are almost always made by using null-hypothesis tests; that is, ones that answer the question: Assuming that
the null hypothesis is true, what is the probability of observing a value for the test statistic that is at least as extreme as
the value that was actually observed?

In our case one measures the χ2 value:

χ2 =
∑
c,t

[countc,t − n · Pr(class = c) · Pr(term = t)]
2

n · Pr(class = c) · Pr(term = t)
. (7.3)

The larger the χ2 value, the lower the belief that the independence assumption is supported by the observed data.
The probability of a specific value happening by chance can be calculated by standard statistical formulas if one desires
a quantitative value.

For feature ranking no additional calculation is needed and one is satisfied with the crude value: the best fea-
tures according to this criterion are the ones with larger χ2 values. They are deviating more from the independence
assumption and therefore probably dependent.

7.5 Heuristic relevance based on nearest neighbors: Relief
There are multivariate relevance criteria to rank individual features according to their relevance in the context of others.
To illustrate this concept, the Relief algorithm [233] derives a ranking index for classification problems based on the
K-nearest neighbors algorithm. To evaluate the index, one first identifies for each example, in the original feature
space, the K closest examples of the same class (nearest hits) and the K closest examples of a different class (nearest
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misses.). Then, in projection on feature j, the sum of the distances between the examples and their nearest misses is
compared to the sum of distances to their nearest hits.

The idea is that a feature is good if neighbors (in the original space) of the same class tend to have close val-
ues of that feature, while neighbors of different classes tend to have different values. The radical approximation is
caused by considering only a certain number of nearest neighbors instead of the entire set of examples, and a simple
discrimination based on the similarity of features in the projected space (in the subset of selected features).

In a variation fo Relief in [167], one first identifies in the original feature space, for each example xi, the K closest
examples of the same class xHk(i), k = 1, ...,K (nearest hits) and the K closest examples of a different class xMk

(i)
(nearest misses). Then, considering the individual feature j, the sum of the distances between the examples and their
nearest misses is compared to the sum of distances to their nearest hits. In equation (7.4), the ratio of these two
quantities is used to create an index of relevance Rel(j) independent of feature scale variations.

Rel(j) =

∑m
i=1

∑K
k=1 |xi,j − xMk(i),j |∑m

i=1

∑K
k=1 |xi,j − xHk(i),j |

(7.4)

The larger Rel(j) the better the j-th feature is separating near misses from near hits. A randomized set of examples
can be considered to speedup the evaluation.

Relief does not discriminate between redundant features, and it can be fooled by low numbers of training instances.
Updates to the algorithm in order to improve the reliability, make it robust to incomplete data, and generalising it to
multi-class problems are presented in [237].

7.6 Entropy and mutual information (MIFS)
The qualitative criterion of “informative feature” can be made precise in a statistical way with the notion of mutual
information (MI).

An output distribution is characterized by an uncertainty which can be measured from the probability distribution
of the outputs. The theoretically sound way to measure the uncertainty is with the entropy, see below for the precise
definition. Now, knowing a specific input value x, the uncertainty in the output can decrease. The amount by which
the uncertainty in the output decreases after the input is known is termed mutual information.

If the mutual information between a feature and the output is zero, knowledge of the input does not reduce the
uncertainty in the output. In other words, the selected feature cannot be used (in isolation) to predict the output -
no matter how sophisticated our model is. The MI measure between a vector of input features and the output (the
desired prediction) is therefore very relevant to identify promising (informative) features. Its use in feature selection
is pioneered in [21].

In information theory entropy, measuring the statistical uncertainty in the output class (a random variable), is
defined as:

H(Y ) = −
∑
y∈Y

Pr(y) log Pr(y). (7.5)

Entropy quantifies the average information, measured in bits, used to specify which event occurred (Fig. 6.5). It is
also used to quantify how much a message can be compressed without losing information1.

Let us now evaluate the impact that the i-th input feature xi has on the classifier’s outcome y. The entropy of Y
after knowing the input feature value (Xi = xi) is:

H(Y |xi) = −
∑
y∈Y

Pr(y|xi) log Pr(y|xi),

1 Shannon’s source coding theorem shows that, in the limit, the average length of the shortest possible representation to encode the messages
in a binary alphabet is their entropy. If events have the same probability, no compression is possible. If the probabilities are different one can
assign shorter codes to the most probable events, therefore reducing the overall message length. This is why “zip” tools successfully compress
meaningful texts with different probabilities for words and phrases, but have difficulties to compress quasi-random sequences of digits like JPEG or
other efficiently encoded image files.
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where Pr(y|xi) is the conditional probability of being in class y given that the i-th feature has value xi.
Finally, the conditional entropy of the variable Y is defined as the expected value of H(Y |xi) over all values

xi ∈ Xi that the i-th feature can have:

H(Y |Xi) = Exi∈Xi
[
H(Y |xi)

]
=
∑
xi∈Xi

Pr(xi)H(Y |xi). (7.6)

The conditional entropy H(Y |Xi) is always less than or equal to the entropy H(Y ). It is equal if and only if
the i-th input feature and the output class are statistically independent, i.e., the joint probability Pr(y, xi) is equal to
Pr(y) Pr(xi) for every y ∈ Y and xi ∈ Xi (note: this definition does not talk about linear dependencies). The amount
by which the uncertainty decreases is by definition the mutual information I(Xi;Y ) between variables Xi and Y :

I(Xi;Y ) = I(Y ;Xi) = H(Y )−H(Y |Xi). (7.7)

An equivalent expression which makes the symmetry between Xi and Y evident is:

I(Xi;Y ) =
∑
y,xi

Pr(y, xi) log
Pr(y, xi)

Pr(y) Pr(xi)
. (7.8)

In classification, Mutual Information is related to upper and lower bounds on the optimal Bayes error rate.
The Bayes error rate is the lowest possible error rate that a classifier can achieve. If we knew the true probability

Pr(y|x) of every outcome y = C1, . . . , C` for any input pattern x, then our best choice for a given pattern x̄ would be
class Ci maximizing Pr(Ci|x̄) or, equivalently, p(x̄|Ci) Pr(Ci), which is proportional to the former (by Bayes’ rule
“posterior equals prior times likelihood ratio”), p(x|y) being the probability density of x given the class y.

The probability of error for a given pattern x̄ is the sum of the other, non-winning probabilities, and the Bayes
error rate is obtained by integrating the error probability over the whole input space:

EBayes = Pr(error) =
∑̀
i=1

∫
Hi

(∑
j 6=i

Pr(Cj |x)

)
p(x) dx

=
∑̀
i=1

∑
j 6=i

∫
Hi

p(x|Cj) Pr(Cj) dx, (7.9)

where the input space has been partitioned into areas H1, . . . ,H`: Hi is the area of the feature space associated by
the optimal classifier to output classes Ci, with ties broken in any way. Note the fact that no classifier can escape this
error, which is caused by the intrinsic randomness of the outcome.

In the case of ` = 2 classes, Eq. (7.9) reduces to

EBayes =

E1︷ ︸︸ ︷∫
H1

p(x|C2) Pr(C2) dx+

E2︷ ︸︸ ︷∫
H2

p(x|C1) Pr(C1) dx,

and the two integrals correspond to the two grey areas in Fig. 7.3, where the feature space is optimally divided into
regions H1 and H2 depending on the error distributions. This error is clearly irreducible: any classifier that operates
differently is bound to have a larger error. For instance, refer to Fig. 7.3: if patterns in E′ are attributed to C1 (i.e.,
features x ∈ H ′ are classified as C2 instead of the more likely C1), then the additional term E′ (dashed area) is added
to the error.

In particular, an upper bound containing the Mutual Information is [63]

EBayes ≤
1

2
H(Y |X) =

1

2

(
H(Y )− I(Y,X)

)
,
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Figure 7.3: Optimal classification and Bayes error rate. Dashed area E′ corresponds to additional error term for a
suboptimal algorithm that misclassifies patterns in H ′.

where X is a feature vector. Because the output class entropy cannot be changed, the upper bound is minimized when
the Mutual Information I(Y,X) is maximized.

Let’s stress that the mutual information is qualitatively different from the linear correlation. A feature can
be informative even if not linearly correlated with the output; a feature can provide useful information even if it is
correlated with a second already-selected feature (linear correlation between two features does not imply redundancy!).
The mutual information measure does not even require the two variables to be quantitative. Remember that a nominal
categorical variable is one that has two or more categories, but there is no intrinsic ordering to the categories. For
example, gender is a nominal variable with two categories (male and female) and no intrinsic ordering. Provided that
you have sufficiently abundant data to estimate it, there is not a better way to measure information content than by
Mutual Information.

But be advised: having information is necessary to predict the output, but not sufficient. The information
has to be extracted by “learnable” techniques. A pseudo-random function linking a seed x to the generated value y
gives the entire information to predict y from x, but identifying the function from examples can be demanding, if not
impossible. Is this example too academic? Well, consider the case of an ID (like a randomized social security number).
All details about a citizen can be predicted (actually, derived without ambiguity) after knowing the ID, but that does
not mean that an ID is a useful feature to be used for generalization. When using MI for feature selection do not be
fooled by IDs! IDs (if randomized) should never be chosen as input features.

Although very powerful in theory, estimating mutual information for vectors with large dimension after starting
from labeled samples is not a trivial task. Discretization (quantization) of continuos variables into a discrete set of
values, and substitution of probability density functions with counts of occurrences in histogram bins is s standard
techniques, but large errors are present if most bins are empty or with very few events. In particular, estimation in very
large-dimensional spaces is daunting because the number of bins can explode.

In some cases, estimates of the probability densities are derived before calculating MI, by using Parzen windows,
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kernel methods, or the assumption of a specific form of the densities (like Gaussian). In contrast to conventional
estimators based on hitograms and binnings, entropy estimates taken directly from k-nearest neighbor distances are
presented in [240]: they are data efficient, adaptive (the resolution is higher where data are more numerous), and
have minimal bias. A seminal definition of the MIFS strategy (Mutual Information for Feature Selection) and heuris-
tic methods which use only mutual information between individual features and the output and between couples of
features is presented in [21], aiming at selecting a set of relevant but non-redundant features.

7.6.1 Entropy and Mutual Information for continuous variables
Let X be a random variable with a probability density function p(x) whose support is a set X. The differential
entropy H(X), or H(p), is defined as

H(X) = −
∫
X
p(x) log p(x) dx. (7.10)

One must take care in applying properties of discrete entropy to differential entropy, since probability density
functions can be greater than 1, so that the differential entropy can be negative.

The chain rule for differential entropy holds as in the discrete case:

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1) ≤
∑

H(Xi). (7.11)

Differential entropy is translation invariant, i.e., H(X + c) = H(X) for a constant c, but in general not invariant
under arbitrary invertible maps. In particular, for a constant a, H(aX) = H(X) + log |a|. This is why maximiza-
tion only makes sense with additional contraints: for example, the maximum differential entropy distribution under
constraint of a given variance is the Gaussian. Gaussian is the “least interesting” (least structured) distribution accord-
ing to the entropic criterion, a fact which will be used in Projection Pursuit (Sec 20.6) and Independent Component
Analysis (Sec. 21.2).

For a vector-valued random variable X and a matrix A, H(AX) = H(X) + log |detA|, detA being the determi-
nant of the matrix.

In general, for a bijective map from a random vector to another random vector with same dimension Y = m(X),
the corresponding entropies are related via [289]:

H(Y) = H(X) +

∫
f(x) log

∣∣∣∣∂m∂x
∣∣∣∣ dx (7.12)

where |∂m/∂x| is the Jacobian determinant of the transformationm. The Jacobian matrix ∂m/∂x, containing partial
derivatives ∂mi/∂xj , defines a linear map which is the best linear approximation of the function m near the point
x. This linear map is thus the generalization of the usual notion of derivative. The absolute value of the Jacobian
determinant of a square matrix at x gives us the factor by which the mappingm expands or shrinks volumes near x.
As a special case, when m is a rigid rotation, translation, or combination thereof, the Jacobian determinant is always
1, and therefore H(Y ) = H(X).

For the Mutual Information in the case of continuous random variables, summation is replaced by a definite double
integral:

I(X;Y ) =

∫
Y

∫
X

p(x,y) log

(
p(x,y)

p(x) p(y)

)
dx dy, (7.13)

where p(x,y) is now the joint probability density function ofX and Y , and p(x) and p(y) are the marginal probability
density functions.

The continuous mutual information I(X;Y ) has the distinction of retaining its fundamental significance as a
measure of discrete information since it is actually the limit of the discrete mutual information of partitions of X and
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Y as these partitions become finer and finer. Thus it is invariant under non-linear homeomorphisms (continuous and
uniquely invertible maps), including linear transformations of X and Y .

Gist
Reducing the number of input attributes used by a model, while keeping roughly equivalent performance,
has many advantages: smaller model size and better human understandability, faster training and running
times, possible higher generalization.

It is difficult to rank individual features without considering the specific modeling method and their
mutual relationships. Think about a detective (in this case the classification to reach is between “guilty” and
“innocent”) intelligently combining multiple clues and avoiding confusing evidence. Ranking and filtering
is only a first heuristic step and needs to be validated by trying different feature sets with the chosen method,
“wrapping” the method with a feature selection scheme.

A short recipe is: trust the correlation coefficient only if you have reasons to suspect linear relation-
ships, otherwise other correlation measures are possible, in particular the correlation ratio can be computed
even if the outcome is not quantitative. Use chi-square to identify possible dependencies between inputs
and outputs by estimating probabilities of individual and joint events. Finally, use the powerful mutual
information to estimate arbitrary dependencies between qualitative or quantitative features, but be aware
of possible overestimates when few examples are present, and never pick randomized IDs as input features
(convince yourself that the useful information in the feature can actually be extracted by ML techniques).

As an exercise, pick your favorite Sherlock Holmes story and identify which feature (clue, evidence)
selection technique he used to capture and expose a culprit and to impress his friend Watson.
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Chapter 8

Models based on matrix factorization

La calunnia è un venticello / Un’auretta assai gentile
Che insensibile sottile / Leggermente dolcemente

Incomincia a sussurrar.
(Rossini — Il Barbiere di Siviglia)

Calumny is a little breeze, /a gentle zephyr,
which insensibly, subtly, / lightly and sweetly,

commences to whisper.

In this section we consider applications of linear algebra transformation to determine “factors of variations”, in
particular matrix factorization.

To make the presentation concrete, the guiding application is collaborative filtering and recommendation. Word
of mouth has always been a powerful and effective technique to spread information and opinions from person to
person, in a viral manner. It is a distributed and human way to mine the data implicitly contained in many human
minds. It is effective because we naturally tend to speak with people similar to us, who share our habits, opinions,
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Movie 1 Movie 2 Movie 3 Movie 4
User 1 1 4 2 1
User 2 1 5 1 0
User 3 1 0 0 0

Table 8.1: A rating matrix.

way of life. By choosing to interact with a selected and small number of similar people we effectively filter the data. It
is then up to us to integrate and weigh the information that we receive, to reach our final decisions. A similar process
can be simulated through data mining and modeling methods. Starting from the raw data (potentially huge quantities,
ranging from thousands to billions of items) one extracts information bits which are relevant for the specific final user,
based on models of his explicit or implicit preferences, and on similarities with other people.

An interesting application is in the marketing sector: data collected about users and products, either bought or
at least evaluated, can be used to estimate how a customer would evaluate a product he did not see before. The
final purpose of predicting evaluations is to encourage the user to buy, for example by recommending a list of items
corresponding to the highest predicted evaluations. Advertising is more effective if the presented products are filtered
based on the user preferences. Other applications are in web mining, where the objective is to identify pages which
the user may be interested in, while searching for information. The purpose is therefore to imitate word of mouth
diffusion of information, for positive (fame) as well as for negative opinions (defamation).

Collaborative filtering and recommendation is a method of predicting the interests of a person by collecting
taste information from many other collaborating people. The underlying assumption is that those who agreed in
the past tend to agree again in the future. For example, a collaborative recommendation system for movies could
make personal predictions about which movie a user should like, given some knowledge of the user’s tastes and the
information gathered from many other users.

Consider a user-item matrix R where the value of each entry rui is the rating of user u for item i as in Table 8.1.
Every user u can vote for item i with a rating in the interval [min rating,max rating]. Let’s get more concrete and
assume that min rating = 1 and max rating = 5 and that value 0 is used to denote the unknown ratings. One wants to
predict the unknown ratings in the matrix, either by some direct manner or by finding a more compact way to represent
the data and by using the compact representation for prediction.

8.1 Combining ratings by similar users
A simple method to predict an unknown rating rui considers the ratings of other users on the same item i, and the
similarity between user u and other users. A generic unknown rating rui is calculated by the following equation:

rui =

∑
known rki

similarity(u, k) · rki∑
known rki

similarity(u, k)
. (8.1)

The vote is predicted with a weighted average of the other users’ votes, with weights given by similarities, as
shown in Fig. 8.1. The motivation is that similar users tend to give similar votes. If the denominator of the above
equation is 0, then rui is calculated by default as the average value of all known ratings rki. If nobody rates item i,
then rui is 0.

In a similar way, one could average the votes given by the same user on different items, with a weight proportional
to the similarity between items, as explained in the bottom part of Fig. 8.1 (similar items tend to be judged in a similar
manner).

The crucial issue is how to measure similarities. In this simplified context, the only knowledge about a user must
be derived from his past evaluations of the different products. Therefore, in the above equation (8.1), the similarity
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between two users (u, k) is obtained by measuring the similarity between two vectors (vu,vk), the uth, kth rows of
the rating matrix R.

The usual cosine similarity between two vectors can be used in a standard implementation, but different and
problem-specific metrics can be tested, as explained in Sec.17.2.

Figure 8.1: Collaborative recommendation. In order to predict unknown values, one computes a weighted average of
known votes, weighted by the similarity either between users (rows) or between items (columns).

To be honest, people have very different ways of expressing opinions. A movie recommended as acceptable by
an understating English reviewer may end up being a fantastic movie for a hyperbolizing Italian one. If you go by
what a hypercritical reviewer says, you are going to end up seeing very few movies, and it can be useful to discount
individual evaluations before using them to measure similarities and obtain predictions.

Let ruj be the rating of user u for item j. Let Iu be the set of items that user u has rated. The mean rating for user
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u is r̄u = 1
|Iu|

∑
j∈Iu ruj . Let the active user be denoted by subscript a. The goal is to predict the preference for an

item i, or pai.
Because the votes may not be centered around zero, the system may have difficulties in reproducing the votes by

scalar products. To help the system it can be useful to center the data by subtracting the average values. In detail, the
prediction can be done by using the formula:

pai = r̄a +

∑
u wau(rui − r̄u)∑

u |wau|
. (8.2)

where the summation over u is over the set of users who have rated item i, and wau is the weight between the active
user a and user u. This weight can be defined as the Pearson correlation coefficient,

wau =

∑
i(rai − r̄a)(rui − r̄u)√∑

i(rai − r̄a)2
√∑

i(rui − r̄u)2
. (8.3)

The summations over i are over the set Iu ∩ Ia.

8.2 Models based on matrix factorization
The sparsity of the raw user-item evaluation matrix can be a problem. Each user evaluates only a very small subset
of items and most entries are unknown. By compressing and summarizing the user characteristics into a much
smaller vector, one hopes to reach better generalization results, and possibly a better understanding of the model, as
explained by the Occam’s razor principle.

A possible way to determine the interest or the vote of a user for an item is to associate a small vector of char-
acteristics with each user and with each item and then deriving votes by observing the similarity between the user
and item characteristic vectors. This operation can be done by hand, but it may be very time-consuming and it may
not identify some characteristics which are crucial for the prediction. Let’s see how the process can be automated.

Let us use vector qi ∈ <f to contain the characteristics (factors) of item i, and vector pu ∈ <f to denote the extent
of interest that user u has in each item factor. One would like to obtain the rating of a user u for an item i by a simple
scalar product of the corresponding vectors:

r̂ = qTi pu. (8.4)

For example, if the factors are built by hand, the aspect weights of movie Terminator can be exemplified as (action =
5, romance = 1), and the interest of user Patricia in the movie aspects is (action = 2, romance = 5), therefore the
rating of user Patricia for movie Terminator is 5 · 2 + 1 · 5 = 15.

Among automated ways to build effective factors to predict ratings, the traditional Singular Value Decomposition
(SVD) can be used to find informative qi’s and pu’s. By using SVD, one decomposes a matrixR containing all ratings
as R = UΣMT , where the rows of matrix U and M are the set of pu and qi, scaled by the diagonal matrix Σ. By
considering the size of the diagonal values in Σ one can then reduce the dimension of the vectors, and keep only the
most relevant components. Unfortunately, in most cases one does not have the value of all cells in the rating matrix.

More flexible and robust learning algorithms based on optimization can be used to find effective approximations
of the factor vectors qi and pu. As usual, examples of expressed votes guide the learning process: to learn the factor
vectors qi and pu, one aims at minimizing the regularized squared error (RSE) on the set of known ratings:

RSE =
1

|K|
∑

(u,i)∈K

(rui − qTi pu)2 + λ(‖qi‖2 + ‖pu‖2). (8.5)

Here, K is the set of the (u, i) pairs for which rui is known (the training set). Let us know that the first term in
the summation is the squared error between the model qTi pu and the known result rui. To facilitate generalization
(prediction of novel ratings) it is useful to penalize the magnitudes of the factor vectors in a manner proportional to a
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constant λ. This term is called a regularizing term. When example ratings abound, most of the contribution to RSE
derives from errors in reconstructing the expressed votes. On the other hand, when ratings are scarce, the regularizing
term becomes crucial and it acts to discourage very large vectors with potentially dramatic (and wrong) effects on the
predictions.

The problem is now one of minimizing a continuous function of the free parameters pu and qi, for which methods
illustrated in Chapter 26 can be used, for example the traditional gradient descent. The gradient of RSE is calculated
as follows:

∂RSE
∂qi

=
2

|K|
∑

(u,i)∈K

((rui − qTi pu)(−pu) + λqi);

∂RSE
∂pu

=
2

|K|
∑

(u,i)∈K

((rui − qTi pu)(−qi) + λpu).

The term 1
|K| is a constant and therefore not influencing the minimization. One can start with random initial values for

qi and pu and then iterate: at each step a small change in the direction of the negative gradient is executed to reduce
the RSE error.

8.2.1 A more refined model: adding biases
As illustrated for the case of the simpler methods in Sec. 8.1, the rating of user u for item i does not only depend
on the interaction qTi pu between two vectors pu and qi, but also on the bias of a user or item. In other words, some
people usually give higher ratings, and some items often receive higher ratings than others. The bias involved in rating
rui can be described as: bui = µ + bi + bu, where µ is the overall average, bi and bu are the observed deviation of
user u and item i from the average, respectively. For example, assume that one wants to estimate the rating of user
Joe for movie Titanic. Assume that the average rating over all movies, µ, is 3.7 stars. Furthermore, Titanic is better
than an average movie, so it tends to be rated 0.5 stars above the average. On the other hand, Joe is a critical user, who
tends to rate 0.3 stars lower than the average. Thus, the baseline estimate for Titanic rating by Joe would be 3.9 stars
(3.7 + 0.5− 0.3).

According to this refined model, the estimated rating r̂ui of user u and item i is calculated as:

r̂ui = µ+ bi + bu + qTi pu. (8.6)

The observed rating is broken down into its four components: global average, item bias, user bias, and user-item
interaction. This allows each component to explain only the part of a rating relevant to it. The learning algorithm
learns by minimizing the following regularized squared error function considering also bias factors (RSEB):

RSEB =
1

|K|
∑
u,i∈K

(rui − µ− bi − bu − qTi pu)2 + λ(‖pu‖2 + ‖qi‖2 + b2i + b2u). (8.7)

The usual default procedure starts by deriving the gradient and using steepest descent. A factorization process
using steepest descent in action can be seen in Fig. 8.2: as the number of gradient descent iterations increases, the
error (root mean squared error) over the training set decreases as expected. The error over the test set (votes not used
during training) first decreases, but then reaches a plateau and eventually gradually increases. This is an instance of
over-training: the system is trying to accurately reproduce the training examples but generalization worsens. Think
about a student learning “by heart,” without digesting the learning material to extract the relevant relationships.

Let us note the power and flexibility of optimization: if additional terms are added to the model, the best
parameters can then be immediately identified by calculating the new partial derivatives and plugging them into the
minimization algorithm. If one knows how to optimize, one can focus on the problem definition, then rapidly try many
alternative models and test the obtained generalization results on validation data.
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Figure 8.2: A factorization in action: training and testing performance as a function of gradient descent iterations.

Gist
When a potential customer visits your e-commerce web portal, he’ll look at some items, put others in his
cart, purchase them, write a comment and a score, leaving a trail, a scent that a well trained “nose” can
follow.

All this information is there for you to improve your service: just like a good shopkeeper, who greets
his patrons by name and proactively shows them what they’ll like most, your website will lure customers
with a personalized choice of items.

Collaborative filtering precisely does this: by memorizing and analyzing the behavior of customers,
it simultaneously profiles visitors and items, grouping people by similar purchase habits, and predicting
what item a customer might like most. This personalization is done without specific domain knowledge,
by just mining the collective behaviour of customers. This is why a nerdy professor can end up consulting
for a sophisticated fashion business.

Now think twice before clicking on a gossip title in your favorite online newspaper. If you do, more and
more gossip-related news will appear on your personalized frontpage (and maybe also in different websites
that you will visit, thanks to sharing of marketing data and behavioral retargeting strategies).



Chapter 9

Specific nonlinear models

He who would learn to fly one day must first learn to stand and walk and run
and climb and dance; one cannot fly into flying.

(Friedrich Nietzsche)

In this chapter we continue along our path from linear to nonlinear models. In order to avoid the vertigo caused by
an abrupt introduction of the most general and powerful models, we start by gradual modifications of the linear model,
first to make it suitable for predicting probabilities (logistic regression), then by making the linear models local and
giving more emphasis to the closest examples, in a kind of smoothed version ofK nearest neighbors (locally-weighted
linear regression), finally by selecting a subset of inputs via appropriate constraints on the weights (LASSO).

After this preparatory phase, in the next chapters we will be ready to enter the holy of holies of flexible nonlin-
ear models for arbitrary smooth input-output relationships like Multi-Layer Perceptrons (MLP) and Support Vector
Machines (SVM).
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9.1 Logistic regression
In statistics, logistic regression is used for predicting the probability of the outcome of a categorical variable from
a set of recorded past events. For example, one starts from data about patients which can have a heart disease (disease
“yes” or “no” is the categorical output variable) and wants to predict the probability that a new patient has the heart
disease. The name is somewhat misleading, it really is a technique for classification, not regression. But classification
is obtained through an estimate of the probability, henceforth the term “regression.” Frequently the output is binary,
that is, the number of available categories is two.

The problem with using a linear model is that the output value is not bounded: we need to bound it to be between
zero and one. In logistic regression most of the work is done by a linear model, but a logistic function (Fig. 9.1) is
used to transform the output of a linear predictor to obtain a value between zero and one, which can be interpreted as a
probability. The probability can then be compared with a threshold to reach a classification (e.g., classification “yes”
if output probability greater than 0.5).

Figure 9.1: A logistic function transforms input values into an output value in the range 0-1, in a smooth manner. The
output of the function can be interpreted as a probability.

A logistic curve is a common sigmoid function. The term “logistic” was given when this function was introduced
to study population growth. In a population, the rate of reproduction is proportional to both the existing population and
the amount of available resources. The available resources decrease when the population grows and become zero when
the population reaches the “carrying capacity” of the system. The initial stage of growth is approximately exponential;
then, as saturation begins, the growth slows, and at maturity, growth stops.

A standard logistic function is defined as:

P (t) =
1

1 + e−t
,

where e is Euler’s number and the variable t might be thought of as time or, in our case, the output of the linear model,
remember equation (4.1) at page 37:

P (x) =
1

1 + e−(wTx)
.

Remember that a constant value w0 can also be included in the linear model w, provided that an artificial input x0
always equal to 1 is added to the list of input values.



CHAPTER 9. SPECIFIC NONLINEAR MODELS 89

Let’s see which function is to be maximized in this case. The best values for the weights of the linear transformation
are determined by maximum likelihood estimation, i.e., by maximizing the probability of getting the output values
which were actually obtained on the given labeled examples. The probabilities of individual independent cases are
multiplied. Let yi be the observed output (1 or 0) for the corresponding input xi. If Pr(y = 1|xi) is the probability
obtained by the model, the probability of obtaining the measured output value yi is Pr(y = 1|xi) if the correct
label is 1, Pr(y = 0|xi) = 1 − Pr(y = 1|xi) if the correct label is 0. All factors need to be multiplied to get the
overall probability of obtaining the complete series of examples. It is customary to work with logarithms, so that the
multiplication of the factors (one per example) becomes a summation:

LogLikelihood(w) =
∑̀
i=1

{
yi ln Pr(yi|xi,w) + (1− yi) ln(1− Pr(yi|xi,w))

}
.

The dependence of Pr on the coefficients (weights) w has been made explicit.
Given the nonlinearities in the above expression, it is not possible to find a closed-form expression for the weight

values that maximize the likelihood function: an iterative process must be used instead, for example gradient descent.
This process begins with a tentative solutionwstart, revises it slightly by moving in the direction of the negative gradient
to see if it can be improved, and repeats this revision until improvement is minute, at which point the process is said
to have converged.

As usual, in ML one is interested in maximizing the generalization. The above minimization process can - and
should - be stopped early, when the estimated generalization results measured by a validation set are maximal.

9.2 Locally-Weighted Regression

In Section 4.1 we have seen how to determine the coefficients of a linear dependence, fixed coefficients for the entire
input range. The K Nearest Neighbors method in Chapter 2 predicts the output for a new input by comparing the new
input with the closest old (and labeled) ones, giving as output either the one of the closest stored input, or some simple
combination of the outputs of a selected set of closest neighbors.

This section considers a similar approach to obtain the output from a linear combination of the outputs of the
closest neighbors. But one is less cruel in eliminating all but the K closest neighbors. The situation is smoothed out:
instead of selecting a set ofK winners one gradually reduces the role of examples on the prediction based on their
distance from the case to predict.

Through weighting, the overall global dependence can be quite complex. When the model is evaluated at different
points, one still uses linear regression, but the training points near the evaluation point are considered “more important”
than distant ones. We encounter a very general principle here: in learning (natural or automated) similar cases are
usually deemed more relevant than very distant ones.

Locally Weighted Regression is a lazy memory-based technique, meaning that all points and evaluations are
stored and a specific model is built on-demand only when a specified query point demands an output.

To predict the outcome of an evaluation at a point q (named a query point), linear regression is applied to the
training points. To enforce locality in the determination of the regression parameters (near points are more relevant),
each sample point is assigned a weight that decreases with its distance from the query point. Note that, in the neural
networks community, the term “weight” refers to the parameters of the model being computed by the training algo-
rithm, while, in this case, it measures the importance of each training example. To avoid confusion let’s use the term
significance and the symbol si (and S for the diagonal matrix used below) for this different purpose.

In the following we assume, as explained in Section 4.1, that a constant 1 is attached as entry 0 to all input vectors
xi to include a constant term in the regression, so that the dimensionality of all equations is actually d+ 1.

The weighted version of least squares fit aims at minimizing the following weighted error (compare with equa-
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Figure 9.2: The spring analogy for the weighted least squares fit (compare with Fig. 4.6). Now springs have different
elastic constants, thicker meaning harder, so that their contribution to the overall potential energy is weighted. In the
above case, harder springs are for points closer to the query point q.

tion (4.2), where weights are implicitly uniform):

error(w; s1, . . . , sn) =
∑̀
i=1

si(w
T · xi − yi)2. (9.1)

From the viewpoint of the spring analogy discussed in Section 4.1, the distribution of different weights to sample
points corresponds to using springs with a different elastic constant (strength), as shown in Fig. 9.2. Minimization of
equation (9.1) is obtained by requiring its gradient with respect to w to be equal to zero, and we obtain the following
solution:

w∗ = (XTS2X)−1XTS2y; (9.2)

where S = diag(s1, . . . , sd), while X and y are defined as in equation 4.5, page 42. Note that equation (9.2) reduces
to equation (4.5) when all weights are equal.

A possible function used to assign significance values to the stored examples according to their distance from the
query point is

si = exp

(
−‖xi − q‖

2

WK

)
;

where WK is a parameter measuring the “kernel width,” i.e. the sensitivity to distant sample points; if the distance is
much larger than WK the significance rapidly goes to zero.

An example is given in Fig. 9.3 (top), where the model must be evaluated at query point q. Sample points xi
are plotted as circles, and their significance si decreases with the distance from q and is represented by the interior
shade, black meaning highest significance. The linear fit (solid line) is computed by considering the significance of the
various points and is evaluated at q to provide the model’s value at that point. The significance of each sample point
and the subsequent linear fit are recomputed for each query point, providing the curve shown in Fig. 9.3 (bottom).
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Figure 9.3: Top: evaluation of LWR model at query point q, sample point significance is represented by the interior
shade. Bottom: Evaluation over all points, each point requires a different linear fit.

9.2.1 Bayesian LWR
Up to this point, no assumption has been made on the prior probability distribution of coefficients to be determined.
In some cases some more information is available about the task which can conveniently be added through a prior
distribution.

In Bayesian Locally Weighted Regression, denoted as B-LWR, one specifies prior information about what values
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the coefficients should have. The usual power of Bayesian techniques derives from the explicit specification of the
modeling assumptions and parameters (for example, a prior distribution can model our initial knowledge about the
function) and the possibility to model not only the expected values but entire probability distributions. For example
confidence intervals can be derived to quantify the uncertainty in the expected values.

The prior assumption on the distribution of coefficients w, leading to Bayesian LWR, is that it is distributed
according to a multivariate Gaussian with zero mean and covariance matrix Σ, and the prior assumption on σ is that
1/σ2 has a Gamma distribution with k and θ as the shape and scale parameters. Since one uses a weighted regression,
each data point and the output response are weighted using a Gaussian weighing function. In matrix form, the weights
for the data points are described in `× ` diagonal matrix S = diag(s1, . . . , s`), while Σ = diag(σ1, . . . , σ`) contains
the prior variance for the w distribution.

The local model for the query point q is predicted by using the marginal posterior distribution of w whose mean
is estimated as

w̄ = (Σ−1 +XTS2X)−1(XTS2y). (9.3)

Note that the removal of prior knowledge corresponds to having infinite variance on the prior assumptions, therefore
Σ−1 becomes null and equation (9.3) reduces to equation (9.2). The matrix Σ−1+XTS2X is the weighted covariance
matrix, supplemented by the effect of thew priors. Let’s denote its inverse by Vw. The variance of the Gaussian noise
based on ` data points is estimated as

σ2 =
2θ + (yT −wTXT )S2y

2k +
∑`
i=1 s

2
i

.

The estimated covariance matrix of the w distribution is then calculated as

σ2Vw =
(2θ + (yT −wTXT )S2y)(Σ−1 +XTS2X)

2k +
∑`
i=1 s

2
i

.

The degrees of freedom are given by k +
∑`
i=1 s

2
i . Thus the predicted output response for the query point q is

ŷ(q) = qT w̄,

while the variance of the mean predicted output is calculated as:

V ar(ŷ(q)) = qTVwqσ
2. (9.4)

9.3 LASSO to shrink and select inputs
When considering linear models, ridge regression was mentioned as a way to make the model more stable by penaliz-
ing large coefficients in a quadratic manner, as in equation (4.7).

Ordinary least squares estimates often have low bias but large variance; prediction accuracy can sometimes be
improved by shrinking or setting to 0 some coefficients. By doing so we sacrifice a little bias to reduce the variance
of the predicted values and hence may improve the overall prediction accuracy. The second reason is interpretation.
With a large number of predictors (input variables), we often would like to determine a smaller subset that exhibits the
strongest effects. The two standard techniques for improving the estimates, feature subset selection and ridge regres-
sion, have some drawbacks. Subset selection provides interpretable models but can be extremely variable because it is
a discrete process - input variables (a.k.a. regressors) are either retained or dropped from the model. Small changes in
the data can result in very different models being selected and this can reduce prediction accuracy. Ridge regression
is a continuous process that shrinks coefficients and hence is more stable: however, it does not set any coefficients
to 0 and hence does not give an easily interpretable model. The work in [358] proposes a new technique, called the
LASSO, “least absolute shrinkage and selection operator.” It shrinks some coefficients and sets others to 0, and hence
tries to retain the good features of both subset selection and ridge regression.
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Figure 9.4: In LASSO, the best solution is where the contours of the quadratic error function touch the square, and this
will sometimes occur at a corner, corresponding to some zero coefficients. On the contrary the quadratic constraint of
ridge regression does not have corners for the contours to hit and hence zero values for the weights will rarely result.

LASSO uses the constraint that ‖w‖1, the sum of the absolute values of the weights (theL1 norm of the parameter
vector), is no greater than a given value. LASSO minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a constant. By a standard trick to transform a constrained optimization
problem into an unconstrained one through Lagrange multipliers, explained in Section 26.5, this is equivalent to an
unconstrained minimization of the least squares penalty with λ‖w‖1 added:

LASSOerror(w;λ) =
∑̀
i=1

(wT · xi − yi)2 + λ

d∑
j=0

|wj |. (9.5)

One of the prime differences between LASSO and ridge regression is that in ridge regression, as the penalty is
increased, all parameters are reduced while still remaining non-zero, while in LASSO, increasing the penalty will
cause more and more of the parameters to be driven to zero. The inputs corresponding to weights equal to zero can
be eliminated, leading to models with fewer inputs (sparsification of inputs) and therefore more interpretable. Fewer
nonzero parameter values effectively reduce the number of variables upon which the given solution is dependent. In
other words, LASSO is an embedded method to perform feature selection as part of the model construction process.

Let’s note that the term that penalizes large weights in equation (9.5) does not have a derivative when a weight is
equal to zero (the partial derivative jumps from minus one for negative values to plus one for positive values). The
“trick” of obtaining a linear system by calculating a derivative and setting it to zero cannot be used. The LASSO opti-
mization problem may be solved by using quadratic programming with linear inequality constraints or more general
convex optimization methods. The best value for the LASSO parameter λ can be estimated via cross-validation.
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Gist
Linear models are widely used but insufficient in many cases. Three examples of specific modifications
have been considered in this chapter.

First, there can be reasons why the output needs to have a limited range of possible values. For example,
if one needs to predict a probability, the output can range only between zero and one. Passing a linear
combination of inputs through a “squashing” logistic function is a possibility. When the log-likelihood of
the training events is maximized, one obtains the widely-used logistic regression.

Second, there can be cases when a linear model needs to be localized, by giving more significance to
input points which are closer to a given input sample to be predicted. This is the case of locally-weighted
regression.

Last, the penalties for large weights added to the function to be optimized can be different from the sum
of squared weights (the only case in which a linear equation is obtained after calculating derivatives). As
an example, penalties given by a sum of absolute values can be useful to both reduce weight magnitude and
sparsify the inputs. This is the case of the LASSO technique to shrink and select inputs. LASSO reduces
the number of weights different from zero, and therefore the number of inputs which influence the output.

Before reading this chapter, to you a lasso was a long rope with a running noose at one end especially
used to catch horses and cattle. Now you can catch more meaningful models too.



Chapter 10

Neural networks: multi-layer perceptrons

Quegli che pigliavano per altore altro che la natura, maestra de’ maestri, s’affaticavano invano.
Those who took other inspiration than from nature, master of masters,

were laboring in vain.
(Leonardo Da Vinci)

Our wet neural system, composed of about 100 billion (100,000,000,000) computing units and about 1015

(1,000,000,000,000,000) connections is capable of surprisingly intelligent behaviors. Actually, the capabilities of
our brain define intelligence. The computing units are specialized cells called neurons, the connections are called
synapses, and computation occurs at each neuron by currents generated by electrical signals at the synapses, inte-
grated in the central part of the neuron, and leading to electrical spikes propagated to other neurons when a threshold
of excitation is surpassed. Neurons and synapses have been presented in Chapter 4 (Fig. 4.3). A way to model a
neuron is through a linear discrimination by a weighted sum of the inputs passed through a “squashing” function (Fig.
4.4). The output level of the squashing function is intended to represent the spiking frequency of a neuron, from zero
up to a maximum frequency.

A single neuron is therefore a simple computing unit, a scalar product followed by a sigmoidal function. By
the way, the computation is rather noisy and irregular, being based on electrical signals influenced by chemistry,
temperature, blood supply, sugar levels, etc. The intelligence of the system is coded in the interconnection strengths,
and learning occurs by modifying connections. The paradigm is very different from that of “standard” sequential
computers, which operate in cycles, fetching items from memory, applying mathematical operations and writing results
back to memory. Neural networks do not separate memory and processing but operate via the flow of signals through
the network connections.
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The main mystery to be solved is how a system composed of many simple interconnected units can give rise to such
incredible activities as recognizing objects, speaking and understanding, drinking a cup of coffee, fighting for your
career. Emergence is the way in which complex systems arise out of a multiplicity of relatively simple interactions.
Similar emergent properties are observed in nature, think about snowflakes forming complex symmetrical patterns
starting from simple water molecules.

The real brain is therefore an incredible source of inspiration for researchers, and a proof that intelligent systems
can emerge from very simple interconnected computing units. Ever since the early days of computers, the bio-
logical metaphor has been irresistible (“electronic brains”), but only as a simplifying analogy rather than a blueprint
for building intelligent systems. As Frederick Jelinek put it, “airplanes don’t flap their wings.” Yet, starting from
the sixties, and then again the late eighties, the principles of biological brains gained ground as a tool in computing.
The shift in thinking resulted in a paradigm change, from artificial intelligence based on symbolic rules and reasoning,
to artificial neural systems where knowledge is encoded in system parameters (like synaptic interconnection weights)
and learning occurs by gradually modifying these parameters under the influence of external stimuli.

Figure 10.1: Three drawings of cortical lamination by Santiago Ramon y Cajal, each showing a vertical cross-section,
with the surface of the cortex at the top. The different stains show the cell bodies of neurons and the dendrites and
axons of a random subset of neurons.

Given that the function of a single neuron is rather simple, it subdivides the input space into two regions by
a hyperplane, the complexity must come from having more layers of neurons involved in a complex action (like
recognizing your grandmother in all possible situations). The “squashing” functions introduce critical nonlinearities
in the system, without their presence multiple layers would still create linear functions (it is easy to check that the
composition of linear functions remain linear). Organized layers are visible in the human cerebral cortex, the part of
our brain which plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness
(Fig. 10.1).

For more complex “sequential” calculations like those involved in logical reasoning, feedback loops are essential
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but more difficult to simulate via artificial neural networks. As you can expect, the “high-level”, symbolic, and
reasoning view of intelligence is complementary to the “low-level” sub-symbolic view of artificial neural networks.
What is simple for a computer, like solving equations or reasoning, is difficult for our brain, what is simple for our
brain, like recognizing our grandmother, is still difficult to simulate on a computer. The two styles of intelligent
behavior are now widely recognized, leading also to popular books about “fast and slow thinking” [225].

In any case, “airplanes don’t flap their wings.” Even if real brains are a source of inspiration and a proof of
feasibility, most artificial neural networks are actually run on standard computers, and the different areas of “neural
networks”, “machine learning”, “artificial intelligence” are actually converging so that the different terms are now
umbrellas that cover a continuum of techniques to address different and often complementary aspects of intelligent
systems.

This chapter is focused on feed-forward multilayer perceptron neural networks, without feedback loops.

10.1 Multilayer Perceptrons (MLP)

The logistic regression model of Section 9.1 in Chapter 9 was a simple way to add the “minimal amount of non-
linearity” to obtain an output which can be interpreted as a probability, by applying a sigmoidal transfer function to the
unlimited output of a linear model. Imagine this as transforming a crisp plane separating the input space (output 0 on
one side, output 1 on the other side, based on a linear calculation compared with a threshold) into a smooth and gray
transition area, black when far from the plane in one direction, white when far from the plane in the other direction,
gray in between1 (Fig. 10.2).

Figure 10.2: Effect of the logistic function. Linear model with threshold (left), smooth sigmoidal transition (right).

If one visualizes y as the elevation of a terrain, in many cases a mountain area presents too many hills, peaks and
valleys to be modeled by a plane or maybe a single smooth transition region.

If linear transformations are composed, by applying one after another, the situation does not change: two linear
transformation in a sequence still remain linear2. But if the output of the first linear transformation is transformed by
a nonlinear sigmoid before applying the second linear transformation we get what we want: flexible models capable
of approximating all smooth functions. The term non-parametric models is used to underline their flexibility and
differentiate them from rigid models in which only the value of some parameters can be tuned to the data. An example
of a parametric model is an oscillation sin(ωx), in which the parameter ω has to be determined from the experimental
data. The first linear transformation will provide a first “hidden layer” of outputs (hidden because internal and not
directly visible as final outputs), additional transformations will produce the visible outputs from the hidden layers.

1As an observation, let’s note that logistic regression and an MLP network with no hidden layer and a single output value are indeed the same
architecture, what changes is the function being optimized, the sum of squared errors for MLP, the LogLikelihood for logistic regression.

2Let’s consider two linear transformations A and B. Applying B after A to get B(A(x)) still maintains linearity. In fact, B(A(ax + by)) =
B(aA(x) + bA(y)) = aB(A(x)) + bB(A(y)).
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A multilayer perceptron neural network (MLP) is composed of a large number of highly interconnected units
(neurons) working in parallel to solve a specific problem and organized in layers with a feed-forward information flow
(no loops). The architecture is illustrated in Fig. 10.3.

Figure 10.3: Multilayer perceptron: the nonlinearities introduced by the sigmoidal transfer functions at the interme-
diate (hidden) layers permit arbitrary continuous mappings to be created. A single hidden layer is present in this
image.

The architecture of the multilayer perceptron is organized as follows: the signals flow sequentially through the
different layers from the input to the output layer. The intermediate layers are called hidden layers because they are
not visible at the input or at the output. For each layer, each unit first calculates a scalar product between a vector of
weights and the vector given by the outputs of the previous layer. A transfer function is then applied to the result to
produce the input for the next layer. A popular smooth and saturating transfer function (the output saturates to zero
for large negative signals, to one for large positive signals) is the sigmoidal function, called sigmoidal because of the
“S” shape of its plot. An example is the logistic transformation encountered before (Fig. 9.1):

f(x) =
1

1 + e−x
.

Other transfer functions can be used for the output layer; for example, the identity function can be used for unlimited
output values, while a sigmoidal output function is more suitable for “yes/no” classification problems or to model
probabilities.

A basic question about MLP is: what is the flexibility of this architecture to represent input-output mappings? In
other words, given a function f(x), is there a specific MLP network with specific values of the weights so that the MLP
output closely approximates the function f? While perceptrons are limited in their modeling power to classification
cases where the patterns (i.e., inputs) of the two different classes can be separated by a hyperplane in input space,
MLPs are universal approximators [190]: an MLP with one hidden layer can approximate any smooth function to
any desired accuracy, subject to a sufficient number of hidden nodes.

This is an interesting result: neural-like architectures composed of simple units (linear summation and squashing
sigmoidal transfer functions), organized in layers with at least a hidden layer are what we need to model arbitrary
smooth input-output transformations.

For colleagues in mathematics this is a brilliant “existence” results. For more practical colleagues the next question
is: given the existence of an MLP approximator, how can one find it rapidly by starting from labeled examples?

After reading the previous chapter you should already know at least a possible training technique. Think about it
and then proceed to the next section.
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Figure 10.4: Analyzing a neural network output with LIONsolver Sweeper. The output value, the energy consumed
to heat a house in winter, is shown as a function of input parameters. Color coded output (left), surface plot (right).
Nonlinearities are visible.

As an example of an MLP input-output transformation, Fig. 10.4 shows the smooth and nonlinear evolution of the
output value as a function of varying input parameters. By using sliders one fixes a subset of the input values, and the
output is color-coded for a range of values of two selected input parameters.

10.2 Learning via backpropagation
As usual, take a “guiding” function to be optimized, like the traditional sum-of-squared errors on the training examples,
make sure it is smooth (differentiable), and use gradient descent. Iterate by calculating the gradient of the function
with respect to the weights and by taking a small step in the direction of the negative gradient. If the gradient is
different from zero, there is a sufficiently small step in the direction of the negative gradient which will decrease the
function value.

The technical issue is now one of calculating partial derivatives by using the chain rule in calculus for computing
the derivative of the composition of two or more functions. If f is a function and g is a function, then the chain rule
expresses the derivative of the composite function f ◦ g in terms of the derivatives of f and g. For example, the chain
rule for (f ◦ g)(x) is:

df

dx
=
df

dg
· dg
dx
.

In MLP the basic functions are: scalar products, then sigmoidal functions, then scalar products, and so on until
the output layer is reached and the error is computed. For MLP networks the gradient can be efficiently calculated,
its calculation requires a number of operations proportional to the number of weights, and the actual calculation is
done by simple formulas similar to the one used for the forward pass (from inputs to outputs) but now going in the
contrary directions, from output errors backwards towards the inputs. The popular technique in neural networks known
as backpropagation of the error consists precisely in the above exercise: gradient calculation and small step in the
direction of the negative gradient [383, 384, 311].
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It is amazing how a straightforward application of gradient descent took so many years to reach wide applicability
in the late eighties, and brought so much fame to the researchers who made it popular. A possible excuse is that
gradient descent is normally considered a “vanilla” technique capable of reaching only locally-optimal points (with
zero gradient) without guarantees of global optimality. Experimentation on different problems, after initializing the
networks with small and randomized weights, was therefore needed to show its practical applicability for training
MLPs. In addition, let’s remember that ML aims at generalization, and for this goal reaching global optima is not
necessary. It may actually be counterproductive and lead to overtraining!

The use of gradual adaptations with simple and local mechanisms permits a close link with neuroscience, although
the detailed realization of gradient descent algorithms with real neurons is still a research topic.

Let’s note that, after the network is trained, calculating the output from the inputs requires a number of simple
operations proportional to the number of weights, and therefore the operation can be extremely fast if the number of
weights is limited.

Let us briefly define the notation. We consider the “standard” multilayer perceptron (MLP) architecture, with
weights connecting only nearby layers and the sum-of-squared-differences energy function defined as:

E(w) =
1

2

P∑
p=1

Ep =
1

2

P∑
p=1

(tp − op(w))2, (10.1)

where tp and op are the target and the current output values for pattern p, respectively. The sigmoidal transfer function
is f(x) = 1/(1 + e−x).

The initialization can be done by having the initial weights randomly distributed in a range. Choosing an initial
range, like (−.5, .5) is not trivial, if the weights are too large, the scalar products will be in the saturated areas of the
sigmoidal function, leading to gradients close to zero and numerical problems.

In the following sections we present two gradient-based techniques: standard batch backpropagation and a version
with adaptive learning rate (bold driver BP, see [19]), and the on-line stochastic backpropagation of [311].

10.2.1 Batch and “Bold Driver” Backpropagation
The batch backpropagation update is a textbook form of gradient descent. After summing all derivatives related to
each example and obtaining the gradient gk = ∇E(wk), the weights at the next iteration k+ 1 are updated as follows:

wk+1 = wk − ε gk. (10.2)

The previous update, with a fixed learning rate ε, can be considered as a crude version of steepest descent, where
the exact minimum along the gradient direction is searched at each iteration:

wk+1 = wk − εkgk, (10.3)
where εk minimizes E(wk − εgk). (10.4)

An application problem consists of picking a value of the learning rate which is appropriate for a specific learning task,
not too small to avoid very long training times (caused by very small modifications of the weights at every iteration)
and not too large to avoid oscillations leading to wild increases of the energy function (let’s remember that a descent
is guaranteed only if the step along the gradient tends to zero).

An heuristic proposal for avoiding the choice and for modifying the learning rate while the learning task runs is
the bold driver (BD) method described in [19]. The learning rate increases exponentially if successive steps reduce
the energy, and decreases rapidly if an “accident” is encountered (if E increases), until a suitable value is found. After
starting with a small learning rate, its modifications are described by the following equation:

ε(t) =

{
ρ ε(t− 1), if E(w(t)) < E(w(t− 1));
σl ε(t− 1), if E(w(t)) > E(w(t− 1)) using ε(t− 1),

(10.5)
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where ρ is close to one (ρ = 1.1) in order to avoid frequent “accidents” because the energy computation is wasted in
these cases, σ is chosen to provide a rapid reduction (σ = 0.5), and l is the minimum integer such that the reduced
rate σlε(t− 1) succeeds in diminishing the energy.

The performance of this self-adaptive bold driver backprop is close and usually better than the one obtained by
appropriately choosing a fixed learning rate. Nonetheless, being a simple form of gradient descent, the technique
suffers from the common limitation of techniques that use the gradient as a search direction.

10.2.2 On-Line or stochastic backpropagation
Because the energy function E is a sum of many terms, one for each pattern, the gradient will be a sum of the
corresponding partial gradients∇Ep(wk), the gradient of the error for the p-th pattern: (tp − op(w))2.

If one has one million training examples, first the contributions∇Ep(wk) are summed, and the small step is taken.
An immediate option comes to mind: how about taking a small step along a single negative∇Ep(wk) immediately

after calculating it? If the steps are very small, the weights will differ by small amounts with respect to the initial ones,
and the successive gradients∇Ep(wk+j) will be very similar to the original ones∇Ep(wk).

If the patterns are taken in a random order, one obtains what is called stochastic gradient descent, a.k.a. online
backpropagation.

By the way, because biological neurons are not very good at complex and long calculations, online backpropagation
has a more biological flavor. For example, if a kid is learning to recognize digits and a mistake is done, the correction
effort will tend to happen immediately after the recognized mistake, not after waiting to collect thousands of mistaken
digits.

The stochastic on-line backpropagation update is given by:

wk+1 = wk − ε ∇Ep(wk), (10.6)

where the pattern p is chosen randomly from the training set at each iteration and ε is the learning rate. This form of
backpropagation has been used with success in many contexts, provided that an appropriate learning rate is selected
by the user. The main difficulties of the method are that the iterative procedure is not guaranteed to converge and that
the use of the gradient as a search direction is very inefficient for some problems3. The competitive advantage with
respect to batch backpropagation, where the complete gradient of E is used as a search direction, is that the partial
gradient ∇Ep(wk) requires only a single forward and backward pass, so that the inaccuracies of the method can be
compensated by the low computation required by a single iteration, especially if the training set is large and composed
of redundant patterns. In these cases, if the learning rate is appropriate, the actual CPU time for convergence can be
small.

Small batches BP is a third compromise option between the batch and online version. In this case, only a stochastic
subset (a batch) of B patterns is run forward and back-propagated to accumulate the partial gradient. The weights are
therefore modified every B forward passes. Of course, the extreme cases are online BP when B equals one, batch BP
when B equals the total number of patterns.

The learning rate must be chosen with care: if ε is too small the training time increases without producing bet-
ter generalization results, while if ε grows beyond a certain point the oscillations become gradually wilder, and the
uncertainty in the generalization obtained increases.

10.2.3 Advanced optimization for MLP training
As soon as the importance of optimization for machine learning was recognized, researchers began to use techniques
derived from the optimization literature that use higher-order derivatives information during the search, going beyond
gradient descent. Examples are conjugate gradient and “secant” methods, i.e., methods that update an approximation
of the second derivatives (of the Hessian) in an iterative way by using only gradient information. In fact, it is well

3The precise definition is that of ill-conditioned problems.
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known that taking the gradient as the current search direction produces very slow convergence speed if the Hessian has
a large condition number. In a pictorial way this corresponds to having “narrow valleys” in the search space leading
to a zigzagging path, see Fig. 26.11. Techniques based on second order information are of widespread use in the
neural net community, their utility being recognized in particular for problems with a limited number of weights ( <
100) and requiring high precision in the output values. A partial bibliography and a description of the relationships
between different second-order techniques has been presented in [20]. Two techniques that use second-derivatives
information (in an indirect and fast way): the conjugate gradient technique and the one-step-secant method with fast
line searches (OSS), are described in [20], [19]. More details will be described in Chapter 26 dedicated to optimization
of continuous functions.

Gist
Creating artificial intelligence based on the “real thing” is the topic of artificial neural networks research.
Multilayer perceptron neural networks (MLPs) are a flexible (non-parametric) modeling architecture
composed of layers of sigmoidal units interconnected in a feed-forward manner only between adjacent
layers. A unit recognizing the probability of your grandmother appearing in an image can be built with
our neural hardware (no surprise) modeled as an MLP network. Effective training from labeled examples
can occur via variations of gradient descent, made popular with the term “error backpropagation.” The
weakness of gradient descent as optimization method does not prevent successful practical results.

There are indeed striking analogies between human and artificial learning schemes. In particular, in-
creasing the effort during training pays dividends in terms of improved generalization. The effort with a
serious and demanding teacher (diversifying test questions, writing on the blackboard, asking you to take
notes instead of delivering pre-digested material) can be a pain in the neck during training but increases
the power of your mind at later stages of your life. The German philosopher Hegel was using the term
Anstrengung des Begriffs (“effort to define the concept”) when defining the role of Philosophy.



Chapter 11

Deep and convolutional networks

As a single footstep will not make a path on the earth,
so a single thought will not make a pathway in the mind.
To make a deep physical path, we walk again and again.

To make a deep mental path, we must think over and over
the kind of thoughts we wish to dominate our lives.

(Henry David Thoreau)

In this period machine learning is experiencing a soft revolution, in which ideas born a long time ago enjoy a
second youth. Deep learning and convolutional networks are a promising direction, but we consider also alternative
and crucially different directions like reservoir and extreme computing in the next chapters.

An anecdote tells that a team of graduate students led by Professor Geoffrey E. Hinton decided to enter a contest
at the last minute with a deep learning system developed with no specific domain knowledge and won the top prize in
2012. The system had to predict which molecule was most likely to be an effective medicine. Today many advanced
applications of computer vision and speech recognition are based on deep networks.

This chapter presents deep neural networks and convolutional networks. The long-term dream of deep networks
is that of developing intelligent systems in a completely automated manner directly from abundant data (both labeled
and unlabeled), without human experts to extract useful features by hand before the system is trained. The plan is to
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have a hierarchy of levels in a feedforward network, self-organized so that the first layers extract basic building blocks
(features) which are then combined to obtain more and more complex features in the subsequent layers (for example,
features invariant under translation or rotation in image processing). Convolutional networks deal with pre-wiring
an architecture which is appropriate for a domain (typically computer vision and speech processing), by inserting
constraints, like locality of receptive fields, and by sharing weights. In our visual system and in image processing,
basic local filtering operations like contrast enhancement or edge detection are applied over the entire image. It would
be a waste of resources to ask ML to identify a different filter for every pixel and it would be masochistic to forget that
the system is dealing with images, with a two-dimensional structure and local relationships.

11.1 Deep neural networks
There is abundant evidence from neurological studies that our brain develops higher-level concepts in stages, by first
extracting multiple layers of useful and gradually more complex representations. In order to recognize your
grandmother, first simple elements are detected in the visual cortex, like image edges (abrupt changes of intensity),
then progressively higher-level concepts like eyes, mouth, and complex geometrical features, independently on the
specific position in the image, illumination, colors, etc.

The fact that one hidden layer in MLPs is sufficient for the existence of a suitable approximation does not mean
that building this approximation will be easy, requiring a small number of examples and a small amount of CPU time.
In addition to neurological evidence in our brain, theoretical arguments demonstrate that some classes of input-output
mappings are much easier to build when more hidden layers are considered [47].

The dream of ML research is to feed examples to an MLP with many hidden layers and have the MLP auto-
matically develop internal representations, the activation patterns of the hidden-layer units. The training algorithm
should determine the weights interconnecting the lower levels, closer to the sensory input, so that representations in
the intermediate levels correspond to “concepts” which will be useful for the final complex classification task. Think
about the first layers developing “nuggets” of useful regularities in the data.

This dream has some practical obstacles. When backpropagation is applied to an MLP network with many hidden
layers, the partial derivatives associated to the weights of the first layers tend to be very small, and therefore subject
to numerical estimation problems. This is easy to understand1: if one changes a weight in the first layers, the effect
will be propagated upwards through many layers and it will tend to be confused among so many effects by hundreds
of other units. Furthermore, saturated units (with output in the flat regions of the sigmoid) will squeeze the change
so that the final effect on the output will be very small. In some cases internal representations in the first layers will
not differ too much from what can be obtained by setting the corresponding weights randomly, and leaving only the
topmost levels to do some “useful” work. From another point of view, when the number of parameters is very large
with respect to the number of examples (and this is the case of deep neural networks) overtraining becomes more
dangerous, it will be too easy for the network to accommodate the training examples without being forced to extract
the relevant regularities, those essential for generalizing.

In the nineties, these difficulties shifted the attention of many users towards “simpler” models, based on linear
systems with additional constraints, like the Support Vector Machines considered in Chapter 12.

More recently, a revival of deep neural networks (MLPs with many hidden layers) and more powerful training
techniques brought deep learning to the front stage, leading to superior classification results in challenging areas like
speech recognition, image processing, molecular activity for pharmaceutical applications. Deep learning without any
ad hoc feature engineering (handcrafting of new features by using knowledge domain and preliminary experiments)
lead to winning results and significant improvements over the state of the art [47].

The main scheme of the latest applications is as follows:

1. use unsupervised learning from many unlabeled examples to prepare the deep network in an initial state (unsupervised
pre-training);

1If you are not familiar with partial derivatives, think about changing a weight by a small amount ∆w and calculating how the output changes
(∆f ). A partial derivative is the limit of the ratio ∆f/∆w when the magnitude of the change ∆w goes to zero.
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2. use backpropagation only for the final tuning with the set of labeled examples, after starting from the initial
network trained in an unsupervised manner.

The scheme is very powerful when the number of unlabeled (unclassified) examples is much larger than the number
of labeled ones, and the classification process is costly. For examples, collecting huge numbers of unlabeled images
by crawling the web is now very simple. Labeling them by humans to describe image content costs much more. The
unsupervised system is in charge of extracting useful building blocks, like detectors for edges, for blobs, for textures
of different kinds, in general, building blocks which appear in real images and not in random “broken TV screen”
patterns.

11.1.1 Auto-encoders

An effective way to build internal representations in an unsupervised manner is through auto-encoders. One builds
a network with a hidden layer and demands that the output simply reproduces the input. It sounds silly and trivial
at first, but interesting work gets done when one squeezes the hidden layer, and therefore demands that the original
information in the input is compressed into an encoding c(x) with less variables than the original ones (Fig. 11.1).
For sure, this compression will not permit a faithful reconstruction of all possible inputs. But this is positive for our
goals: the internal representation c(x) will be forced to discover regularities in the specific input patterns shown to the
system, to extract useful and significant information from the original input.

For example, if images of faces are presented, some internal units will specialize to detect edges, other maybe will
specialize to detect eyes, and so on.

Figure 11.1: Auto-encoder.

The auto-encoder can be trained by backpropagation or variations thereof. Classification labels are not necessary.
If the original inputs are labeled for classification, the labels are simply forgotten by the system in this phase. In
addition, tons of unlabeled examples can be added for a more robust training (with better generalization) of the auto-
encoder.

After the auto-encoder is built one can now transplant the hidden layer structure (weights and hidden units) to a
second network intended for classification (Fig. 11.2), add an additional layer (initialized with small random weights),
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Figure 11.2: Using an auto-encoder trained from unlabeled data to initialize an MLP network.

and consider this “Frankenstein monster” network as the starting point for a final training phase intended to realize a
classifier. In this final phase only a set of labeled pattern is used.

In many significant applications the final network has a better generalization performance than a network which
could be obtained by initializing randomly all weights. Let’s note that the same properly-initialized network can be
used for different but related supervised training tasks. The network is initialized in the same manner, but different
labeled examples are used in the final tuning phase. Transfer learning is the term related to using knowledge gained
while solving one problem and applying it to a different but related problem. For example, knowledge gained while
learning to recognize people faces could apply when recognizing monkeys.

Figure 11.3: Recursive training of auto-encoders to build deeper networks.
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The attentive reader may have noticed that up to now only one hidden layer has been created. But we can easily
produce a chain of subsequent layers by iterating, compressing the first code c(x), again by auto-encoding it, to
develop a second more compressed code and internal representation c′(c(x)). Again, the developed auto-encoding
weights can be used to initialize the second layer of the network, and so on (Fig. 11.3).

Figure 11.4: The codes produced by a 2000- 500-250-125-2 autoencoder on news stories by Reuters. Clusters corre-
sponding to different topics, with different colors, are clearly visible (details in [181]).

In addition to being useful for pre-training neural networks, very deep auto-encoders can be useful for visualiza-
tion and clustering. For example, news stories by Reuters2 represented as a vector of document-specific probabilities
of the 2000 commonest word stems, can be auto-encoded so that the bottleneck compressed layer contains only two
units. The two-dimensional coordinates corresponding to story are visualized on a two-dimensional plane in Fig. 11.4.
Different clusters approximately corresponding to the different topics are clearly visible in the two-dimensional space,
the two (or more) coordinates in the bottleneck layer can therefore be used for clustering objects.

The optimal number of layers and the optimal number of units in the pyramidal structure is still a research topic,
but appropriate numbers can be obtained pragmatically by using some form of cross-validation to select appropriate
meta-parameters. More details in [47].

2The Reuter Corpus Volume 2 is available at http:// trec.nist.gov/data/reuters/reuters.html.
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11.1.2 Random noise, dropout and curriculum

Now that you are getting excited about the idea of combining unsupervised pre-training with supervised final tuning
to get deep and deeper network, so that less and less hand-made feature engineering will be required for state-of-the
art performance, let’s mention some more advanced possibilities which are now being transferred from pure research
to the first real-world applications.

The first possibility has to do with injecting controlled amount of noise into the system [369] (denoising auto-
encoders). The starting idea is very simple: corrupt each pattern xwith random noisy (e.g., if the pattern is binary, flip
the value of each bit with a given small probability) and ask the auto-encoding network to reconstruct the original noise-
free pattern x, to denoise the corrupted versions of its inputs. The task becomes more difficult, but asking the system to
go the extra mile encourages it to extract even stronger and more significant regularities from the input patterns. This
version bridges the performance gap with deep belief networks (DBN), another way to pre-train networks [180, 181],
and in several cases surpasses it. Biologically, there is indeed a lot of noise in the wet brain matter. These results
demonstrate that noise can in fact have a positive impact on learning!

Another way to make the learning problem harder but to increase generalization (by reducing overfitting) is through
random dropout [182]: during stochastic backpropagation training, after presenting each training case, each hidden
unit is randomly omitted from the network with probability 0.5. In this manner, complex co-adaptation on training
data is avoided. Each unit cannot rely on other hidden units being present and is encouraged to become a detector
identifying useful information, independently on what the other units are doing.

Interestingly, there is an intriguing similarity between dropout and the role of sex in evolution. One possible
interpretation is that sex breaks up sets of co-adapted genes. Achieving a function by using a large set of co-adapted
genes is not nearly as robust as achieving the same function, in multiple alternative ways, each of which only uses a
small number of co-adapted genes. This allows evolution to avoid dead-ends in which improvements in fitness require
coordinated changes to a large number of co-adapted genes. It also reduces the probability that small changes in the
environment will cause large decreases in fitness a phenomenon similar to the “overfitting” in the field of ML [182].

In a way, randomly dropping some units is related to using different network architectures at different times during
training, and then averaging their results during testing. Using ensembles of different networks is another way to
reduce overtraining and increasing generalization, as it will be explained in future chapters. With random dropout the
different networks are contained in the same complete MLP network (they are obtained by activating only selected
parts of the complete network).

Another possibility to improve the final result when training MLP is through curriculum learning [48]. As in the
human case, training examples are not presented to the network at the same time but in stages, by starting from the
easiest cases first and then proceeding to the more complex ones. For example, when learning music, first the single
notes are learned, then more complex symphonies. Pre-training by auto-encoding can be considered a preliminary
form of curriculum learning. The analogy with the learning of languages is that first the learner is exposed to a mass
of spoken material in a language (for example by placing him in front of a foreign TV channel). After training the ear
to be tuned to characteristic utterances of the given spoken language, the more formal phase of training by translating
phrases is initiated.

After all, magic systems for learning languages while you sleep and listen to recorded voices may not be a complete
fraud :)

11.2 Local receptive fields and convolutional networks
Advanced animal brains are quick in learning how to process images and to recognize their content. An infant rec-
ognizes his mother already in the first days of life. This speed would be impossible without the help of a pre-wired
architecture already available to process two-dimensional images. In particular, locality plays a big role: the first
neurons which process nearby points in an image projected to the retina have local receptive fields and are mapped to
nearby points in the visual cortex. Specialized low-level detectors like edge or movement detectors are available in
biological brains.
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Figure 11.5: Bufo Bufo, the common toad, was used in studies of toad form vision. Feature detectors in a frog retina
are hard-wired and specialized to detect a fly at the distance that the frog could strike.

For example, when analyzing “on-off” ganglion cells in frogs – responding to both the transition from light to dark
and from dark to light – with very restricted receptive fields (about the size of a fly at the distance that the frog could
strike), it is difficult to avoid the conclusion that the ‘on-off’ units are matched to the stimulus and act as fly detectors
[16] (Fig. 11.5).

When considering artificial neural networks, there is little doubt that recognizing images can be greatly simplified
if some knowledge about image processing is pre-wired in the neural network. Only a masochist would forget the two-
dimensional structure of the image and provide as input a one-dimensional array of pixel values at randomly scattered
positions (if not convinced, apply a random permutation to the pixels of this page and try reading it).

In traditional models of pattern recognition, hand-designed features extract relevant information from the input and
eliminates irrelevant variabilities. A trainable classifier like a MLP can then categorize the resulting feature vectors
into classes. A potentially more interesting scheme is to eliminate the feature extractor, feeding the network with
raw inputs, and to rely on back-propagation to turn the first few layers into an appropriate feature extractor. This
brute-force approach faces difficulties related to the very large input dimension (causing many weights and possible
over-training) and to the absence of any built-in invariance with respect to translations, rotations or local distortions
of the inputs. For a frog, a fly remains a fly even if rotated and translated.

In principle, a sufficiently large fully-connected network could learn to produce outputs that are invariant with
respect to such variations. However, learning such a task would probably result in multiple units with similar weight
patterns positioned at various locations in the input. In convolutional neural networks (CNN) [249], some shift in-
variance is automatically obtained by forcing the replication of weight configurations across space. A kernel with local
connectivity in the image plane is repeated at different positions in the image (the weights are shared). Local corre-
lations are the reasons for the well-known advantages of extracting and combining local features before recognizing
spatial or temporal objects. Convolutional networks force the extraction of local features by restricting the receptive
fields of hidden units to be local.

The mathematical operation of applying the same local filter at different spatial positions is called convolution.



110 CHAPTER 11. DEEP AND CONVOLUTIONAL NETWORKS

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

S
ig

n
a
l

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fi
lt

e
r

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
o
n
v
o
lu

ti
o
n

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

S
ig

n
a
l

4
3
2
1
0
1
2

Fi
lt

e
r

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

C
o
n
v
o
lu

ti
o
n

Figure 11.6: Two examples of convolution. Left: Gaussian smoothing; right: DoG border enhancement.

The use of localized kernels to extract local features is well exemplified by signal processing, where convolution is
one of the most important mathematical tools. Fig. 11.6 shows two typical examples. On the left, a noisy signal
is filtered by convolution with a Gaussian kernel; the outcome is a smoother version of the original signal. The
procedure is called blurring (in computer vision), low-pass filtering or de-noising (signal processing), smoothing out.
Mathematically, given a signal s(t) and a filter f(t), the convolution operation is given by

s ∗ f(t) =

∫ +∞

−∞
s(x)f(t− x) dx. (11.1)

In other words, the filtering kernel f “sweeps” the signal by a weighted integral. If the Gaussian kernel has unit area,
the result is a weighted average of the original signal. On the right of Fig. 11.6, a more interesting example uses the
difference between two Gaussian kernels with different amplitudes. Two blurred versions of the signal with different
smoothing windows are subtracted. The resulting kernel is called Difference of Gaussians (DoG), and its application
highlights the points in which the signal has sudden, significant changes.

The convolution formula (11.1) can be easily extended in two dimensions and discretized for use in neural
networks. To this aim, let xij be the pixels of an m × n image. The filtering kernel will be represented by an
(2r + 1) × (2r + 1) matrix of weights wij , where the radius r is usually very small. Convolution produces a new
m× n image whose pixels yij are

yij =

2r∑
h=0

2r∑
k=0

whkxi+r+1−h,j+r+1−k. (11.2)

In the formula we assume that indices are zero-based. In order to obtain a resulting image of the same size as the
original, we must also assume that the original image has an r-sized border in all directions; as an alternative, the
resulting image will be smaller by r pixels in all directions.

Observe the “t − x” in equation (11.1): to retain many useful mathematical properties the convolution operator
requires the two functions to be swept in opposite directions, as reproduced in (11.2). Most software packages can
be configured to work either this way, or by having the kernel and the input swept in the same direction. In the latter
case, the network is said to operate in cross-correlation mode, and the result is a proper inner product. The only actual
difference between the two modes is the order in which the weights are stored, moving between the two representations
only requires a 180◦ rotation of the kernels. In other terms, a convolution layer takes the inner product of the linear
filter and the underlying receptive field.

Convolutional networks combine three ingredients to ensure some degree of shift and distortion invariance: local
receptive fields, shared weights (or weight replication), and, sometimes, spatial or temporal subsampling (pooling).
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Figure 11.7: Basic convolutional network: the inputs (image pixels) are swept by a convolution operation against a
small set of input weights acting as local feature extractors. The resulting feature maps are subsampled by a pooling
operation, and the smaller set of neurons is passed through a traditional, completely connected output layer.
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Figure 11.8: A structured architecture with local receptive fields (convolutional) and pooling layers (adapted from
[165]).

As shown in Fig. 11.7, by applying the same local receptive fields throughout the image, neurons can extract
elementary visual features such as oriented edges, end-points, corners, or similar patterns in speech spectrograms.
These features are then combined by the higher layers.

The outputs of a set of neurons with shared weights, replicated at different points in the image, is called a feature
map, obtained by convolution followed by a nonlinear activation function at every local portion of the input. In the
upper portion of Fig. 11.7, an input image is “swept” by two filters, generating two feature maps whose neurons are
more or less activated by the presence of the corresponding feature in the local receptive field. In the example, one
filter has specialized to recognize slanted lines, the other has learned to enhance borders à la DoG.

Usually, each convolutional layer is followed by an additional pooling layer (see the bottom part of Fig. 11.7)
which performs a local averaging and a sub-sampling, reducing the resolution of the feature map, and therefore reduc-
ing the sensitivity of the output to shifts and distortions. In its basic form, a pooling layer divides each feature layer
into non-overlapping rectangles and applies a simple “summarizing” operation to each rectangle’s pixels. Common
operations are:

• the maximum value among all pixels in the rectangle (max-pooling);

• the average of pixel values in the rectangle (average-pooling);

• the square root of the sum of all squared pixel values (i.e., the Frobenius norm of the rectangle).

Deeper architectures can implement a cascade of convolutional and pooling layers, possibly enhancing the robust-
ness of the output by means of other schemes such as the random dropout technique discussed in Section 11.1.2. Once
the number of neurons is small enough, fully connected feed-forward layers complete the network.

Convolutional neural networks are still a hot research topic and a state-of-the-art tool for complex image and
speech processing tasks, far too wide to be reviewed in this book. An example of the layered and structured archi-
tecture considered is shown in Fig. 11.8, for the recent proposal of randomly created weights for the units in the first
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layers [165]. The authors of [253] propose a kind of “fractal” network-in-network architecture, building micro neural
networks with more complex structures to abstract the data within the receptive field (going beyond the linear scalar
product between filter coefficients and image pixels in traditional CNN). The micro neural networks (MLPs) are then
replicated over the image.

Gist
Deep neural networks composed of many layers are becoming effective (and superior to Support Vector
Machines) through appropriate learning schemes, consisting of an unsupervised preparatory phase followed
by a final tuning phase by using the scarce labeled examples.

Among the ways to improve generalization, the use of controlled amounts of noise during training is
effective (noisy auto-encoders, random dropout). If you feel some noise and confusion in your brain, relax,
it can be positive after all.

Convolutional neural networks are a good example of an idea inspired by biology that results in
competitive engineering solutions and suggest pre-wired architectures with domain knowledge embedded
in it.

Neural networks are like a glacial lake. You dive into the water, but you can’t see how deep they are
going to be.
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Chapter 12

Statistical Learning Theory and Support
Vector Machines (SVM)

Sembravano traversie ed eran in fatti opportunità.
They seemed hardships and were in fact opportunities.

(Giambattista Vico)

The order of chapters in this book has some connections with the history of machine learning1. Before 1980, most
learning methods concentrated either on symbolic “rule-based” expert systems, or on simple sub-symbolic linear
discrimination techniques, with clear theoretical properties. In the eighties, decision trees and neural networks paved
the way to efficient learning of nonlinear models, but with little theoretical basis and naive optimization techniques
based on gradient descent.

1The photo of prof. Vapnik is from Yann LeCun website Vladimir Vapnik meets the video games sub-culture at http://yann.lecun.com/
ex/fun/index.html#allyourbayes
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In the nineties, efficient learning algorithms for nonlinear functions based on statistical learning theory developed,
mostly through the seminal work by Vapnik and Chervonenkis. Statistical learning theory (SLT) deals with funda-
mental questions about learning from data. Under which conditions can a model learn from examples? How can the
measured performance on a set of examples lead to bounds on the generalization performance?

These theoretical results are everlasting, although the conditions for the theorems to be valid are almost impossible
to check for most practical problems. In another direction, the same researchers proposed a resurrection of linear
separability methods, with additional ingredients intended to improve generalization, with the name of Support
Vectors Machines (SVM).

Figure 12.1: Explaining the basis of Support Vectors Machines. The margin of line A is larger than that of line B.
A large margin increases the probability that new examples will fall in the right side of the separator line. Support
vectors are the points touching the widest possible margin.

The term SVM sounds technical but the rationale is simple to grasp. Let’s consider the two classes (dark and
bright dots) in Fig. 12.1 (left) and the two possible lines A and B. They both linearly-separate the examples and can
be two results of a generic ML scheme to separate the labeled training data. The difference between the two is clear
when thinking about generalization. When the trained system will be used, new examples from the two classes will
be generated with the same underlying probability distribution. Two clouds with a similar shape will be produced,
but, for the case of line B, the probability that some of the new points will fall on the wrong side of the separator is
bigger than for line A. Line B is passing very close to some training examples, it makes it just barely to separate them.
Line A has the biggest possible distance from the examples of the two classes, it has the largest possible “safety area”
around the boundary, a.k.a. margin. SVMs are linear separators with the largest possible margin, and the support
vectors are the ones touching the safety margin region on both sides (Fig. 12.1, right). We encountered a similar issue
with linear models for classification and least-squares (Section 4.3). Lest-squares minimizes the average squared error,
SVMs minimize the maximum distance but the objective of a robust and safe boundary between classes is shared.

Asking for the maximum-margin linear separator leads to standard Quadratic Programming (QP) problems,
which can be solved to optimality for problems of reasonable size. QP is the problem of optimizing a quadratic
function of several variables subject to linear constraints on these variables. The issue with local minima potentially
dangerous for MLP — Because local minima can be very far from global optima — disappears and this makes users
feel relaxed. As you may expect, there’s no rose without a thorn, and complications arise if the classes are not
linearly separable. In this case one first applies a nonlinear transformation φ to the points so that they become
(approximately) linearly separable. Think of φ as building appropriate features so that the transformed points φ(x) of
the two classes are linearly separable. The nonlinear transformation has to be handcrafted for the specific problem, no
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general-purpose transformation is available.
To discover the proper φ, are we back to feature extraction and feature engineering? In a way yes, and after

transforming inputs with φ, the features in SVM are all similarities between an example to be recognized and
the training examples2. A critical step of SVM, which has to be executed by hand through some form of cross-
validation, is to identify which similarity measures are best to learn and generalize, an issue related to selecting the
so-called kernel functions.

Figure 12.2: Initial information for SVM learning are similarity values between couples of input points K(xi,xj),
where K is known as kernel function. These values, under some conditions, can be interpreted as scalar products
obtained after mapping the initial inputs by a nonlinear function φ(x), but the actual mapping does not need to be
computed, only the kernel values are needed (“kernel trick”).

SVMs can be seen as a way to separate two concerns: that of identifying a proper way of measuring similarities
between input vectors, the kernel functions K(x,y), and that of learning a linear architecture to combine the
outputs on the training examples, weighted by the measured similarities with the new input example. As expected,
more similar input examples contribute more to the output, as in the more primitive nearest-neighbors classifiers
encountered in Chapter 2. This is the way to grasp formulas like:∑̀

i=1

yiλ
∗
iK(x,xi),

(` is the number of training examples, yi is the output on training example xi, x is the new example to be classified)
that we will encounter in the following theoretical description. Kernels calculate dot products (scalar products) of data
points mapped by a function φ(x) without actually calculating the mapping, this is called the “kernel trick” (Fig.
12.2):

K(x,xi) = ϕ(x) ·ϕ(xi).

A symmetric and positive semi-definite Gram Matrix containing the kernel values for couples of points fuses
information about data and kernel3. Estimating a proper kernel matrix from available data, one that will maximize
generalization results, is an ongoing research topic.

Now that the overall landscape is clear, let’s plunge into the mathematical details. Some of these details are quite
complex and difficult to grasp. Luckily, you will not need to know the demonstration of the theorems to use SVMs,
although a knowledge of the main math results will help in selecting meta-parameters, kernels, etc.

2Actually only support vectors will give a non-zero contribution.
3Every similarity matrix can be used as kernel, if it satisfies Mercer’s theorem criteria.
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12.1 Empirical risk minimization
We mentioned before that minimizing the error on a set of examples is not the only objective of a statistically sound
learning algorithm, also the modeling architecture has to be considered. Statistical Learning Theory provides math-
ematical tools for deriving unknown functional dependencies on the basis of observations.

A shift of paradigm occurred in statistics starting from the sixties: previously, following Fisher’s research in
the 1920–30s, in order to derive a functional dependency from observations one had to know the detailed form of the
desired dependency and to determine only the values of a finite number of parameters from the experimental data. The
new paradigm does not require the detailed knowledge, and proves that some general properties of the set of functions
to which the unknown dependency belongs are sufficient to estimate the dependency from the data. Nonparametric
techniques is a term used for these flexible models, which can be used even if one does not know a detailed form of
the input-output function. The MLP model described before is an example.

A brief summary of the main methodological points of Statistical Learning Theory is useful to motivate the use of
Support Vector Machines (SVM) as a learning mechanism. Let P (x, y) be the unknown probability distribution from
which the examples are drawn. The learning task is to learn the mapping xi → yi by determining the values of the
parameters of a function f(x,w). The function f(x,w) is called hypothesis, the set {f(x,w) : w ∈ W} is called
the hypothesis space and denoted by H, andW is the set of abstract parameters. A choice of the parameter w ∈ W ,
based on the labeled examples, determines a “trained machine.”

The expected test error or expected risk of a trained machine for the classification case is:

R(w) =

∫
‖y − f(x,w)‖ dP (x, y), (12.1)

while the empirical risk Remp(w) is the mean error rate measured on the training set:

Remp(w) =
1

`

∑̀
i=1

‖yi − f(xi,w)‖. (12.2)

The classical learning method is based on the empirical risk minimization (ERM) inductive principle: one ap-
proximates the function f(x,w∗) which minimizes the risk in (12.1) with the function f(x, ŵ) which minimizes the
empirical risk in (12.2).

The rationale for the ERM principle is that, if Remp converges to R in probability (as guaranteed by the law of
large numbers), the minimum of Remp may converge to the minimum of R. If this does not hold, the ERM principle is
said to be not consistent.

As shown by Vapnik and Chervonenkis, consistency holds if and only if convergence in probability ofRemp toR is
uniform, meaning that as the training set increases the probability that Remp(w) approximates R(w) uniformly tends
to 1 on the wholeW . Necessary and sufficient conditions for the consistency of the ERM principle is the finiteness of
the Vapnik-Chervonenkis dimension (VC-dimension) of the hypothesis spaceH.

The VC-dimension of the hypothesis space H is, loosely speaking, the largest number of examples that can be
separated into two classes in all possible ways by the set of functions f(x,w). The VC-dimension h measures the
complexity and descriptive power of the hypothesis space and is often proportional to the number of free parameters
of the model f(x,w).

Vapnik and Chervonenkis provide bounds on the deviation of the empirical risk from the expected risk. A
bound that holds with probability 1− p is the following:

R(w) ≤ Remp(w) +

√
h
(
ln 2`

h + 1
)
− ln p

4

`
∀w ∈ W.

By analyzing the bound, and neglecting logarithmic factors, in order to obtain a small expected risk, both the em-
pirical risk and the ratio h/` between the VC-dimension of the hypothesis space and the number of training examples
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have to be small. In other words, a valid generalization after training is obtained if the hypothesis space is sufficiently
powerful to allow reaching a small empirical risk, i.e., to learn correctly the training examples, but not too powerful to
simply memorize the training examples without extracting the structure of the problem. For a larger model flexibility,
a larger number of examples is required to achieve a similar level of generalization.

The choice of an appropriate value of the VC-dimension h is crucial to get good generalization performance,
especially when the number of data points is limited.

The method of structural risk minimization (SRM) has been proposed by Vapnik based on the above bound, as
an attempt to overcome the problem of choosing an appropriate value of h. For the SRM principle one starts from a
nested structure of hypothesis spaces

H1 ⊂ H2 ⊂ · · · ⊂ Hn ⊂ · · · (12.3)

with the property that the VC-dimension h(n) of the set Hn is such that h(n) ≤ h(n + 1). As the subset index n
increases, the minima of the empirical risk decrease, but the term responsible for the confidence interval increases.
The SRM principle chooses the subsetHn for which minimizing the empirical risk yields the best bound on the actual
risk. Disregarding logarithmic factors, the following problem must be solved:

min
Hn

(
Remp(w) +

√
h(n)

`

)
. (12.4)

The SVM algorithm described in the following is based on the SRM principle, by minimizing a bound on the
VC-dimension and the number of training errors at the same time.

The mathematical derivation of Support vector Machines is summarized first for the case of a linearly separable
problem, also to build some intuition about the technique.

12.1.1 Linearly separable problems
Assume that the labeled examples are linearly separable, meaning that there exist a pair (w, b) such that:

w · x+ b ≥ 1 ∀x ∈ Class1;
w · x+ b ≤ −1 ∀x ∈ Class2.

The hypothesis space contains the functions:

fw,b = sign(w · x+ b).

Because scaling the parameters (w, b) by a constant value does not change the decision surface, the following
constraint is used to identify a unique pair:

min
i=1,...,`

|w · xi + b| = 1.

A structure on the hypothesis space can be introduced by limiting the norm of the vector w. It has been demon-
strated by Vapnik that if all examples lie in an n-dimensional sphere with radius R then the set of functions fw,b =
sign(w · x+ b) with the bound ‖w‖ ≤ A has a VC-dimension h that satisfies

h ≤ min{dR2A2e, n}+ 1.

The geometrical explanation of why bounding the norm of w constrains the hypothesis space is as follows (see
Fig. 12.3): if ‖w‖ ≤ A, then the distance from the hyperplane (w, b) to the closest data point has to be larger than 1/A,
because only the hyperplanes that do not intersect spheres of radius 1/A placed around each data point are considered.
In the case of linear separability, minimizing ‖w‖ amounts to determining a separating hyperplane with the maximum
margin (distance between the convex hulls of the two training classes measured along a line perpendicular to the
hyperplane).
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Figure 12.3: Hypothesis space constraint. The separating hyperplane must maximize the margin. Intuitively, no
point has to be too close to the boundary so that some noise in the input data and future data generated by the same
probability distribution will not ruin the classification.

The problem can be formulated as:

Minimizew,b 1
2‖w‖

2

subject to yi(w · xi + b) ≥ 1 i = 1, . . . , `.

and solved by using standard quadratic programming (QP) optimization tools.
The dual quadratic program, after introducing a vector Λ = (λ1, . . . , λ`) of non-negative Lagrange multipliers

corresponding to the constraints, as explained in Section 26.5, is as follows:

MaximizeΛ Λ · 1− 1
2Λ ·D ·Λ

subject to

{
Λ · y = 0

Λ ≥ 0

; (12.5)

where y is the vector containing the example classification, and D is a symmetric ` × ` matrix with elements Dij =
yiyjxi · xj .

The vectors xi for which λi > 0 are called support vectors. In other words, support vectors are the ones for
which the constraints in (12.5) are active. Ifw∗ is the optimal value ofw, the value of b at the optimal solution can be
computed as b∗ = yi −w∗ · xi for any support vector xi, and the classification function can be written as

f(x) = sign

(∑̀
i=1

yiλ
∗
ix · xi + b∗

)
.

Note that the summation index can as well be restricted to support vectors, because all other vectors have null λ∗i
coefficients. The classification is determined by a linear combination of the classifications obtained on the examples
yi weighted according to the scalar product between input pattern and example pattern (a measure of the “similarity”
between the current pattern and example xi) and by parameter λ∗i .



CHAPTER 12. STATISTICAL LEARNING THEORY AND SVMS 121

12.1.2 Non-separable problems
If the hypothesis set is unchanged but the examples are not linearly separable a penalty proportional to the constraint
violation ξi (collected in vector Ξ) can be introduced, solving the following problem:

Minimizew,b,Ξ
1

2
‖w‖2 + C

(∑̀
i=1

ξi

)k

subject to


yi(w · xi + b) ≥ 1− ξi i = 1, . . . , `

ξi ≥ 0 i = 1, . . . , `

‖w‖2 ≤ cr;

(12.6)

where the parameters C and k determine the cost caused by constraint violation, while cr limits the norm of the
coefficient vector. In fact, the first term to be minimized is related to the VC-dimension, while the second is related to
the empirical risk. (See the above described SRM principle.) In our case, k is set to 1.

12.1.3 Nonlinear hypotheses
Extending the above techniques to nonlinear classifiers is based on mapping the input data x into a higher-dimensional
vector of features ϕ(x) and using linear classification in the transformed space, called the feature space. The SVM
classifier becomes:

f(x) = sign

(∑̀
i=1

yiλ
∗
iϕ(x) ·ϕ(xi) + b∗

)
.

After introducing the kernel function K(x,y) ≡ ϕ(x) ·ϕ(y), the SVM classifier becomes

f(x) = sign

(∑̀
i=1

yiλ
∗
iK(x,xi) + b∗

)
,

and the quadratic optimization problem becomes:

MaximizeΛ Λ · 1− 1
2Λ ·D ·Λ

subject to

{
Λ · y = 0

0 ≤ Λ ≤ C1,

(12.7)

where D is a symmetric `× ` matrix with elements Dij = yiyjK(xi,xj).
An extension of the SVM method is obtained by weighing in a different way the errors in one class with respect to

the error in the other class, for example when the number of samples in the two classes is not equal, or when an error
for a pattern of a class is more expensive than an error on the other class. This can be obtained by setting two different
penalties for the two classes: C+ and C−. The function to minimize becomes:

1

2
‖w‖2 + C+(

∑̀
i:yi=+1

ξi)
k + C−(

∑̀
i:yi=−1

ξi)
k.

If the feature functions ϕ(x) are chosen with care one can calculate the scalar products without actually com-
puting all features, therefore greatly reducing the computational complexity.

The method used to avoid the explicit mapping is also called kernel trick. One uses learning algorithms that
only require dot products between the vectors in the original input space, and chooses the mapping such that these
high-dimensional dot products can be computed within the original space, by means of a kernel function.
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For example, in a one-dimensional space a reasonable choice can be to consider monomials in the variable x
multiplied by appropriate coefficients an:

ϕ(x) = (a01, a1x, a2x
2, . . . , adx

d),

so that ϕ(x) · ϕ(y) = (1 + xy)d. In more dimensions, it can be shown that if the features are monomials of degree
≤ d then one can always determine coefficients an so that:

K(x,y) = (1 + x · y)d.

The kernel function K(·, ·) is a convolution of the canonical inner product in the feature space. Common kernels
for use in a SVM are the following.

1. Dot product: K(x,y) = x ·y; in this case no mapping is performed, and only the optimal separating hyperplane
is calculated.

2. Polynomial functions: K(x,y) = (x · y + 1)d, where the degree d is given.

3. Radial basis functions (RBF), like Gaussians: K(x,y) = e−γ‖x−y‖
2

with parameter γ.

4. Sigmoid (or neural) kernel: K(x,y) = tanh(ax · y + b) with parameters a and b.

5. ANOVA kernel: K(x,y) =
(∑n

i=1 e
−γ(xi−yi)

)d
, with parameters γ and d.

When ` becomes large the quadratic optimization problem requires a `× ` matrix for its formulation, so it rapidly
becomes an unpractical approach as the training set size grows. A decomposition method where the optimization
problem is split into an active and an inactive set is introduced in [284]. The work in [216] introduces efficient
methods to select the working set and to reduce the problem by taking advantage of the small number of support
vectors with respect to the total number of training points.

12.1.4 Support Vectors for regression
Support vector methods can be applied also for regression, i.e., to estimate a function f(x) from a set of training data
{(xi, yi)}. As it was the case for classification, one starts from the case of linear functions and then preprocesses the
input data xi into an appropriate feature space to make the resulting model nonlinear.

In order to fix the terminology, the linear case for a function f(x) = w · x + b can be summarized. The convex
optimization problem to be solved becomes:

Minimizew 1
2‖w‖

2

subject to

{
yi − (w · xi + b) ≤ ε
(w · xi + b)− yi ≤ ε,

assuming the existence of a function that approximates all pairs with ε precision.
If the problem is not feasible, a soft margin loss function with slack variables ξi, ξ∗i , collected in vector Ξ, is

introduced in order to cope with the infeasible constraints, obtaining the following formulation:

Minimizew,b,Ξ
1

2
‖w‖2 + C

(∑̀
i=1

ξ∗i +
∑̀
i=1

ξi

)

subject to



yi −w · xi − b ≤ ε− ξ∗i i = 1, . . . , `

w · xi + b− yi ≤ ε− ξi i = 1, . . . , `

ξ∗i ≥ 0 i = 1, . . . , `

ξi ≥ 0 i = 1, . . . , `

‖w‖2 ≤ cr.

(12.8)
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As in the classification case, C determines the tradeoff between the flatness of the function and the tolerance for
deviations larger than ε. Detailed information about support vector regression can be found also in [339].

Gist
Statistical Learning Theory (SLT) states the conditions so that learning from examples is successful, i.e.,
such that positive results on training data translate into effective generalization on new examples produced
by the same underlying probability distribution. The constancy of the distribution is critical: a good
human teacher will never train students on some examples just to give completely different examples in the
tests. In other words, the examples have to be representative of the problem. The conditions for learnability
mean that the hypothesis space (the “flexible machine with tunable parameters” used for learning) must
be sufficiently powerful to allow reaching a good performance on the training examples (a small empirical
risk), but not too powerful to simply memorize the examples without extracting the deep structure of the
problem. The flexibility is quantified by the VC-dimension.

SLT demonstrates the existence of the Paradise of Learning from Data but, for most practical problems,
it does not show the practical steps to enter it, and appropriate choices of kernel and parameters through
intuition and cross-validation are critical to the success.

The latest results on deep learning and MLPs open new hopes that the “feature engineering” and kernel
selection step can be fully automated. Research has not reached an end to the issue, there is still space for
new disruptive techniques and for following the wild spirits of creativity more than the lazy spirits of hype
and popular wisdom.
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Chapter 13

Least-squares and robust kernel machines

Science may be described as the art of systematic over-simplification.
(Karl Popper)

The initial proposal of Support Vector Machines was based on the idea of mapping the data into a higher dimen-
sional input space and of constructing an optimal separating hyperplane in this space, one maximizing the “safety”
margin. As shown in Section 12.1.1, the requirement that points fall safely on the correct side of the separating
hyperplane leads to inequalities like:

yi(w · xi + b) ≥ 1 i = 1, . . . , `,

then corrected with the addition of a constraint violation ξi:

yi(w · xi + b) ≥ 1− ξi i = 1, . . . , `

The maximization of the margin leads to minimizing ‖w‖. The dual convex quadratic program (QP) obtained is
solvable to optimality without the problem of local minima encountered in MLP and similar techniques.
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Enthusiastic practitioners followed the SVM / convex QP wave, but two issues remained in the background. The
first issue has to do with identifying the proper kernel: linear separability with good generalization requires a proper
way of measuring similarities

K(x,xi) = ϕ(x) ·ϕ(xi)

between a point to be classified and the training examples. A crude analogy is that of a gentle teacher solving a big
portion of the problem and leaving to the learner only a final and trivial part (QP optimization to identify the optimal
hyperplane). Deep learning (Section 11.1) is a way of building intermediate features directly from the data in an
automated manner.

A second issue has to do with computing times. QP is solvable, but CPU times increase very rapidly for nontrivial
problems with many examples. QP is needed because of inequalities, so the temptation to abandon them in favor of
simpler equalities is worth exploring. Encouraging equalities and penalizing mistakes in a quadratic manner leads to
good old linear equations, faster to solve and easier to interpret. This chapter is dedicated to recent development in
the area of least-squares Support Vector Machines. As we will see, quadratic penalties do not encourage sparsity,
which can be recovered by other means. In addition, quadratic penalties can be fragile in the presence of outliers
because big deviations are squared. Outliers can be caused by measurement errors, and one would like to avoid a few
of them spoiling a modeling effort. A possible cure is by robust versions which limit the penalty for deviations which
are suspiciously large.

The springs in the figure are related to the familiar physical interpretation of springs connecting data points and
fitted models, with a quadratic potential energy.

13.1 Least-Squares Support Vector Machine Classifiers
After the support vector interpretation of ridge regression for function estimation in[313], kernel-based Least-squares
SVM classifiers are proposed by Suykens and Vandewalle [355].

The least squares version of the SVM classifier is obtained by reformulating the minimization problem as:

Minimizew,b,e J2(w, e) =
1

2
wTw +

γ

2

∑̀
i=1

e2c,i

subject to yi
[
wTϕ(xi) + b

]
= 1− ec,i, i = 1, . . . , `.

The hyperparameter γ can be tuned to determine the appropriate amount of regularization versus the sum of
squared errors.

The least squares SVM (LS-SVM) classifier formulation above implicitly corresponds to a regression interpretation
with binary targets yi = ±1.

Using y2i = 1, we have∑̀
i=1

e2c,i =
∑̀
i=1

(yiec,i)
2 =

∑̀
i=1

[
yi − (wTϕ(xi) + b)

]2
=
∑̀
i=1

e2i ,

with ei = yi − (wTϕ(xi) + b). This error also makes sense for least squares data fitting, so that the same end results
holds for the regression case. Note that the cost function J2 consists of a sum-squared-errors (SSE) fitting error and
a regularization term penalizing large weights, which is also a standard procedure for training MLPs and is related to
ridge regression, encountered in Section 4.7.

The solution of the LS-SVM regressor will be obtained by constructing the Lagrangian function:

L2(w, b, e,α) = J2(w, e)−
∑̀
i=1

αi

{[
wTϕ(xi) + b

]
+ ei − yi

}
=

1

2
wTw +

γ

2

∑̀
i=1

e2i −
∑̀
i=1

αi

{[
wTϕ(xi) + b

]
+ ei − yi

}
,
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where α = (α1, . . . , α`)
T ∈ R` are the Lagrange multipliers, also called support values.

As usual, the requirement that the gradient is zero at the minimum leads to a linear system of equations instead of
a quadratic programming problem (the derivatives of a quadratic form lead to a linear expression):(

0 1T`
1` Ω + γ−1I`

)(
b
α

)
=

(
0
y

)
, (13.1)

in which y = (y1, . . . , y`)
T , 1` = (1, . . . , 1)T , I` is the ` × ` identity matrix, and Ω ∈ R`×` is the kernel matrix

defined by Ωij = ϕ(xi)
Tϕ(xj) = K(xi,xj).

The “kernel trick” applies, one does not need to explicitly calculate the map ϕ, only scalar products are needed.
This trick is useful because the weight vector w can be infinite dimensional, and impossible to calculate in certain
cases.

The classifier is found by solving the linear set of equations (13.1) instead of quadratic programming, and the
resulting LS-SVM model for function estimation becomes

y(x) =
∑̀
k=1

αkK(x,xk) + b.

A possibility is an RBF kernel characterized by the width parameter σ:

K(x1,x2) = e
−‖x1 − x2‖2

σ2 .

In this case, the support values αk = γek are proportional to the errors at the data points, while in the case of standard
SVM most values are equal to zero.

An example of SVM in action to learn the two-spiral benchmark problem is shown in Fig.13.1.

13.2 Robust weighted least square SVM
The issues of robustness and sparse approximation for LS-SVM are studied in [354]. The linear system (13.1) can
be efficiently solved either directly or by iterative methods such as conjugate gradient (Section 26.3.2). However,
LS-SVM solutions have some potential drawbacks. The first drawback is that sparseness is lost. Every data point
is contributing to the model and the relative importance of a data point is given by its support value. The second
well-known drawback is that the use of a SSE cost function without regularization can lead to estimates which are less
robust with respect to outliers in the data or when the assumption of a Gaussian distribution for the error variables
is not correct.

The problem with outliers is that big errors become huge after squaring them. The cure is to discount very large
errors (maybe caused by mistakes or very rare events) through weighted least square to produce a more robust
estimate.

This is done by first applying an unweighted LS-SVM and then associating weights to the error variables based
upon the resulting error variables from the first stage. One ends up solving a sequence of weighted LS-SVMs starting
from the unweighted version. The motivation is to adapt the underlying cost function to the training data, instead
of imposing the cost function beforehand (in a way, this is a form of meta-learning).

In order to obtain a robust estimate based upon the previous LS-SVM solution, in a subsequent step, one can
weight the error variables ek = αk/γ by weighting factors vk This leads to the optimization problem:

min
w∗,b∗,e∗

1

2
w∗Tw∗ +

1

2
γ
∑̀
k=1

vke
∗
k
2.

The unknown variables for this weighted LS-SVM problem are denoted by the “∗” symbol.
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Figure 13.1: SVM tests on a two-spiral classification problem with the two classes indicated by circles and triangles.
The figure shows the excellent generalization performance for an SVM.
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1. Algorithm LS SVM ( ` training data items)
2. Find optimal (γ, σ) by k-fold cross-validation with linear system (13.1).
3. ek ← αk/γ
4. Compute ŝ from the ek distribution using (13.2).
5. Determine the weights vk based upon ek, ŝ, as in (13.3).
6. Solve (13.1) for α∗ and b∗, giving the model

7. y(x) =
∑̀
k=1

α∗kK(x,xk) + b∗.

Figure 13.2: The weighted LS-SVM algorithm

The choice of the weights vk is based upon the error variables ek = αk/γ from the (unweighted) LS-SVM case.
First one obtains ŝ, a robust estimate of the standard deviation of the LS-SVM error variables ek:

ŝ =
IQR

2 · 0.6745
(13.2)

The interquartile range IQR is the difference between the 75th percentile and the 25th percentile. Of course, extreme
cases like outliers do not count in this estimate, and this is why it is robust. In detail, robust estimates [309] can be
obtained by taking:

vk =


1 if |ek/ŝ| < c1
c2 − |ek/ŝ|
c2 − c1

if c1 ≤ |ek/ŝ| ≤ c2
10−4 otherwise.

(13.3)

The constants c1 and c2 are typically chosen as c1 = 2.5 and c2 = 3. This is a reasonable choice taking into account
the fact that, for a Gaussian distribution, very few residuals will be larger than 2.5ŝ. Then errors which are suspiciously
high with respect to a Gaussian distribution are discounted by giving them smaller and smaller weights.

If needed, the above procedure can be repeated iteratively, but in practice one single additional weighted LS-SVM
step will often be sufficient. The final algorithm is shown in Fig. 13.2.

An important notion in robust estimation is the breakdown point of an estimator. It is the smallest fraction of
contamination (with outliers) of a given data set that can cause an estimate which is arbitrarily far away from the
estimated parameters obtained with the uncontaminated data set. Standard least-squares estimate in linear regression
without regularization has a low breakdown point. Weighted LS-SVM greatly improves the breakdown point.

13.3 Recovering sparsity by pruning
While standard SVMs possess a sparseness property in the sense that many αk values are equal to zero, this is not the
case for LS-SVM’s due to the fact that αk = γek from the conditions for optimality. Support values reveal the relative
importance of the data points for contributing to the model.

While pruning methods for MLPs (such as optimal brain damage [250] and optimal brain surgeon [174]) involve
Hessian matrices, the pruning in LS-SVMs proposed in [354] can be done based upon the solution vector itself.
Sparseness can be imposed to the weighted LS-SVM solution by gradually pruning the sorted support value spectrum,
i.e., by zeroing out the smaller αi’s: this way, less meaningful data points (as indicated by their support values) are
removed and the LS-SVM is re-computed on the basis of the remaining points, while validating on the complete
training data set.

By omitting a relative and small amount of the least meaningful data points (with αk set to zero) and by re-
estimating the LS-SVM, one obtains a sparse approximation. In order to guarantee a good generalization performance,
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1. Algorithm LS SVM pruning ( ` training data items)
2. `′ ← `
3. repeat until performance degrades
4. Apply LS SVM to the `′ training data
5. Sort training data according to decreasing magnitudes |α∗k|
6. Remove the last M data items in the sorted |α∗k| spectrum
7. `′ ← `′ −M

Figure 13.3: The weighted LS-SVM pruning algorithm

in each of these pruning steps one can optimize (γ, σ), e.g., by defining an independent validation set, or 10-fold cross-
validation. Figure 13.3 outlines the resulting algorithm.

Typically, doing a number of pruning steps without modification of (γ, σ) will be possible. When the generalization
performance starts degrading (checked e.g. on a validation set or by means of cross-validation [365]) an update
of (γ, σ) will be needed. The fact that (γ, σ) determination can be kept localized is a possible advantage of this
method in comparison with other approaches which need to solve a QP problem for the several possible choices of the
hyperparameters.

13.4 Algorithmic improvements: tuned QP, primal versions, no offset

Improvements to SVM are related both to detailed implementations of Quadratic Programming adapted to this sce-
nario and to slight modifications of the problem definition, but with potentially big effects on CPU times and final
performance [217].

The quadratic form in (12.7) involves a matrix that has a number of elements equal to the square of the number of
training examples (matrix elements containing all possible kernel “similarities” between couples of examples). The
first approach to splitting large SVM learning problems into a series of smaller optimization tasks is proposed in [62]
as the “chunking” algorithm. It starts with a random subset of the data, solves this problem, and iteratively adds
examples which violate the optimality conditions.

The work in [299] shows how much can be gained by passing from off-the-shelf QP software to a special-purpose
implementation (and, incidentally, how much can be gained by studying the mathematical details of a problem).
Sequential Minimal Optimization (SMO) proposes to break the large QP problem derived for SVM into a series
of smallest possible QP problems. These small QP problems are solved analytically, avoiding a time-consuming
numerical QP optimization as an inner loop. The amount of memory required for SMO is linear in the training set
size, therefore SMO can handle very large training sets. Because large matrix computation is avoided, SMO scales
somewhere between linear and quadratic in the training set size for various test problems, while a standard projected
conjugate gradient (PCG) chunking algorithm scales somewhere between linear and cubic in the training set size.
SMO’s computation time is dominated by SVM evaluation, hence it is fastest for linear SVMs and sparse data sets.

An improved algorithm for training SVMs on large-scale problems (SVMlight) is proposed in [217]. The algo-
rithm is based on a decomposition strategy and addresses the problem of selecting the variables for the working set in
an effective and efficient way. Furthermore, a technique for “shrinking” the problem during the optimization process is
introduced: during the optimization process it often becomes clear fairly early that certain examples are unlikely to end
up as support vectors (SV), and by eliminating them the problem gets smaller. This is found particularly effective for
large learning tasks where the fraction of SVs is small compared to the sample size. SVMlight’s memory requirement
is linear in the number of training examples and in the number of SVs.

Solving SVM in the primal space is proposed in [80]. Most literature on SVMs concentrates on the dual opti-
mization problem. The authors of [80] argue that the primal problem can also be solved efficiently and that there is
no reason for ignoring this possibility. On the contrary, from the primal point of view new families of algorithms for
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large scale SVM training can be investigated. The usual main reasons mentioned for solving this problem in the dual
are:

1. The duality theory provides a convenient way to deal with the constraints.

2. The dual optimization problem can be written in terms of dot products, thereby making it possible to use kernel
functions.

Newton optimization in the primal yields exactly the same computational complexity as optimizing the dual. When
it comes to approximate solution, primal optimization can be superior because it is more focused on minimizing
what we are interested in: the primal objective function. Primal optimization might have advantages for large scale
optimization. Indeed, when the number of training points is large, the number of support vectors is also typically
large and it becomes intractable to compute the exact solution. One has to resort to approximations, but introducing
approximations in the dual may not be wise. There is indeed no guarantee that an approximate dual solution yields
a good approximate primal solution.

In a different direction, [345] develops and analyzes a training algorithm for support vector machine classifiers
without offset. Historically, SVMs were motivated by a geometrical illustration of their linear decision surface in the
feature space, like in Fig. 12.3. This illustration justified the use of an offset b that moves the decision surface from the
origin. However, this geometrical interpretation has serious flaws. Even if visualizations can be powerful, one should
never base algorithmic choices on simple illustrations in low-dimensional spaces.

It turns our that SVM optimization with offset imposes more restrictions on solvers than the optimization problem
without offset does. The offset leads to an additional equality constraint in the dual optimization problem, which
in turn makes it necessary to update at least two dual variables at each iteration of commonly used solvers such as
sequential minimal optimization (SMO) [299].

The authors of [345] develop algorithms for SVMs without offset. These algorithms not only achieve a classifica-
tion accuracy that is comparable to the one for SVMs with offset, but also run significantly faster.

Gist
Least-squares Support Vector Machines require equalities instead of inequalities for classifying patterns
(like the usual trick of mapping positive cases to +1, negative cases to −1). In this manner the quadratic
penalty on the errors leads to linear equations after taking partial derivatives and demanding a zero gradi-
ent.

Quadratic penalties increase big deviations so that a few outliers can distort the model. Robust statistics
produces methods that are not unduly affected by outliers, by limiting their effect on the goodness function
to be minimized. Suspiciously large errors are discounted by giving them small weights and obtaining
robust weighted least square SVM.

The sparseness which is lost in the quadratic formulation can be recovered through pruning techniques,
so that less meaningful data points are removed and the LS-SVM is re-computed on the basis of the remain-
ing points.

The antediluvian least-squares method minimizing the sum of squared residuals remains an effective
pillar to support also recent methods like SVM. Never underestimate good old techniques and linear algebra
when comparing with the latest proposals.
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Chapter 14

Structured Machine Learning, Text and
Web Mining

Wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be
dropped into the memex and there amplified.

(Vannevar Bush, 1945)

Up to now we have considered data with a flat structure, numbers conveniently collected in vectors. But there are
interesting situations in which data (observations) come with a very structured form, imagine the graph of a network
describing relationships between people or between genes (genetic regulatory networks), a causal network linking a
hidden syndrome to symptoms, or imagine analyzing text or understanding language.

Structured machine learning refers to learning structured hypotheses from data with rich internal structure usu-
ally in the form of one or more relations[118]. The data might include structured inputs as well as outputs, parts of
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Sprinkler Rain

Grass wet

Figure 14.1: A simple Bayesian network: nodes and relationships.

which may be noisy, or missing. Probabilistic graphical models is an umbrella term to cover Bayesian networks,
Markov networks and variations thereof.

Applications include a variety of tasks such as learning to parse and translate sentences, studying social networks,
predicting the pharmacological properties of molecules, and interpreting visual scenes. Predictions can be about node
properties (e.g., “Is a user in a social network going to vote democrat or republican?”), about link properties or link
existence (“Will customer A buy product B?”, “Are two proteins interacting?”), or about entire networks (“Is this a
network of terrorists?”). An empirical fact which can be used for collective classifications is homophily (i.e., “love of
the same”), the tendency of individuals to associate and bond with similar others. Linked entities are likely to share
attribute values (“If A is a subscriber of a cellular company and B is connected to A, B is more likely to be a subscriber
of the same company”), and entities sharing common neighbors are more likely to be linked (“friend of friends are
friends”).

The topic is rapidly getting very technical and we are forced to mention only some relevant models. In this
introductory chapter we consider briefly Bayesian belief networks (Sec. 14.1), Markov networks (Sec. 14.2) and
inductive logic programming (Sec. 14.3), and dedicate more space to text and web mining (from Sec. 14.4), also
because of its relevance and concrete aspect which facilitates understanding.

14.1 Bayesian networks
A Bayesian network, or belief network is a graphical representation of uncertain knowledge, easy to build and
to interpret, yet with a formal probabilistic semantics making it suitable for statistical interpretation [176, 211].

Up to now, the objective has been that of maximizing some performance index (correct recognition, squared error,
etc.). But there is another positive objective for intelligent systems, one that becomes a necessity for certain appli-
cations: human understanding and high-level explanation. In healthcare, purely automated systems identifying a
diagnosis from symptoms and exams are not yet acceptable. A physician has to check and understand (and be respon-
sible in case of lawsuits). An example of systems based on rules are decision trees (Chapter 6), but their structure
based on deterministic hierarchical chain of “if . . . then” rules limit their applicability. A long time ago, “expert sys-
tems” with high-level (symbolic) rules defined solely by experts were popular but soon encountered problems related
to fragility, difficulty in maintenance for dynamic systems, exploding times for running the inference engine.

A Bayesian network is a useful compromise: domain experts can define an initial network structure, but it
is amenable to refinement through learning, by fine-tuning probabilities or modifying some parts of the network
structure.

In details, a Bayesian network is a probabilistic graphical model that represents a set of random variables and
their conditional dependencies via a directed acyclic graph (DAG). For example, it could represent the probabilistic
relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities
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Figure 14.2: A simple Bayesian network: nodes and probability tables.

of various diseases. Nodes represent random variables: they can be observable quantities, latent variables, unknown
parameters or hypotheses. Edges represent conditional dependencies. Each node is associated with a probability
function that takes, as input, a particular set of values for the node’s parent variables, and gives (as output) the proba-
bility of the variable represented by the node.

A toy example is in Fig. 14.1 Two events can cause grass to be wet: either the sprinkler is on or it’s raining. Also,
the rain has a direct effect on the use of the sprinkler (when it rains, the sprinkler is usually not turned on). All three
variables have two possible values, T (for true) and F (for false). Possible probability tables for this examples are in
Fig. 14.2.

The joint probability function is:

Pr(G,S,R) = Pr(G|S,R) Pr(S|R) Pr(R)

where the names of the variables have been abbreviated to G = “Grass wet” (yes/no), S = “Sprinkler turned on”
(yes/no), and R = “Raining” (yes/no). The model can answer questions like “What is the probability that it is raining,
given the grass is wet?”

Not surprisingly, Bayesian networks are related to the Bayesian philosophy. The probability of an event represents
the degree of belief that the event will occur in an experiment. This is also called the subjective interpretation, different
from the frequentist interpretation of probability (frequency in a series of repeated experiments). According to Bayes,
the probability of event e depends on the state of knowledge ξ of the person providing the probability p(e|ξ). One of
the main motors for probabilistic reasoning is Bayes’ theorem:

Pr(X|Y, ξ) =
Pr(Y |X, ξ)

Pr(Y |ξ)
Pr(X|ξ), for Pr(Y |ξ) > 0

The standard names for the probability of X before we know Y (P (X|ξ)) is the prior, the probability P (X|Y, ξ)
after we know Y is called the posterior. Because probabilities sum up to one, one can forget about the denominator
and just remember:

P (X|Y, ξ) ∝ P (Y |X, ξ)P (X|ξ)

To remember: “Posterior equals prior times likelihood”. Important ingredients in the machinery of Bayes networks
are the chain rule:

p(x1, . . . , xn|ξ) =

n∏
i=1

p(xi|x1, . . . , xi−1, ξ) (14.1)
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the generalized sum rule (variable Y is marginalized out) :∑
Y

P (X,Y |ξ) = P (X|ξ) (14.2)

and the expansion rule:
P (X|ξ) =

∑
Y

P (X|Y, ξ)P (Y |ξ) (14.3)

Given a set of events x1, . . . , xn, the joint probability distribution function p(x1, . . . , xn) contains the entire prob-
abilistic knowledge. Unfortunately, dealing directly with a generic p.d.f. is out of question for computational reasons
(the number of values to store is at least 2n, in the lucky case of events with just two possibilities) and for understanding
(we are very bad at reasoning with very large-dimensional tables).

Luckily, useful real-world Bayesian networks have a very sparse structure: the relevant tables are low-dimensional
and the relationships are only among a limited set of nodes. In detail, in the factors of the chain rule of equation (14.1),
for every xi there will be a limited subset Πi such that xi and {x1, . . . , xn} are conditionally independent given Πi,
i.e.,

p(xi|x1, . . . , xi−1, ξ) = p(xi|Πi, ξ)

In the graph representing the Bayesian network, the parents of node xi correspond to the set Πi. In addition to the
connectivity structure defining the parent - child relationship, the tables p(xi|Πi, ξ) contain the relevant probability
distributions.

Let’s note that Bayesian networks are not uniquely defined: the structure depends on variable order, and a
careless ordering may fail to reveal many conditional dependencies.

On the other hand, with a carefully selected ordering (guided by the knowledge and intuition of the domain expert),
the joint probability distribution can be decomposed into manageable pieces. In this manner probabilistic inference,
i.e., computing probabilities of interest from a joint probability distribution, becomes doable in acceptable times (no
sums over 2n or more possibilities!). In spite of the “divide et impera” approach, efficient probabilistic inference is not
trivial and different algorithms have been proposed [176]. Exact inference in arbitrary Bayesian networks, and even
approximate inference is NP-hard [106], but these negative results should not discourage, there is help for reasonably
small networks, particular topologies, particular queries.

Unfortunately, rarely is the domain so clear and the probabilistic knowledge so refined to design a fully functional
Bayesian network from scratch. In other words, this is another area in which huge opportunities for learning from
data exist. In particular, one can learn probabilities. One can start with a prior distribution depending on available
knowledge ξ and update probabilities with Bayes rule to obtain posterior distributions after running experiments. In
other cases, the structure of the network is also uncertain and one may want to refine the structure when more and
more data becomes available. Prior probabilities can be defined over network structures, then posterior probability
distributions over structures can be derived.

Unfortunately, the number of possible structures to sum over explodes when the network is more than a small
toy problem and radical approximations are needed. Luckily, even crude approximations that consider only a single
“good” network structure can be sufficient. Identifying a good network compatible with the measured data can be
done through local search (LS) mechanisms (LS is explained in Chapter 24). LS can be particularly effective when
the score can be updated rapidly for small changes, like the addition or deletion of an edge, and not recomputed from
scratch. In LS one needs heuristic scoring metrics to measure the “goodness of fit” of a particular network to prior
knowledge and data. One can search for the network structure with the highest posterior probability (maximum a
posteriori – MAP – structure). As it was the case for neural networks, overly-complex networks may easily lead
to very large posterior probability and should be discouraged, for example through Akaike information criterion [7].
More sophisticated local search mechanism going beyond local optimality can be employed (Chapter 27).

As you imagine, the topic is rapidly getting very technical and we have to stop. But continue your exploration
in case you encounter applications characterized by a rich structure of relationships (in some cases relationships of
cause and effects), not excessively large, with abundance of existing domain knowledge and requiring high-level
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explanation. Notable cases are medical diagnosis, computational biology and bioinformatics (e.g., gene regulatory
networks), semantic search, image processing, law, decision support systems, financial informatics (risk analysis).
Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called
influence diagrams.

14.2 Markov networks
Markov random fields (or Markov networks) are based on undirected graphical models, possibly with cyclic depen-
dencies. Different Markov properties can be assumed, like the fact that the variable associated to a node is conditionally
independent of all other variables given its neighbors. For a concrete image, imagine particles moving among nodes
(so that the probability of a node is related to the fraction of particles sitting in that specific node) and imagine that
you sit at one node. The stochastic arrival or departure of particles depend only on the local situation and not on the
distant nodes (and each particle forgets about the previous part of its trajectory). Markov random fields are studied in
Statistical Physics to explain “spin glasses”, and enjoy a large popularity in computer vision. A rich theory is available.
To rapidly hint at some results, in a commonly used class of Markov random fields the joint probability density can be
factorized according to the cliques of the graph (cliques are subset of nodes which are completely connected).

P (X = x) =
∏

C∈cl(G)

φC(xC) (14.4)

This is a huge simplification if cliques are small (in a typical computer vision applications cliques can be associated to
neighboring pixels in an image).

Consider a field where values at the nodes can be among a finite set. Any Markov random field (with a strictly
positive density) can be written as log-linear model with feature functions fk such that the full-joint distribution can
be written as

P (X = x) =
1

Z
exp

(∑
k

w>k fk(x{k})

)
where the notation w>k fk(x{k}) =

∑Nk
i=1 wk,i · fk,i(x{k}) is simply a dot product over field configurations, and Z is

the partition function (needed so that probabilities sum up to one):

Z =
∑
x∈X

exp

(∑
k

w>k fk(x{k})

)
.

Here, X denotes the set of all possible assignments of values to all the network’s random variables. Usually, the
feature functions fk,i are defined such that they are indicators of the clique’s configuration, i.e. fk,i(x{k}) = 1 if x{k}
corresponds to the i− th possible configuration of the k − th clique and 0 otherwise.

Gibbs sampling can be used in Markov networks to sample from the joint probability distribution. The intuition
behind Gibbs sampling is to start from a configuration of x (a vector of random variables), then consider randomly
one variable xj at a time and update the current value with one derived from the conditional distribution specified by
p(xj |x1, . . . , xj−1, xj+1, . . . , xn). The method is therefore very fast if conditional probabilities are a function of a
small subset of local variables. Gibbs sampling is a Markov chain Monte Carlo (MCMC)algorithm for obtaining a
sequence of observations which are approximated from a specified multivariate probability distribution. The samples
in the generated Markov chain approximate the joint distribution of all variables, the expected value of any variable
can be approximated by averaging over all the samples. But let’s note: samples are not independent: subsequent
samples are in fact highly correlated. It is common to ignore some number of samples at the beginning (the so-called
burn-in period), and then consider only every n-th sample when averaging values to compute an expectation. Some
additional black magic is involved in many applications in statistical inference. In machine learning, missing values
for some input variables can be handled by simply fixing the values of all variables whose values are known, and
sampling from the remainder.
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Figure 14.3: Gibbs sampling in computer vision (image restoration) from [143].

A very influential paper with applications in computer vision is [143]. The authors propose an analogy between
images and statistical mechanics. Pixel gray levels and presence and orientation of edges are viewed as state of atoms
in a lattice-like system (a Markov random field). The probability of a pixel value depends (mostly) on the probability
of a set of neighboring pixels, which means that the probability density functions factorize as a product of “local”
terms, easy and fast to calculate, see equation (14.4).

Maximum a posteriori (MAP) estimates of images given a degraded observation (with some noise at pixel levels,
like in old-style television without robust error-correcting coding), are derived by Gibbs sampling and Simulated
Annealing versions. A mental image is that the initial image is modified at randomized pixel locations, and flickers
more at the beginning, less when an approximation of a stationary state maximizing the probability is reached. In spite
of the enormous influence and number of theoretical studies originating from Statistics and Physics, like all MCMC
methods, Gibbs sampling tends to be extremely slow for all apart simple and small-scale applications, and therefore
should not generate excessive expectations.

14.3 Inductive logic programming (ILP)
The early phase of Artificial Intelligence concentrated on symbolic approaches based on if-then rules (knowledge
base) and inference engines. Formal logic, knowledge representation and automated reasoning were under the spot-
light.

The dream was to separate knowledge acquisition, in which a domain expert would make the critical information
required for the system to work explicit, from automated reasoning. By removing the need to write conventional
code, and therefore removing the need for trained programmers, experts could develop systems themselves trough
expert systems. The use of rules to explicitly represent knowledge also enabled explanation capabilities, even in
English (human) language.

In expert systems an inference engine is being driven by the antecedent (left hand side) or the consequent (right
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hand side) of the rule. In forward chaining an antecedent fires and asserts the consequent. For example, consider the
following toy example with the rule:

R1 : Man(x) => Mortal(x)

A simple example of forward chaining would be to assert Man(Socrates) to the system and then trigger the
inference engine. It would match R1 and assert Mortal(Socrates) into the knowledge base. Backward chaining is
less straightforward: the system looks at possible conclusions and works backward to see if they might be true.

Logic programming is a programming paradigm based on formal logic at the base of this high-level approach to
developing intelligent systems. A program written in a logic programming language is a set of sentences in logical
form, expressing facts and rules about some problem domain. Prolog is a notable programming language in this area.
In all of these languages, rules are written in the form of clauses:

H : − B1, . . . , Bn.

and are read declaratively as logical implications:

H if B1 and . . . and Bn.

H is called the head of the rule and B1, . . . , Bn is called the body. Let’s note that the “: −” symbol is used to fake a
left arrow by standard keyboard symbols (keyboard design was for secretaries not for programmers!).

The knowledge-base and inference-engine dream generated hype and then following disillusion, when it turned
out that passing from rapid prototypes to real-world systems in many cases created an explosion of CPU times for
reasoning, difficulty in maintaining systems, fragility when application was at the boundary of the domain. While the
rules for an expert system were more comprehensible than typical computer code they still had a formal syntax where
a misplaced comma or other character could cause havoc as with any other computer language.

Nonetheless, research is still in specific areas like natural language processing (language parsing), bio-informatics,
hardware-software verification. The new developments are mentioned in this book for completeness but also because
ILP is deeply involved with learning and optimization, to simplify system developments, take account of examples
in addition to rules, make the systems more robust and dynamic.

In particular, Inductive logic programming (ILP)[277] is a subfield of machine learning which uses logic pro-
gramming as a uniform representation for examples, background knowledge and hypotheses. Given an encoding of
the known background knowledge and a set of examples represented as a logical database of facts, an ILP system
will derive a hypothesised logic program which entails all the positive and none of the negative examples. The term
“inductive” here refers to a philosophical induction process of suggesting a theory to explain observed facts. Cur-
rent research[118] deals with reasoning about the identity of objects (like recognizing that vehicles found in different
images represent the same physical object), inventing new objects to achieve compact hypotheses which explain em-
pirical observations (like inventing an unknown enzyme to explain effects in a metabolic network), incremental theory
revision (background knowledge can be incomplete and incorrect, it can be revised when abundant experimental data
are present), logical experimental design (optimal design of experiments to test hypothesis in laboratory settings).

Structured machine learning[118] is an umbrella term for ML techniques that involve predicting structured
objects, like a parse tree (part-of-speech tagging natural language) or a symbolic interpretation of a visual scene,
rather than scalar discrete or real values. Structured ML includes learning logical representations, like in ILP or
Bayesian networks. The current research deals with handling uncertainty in a principled manner by incorporating
probabilities into logical and relational representations. The long-term goal is to deal with the dynamic nature of
systems, to deal with shifting sands of non-stationary distribution in order to achieve graceful degradation. From the
computational point of view while searching for the best structure, dynamic programming (Viterbi and variations),
local search, greedy search and beam search (which extends a greedy approach by considering a certain number B
of interesting candidates to modify instead of a single one), are in the bag of tools to achieve acceptable CPU times to
deal with real-world systems.
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<html>
<head>
<title>Learning and Intelligent Optimization</title>
<meta name="author" content="Roberto Battiti">
<meta name="keywords" content="LION, ML, optimization, big data">
</head>
<body>
<h1>The LION way is the future</h1>
The reasons are explained in the
<a href="intelligent-optimization.org"> LIONlab homepage </a>.
</body>
</html>

Figure 14.4: An example of a web page written in HTML, the Hypertext Markup Language which is standard to
describe the overall page structure.

Combining logical and statistical approaches is far from trivial but can produce advantages related to speed
of development and human explanation in areas for which logical rules are present (e.g, natural language, robotics,
vision). As an example, automated car driving requires both following many symbolic rules (including speed limits,
road signs, safety requirements, etc.) and reacting very rapidly to unusual driving conditions or adapting the driving
style in order to reduce fuel consumption, in some cases in sub-symbolic manners through learning-by-example.

14.4 Text and web mining: the context

When the data consist of a collection of documents, we can still use many of the techniques used to analyze numer-
ical data but we need to adapt them, by suitably preprocessing the documents and fine-tuning the ML methods.
Preprocessing transforms texts into vectors containing numeric values. Fine-tuning the ML methods has to deal with
the fact that these vectors may possess a huge number of coordinates, that words have synonyms, that texts have a
structure going beyond a bag of words, facts which require specific ad hoc metrics, feature selection and extraction.

Information retrieval deals mostly with searching for documents and for information within documents, and web
mining is related to adapting methods to the context of the world wide web. The Web is an unstructured (or, at most,
semi-structured) collection of data mostly in form of human-readable texts and images, connected by hyper-links.
The Web is not a database: a complete description of data items structure (a schema) is missing, it is just a messy
collection of human-readable data and human-exploitable hyper-links. There are efforts to help machines (computers)
to automatically extract meaning from web pages through semantic support, but the task is daunting given the anarchic
and continuously evolving structure of the web. “Semantic” means related to the “meaning” of the data items, and the
so-called semantic web is an effort to add meta-data —data about the meaning of data— to enable automated agents
and other software to access the Web more intelligently, for example understanding that a field is the name of a person,
another field the age, another one the address, etc.

“Big data” is a popular marketing term for a collection of data sets so large, complex and unstructured that it
becomes difficult to handle by using traditional data processing applications.

In addition to text, it is important to remember that web pages contain tags that modify the appearance and the
meaning of the text, they contain links to other documents (hyper-links) and, in some cases, meta-data describing
the meaning of the different parts. A short example of a page written in HTML is shown in Fig. 14.4. No web page is
an island entire of itself : in fact hyperlinks help in searching for, ranking, and classifying pages in the web. Of course,
similar linked structures are present in other areas, like social networks, bibliographic references in research papers,
etc.
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14.5 Retrieving and organizing information from the web
Before taking the plunge into the more interesting web mining tasks like ranking, clustering and classification, let’s
start with a short introduction about how to collect the raw content of the web pages (crawling), and structure it so
that it is ready for further analysis (indexing). If you do not care about how the raw data is obtained and you are just
interested in a high-level view, you may skip these sections and jump to Section 14.6.

The collected documents are processed into an index suitable for answering queries and retrieving information.
Unlike the context of RDBMS (relational databases), the order of answers is fundamental: the user wants to see
relevant data first. In other words: one aims at maximizing the probability that the first few answers will satisfy the
user’s needs. The union of a web crawler and a web index is a search engine.

In some cases topic directories are built to simplify searching. They are treelike structures (taxonomies), initially
designed by hand. The process of organizing the documents can be automated by clustering and unsupervised
learning methods. The purpose is the automated discovery of groups in the set of documents so that documents inside
the same group are more similar than documents in different groups. As one may expect, similarity measures are a
crucial issue when designing automated document clustering techniques.

14.5.1 Crawling
The processing of the web information starts with crawling, systematic methods to visit web pages and harvest the
information contained therein. The basic crawling principle consists of visiting the web graph by starting from a given
set of URLs, fetching and collecting the corresponding pages, scanning collected pages for hyperlinks to pages that
have not been collected yet.

If you are familiar with graphs, nodes represent web pages, edges represent links and the task is to visit the graph,
i.e., visit all nodes in a systematic manner while avoiding duplicate visits. While a basic crawler implementing a
visit of the web graph can be put together with a little knowledge of the underlying communication protocol (HTTP),
avoiding the many pitfalls requires careful design considerations:

• many web servers assume that a human mind is driving the web requests, therefore they assume that any attempt
at fetching many pages per second is an attack, and respond by denying access;

• more and more pages on the Internet are dynamic in many subtle ways: their content depends on data previously
input by the user, by pre-existing client cookies, even by the position the request is being originated from;
therefore, any attempt to automatically collect all available information fails, and some user intelligence must
be put into the system;

• resolving host names might take longer than fetching the data itself; in general, identifying the real bottleneck
is not an easy task;

• the web is now dominated by virtual servers with their many-to-many relationships (Domain names to IP ad-
dresses, URLs to pages, not to mention mirrored or plagiarized info), so that identifying what has already been
visited is becoming more and more difficult.

A minimal crawler architecture is shown in Fig. 14.5: a queue of still unvisited URLs is maintained; every time a
page is fetched, it is scanned for new URLs. In order to overcome the aforementioned DNS bottleneck, a preliminary
DNS request can be issued long before the URL is finally requested. Avoiding page and URL duplicates is also
important, so various “is it new?” checkpoints can be placed throughout the workflow.

14.5.2 Indexing
Indexing is a required preprocessing so that queries can be answered rapidly. The simplest kind of queries, and by
far the most used, involves one or more terms, in some cases combined by Boolean operators. For example one may
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Figure 14.5: A basic crawler architecture: URLs are extracted from fetched pages and enqueued; domain names are
pre-fetched to overcome the potential bottleneck.

search for: documents containing the word “Reactive” but not the word “Search”; documents containing the phrase
“Reactive Search Optimization”; documents where “Reactive” and “Search” occur in the same sentence, etc.

Before building indices, documents undergo a sequence of cleaning steps, often including the following: HTML
tags and other non-relevant markup items are filtered out (there are some exceptions: some meta-information should
be retained, heading tags might provide information about the relevance and visibility of words); punctuation can be
removed and replaced, if needed, by end-of-sentence markers; character casing is made uniform (e.g., all lowercase);
the remaining text is tokenized, i.e., divided into words; very common words (“and”, “I”, “the”. . . ), also known as
stopwords, are removed; variant forms of the same word are collapsed to their stem (so that “play”, “playing” and
“played” all correspond to the same token).

While not all of the original information is preserved in the process, from the information retrieval point of view,
the lost part is mainly noise, and a user who sends the query “Shakespeare play” to a search engine will expect results
containing the words “Shakespeare plays” too, with proper casing and plural forms.

Fig. 14.6 shows two sample documents1, d1 and d2, where the subscript denotes the position of the token in the
document:

A direct index is a table mapping term ID tid to document’s ID and position (did,pos). Such table, shown in
the left-hand side of Fig. 14.6, makes searching for all documents containing a token very inefficient (one has to scan
the entire table). An inverted index is a table obtained by “transposing” the previous one (right-hand side of Fig. 14.6),
and giving for each token the list of documents that contain it.

14.6 Information retrieval and ranking

After the raw content of the web is properly saved and preprocessed (indexed), let’s now consider the more interesting
task of searching for documents, and searching for information within documents, also called Information retrieval
(IR). In general, one wants to retrieve documents which are relevant to a query and which are of good quality. If one

1WILLIAM SHAKESPEARE — The Life and Death of Richard the Second, Act IV, Scene 1.



CHAPTER 14. STRUCTURED MACHINE LEARNING 143

d1 = My1 care2 is3 loss4 of5 care6, by7 old8 care9 done10.
d2 = Your1 care2 is3 gain4 of5 care6, by7 new8 care9 won10.

tid did pos
my 1 1
care 1 2
is 1 3
...

...
...

new 2 8
care 2 9
won 2 10

tid pos list
my d1/1
care d1/2,6,9 // d2/2,6,9
is d1/3 // d2/3
loss d1/4
of d1/5 // d2/5
by d1/7 // d2/7
old d1/8
done d1/10
your d2/1
gain d2/4
new d2/8
won d2/10

Figure 14.6: Two documents (top) and their direct (left) and inverted (right) index, from [75].

A

B
Retrieved documents

Relevant documents in database

A

B

Figure 14.7: Information retrieval: relevant and retrieved documents.

searches for “loss” and “care” one may retrieve a piece by Shakespeare, as well as documents about, let’s say, “hair
loss care,” which are probably of inferior quality, if you are interested in literature and not in hair loss.

Standard definitions of performance measures when retrieving documents are as follows. If A is the set of relevant
documents, and B the set of retrieved documents, see also Fig. 14.7 and Fig. 3.5 in Section 4.3, one identifies:

• retrieved relevant items (true positives): A ∩B ;

• retrieved irrelevant items (false positives): B \A ;

• unretrieved relevant items (false negatives): A \B .

The precision of a retrieval system is defined as the fraction of retrieved documents that is relevant:

precision =
|A ∩B|
|B|

.

The recall of the system is defined as the fraction of relevant documents that is retrieved:

recall =
|A ∩B|
|A|

.
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The recall measure usually is not so relevant for web searches, where the number of relevant documents typically
is too large for a human to examine. For search engines, the order in which results are presented to the user is
fundamental. In general, such order implies ranking the documents, so an adequate performance measure should favor
those methods that place relevant documents in the highest ranks, and show them first in the user browser as response
to a search.
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Figure 14.8: A ranking example.

Consider Fig. 14.8, where the darker dots represent relevant documents, while the ranking order is provided on
the right. It is clear that the best ranking procedure should place the bright (red) elements in the top positions. Let’s
introduce more specialized definition of performance to take this into account.

Let D be a corpus of n = |D| documents, and let q be a query. Define Dq ⊂ D as the set of all relevant documents
for query q. We assume that Dq represents the “desired” answer of the system. Let (dq1, d

q
2, . . . , d

q
n) be an ordering

(“ranking”) of D returned by the system in response to query q. Let (rq1, r
q
2, . . . , r

q
n) be defined as

rqi =

{
1 if dqi ∈ Dq

0 otherwise.

We can now define rank-dependent versions of the recall and precision figures, which will help us answer the
question “how would we rate the performance of our system if we only took the top-k ranked answers?”

The recall at rank k is defined as the fraction of relevant documents found in the top k positions:

recallq(k) =
1

|Dq|

k∑
i=1

rqi ,
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and similarly for the precision:

precisionq(k) =
1

k

k∑
i=1

rqi .

As usual, there are no free meals: when analyzing the ranked list, the recall can be increased by increasing k; but
then, more and more irrelevant documents occur, driving down the precision (precision-recall tradeoff).

14.6.1 From Documents to Vectors: the Vector-Space Model
To use standard techniques designed for vector spaces to search, cluster, and classify documents, we first need to map
each document to a vector (the vector-space model).

After preprocessing, our document is now a bag of words, actually a bag of tokens, and the most straightforward
way to obtain a vector is to: i) fix a set of terms (tokens), ii) have a separate axis to represents each term (token), iii)
set the value of the vector along the axis t to zero if the document does not contain the token t, to a number greater
than zero if the document contains the token one or more times.

If n(d, t) is the number of times that document d contains the term t, the term frequency TF(d, t) of term t in
document d is defined as a figure that increases monotonically with the relative frequency of t in d. Some possible
definitions are the following:

TF(d, t) =
n(d, t)∑
τ n(d, τ)

TFSMART(d, t) =

{
0 if n(d, t) = 0

1 + log
(
1 + log n(d, t)

)
otherwise.

The TFSMART formula is meant to avoid an exaggerated value along a dimension if a term is present too many
times. This was a frequent case in the initial years of the web, when simple search engines were just counting term
occurrences. It used to be that many pages contained for example the term “sex” repeated hundreds of times, aiming at
reaching a high rank for many users searches. Actually, the more recent search engines combat this kind of spamming
by using the hyperlink information, as we will see later.

Actually, often the most interesting terms are the ones which do not appear in many documents (rare terms
like “C++”, “Reactive Search Optimization”, “stochastic” are probably more informative than “is”, “nice”, “free”,
“excellent”), and an inverse document frequency can be defined as a figure that monotonically decreases as the
overall frequency of a term in the whole document corpus increases:

IDF(t) = log
1 + |D|
|Dt|

,

where Dt is the set of documents containing term t, and the logarithm is used to avoid an exaggerated multiplier
for very rare terms. Let’s note that the above methods to derive vectors are heuristic and not based on fundamental
principles like information theory. If you think that the logarithm is not appropriate, feel free to experiment with other
functions. After discounting the importance of weak terms appearing in too many documents, a specific document d
in TF-IDF space (term-frequency inverse-document-frequency) is represented by vector

d = (dt)t∈terms ∈ Rterms,

where component dt is
dt = TF(d, t) IDF(t).

A query q is a sequence of terms, therefore it admits a representation q = (qt) in the same space as documents.
Given the query q and the document d, one can now measure their proximity, by considering vector-space similarity
measures, as shown in Fig. 14.9. Two frequently used proximity measures in TF-IDF space are listed below.
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Figure 14.9: Geometric Interpretation.

• Euclidean distance ‖d−q‖. To avoid artifacts, vectors should be normalized,i.e., an n-fold replica of document
d should have the same similarity to q as d itself:∥∥∥∥ d

‖d‖
− q

‖q‖

∥∥∥∥ .
• Cosine similarity, i.e., the cosine of the angle between vectors d and q:

d · q
‖d‖ ‖q‖

,

see also equation (17.3).

An Information Retrieval system based on TF-IDF coordinates therefore works as follows. First build an inverse
index with TF(t, d) and IDF(t) information. When given a query, map it onto TF-IDF space, sort documents according
to the similarity metric, return the most similar documents. Searching methods can be extended in different ways, for
example to search for phrases. The book [75] presents more details on the topic which cannot be presented in this
short introductory chapter.

Please note that there is nothing magic in the traditional TF-IDF representation: it is just a heuristic recipe to give
more weight to more informative words, so that the standard metrics given above can produce reasonable results. More
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sophisticated metric-learning or feature-selection methods based on information content (like mutual information) can
lead to superior results but require a deeper knowledge.

14.6.2 Relevance feedback
As mentioned above, after transforming the query into a vector, a vector-similarity measure can be used to identify a
set of most similar documents to return to the user.

Unfortunately, the average web query is as few as one or two terms long, and it is not surprising that a lot of
irrelevant documents can be retrieved. This is why either a serious measure to rank qualitatively superior documents
is needed (like PageRank in Section 14.7) or at least a way to rapidly get feedback from the user and use it to form a
better query.

Rocchio’s Method is based on updating the vector used for the first query to make it more similar to vectors
describing documents that the user identifies as relevant (likes), and less similar to the ones classified as irrelevant
(dislikes), as illustrated in Fig. 14.10. For a mental image, think about documents that the user liked attracting the
query vector, and documents that he disliked repelling it. In details, the query vector is updated as:

q′ = αq + β
∑
d∈D+

d− γ
∑
d∈D−

d,

where D+ is a set of retrieved documents liked by the user, and D− is a set of retrieved documents that the user
dislikes. Parameters α, β and γ control the amount of modification. The careful reader may notice a resemblance with
the way in which prototype vectors are updated in the self-organizing maps in Chapter 19.

14.6.3 More complex similarity measures
In a TF-IDF vector space, we can define the “similarity” between two items as a decreasing function of distance — its
inverse, for example, although it goes to infinity when comparing an object to itself, requiring some correction. If the
elements admit a set representation, another similarity criterion is available, the Jaccard coefficient. Let A and B be
two (finite) sets, the Jaccard coefficient of A and B is defined as

r′(A,B) =
A ∩B
A ∪B

.

Its aim should be clear: compare what is common to the two sets (their intersection) to their total size. It varies
between 0 and 1, where r′(A,B) = 0 implies that the two sets have no common element and r′(A,B) = 1 means
that A and B are equal. An additional important property is that 1− r′(A,B) is a distance, it obeys all the properties
of a metric.

Let us adopt a more document-centric definition. If d is a document, let’s define T (d) as the set of tokens (terms)
it contains. Note that, as always when referring to sets, elements have no multiplicity and we are just interested in a
binary model where a term either occurs or does not. Then, the Jaccard coefficient of the two documents is

r′(d1, d2) =
|T (d1) ∩ T (d2)|
|T (d1) ∪ T (d2)|

.

The use of the Jaccard coefficient in search can be motivated as follows: a query is usually seen by the user as a
set of terms without repetitions, and no user would ever write a query such as “reactive reactive search” into Google
expecting it to return documents containing the word “reactive” twice as frequently as the word “search”.

The skeleton of an algorithm for computing the Jaccard coefficient r′(·, ·) is the following one.

• For each d ∈ D:

– for each term t ∈ T (d): put record (t, d) on file f1.
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Figure 14.10: Rocchio’s method.

• Sort f1 in (t, d) order and aggregate into form (t,Dt).

• For each term t scanned from f1:

– for each pair d1, d2 ∈ Dt: put record (d1, d2, t) on file f2.

• Sort f2 on (d1, d2) and aggregate by adding on the third field.

Some possible tricks to reduce the search cost are related to pre-computing the Jaccard coefficient for all pairs of
documents and queries, which can require huge amounts of storage and CPU time, or reducing the set of pairs, by pre-
associating every document or query to a list of a small and fixed number of the most similar documents. In addition,
very frequent terms (having low IDF) can be omitted entirely from consideration.

In practice, in many cases one is interested in approximating the coefficient. An interesting randomized algorithm
using random permutations is available.

If one uses probabilities, given sets A and B, one starts from this interesting equality:

|A ∩B|
|A ∪B|

= Pr(x ∈ A ∩B|x ∈ A ∪B).

If we can estimate the above probability, we can estimate the Jaccard coefficient. What we can do is to generate
random elements in the set S ⊂ {1, . . . , n} and to estimate the probability by the ratio of events.
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Figure 14.11: Building a permutation.

To select a random element from a set S ⊂ {1, . . . , n} one can select a random permutation π on n elements and
pick the element in S such that its image in π is minimum:

x = arg min
x∈S

π(x) = arg minπ(S)

When applied to A ∪B, this method locates an element in the intersection if and only if

minπ(A) = minπ(B).

We can therefore estimate the above ratio by applying random permutations and checking if the two minima are
coincident.

Let’s demonstrate why permutations work. Given sets A,B ⊂ {1, . . . , n}, to derive the probability that the two
minima are coincident, let us count how many permutations π : {1, . . . , n} → {1, . . . , n} (of the n! possible) have the
property

minπ(A) = minπ(B)

by building one such permutation. From Fig. 14.11 it should be clear that:

• The image of A ∪B (lighter and darker squares) can be chosen in
(

n
|A∪B|

)
different ways.

• Within such image, the minimum element can be chosen within the |A ∩B| elements that form the intersection
(thick arrow).

• The remaining elements in the image of A ∪B can be permuted in (|A ∪B| − 1)! ways (thin arrow).

• The elements not in A ∪B can be permuted in any of (n− |A ∪B|)! ways (light arrows).

After multiplying all these, one obtains:(
n

|A ∪B|

)
· |A ∩B| · (|A ∪B| − 1)! · (n− |A ∪B|)! = n!

|A ∩B|
|A ∪B|

,

and after dividing by the total number of permutations one derives the desired equality.
A randomized but inefficient algorithm is as follows:

• generate a set Π of m permutations on the set of terms;

• k ← 0
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• for each π ∈ Π:

– if minπ(T (d1)) = minπ(T (d2)) then k ← k + 1;

• estimate r′(d1, d2) ≈ k

m
.

By combining a randomized algorithm with suitable data structures working on external storage and simultaneous
computation of the coefficients for many documents, one manages to deal with the enormous amount of documents
contained in the world wide web!

14.7 Using the hyperlinks to rank web pages
There are so many web pages that the issue is not only that of retrieving a few set of pages relevant to the query, but that
of retrieving a set of high quality and relevant pages. The issue predates the web and is encountered also when reading
books, or papers. One would like to concentrate on good quality papers written on a subject, without wasting time on
poor quality ones. In scientific communities, a paper is considered of good quality if it is cited by other good quality
papers, meaning that some colleagues found the paper useful and acknowledged it by putting it the list of citations.
For a more mundane analogy, a candidate for employment is valued if many other valued people recommend him.
In general, see also Fig. 14.12, in a social network of relationships between people, a high reputation is obtained by
having other highly-reputed people recommending you. It is not sufficient to convince many low-rank individuals to
support you, there are no shortcuts!

After a seminal paper by Marchiori [260] highlighting the importance of hyper-information (information in the
hyperlinks), Larry Page and Sergey Brin developed the PageRank algorithm, which follows the same basic social net-
works principles, by substituting “recommendations” and “citations” with hyperlinks [286] (the authors then became
Google founders). They define a “measure of prestige” such that the prestige of a page is related to how many pages
of prestige link to it. Let’s note that this is a recursive definition. To measure the prestige of a page one needs to have
the prestige of pages pointing to it, and so on. In short, their solution is: start with an initial distribution of prestige
values, iterate the prestige calculation for the different nodes, and stop when the values do not change too much after
recalculation, as simple as that! At first reading, this process seems prone to pitfalls. What guarantee do we have that
the process converges, hopefully to the same limiting distribution, not depending on the initial distribution of values?

Now: it is fascinating how the solution to this problem is related to basic linear algebra concepts of eigenvalues
and eigenvectors, as well as concepts related to Markov chains. Let’s summarize the main relationships.

First, let’s see how iterating the prestige calculation after starting from an initial distribution is related to the classic
power iteration method for finding the dominant eigenvector of a matrix. We proceed very rapidly, skipping
mathematical details, only to give the flavor of the method.

The rank of a page is calculated by examining the incoming links (the hyper-links of other pages pointing to the
given page). Each incoming link from page i contributes a partial rank equal to the rank of i divided by the number
of i’s outgoing links, as shown in Fig. 14.13. The human motivation for the division is clear: a page of high rank but
pointing to a very large number of pages is like a person of good quality but recommending a too large number of
people. Without the division, the owner of a top-ranked page could influence all pages in the world just by putting an
enormous number of outgoing links.

Given the above recalculation rule, once the network of hyper-links is given, the computation of new rank values
pk at iteration k is obtained by a linear transformation of the previous values through a matrix, which we denote as
M , as follows:

pk = Mpk−1.

The matrix M will depend only on the connectivity structure, on the links between pages. Now, after starting from the
initial rank distribution p0 and executing k recalculations:

pk = Mkp0.
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Figure 14.12: Prestige in social networks: recommendations from (or relationship with) high-rank individuals (above)
are more effective to reach a high rank than recommendations by low-rank ones (below).

Assume that a basis of eigenvectors ofM is available, let λ1, λ2, . . . , λn be the n eigenvalues, and let v1,v2, . . . ,vn
be the corresponding eigenvectors. Suppose that λ1 is the dominant eigenvalue, so that |λ1| > |λj | for j > 1.

The initial vector p0 can be written as a linear combination of the basis vectors:

p0 = c1v1 + c2v2 + · · ·+ cnvn.

If p0 is chosen randomly (with uniform probability), then c1 6= 0 with probability 1. Now, using linearity and the
defining property of eigenvectors, one immediately obtains:

Mkp0 = c1M
kv1 + c2M

kv2 + · · ·+ cnM
kvn

= c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

= c1λ
k
1

(
v1 + c2

c1

(
λ2

λ1

)k
v2 + · · ·+ cn

c1

(
λn
λ1

)k
vn

)
.
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Figure 14.13: Recalculating the rank of a page in PageRank. The initial rank is distributed along the outgoing links
(adapted from the original paper).

When the number of recalculations k, equal to the power of the matrixMk, goes to infinity, all terms tend to zero apart
from the one proportional to the dominant eigenvector. A simple iteration of matrix multiplication after starting from
almost arbitrary initial conditions is indeed sufficient to extract the dominant eigenvector!

Let’s now consider a different interpretation related to Markov chains, and imagine that you want to analyze a
system representing the movement of a web surfer on the various web pages. Assume that a surfer is navigating
through outgoing links forever, picking them uniformly at random. Let the starting page u be taken with probability
p0u. Let E be the adjacency matrix of the web: (u, v) ∈ E (or Euv = 1) if and only if there is a link from page u to
page v. What is the probability piv of the surfer being at page v after i clicks?

Let’s start with a single step. What is the probability p1v that surfer is at page v after one step? Let

Nu =
∑
v

Euv

be the out-degree of page u (sum of u-th row of E). Suppose no parallel edges exist,

p1v =
∑

(u,v)∈E

p0u
Nu

.

By normalizing E to have row sums equal to 1

Luv =
Euv
Nu

,

we get
p1v =

∑
u

Luvp
0
u or p1 = LTp0.
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Let’s now consider the situation after i steps:

pi = LTpi−1.

If E is irreducible and aperiodic (none is actually true but the problem can be cured), then

lim
i→∞

pi = p,

where p is the principal eigenvector of LT , a.k.a. its stationary distribution:

p = LTp (eigenvalue is 1).

But pu it the prestige of page u determined also by the previous interpretation. It is now clear how the prestige can be
interpreted also as probability that a random surfer following links will be found at a given page.

Let’s now deal with bad properties of real-world transition matrices. Surveys show that the Web is not strongly
connected, and that random walks can be trapped into cycles. A possible fix is to introduce a “damping factor”
corresponding to a user that occasionally stops following links: with an arbitrary probability d of going to a random
page (even unconnected) at every step. The transition becomes:

pi =

(
(1− d)LT +

d

N
1N

)
pi−1.

The eigenvector of the matrix corresponding to the largest eigenvalue can be obtained as follows.

• Start with random vector p← p0;

• repeat:

– update vector:

p←
(

(1− d)LT +
d

N
1N

)
p;

– from time to time, normalize it:
p← p

‖p‖1
.

Normalization avoids very large components and therefore numerical problems with finite-precision computation.
Of course, for the application we are not interested in absolute prestige values but in relative ones. The absolute values
depend on the chosen range (one may measure prestige on a range from 0 to 10, or on a range from 0 to 100, etc.) but
what is relevant is that a page is, say, three times more prestigious than another one. Normalization is a simple way to
discount multiples of the given normalized eigenvector.

In practical applications, the notion of prestige is so fuzzy that nobody will ever care about obtaining the actual
eigenvector with high precision! To have a flavor of how long is required for convergence, in his original paper Page
says that 52 iterations are enough for about 3×108 pages, quite an exciting result paving the way to significant business
applications.

14.8 Identifying hubs and authorities: HITS
Let’s now consider a different analysis of the web. In a scientific community all good articles are either seminal (i.e.,
many others reference to them) or surveys (i.e., they reference to many others). In the web, pages may be authorities
or hubs [146]. For example portals are very good hubs, even if they do not contain significant information, and they
are used only as starting points to reach good quality pages.
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To reflect this distinction, let’s introduce two score measures, called hubness and authority:

h = (hu), a = (au).

Let’s now summarize the HITS algorithm (Hyperlink-Induced Topic Search). In the HITS algorithm, the first step
is to retrieve the set of results to the search query. Given query q, let Rq be the root set returned by an IR system. The
computation is performed only on this result set, not across all Web pages. Authority and hub values are defined in
terms of one another in a mutual recursion.

The expanded set is formed by adding all nodes linked to the root set:

Vq = Rq ∪ {u : ((u→ v) ∨ (v → u)) ∧ v ∈ Rq}.

Let Eq be the induced link subset, Gq = (Vq, Eq). The recurrent relationship is defined as follows. Let the hub score
hu be proportional to sum of referred authorities, let the authority score au be proportional to the sum of referring
hubs.

a = ETh

h = Ea.

The iterated method is therefore given by:

• initialize a and h (e.g., uniformly) ;

• repeat:

– h← Ea ;

– a← ETh ;

– normalize h and a.

The top-ranking authorities and hubs are reported to the user.
The principal eigenvector identifies the largest dense bipartite subgraph. To find smaller sets, the other eigenvectors

must be explored. There are iterative methods that remove known eigenvectors from a system: they reduce the search
subspace once an eigenvector is identified.

Although of theoretical interest, HITS is not commonly used by search engines, also because pre-computing hub-
ness and authority values for different queries is not doable in practice, the algorithm has to run after the query is exe-
cuted and this makes the algorithm very heavy for general-purpose usage. Coming back to the PageRank algorithms,
let’s note that it is independent of page content and therefore a suitable combination with the content, depending on the
query, must be executed. Google’s way of combining query and ranking is unknown. Probably, empirical parameters
and manual inspection are necessary.

14.9 Clustering
The motivations for clustering are related to the huge number of documents retrieved by web searches. To avoid
overloading the user, identifying groups of closely related documents is useful, for example to show only a small
number of representative prototypes.

Automatically identified clusters can also be a help for later manual classification à la Yahoo. In addition, if a user
is interested in document d, he is likely to be interested in documents in the same cluster and therefore pre-computed
clusters permit to obtain more documents similar to the one under examination on demand.

Let’s note that queries can be ambiguous, especially web queries. For example, if one searches for star, one may
look for movie stars, or for celestial objects, clearly two very different topics.
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Mutual similarities in term vector space can help grouping similar documents together, i.e., to find “clusters” of
documents. Let D be the corpus of documents (or other entities) to be grouped together by similarity. Items d ∈ D
are characterized either internally by some intrinsic property (e.g., terms contained, coordinates in TF-IDF space) or
externally by a measure of distance δ(d1, d2) or similarity ρ(d1, d2) between pairs. Examples are: Euclidean distance,
dot product, Jaccard coefficient. After defining the metric, the usual bottom-up or top-down clustering techniques can
be used. The methods are explained in Chapter 17 and 18.

Gist
Some interesting applications involve more structure than simple “flat” vectors of measures, for example
relationships between entities modeled by graphs and networks. In this case probabilistic graphical
models like Bayesian networks or Markov networks and Inductive Logic Programming can be used to
describe the initial knowledge, refine it based on examples, build symbolic (human) explanations usable for
debugging the knowledge and for explaining how a certain conclusion has been reached.

Web and text-mining are highly-relevant application areas with a vast expanse of data, some of it
structured, some partially structured or not at all. Crawling and indexing are systematic methods to visit
web pages, harvest the information contained therein and prepare data structures for searching, information
retrieval and ranking.

By transforming text into vectors of data (e.g., frequencies of selected words as in the vector-space
model) some traditional ML techniques can be reused, but the richer amount of structure in web documents
permits a more focused analysis.

Web-mining schemes find explicit relationships between documents (web links), infer implicit ones (by
clustering), rank the most relevant pages in a network of connected sites or identify the most relevant and
well-connected person in a network of people. Abstraction helps to use similar tools for networks of pages
and networks of people. As a notable example, the use of hyperlinks and linear algebra tools (eigenvectors
and eigenvalues), previously used to rank researchers in bibliometrics, leads to a very powerful technique
to rank web pages, now at the basis of Google search-engine technology.

From now on, you will look at your hyperlinks, Facebook “Likes” and Twitter “Followers” (or at the
social network software which will be the most popular when you read this book) with new analytic and
aware eyes.
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Chapter 15

Democracy in machine learning

While in every republic there are two conflicting factions, that of the people and that of the nobles, it is in this conflict that all laws
favorable to freedom have their origin.

(Machiavelli)

This is the final chapter in the supervised learning part. As you discovered, there are many competing techniques
for solving the problem, and each technique is characterized by choices and meta-parameters: when this flexibility is
taken into account, one easily ends up with a very large number of possible models for a given task.

When confronted with this abundance one may just select the best model (and best meta-parameters) and throw
away everything else, or recognize that there’s never too much of a good thing and try to use all of them, or at least
the best ones. One already spends effort and CPU time to select the best model and meta-parameters, producing
many models as a byproduct. Are there sensible ways to recycle them so that the effort is not wasted? Relax, this
chapter does not introduce radically new models but deals with using many different models in flexible, creative
and effective ways. The advantage is in some cases so clear that using many models will make a difference between
winning and losing a competition in ML.

The leitmotif of this book is that many ML principles resemble some form of human learning. Asking a committee
of experts is a human way to make important decisions, and committees work well if the participants have different
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competencies and comparable levels of professionalism. Diversity of background, culture, sex is assumed to be a
critical component in successful innovative businesses. Democracy itself can be considered as a pragmatic way to
pool knowledge from citizens in order to reach workable decisions (well, maybe not always optimal but for sure better
than decisions by a single dictator).

We already encountered a creative usage of many classification trees as classification forests in Chapter 6 (Sec.
6.2). In this chapter we review the main techniques to make effective use of more and different ML models with a
focus on the architectural principles and a hint at the underlying math.

15.1 Stacking and blending

If you are participating in a ML competition (or if you want to win a contract or a solution to a critical need in a
business), chances are you will experiment with different methods and come up with a large set of models. Like for
good coffee, blending them can bring higher quality.

The two straightforward ways to combine the outputs of the various models are by voting and by averaging.
Imagine that the task is to classify patterns into two classes. In voting, each trained model votes for a class, votes are
collected and the final output class is the one getting more votes, exactly as in a basic democratic process based on
majority. If each model has a probability of correct classification greater than 1/2, and if the errors of the different
models are uncorrelated, then the probability that the majority of M models will be wrong goes to zero as the
number of models grows. The demonstration is simple by measuring the area under the binomial distribution where
more than M/2 models are wrong. Unfortunately errors tend to be correlated in practical cases. If a pattern is difficult
to recognize, it will be difficult for many models, and the probability that many of them will be wrong will be higher
than the product of individual mistake probabilities so that the advantage will be less dramatic. Think about stained
digits in a zip code on a letter: the stain will create hard difficulties to many models and therefore correlate their
mistakes.

If the task is to predict a probability (a posterior probability for a class given the input pattern), averaging individual
probabilities is another option. By the way, averaging the results of experimental measures is the standard way to
reduce variance. The “law of large numbers” in statistics explains why, under certain conditions, the average of the
results obtained from a large number of trials tends to be close to the expected value, and why it tends to become closer
as more trials are performed.

Figure 15.1: Blending different models by adding an additional model on top of them (stacking).
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Although straightforward, averaging and voting share a weakness: they treat all models equally and the perfor-
mance of the very best models can vanish amidst a mass of mediocre models. The more complex a decision, the more
the different experts have to be weighted, and often weighted in a manner which depends on the specific input.

You already have a hammer for nailing also this issue of weighting experts: machine learning itself! Just add
another linear model on top, connect the different outputs by the level-0 models (the experts) and let ML identify the
optimal weights (Fig. 15.1). This is the basic idea of stacked generalization [385]. To avoid overtraining one must
take care that the training examples used for training the stacked model (for determining the weights of the additional
layer on top) were never used before for training the individual models. Training examples are like fish: they stink if
you use them for too long!

Results in stacked generalization are as follows [359]:

• When you can, use class probabilities as outputs of the original level-0 models (instead of class predictions).
Estimates of probabilities tell something about the confidence, and not just the prediction. Keeping them will
give more information to the higher level.

• Ensure non-negative weights for the combination by adding constraints in the optimization task. They are
necessary for stacked regression to improve accuracy. They are not necessary for classification task, but in both
cases they increase the interpretability of the level-1 model (a zero weight means that the corresponding 0-level
model is not used, the higher the weight, the more important the model).

If your appetite is not satisfied, you can experiment with more than one level, or with more structured combination.
For example you can stack a level on top of MLPs and decision forests, or combine a stacked model already done by
a group with your model by adding yet another level (Fig. 15.2). The more models you manage, the more careful
you have to be with the “stinking example” rule above. The higher-level models do not need to be linear: some
interpretability will be lost, but the final results can be better with nonlinear combining models.

Figure 15.2: Stacking can be applied to different models, including previously stacked ones.

An interesting option is the feature-weighted linear stacking [332]. We mention it as an example of how a
specific real-world application can lead to an elegant solution. In some cases, one has some additional information,
called “meta-features” in addition to the raw input features. For example, if the application is to predict preferences
for customers for various products (in a collaborative filtering and recommendation context), the reliability of a model
can vary depending on the additional information. For example, a model A may be more reliable for users who rated
many products (in this case, the number of products rated by the user is the “meta-feature”). To maintain linear
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regression while allowing for weights to depend on meta-features (so that model A can have a larger weight when used
for a customer who rated more products), one can ask for weights to be linear in the meta-features. If gi(x) is the
output for level-0 model i and fj(x) is the j-th meta-feature, weights will be

wi(x) =
∑
j

vijfj(x),

where vij are the parameters to be learned by the stacked model. The level-1 output will be

b(x) =
∑
i,j

vijfj(x)gi(x),

leading to the following feature-weighted linear stacking problem:

min
(vij)

∑
x

∑
i,j

(
vijfj(x)gi(x)− y(x)

)2
.

Because the model is still linear in v, we can use standard linear regression to identify the optimal v. As usual, never
underestimate the power of linear regression if used in proper creative ways.

15.2 Diversity by manipulating examples:
bagging and boosting

For successful democratic systems in ML one needs a set of accurate and diverse classifiers, or regressors, also
called ensemble, like a group of musicians who perform together. Ensemble methods is the traditional term for these
techniques in the literature, multiple-classifiers systems is a synonym.

Different techniques can be organized according to the main way in which they create diversity [116].
Training models on different subsets of training examples is a possibility. In bagging (“bootstrap aggregation”),

different subsets are created by random sampling with replacement (the same example can be extracted more than
once). Each bootstrap replica contains about two thirds (actually ≈ 63.2%) of the original examples. The results
of the different models are then aggregated, by averaging, or by majority rules. Bagging works well to improve
unstable learning algorithms, whose results undergo major changes in response to small changes in the learning data.
As described in Chapter 6 (Section 6.2), bagging is used to produce classification forests from a set of classification
trees.

Cross-validated committees prepare different training sets by leaving out disjoint subsets of training data. In this
case the various models are the side-effect of using cross-validation as ingredient in estimating a model performance
(and no additional CPU is required).

A more dynamic way of manipulating the training set is via boosting. The term has to do with the fact that weak
classifiers (although with a performance which must be slightly better than random) can be “boosted” to obtain an
accurate committee [132]. Like bagging, boosting creates multiple models, but the model generated at each iteration
is built in an adaptive manner, to directly improve the combination of previously created models. The algorithm
AdaBoost maintains a set of weights over the training examples. After each iteration, weights are updated so that
more weight is given to the examples which are misclassified by the current model (Fig. 15.3). Think about a
professional teacher, who is organizing the future lessons to insist more on the cases which were not already understood
by the students.

The final classifier hf (x) is given by a weighted vote of the individual classifiers, and the weight of each classifier
reflects its accuracy on the weighted training set it was trained on:

hf (x) =
∑
l

wlhl(x).
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Figure 15.3: In boosting, misclassified examples at the current iteration are given more weight when training an
additional model to be added to the committee.

Because we are true believers in the power of optimization, the best way to understand boosting is by the function
it optimizes. Different variations can then be obtained (and understood) by changing the function to be optimized or
by changing the detailed optimization scheme. To define the error function, let’s assume that the outputs yi of each
training example are +1 or −1. The quantity mi = yih(xi), called the margin of classifier h on the training data,
is positive if the classification is correct, negative otherwise. As explained later in Section 15.6, AdaBoost can be
viewed as a stage-wise algorithm for minimizing the following error function:

∑
i

exp

(
−yi

∑
l

wlhl(xi)

)
, (15.1)

the negative exponential of the margin of the weighted voted classifier. This is equivalent to maximizing the margin
on the training data.

15.3 Diversity by manipulating features

Different subsets of features can be used to train different models (Fig. 15.4). In some cases, it can be useful to
group features according to different characteristics. In [86] this method was used to identify volcanoes on Venus with
human expert-level performance. Because the different models need to be accurate, using subsets of features works
only when input features are highly redundant.

15.4 Diversity by manipulating outputs:
error-correcting codes

Error-correcting codes (ECC) are designed so that they are robust with respect to a certain number of mistakes
during transmission by noisy lines (Fig. 15.5). For example, if the codeword for “one” is “111” and that for “zero”
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Figure 15.4: Using different subsets of features to create different models. The method is not limited to linear models.

Figure 15.5: In error-correcting codes a redundant encoding is designed to resist a certain number of mistaken bits.

is “000”, a mistake in a bit like in “101” can be accepted (the codeword will still be mapped to the correct “111”).
Error-correcting output coding is proposed in [117] for designing committees of classifiers.

The idea of applying ECC to design committees is that each output class j is encoded as an L-bit codeword Cj .
The l-th trained classifier in the committee has the task to predict the l-th bit of the codeword. After generating all
bits by the L classifiers in the committee, the output class is the one with the closest codeword (in Hamming distance,
i.e., measuring the number of different bits). Because codewords are redundant, a certain number of mistakes made
by some individual classifiers can be corrected by the committee.

As you can expect, the different ensemble methods can be combined. For example, error-correcting output coding
can be combined with boosting, or with feature selection, in some cases with superior results.
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15.5 Diversity by injecting randomness during training
Many training techniques have randomized steps in their bellies. This randomness is a very natural way to obtain
diverse models (by changing the seed of the random number generator). For example, MLP starts from randomized
initial weights. Tree algorithms can decide in a randomized manner the next feature to test in an internal node, as it
was already described for obtaining decision forests.

Last but not least, most optimization methods used for training have space for randomized ingredients. For exam-
ple, stochastic gradient descent presents patterns in a randomized order.

15.6 Additive logistic regression
We just encountered boosting as a way of sequentially applying a classification algorithm to re-weighted versions of
the training examples and then taking a weighted majority vote of the sequence of models thus produced.

As an example of the power of optimization, boosting can be interpreted as a way to apply additive logistic
regression, a method for fitting an additive model

∑
m hm(x) in a forward stage-wise manner [133].

Figure 15.6: Additive model step: the error of the current model on the training examples is measured. A second
model is added aiming at canceling the error.

Let’s start from simple functions
hm(x) = βmb(x;γm),

each characterized by a set of parameters γm and a multiplier βm acting as a weight. One can build an additive model
composed of M such functions as:

HM (x) =

M∑
m=1

hm(x) =

M∑
m=1

βmb(x;γm).

With a greedy forward stepwise approach one can identify at each iteration the best parameters (βm,γm) so that the
newly added simple function tends to correct the error of the previous model Fm−1(x) (Fig. 15.6). If least-squares
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is used as a fitting criterion:

(βm,γm) = arg min
(β,γ)

E
[(
y − Fm−1(x)− βb(x;γ)

)2]
, (15.2)

where E[·] is the expected value, estimated by summing over the examples. This greedy procedure can be generalized
as backfitting, where one iterates by fitting one of the parameters couple (βm,γm) at each step, not necessarily the
last couple. Let’s note that this method only requires an algorithm for fitting a single weak learner βb(x;γ) to data,
which is applied repeatedly to modified versions of the original data (Fig. 15.7):

ym ← y −
∑
k 6=m

hk(x).

Figure 15.7: The greedy forward step-wise approach in additive models, one iterates by adding new components to
cancel the remaining error.

For classification problems, using the squared-error loss (with respect to ideal 0 or 1 output values) leads to trouble.
If one would like to estimate the posterior probability Pr(y = j|x), there is no guarantee that the output will be limited
in the [0, 1] range. Furthermore, the squared error penalizes not only real errors (like predicting 0 when 1 is requested),
but also it penalizes classifications which are “too correct” (like predicting 2 when 1 is required).

Logistic regression comes to the rescue (Section 9.1): one uses the additive model H(x) for predicting an “inter-
mediate” value, which is then squashed onto the correct [0, 1] range by the logistic function to obtain the final output
in form of a probability.

An additive logistic model has the form

ln
Pr(y = 1|x)

Pr(y = −1|x)
= H(x),

where the logit transformation on the left monotonically maps probability Pr(y = 1|x) ∈ [0, 1] onto the whole real
axis. Therefore, the logit transform, together with its inverse

Pr(y = 1|x) =
eH(x)

1 + eH(x)
, (15.3)



CHAPTER 15. DEMOCRACY IN MACHINE LEARNING 165

guarantees probability estimates in the correct [0, 1] range. In fact, H(x) is modeling the input of the logistic function
in equation (15.3).

Now, if one considers the expected value E
[
e−yH(x)

]
, one can demonstrate that this quantity is minimized when

H(x) =
1

2
ln

Pr(y = 1|x)

Pr(y = −1|x)
,

i.e., the symmetric logistic transform of Pr(y = 1|x) (note the factor 1/2 in front). The interesting result is that
AdaBoost builds an additive logistic regression model via Newton-like updates1 for minimizing E

[
e−yH(x)

]
. The

technical details and additional explorations are in the original paper [133].

15.7 Gradient boosting machines
Boosting is a very active research area, with a lot of flexibility, speed of realization and successful applications. [135]
develops a general gradient-descent boosting paradigm for additive expansion based on any fitting criterion.
Special enhancements are derived in particular for the case in which additive components are regression trees.

While we refer to the original publication for all theoretical details, we follow the explanation of [84] for the case
of convex and differentiable loss functions. The objective is to obtain an ensemble of k trees, such that the predicted
output ŷi is given by the sum of the individual trees:

ŷi =

K∑
k=1

fk(xi), fk ∈ F (15.4)

where F is the space of regression trees. Each tree partitions the input space into T zones (“leaves”), each zone is
associated with a constant output value w, the function q(x) maps an input values to a specific leaf.

F = {f(x) = wq(x)}, q : Rm → T, w ∈ RT

To learn the model one minimizes a regularized objective function:

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (15.5)

where:
Ω(f) = γT +

1

2
λ‖w‖2 (15.6)

The loss function l measures the difference between the predicted ŷi and teh target yi, differentiable and convex. The
term Ω penalizes overly-complex models, with too many leaves or very large weights, aiming at a better generalization.

Let’s now consider how the addition of a tree can reduce the regularized objective. The greedy aspect corresponds
to adding at iteration t the tree which brings the largest possible reduction, by minimizing:

L(t) =
∑
i

[
l(yi, ŷi)

(t−1)
+ ft(xi)

]
+ Ω(ft) (15.7)

The previous trees are left untouched. Instead of minimizing L(t) one minimizes its second-order Taylor expansion,
remembering that the delta in its input parameter is in this case the additional contribution ft(xi).

L(t) ≈
∑
i

[
l(yi, ŷi)

(t−1)
+ gift(xi) +

1

2
hift(xi)

2

]
+ Ω(ft) (15.8)

1Optimization with Newton-like steps, as it will become clear in the future chapters, means that a quadratic approximation in the parameters is
derived, and the best parameters are obtained as the minimum of the quadratic model.
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where gi and hi are the first and second derivative of the loss function with respect to the predicted output: gi =
∂l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)
i

, hi =
∂2l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)
i

2 . The derivatives have to be calculated at the current output value ŷ(t−1)i . Because we

are minimizing, we can remove the constant term and we are left with:

L(t) =
∑
i

[
gift(xi) +

1

2
hift(xi)

2

]
+ γT +

1

2
λ

T∑
j=1

wj
2 (15.9)

The tree model is simple, just constant values over separate regions. It makes sense to sum separately over the
examples belonging to the different leaves (regions). Let’s define Ij = {i|q(xi) = j} as the set of examples with input
values in leaf j. We can rewrite equation (15.9) as follows:

L(t) =

T∑
j=1

(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)wj
2

+ γT (15.10)

If the tree structure q(x) is fixed, the optimal weight wj∗ is the one minimizing the parabola (let’s remember that hi
are positive by assumption):

wj
∗ =

∑
i∈Ij gi∑

i∈Ij hi + λ
(15.11)

and the objective function value decreases by:

∆L(t)(q) = −1

2

T∑
j=1

(
∑
i∈Ij gi)

2∑
i∈Ij hi + λ

+ γT (15.12)

Conclusion: for a fixed tree, with simple and fast algebra, we can calculate the optimal values for the weight in the
leaves (in the Taylor approximation), and the corresponding decrease in the objective function ∆L. if the tree is not
fixed, we can now see if a local modification leads to a better ∆L value! A simple local modification the addition of
an additional split, leading to an additional leaf. The best possible split can be chosen greedily as the one leading to
the best possible ∆L in equation (15.11).

A greedy algorithm starts from a single leaf and iteratively adds branches to the tree. Assume that IL and IR are
the sets of examples ending up in the left and right nodes after the split. Letting I = IL ∪ IR, the loss reduction after
the split is given by the difference of the above reductions in L

Lsplit =
1

2

 T∑
j=1

(
∑
i∈IL gi)

2∑
i∈IL hi + λ

+
(
∑
i∈IR gi)

2∑
i∈IR hi + λ

−
(
∑
i∈I gi)

2∑
i∈I hi + λ

− γT (15.13)

The meaning of γ is evident. The split must lead to a reduction in L larger than γ to be accepted. If γ gets larger, more
and more “insignificant” splits are avoided.

The basic algorithm for constructing the tree is evident. Start from an initial root (all examples in the same leaf),
evaluate a set of candidate splits (each split is defined by a variable and a threshold) with the “loss reduction” formula
(15.12), pick the best split. Repeat the entire process for all leaves and possible splits until no reduction is possible.

Additional flexibility can be obtained by: (i) adding a shrinkage parameter [136]. Shrinkage scales the newly added
weights by a factor η after each step of tree boosting, reduces the influence of each individual tree and leaves space
for future trees to improve the model, (ii) using sub-sampling (of features and of examples) to increase the diversity of
the individual trees, going in the direction of random forests (see Chapter 6.2), (iii) using heuristics to consider only
a subset of all possible splits (to reduce CPU time) (iv) dealing in an expicit manner with sparsity and missing values
[84]. The increase in the number of parameters and possible choices demands more automated ways for choosing the
meta-parameters appropriate for a specific task, for example by cross-validation, a hot area for future research.
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15.8 Democracy for better accuracy-rejection compromises

Figure 15.8: The accuracy-rejection compromise curve. Better accuracy can be obtained by rejecting some difficult
cases.

In many practical applications of pattern recognition systems there is another “knob” to be turned: the fraction
of cases to be rejected. Rejecting some difficult cases and having a human person dealing with them (or a more
complex and costly second-level system) can be better than accepting and classifying everything. As an example, in
optical character recognition (e.g., zip code recognition), difficult cases can arise because of bad writing or because of
segmentation and preprocessing mistakes. In these cases, a human expert may come up with a better classification, or
may want to look at the original postcard in the case of a preprocessing mistake. Let’s assume that the ML system has
this additional knob to be turned and some cases can be rejected. One comes up with an accuracy-rejection curve
like the one in Fig. 15.8, describing the attainable accuracy performance as a function of the rejection rate.

For historical reasons, a used term is receiver operating characteristic (ROC). A ROC curve is a graphical plot
that illustrates the performance of a binary classifier system as its discrimination threshold is varied. The curve is
created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The
area under the curve (AUC) or AUROC criterion can be used to evaluate different classifiers.

AUC =

∫ −∞
∞

TPR(T )FPR′(T ) dT (15.14)

where T is the varying threshold parameter. AUC is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one.

If the system is working in an intelligent manner, the most difficult and undecided cases will be rejected first,
so that the accuracy will rapidly increase even for modest rejection rates. A related “tradeoff” curve in signal detection
is the receiver operating characteristic (ROC), a graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting the fraction of true positives out of the total
actual positives (TPR = true positive rate) vs. the fraction of false positives out of the total actual negatives (FPR =
false positive rate), at various threshold settings.

For simplicity, let’s consider a two-class problem, and a trained model with an output approximating the posterior
probability for class 1. If the output is close to one, the decision is clear-cut, and the correct class is 1 with high
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probability. A problem arises if the output is close to 0.5. In this case the system is “undecided”. If the estimated
probability is close to 0.5, the two classes have a similar probability and mistakes will be frequent (if probabilities are
correct, the probability of mistake is equal to 0.5 in this case). If the correct probabilities are known, the theoretically
best Bayesian classifier decides for class 1 if P (class = 1|x) is greater than 1/2, for class 0 otherwise. The mistakes
will be equal to the remaining probability. For example, if P (class = 1|x) is 0.8, mistakes will be done with
probability 0.2 (the probability that cases of class two having a certain x value are classified as class 1).

Figure 15.9: Transition regions in a Bayesian classifier. If the input patterns falling in the transition areas close to the
boundaries are rejected, the average accuracy for the accepted cases increases.

Setting a positive threshold T on the posterior probability, demanding it to be greater than (1/2 + T ) is the best
possible “knob” to increase the accuracy by rejecting the cases which do not satisfy this criterion. One is rejecting
the patterns which are close to the boundary between the two classes, where cases of both classes are mixed with
probability close to 1/2 (Fig. 15.9).

Now, if probabilities are not known but are estimated through machine learning, having a committee of classifiers
gives many opportunities to obtain more flexibility and realize superior accuracy-rejection curves [43]. For example,
one can get probabilistic combinations of teams, or portfolios with more classifiers, by activating each classifier
with a different probability. One can consider the agreement between all of them, or a qualified majority, as a
signal of cases which can be assigned with high confidence, and therefore to be accepted by the system. Finally, even
more flexibility can be obtained by considering the output probabilities (not only the classifications), averaging and
thresholding. If there are more than two classes, one can require that the average probability is above a first threshold,
while the distance with the second best class is above a second threshold.

Experiments show that superior results and higher levels of flexibility in the accuracy-rejection compromise can be
easily obtained, by reusing in an intelligent manner the many classifiers which are produced in any case while solving
a task.
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Gist
Having a number of different but similarly accurate machine learning models allows for many ways of in-
creasing performance beyond that of the individual systems (ensemble methods, committees, democracy
in ML).

In stacking or blending the systems are combined by adding another layer working on top of the outputs
of the individual models.

Different ways are available to create diversity in a strategic manner. In bagging (bootstrap aggrega-
tion), the same set of examples is sampled with replacement. In boosting, related to additive models, a
series of models is trained so that the most difficult examples for the current system get a larger weight for
the latest added component. Using different subsets of features or different random number generators in
randomized schemes are additional possibilities to create diversity. Error-correcting output codes use a
redundant set of models coding for the various output bits to increase robustness with respect to individual
mistakes.

Additive logistic regression is an elegant way to explain boosting via additive models and Newton-like
optimization schemes. Optimization is boosting our knowledge of boosting.

Ensemble methods in machine learning resemble jazz music: the whole is greater than the sum of its
parts. Musicians and models working together, feeding off one another, create more than they would by
themselves.
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Chapter 16

Recurrent networks and reservoir
computing

Music is a reservoir... of sounds.
(Dexter Gordon)

A “pet hypothesis” which dominated neural networks and machine learning research for a long period is the idea
that humans or computers spend huge efforts to extract building blocks (features) of growing complexity in order to
solve complex tasks. Deep learning, supervised pre-training, stage-wise feature extraction are examples.

By negating the above hypothesis one obtains reservoir learning. The idea is to prepare a huge reservoir of
random features, which are then tapped to build the final system, usually by a simple least-squares fit between the
hidden outputs of the reservoir and the problem outputs. This sounds too quick and dirty to produce useful systems,
but a growing amount of evidence shows that reservoir techniques are incredibly effective in many contexts. In some
cases, they produce competitive results, or at least quick initial results which can be rapidly improved by an additional
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tuning phase.
The biological plausibility of these techniques is probably higher than that of complex training mechanisms if

one thinks about the rapidity of learning to ride a bicycle, to sing a song, to pronounce a new word. The fact that a
handful of examples is sufficient to learn can be explained by the availability of “random” building blocks, with a
proper architecture, ready to be tapped and rapidly fine-tuned.

16.1 Recurrent neural networks

Up to now we considered machine learning systems without a notion of time, history and memory. Better said, time
and iterations played a role only during training, but not when the system is operational. During operation, the outputs
depends only on the inputs, in a “feed-forward” one-shot manner, no cycle involved. Biological systems do not always
work in this simple way. On the contrary, when singing a song, the output depends not only on the current input
but also on the previous inputs, on the previous history. The same is true for playing music, speaking, heart beating,
breathing, walking, etc. which involve cycles, oscillations and a rich dynamical behavior going beyond single-step
input-output machines (which realize mathematical functions).

Artificial recurrent neural networks (RNNs) are distinguished from the more widely used feed-forward neural
networks because of cycles in their connection topology. Some outputs are fed back to some nodes of the network, so
that they influence also future outputs, providing the network with some memory of the past. Depending on the model,
the computation can proceed via synchronized steps (think about a global clock ticking to make each unit collect and
process the current inputs to produce a new output), or in asynchronous mode (each unit wakes up at random times
and updates its output), or via continuous dynamics regulated mathematically by differential equations. Figure 16.1
shows the basic structure of a recurrent network: hidden unit outputs can be fed back as inputs; outputs are fed back
to hidden units and to output units. This latter requirement is important if subsequent outputs are strongly correlated
and the network can better operate incrementally; depending on the case, some of these feedback channels may not be
implemented.

Let’s present a concrete example to develop some intuition. A recurrent network with no inputs, four hidden
sigmoid units and two linear output units was trained to follow a circle (centered on the origin, radius 1, three turns of
16 steps each, initial transient of 4 steps). After a short training phase, the system follows an approximated circular
trajectory shown in Fig. 16.2 The corresponding values for the four hidden units are shown in Fig. 16.3.

The existence of cycles has a profound impact (a recent review is [256]):

• A RNN can develop a self-sustained temporal activation dynamics along its recurrent connection pathways, even
in the absence of input. A RNN is a dynamical system, while feedforward networks are functions.

• If driven by an input signal, a RNN preserves in its internal state a nonlinear transformation of the input history.
It has a dynamical memory, and is able to process temporal context information.

From a dynamical systems perspective, there are two main classes of RNNs. The first class is characterized by
an energy-minimizing stochastic dynamics and symmetric connections (the trajectory of the network outputs finds
local minima of a suitable “energy” function, think about a kind of modified gradient descent). Known example
are Hopfield networks derived from statistical physics [189], Boltzmann machines [6], and Deep Belief Networks
[181]. These systems are mostly trained with unsupervised learning. Typical targeted functionalities in this field are
associative memories (the retrieved memory correspond to local minima of the energy function), data compression,
the unsupervised modeling of data distributions, and static pattern classification. The model is run for multiple time
steps per single input instance to reach some type of convergence or equilibrium.

The second big class of RNN models typically features a deterministic update dynamics and directed connections.
Systems from this class implement nonlinear filters, which transform an input time series into an output time series.
The mathematical background consists of nonlinear dynamical systems. The standard training mode is supervised.
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Figure 16.1: The basic scheme of a recurrent network.
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Figure 16.2: Recurrent network trained on a circular trajectory: output sequence starting from null inputs.
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16.2 Energy-minimizing Hopfield networks
A Hopfield network (Fig.16.4), defined in [189], consists of binary threshold units, i.e., they only take on two different
output values (normally 1 or -1), depending on whether the input exceeds a threshold or not. Symmetric weights wij
connect pairs of units (with no self-connection: wii = 0). A unit is updated as follows:

si ←

{
+1 if

∑
j wijsj ≥ θi

−1 otherwise,
(16.1)

where si is the output state of unit i and θi is the threshold. Updates can be performed asynchronously (a unit is
picked at random and updated) or synchronously (all units are updated at the same time at the tick of a central clock).
Asynchronous updates have a more biological or physical flavor (spin glasses are a related model in physics). The
initial output values are progressively changed by the update rule so that the state depends on the initial condition but
also on the sequence of updates. If an output is signalled by a flashing (+1) or inactive (-1) LED —actually this was a
homework hardware realization by one of the authors— one observes a flickering pattern in time. The main question
is: what is the possible meaning of this flickering pattern, which kind of computation can be executed? The answer by
Hopfield is related to optimizing a suitable energy function (in math and physics called a Lyapunov function) :

E = −1

2

∑
i,j

wijsisj +
∑
i

θisi

One can easily demonstrate that, when units are chosen to be updated, with symmetric connections, the energy E will
either decrease or remain equal. Under repeated updating the network will eventually converge to a state which is
a local minimum in the energy function. Local minima in the energy function are stable states for the network. The
flickering pattern will stabilize and show a stable pattern of light. The “meaning” of Hopfield networks is explained
by a dynamical system which, when started from an initial input, seeks out local minima in the attraction basin of
the initial point, like a drop of water flowing to a lake in a drainage basin. The facts that outputs are constrained in a
box is crucial. If not, one is minimizing a quadratic form which could be unlimited (going to minus infinity).

Programming a Hopfield net amounts to carving out appropriate local minima in the energy landscape. The
Hebbian learning rule for modifying weights during training was introduced by Donald Hebb in 1949 to explain
“associative learning.” The simultaneous activation of neuron cells leads to pronounced increases in synaptic strength
between those cells: “Neurons that fire together, wire together. Neurons that fire out of sync, fail to link.” The Hebbian
rule is local and incremental. For the Hopfield Networks, it is implemented in the following manner, when learning N
binary patterns:

wij =
1

N

N∑
µ=1

xµi x
µ
j , i, j = 1, . . . , n

where each pattern xµ = (xµ1 , . . . , x
µ
n) is an n-bit sequence, and n is also the number of neurons in the network. If the

bits corresponding to neurons i and j are equal in pattern xµ, then the product xµi x
µ
j will have a positive effect on the

weightwij and the values of neurons i and j will tend to become equal. The opposite happens if the bits corresponding
to neurons i and j are different.

Depending on the number of nodes in the network, the Hebbian rule will be able to “carve” in the energy landscape
a set of local minima that are close to the N patterns used to train it, provided that N is not too large (a rule of thumb
is that the number N of patterns should not exceed about 13.8% of the number n of neurons [177]). When the update
rule (16.1) is repeatedly applied by first assigning a specific pattern xν to the neurons, the network will settle to a local
minimum, thereby retrieving the stored pattern that is closest to xν , as shown in Fig. 16.5.

With Hopfield nets one can build content-addressable memory systems: the network will converge to a “remem-
bered” state if it is given only part of the content (with other bits set randomly). The net can be used to recover from
a distorted input the trained state that is most similar to that input. This is called associative memory, related to
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Figure 16.3: Recurrent network trained on a circular trajectory: outputs and hidden units.
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error-correcting codes. Generalizations with continuous weights have dynamics similar to gradient descent, with the
descent direction modified with respect to the gradient (but still descending).

Although of formidable theoretical and scientific interest, real-world applications of Hopfield networks face some
difficulties related to spurious patterns, i.e., local minima that do not correspond to programmed memories, and to
capacity limits. When too many patterns are stored, one stored item can be confused with another upon retrieval. Note
that human memory has similar characteristics, and semantically related items tend to confuse the individual and lead
to the recollection of wrong patterns.

16.3 RNN and backpropagation through time
Let’s now consider more general RNNs, without the requirement of symmetric weights and binary outputs (Fig. 16.1).

This kind of network can be simulated with a feed-forward network by unrolling it as shown in Fig. 16.6. The
only change needed to a standard feed-forward MLP is to allow some of the inputs to be fed directly to the output
neurons, in addition to the hidden layer(s). The standard training method is called “backpropagation through time”
or BPTT, in which standard back-propagation for feed-forward networks is applied to the above unrolled model [379].
Recurrent neural networks, with output of some units fed back to other units, are difficult to train with derivative-based
techniques because of the vanishing and exploding gradient problems [49]. Exploding gradients refers to the large
increase in the norm of the gradient during training, caused by the explosion of the long-term components, which
can grow exponentially more than short-term ones. The vanishing gradients problem refers to the opposite behavior,
when long-term components go exponentially fast to norm 0, making it impossible for the model to learn correlation
between temporally distant events. The problems are caused by the large number of iterations which can be present in
RNN, which cause a small weight change to be exponentially increased or decreased. Modifications to cure the above
problems (gradient norm clipping to deal with exploding gradients and soft constraints for the vanishing gradients
problem) are presented in [293].

In a way, RNNs stress the limits of derivative-based techniques for optimization and motivate the adoption of
derivative-free techniques or of radical changes in the training architecture like reservoir learning and extreme learning
machines considered in the following sections.

16.4 Reservoir learning for recurrent neural networks
RNNs (of the second type that we introduced, i.e., without symmetry constraints) are highly promising tools for non-
linear time series applications [256]. They are biologically plausible (recurrent connection pathways are present in
brains) universal approximators of dynamical systems, under fairly mild and general assumptions.

A number of training algorithms proposed in the past suffer from the following shortcomings:

• The gradual change of network parameters during learning drives the network dynamics through bifurcations:
the gradient information degenerates and may become ill-defined. Therefore, convergence cannot be guaranteed.

• Many costly update cycles may be necessary, resulting in excessive training times for large networks (with more
than tens of units).

• Dependencies requiring long-range memory are hard to learn, because the necessary gradient information expo-
nentially dissolves over time.

• Advanced training algorithms are complex with many global control parameters. They need skill and experience
to be used.

In the current century a radically new approach is being proposed independently under the name of Liquid State
Machines [258] and Echo State Networks [210], here collectively referred to as Reservoir Computing (RC). RC
avoids the shortcomings of gradient-descent RNN by the following prescription (Fig.16.7):
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• A recurrent network is randomly created and remains unchanged during training. This RNN is called the
reservoir. It is passively excited by the input signal and maintains in its state a nonlinear transformation of the
input history.

• The desired output signal is generated as a linear function of the neuron’s signals from the input- excited
reservoir. This linear combination is obtained by linear regression, for example by using least-squares.

Reservoir Computing is rapidly becoming one of the basic tools for RNN modeling, showing better modeling
accuracy, universal modeling capacity for continuous-time, continuous-value real-time systems. RC can explains why
biological brains can carry out accurate computations in spite of noisy physical components. Last but not least, models
can be extended by adding more output units to the same reservoir, without interfering with the previous functionality.

In some cases, a completely random reservoir is not sufficient and the current research deals with developing
suitable reservoir design and adaptation methods. RC is departing from a brute-force random approach and becoming
a paradigm for using different methods for (i) producing/adapting the reservoir, and (ii) training different types of
readouts. An updated review is presented in [256].

16.5 Extreme learning machines
A separate but related stream of research considers feed-forward systems, like multi-layer perceptrons, in which the
initial layers are created randomly and only the final layer is trained by linear regression. Extreme Learning Ma-
chines are proposed in [194] by adopting the standard pseudo-inverse technique for least-squares fitting described in
Section 4.1. Both ELM and RC overcome the problems associated with traditional neural network training algorithms,
such as local minima and vanishing or exploding gradients, by modifying only the output weights using a simple
and efficient linear regression algorithm. The main difference between the two approaches is that the reservoir of RC
architectures contains recurrent connections, giving it a short-term memory, whereas ELMs are a pure feedforward
architecture without short-term memory.

The “surprising” fact that useful learning occurs in MLP even if the initial layers are random has been observed
starting from the initial developments in neural networks. For example, Rosenblatt [308] and other early investigators
favored randomly chosen input feature detectors. E. Baum [44] claims that in some simulations one may fix the
weights of the connections on one level and simply adjust the connections on the other level, with no significant
gain by adjusting the weights on both levels simultaneously. More recently, an extensive theoretical and practical
investigation is presented in [195], which coined the term “Extreme Learning Machine.”

It is well known from linear algebra that, through matrix inversion, single-layer feed-forward networks (SLFNs)
with N hidden nodes and randomly chosen input weights and hidden layer biases can exactly learn N distinct obser-
vations, under conditions of full matrix rank (linear independence). Of course, generalization is not guaranteed, but
learning becomes a trivial one-shot operation by matrix inversion.

The work in [195] rigorously proves that the input weights and hidden layer biases of SLFNs can be randomly
assigned if the activation functions in the hidden layer are infinitely differentiable. After they are chosen randomly,
SLFNs can be considered as a linear system and the output weights can be analytically determined through simple
generalized inverse (pseudo-inverse) operation of the hidden layer output matrices. Various generalizations consider-
ing different kinds of hidden nodes and architectures have been proposed (Fig. 16.8). In some cases, ELMs can learn
much faster than traditional algorithms like back-propagation (BP), while obtaining better generalization performance,
in particular if the norm of weights is controlled through the usual quadratic penalty. The number of hidden neurons
leading to optimal performance can be much bigger that that for backpropagation learning, an indication that a large
pool of random units needs to be created to tap a sufficient number of useful units to determine the outputs. A recent
review is [193].

Related investigations are [214], which evaluates multi-stage architectures for object recognition and considers
also random filters, and [382], which proposes the no-prop method (same as ELM, but with iterative least-squares
techniques). Architecture with random weights are studied in [314]. They show that certain convolutional pooling ar-
chitectures (sharing connection weights at different spatial positions in image processing) can be inherently frequency



178 CHAPTER 16. RECURRENT NETS AND RESERVOIR COMPUTING

selective and translation invariant, even with random weights. Based on this they propose using random weights to
evaluate candidate architectures, thereby sidestepping the time-consuming learning process. A surprising fraction
of the performance of certain state-of-the-art methods can be attributed to the architecture alone, although subsequent
fine-tuning usually does improve the final performance.

It is clear that Reservoir Computing and ELM follow similar research directions, although originally RC concen-
trated mostly on RNN, ELM on feed-forward systems. Reservoir computing and extreme learning are considered
jointly in [73].
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Figure 16.5: Energy Landscape of a Hopfield Network, highlighting the initial state of the network (up the hill), an
attractor state to which it will eventually converge, and a basin of attraction (shaded).
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Figure 16.6: The basic recurrent network of Fig. 16.1 can be unrolled as a cascade of feed-forward networks, each fed
by an iteration’s inputs and by the previous iteration’s hidden and output values.

Figure 16.7: (Left) Traditional gradient-descent-based RNN training methods adapt all connection weights (bold
arrows), (Right) In Reservoir Computing, only the RNN-to-output weights are modified (adapted from [256]) .
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Gist
Recurrent neural networks with feedback loops allow the transition from “mathematical functions” (feed-
forward networks) to full-fledged dynamical systems with evolution in time and internal memory.

Machine learning for recurrent neural networks is very hard, in particular for derivative-based methods.
The many cycles involved can cause derivatives to explode or to vanish.

The recently proposed reservoir computing (RC) and extreme learning machines (ELM) methods
take a radical approach, in a way contrary to that of deep learning, by creating vast amounts of random
building blocks (random features), and limiting learning to a final linear combination layer. A specific
problem “taps” the useful building blocks in the reservoir and weighs them appropriately to get the final
solution.

Given the difficulties of realizing deep derivative-based techniques with noisy biological neural hard-
ware, the success of this brute-force “randomized construction plus final tuning” approach gives new hope
to explain parts of our brain and to engineer fast and flexible learning machines.

We are happy to live in a sparkling research period, when crazy and wildly different ideas advance the
frontier of ML and neural networks through spectacular plot twists and paradigm changes.



Part II

Unsupervised learning and clustering
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Chapter 17

Top-down clustering: K-means

First God made heaven and earth. The earth was without form and void, and darkness was upon the face of the deep; and the Spirit
of God was moving over the face of the waters. And God said, “Let there be light”; and there was light. And God saw that the light

was good; and God separated the light from the darkness. God called the light Day, and the darkness he called Night. [. . . ]
So out of the ground the Lord God formed every beast of the field and every bird of the air, and brought them to the man to see

what he would call them; and whatever the man called every living creature, that was its name. The man gave names to all cattle,
and to the birds of the air, and to every beast of the field.

(Book of Genesis)

This chapter starts a new part of the book and enters a new territory. Up to now we considered supervised learning
methods, while the issue of this part is: What can be learned without teachers and labels?

Like the energy emanating in the above painting by Michelangelo suggests, we are entering a more creative region,
which contains concepts related to exploration, discovery, different and unexpected outcomes. The task is not to
slavishly follow a teacher but to gain freedom in generating models. In most cases the freedom is not desired but it is
the only way to proceed.

185
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Let’s imagine you place a child in front of a television screen. Even without a teacher he will immediately dif-
ferentiate between a broken screen, showing a “snowy” random noise pattern, and different television programs like
cartoons and world news. Most probably, he will show more excitement for cartoons than for world news and for
random noise. The appearance of a working TV screen (and the appearance of the world) is not random, but highly
structured, arranged according to explicit or implicit plans. For another example of unsupervised learning, let’s as-
sume that entities represent speakers of different languages, and coordinates are related to audio measurements of their
spoken language (such as frequencies, amplitudes, etc.). While walking in an international airport, most people can
readily identify clusters of different language speakers based on the audible characteristics of the language. We may
for example easily distinguish English speakers from Italian speakers, even if we cannot name the language being
spoken.

Modeling and understanding structure (forms, patterns, clumps of interesting events) is at the basis of our
cognitive abilities. The use of names and language is deeply rooted in the organizing capabilities of our brain. In
essence, a name is a way to group different experiences so that we can start speaking and reasoning. Socrates is a man,
all men are mortal, therefore Socrates is mortal1.

For example, animal species (and the corresponding names) are introduced to reason about common character-
istics instead of individual ones (“The man gave names to all cattle”). In geography, continents, countries, regions,
cities, neighborhoods represent clusters of geographical entities at different scales. Clustering is related to the very
human activity of grouping similar things together, abstracting them and giving names to the classes of objects
(Fig. 17.1). Think about categorizing men and women, a task we perform with a high degree of confidence in spite of
significant individual variation.

Clustering has to do with compression of information. When the amount of data is too much for a human to
digest, cognitive overload results and the finite amount of “working memory” in our brain cannot handle the task.
Actually, the number of data points chosen for analysis can be reduced by using filters to restrict the range of data
values. But this is not always the best choice, as in this case we are filtering data based on individual coordinates,
while a more global picture may be preferable.

Clustering methods work by collecting similar points together in an intelligent and data-driven manner, so that
attention can be concentrated on a small but relevant set of prototypes. The prototype summarizes the information
contained in the subset of cases which it represents. When similar cases are grouped together, one can reason about
groups instead of individual entities, therefore reducing the number of different possibilities.

As you imagine, the practical applications of clustering are endless. To mention some examples, in market
segmentation one divides a broad marketplace into parts, or segments, and then implements strategies to target the
common needs and desires of the segmented customers. In finance, clustering groups stocks with a similar behavior,
for diversifying the portfolio and reducing risk. In health care, diseases are clusters of abnormal conditions that affect
our body. In text mining, different words are grouped together based on the structure and meaning of the analyzed
texts. A semantic network represents relations between concepts. It is a directed or undirected graph consisting of
vertices, which represent concepts, and labeled edges, which represent relations. The different relations (e.g., “is an”,
“has”, “lives in”, ...) underline that there is no single way to group entities.

1To be honest, the radical simplification implied by giving names takes mysticism away from the world, a price to pay for conquering it with
our technical means. Rainer Maria Rilke expresses this concept in his “In Celebration of Me” (1909):

I am so afraid of people’s words.
They describe so distinctly everything:
And this they call dog and that they call house,
here the start and there the end.
...
I want to warn and object: Let the things be!
I enjoy listening to the sound they are making.
But you always touch: and they hush and stand still.
That’s how you kill.
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Figure 17.1: Clustering is deeply rooted into the human activity of grouping and naming entities.

17.1 Approaches for unsupervised learning

Given the creativity and different objectives of clustering, there are wildly different ways to proceed. It is traditional
to subdivide methods into top-down and bottom-up techniques.

In top-down or divisive clustering one decides about a number of classes and then proceeds to separate the
different cases into the classes, aiming at putting similar cases together. Let’s note that classes do not have labels, only
the subdivision matters. Think about organizing your laundry in a cabinet with a fixed number of drawers. If you are
an adult person (if you are a happy teenager, please ask your mother or father) you will probably end up putting socks
with similar socks, shirts with shirts, etc.

In bottom-up or agglomerative clustering one leaves the data speak for themselves and starts by merging (asso-
ciating) the most similar items. As soon as larger groupings of items are created, one proceeds by merging the most
similar groups, and so on. The process is stopped when the grouping makes sense, which of course depends on the
specific metric, application area and user judgment. The final result will be a hierarchical organization of larger and
larger sets (known as dendrogram), reflecting the progressively larger mergers. Dendrograms are familiar from natural
sciences, think about the organization of zoological or botanical species.

More advanced and flexible unsupervised strategies are known under the umbrella term of dimensionality reduc-
tion: in order to reduce the number of coordinates to describe a set of experimental data one needs to understand the
structure and the “directions of variation” of the different cases. If one is clustering people faces, the directions of
variation can be related to eyes color, distance between nose and mouth, distance between nose and eyes, etc. All
faces can be obtained by changing some tens of parameters, for sure much less than the total number of pixels in an
image.

Another way to model a set of cases is to assume that they are produced by an underlying probabilistic process.
By modeling it one understands the structure and the different clusters. Generative models aim at identifying and
modeling the probability distributions of the process producing the observed examples. Think about grouping books
by deriving a model for the topics and words used by different authors, without knowing the author names beforehand.
An author will pick topics with a certain probability. After the topic is fixed, words related to the topic will be generated
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Figure 17.2: External representation by relationships (left) and internal representation with coordinates (right). In the
first case mutual similarities between pairs are given, in the second case individual vectors.

with specific probabilities. For sure, the process will not generate masterpieces but similar final word probabilities, in
many cases sufficient to recognize an unknown author.

Our visual system is extremely powerful at clustering salient parts of an image and visualizations like linear or
nonlinear projections onto low-dimensional spaces (usually with two dimensions) can be very effective to identify
structure and clusters “by hand” — well, actually “by eyes.”

Last but not least, very interesting and challenging applications require a mixture of supervised and unsupervised
strategies (semi-supervised learning). Think about “big data” applications related to clustering zillions of web pages.
Labels can be very costly — because they can require a human person to classify the page — and therefore rare. By
adding a potentially huge set of unlabeled pages to the scarce labeled set one can greatly improve the final result.

After clarifying the overall landscape, this chapter will focus on the popular and effective top-down technique
known as k-means clustering.

17.2 Clustering: Representation and metric

There are two different contexts in clustering, depending on how the entities to be clustered are organized (Fig. 17.2).
In some cases one starts from an internal representation of each entity (typically an M -dimensional vector xd
assigned to entity d) and derives mutual dissimilarities or mutual similarities from the internal representation. In this
case one can derive prototypes (or centroids) for each cluster, for example by averaging the characteristics of the
contained entities (the vectors). In other cases only an external representation of dissimilarities is available and the
resulting model is an undirected and weighted graph of entities connected by edges.

For example, imagine that market research for a supermarket indicates that stocking similar foods on nearby
shelves results in more revenue. An internal representation of a specific food can be a vector of numbers describing:
type of food (1=meat, 2=fish. . . ), caloric content, color, box dimension, suggested age of consumption, etc. Similari-
ties can then be derived by comparing the vectors, by Euclidean metric or scalar products.

An external representation can instead be formed by polling the customers, asking them to rate the similarity of
pairs of product X and Y (on a fixed scale, for example from 0 to 10), and then deriving external similarities by
averaging the customer votes.

The effectiveness of a clustering method depends on the similarity metric (how to measure similarities) which
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needs to be strongly problem-dependent. The traditional Euclidean metric is in some cases appropriate when the
different coordinates have a similar range and a comparable level of significance, it is not if different units of measure
are used. For example, if a policeman compares faces by measuring eyes distance in millimeters and mouth-nose
distance in kilometers, he will make the Euclidean metric almost meaningless. Similarly, if some data in the housing
market represent the house color, it will not be significant when clustering houses for business purposes. Instead,
the color can be extremely significant when clustering paintings of houses by different artists. The metric is indeed
problem-specific, and this is why we denote the dissimilarity between entities x and y by δ(x,y), leaving to the
implementation to specify how it is calculated.

If an internal representation is present, a metric can be derived by the usual Euclidean distance:

δE(x,y) = ‖x− y‖ =

√√√√ M∑
i=1

(xi − yi)2. (17.1)

In three dimensions this is the traditional distance, measured by squaring the edges and taking the square root. The
notation ‖x‖2 for a vector x means the Euclidean norm, and the subscript 2 is usually omitted.

Another notable norm is the Manhattan or taxicab norm, so called because it measures the distance a taxi has to
drive in a rectangular street grid to get from the origin to the point x:

δManhattan(x,y) = ‖x− y‖1 =

M∑
i=1

|xi − yi|. (17.2)

As usual, there is no absolutely right or wrong norm. Taxicabs in New York prefer the Manhattan norm, while
airplane pilots prefer the Euclidean norm (at least for short distances, then the curvature of earth requires still different
distance measures based on geodetics). In some cases, the appropriate way to measure distances is recognized only
after judging the clustering results, which makes the effort creative and open-ended.

Another possibility is that of starting from similarities given by scalar products of the two normalized vectors and
then taking the inverse to obtain a dissimilarity. In detail, the normalized scalar product between vectors x and y, by
analogy with geometry in two and three dimensions, can be interpreted as the cosine of the angle between them, and
is therefore known as cosine similarity:

cosine-similarity(x,y) = cos(θ) =
x · y
‖x‖‖y‖

=

∑M
i=1 xi yi√∑M

i=1 (xi)2
√∑M

i=1 (yi)2
, (17.3)

and after taking the inverse one obtains the dissimilarity:

δ(x,y) = ‖x‖‖y‖/(ε+ x · y),

ε being a small quantity to avoid dividing by zero.
Let’s note that the cosine similarity depends only on the direction of the two vectors, and it does not change if

components are multiplied by a fixed number, while the Euclidean distance changes if one vector is multiplied by
a scalar value. A weakness of the standard Euclidean distance is that values for different coordinates can have very
different ranges, so that the distance may be dominated by a subset of coordinates. This can happen if units of measures
are picked in different ways, for example if some coordinates are measured in millimeters, other in kilograms, other
in kilometers: it is always very unpleasant if the analysis crucially depends on picking a suitable set of physical units.
To avoid this trouble we need to make values dimensionless, without physical units. Furthermore we may as well
normalize them so that all values range between zero and one before measuring distances.

The above can be accomplished by defining:

δnorm(x,y) =

√√√√ M∑
i=1

(
xi − yi

maxvali −minvali

)2

, (17.4)



190 CHAPTER 17. TOP-DOWN CLUSTERING: K-MEANS

where M is the number of coordinates, minvali and maxvali are the minimum and maximum values achieved by
coordinate i for all entities.

In the general case, a positive-definite matrix M can be determined to transform the original metric:

dij =
√

(xi − xj)TM(xi − xj).

An example is the Mahalanobis distance which takes into account the correlations of the data set and is scale-invariant
(it does not change if we measure quantities with different units, like millimeters or kilometers). More details about
the Mahalanobis distance will be discussed in future chapters.

17.3 K-means for hard and soft clustering
Hard clustering partitions the entities D into k disjoint subsets C = {C1, . . . , Ck} to reach the following objectives.

• Minimization of the average intra-cluster dissimilarities:

min
∑

d1,d2∈Ci

δ(xd1 ,xd2). (17.5)

If an internal representation is available, the cluster centroids pi can be derived as the average of the internal
representation vectors over the members of the i-th cluster pi = (1/|Ci|)

∑
d∈Ci xd.

In these cases the intra-cluster distances can be measured with respect to the cluster centroid pi, obtaining the
related but different minimization problems:

min
∑
d∈Ci

δ(xd,pi). (17.6)

• Maximization of inter-cluster distance. One wants the different clusters to be clearly separated.

As anticipated, the two objectives are not always compatible, clustering is indeed a multi-objective optimization
task. It is left to the final user to weigh the importance of achieving clusters of very similar entities versus achieving
clusters which are well separated, also depending on the chosen number of clusters.

Divisive algorithms are among the simplest clustering algorithms. They begin with the whole set and proceed to
divide it into successively smaller clusters. One simple method is to decide the number of clusters k at the start and
subdivide the data set into k subsets. If the results are not satisfactory, the algorithm can be reapplied using a different
k value.

If one wants to represent groups of entities by a single vector, one can select the prototypes which minimize the
average quantization error, the error incurred when the entities are substituted with their prototypes:

Quantization Error =
∑
d

‖xd − pc(d)‖2, (17.7)

where c(d) is the cluster associated with data d.
In statistics and machine learning, k-means clustering partitions the observations into k clusters represented by

centroids (prototypes for cluster c, denoted as pc), so that each observation belongs to the cluster with the nearest
centroid. The iterative method to determine the prototypes in k-means, illustrated in Fig. 17.3, consists of the following
steps.

1. Choose the number of clusters k.
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Figure 17.3: K-means algorithm in action (from top to bottom, left to right). Initial centroids are placed. Space is
subdivided into portions close to the centroids (Voronoi diagram: each portion contains the points which have the
given centroid as closest prototype). New centroids are calculated. A new space subdivision is obtained.

2. Randomly generate k clusters and determine the cluster centroids pc, or pick k randomly chosen training ex-
amples as cluster centroids. In other words, the initial centroid positions can be chosen randomly among the
original data points.

3. Repeat the following steps until some convergence criterion is met, usually when the last assignment hasn’t
changed, or a maximum number of iterations has been executed.

(a) Assign each point x to the nearest cluster centroid, the one minimizing δ(x,pc).
(b) Recompute the new cluster centroid by averaging the points assigned in the previous step:

pc ←
∑

entities in cluster c x

number of entities in cluster c
.

The main advantages of this algorithm are simplicity and speed, it can be used also on large datasets. K-means
clustering can be seen as a skeletal version of the Expectation-Maximization algorithm2: if the assignment of the

2 In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP)
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examples to the cluster is known, then it is possible to compute the centroids and, on the other hand, once the centroids
are known it is easy to calculate the cluster assignments. Because at the beginning both the cluster centroids (the
parameters of the various clusters) and the memberships are unknown, one cycles through steps of assignment and
recalculation of the centroid parameters, aiming at a consistent situation.

Given a set of prototypes, an interesting concept is the Voronoi diagram. Each prototype pc is assigned to a
Voronoi cell, consisting of all points closer to pc than to any other prototype. The segments of the Voronoi diagram
are all the points in the space that are equidistant to the two nearest sites. The Voronoi nodes are the points equidistant
to three (or more) sites. An example is shown in Fig. 17.3.

Up to now we considered hard clustering, where the assignment of entities to clusters is crisp. In some cases a
softer approach is more appropriate, in which assignments are not crisp, but probabilistic or fuzzy. The assignment
of each entity is defined in terms of a probability (or fuzzy value) associated with its membership in different clusters,
so that values sum up to one. Consider for example a clustering of bald versus non-bald people. A middle-aged man
with some hair left on his head may feel he is mistreated if associated with the cluster of bald people. By the way, in
this case it is also inappropriate to talk about a probability of being bald, and a fuzzy membership is more suitable:
one may decide that the person belongs to the cluster of bald people with a fuzzy value of 0.4 and to the cluster of
hairy people with a fuzzy value of 0.6.

In soft-clustering, the cluster membership can be defined as a decreasing function of the dissimilarities, for exam-
ple as:

membership(x, c) =
e−δ(x,pc)∑
c e
−δ(x,pc)

. (17.8)

For updating the cluster centroids one can proceed either with a batch or with an online update. In the online
update one repeatedly considers an entity x, for example by randomly extracting it from the entire set, derives its
current fuzzy cluster memberships and updates all prototypes so that the closer prototypes tend to become even closer
to the given entity x:

∆pc = η ·membership(x, c) · (x− pc); (17.9)
pc ← pc + ∆pc. (17.10)

With a physical analogy, in the above equations the prototype is pulled by each entity to move along the vector
(x− pc), and therefore to become closer to x, with a force proportional to the membership.

In the batch update, one first sums update contributions over all entities to obtain ∆totalpc, and then proceed to
update, as follows:

pc ← pc + ∆totalpc. (17.11)

When the parameter η is small, the two updates tend to produce very similar results, when η grows different results
can be obtained. The online update avoids summing all contributions before moving the prototype, and it is therefore
suggested when the number of data items becomes very large.

The k-means results can be visualized by a scatterplot display, as in Fig. 17.4. The k cluster prototypes are marked
with large gray circles. The data points associated with a cluster are those for which the given prototype is the closest
one among the k prototypes.

estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates
between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent
variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step.



CHAPTER 17. TOP-DOWN CLUSTERING: K-MEANS 193

Figure 17.4: K-means clustering. Individual points and cluster prototypes are shown.

Gist
Unsupervised learning deals with building models using only input data, without resorting to classification
labels. In particular, clustering aims at grouping similar cases together, dissimilar cases in different groups.
The information to start the clustering process can be given as relationships between couples of points
(external representation) or as vectors describing individual points (internal representation). In the
second case, an average vector can be taken as a prototype for the members of a cluster.

The objectives of clustering are: compressing the information by abstraction (considering the groups
instead of the individual members), identifying the global structure of the experimental points (which are
typically not distributed randomly in the input space but “clustered” in selected regions), reducing the
cognitive overload by using prototypes.

There is not a single “best” clustering criterion. Interesting results depend on the way to measure sim-
ilarities and on the relevance of the grouping for the subsequent steps. In particular, one trades off two
objectives: a high similarity among members of the same cluster and a high dissimilarity among members
of different clusters.

In top-down clustering one proceeds by selecting the desired number of classes and subdividing the
cases. K-means starts by positioning K prototypes, assigning cases to their closets prototypes, recomputing
the prototypes as averages of the cases assigned to them, ....

Clustering gives you a new perspective to look at your dog Toby. Dog is a cluster of living organisms with
four paws, barking and wagging their tails when happy, Toby is a cluster of all experiences and emotions
related to your favorite little pet.
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Chapter 18

Bottom-up (agglomerative) clustering

Birds of a feather flock together.
(Proverb: Those of similar taste congregate in groups)

Clustering methods require setting many parameters, such as the appropriate number of clusters in K-means,
as explained in Chapter 17. A way to avoid choosing the number of clusters at the beginning consists of building
progressively larger clusters, in a hierarchical manner, and leaving the choice of the most appropriate number and size
of clusters to a subsequent analysis. This is called bottom-up, agglomerative clustering. Hierarchical algorithms
find successive clusters by using previously established clusters, beginning with each element as a separate cluster and
merging them into successively larger clusters. At each step the most similar groups are merged.
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Figure 18.1: A dendrogram obtained by bottom-up clustering of points in two dimensions (with the standard Euclidean
distance). Each point is an entity described by two numeric values.

18.1 Merging criteria and dendrograms
Let C represent the current clustering as a collection of subsets of entities, the individual clusters C. Thus C defines a
partition: each entity belongs to one and only one cluster. Initially C consists of singleton groups, each with one entity.

As in top-down clustering, bottom-up merging also needs a measure of distance to guide the process. In this case,
the relevant measure is the distance between two clusters C,D ∈ C, let’s call it δ(C,D), which is derived from the
original distance between entities δ(x, y). There are at least three different ways to define it, leading to very different
results. In fact, it is possible to consider the average distance between pairs, the maximum, or the minimum distance,
as follows:

δave(C,D) =

∑
x∈C, y∈D δ(x, y)

|C| · |D|
;

δmin(C,D) = min
x∈C, y∈D

δ(x, y);

δmax(C,D) = max
x∈C, y∈D

δ(x, y).

The algorithm now proceeds with the following steps:

1. find C and D in the current C with minimum distance δ
∗

= minC 6=D δ(C,D);

2. substitute C and D with their union C ∪ D, and register δ
∗

as the distance for which the specific merging
occurred;

until a single cluster containing all entities is obtained.
The history of the hierarchical merging process and the distance values at which the various merging operations

occurred can be used to plot a dendrogram (from Greek dendron “tree”, -gramma “drawing”) illustrating the process
in a visual manner, as shown in Fig. 18.1-18.2.

The dendrogram is a tree where the original entities are at the bottom and each merging is represented with a
horizontal line connecting the two fused clusters. The position of the horizontal line on the Y axis shows the value of
the distance δ

∗
at which the fusion occurred. To reconstruct the clustering process, imagine that you move a horizontal
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Figure 18.2: A dendrogram obtained by bottom-up clustering of vehicles.

ruler over the dendrogram, from the bottom to the top of the plot. Dendrograms are close cousins of the trees used
in the natural sciences to visually represent related species, in which the root represents the oldest common ancestor
species, and the branches indicate successively more recent divisions leading to different species.

By selecting a value of the desired distance level and cutting horizontally across the dendrogram, the number of
clusters at that level and their members are immediately obtained, by following the subtrees down to the leaves. This
provides a simple visual mechanism for analyzing the hierarchical structure and determining the appropriate number
of clusters, depending on the application and also on the detailed dendrogram structure. For example, if a large gap in
distance levels is present along the Y axis of the dendrogram, that can be a possible candidate level to cut horizontally
and identify “natural” clusters.

18.2 A distance adapted to the distribution of points: Mahalanobis

The Mahalanobis distance was prompted by the problem of identifying the similarities of human skulls based on
measurements (in 1927) and is now widely used to take the data distribution into account when measuring dis-
similarities. The data distribution is summarized by the correlation matrix.

After a set of points are grouped together in a cluster one would like to describe the whole cluster in quantitative
(holistic) terms, instead of considering just the cloud of points grouped together. In the following we assume that
the clouds of points forming the clusters have simple ball-shaped or “elliptic” forms, excluding for the moment more
complex arrangements like for example spirals, zigzagging or similar convoluted forms.

In addition, given a new test point in N-dimensional Euclidean space, one would like to estimate the probability
that the new point belongs to the cluster. A first step can be to find the average or center of mass of the sample points.
Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide
whether a given distance from the center can be considered large or not. The simplistic approach is to estimate the
standard deviation σ of the distances of the sample points from the center of mass. If the distance between the test point
and the center of mass is less than one standard deviation, then we might conclude that the new test point belongs to
the set with a high probability. This intuitive approach can be made quantitative by defining the normalized distance
between the test point and the set to be (x − µ)/σ. By plugging this into the normal distribution we can derive the
probability of the test point belonging to the set.
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Figure 18.3: In the case on the left we can use the Euclidean distance as a dissimilarity measure, while in the other
case we need to refer to the Mahalanobis distance, because the data are distributed in an ellipsoidal shape.

The drawback of the above approach is that it assumes that the sample points are distributed in a spherical manner.
If the distribution is highly non-spherical, for instance ellipsoidal, then one would expect the probability of the test
point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In
those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long
the test point can be further away from the center.

The ellipsoid that best represents the set’s probability distribution can be estimated by building the covariance
matrix of the samples.

Let C = {x1, . . . ,xn} be a cluster in D dimensions. The center p̄ of the cluster is the mean value:

p̄ =
1

n

n∑
i=1

xi. (18.1)

Let the covariance matrix components are defined as:

Sij =
1

n

n∑
k=1

(pki − p̄i)(pkj − p̄j), i, j = 1, .., D. (18.2)

The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of
the ellipsoid in the direction of the test point. Fig. 18.3 illustrates the concept. In detail, the Mahalanobis distance of
a vector x from a set of values with mean µ and covariance matrix S is defined as:

DM (x) =
√

(x− µ)TS−1(x− µ). (18.3)

The Mahalanobis distance can also be defined as a dissimilarity measure between two random vectors x and y of
the same distribution with the covariance matrix S:

d(x,y) =
√

(x− y)TS−1(x− y). (18.4)
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If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the
covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

d(x,y) =

√√√√ D∑
i=1

(xi − yi)2
σ2
i

, (18.5)

where σi is the standard deviation of the xi over the sample set.
After clarifying the concepts of Mahalanobis distance and of the possible description of a cloud of points in a clus-

ter through ellipsoids characterized by a fixed Mahalanobis distance from the barycenter, we are ready to understand
the way in which clusters can be visualized.

18.3 Visualization of clustering and parallel coordinates
This section explains how clusters can be visualized in 3D (feel free to skip it without any effect on understanding
the subsequent chapters). In order to graphically represent a cluster, one can visualize its inertial ellipsoid, whose
surface is the locus of points having unit distance from the cluster’s average position according to the Mahalanobis
metric given by the cluster’s dispersion. One starts by projecting the data points to three dimensions and calculating
the corresponding 3x3 covariance matrix.

In graphical packages for three-dimensional rendering, points can be represented as row vectors of homogeneous
coordinates in R4 with the infinite plane represented as (x, y, z, 0), the projective coordinate transformation, mapping
the unit sphere into the desired ellipsoid, is represented by the following matrix:

TC =


S11 S12 S13 0
S21 S22 S23 0
S31 S32 S33 0
p̄1 p̄2 p̄3 1

 . (18.6)

When moving between hierarchical clustering levels, cluster C will split into several clusters C1, . . . , Cl. To
preserve the proper mental image, a parametric transition from ellipsoid TC to its l offspring TC1

, . . . , TCl will be
animated and the ellipsoids

TλCi = (1− λ)TC + λTCi , i = 1, . . . , l

will be drawn with parameter λ uniformly varying from 0 to 1 in a given time interval (currently 1 second). This will
effectively show the original ellipsoid morphing into its offspring.

Fig. 18.4 shows some clusters resulting from the analysis of a set of cars, characterized by a vector containing
mechanical characteristics and price. The edge intensity is related to the object distances: the closer the objects the
darker the color.

One can navigate up and down the clustering hierarchy until identifying a suitable number of clusters for conduct-
ing the analysis. Then prototypes can be examined to provide a summarized version of the data.

A particularly useful and direct tool to use for visualizing clusters of large-dimensional data is the parallel coor-
dinates display. An example for the three clusters of the original Fisher Iris data is shown in Fig. 18.5. In a parallel
coordinates plot, each vertical axe corresponds to a coordinate. A point in n-dimensional space is represented as a
polyline (a line composed of attached segments) with vertices on the parallel axes. The position of the vertex on the
i-th axis corresponds to the i-th coordinate of the point. By acting on filters, the number of points displayed can be
reduced to concentrate on the most interesting ones. Furthermore, different ordering of the axes, colored lines, high-
lighting, background colors, etc. can add useful information to the plot. At a glance, both the individual items and the
overall structure of clusters (or subset of items) is visible.

The parallel coordinates plot is probably the least known but simplest and most effective way to visualize n-
dimensional points, as soon as n is larger than the two or three dimensions we can observe directly with our eyes. You
do not need to be an engineer (the enlightened caste which is already using them) to use parallel coordinates plots.
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Figure 18.4: Clustering cars from mechanical characteristics.
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Figure 18.5: Parallel coordinates plot for Fisher Iris data (each flower is characterized by four geometrical measures).
A vertical axe for each dimension. Each item is represented by a polyline cutting the i-th axe at the item’s value of the
i-th coordinate.
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Gist
Agglomerative clustering builds a tree (a hierarchical organization) containing data points. If trees are
unfamiliar to you, think about the folders that you may use to organize your documents, either physically or
in a computer (docs related to a project together, then folders related to the different projects merged into a
“work in progress” folder, etc.).

Imagine that you have no secretary and no time to do it by hand: a bottom-up clustering method can do
the work for you, provided that you set up an appropriate way to measure similarities between individual
data points and between sets of already merged points.

This method is called “bottom-up” because it starts from individual data points, merges the most sim-
ilar ones and then proceeds by merging the most similar sets, until a single set is obtained. The number
of clusters is not specified at the beginning: a proper number can be obtained by cutting the tree (a.k.a.
dendrogram) at an appropriate level of similarity, after experimenting with different cuts.

Through agglomerative clustering, Santa can now organize all Christmas presents as a single huge red
box. After one opens it one finds a set of boxes, after opening them, still other boxes, until the “leaf” boxes
contain the actual presents.



Chapter 19

Self-organizing maps

The grandmother cell is a hypothetical neuron
that represents any complex and specific concept or object.

It activates when a person’s brain “sees, hears, or otherwise sensibly discriminates”
such a specific entity as his or her grandmother.

(Jerry Lettvin, 1969)

From the previous chapters, you are now familiar with the basic clustering techniques. Clustering identifies group
of similar data, in some cases with a hierarchical structure (groups, then groups containing groups, ...). If an internal
representation is available, a group can be represented with a prototype. This chapter deals with prototypes arranged
according to a regular grid-like structure and influencing each other if they are neighbors in this grid.

The idea is to cluster data (entities) while at the same time visualizing this clustered structure on a two-
dimensional map. One wants a visualization that is at least approximately coherent with the clustering — this should
be puzzling enough to continue reading.
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Figure 19.1: The presence of certain external stimuli activates a region in the brain (“grandmother cell”). In some
areas, neurons are approximately organized according to a two-dimensional structure, like in the cortex, the surface
layer of the brain where most high-level functionalities are located.

Let each cluster i be associated with a representative vector, a prototype pi. In the field of marketing, it is usual
to identify different customer types, and describe them through prototypes (wealthy single individual, middle-class
worker with family, etc.). A prototype will have the same number of coordinates as our entities and each component
of the vector will describe a representative value for the given cluster, for example the average value of the entities
contained in the cluster.

A coherent visualization demands that similar prototypes are placed in nearby positions in the 2D visualization
space. Of course, for high-dimensional problems (problems with more than two coordinates), no exact solution is
available and one aims at approximations which are sufficient for us to reason about the data. A self-organizing
map (SOM) is a type of artificial neural network that is trained by using unsupervised learning to produce a two-
dimensional representation of the training samples, called a map. This model was introduced as an artificial neural
network by Teuvo Kohonen, and is also called a Kohonen map.

19.1 An artificial cortex to map entities to prototypes
A self-organizing map consists of component nodes or neurons. The arrangement of nodes is a regular placement in a
two-dimensional grid. In some cases the grid is hexagonal, so that each node has six closest neighbors instead of four
neighbors like in a traditional squared grid (Fig. 19.3). Associated with each node i is a prototype vector pi of the
same dimension as the input data vectors, and a position in the map space.

The analogy is again with our neural system: the neurons are organized according to a physical network of
connections in the brain, in practice two or three-dimensional. Some neurons are tuned by evolution and training
to fire electrical signals for particular events, as shown in Fig. 19.1. For example, a neuron may fire when your mother
enters your visual field. The prototype is in this case given by visual features corresponding to your mother, the
position is the physical position of the neuron in the brain.

Another principle of our neural systems is that, in many cases, neurons that are neighbors tend to fire for similar
input data (a neighbor of the neuron firing for your mother presence may be close to one firing for an old photo of
your mother). After training, the self-organizing map describes a mapping from a higher-dimensional input space to
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Figure 19.2: A SOM maps entities in a multi-dimensional space into cells in two-dimensional space. Each cell contains
a prototype and the entities for which the prototypes is the most similar one.

a two-dimensional map space. Each cell in two dimensions corresponds to a neuron and contains a prototype vector.
A generic entity is then mapped (or assigned) to the neuron with the prototype vector which is nearest to the vector
describing the entity, as shown in Fig. 19.2. The training can start from a random initial configuration of the prototype
vectors (for example picked to be equal to a random subset of entities) and then iterate by presenting and mapping
randomly selected cases. The winning neuron c(x), or c for brevity, is identified as the one with the prototype closest
to the vector describing the current case x:

c(x) = arg min
i
‖x− pi‖. (19.1)

Then the winning prototype pc(x) is changed to make it more similar to the one of the current case presented to the
network. In addition, the prototypes of nearby vectors are also changed in a similar manner, although by smaller and
smaller amounts as the distance in the grid increases.

Think about a democratic system in which voters (entities) are asked to educate a set of regularly-arranged repre-
sentatives (like in a chamber of the parliament) so that at least one of them represents a cluster of related ideas, and in
which representatives sitting in nearby positions influence each other, and tend to become similar. Two “force fields”
are active, attractive forces between entities and prototypes, and attractive forces between neighboring prototypes on
the grid. Entities (voters) compete for prototypes: each entity is pulling its winning prototype and, to a less extent,
the neighbors of the winning prototype, to move a bit towards itself, to make it progressively more similar. Of course,
different entities are pulling in different directions and the resulting dynamical system is very complex.

After explaining the basic mechanism and motivations, let’s now fix the details. In an online learning scheme, at
each iteration t a random entity x is extracted, its winning neuron c is determined, and all prototype vectors pi(t) at
iteration (time) t are then modified as follows:

pi(t+ 1)← pi(t) + η(t) · Act
(
c(x), i, σ(t)

)
· (x− pi(t)), (19.2)

where η(t) is a time-dependent small learning rate, Act
(
c, i, σ(t)

)
is an activation function which depends on the

distance between the two neurons in the 2D grid, and on a time-dependent radius σ(t). The two neurons involved
in the formula are: the winning neuron c for pattern x, and the neuron i whose pattern pi(t) is being updated. The
modification mechanism resembles the update described in equation (17.9) for soft clustering in k-means, but with
the important difference given by the regular two-dimensional organization of the neurons, which now determines the
activation level.

To help convergence, usually the learning rate decreases in time, and the same happens for the radius parameter.
The idea is that at the beginning the neuron prototypes are moving faster (neural plasticity is higher for young chil-
dren!), and they tend to activate a larger set of neighbors, while movements are smaller and limited to a smaller set



206 CHAPTER 19. SELF-ORGANIZING MAPS

of neighbors in the last phase, when hopefully the arrangement already identified the main characteristics of the data
distribution and only a fine-tuning is needed. The learning rate in some cases decreases like η(t) = A/(B + t). A
reasonable default can be η(t) = 1/(20 + t).

In batch training, all N entities xj are presented to the SOM and their winning neurons c(xj) are identified before
proceeding to an update as follows:

pi(t+ 1)←
∑N
j=1 Act

(
c(xj), i, σ(t)

)
· xj∑N

j=1 Act
(
c(xj), i, σ(t)

) . (19.3)

Each prototype is updated with a weighted average over all entities, the weight being proportional to the vicinity in
neuron grid space (usually two-dimensional) between the winning neuron prototype and the current prototype.

Because of the system complexity, one is encouraged to try different parameters and different time schedules until
acceptable results are obtained. For example, a suitable neighborhood activation function can be:

Act
(
c, i, σ(t)

)
= exp

(
− dci

2

2 σ2(t)

)
, (19.4)

where dci is the distance between the two neurons in the two-dimensional grid, and σ(t) is a neighborhood radius,
at the beginning including more neighbors than the closest ones, at the end including only a set of close neighbors.
Be careful not to confuse the distance between neurons in the grid, as shown in Fig. 19.3, with the distance between
prototype vectors in the original multi-dimensional space of the data!

Let TOTSOM be the total number of SOM neurons, and TOTiter the number of iterations executed. The default
value starts from

√
TOTSOM, a value close to the radius of the grid if the grid is a square one, and ends with the value

2, as follows:

σ(t) =
(TOTiter − t)

√
TOTSOM + 2t

TOTiter
. (19.5)

One should not be discouraged by the complexity intrinsic in this and in similar mapping tasks: in many cases
acceptable results are obtained by considering simple default values for the basic parameters. On the other hand, it is
not surprising that a basic mapping mechanism of our brain is indeed characterized by a high complexity level, we are
intelligent and in part unpredictable human beings, aren’t we?

19.2 Using an adult SOM for classification
Even if you do not want to indulge in the debauchery of indices of the above mathematical details, you can still use
SOM effectively as a guide in reasoning about your problem. After training, the SOM can be used to classify new
objects by finding the closest (winning) prototype and assigning the new object to the corresponding cell, as illustrated
in Fig. 19.4. In many cases, after looking at the prototypes, it will be easy to give names to the different cells, to help
reasoning and remembering. But let’s note that cells may discover unusual combinations, leading to interesting insight
and detection of novel groups, and not only to re-discovering trivial classifications.

Let’s imagine that you trained your SOM on marketing data: each cell may represent a characteristic group of
customers. Possible names could be: “wealthy-single-individual,” “poor-family-with-kids,” “senior-retired-person,”
“spoiled-adolescent,” etc. When a new customer arrives, you may easily identify the appropriate prototype, for ex-
ample to pick the best strategy to sell him your products. If you are a movie fan, and you train your SOM to classify
different kinds of movies, you may use a SOM to classify a new movie, for example to predict if you will like it or not
(with a high probability).

In a SOM, the quality of training can be measured by the quantization error (the average error incurred by
substituting an entity x with its winning prototype vector pc(x), i.e., the average distance from each data vector to its
nearest prototype) or by the topological error, which is related to the failure to assign close vectors in the original
high-dimensional space to close neurons in neuron-grid space (usually two-dimensional). The topological error can
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Figure 19.3: An example of neighborhood in a self organizing map: neighboring cell at distance 1 and 2 from the
central are shown.

be evaluated as the fraction of all data vectors for which the first and the second nearest prototypes (in the original
multi-dimensional space) are not represented by adjacent neurons in the grid mapping.

Color coding can be used to represent the value of the data point along a dimension, while the size of each hexagon
can represent the value along another dimension (Fig. 19.5). The colored maps are called components or component
planes and can be compared to identify local relationships. One can devise interesting new analysis techniques by
combining the SOM map with a scatterplot display, or with a parallel coordinates plot (Fig. 18.5). For example, when
the mouse pointer is moved over the SOM cells, the position of the prototype vector associated with each cell can
be shown in a scatterplot or in a parallel coordinates plot. In this manner, details of relevant entities can be further
analyzed.
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Figure 19.4: An analogy for the SOM: each cell is like a drawer in a well-organized piece of furniture. Neighboring
drawers are used to contain similar objects.

Figure 19.5: A SOM, color and size depends on two coordinates of the prototype vectors. Prototypes can be examined
by passing with the mouse over the cell (LIONoso.org software).
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Gist
Self-organizing maps reach two objectives: placing a set of prototypes close to clusters of data points, and
having the prototypes organized in a two-dimensional grid so that neighboring prototypes in the grid tend
to be mapped to similar data points.

The motivations are in part biological (our neural cortex is approximately organized according to two-
and three-dimensional arrangement of neurons) and in part related to visualization. A two-dimensional grid
can be visualized on the screen, and the characteristics of the prototypes are not randomly scattered but
slowly varying, because of the neighboring relationships, leading to more intelligible visualizations.

If data points are imagined as schooling fishes in the sea, a SOM is an elastic fisherman’s network aiming
at capturing the largest number of them without breaking up.
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Chapter 20

Dimensionality reduction by projection

You, who are blessed with shade as well as light, you, who are gifted with two eyes, endowed with a knowledge of perspective,
and charmed with the enjoyment of various colors, you, who can actually see an angle, and contemplate the complete

circumference of a Circle in the happy region of the Three Dimensions – how shall I make it clear to you the extreme difficulty
which we in Flatland experience in recognizing one another’s configuration?

(Flatland - 1884 -Edwin Abbott Abbott)

In exploratory data analysis one is actually using the unsupervised learning capabilities of our brain to identify
interesting patterns and relationships in the data. It is often useful to map entities to two dimensions, so that they can
be analyzed by our eyes. The mapping has to preserve as much as possible the relevant information present in the
original data, describing similarities and diversities between entities. For example, think about a marketing manager
analyzing similarities and differences between customers, so that different campaigns can be tuned to the different
groups, or think about the head of a human resources department who aims at classifying the competencies possessed
by different employees. We would like to organize entities in two dimensions so that similar objects are near each
other and dissimilar objects are far from each other. Let’s note that there is a clear difference between this and SOM
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maps. In SOM, prototype vectors associated with a two-dimensional grid are moved (their coordinates are changed)
to cover the original data space, whereas here the original points are mapped in different ways onto a two-dimensional
surface.

Following the discussion in Chapter 17 (see Fig. 17.2), it’s useful to recall the two ways in which initial information
can be given to the system. A first possibility is that entities are characterized by an internal structure (a vector of
coordinates). In this case the raw coordinates can be used to derive a similarity measure, as by considering the
Euclidean distance between the two corresponding vectors. A second possibility is that entities are endowed with
an external structure of pairwise relationships, expressed by similarities or dissimilarities. We deal only with
dissimilarities to avoid confusion and we leave to the reader the simple exercise of transforming the formulas to handle
the other case. To establish a suitable notation, let the n entities be characterized by some mutual dissimilarities δij .
Some dissimilarities may be unknown.

Figure 20.1: A graph with external dissimilarities (edges) between entities (nodes).

An appropriate model is an undirected graph, like the one illustrated in Fig. 20.1, in which each entity is represented
by a node, and a connection with weight δij is present between two nodes, if and only if a distance δij is defined for
the corresponding entities. The set of edges in the graph is denoted by E.

The two situations (coordinates or relationships) can be combined. In some cases the information given to the
system consists of both coordinates and relationships. As a very concrete example, imagine that some automated
clustering method has been applied to the data vectors. We can then declare two entities to be dissimilar (δij = 1) if
and only if they do not belong to the same cluster. This additional information can be used to encourage a visualization
where items coming from the same cluster tend to be close in the two-dimensional space. In other cases, indications
about dissimilarities among items given by people can help for tuning the visualization and adapting it to the user’s
wishes.

A way to distinguish the different contexts has to do with the level of supervision in the visualization, i.e., the
type of hints given to the process. The type of supervision ranges from a purely unsupervised approach (only coor-
dinates are given) to a supervised approach (relationships or dissimilarities are fully specified), to mixed approaches
combining unsupervised exploration in the vector space of coordinated and labeling methods.

After clarifying the context, depending on the available data, it is time to consider ways to use the data to produce
useful visualizations. Methods derived from linear algebra are described in the following sections, while more general
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Figure 20.2: A projection: each dotted line connecting a vector to its projection is perpendicular to the plane defined
by ν1 and ν2 (in this case the direction vectors are the X and Y axes, in general a projection can be on any plane
identified by two linearly independent vectors).

nonlinear methods are described in future chapters. As usual, linear methods are simpler to understand, while nonlinear
methods are in principle more powerful, although more complex.

20.1 Linear projections

This chapter starts from linear algebra, Let n be the number of vectors (entities), and let m be the dimension of each
vector (the number of coordinates). For convenience, the n vectors can be stored as rows of an n × m matrix X .
To help the reader, Latin indices i, j ranges over the data items, while Greek indices α, β range over the coordinates.
Thus Xiα is the α-th coordinates of item i. For the rest of this chapter we assume that the data is centered, i.e., that
the mean of each coordinate over the entire dataset is zero:

∑n
i=1Xiα = 0. If the original data are not centered, they

can be preprocessed by a trivial translation. In other words, we are not interested in the absolute positions of the data
points, but in their relative positions with respect to the other data. We denote by S the m × m biased covariance
matrix: S = 1

nX
TX , with the components: Sα,β = 1

n

∑n
i=1XiαXiβ .

It is called covariance because each term measures how two coordinates tend to vary together for the different
data points. The sum in the covariance will have a large positive value if positive values of the first coordinate tend
to be accompanied by positive values of the second coordinate, and the same tends to be true for negative values.
Actually, the covariance is changed if the values of a coordinate are multiplied by a constant (this happens every
time one changes physical units, for example from millimeters to kilometers). A measure which does not depend
on changes of physical units is the correlation coefficient, derived by dividing the covariance by the product of the
standard deviations of the involved coordinates. (See Section 7.2.)

We consider a linear transformation L of the items to a space of dimension p, the usual value for p is two, but
we keep this presentation more general. L is represented by a p ×m matrix, acting on vector x by the usual matrix
multiplication y = Lx. Each coordinate α of y is obtained by a scalar product of a row να of L and the original
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coordinate vector x. The p rows ν1, . . . , νp ∈ Rm of L are called direction vectors and in the following we assume
that they have unit norm ‖να‖ = 1. Therefore each coordinate α in the transformed p-dimensional space is obtained
by projecting the original vector x onto να. If we project all items and we repeat for all coordinates we obtain the
coordinate vectors x1 = Xν1, . . . , xp = Xνp.

Among the possible linear transformations, interesting visualizations are obtained by orthogonal projections: the
direction vectors ν1, . . . , νp are mutually orthogonal and with unit norm: να ·νβ = δα,β , α, β = 1, . . . , p, as illustrated
in Fig. 20.2. Please note that here δα,β is the usual Kronecker delta, equal to 1 if and only if the two indices are equal,
not to be confused with dissimilarities! An example of orthogonal projection is a selection of a subset of the original
coordinates (in this case να = (0, 0, . . . , 1, . . . , 0, 0), a vector with 1 for the selected coordinate and 0 in all other
places). Other examples are obtained by first rotating the original vectors and then selecting a subset of coordinates.

The visualization is simple because it shows genuine properties of the data, corresponding to the intuitive notion
of navigating in the original space, far from the data points, and looking at the data from different points of view1.
Think about placing a two-dimensional screen at an arbitrary orientation, switching a lamp on (very far from the
data), and observing the projected shadows. On the contrary, nonlinear transformations may deform the original data
distribution in arbitrary and potentially very complex and counter-intuitive ways, as by viewing the world through a
deforming lens.

As an additional feature of linear projections, it is easy to explain the p-dimensional coordinates because each
one is a linear combination of the original coordinates (for example, the magnitude of the combination coefficients
“explains” a lot about the relevance of the initial coordinates in the projection).

Last but not least, the storage requirements are limited to storing the direction vectors, and the computational
complexity for projecting each point is the usual one for matrix-vector multiplication.

Now that the motivation is present, let’s consider some of the most successful linear visualization methods.

20.2 Principal Components Analysis (PCA)
To understand the meaning of this historic transformation (PCA was invented in 1901 by Karl Pearson) it is useful
to concentrate on what PCA is trying to accomplish. As usual, optimization is the source of power and helps us to
understand the deep meaning of operations. Now, PCA finds the orthogonal projection that maximizes the sum of all
squared pairwise distances between the projected data elements.

If distpij is the distance between the projections of two data points i and j:

distpij =

√√√√ p∑
α=1

((Xνα)i − (Xνα)j)2,

PCA maximizes: ∑
i<j

(distpij)
2. (20.1)

The objective is to spread the points as much as possible, but the fact of considering only projections implies
that the mutual distances cannot increase beyond the original ones: distpij ≤ distij (just consider Pythagoras theorem
applied to the triangle defined by the original vector, the projection and the vector connecting the projection to the
original vector). The best that we can obtain is to approximate as much as possible the original sum of squared
distances:

max
ν1,...,νp

∑
i<j

(distpij)
2 ≤

∑
i<j

(distij)2. (20.2)

1Actually the mapping executed by our eye or by cameras is a perspective viewing projection so that the analogy is not to be taken literally.
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After introducing the n × n unit Laplacian matrix Lu, as Luij = (n · δij − 1), the optimization problem can be
posed as the solution of:

max
ν1,...,νp

p∑
α=1

(να)TXTLuXνα (20.3)

subject to να · νβ = δα,β , α, β = 1, . . . , p.

The Laplacian matrix is in general a key tool for describing pairwise relationships between entities. In fact, it
is used a lot in the study of graphs, where the pairwise relationship is given by weighted edges connecting two nodes.
In general, it is an n × n symmetric positive semidefinite matrix, with zero row and column sums. Its usefulness is
related to the possibility to express in a compact manner the weighted sum of all pairwise squared distances:

xTLx =
∑
i<j

−Lij(xi − xj)2. (20.4)

Considering the p coordinate vectors introduced above, it is easy to check that:

p∑
α=1

(xα)TLxα =
∑
i<j

−Lij (distpij)
2. (20.5)

The optimal solution of equation (20.3) is given by the p eigenvectors with largest eigenvalues of the m × m
matrix XTLuX . For centered coordinates, this matrix is identical to the covariance matrix apart from a multiplicative
factor (which does not influence the eigenvectors) XTLuX = n2S. The solutions for PCA is obtained by finding
the eigenvectors of the covariance matrix. We prefer the above form with the Laplacian matrix which can be easily
generalized to cases where we have additional information about relationships between data points. (See Section 20.3.)
While we are not giving the details in this section, the fact that solutions are eigenvectors is again related to formulating
the problem as a maximization task: the original quantity to be minimized is quadratic, and requiring zero gradient
and satisfaction of constraints leads to linear (eigenvalue) equations.

As a side-effect of the above solution, PCA transforms a number of possibly correlated variables into a smaller
number of uncorrelated variables called principal components. The first principal component accounts for as much
of the variability in the data as possible, and each succeeding component accounts for as much of the remaining
variability as possible. Another interesting explanations of PCA is that it minimizes the mean squared error incurred
when approximating the data with their projection.

A geometric interpretation in three dimensions is shown in Fig. 20.3. If the data points form an m-dimensional
ellipsoidal cloud, the eigenvectors of the covariance matrix are the principal axes of the ellipsoid. Principal component
analysis reduces the dimensionality by restricting attention to the directions along which the scatter of the cloud is the
greatest.

PCA is a simple and very popular transformation but with obvious limits (maybe too popular?). It simply performs
a coordinate rotation that aligns the transformed axes with the directions of maximum variance. Having a larger
variance is not always related to having a larger information content, for example it can be related to having a larger
measurement noise. In addition, the variance along a coordinate can be easily enlarged by multiplying the coordinate
by a constant, but the information content of course does not change. In other words, the PCA results depend on
choosing appropriate physical units, a spherical cloud of points can become elongated for the superficial reason that
millimeters instead of meters are used to measure a physical distance. Furthermore, because a sum of squared distances
is involved in the optimization of equation (20.1), PCA is sensitive to outliers. Points which are very far from most
of the other points contribute with large (squared) distances and encourage a choice of direction vectors which may be
very different from those chosen if the outliers are eliminated. When PCA is used to identify promising features for
classification in supervised learning, its main limitation is that it makes no use of the class label of the feature vector.
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Figure 20.3: Principal component analysis, data are described by an ellipsoid. The first eigenvector is in the direction
of the longest principal axis, the second eigenvector lies in a plane perpendicular to the first one, along the longest axis
of the two-dimensional ellipse.

There is no guarantee that the directions of maximum variance will contain good features for discrimination, see also
Chapter 7 about selecting and ranking features.

The computational cost is related to solving the eigenvalues-eigenvectors problem for a matrix of dimensionm×m.
Let’s note that the number of points n is not relevant, therefore the method is particularly fast when the number of
initial coordinates is limited, even if the number of data points is very large. More details about PCA can be found
in [238].

20.3 Weighted PCA: combining coordinates and relationships
As we mentioned before, in some cases additional information is available about the data in the form of relationships
between (some) entities. For example, we may have a class label, so that some pairs are in the same class and we
would like them to be close in the projected distance. Or we may have additional information about dissimilarities
beyond what is obtained from the raw data coordinates.

Fortunately, we can extend PCA to incorporate additional information. For example, we can minimize a weighted
sum of the squared projected distances: ∑

i<j

dij · (distpij)
2. (20.6)

If a weight dij is large, a large contribution to the function to be maximized is obtained if the corresponding distpij is
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also large. We can then interpret dij as weights measuring the importance that points i and j are placed far apart in the
low dimensional projection space, let’s call them dissimilarities. As in the unweighted case, we can now assign to the
problem an n× n Laplacian matrix Ld:

Ldij =

{∑n
j=1 dij if i = j

−dij otherwise
, (20.7)

and obtain the optimal projection with the direction vectors given by the p highest eigenvectors of the matrixXTLdX .
We can now use the dissimilarity values to create different variations of PCA. In normalized PCA dij = 1/disti,j

to discount large original distances in the optimization. This can be useful to increase the original PCA robustness
with respect to outliers.

In supervised PCA, with data labeled as belonging to different classes, we can set the dissimilarities dij to a small
value ε if i and j belong to the same class, to a value 1 if they belong to different classes. This weighing instructs
the projection that it is more important to put at large distances points of different clusters. If ε is zero, the internal
structure of each cluster is set only indirectly according to the inter-cluster relationships of its members.

20.4 Linear discrimination by ratio optimization

Other possibilities to project points while considering also class labels arise by optimizing ratios of quantities. Obvi-
ously, maximizing a ratio reflects a compromise between maximizing the numerator and minimizing the denominator.

Let’s consider a c-way classification problem, the standard case being with two output classes. Fisher analysis
deals with finding a vector νF such that, when the original vectors are projected onto it, values of the different classes
are separated in the best possible way.

A nice separation is obtained when the sample means of the projected points are as different as possible, when
normalized with respect to the average scatter of the projected points. The division by the scatter corresponds to the
intuition that what matters is not the separation of means per se, but the fact that values are sufficiently clustered
around their means so that the classes can be clearly separated. This is not possible if they are scattered so that most
values are mixed in the same area, even if the means are separated.

Let ni be the number of points in the i-th cluster, let µi and Si be the mean vector and the biased covariance
matrix for the i-th cluster. The matrix Swithin = 1

n

∑c
i=1 niSi is the average within-cluster covariance matrix and

Sbetween = 1
n

∑c
i=1 niµiµ

T
i the average between cluster covariance matrix.

In detail, the Fisher linear discriminant is defined as the linear function y = νTx for which the following ratio is
maximized:

νTSbetween ν

νTSwithin ν
. (20.8)

Think about maximizing the ratio of between-class to within-class scatter: we want to maximally separate the
clusters (the role of the numerator where the projections of the means count) and keep the clusters as compact as
possible (the role of the denominator).

It can be proved that the maximizer of Fisher’s criterion is the same as the maximizer of:

νTSbetween ν

νT S ν
. (20.9)

For the special but interesting case of two classes, see also Fig. 20.4, after specializing the above equations, the
Fisher linear discriminant is defined as the linear function y = wTx for which the following criterion function is
maximized:

Separation(w) =
‖m̃1 − m̃2‖2

s̃21 + s̃22
, (20.10)
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Figure 20.4: Fisher linear discrimination (triangles belong to one class, circles to another one): the one-dimensional
projection on the left mixes projected points from the two classes, while the projection on the right best separates the
projected sample means with respect to the projected scatter.

where m̃i is the sample mean for the projected points m̃i = (1/ni)
∑
y∈Classi y, and s̃2i is the scatter of the projected

samples of each class: s̃2i =
∑
y∈Classi(y − m̃i)

2. Think about maximizing the ratio of between-class to total
within-class scatter. The solution is:

wF = (Sw)−1(m1 −m2), (20.11)

where mi is the d-dimensional sample mean for class i and Sw is the sum of the two scatter matrices Si defined as
follows:

Si =
∑

x∈Classi

(xi −mi)(xi −mi)
T . (20.12)

An interesting application of Fisher linear projection is for selecting features in neural networks and general model-
building techniques based on supervised learning. (See Section 20.4.1.)

20.4.1 Fisher discrimination index for selecting features
Let’s consider a two-way classification problem (with two output classes) with input vectors of d dimensions. Fisher
analysis deals with finding the vector wF so that, when the original vectors are projected onto it, values of two classes
are separated in the best possible way. The method has already been encountered in Section 20.4.

Let’s remind that a nice separation of the projected points is obtained when the sample means of the projected
points are as different as possible, when normalized with respect to the average scatter of the projected points. The
division by the scatter corresponds to the intuition that what matters is not the separation of means per se, but the fact
that values are sufficiently clustered around their means so that the two classes can be clearly separated. This is not
possible if they are scattered so that most values are mixed in the same area, even if the means are separated.

We can now rate the importance of feature i according to the magnitude of the i-th component of the Fisher vector
wF defined in equations (20.11)–(20.12). Identifying the largest components in Fisher vector will heuristically identify
the most relevant directions (coordinates) for separating the classes. In other words, if the direction of a coordinate
vector is similar to the direction of the Fisher vector, projecting onto the given coordinate axis can be approximately
used to separate the two classes, instead of projecting onto the original Fisher vector. Let’s note that the criterion is
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empirical because it is based on linear projections: in some cases a nonlinear combination of features which rank
poorly by the above Fisher criterion may do an excellent job in separating classes.

If the number of dimension d is very large, inverting the Sw matrix in equation (20.11) can be numerically difficult,
and this first measure can be insufficient to correctly order many features.

A simpler and possibly more effective criterion to rank feature k, called Fisher’s discrimination index, is to
measure the Separation(w) value defined in equation (20.10) when considering a vector ek along the specific direction
k (zero everywhere, 1 only in the k-th coordinate). In other words, we want to measure the discrimination which can
be achieved if only the k-th coordinate of the points is considered.

20.5 Fisher’s linear discriminant analysis (LDA)

The original Fisher method described above aims at finding a single direction vector (a single projection). For finding p
direction vectors, the idea can be generalized to the popular technique known as Fisher’s linear discriminant analysis
(LDA), which is based on maximizing the following ratio:

max
ν1,...,νp

∑p
α=1(να)T Sbetween ν

α∑p
α=1(να)T S να

(20.13)

subject to (να)TSνβ = δαβ , α, β = 1, . . . , p.

Although widely used, LDA, like the basic PCA, is sensitive to outliers and it does not take the shape and size of
clusters into consideration. A more flexible generalization is based on maximizing a ratio of the following form:

max
ν1,...,νp

∑
i<j dij(distpij)

2∑
i<j simij(distpij)2

subject to (να)TXtLsXνβ = δαβ , α, β = 1, . . . , p,

where dij are dissimilarity weights, simij are similarity weights (they express the preference for placing two entities
together in the projection), and Ls is the Laplacian matrix corresponding to the similarities

Lsij =

{∑n
j=1 simij if i = j

−simij if i 6= j
. (20.14)

After defining a generalized eigenvector problem of (A,B) as the solution of Ax = λBx, the optimal solution of
equation (20.13) is given by the p highest generalized eigenvectors of (XTLdX,XTLsX).

Apart from the mathematical details, remember that finding an optimal projection requires defining in measurable
ways what is meant by optimality. Above we have seen ways of combining unsupervised (based only on coor-
dinates) and supervised information (based on relationships), and ways of giving different weights to different
preferences for placing items distant or close.

After the user intelligence is spent on defining the optimization problem, what is left is to derivem×mmatrices by
the appropriate multiplications and to solve an m×m generalized eigenvector problem in an efficient and numerically
stable way. Of course, the technique is very fast when the number of original coordinates m is limited, even if the
number of points to project is very large.

Interestingly enough, eigenvectors will be encountered again in chapter 14 about web mining, for ranking web
pages.
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20.6 Projection Pursuit: searching for interesting structure guided by an
explicit index

Projection pursuit (PP) is a catchy name proposed in [138] and based on [243] for exploratory data analysis based
on the explicit definition of an objective function (called projection index). “Pursuit” refers to the systematic use of
optimization techniques to identify the best projection, or at least a locally-optimal one, according to the index. Let’s
stress that structure can be obscured by projections but never enhanced (projection is a shadow of an actual structure
in many dimensions) and therefore linear projections are always solid low-danger techniques.

Many of the methods of classical multivariate analysis (like PCA in Sec. 20.2 or LDA in Sec. 20.5) are special
cases of PP, but this dedicated section underlines some interesting observations of the most advanced PP methods,
following [134] and [197].

The purpose of exploratory projection pursuit is to discover non-obvious (non-linear) effects in the data by low-
dimensional projections. The human gift for pattern recognition works best by observing data projected in two or three
dimensions. Linear effects are “obvious” because they can be easily identified by PCA, i.e., by deriving and using the
covariance structure of variable pairs.

20.6.1 Normal Gaussian distributions are non-interesting: sphering or whitening
If the cloud of data points follows with high fidelity an elliptically symmetric distribution like that of Fig. 20.6, the
covariance matrix tells the whole story. A normal distribution (following a multi-dimensional Gaussian probability
density function) is a paradigm of a non-interesting structure. If we project a normal distribution, we obtain another
normal distribution, usually quite boring. Let’s consider that a normal distribution can be the real-world equivalent of
a constant value (if we measure the height of a person with more digits than required by our instrument’s precision,
we get an approximately normal distribution of values).

Figure 20.5: Projection Pursuit: if we project a human body, the interest of a projection is related to the amount of
nonlinearity. A projection from above leads to a quasi-normal distribution (a), a lateral projection is of bigger use to
identify people (b).

If the task confirms that normal distributions are of no interest, a “first aid” treatment of the data consists of
sphering or whitening. Sphering means squeeze, stretch and rotate data until the ellipsoid describing the covariance
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structure (Fig. 20.6) becomes a sphere. The alternative term of “whitening” originates from signal processing and
reminds that the input vector is transformed into a white noise vector, a signal whose samples are regarded as a
sequence of serially uncorrelated random variables with zero mean and finite variance.

In detail, a whitening transformation is a decorrelation transformation that transforms an arbitrary set of variables
having a known covariance matrix M into a set of new variables whose covariance is the identity matrix (meaning that
they are uncorrelated and all have variance 1).

A first step consists of centering the data, by subtracting the average vector. Then the correlation matrix M is
derived as the expected value of the outer product of X with itself, namely:

M = E[XXT ]

When M is symmetric and positive definite (and therefore not singular), it has a positive definite symmetric square
rootM1/2, such thatM1/2M1/2 = M . SinceM is positive definite,M1/2 is invertible, and the vector Y = M−1/2X
has covariance matrix:

Cov(Y ) = E[Y Y T ] = M−1/2 E[XXT ](M−1/2)T = M−1/2MM−1/2 = I

and is therefore a white random vector.
If M is singular (and hence not positive definite), the vector X can still be mapped to a smaller white vector Y

with m elements, where m is the number of non-zero eigenvalues of M .

−1/2
Original data Decorrelate: rotate by E Whiten: scale by D

Figure 20.6: Sphering a data distribution.

A first underlying principle of PP is: the level of interest is proportional to the degree of nonlinear structure in the
projection. Normal distributions have no interest and can be discounted by whitening or sphering the data points
before proceeding with PP.

In many cases, one demands that PP results are invariant with respect to affine transformations of the data. In the
real-world, an affine transformation can be related to changing offset and scale of measurement units (like in a Celsius
to Fahrenheit conversion of temperatures) and it would be unpleasant if such a trivial change could create or destroy
interesting structure (but remember that PCA results are going to be changed by an affine transformation: therefore
PCA has to be used with great care and a high level of danger).

20.6.2 Index to measure non-normality
If it is confirmed that normal distributions and not of interest, one must pay attention to the fact that most projections
have a natural tendency to obtain normal distributions.
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This natural tendency is caused by the central limit theorem (CLT)[289]: given certain conditions, the arith-
metic mean of a sufficiently large number of iterates of independent random variables will be approximately normally
distributed, regardless of the underlying distribution.

The fact that most projections (arithmetic means of scaled single variables) tend to produce normal distribution,
and therefore identifying one by manual search is close to impossible for high-dimensional data, is a strong motivation
in favor of a systematic search of interesting ones by PP. One is searching for needles (non-normal projections) is a
haystack of approximately normal ones.

Most PP applications seek distribution that exhibit clustering or other kinds of nonlinear structures in the main
body of the distribution, and not so much in the tails. The most computationally attractive indices of non-normality
are based on polynomial moments.

The procedure to obtain this measure of non-normality can be as follows. One seeks a linear combination:

X = αTZ

so that the projected probability density pα(X) is different from a Gaussian (normal) distribution in its main body.
After using the normal cumulative distribution function (cdf):

Φ(X) =
1√
2π

∫ X

−∞
exp(−t2/2)dt

and introducing the variable R
R = 2Φ(X)− 1

R will be uniformly distributed in the interval −1 ≤ R ≤ 1 if X is normally distributed. In general, the density for
the new variable R can be obtained as:

pR(R) =
1

2
pα

(
Φ−1

(
R+ 1

2

))/
g

(
Φ−1

(
R+ 1

2

))
where g(X) is the standard normal density.

One can then measure the non-uniformity of R as the integral of the squared distance between the real probability
density in the new variable R and the uniform probability density equal to 1/2 over the entire interval.∫ 1

−1

(
pR(R)− 1

2

)2

dR.

The projection index to be maximized can be taken as a suitable approximation of the above integral. Traditionally, an
expansion in terms of Legendre polynomials can be used [134]. It is of comfort that the final results of PP tend to be
quite robust with respect to the details of the approximation as well as estimation of densities from data points.

Indices with derivatives which can be computed analytically can be used as ingredient in gradient ascent tech-
niques to find local maxima of the index, but global derivative-free optimization schemes can be adopted if derivatives
are not present (see Chapters 26 and 25).

The above derivation can be generalized for projections into more than one dimension. As a sub-optimal alter-
native, the different vector for the multi-dimensional projection can be determined in successive steps, with greedy
versions of PP. The general idea is to identify a first projection and then to remove the structure that makes the spe-
cific direction interesting, otherwise one would re-discover the same direction again. The structure can be removed
by applying a transformation that renders the projected density a normal distribution in the projected subspace [134],
therefore lowering the local optimum responsible for identifying the first direction (see also Chapter 31 for ways of
modifying the objective function to escape from previously fund local optima).

If one considers optimization, one has to be careful that a multiplicity of suboptimal local optima can be created
by sampling fluctuations (high frequency ripples are superimposed on the main structure of the objective function).
Optimization methods combining global search schemes with local convergence are recommended (Chapter 26).
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Being an explanatory method, traditional PP can often discover strong nonlinear effects which cause the researcher
to look harder at the data aiming at insight and understanding.

In a way, PP is valid when PCA does not offer any significant insight. PCA is very sensitive to the definition of
units of measures and is easily misled by the overall distribution of data.

PP

PCA

Figure 20.7: PCA and PP can identify very different directions for projecting data. In this case PCA identifies the
overall direction of distribution but completely misses the clustering structure of the two clouds of points.

The usefulness of PP in finding projections can be seen in Fig. 20.7. The projection on the projection pursuit
direction, which is horizontal, clearly shows the clustered structure of the data. The projection on the first principal
component (vertical), on the other hand, fails to show this structure.
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Gist
Visualizations (visual representations of abstract data) help the human unsupervised learning ca-
pabilities to extract knowledge from the data. Because visualizations are for our visual system, they are
limited to the two dimensions of our retina (three in case of stereo vision).

A simple way to transform data into two-dimensional views is through projections (actually, projections
can be to more than two or three dimensions if a computer is using the projected points). Orthogonal
projections can be intuitively explained as looking at the data from different and distant points of view.

Because there are infinite ways to project data, the power of optimization comes to the rescue to select
some of them through clear objectives. In particular, Principal Component Analysis (PCA) identifies the
orthogonal projection that spreads the points as much as possible in the projection plane. In spite of its
popularity, PCA can fail to produce relevant insight: having a larger variance is not always related to having
the largest information content, or the best possible discrimination.

If relationships are available in addition to the raw coordinates (e.g., knowledge that some points are in
the same or in different class), they can be used to modify PCA and obtain more meaningful projections.

When class labels are present, Fisher discrimination projects data so that the ratio of difference in the
projected means of points belonging to different classes divided by the intra-class scatter is maximized.

Projection pursuit (PP) can be used for exploring data in order to find a few (typically one-two) di-
rections so that the projection identifies interesting nonlinear effects in an automated fashion, guided by an
objective function which measures deviations from Gaussian distributions.

If linear relationships identified by the covariance matrix are not considered of interest, a whitening
or sphering transformation can render the data uncorrelated and with unit variance. What are left are the
nonlinear effects.

Alchemists used projection to mix powdered philosopher’s stone with molten base metals in order to
transmute them into gold. You can use it for a more successful enterprise, to transform raw data points into
precious and robust insight.



Chapter 21

Feature extraction and Independent
Component Analysis

Like other parties of the kind, it was first silent, then talky, then argumentative, then disputatious,
then unintelligible, then altogether, then inarticulate, and then drunk.

George Gordon, Lord Byron

The previous chapter considered feature selection: the identification of a subset of informative attributes as a
preprocessing phase before building ML models.

Now, in many real-world situations, the relevant measurements do not correspond to individual signals but to
combinations of them. Human expertise can be complemented by automatic feature construction techniques. In
some methods, feature construction is embedded in the machine learning process. For examples the “hidden units”
of artificial neural networks in MLPs (Sec. 10.1) can be considered as automatically extracted attributes, internal
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representations of higher complexity and nonlinearity when one passes from the first to higher hidden layers. Deep
learning (Sec. 11.1) aims at building features of progressively higher complexity in an automated fashion. But in this
chapter we focus mostly on explicit preprocessing efforts to construct features guided by principles and dedicated
objective functions to be optimized, often in an unsupervised manner.

For a concrete situation, imagine two people talking at a cocktail party, the signal recorded from a microphone
will be a mixture of two voice signals, approximately a linear combination with coefficients related to the distance
of the speakers. If one could extract from the raw measurements the individual voices, it is clear that subsequent
intelligent processing (like natural language comprehension) will be greatly facilitated. Listening to an unborn baby’s
heartbeat is not direct. An ECG generates a pattern based on electrical activity of the heart, which closely follows
heart function, but two signals originating from the mother’s and the baby’s heartbeats will be superimposed and
need to be separated. In a similar way, many physical phenomena are characterized by a superposition of signals,
an electroencephalogram (EEG) measurement by electrode on the human scalp contains contributions from many
different brain regions, the height of a person is influenced by many causes (nutrition, genetics, work, age, etc.), the
cash flow of a business depends on a variety of factors, in an image the intestity values are caused by the combinations
of different objects and illumitation sources, in biology a gene expression level may be considered the sum of many
different biological processes. In many application areas the measurements provided by a device contain interesting
phenomena mixed up, often in an approximately linear manner [348, 202].

Identification of the basic factors (latent variables) controlling the output variability has value both for the
subsequent intelligent analysis and for understanding more about the basic causes of a phenomenon.

One is left with the following challenge: can one identify a certain number of basic factors from a number of
measurements in which the various factors are (often linearly) confused? Can one separate the source signals without
a precise knowledge of the different signals (without requiring supervised learning) but only with generic high-level
assumptions? Blind Source Separation (BSS) is a term used in signal processing to estimate individual source
components from their mixtures at multiple sensors. It is called blind because it does not require any other information
besides the mixtures (and some high-level structural assumptions).

In the language of Machine Learning, one is dealing with a special kind of feature extraction, in which the
extraction is some combination of the basic raw figures, for example a suitable linear combination. This is different
from feature selection in which no combination of different features is considered.

Mixture 2

ICA

Reconstructed

source 1

Reconstructed

source 2

Source 2

Source 1

Mixture 1

Figure 21.1: A practical context related to Independent Component Analysis. Two people are talking at a cocktail
party.

In the following sections, first a review of simple “first-aid” feature transformation is given (Sec. 21.1). Then
Independent Component Analysis (ICA) is presented as a way to identify basic hidden variables (sources) producing
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measured signals, in the assupmtion of independence and non-Gaussianity (Sec. 21.2). ICA searches for a linear
transformation. More complex, possibly non-linear, transforms of raw features are considered when one aims at
maximizing the Mutual Information between constructed features and output (Sec. 21.3). The transform is parametric,
and the best parameter values can be identified by optimization.

This crucial feature-construction step can be the initial phase of a more complex process. After an initial set of
features are constructed, they can be validated and selected with the feature selection techniques already explained in
Chapter 7.

21.1 Simple preprocessing for feature extraction
In some cases, raw features make the machine learning problem difficult in a masochistic way. For example, a bad
choice for the units of measurements (millimeters, kilometers, light-years) can cause large numerical errors in many
algorithms (like gradient descent) or render some inputs negligible even if they contain precious information. Simple
preprocessing methods should always be applied before considering more advanced feature extraction techniques. A
list derived from [167] is the following one.

Standardization Consider inputs with widely different ranges, for example one measuring distances in meters, one
measuring in light-years, or with a different offset like Celsius and Fahrenheit measurements of temperature. A
classical centering and scaling of the data is often used:

xi ← (xi − µi)/σi,

where µi and σi are the mean and the standard deviation of feature xi over training examples. Of course, the
same transformation will then be applied to new cases in generalization (with means and standard deviations
measured on the training set).

Normalization If x is the vector of inputs and one thinks that the direction of the vector is more meaningful than its
magnitude for subsequent processing, the vector should be divided by its norm:

x← x/‖x‖

where a suitable norm is considered. An example is the case where x describes a histogram of colors contained
in an image (xi is number of pixels with color i). It makes sense to normalize x by dividing it by the total
number of counts in order to remove the dependence on the size of the image.

Whitening If one suspects that linear relationships are not significant a whitening or sphering transformation can be
applied (Sec. 20.6.1). As in all cases, care must be used: in many cases linear relationships tell most of the
story!

Signal enhancement by application-specific transforms or local filters The signal-to-noise ratio may be improved
by applying signal or image-processing filters like background removal, de-noising, smoothing, or sharpening.
A simple example of local filters are edge detection or edge enhancement, e.g., by convolutional methods using
hand-crafted kernels. More complex but widely used global transformations techniques are Fourier transform
and wavelet transforms.

Monomials with raw features If one suspects nonlinear dependencies, one can try to increase the dimensionality of
the data by adding products of the original features xk1xk2, ..., xkM , in the hope that a simpler model will be
sufficient after this step (for example traditional least-squares or SVM).

Quantization of values In some cases, passing from a real value to a small set of integers can reduce noise and
simplify processing (for example, to measure Mutual Information, as described in Sec. 7.6).
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Transformation of variable type In some cases, categorical data should be transformed into numerical data. For
example, if the age of a person is initially described with keywords (“child”, “adolescent”, “adult”, “senior”),
assigning numbers (1,2,3,4) will allow for using metric comparisons. In other cases, the contrary makes sense,
if the initial numerical data is not related to metric comparisons but is to be intended as an ID for different
categories, like people used to do in the old days, when memory was costly and using ID instead of keywords
lead to some economy.

Other ways to construct features are described in different chapters, for example Principal Component Analysis
(Sec. 20.2), Projection Pursuit (Sec. 20.6), Deep Learning (Chapter 11).

21.2 Independent Component Analysis (ICA)
The success of Independent Component Analysis (ICA) depends on a plausible assumption regarding the nature of the
physical world: the basic variables or signals are independent and non-Gaussian (non-normal). Independence
means that the value of one signal cannot be used to predict anything about the other signals. Linear combinations of
Gaussian variables are also Gaussian, this is why non-Gaussianity is important to identiify particular (optimal) linear
transforms.

At a party, one assumes that the value of a voice signal from a speaker cannot be used to predict the voice signal
of a second speaker. Like all approximations, this is not completely true, a speaker may start talking only when a
second speaker is silent, but ICA methods tend to be quite robust. In practice, most measured signals are derived from
many independent physical processes, and are therefore mixtures of independent signals. The emphasis on identifying
structured (non-Guassian) distributions is shared with the Projection Pursuit method (Sec. 20.6). This is also what
distinguishes ICA from Principal Component Analysis (PCA) described in Sec. 20.2 .

ICA is an unsupervised, exploratory, or data-driven method: one can simply measure a phenomenon without
specific detailed knowledge, investigate the structure of the data when suitable hypotheses are not yet available.

Following [202], let the observed variables be xi(t), i = 1, ..., n, t = 1, ..., T . Index t can be interpreted as time,
or index of different observations.

One assumes that the observed variables can be modelled as linear combinations of hidden (latent) variables
sj(t), j = 1, ...,m, with some unknown coefficients aij ,

xi(t) =

m∑
j=1

aijsj(t), foralli = 1, ..., n.

At a first look, the puzzling fact is that we observe only the variables xi(t), whereas both the mixing coefficients
aij and the independent components si(t) are to be estimated (no supervised knowledge of si(t) is available). For
sure, one can hope to estimate each component only up to a multiplying scalar factor: the same results is obtained by
multiplying sources by α and dividing mixing coefficients by the same value (in measurements, this corresponds to
using different fundamental units of length, mass, time, etc. - trivial changes indeed). In addition, the result is the same
by permuting components and rows of the mixing matrix, one cannot expect a standard ordering of the components.

Let’s forget about time and consider the xi and the si as realizations of random variables. The different nmeasures
xi and si can be collected in vectors x and s so that the model becomes:

x = As

The main breakthrough in the theory of ICA was the realization that the puzzle can be solved by making the
unconventional assumption that the independent components are not Gaussian, in addition to the assumtion that
the components si are statistically independent (i.e., the joint probability density p(s1, ..., sm) is the product of the
marginal densities

∏
j pj(sj)). The second assuption appears also in standard Factor Analysis (a statistical method

like PCA used to describe variability among observed, correlated variables in terms of a potentially lower number
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Figure 21.2: ICA objective is to recover from the different measurements in (a), the original source signals that were
mixed together, as shown in (b). Source: [202].

of unobserved variables called factors) in which the factors are assumed uncorrelated and Gaussian, which implies
statistical independence. Only in the non-Gaussian case independence means more than uncorrelatedness (lack of
linear correlation).

As in the discussion about Mutual Information (Sec. 7.6), one can have variables with no linear correlation but
high mutual dependency. As an example, consider a distribution which places equal probability to four points located
in a cross-like manner in two dimensions: (−1, 0), (1, 0), (0,−1), (0, 1), the correlation is zero but knowledge of one
variable (e.g., of x1) helps when predicting the second one (e.g., x1 = −1 implies x2 = 0), a situation of positive
mutual information.

The steps in ICA are the following ones. First, a whitening transformation (Sec. 20.6.1) discounts the “trivial”
linear relationships to create white variables with zero correlation and unit variance.

The whitening matrix V can be easily found by PCA, the transformed matrix Ã = VA is now orthogonal, and the
transformed variables are obtained as: z = Ãx

After whitening, one can constrain the estimation of the mixing matrix to the space of orthogonal matrices, which
reduces the number of free parameters and makes numerical optimization faster and more stable.

Let’s note that whitening is not uniquely defined. If z is white, then any orthogonal transform Uz, with U being an
orthogonal matrix, is white as well. Mere information of uncorrelatedness does not lead to a unique decomposition and
the assumpton of non-Gaussianity is crucial. For Gaussian variables, uncorrelatedness implies independence, whiten-
ing exhausts all the dependence information in the data, and we can estimate the mixing matrix only up to an arbitrary
orthogonal matrix. For non-Gaussian variables, on the other hand, whitening does not at all imply independence, and
there is much more nonlinear information in the data than what is used in whitening.

In fact, one can estimate Ã by maximizing some objective function that is related to a measure of non-Gaussianity
of the components. As usual, a clear definition of the objectives is sufficient to tap the power of optimization. The
main approaches to define an objective function for ICA are maximum-likelihood estimation [296], and minimization
of the mutual information between estimated component signals [96], leading to similar objective functions.

The derivation based on the Mutual Information is as follows. After remembering equation (7.12) about the role
of the Jacobian determinant in changing entropy after a transformation (because probability densities are transformed
by volume changes), and the fact that the ICA transformation is linear (and therefore the Jacobian does not depending
on z), one gets (s = Ãz) :

I(s1, ..., sm) =
∑
j

H(sj)−H(s) =
∑
j

H(sj)−H(z)− log |det Ã|. (21.1)

If one constrains the si to be uncorrelated and of unit variance then det Ã has to be constant (volumes cannot
change if the whitening-sphering transformation has to be preserved). But H(z) is also constant w.r.t. the transforma-
tion weights and therefore one is left with a sum of entropies of the transformed variables (the hidden sources to be
determined) [203].

If one remembers the definition of entropy as minus the average of the logarithm of probabilities (Sec. 7.6),
assumes that probability is distributed equally on the measurements and neglects multiplicative constants, the objective
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function is usually formulated in terms of the inverse of the orthogonal matrix Ã (if a matrix is orthogonal its transpose
is equal to its inverse), whose rows are denoted by wTi , as:

ICAobjective(wi) =

n∑
i=1

T∑
t=1

log pdfi(wTi z(t)),

where pdfi is the probability density function of si, si being estimated by wTi z(t).
This objective function depends only on the marginal densities of the estimated independent components wTi z(t).

Each term
∑T
t=1 log pdfi(wTi z(t)) can be interpreted as a measure of non-Gaussianity (entropy) of the estimated

component. It is an estimate of the negative differential entropy of the components, which is maximized for a Gaussian
variable (for fixed variance). Here one is going in the contrary direction, therefore away from Gaussianity!

Figure 21.3: ICA at work. Original sources (a), measurements (b), whitened measurements (c), rotation to identify
sources (c). For Gaussian signals, whitening would produce a sphere, no way to identify an optimal rotation leading
to non-Gaussian signals!

Maximizing the nongaussianity of wTi z(t) thus gives us one of the independent components. In fact, the optimiza-
tion landscape in the m-dimensional space of vector w has 2m local maxima, two for each independent component,
corresponding to si and −si (recall that the independent components can be estimated only up to a multiplicative
sign). To find several independent components, one needs to find all local maxima. Because the different indepen-
dent components are uncorrelated, one can always constrain the search to the space that gives estimates uncorrelated
(orthogonal) with the previous ones.

Rough approximations of the log-pdf are used in practice for computational reasons, and robust and fast optimiza-
tion schemes are proposed for example in [201] (FastICA).
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Fortunately for ICA, non-Gaussianity is quite widespread in many applications dealing with physical measure-
ments, and therefore ICA has become a standard tool in machine learning and signal processing in the last decade.
Some recent developments in ICA are: analysis of causal relations (structural equation modelling and identification of
Bayesian networks), testing independent components (robustness of identification w.r.t. chance), analysing multiple
datasets (like EEG signals related to different patients), modelling dependencies between the components (general-
izing beyond the independence assumption), special versions for non-negative variables, time-varying signals, etc.
[202].

Precise estimators of mutual information (MI) to find the least dependent components in a linearly mixed signal is
considered in [347], using a recently proposed k-nearest-neighbor-based algorithm for the MI estimator. The obtained
MILCA method (mutual-information-based least dependent component analysis) relaxes the assumption of strict
independence, henceforth the name “least dependent”. After preprocessing the data (by centering, whitening, etc.),
the “grouping property” of MI:

I(X,Y, Z) = I((X,Y ), Z) + I(X,Y ).

together with invariance under homeomorphisms of a single variable are used to obtain an incremental rule:

I(X ′, Y ′, Z, ...) = I(X,Y, Z, ...) + [I(X ′, Y ′)− I(X,Y )].

Since any such transformation in m dimensions can be factorized into pairwise transformations, this means that one
only has to compute pairwise MIs for the minimization. Thus one needs to compute the full high-dimensional MI only
once. In particular, any rotation can be represented as a product of rotations which act only in some 2x2 subspace.
MILCA works with actual dependencies between reconstructed sources (as measured by mutual information). The
estimated dependencies can be used to cluster sources, gaining additional insight. It is applied in the cited paper to
a fetal ECG recording from the abdomen of a pregnant woman to extract a clean fetal ECG. Clustering identifies the
two groups of mother- and child-related sources.

Figure 21.4: MILCA: Dendrogram built from the Mutual Information between sources. Heights of each cluster
correspond to I(Xi, Xj).
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21.2.1 ICA and Projection Pursuit

As the careful reader probably noticed, ICA is deeply related to Projection Persuit (Sec. 20.6) Projection pursuit aims at
finding “interesting” projections of multidimensional data for optimal visualization, density estimation and regression.
In one-dimensional projection pursuit, one searches for directions such that the projections of the data have interesting
distributions with non-trivial structure. In many cases the Gaussian distribution (in some cases corresponding to a
constant factor modified by ramdom errors in the measurement apparatus) is the least interesting one, and the most
interesting directions are those that show the least Gaussian distribution. This objective is shared by the ICA model.

As a difference to be noted, no data model or assumption about independent components is made in standard
projection pursuit. If the ICA model holds, optimizing the ICA non-Gaussianity measures produces independent
components; if the model does not hold, then what one gets are the projection pursuit directions.

21.3 Feature Extraction by Mutual Information Maximization

As mentioned in Sec. 7.6, the Mutual Information measure can be used to select features, in a manner which is
independent of the particular ML model [21]. In the same way, the Mutual Information can be used to construct
informative and non-redundant features. In supervised classification or regression, one can design parametric functions
of the basic features. Optimization of the Mutual Information between the constructed parametric features and
the output can be used to determine an optimal configuration of the parameters.

Estimating MI from a finite set of examples is computationally demanding. Therefore suitable approximations are
usually derived to obtain affordable and effective algorithms. For example, a quadratic divergence measure, which
does not require prior assumptions about class densities is considered in [362].

Finding a transform to lower dimensions might be easier than selecting features, which is by definition a discrete
process, given an appropriate criterion that measures the joint “importance” of a set of features. If the criterion is
differentiable with respect to the parameters of the transform, and if the transform is smooth, then one can learn the
transform by some form of gradient-descent-optimization of the criterion. ICA (Sec. 21.2) can be used as a tool to
find “interesting” projections of the data by finding linear projections that looks rich of clusters and non-Gaussian
structure, but it is completely unsupervised with regard to the class labels, and may not be optimal to enhance class
separability.

If yi = g(w,xi) is a feature transform parametrized by w, the goal is now to find a differentiable estimate of the
Mutual information from the examples so that gradient descent can produce better and better values of w, as in Fig
21.5.

Figure 21.5: Learning feature transforms by maximizing the mutual information between class labels and transformed
features (from [362]).

If the aim is not to compute an accurate value of the entropy of a particular distribution, but rather to find a dis-
tribution that maximizes or minimizes the entropy given some constraints, then a large number of entropy measures
alternative to the original Shannon’s definition can be used, producing the same distribution as the result of optimiza-
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tion [229]. In particular, Renyi entropy of order α is defined as:

HRα(X) =
1

1− α
log

(
n∑
i=1

pαi

)

where α ≥ 0 and α 6= 1. As α approaches zero, the Renyi entropy increasingly weighs all possible events equally,
regardless of their probabilities. The limit for α→ 1 is the Shannon entropy.

It turns out that Renyi’s quadratic measure (a function of the square of the density function), when combined
with Parzen density estimation method using Gaussian kernels, provides significant computational savings: it can be
estimated as a sum of local interactions, as defined by the kernel, over all pairs of samples. After completing the
exercise to calculate derivatives in the given scheme [362] (Parzen windows and Renyi entropy), the method can be
applied both to linear and non-linear tranforms.

The two main advantages of the method are that: i) it provides a non-parametric estimate of the mutual information
without simplifying assumptions, like Gaussianity about the class densities, ii) it is usable with training datasets of
the order of tens of thousands of samples. In static pattern recognition tasks, such feature transforms can extract
more discriminatory information from the source features than alternative techniques like Fisher linear discriminant
analysis (LDA) (Sec 20.5). Judging from the experiments, the method works extremely well only in transforms to low
dimensions, approximately less than 10, probably because of limits in the the Parzen density estimation.

Gist
Feature extraction (or construction) goes beyond feature selection, aiming at building more interesting
features from the raw data, in order to facilitate further processing and, hopefully, gain more insight about
the modeled process.

Some “first-aid” techniques like normalization, quantization, application of application-dependent lo-
cal or global filters should not be neglected, otherwise one risks masochism.

Raw measurements are often a combination (approximately linear) of basic signals or hidden vari-
ables. Identifying these factors of variations which explain the measurements variability, is invaluable. In
the assumption of statistically independent signals and non-Gaussian (structured, high-entropy) probabil-
ity distributions, the signals causing the phenomenon can be identified even before supervision is applied
(Independent Component Analysis). Mixtures of source signals are almost always Gaussian (central limit
theorem), and it is fairly safe to assume that non-Gaussian signals must, therefore, be source signals. Gaus-
sian variables are forbidden for ICA!

More complex, also non-linear, features can be constructed by considering parametric feature extractors,
and by determining suitable parameters via maximization of the Mutual Information between extracted
features and output. This is more easily said than done as Mutual Information is not easy to estimate,
suitable approximations are often considered in practice.

If you listened to your unborn baby’s heartbeat, now you know which methods you have to thank.
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Chapter 22

Visualizing graphs and networks by
nonlinear maps

No man is an Iland, intire of it selfe; [. . . ]
any mans death diminishes me, because I am involved in Mankinde;

And therefore never send to know for whom the bell tolls;
It tolls for thee.

(John Donne, 1623)

After considering visualizations based on linear projections in Chapter 20, let’s now consider more general ways
to feed the human unsupervised learning capabilities and derive insight from data. We assume that the n entities
to be displayed are not necessarily characterized by internal coordinates, but only by item-to-item (i.e., external)
relationships such as dissimilarities between two items i and j denoted by dij . If items do have coordinates, such
external relationships can be obtained by simple ways, as explained in Sec. 17.2.
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In the general case, however, the external dissimilarity measure is not computed as a distance, and may not be
available for every pair of items. An appropriate model for this situation is an undirected weighted graph G(V,E),
given by a set of vertices (or nodes) V , and edges E ⊂ V × V . Each entity is represented by a node, and a connection
(i, j) labeled dij is present between two nodes if and only if a dissimilarity is defined for the corresponding entities,
as shown in Fig. 20.1. We assume that similarities are positive but we do not consider any other assumption (like the
validity of triangular inequalities). For example, in marketing the similarity between two products could be derived by
sampling customers and asking them to evaluate the product similarity along a given scale.

22.1 Multidimensional Scaling (MDS) Visualization by stress minimization
Given our eyes, visualization is only in two or three dimensions. The aim is therefore to place items on the 2D plane
(or in 3D space) so that their mutual distances are as close as possible to their dissimilarities. In general, a perfect
placement obeying all dissimilarities is impossible; therefore, a precise criterion is needed in order to define what
placements can be considered as acceptable.

The problem is the following: given a set of items with (positive) dissimilarities dij , find the two-dimensional
or three-dimensional coordinates pi for all items that provide a convenient placement, one preserving the original
dissimilarities as much as possible. The simplest objective is stress minimization, stress being the amount by which
a visualized dissimilarity is compressed or expanded with respect to the original dissimilarity. It is intuitive, physical,
and useful also as a starting point to understand more complex approaches.

A straightforward error measure quantifies by how much the distances in the plane are different with respect to the
original dissimilarities. For simplicity we consider a two-dimensional visualization.

Let δij =
√

(pi − pj)T (pi − pj) be the distance between the coordinates of items i and j on the plane. A natural
global mapping error can be defined as the sum of the squared individual errors:∑

(i,j)∈E

(dij − δij)2.

No contribution to the error is present for missing edges (for couples of points without dissimilarity values). Additional
flexibility can be obtained by adding an arbitrary weight wij representing the impact that an individual error has on
the overall stress:

global mapping error = Stress =
∑

(i,j)∈E

wij(dij − δij)2. (22.1)

For example, if wij = 1/dij
2, one considers the relative errors (δij − dij)/dij instead of the absolute errors. The

value wij = 1 is the default.
An exact solution reproduces all original dissimilarities: δij = dij , with zero error. Low error means that many

distances tend to be rather close to the original ones. The problem is now to minimize the global mapping error
by changing the point positions pi. The freedom in placing point in two dimensions is complete, and therefore the
optimization problem has a very large number of dimensions, equal to twice the number of entities. The situation is
different in Chapter 20 with mappings executed by a linear projection.

There is a nice physical model related to minimizing the above global mapping error, explaining the term Stress
to denote the function to be minimized. A spring is attached to each pair of points with a length at rest equal to
dij , the desired distance, and with an elastic constant (resistance to deformation) equal to the weight wij . The term
wij(δij − dij)2 can be considered as the potential energy of a spring which is elongated or compressed with respect
to the rest length. The initial position of the points can be chosen randomly and the movement is constrained to two
dimensions. The system will start oscillating and, provided that some friction is present, oscillations will gradually be
damped, leading to a stable situation, a locally optimal configuration of the overall stress function.

The physical system can of course be simulated on a computer, leading to what is called the force-directed
approach for drawing graphs. Methods based on this approach consist of two main components. The first is the
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model that quantifies the quality of a drawing (or of the two-dimensional map if you prefer a more technical term).
The second is an optimization method for computing a drawing that is locally optimal with respect to this model. The
resulting final layout brings the system to equilibrium, so that the total force on each vertex is zero, or equivalently,
the potential energy is locally minimal with respect to the vertex positions.

If you do not like Physics but prefer Math, you can forget about simulating physical details like friction and concen-
trate on minimizing the stress function through gradient descent: calculate partial derivatives and use an optimization
method to reach a global optimum, again optimization is the source of power!

Figure 22.1: 2D Visualization by stress minimization.

Examples of visualizations are in Fig. 22.1, which shows a social network of friends interested in different moun-
taineering activities, and in Fig. 22.2, which shows a social network of politicians with similarities related to their
activity in the parliament. Note how the main political groups are automatically clustered as an interesting side-effect
of encouraging the placement of similar people in similar positions. Through a focus and context visualization, one
can either concentrate on the local network of connections around a single politician (focus), or see also the context
given by the complete set of connections (Fig. 22.3). It is therefore simple to navigate from an entity to a neighbor,
to a neighbor of a neighbor, etc., to likewise track complex relationships in a fast and effective manner. Criminal
investigations are another possible application of this method.

In addition to visualization, reducing data dimensionality by finding a mapping from the original space to one
with a smaller number of dimensions (also called Multidimensional Scaling (MDS) [244] has value also to extract
relevant features for subsequent processing by ML. In this case, the mapping is defined via parametric definitions so
that is can be applied also to new points, when the ML system has is used for new points in generalization mode [61].

22.2 A one-dimensional case: spectral graph drawing

A paradigmatic case consists of mapping the set of n points to one dimension while keeping similar points as close as
possible. As usual, one needs to define a quantity to minimize, related to the goodness of the one-dimensional drawing.
Let xi be the one-dimensional coordinate assigned to point i (and let x denote the vector of all such coordinates). A
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Figure 22.2: Social network analysis: visualizing the network of USA representatives. The two parties (which are not
available to the clustering software) emerge as two very different clusters.

useful quantity is Hall’s energy, first proposed in the 70’s:

EHall =
1

2

n∑
i,j=1

wij(xi − xj)2. (22.2)

The interpretation of this formula is to square the individual distances (so that the function will be differentiable
and the differentiation will lead to linear equations) and sum them weighted by the similarities between pairs. When
wij is large the function EHall gets a large contribution from the (xi − xj)2 term and therefore this definition should
encourage placing similar points at close positions, to avoid paying a large penalty and obtaining a large EHall value.
Through Hall’s energy, large similarities encourage close positions in the placement.

Stop for a minute to identify a serious weakness in the above definition and the proceed. Now one is completely
free to pick a coordinate xi for each point and by picking very small coordinates (or coordinates which are very
similar) the energy goes to zero but we are left with a trivial solution: mapping all points to the same position. The
definition can be repaired by considering that one is not interested in the absolute values of the coordinates but in their
relative values. As usual, the optimized drawing should not depend on choosing meters or millimeters as units. One
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Figure 22.3: Navigating in a social network of politicians: the network of a single representative.

can therefore fix the length of the x vector to one and the problem becomes:

minimize

 ∑
(i,j)∈E

wij(xi − xj)2
 (22.3)

subject to ‖x‖2 = xTx =

n∑
i=1

x2i = 1. (22.4)

For convenience letN(i) = {j|(i, j) ∈ E} be the neighborhood of node i and deg(i) =
∑
j∈N(i) wij its weighted

degree. After defining the Laplacian matrix LG associated with the graph:

LGij =

{
deg(i) if i = j

−wij if i 6= j
, (22.5)

one can obtain Hall’s energy as EHall = xTLGx.
The energy and the constraint are invariant under translation. We can eliminate this degree of freedom by requiring

that the mean of x be zero:
∑n
i=1 xi = xT1n = 0 (where the vector 1n contains all 1’s). Finally, the 1-dimensional

optimal layout can be described as the solution of the following constrained minimization problem:
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minimize xTLGx

subject to

{
xTx = 1

xT1n = 0
.

By standard optimization and linear algebra results, provided that the graph is connected, the resulting minimum
value of the energy is the so-called algebraic connectivity of the graph, i.e., the second smallest eigenvalue λ1 of LG

(LG is singular, therefore the smallest eigenvalue is λ0 = 0), while the solution is the corresponding eigenvector v1,
also known as the Fiedler vector. The result is elegant and it deserves an inspiring name: spectral graph drawing, or
spectral layout. The term “spectral” has nothing to do with ghosts and scary movies but with the usage of eigenvectors
and eigenvalues in Physics to study the distribution of energy emitted by a radiant source (spectrum), of vibration
modes, etc.

Unfortunately elegance must be neglected when going to more than one dimension. Let’s call the second dimension
y. A trivial generalization will make the second vector coordinate y the same as x, not a big gain: all points will be
aligned on the diagonal line, not really a two-dimensional plot. To get something more usable we must force the
solution value for the y coordinate to be different from the one for the x coordinate.

A reasonable requirement is to ask that the two coordinate vectors are not correlated (yTx = 0), so that the
additional dimension will give us some new information, “new” in the sense that it is not linearly related to the
previous values, not in a deep information-theoretic meaning. The problem for y now becomes:

minimize yTLGy

subject to


yTy = 1

yT1n = 0

yTx = 0

.

Potential difficulties are inherited from the difficulties in solving very large eigenvector problems. Multi-scale
techniques and iterative techniques to calculate principal eigenvectors can help.

In spite of the elegance related to minimizing a simple function with a well known linear algebra result, there are
no guarantees that the aesthetic properties of the layout correspond to the user preferences. In particular, there are no
requirements forbidding the methods to place too many nodes too close together so that they become hardly visible.
Furthermore, there is no guarantee that requiring an uncorrelated y coordinate corresponds to the best aesthetic results.

Real-world layouts typically require energies (functions to be minimized) designed in close agreement with the
specific preferences. By defining a clear energy, one separates the concern about the goal (the desired layout charac-
teristics) from the concern about how the goal can be reached, at least approximately, by optimization techniques.

22.3 Complex graph layout criteria
Let us consider the following simple graph connectivity matrix, where two nodes i and j are connected if and only if
the matrix entry (i, j) is 1: 0 1 0

1 0 1
0 1 0

 ,

corresponding to a three-node graph whose only requirement is that node 2 has distance 1 from the other two nodes:

d12 = d23 = 1.
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Figure 22.4: Equivalent stress-minimizing layouts when too few constraints are defined.
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Figure 22.5: A 30× 30 lattice with first-neighbor edges.

The layouts shown in Fig. 22.4 are perfectly equivalent from a stress-minimization approach: the absence of an
edge (e.g., between nodes 1 and 3) implies that the mutual distance of the corresponding nodes is irrelevant if the
energy function to be optimized contains only terms related to connected pairs.

The problem is even worse in large graphs where many indifferent pairs of nodes exist. Fig. 22.5 shows a 30× 30
rectangular lattice where only first-neighborhood edges are defined (requiring unit distance between the endpoints).
An “optimal” layout obtained by minimizing equation (22.1) is shown in Fig. 22.6. Many degenerate locally-optimal
layouts exist. They can be obtained by alternately coloring nodes in black and white in a checkerboard fashion, so that
black nodes are only connected to white ones and vice versa. A one-dimensional solution packing all black nodes at
x = 0 and all white nodes at x = 1 trivially satisfies all distance constraints, so that the global mapping error defined
in equation (22.1) is zero.

The introduction of a default large distance for unconnected nodes can easily solve the problem. Fig. 22.7 shows
the optimal layout obtained by equation (22.1) on the same 30 × 30 lattice where disconnected nodes i and j have a
large required distance dij = 20 with a very small weight wij = 10−5. Observe that, the layout being unknown a
priori, it is often difficult to define a convenient default distance. In the case of Fig. 22.7, for instance, the value of 20
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Figure 22.6: An “optimal” layout from the stress-minimization point of view, which is not optimal for understanding
the network structure.

is too little to ensure a correct layout, and the overall graph bends into a spherical shape.
A second approach, shown in Fig. 22.8, is the completion of the distance matrix by the shortest path calculation.

All distances between nodes which are not directly connected are set equal to the shortest path between such nodes.
For instance, nodes 1 and 32 of the lattice shown in Fig. 22.5 have a shortest path length equal to 2 (one horizontal and
one vertical edge). Without the requirement that shortest paths distances are reproduced, nothing prohibits nodes 1
and 32 to be placed at a very small distance in the visualization. As soon as the requirement is active, this bad behavior
is discouraged by a large penalty and nodes tend to untangle, passing from configurations like that of Fig. 22.6 to
configurations like that of Fig. 22.8.

Notice that the minimum path distance is always larger than the Euclidean distance in the grid layout. As an
example, the shortest-path distance between the two diagonally extreme nodes 1 and 900 is (30 − 1) · 2 = 58, while
the expected Euclidean distance in the grid layout would be (30− 1) ·

√
2 ≈ 41.01, hence the pillow-shaped layout of

Fig. 22.8.
More complex functions to be minimized for graph layout consider additional aesthetic criteria, like minimizing

the number of edge crossings, or guaranteeing a certain minimum angle between edges connected to a node (small
angles make readability difficult), or allowing curved edges, etc. A complete enumeration is out of the scope of this
introductory chapter. In all cases, after defining in quantitative terms a suitable compromise between the desirable
aesthetic criteria, one has to search for an effective minimization algorithm (the source of power!), in most cases
looking for an approximate but fast solution.
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Figure 22.7: First solution to missing constraints: add a default repulsion.

Figure 22.8: Second solution to missing constraints: complete distances by computing the minimum path between
nodes.
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Gist
Graph layout techniques can be used to visualize relationships between entities.

If some dissimilarities are available, drawing entities in two dimensions so that similar items are close
to each other is precious to identify groups (clusters) and relationships between groups.

Stress minimization resorts to a physical model. Each dissimilarity value generates a spring between
entities in n dimensions. The task is to “sandwich” the network by squeezing it to a plane, while minimizing
the elongation or shortening of the various springs. By the way, if springs are substituted with rigid bars,
squeezing becomes impossible: in general an exact solution to map points to a plane and maintain all
dissimilarity values unchanged does not exist. If you imagine each point as a person at a party, everybody
will move on the floor to be away from disagreeable people and close to likeable ones. The fact that
everybody moves at the same time can make parties (and visualizations) very stressing (suboptimal).

As for clustering, there is not an absolute best graph (or network) layout. Through optimization one
defines the objectives (the quantitative meaning of “optimal layout”) and then identifies the best possible
mapping which maximizes them. Often one tries many possibilities before identifying a proper visualiza-
tion.

Social network analysis is used to study networks of interacting persons. In business, a similarity
between employees can be defined by the number of messages they exchange. If you design a layout of
the network of employees with this metric you will easily identify clusters of colleagues working together,
maybe loser connections between different groups, and maybe some isolated individuals who either con-
centrate a lot, or prefer the telephone, or ... are not too committed to the business.



Chapter 23

Semi-supervised learning

A mind is a fire to be kindled, not a vessel to be filled.
(Plutarch)

Let us consider the international airport example which motivated unsupervised learning methods in Chapter 19:
you walk through a gate and clearly identify clusters of people speaking different languages, even if the language
names are unknown. Now, if some people languages are identified, for example if some people are waving flags or
wearing costumes of their countries, for sure one could select only the labeled speakers and run a supervised learning
algorithm to map phonetic characteristics to languages.

The question now is: can one also use some information from the unlabeled people to improve language classifi-
cation? Let us note that clusters of people usually speak the same language (“birds of a feather flock together”) and
we may be tempted to label some of the unknown speakers with the same language as the one spoken by at least one
member of the same cluster. If the assumption is true, one greatly increases the number of examples and can improve
the overall generalization capability of the trained classifier. For example, young children clustered with their older

245
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and identified parents can be added to the database so that even young people voices (usually with higher frequencies)
can be correctly classified.

In a similar manner, one can use some supervised data to aid unsupervised learning and clustering. This is the
underlying idea of semi-supervised learning: use both the labeled examples and also (some) unlabeled ones to
improve the overall classification accuracy.

If the assumptions work, one gets a very valuable performance boost in all cases when labeled examples are
scarce and unlabeled ones abundant. Think for example at web pages: human labeling is very costly and only a
minuscule subset of web pages are labeled. By contrast, an enormous and growing number of unlabeled pages is
present.

23.1 Learning with partially unsupervised data
Semi-supervised learning (SSL) uses both supervised and unsupervised data to improve performance. The standard
form of supervision are labels associated with some examples. In this case the training set X is divided into a
labeled portion XL = {x1, . . . , xl}, for which labels YL = {y1, . . . , yl} are given, and an unlabeled portion XU =
{xl+1, . . . , xl+u}.

Other forms of supervision can be related to constraints or hints given to the system [4]. For example, the hints
can take the form “the output function must be growing as a function of one input coordinate,” while constraints can
be formulated as “these two points must be in the same class” (must-link) or “these two points cannot be in the same
class” (cannot-link).

A first idea, originated in the sixties [320] is the so-called self-learning or self-labeling method where a wrapper
algorithm repeatedly uses a supervised learning method. Initially, learning is executed on the labeled examples. Then,
some additional unlabeled examples are labeled by using the current trained system, and learning is repeated by
adding the newly labeled examples. Heuristically, one could try adding labels to the examples which are labeled with
the largest confidence. Although appealing, the effect of the wrapper depends on the supervised method enclosed and
it is unclear when self-labeling is effective.

A context related to SSL was introduced by Vapnik as transductive learning. Inductive learning wants to derive a
prediction function valid for arbitrary inputs, while transductive learning just aims at predicting only a fixed set of test
points, by using all available information. Usually, transductive learning is based on a labeled graph representation
of the data, labeled nodes are classified training examples, edges represent similarity/dissimilarity relationships or
constraints. A combinatorial optimization on the labels to maximize an overall consistency measure is then performed.

In general, SSL looks promising if the unsupervised information about the density p(x) is useful in deriving p(y|x).
By analogy with the supervised learning smoothness assumption, the semi-supervised smoothness assumption states
that if two input points x1 and x2 in a high-density region are close, the corresponding outputs y1 and y2 should also
be close. By transitivity, if two points are linked by a path in a high density region (they belong to the same cluster)
their outputs should be close. If points are close but in a low-density area, the requirement that outputs are similar is
less stringent.

If we equate unsupervised learning with clustering, the cluster assumption states that if two points are in the same
cluster, they are likely to belong to the same class. In this case, the use of unlabeled points is useful to find boundaries
between clusters with better accuracy, and then improve the overall classification by the above assumption.

An equivalent formulation is the low-density separation assumption: decision boundaries between different
classes should lie in low-density regions, and should not split single clusters, as shown in Fig. 23.1.

The above assumptions correspond very closely to the international airport analogy: if one wants to separate
different languages he had better not split clusters of people but draw boundaries in empty areas.

A different paradigm is the assumption that data lie approximately on a low-dimensional manifold, as shown in
Fig. 23.2. A manifold is a mathematical space that on a small enough scale resembles Euclidean space of a specific
dimension. For example, a line and a circle are one-dimensional manifolds, a plane and a sphere (the surface of a
ball) are two-dimensional manifolds. More formally, every point of an n-dimensional manifold has a neighborhood
homeomorphic to an open subset of the n-dimensional space Rn. The curse of dimensionality for input data of very
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Figure 23.1: Low-density separation assumption. Even if boundary A correctly separates the labeled examples, bound-
ary B is better because it crosses a low-density region. Information about unlabeled data produces a better classifica-
tion.

large dimensions is avoided by first identifying a manifold where most data lie. Then an appropriate metric is given
by geodesic distances on the manifold (the analogy is with distances covered by airplanes on the Earth surface), and
the standard smoothness assumption is considered on the low-dimensional manifold. The more data is available, the
better one identifies the relevant manifold and the corresponding metric to use in supervised learning (consider for
example a nearest-neighbor classifier, where the vicinity is given by geodesic distances on the manifold).

23.1.1 Separation in low-density areas

Some SSL techniques are based on encouraging the separation between classes (the decision boundaries) to pass
through low-density areas, away from most data examples.

An immediate algorithm is obtained by adopting a margin-maximization algorithm like SVM and maximizing the
margin for both labeled and unlabeled examples, this is called transductive SVM (TSVM). To the function to be
minimized one adds a term like:

λ2
∑

unlabeled data i

(1− |f(xi)|), (23.1)

f(xi) being the classification function which has to be greater than 1 for one class, less than -1 for the other class. The
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Figure 23.2: The geodesic distance can help to separate classes lying on a manifold.

penalty introduced in the function is of λ2 when f(xi) = 0, and it linearly becomes equal to zero when f(xi) becomes
1 or, in the other direction, when f(xi) becomes -1 (the penalty has a triangular form centered around zero). In other
words, a penalty is incurred if an unlabeled data point falls in the “gray” boundary region where |f(xi)| ≤ 1: therefore
unlabeled data tend to guide the linear boundary away from the dense regions. The corresponding problem is not
convex and therefore robust heuristic optimization schemes have to be adopted, for example deterministic annealing
strategies which start from an easy problem and gradually transform it into the TSVM optimization function [333].
The continuation approach of [78] follows a similar paradigm of first optimizing an “ironed” version of the function
and then gradually introducing finer and finer details.

23.1.2 Graph-based algorithms

The graph-based methods are based on representing the problem as a graph, where nodes correspond to examples and
edges are labeled with the pairwise similarity wij of two nodes i and j. As usual, one can think in terms of similarities,
or in terms of dissimilarities/distances.

An approximation of the geodesic distance of two points along the manifold can be approximated by deriving
the minimum-path distances between couples of points from the initial pairwise distances.

Let’s introduce the matrix W to represent similarities Wij = wij if the edge is present, zero otherwise, and the
diagonal degree matrix D, so that Dii =

∑
j wij .

The basic method to encourage smoothness along light edges (smoothness when connected nodes are similar)
is related to defining and using the graph Laplacian operator. The normalized L and non-normalized combinatorial
graph Laplacian operator L are defined as:

L = I − D−1/2 W D−1/2, (23.2)
L = D − W. (23.3)
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The graph Laplacian is related to the more traditional Laplace operator (denoted with ∇2) used for continuous
functions f(x1, . . . , xn):

∇2φ =

n∑
i=1

∂2f

∂xi2
. (23.4)

In fact, the Laplacian matrix of a lattice, when applied to the values of f at the vertices, corresponds to the finite-
differences approximation of the continuous operator on a regular grid of points. The Laplacian matrix of a graph can
be seen as a generalization of the lattice definition.

The Laplacian ∇2f(x) of a function f at a point x, up to a constant depending on the dimension, is the rate at
which the average value of f over spheres centered at x, deviates from f(x) as the radius of the sphere grows. Zero
means that the average value on a sphere is equal to the value at the center.

A motivation for the Laplacian appearing in physics is that solutions to ∇2f = 0 in a region U are functions that
make the Dirichlet energy functional stationary:

E(f) =
1

2

∫
U

‖∇f‖2 dx. (23.5)

The smoothing action is clear: one aims at identifying locally optimal configurations that minimize the average
square of the gradient modulus. Once again, the optimization point of view clarifies the meaning.

Iterative ways to solve the above ∇f = 0 equation on a grid involves repeatedly substituting the value at a grid
point with a weighted average of the values on its neighbors.

A similar smoothing action is obtained on graphs, the goal is to obtain a distribution of values on the graph so that
the value at a node is equal to the weighted average of the neighboring values.

A semi-supervised learning using Gaussian fields and harmonic function is proposed in [392]. Classification
algorithms for Gaussian fields can be seen as a form of nearest-neighbor approach, where the nearest labeled examples
are computed by a random walk on the graph. The method’s equations are related to electrical networks and to
spectral graph theory. The problem is represented as a graph, with some nodes labeled with y ∈ 0, 1 (for simplicity
we consider a binary labeling). Weighted edges represent similarities: wij is large for similar cases. For example
wij = exp{−‖xi−xj‖2A} for a suitable metric. The strategy is to first compute a “smooth” real-valued function f for
all nodes and then assign labels based on f . The “smoothness” desire of having similar values between similar points
is expressed by formulating the problem as one of minimizing the quadratic energy function

E(f) =
1

2

∑
i,j

wij(f(i)− f(j))2. (23.6)

The minimum energy function is harmonic: it satisfies Lf = 0 on unlabeled points, and is equal to the label value on
the labeled ones. L is the graph Laplacian defined above, and the harmonic property means that the value of f at an
unlabeled point is equal to the weighted average of f at neighboring points:

f(j) =

∑
i wijf(i)∑
i wij

. (23.7)

In matrix notation: f = Pf , where P = D−1 W. This is consistent with the intuitive notion of smoothness with
respect to the similarity relationships. The graph-based smoothing operation is illustrated in Fig. 23.3.

A simple rule is to label a node i with 1 if f(i) > 1/2, 0 otherwise.
The connection with random walk is as follows: imagine a walker starting from an unlabeled node i and moving

to a neighbor j with probability Pij . The walk stops when the first labeled node is encountered. Then f(i) is the
probability that the walker stops at a node labeled 1.

The electrical network interpretation is as follows: nodes labeled 1 are connected to a positive voltage source,
nodes labeled 0 to ground. Edges are resistors with conductance wij . Then f is the resulting voltage on the unlabeled
nodes, which minimizes the energy dissipation. Ways to incorporate class prior knowledge (desirable proportions of
the two classes) by modifying the threshold to label the nodes, as well as possible ways to learn a weight matrix W
from labeled and unlabeled data are described in [392].
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Figure 23.3: The values of the unknown nodes in the graph are computed as the average of the neighbors.

23.1.3 Learning the metric

Some semi-supervised algorithms proceed in two steps: first a new metric or representation is identified by per-
forming an unsupervised step on all data (ignoring the existence of labels), then a pure supervised learning phase is
executed by using the newly identified metric or representation.

The two steps are in fact implementing the semi-supervised smoothness assumption, by ensuring that the new
metric or representation satisfies that distances are small in the high density regions.

Let’s note that some graph-based methods are closely related to this way of proceeding: the construction of the
graph from the data can be seen as an unsupervised change of representation.

23.1.4 Integrating constraints and metric learning

In many cases, when dealing with an optimization problem defined over more than one variable, a sequential method
which first minimizes over the first variable, then over the second (leaving the first variable untouched) etc. gives in
general a solution which can be improved if all variables are considered at the same time. This is clear because the
freedom of movement in the input space is increased: in the first case one moves only along coordinate axes, in the
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second case one moves freely in input space looking for locally optimal points.
This holds also for SSL. For example the work in [53] shows how to combine constraints and metric learning into

semi-supervised clustering.
Constraint-based clustering approaches start from pairwise must-link or cannot-link constraints (requests that

two points do or do not belong to the same cluster) and insert into the objective function to be minimized a penalty for
violating constraints. By the way, constraints can be derived from the labels but also from other sources of information.
For example, the Euclidean K-means algorithm partitions the points into k sets so that the function:∑

i

‖xi − µli‖
2

is locally minimized. In it, the vector µli is the winning centroid associated with point xi, the one minimizing the
distance.

If two sets of must-link pairs M and cannot-link pairs C are available, one can encourage a placement of the
centroids in order to satisfy the constraints by adding a penalty wij for a single violation of a constraint inM and a
penalty wij for a single violation of a constraint in C, obtaining the following function to be minimized (“pairwise
constrained K-means”):

Epckmeans =
∑
i

‖xi − µli‖2 +
∑

(xi,xj)∈M and li 6=lj

wij +
∑

(xi,xj)∈C and li=lj

wij . (23.8)

Pairwise constraints can also be used for metric learning. If the metric is parametrized with a symmetric positive-
definite matrix A as follows,

‖xi − xj‖A =
√

(xi − xj)TA(xi − xj),

the problem amounts to determining appropriate values of the matrix coefficients. If the matrix is diagonal, the problem
becomes that of weighing the different features.

The constraints represent the user’s view of similarities: they can be used to change the metric to reflect this
view, by minimizing the distance between must-link instances and at the same time maximizing the distance between
cannot-link instances. After the metric is modified, one can use a traditional clustering algorithm like K-means.

Asking for a single metric for the entire space can be inappropriate and a different metric Ah can be used for each
k-means cluster h. The MPCK-MEANS algorithm in [53] uses the method of Expectation-Maximization, see also
Section 17.3, and alternates between cluster assignment in the E-step, and centroid estimation and metric learning in
the M-step.

Constraints are used during cluster initialization and when assigning points to clusters. The distance metric is
adapted by re-estimating Ah during each iteration based on the current cluster assignment and constraint violations.
An interesting paper dealing with metric learning for text documents is [248]. More details about semi-supervised
learning are present in [79] and [391].
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Gist
In many cases labeled examples are scarce and costly to obtain, while tons of unlabeled cases are available,
usually sleeping in business databases or in the web.

Semi-supervised learning schemes use both the available labeled examples and the unlabeled ones to
improve the overall classification accuracy.

The distribution of all examples can be used to encourage ML classification schemes to create boundaries
between classes passing through low-density areas (transductive SVM).

If the problem is modeled as a graph (entities and relationships labeled with distances) smoothing
operations on graphs can be used to transfer the information of some labeled nodes to the neighboring
nodes (graph Laplacian).

The distribution of examples can be used to learn a metric, a crucial component to proceed with super-
vised learning.

A space alien arriving on Earth could combine the zillions of information bits in web pages plus some
labeled information obtained by a human pen pal (or by a Yahoo-like directory) for an intensive course to
understand human civilization before conquering us. Terrestrial businesses use similar techniques to mine
data and conquer more customers.



Part III

Optimization: basics
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Chapter 24

Greedy and Local Search

Ognuno ha sulle proprie spalle la responsabilità delle proprie scelte. È un bel peso.
Everybody carries on his shoulders the responsibility of his choices. It is a heavy weight.

(Romano Battiti)

255



256 CHAPTER 24. GREEDY AND LOCAL SEARCH

Many issues in everyday’s life are related to solving optimization problems, to improve solutions, or to find solu-
tions which are so good that no other solution is better (called “global optima”).

For example, a salesman is given a list of cities and their mutual distances, and wants to find the shortest possible
tour that visits each of them. This is called the Traveling Salesman Problem (TSP) and its relevance is obvious, to
reduce travel costs and carbon dioxide emissions. TSP was first formulated in 1930 and it still is an extremely difficult
problem, one of the most intensively studied in optimization. An instance of a problem is a specific case to be solved.
In TSP a possible instance is to find a tour visiting Trento, Bologna, Napoli, Milano and Manarola. Even though
finding optimal solutions for large TSP instances is computationally difficult, in most cases practically impossible, a
large number of heuristics are known, so that even instances with tens of thousands of cities can be effectively solved
in practice. Heuristics are algorithms without formal proof of convergence or guarantees of approximation but often
effective in practice.

In abstract and general terms, in optimization one is given a function f defined on a set of possible input values
X . In TSP, f is the tour length, and X is the set of all possible tours visiting the cities, i.e., of their permutations.
The function f(X ) to be optimized is called with more poetic names in some communities: fitness function, goodness
function, objective function. IfX is defined by a discrete set of possibilities (like binary values, permutations, integers)
one speaks about discrete optimization. On the contrary, continuous optimization considers real-valued inputs.

One aims at finding the input configuration leading to the least possible value of the function f . Often a set of
constraints on X have to be satisfied for a solution to be considered admissible. If one wants to pick quantities for
possible foods in order to minimize the daily cost of a diet, useful constraints are to be placed on the minimum amount
of calories and of vitamins. The solution corresponding to fasting costs zero but will lead to starvation, and is thefore
not admissible.

This chapter presents the basic building blocks of greedy and local search, the more advanced Reactive Search
Optimization (RSO) will be presented in Chapter 27. To avoid confusion, let’s note that the term “local search” has
nothing to do with the search for information or web pages, like in Google or similar services. To avoid confusions,
remember to make it clear if you speak to normal people, who may think about local search of restaurants in the neigh-
borhood of their current GPS position. In optimization one searches here for actions, decisions, effective innovations,
aiming at improving solutions to problems, optimal solutions when possible, or at least approximations thereof.

Our optimization part starts with a chapter about greedy and local search for discrete optimization for many rea-
sons. First, most real-world problems have to do with choices among a discrete set of alternatives. If one uses a
computer even real numbers are actually approximated by a representation with a small number of bits. Understanding
the main methods is much simpler with discrete local search than with methods based on real variables and derivatives.

Second, improving situations by a sequence of small greedy and local steps is deeply rooted in our human nature,
as reflected in many quotes and proverbs across cultures: “little things make big things happen,” “it does not matter
how slowly you go so long as you do not stop” (Confucius), “the drop carves the stone” (Latin), “bean by bean the
sack gets full” (Greek). . . In passing, let’s note that everybody’s life can be seen as a running optimization algorithm:
most of the changes are localized, dramatic changes do happen, but not so frequently. Imagine that you just found
a partner, a possible companion for your life. Local changes are frequent in the initial part of a relationship. For
example, you may convince your partner to dress in a better way, to avoid eating garlic, or to change opinions about
various issues. You may have to stand worsening changes, like having your partner watching football games in the
weekend, to eventually obtain improvements, in the form of a more relaxed partner. Or you may finally decide that
small changes are not sufficient and that the way out is a drastic diversification or restart (finding a better partner).

Although the terminology can vary among different authors, there is a deep connection between the greedy and
local aspects. In both cases the focus is limited to profiting from a current tentative solution, in a short-sighted
manner.

In some cases one searches in the neighborhood of a complete admissible solution by small perturbations (a.k.a.
perturbative local search), in other cases one gradually modifies and extends a partial solution (constructive greedy
search).

The examples in this chapter are mostly for discrete optimization problems because of their simplicity, but we will
encounter similar local search principles also for continuous optimization in Chapter 25.
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Figure 24.1: The Traveling Salesman Problem: the shortest tour of 16862 cities in Italy.

24.0.1 Case study: the Traveling Salesman Problem
The Traveling Salesman Problem, is paradigmatic and very relevant for both practical applications and theoretical
reasons. The practical application can be read out from the name: imagine a salesman who has to visit a certain number
of customers in different cities, and wants to minimize the fuel consumption, or the time dedicated to travel. Variations
with more constraints and complexity consider multiple travelers, trucks with different capacities, time requirements
for pickup and delivery of goods, etc. (vehicle routing, pickup and delivery with time windows [122]).

An illustration is in Fig. 24.1: a tourist wants to tour all Italian cities while minimizing time, or fuel consumption
in case he travels with an SUV.

In an instance of TSP, one is given a set of n cities and the matrix of distances dij > 0 between couples of cities.
A tour is a closed path visiting every city exactly once. The problem is to find a tour with minimum length. We can
represent a tour with a cyclic permutation π of {1, ..., n}, where π(i) is the city visited in the i-th place.

One can easily generalize the problem to any graph (V,E) not necessarily related to geography. The decision
version (with “yes” or “no” answer) of the generalized TSP is: given a complete graph (V, V × V ), a “cost” function
c : V × V → Z, and a maximum cost k ∈ Z, is there a tour with total cost at most k? The requirement of complete
connectivity means that an admissible tour can be found immediately, just generate a random permutation. If the graph
is not complete, even determining if there is a tour, also called Hamiltonian path, is NP-complete (extremely unlikely
to be solved in reasonable CPU times).

A fast algorithms for TSP is unlikely to exist, in fact TSP also belongs to the dreadful family of NP-complete
problems. Of course, if one presents us with a solution we can easily check that the distance is k in polynomial time
(actually this is the “meaning” of NP).

A brute-force exhaustive search algorithm is obvious: generate all possible tours and calculate the corresponding
distances. Unfortunately, we need to examine (n − 1)! = (n − 1) × (n − 2) × (n − 3)... × 1 permutations (not n!
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Figure 24.2: A 10 city TSP instance. Left: greedy construction after three steps from the initial city (larger dot); the
algorithm will now choose the shortest among the dashed edges; center: the completed greedy solution; right: the
optimal solution.

because we can change the starting point of the tour and still get the same tour). As you know, the factorial is growing
very rapidly. If you do not know, calculate 3000! to get a couple of pages full of digits.

There is a lesson here: brute-force algorithms can solve small instances (10 cities are OK) and make a nice demo,
but going to the real application will rapidly lead to unacceptable CPU times.

As a small digression, the TSP is an interesting problem for which special versions have pleasant properties. In
particular, if the cost function satisfies the triangle inequality c(u, v) ≤ c(u,w) + c(w, v) (moving directly from u
to v is always cheaper than passing through an intermediate point w), a polynomial-time approximation algorithm
exists at less than twice the optimal cost. Without triangle inequality a ρ-approximated algorithm cannot be found
unless P = NP . Real-world salesmen are lucky, because the Euclidean distance, as well as distances on the Earth
surface, satisfies the triangle inequality. Approximation algorithms with guaranteed approximation ratios are a
growing area of research.

24.1 Greedy constructions
In greedy algorithms “better an egg today than a hen tomorrow”.

In some cases a solution can be built through a sequence of decisions, each step involving a small part of a solution.
In the Traveling Salesman Problem a tour can be built by joining together partial tour segments. A greedy algorithm
always makes the choice that looks best at the moment. For example, a greedy strategy for the TSP starts from a
random initial city, and moves to the nearest city that hasn’t been visited yet. This greedy choice is repeated until all
cities have been visited (Fig. 24.2).

A greedy algorithm is therefore shortsighted: it can make commitments to certain choices too early, which prevent
it from finding the best overall solution later. A choice cannot be undone during future steps. An example is shown in
Fig. 24.2: ten cities are in such positions that a short-sighted salesman takes a much longer tour than the optimal one.

We will later explore other constructive strategies such as dynamic programming (see Sec. 34.2), where a solution
is built by combining optimal solutions to subproblems. The simpler greedy algorithms, instead, skip the exhaustive
examination of possibilities to select only the (locally) most appealing combination.

24.1.1 Greedy algorithms for minimum spanning trees
Greedy algorithms rarely find optimal solutions to problems, but there are happy exceptions.

A general way to prove the optimality of a greedy algorithm is as follows:

1. Formulate the problem in an inductive way: one makes a choice, and is left with a subproblem to solve.
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2. Prove that there is always an optimal solution that starts with the greedy choice. In other words, prove that
at least a globally optimal solution can be reached be completing the current partial solution given by greedy
choice (at least one optimal solution is preserved).

3. Demonstrate that, after the greedy choice, one is left with a subproblem so that combining the optimal solution
of the subproblem with the greedy choice, one arrives at an optimal solution of the original problem.

Examples of greedy algorithms are Kruskal’s and Prim’s algorithms for finding minimum spanning trees in graphs,
and the algorithm for finding optimum Huffman trees for compressed codes. We also encountered greedy algorithms
in this book when dealing with trees (Chapter 6).
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Figure 24.3: Minimum spanning trees. Left: a graph with varying edge costs; right: 16862 Italian cities.

Let’s consider the minimum spanning tree (MST) problem [102]. The objective is to build a tree connecting
all vertices of a connected, undirected graph, with the minimal total cost of the selected edges. Note that some edges
can be missing, although there must be a way to pass from two arbitrary nodes by following selected edges (this is the
meaning of connectedness).

For a concrete application, consider a company in telecommunications or electricity distribution in need to wire
a new area. The company has to serve a number of existing or planned locations (houses, factories: the vertices of
the graph) and to follow existing infrastructures (roads, tunnels, sewers: the edges of the graph), each associated to a
different cost due to their length and to other features (need to open trenches in roads, put poles). Costs depend on
many factors other than distance, so a direct connection between two nodes might be more expensive than a detour
through multiple intermediate nodes, and the triangle inequality no longer applies. The minimum-cost connection of
all nodes won’t contain any cycles (otherwise we could spare one connection), therefore it is a tree. The practical
“meaning” of a tree (useful to fix ideas and remember abstract concepts) is therefore: “connect all nodes without
waste.” Cycles are a waste of resources because they imply at least two ways to reach a node, going in the two
directions of the cycle. Trees are born to be greedy.

The main difference between MST and TSP is precisely that one does not look for a tour, but for a tree. This
“small” differences make MST a very friendly problem, which can be solved to optimality in polynomial CPU time.

For the abstract formulation of the minimum spanning tree problem, let G = (V,E) be an undirected graph, V
being the set of vertices, E the set of edges (connections between vertices). For each edge (u, v) ∈ E, the cost c(u, v)
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Figure 24.4: Adding the lightest edge is safe for MST. If an optimal solution does not contain it, we can do a sub-
stitution. Add the lightest edge to the optimal tree, and obtain a cycle, because A and B are already connected in an
optimal tree. Then cut an edge of the cycle different from our lightest edge (with cost equal or larger!) and get a tree
with the same or lower cost. Actually the cost cannot be lower because our tree was optimal but it can have the same
cost (one can have more optimal solutions).

to connect u and v is given. One aims at finding a subset T ⊆ E that connects all vertices without cycles and with the
minimum possible total cost:

c(T ) =
∑

(u,v)∈T

c(u, v)

Let’s concentrate on a core spanning-tree algorithm. The starting idea of the greedy construction is to grow the
tree by adding one edge at a time to a set of edges A. Let’s build some intuition. One is already thinking “greedily”
and is therefore tempted to start from the least costly edge (the lightest edge). Is it safe to add it to the initial tree? Or
can one miss an optimal solution? The fact that it is safe is demonstrated in Fig. 24.4 with the “substitution” argument.

In the analysis of algorithms one often considers invariants (logical assertions that are always true during the
execution) and progress properties (changing in time).

A useful invariant here is:

Prior to each iteration, A is a subset of some minimum spanning tree.

If we manage to keep the invariant and increase the size of A (progress) we are done.
At a certain step, a safe edge for A is one which can be added to A while maintaining the invariant.
The generic algorithm is therefore as follows:
In the beginning, when A is the empty set, the invariant is true. We also demonstrated that the property holds if the

first edge in A is one of the lightest edges. If the invariant holds at the beginning of a new iteration, and the tree is not
complete, at least a safe edge must exist (picture in your mind the complete minimum spanning tree of which A is, by
definition, a subset). Let’s see how we can find it.
A cut (S, V − S) of a graph is a partition of its vertices (imagine cutting some edges to separate two parts of the
graph); an edge crosses a cut if its two endpoints belong to different partitions. A cut is said to respect an edge subset
A if none of A’s edges crosses it. An edge crossing the cut is light if its cost is minimum among all crossing edges.
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Figure 24.5: Minimum spanning tree construction. Dark thick edges are the partial MST A, gray edges are a complete
MST T . The cut respects A. If (u, v) is light in the cut, then we can take any MST T and, if it doesn’t contain (u, v),
find an edge (u′, v′) ∈ T with equal cost and replace it.

Now, let A be the current subset of E included in some minimum spanning tree, and let (S, V − S) be any cut of
G that respects A. A light edge (u, v) crossing the cut is safe for A. Suppose in fact that a minimum spanning tree
T contains A, but not the light edge (u, v), as in Fig. 24.5. Then T ∪ {(u, v)} contains a cycle, and at least one other
edge (u′, v′) in the cycle crosses the cut. Let T ′ = T ∪ {(u, v)} \ {(u′, v′)}. Then T ′ is also a tree (we just cut the
cycle in a different place), and since T is minimum and (u, v) is light, then (u′, v′) is light too (otherwise T ′ would
have a total cost less than T ). Therefore T ′ is a minimum spanning tree, A is a subset of T ′, and (u, v) is safe for A
because it also belongs to T ′.

This simple fact allows us to greedily find an edge to extend a partial MST to completion: just cut the graph
without crossing any edge of the current solution, and take one of the lowest-cost crossing edges. The greedy
property is apparent if you imagine that the algorithms has to pay money corresponding to the cost of the new edge to
add at each iteration.

To summarize, we demonstrated that a greedy action maintains the invariant of producing a subset of an optimal
spanning tree. Because the tree size is limited, the algorithm will converge producing an optimal solution.

Different MST greedy algorithms make different choices as to the cut to consider:

• Prim’s algorithm maintains A as a connected tree whose vertices define the cut S. Every time, therefore, a
least-cost edge is added going from the current tree to a new node, which will be added to the cut S for the next
iteration.

• Kruskal’s algorithm maintainsA as a forest of partial trees (initially all disconnected nodes in V ) and repeatedly
adds a least-cost edge between two different trees.

Both algorithms can be made to run in O(E log V ) time by using binary heap data structures [102]. With Fibonacci
heaps, Prim’s algorithms runs in time O(E + V log V ) an improvement for dense graphs with |E| much larger than
|V |.

24.2 Local search based on perturbations
Aside from a small family of lucky problems, the greedy construction approach often leads to suboptimal solutions.
Indeed, many problems have been shown to possess “pathological” instances for which a greedy algorithm produces
a very bad solution, although in many cases better than a random solution.
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Figure 24.6: The local search heuristics in action.

This Section discusses what to do next. Suppose that you have an initial, suboptimal solution to a problem, be it
obtained by a greedy algorithm or by any other means (e.g., randomly). A basic problem-solving strategy consists of
starting from such initial tentative solution and trying to improve it through repeated local (small) changes. At each
repetition, the current configuration is slightly modified (perturbed) and the function to be optimized is calculated.
The change is kept if the new solution is better, otherwise another change is tried.

Let’s define the notation. X is the search space, i.e., the set of all solutions, also known as “configurations,” to
a given problem instance; for example, in TSP X is the set of all possible city permutations. Given a configuration
X ∈ X , we can apply to it set of “perturbations” to transform it into other configurations; let us call such perturbations,
or “moves”, µ0, . . . , µM . Since we are considering an iterative process, let us call the initial configuration X(0), while
the configuration at step (“time”) t will be X(t). Every configuration after the first is generated by perturbing the
previous one. The neighborhoodN(X(t)) of pointX(t) is the set of configurations that can be obtained by perturbing
the current one:

N(X(t)) = {µi(X(t)), i = 0, . . . ,M}.

If the search space is given by binary strings with a given length L: X = {0, 1}L, the moves can be those changing
(or complementing or flipping) the individual bits, and therefore M is equal to the string length L.

We can abstractly represent the search space as a graph as in Fig. 24.6: configurations are nodes in the graph, while
moves between configurations are represented by edges. The search trajectory (X(0), X(1), X(2), . . . , X(t)) is a path
in this graph. The neighborhood N(X(t)) is the set of first neighbors of X(t) within the graph. In the example, the
current configuration can be perturbed in three different ways (µ1, µ2 and µ3); two perturbations, µ1 and µ3, lead to
previously visited configurations, while µ3 generates a new one.

Local search starts from an admissible configuration X(0) and builds a trajectory X(0), . . . , X(t+1). The succes-
sor of the current point is a point in the neighborhood with a lower value of the function f to be minimized:

Y ← IMPROVING-NEIGHBOR( N(X(t)) ) (24.1)

X(t+1) =

{
Y if f(Y ) < f(X(t))
X(t) otherwise (search stops).

(24.2)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a simple case this is the element with
the lowest f value, but other possibilities exist, for example the first improving neighbor encountered.
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If no neighbor has a better f value, i.e., if the configuration is a local minimizer, the search stops. Let’s note that
maximization of a function f is the same problem as minimization of −f . Like all symmetric situations, this fact can
create some confusion of terminology. For example, steepest descent assumes a minimizing point of view, while hill
climbing assumes the opposite point of view. In most of the book we will base the discussion on minimization, and
local minima will be the points which cannot be improved by moving to one of their neighbors. Local optimum is a
term which can be used both for maximization and minimization.

Local search is surprisingly effective because most combinatorial optimization problems have a very rich internal
structure relating the configuration X and the f value. The analogy when the input domain is given by real numbers
in Rn is that of a continuously differentiable function f(x) optimized with gradient descent (a.k.a. steepest descent).

A neighborhood is suitable for local search if it reflects the problem structure. For example, if the solution is given
by a permutation (in the Traveling Salesman Problem a permutation of the cities to be visited) an improper neighbor-
hood choice would be to consider single-bit changes of a binary string describing the current solution, which would
immediately cause illegal configurations, not corresponding to encodings of permutations. A better neighborhood can
be given by all transpositions which exchange two elements and keep all others fixed. In general, a sanity check for
a neighborhood controls if the f values in the neighborhood are correlated to the f value of the current point. If one
starts at a good solution, solutions of similar quality can, on the average, be found more in its neighborhood than by
sampling a completely unrelated random point. In addition, sampling a random point generally is much more expen-
sive than sampling a neighbor, provided that the f value of the neighbors can be updated (“incremental evaluation”)
and it does not have to be recalculated from scratch, as we will see n the next Section.

24.3 Local search and big valleys
Local search stops at local minima but it can be the initial building block of more complex schemes, which will be
presented in future chapters. For many optimization problems of interest, a closer approximation to the global optimum
is required, and therefore more complex schemes are needed in order to continue the investigation into new parts of
the search space, i.e., to diversify the search and encourage exploration. Here a second structural element comes to the
rescue, related to the overall distribution of local minima and corresponding f values. In many relevant problems local
minima tend to be clustered, furthermore good local minima tend to be closer to other good minima. Promising local
minima like to be in good company. Let us define as attraction basin associated with a local optimum the set of
pointsX which are mapped to the given local optimum by the local search trajectory. An hydraulic analogy, where the
local search trajectory is now the trajectory of drops of water pulled by gravity, is that of watersheds, regions bounded
peripherally by a divide and draining ultimately to a particular lake.

Now, if local search stops at a local minimum, kicking the system to a close attraction basin can be much more
effective than restarting from a random configuration. If evaluations of f are incremental, completing a sequence of
steps to move to a nearby basin can also be much faster than restarting with a complete evaluation followed by a
possibly long trajectory descending to another local optimum.

This structural property is also called Big Valley property (Fig. 24.7). To help the intuition, one may think about a
smooth f surface in a continuous environment, with basins of attraction which tend to have a nested, “fractal” structure.
According to Mandelbrot, a fractal is generally “a rough or fragmented geometric shape that can be subdivided into
parts, each of which is (at least approximately) a reduced-size copy of the whole,” a property called self-similarity1.

A second continuous analogy is that of a (periodic) function containing components at different wavelengths when
analyzed with a Fourier transform. If you are not an expert in Fourier transforms, think about looking at a figure with
defocusing lenses. At first the large scale details will be revealed, for example a figure of a distant person, then, by
focusing, finer and finer details will be revealed: face arms and legs, then fingers, hair, etc. The same analogy holds
for music diffused by loudspeakers of different quality, allowing higher and higher frequencies to be heard. At each
scale the sound is not random noise and a pattern, a non-trivial structure is always present. This multi-scale structure,
where smaller valleys are nested within larger ones, is the basic motivation for methods like Variable Neighborhood

1The term fractal derives from the Latin fractus meaning “broken” or “fractured.”
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Figure 24.7: Structure in optimization problems: the “big valley” hypothesis.

Search (VNS) and Iterated Local Search (ILS), see for example [27] for a much more extended presentation and
discussion of techniques, and [26] for a shorter presentation.

24.3.1 Local search and the TSP

Let’s see how Local search comes to the rescue to improve tours in TSP. A random permutation can give us a first
tour, or a greedy algorithm can be used to identify a first one with more intelligence. Local modifications of the tour
can be obtained by removing some edges of the tour and reconnecting in a different way to obtain a legal tour again.
Fig. 24.8 shows a 2-change local move: two different edges are eliminated and a different legal tour is obtained by
reconnecting the nodes. The 2-change neighborhood of a tour is given by all tours which can be obtained by applying
all possible 2− changes.

The size of the neighborhood is polynomial, of order O(n2). In addition, calculating the change in tour length
after a 2-change is very fast: subtract the cost of the two eliminated edges, add the cost of the two new edges
(incremental evaluation). The advantage with respect to calculating a new path cost becomes enormous for a large
number of cities (4 operations w.r.t. n operations). This means that local search can analyze in a given CPU time a
number of possible configurations along a search trajectory which is much larger that the number of unrelated config-
urations which could be analyzed in the same time.

Of course, 2-changes can be easily generalized to k-changes (obtained by removing k different edges and recon-
necting in a different manner). However, more complex neighborhoods imply larger numbers of neighbors to explore,
and a tradeoff between improvement and step complexity must be sought, possibly by means of an adaptive technique
such as Variable Neighborhood Search (VNS, see Sec. 28.1).

Note that the neighborhood choice does not only imply a slower or faster convergence towards a (local) optimum:
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Figure 24.8: The Traveling Salesman Problem: a 2-change local move. Left to right: two edges are removed, leaving
the tour partitioned, and the two segments are joined in the opposite way.

configurations that are locally optimal for a given neighborhood may be improved if more perturbations (e.g., a larger
neighborhood) are allowed. Particularly bad choices of local moves mean that even simple instances of a problem can
get stuck at an unsatisfactory local optimum, as shown in Fig. 24.9 where a TSP instance with 20 cities in a loop is
initialized with a random configuration and solved by repeatedly selecting two cities and swapping them in the visiting
order.



266 CHAPTER 24. GREEDY AND LOCAL SEARCH

Figure 24.9: TSP configurations for a 20-city ring instance. Clockwise from top left: an initial random configuration,
the optimal tour, two local minima. The local minima cannot be further improved by the chosen perturbation function,
which consists in swapping the order of visit of two cities. A different local move (e.g., 2-swap) would improve the
result.

Figure 24.10: Do modern salesmen need TSP at all?
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Gist
Greedy and local search are simple, human and effective ways to identify improving solutions for discrete
optimization problems. They generate a sequence of changes, each change being local, i.e., affecting only
a limited portion of the current solution. The greedy principle is related to short-sighted changes. The
changes look appealing but maybe jeopardize reaching better solutions later on.

In a greedy construction, complete and admissible solutions are built is steps, by starting from incom-
plete ones and by fixing one element of the solution at a time. The single steps are not undone in the future
steps.

In perturbative local search, one works with a complete solution and searches for a small (local)
change leading to an improvement. The motivations for the relative success of local search is related to the
rich structure of many problems a.k.a. big valley hypothesis. Local minima can often be reached by starting
from nearby good tentative solutions. Local search tends to be fast because the incremental evaluation of
neighbors of the current solution can be much faster that evaluating a new solution from scratch.

Greedy constructions and local search can be combined: one can build an initial complete solution with
greedy construction and then improve it with local search.

Local search stops at locally-optimal points, when no improving neighbor exists. Additional diversi-
fication means are needed to escape from local attractors and avoid the search trajectory being entrapped,
with little possibility of escaping from the attraction basin.

Local search is based on what is perhaps the oldest optimization method – trial and error. The idea is
simple and natural and it is surprising to see how successful local search has been on a variety of difficult
problems.
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Chapter 25

Stochastic global optimization

While discrete variables have been considered in Chapter 24, in this chapter we search for global optima of
function of continuous (real) variables. Having real variables means that “brute force” techniques like exhaustive
enumeration of all possible solutions are impossible. In fact, the possible solutions are infinite! One may consider a
range for each variable and discretize (for example x ∈ [3, 22], with possible values 3.0, 3.1, 3.2, 3.3, ..., 21.9, 22.0),
but this dirty trick can lead to solutions of inferior quality. If the proper formulation is as a continuous problem, one
should respect it. We will see in this Chapter that throwing random points onto the input space can be a robust
brute-force method for the continuous optimization case.

Imagine to optimize (e.g., minimize) an objective function f through a so called black-box interface: the algo-
rithm can query the value f(x) for a sample point x, but it cannot “look inside” f to see how it works: it cannot obtain
gradient information, and it cannot make any assumptions on its analytic form (e.g., linear, quadratic, logarithmic,
etc.). A black-box interface is optimal from the point of view of separation of concerns: to be as generally applicable
as possible, optimization routines do not need to know anything about the application domain. With separation of
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concerns, an optimization expert can improve profits for a financial institution or improve survivability of patients
cured for cancer without any knowledge of economics or medicine.

In these cases an optimization scheme has to make do with just function evaluations. Of course, it can still decide
where to place sample points, and it can use the information obtained to build internal models of the function and tune
its own meta-parameters. A large amount of stochasticity in the generation of sample points usually helps to improve
robustness and avoid that some false initial assumptions lead the optimization to deliver low-quality local optima.
Simplicity and ease of implementation of the schemes are valuable: in many cases sophisticated schemes improve
performance on some specialized tasks but can produce inferior results on different problems.

The simplicity, separation of concerns and general-purpose character of Stochastic Global Optimization (SGO)
leads to a rapidly growing number of applications in engineering, computational chemistry, finance and medicine. An
up-to-date book presenting this topic is [390]: this chapter is a brief overview highlighting some important points and
theoretical findings.

SGO is a suite of methods ranging from the simple global random search to methods based on probabilistic
assumptions about the objective function. They are not a panacea and the “curse of dimensionality” is unavoidable
when the number of variables increases, and it leads to an exponential increase in the computational complexity. This
is caused by the fact that neighbours are becoming exponentially isolated from each other as the dimension increases
(in a ball of radius r in a large-dimensional space, most points fall in a narrow crust near the surface of the ball).

Many algorithms have been proposed heuristically, in some cases based on sexy analogies with natural processes,
like evolutionary algorithms and simulated annealing. Heuristic global optimization algorithms are very popular in
applications, often without a sound theoretical basis. After some basic notions and definitions are given is Sec. 25.1,
we start from Pure Random Search (PRS) in Sec. 25.3, develop our intuition with some statistics in Sec. 25.4, discuss
probabilistic and statistical models in Secs. 25.5 and 25.6.

25.1 Stochastic Global Optimization Basics
Let f(x) be the (real-valued) function to optimize on the feasible regionA, usually some region of a multi-dimensional
real space A ⊆ Rn.

Global optimization problem:

Given f : A→ R
find x∗ ∈ A

such that f(x∗) ≤ f(x) for every x ∈ A.

A point x∗ satisfying the above condition is called a global optimum, by definition it is the best possible solution to
the problem.

Imagine that the optimization scheme generates a sequence of input values x1,x2, . . . , let the record value (the
best-so-far value) at iteration n be ŷn = mini=1,...,n f(xi), and let x̂n be the sequence of record points (inputs)
corresponding to the record values. The sequence ŷ1, ŷ2, . . . never increases, and only decreases (i.e., improves) at
iterations in which a new record value is found.

The objective of global optimization is to have the sequence of record points x̂n approach the minimum x∗ as n
increases.

As one can expect, the development of efficient global optimization methods is more difficult than that of the local
optimization methods, the diversity of multi-modal functions is simply too large. Do not expect universal strategies
for global optimization and be prepared to live with a wide variety of alternative approaches. In addition, be prepared
to combine robust global schemes with fast local search schemes.

Multistart local search is one of these possibilities, consisting of firing more runs of local search starting from
a set of interesting points. In particular,it can be worth making several iterations of a local descent immediately after
obtaining a new record point. In addition, every global optimization procedure should finish with a local descent from
one or several of the best points x̂i.
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The “global” schemes should narrow down the area of search for the minimizer x∗ (hopefully the area should be
in the region of attraction of x∗), leaving the problem of finding the exact location of x∗ to a local optimization
technique.

As we have already seen in the local search scenario in Chapter. 24, the region of attraction can be different for
different methods. In particular, some techniques are able to jump over high-frequency components of the objective
function and to reach the global optimum even if started far, provided that the low-frequency structure gives consistent
information about locating the minimum value.

This situation is illustrated in Fig. 25.1. The objective function (solid line) has a large number of local minima;
however, a local search procedure might as well be oblivious to its roughness and, due to fairly large steps (the grey
arrows), only be sensitive to the overall trend. In this case, the procedure correctly identifies the region in which
the true global minimum lies (left-hand side of Fig. 25.1). The dashed line is a “model” of the function, built by
considering the sample points, that captures its large-scale behavior without bothering about fine-grained details. On
the other hand, as shown in the right-hand side, a particularly needle-like minimum might escape this procedure and
lie outside the most promising region identified by the model.

Most if not all wide-purpose stochastic global optimization schemes are “once scorned, now respectable” heuristic
methods [386] without formal proofs of efficiency. Most theoretical results are related only to asymptotic convergence.
In the absence of strong assumptions about an optimization problem, the only converging algorithms are those gener-
ating everywhere dense sequences of observation points. If A is compact and f continuous in the neighborhood of
a local minimizer, an algorithm converges (yon → m as n→∞) if and only if the algorithm generates a sequence of
points xi which is everywhere dense in A. Much stronger assumptions like “limited variation” or Lipschitz continuity
(see below) are needed to ensure convergence also for sparser sequences of sample points.

Randomness can appear in many ways in global optimization: because of random errors in the evaluation of f (a
frequent case in the real world), because of the randomized generation of sample points, or because of probabilistic
assumptions about the objective function. We do not insist on deterministic methods in this chapter, they are used
rarely only with specific constraints on the function f , in particular limited-variability.

Deterministic global optimization schemes aim at reducing the worst-case difference w.r.t. the optimal value.
Proofs are complex and conditions of validity very fragile. If optimization has to be repeated for many different
functions with similar characteristics, one can take a more realistic direction by assuming statistical models of the
functions to be optimized and aiming at some average optimality criteria (for example demanding that the average
error converges rapidly to zero).

Global random search algorithms are very popular because they tend to be simple, insensitive to the structure of the
objective function and of the feasibility region, easily modifiable to guarantee theoretical convergence. In spite of
these positive facts, convergence if often more loved by theoreticians than by practitioners because it can be painfully
slow, and practical efficiency can depend a lot on tuning algorithm parameters to the instances to be solved, so that
automated self-tuning methods can be of value, as well as a sound experimental approach in the design and test of
competitive algorithms.

25.2 A digression on Lipschitz continuity

Elegant deterministic global optimization schemes can be obtained with strong assumptions about the function to be
optimized. One of the “natural” assumptions for many phenomena in the physical world is “limited-variability,”
a.k.a. Lipschitz continuity. A function is Lipschitz continuous if its change in value is bounded by the corresponding
change in the evaluation point (multiplied by a constant factor); i.e., there is a constant K ≥ 0 such that, for all x1 and
x2 in the function’s domain,

|f(x1)− f(x2)| ≤ K‖x1 − x2‖.

For each point evaluated x, a cone f(x)−K‖x− x′‖ defines an area on the plot in which the function cannot enter
(because it cannot change too fast), and therefore an underestimate.
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Figure 25.1: Top: function f (solid line) and a low-frequency, smoothed-out version (dashed line) leading to the
region in which the global minimum lies. Bottom: a lesser well-behaved function where the global minimum lies at
an unexpected position.
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Figure 25.2: Pijavski-Shubert optimization scheme. The values of the objective function at tk marked with dots
determine the saw-tooth underestimate HK (image derived from [390]).

Fig. 25.2 shows a function, same sampled points, and the current underestimate. It makes sense to place the next
observation (sample) at the point of minimum of the underestimate, as in a well-known algorithm by Pijavski-Shubert.

Branch and Bound can be applied in a way similar to that for discrete problems: the admissible region A can be
partitioned in subareas. If the underestimate over an area is too bad (so that the current record cannot be beaten), the
area is cut and not considered for sampling. Advanced partitioning (and sampling) methods are presented in [327, 328].
As you can imagine, the situation for which a non-trivial Lipschitz constant K is known (and therefore underestimates
are very tight) are very rare, but one can aim at estimating it in an online and local manner while the global optimization
scheme is working [352], in a way similar to the RSO methods for discrete optimization considered in Chapter 27.

The idea of ‘branching and bounding’ can be extended to incorporate stochastic techniques. Branching of the
feasible regionA into a tree of subsetsAi(i = 1, ..., l) is done in a similar manner. In global random search algorithms,
the test points xj ∈ Ai are random; therefore, statistical methods can be used for estimating the attainable minimum
on a specific region: mi = infx∈Ai f(x) and for testing hypotheses about the values mi, see Section 25.4.

25.3 Pure random search (PRS)

PRS is based on the repeated generation of random points to be evaluated, typically with the same probability
distribution on the admissible region A, like a uniform distribution. It sounds too easy to work, but PRS is a solid
building block not to be scorned, against which more sophisticated algorithms should be benchmarked. It is often
found as a component of other more complex global optimization schemes, and its asymptotic properties, such as
convergence rates, are easy to study.
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Figure 25.3: A pathological situation for PRS: the minimizer x∗ is at a cusp of A so that the portion of a small ball
centered around it which is feasible goes rapidly to zero.
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In the following, we assume that the feasible region A and function f satisfy assumptions to avoid pathological
cases, assumptions like smooth boundaries ofA, small balls centered on minimizers having an approximately constant
proportion of points in A, see Fig. 25.3 and [390] for the complete list.

Let’s consider a general global random search in which point xj in the sequence is generated from a probability
distribution Pj(x), which (for generality’s sake) is allowed to be different at each iteration and to depend on the
previous function evaluations. Because reaching the exact minimizer has probability zero (we are in a continuous
setting), it is better to allow for some slack. Let’s consider balls of a certain radius around points: B(x, ε) = {x′ ∈
A : ‖x′ − x‖ ≤ ε}.

A classical form of the convergence theorem (derived from the “zero-one law” in classical probability theory, and
rediscovered many times by different researchers) is the following one.

Let f have a finite number of minimizers, let x∗ be such a minimizer, m be the minimum value, and f be contin-
uous in the vicinity of x∗. Also assume that

∞∑
j=1

inf pj
(
B(x∗, ε)

)
=∞

for any ε > 0, and the infimum is taken over all possible previous histories (sequence of evaluated points and function
values). Then, for any δ > 0 the sequence of points xj with distribution Pj falls infinitely often into the set Wδ =
{x ∈ A : f(x)−m ≤ δ}, therefore δ-close to the optimal value.

Imagine placing arbitrarily small balls around each point (including the global optima). If, for all possible histories
of stochastic sample generation, the probability distributions pj(x) guarantee that each ball is hit with probability
which sum up to infinity, an arbitrary δ-close approximation of the optimum will be found infinitely often, with
probability one. In particular, a uniform probability distribution Pj = Puniform is an immediate way to satisfy the
above requirements.

Before you jump on your chair to celebrate, let’s remember that, more than this kind of convergence, you are
probably more interested in the rate of convergence, i.e., in how many iterations you will have to wait in practice
before arriving sufficiently close to the minimum, which is the topic of the following discussion.

Because a uniform probability distribution “does not learn” from the previous history of the search, to speedup
the convergence in practice, a popular choice combines a “smart” probability density Qj(x), which takes into account
what can be learnt from the previously evaluated points, plus a fraction of uniform probability density P (x), as:

Pj(x) = αjP (x) + (1− αj)Qj(x)

so that the above convergence theorem still holds. In general, the distribution Qj(x) should egnerate more points in
the most interesting areas. The different methods differe by the way in which they measure the interest level. For
example, sampling from Qj can consist of running a local search descent from the current record value, which is for
sure an interesting point.

To take home: convergence is not difficult to prove, just mix some uniform probability with your favourite smart
(“learning”) sampling strategy. Note: this may satisfy your colleagues in maths, but not necessarily your colleagues
in applied areas looking for fast optimization methods, producing high-quality solutions in a finite CPU time, not for
infinite time!

25.3.1 Rate of Convergence of Pure Random Search
“Abandon all hope, you who enter here” was written at the entrance of Dante’s Inferno.

In a similar manner, to start your global optimization effort without being fooled by marketing hype, a useful ex-
ercise is to derive the rate of convergence of PRS. It is a simple application of basic rules about deriving probabilities
of repeated unlucky events.

Imagine that the different samples xj are independent and identically distributed (i.i.d) with distribution p(x),
and let our objective be to hit the “target” set B(x∗, ε) = {x ∈ A : ‖x − x∗‖ ≤ ε} with one or more of the points
x1, . . . ,xn. A “success” event means that some xj hits B, “failure” is the alternative event.
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A single sampling event has success probability p(B), which we assume to be strictly positive for all values of ε. It
looks like throwing a dice with many faces, and calculating the probability that we get a particular face in a sequence
of trials. PRS generates a sequence of independent Bernoulli trials. We fail in the sequence only if we fail in all
trials.

In our case:
Pr{xj /∈ B} = 1− p(B), for all j.

Because of the independent generation of sample points, probabilities are multiplied:

Pr{x1 /∈ B, . . . ,xn /∈ B} =
(
1− p(B)

)n
.

Because p(B) is positive, this probability tends to zero when n → ∞, and the probability that at least one xj lies in
B tends to one.

The average number of PRS iterations required for a first hit of our ball (and therefore solving the problem) is:

E(first hitting time) =
1

p(B)
.

If the distribution is uniform we can continue our exercise to reflect on concrete rates of convergence. In this case, for
a d-dimensional problem:

p(B) =
vol(B)

vol(A)
=

πd/2εd

Γ(d/2 + 1)vol(A)

in which Γ(·) is the Gamma function (an extension of the factorial function) and we used the formula for the volume
of a d-dimensional Euclidean ball of radius ε.

In the interest of brevity one can consider approximations. If one wants to hit the ε-ball B with probability at least
1− γ, one needs to perform at least the following number of PRS iterations:

N∗ ≈ − ln γ · Γ(d/2 + 1)

πd/2εd
· vol(A).

The dependence on γ is not crucial: what is more alarming is the exponential increase w.r.t. the dimension d. This
should not be a surprise. We are searching for a ball with radius equal to ε in a simple d-dimensional box of volume 1.
If we shoot one random point we hit the target with probability proportional to ε in one dimension, εd in d dimensions,
vanishing exponentially to zero when the dimension increases. Fig. 25.4 shows the simpler cases of d = 1, 2, 3 and a
radius ε = 0.05; them measure p(B) goes from 2 · 0.05 = 0.1 in the 1-dimensional case to 4 · π · 0.053/3 ≈ 0.0005
in three dimensions.

If you are into combinatorics rather than geometry, you can also see the optimal point x∗ as an array of d entries
(its coordinates). For a randomly generated array xj to be close to x∗, each of its entries xjk must be close to the
corresponding entry x∗k of the optimal point. Imagine how unlikely it is to generate d = 100 independent numbers,
and finding that each of them is not farther than ε from a target value! Clearly, hitting an ε-ball is even harder than that;
asymptotically, however, hitting a ball is not so different from hitting a cube: when d is fixed and ε → 0, the number
of iterations for success increases approximately as:

N∗ = O

(
1

εd

)
.

“Abandon all hope, you who enter here”. If the number of dimensions is large, there is no magic algorithm to
rapidly approximate the global optimum for a generic function in less than exponential number of iterations. If there is
hope, it is related to functions with special forms, so that regularities can be learnt from an initial sampling, albeit
in approximated form, and used to identify shortcuts leading rapidly to close approximations of the optimal solution.

The question is: what is the chance that we will encounter this kind of highly-structured objective functions in real
applications? Luckily for us, the chance is not negligible. Think about three-dimensional protein folding. Identifying
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Figure 25.4: The curse of dimensionality: balls of the same radius in spaces of increasing dimensionality become
harder and harder to hit due to their growingly negligible size w.r.t. the total volume.

the optimal structure (minimizing the potential energy) seems daunting but mother Nature does it rapidly with very
noisy and humid hardware in our cells.

The bottom line is that convergence of some global optimization algorithms may please a theoretician but may not
mean much in practice.

25.4 Statistical inference in global random search

If you are an expert in statistics, order statistics can be used to derive probabilities of extreme events of interest. In
order statistics one starts from a probability distribution and derives distributions for the minimum (or maximum or
k-th) record value in a sample of a certain size. In addition to optimization, results in this area, also under the name of
extreme value theory, are applied to estimating the risk of extreme, rare events, like earthquakes, floods, beating
records in athletic disciplines. We summarize some concepts pointing to useful references if you are interested in
further investigations.

The objective is to answer questions of this kind: what is the probability to get a new record value in the next n
iterations? What is the average waiting time? What is the probability that we already found a locally optimal point
(or an approximation thereof)? Interesting asymptotic distributions arise when the number of iterations becomes very
large. Some results are, at the beginning, counter-intuitive. For example, on average one has to make infinitely many
iterations of PRS to get an improvement over the current best value. Of course, this result refers to an unbounded
search domain and no prior knowledge about the function structure, so be patient! Some potentially useful results are
related to statistical inference about the optimal value, which can be used for a statistically sound termination criterion.
For example, maximum likelihood estimations of m can be derived, as well as confidence intervals. All techniques
in statistics must be used with extreme competence and care. In certain cases one demands a large number of sample
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points in the vicinity of the global optimizer in order to derive estimates, bounds, etc. But reaching the region of
attraction of the global minimizer can be extremely difficult so that statistical inference will be made about some other
local minimum!

A couple of interesting applications of statistical inference in global optimization are branch and probability
bound and random multistart.

Branch and probability bound generalizes branch and bound to continuous variables when no error-proof bound
is available. It consists of several iterations with the following steps:

1. split (branch) the set of admissible values into subsets, obtaining a tree organization;

2. decide about the potential value of the individual subsets for further investigation;

3. select the most interesting subsets for additional splits.

Hyper-rectangles are a frequent and easy choice for subdividing the input space. Statistical techniques to judge
about the potential value of a subset Z are based on the (statistical) rejection of the hypothesis that the global minimum
m cannot be reached in Z. Statistics can be obtained by sampling Z, or by running short local search streams starting
in Z. In practice, branch and probability bound methods can be used for low-dimensional problems (up to about
10 dimensions). For much larger dimensions, the number of tree nodes explodes and the efficiency of the statistical
procedures degrades.

Random multistart is another simple method consisting of repeating local search from random initial points, and
running each search until a local minimum is met, or a close approximation thereof. An interesting question to answer
is: given that multistart already found a certain set of locally-optimal points, some of them multiple times, what is
the probability that all local optima have been found (including therefore the global optimum)? Let our continuous
function f have a finite but unknown number L of local optimizers x∗(1), . . . ,x∗(L), and let θi = p(A∗i ) be the
probability of “hitting” the attraction basin A∗i of the local minimizer x∗(i). The size and form of the attraction basins
depends on the specific local search scheme (which may for example filter out very small sub-basins).
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Figure 25.5: Attraction basins around locally optimal points.
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By definition, θi > 0 and
∑
i θi = 1 (every local search will eventually end up on a local minimizer). Let ni be

the number of generated initial points belonging to the i-th basin, out of a sample of n points. The random vector
(n1, . . . , nL) follows the multinomial distribution:

Pr(n1, ..., nL) =
n!

n1!...nL!
θn1
1 ...θnLL .

Statistical inference can be used to estimate the number of trials n∗ with a probabilistic guarantee that all local mini-
mizers have been found.

If the number of local minimizers L is known, at least as an upper bound L, we can obtain the following ap-
proximation for the number of starts of local search which guarantee to find all local minima with probability at least
γ:

n∗ ≈ L lnL+ L ln(− ln γ)

If the number of local minimizers is not known, a Bayesian approach with an a priori distribution for the number
of local minima can be used (but the practical issue becomes that of identifying a proper a priori probability, a kind of
magic art in the absence of information about the possible function to be minimized).

25.5 Markov processes and Simulated Annealing
This section presents ideas which can be seen as stochastic modifications of Local Search, and which apply for both
continuous and discrete optimization problems.

Local search stops at a locally optimal point. Now, for problems with a rich internal structure encountered in many
applications (remember the “big valley” hypothesis), searching in the vicinity of good local minima may lead to the
discovery of even better solutions. In this section the neighborhood structure is fixed, but the move generation and
acceptance are stochastic and one also permits a “controlled worsening” of solution values to escape from the local
attractor.

Now, if one is sitting on a local minimum and extends local search by accepting worsening moves (moves leading
to worse f values) the trajectory moves to a neighbor of a local minimum. But the danger is that, after raising the
solution value at the new point, the local minimum will be chosen again at the next iteration, leading to an endless
cycle of “trying to escape and falling back immediately to the starting point.” This situation surely happens in the
deterministic case if the local minimum is strict (all neighbors have worse f values) and if more than one intermediate
step is needed before points with f values better than that of the local minimum become accessible. Better points can
become accessible when they can be reached from the current solution point by a local search trajectory. The situation
becomes more chaotic in stochastic versions, but still one may be stuck jumping around in an attraction basin around
a local optimizers for very long times.

The Simulated Annealing (SA) method has been investigated to avoid deterministic cycles and to allow for wors-
ening moves, while still biasing the exploration so that low f values are visited more frequently than large values.
The terms and the initial application comes from annealing in metallurgy, a process involving heating and controlled
cooling of a metal to increase the size of its crystals and reduce their defects. The heat causes the atoms to be shaken
from their initial positions, a local minimum of the internal energy, and wander randomly through states of higher
energy; the slow cooling gives them more chances of finding states with lower internal energy than the initial one,
corresponding to a stronger metal.

We summarize the technique and hint at mathematical results.

25.6 Simulated Annealing and Asymptotics
In the general model of Pure Random Search the probability distribution pj(x) for generating the j-th sample can de-
pend on the previously extracted points (and on the corresponding objective function values). A radical simplification,
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but possible improvement w.r.t. using a uniform distribution P , is to have Pj just depend on the latest generated point
and f value. The sequence of sample points becomes a Markov chain. Markov is synonymous with memory-less:
the entire previous history of the search process (points x1, . . . ,xj−2 and corresponding f values) is forgotten to
keep only the latest point. As you can imagine, Markovian algorithms are often practically inefficient because of their
poor use of information and learning-while-searching possibilities. Nonetheless, they have enjoyed a huge popularity,
partly caused by intriguing analogies with physical processes, partly because many mathematicians could demonstrate
asymptotic theorems, rather useless to get practical guidelines, but helpful to obtain an aura of respectability.

The Simulated Annealing method [234] is based on the theory of Markov processes. The trajectory is built in a
randomized manner: the successor of the current point is chosen stochastically, with a probability that depends only
on the current point and not on the previous history.

x′ ← NEIGHBOR( N(xj) ) (25.1)

xj+1 ←


x′ if f(x′) ≤ f(xj)

x′ if f(x′) > f(xj), with probability p = e−
f(x)−f(xj)

T

xj otherwise.

The neighbor of the current point can be obtained in discrete problems by applying a limited set of local changes
to the current solution. In continuous problem it can be obtained by sampling with a probability distribution centered
on the current point, e.g., with a Gaussian distribution.

SA introduces a temperature parameter T which determines the probability that worsening moves are accepted:
a larger T implies that more worsening moves tend to be accepted, and therefore a larger diversification occurs. The
rule in equation (25.1) is called exponential acceptance rule. If T goes to infinity, then the probability that a move is
accepted becomes 1, whether it improves the result or not, and one obtains a random walk. Vice versa, if T goes to
zero, only improving moves are accepted as in the standard local search. Being a Markov process, SA is characterized
by a memory-less property: if one starts the process and waits long enough, the memory about the initial configuration
is lost, the probability of finding a given configuration at a given state will be stationary and only dependent on the
value of f . If T goes to zero the probability will peak only at the globally optimal configurations. This basic
result raised high hopes of solving optimization problems through a simple and general-purpose method, starting from
seminal work in physics [268] and in optimization [298, 87, 234, 2].

Unfortunately, after some decades it became clear that SA is not a panacea. Furthermore, most mathematical
results about asymptotic convergence (converge of the method when the number of iterations goes to infinity) are
quite irrelevant for optimization. First, one does not care whether the final configuration at convergence is optimal
or not, but that an optimal solution (or a good approximation thereof) is encountered —and memorized— during the
search. Second, asymptotic convergence usually requires a patience which is excessive considering the limited length
of our lives. Actually, repeated local search [126], and even pure random search [88] have better asymptotic results
for some problems.

A practitioner has to place asymptotic results in the background and develop heuristics where high importance is
attributed to learning from a task in an online manner during the search. In the following we briefly consider some
asymptotic convergence results of SA.

25.6.1 Asymptotic convergence results
Let (X , f) be an instance of a combinatorial optimization problem, X being the search space and f being the objective
function. Let X ∗ be the set of optimal solutions. One starts from an initial configuration X(0) and repeatedly applies
equation (25.1) to generate a trajectory X(t). Under appropriate conditions, the probability of finding one of the
optimal solutions tends to one when the number of iterations goes to infinity:

lim
k→∞

Pr(X(k) ∈ X ∗) = 1. (25.2)
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Let O denote the set of possible outcomes (states) of a sampling process, let X(k) be the stochastic variable
denoting the outcome of the k-th trial, then the elements of the transition probability matrix P , given the probability
that the configuration is at a specific state j given that it was at state i before the last step, are defined as:

pij(k) = Pr(X(k) = j|X(k−1) = i). (25.3)

A stationary distribution of a finite time-homogeneous (meaning that transitions do not depend on time) Markov
chain is defined as the stochastic vector q whose components are given by

qi = lim
k→∞

Pr(X(k) = i|X(0) = j), for all j ∈ O (25.4)

If a stationary distribution exists, one has limk→∞ Pr(X(k) = i) = qi. Furthermore qT = qTP , the distribution
is not modified by a single Markov step.

If a finite Markov chain is homogeneous, irreducible (for every i, j, there is a positive probability of reaching i
from j in a finite number of steps) and aperiodic (the greatest common divisor gcd(Di) = 1, where Di is the set of all
integers n > 0 with (Pn)ii > 0), there exist a unique stationary distribution, determined by the equation:∑

j∈O
qjpji = qi (25.5)

Unfortunately the rate of convergence of SA is very slow, being based similar arguments as for the convergence of
pure random search.

Homogeneous model

In the homogeneous model one considers a sequence of infinitely long homogeneous Markov chains, where each chain
is for a fixed value of the temperature T .

Under appropriate conditions [1] (the generation probability must ensure that one can move from an arbitrary
initial solution to a second arbitrary solution in a finite number of steps) the Markov chain associated to SA has a
stationary distribution q(T ) whose components are given by:

qi(T ) =
e−f(i)/T∑
j∈X e−f(j)/T

(25.6)

and

lim
T→0

qi(T ) = q∗i =
1

|X ∗|
IX ∗(i) (25.7)

where IX ∗ is the characteristic function of the set X ∗, equal to one if the argument belongs to the set, zero otherwise.
It follows that:

lim
T→0

lim
k→∞

Pr
T

(X(k) ∈ X ∗) = 1 (25.8)

The algorithm asymptotically finds an optimal solution with probability one, “converges with probability one.”

Inhomogeneous model

In practice one cannot wait for a stationary distribution to be reached. The temperature must be lowered before
converging. At each iteration k one has therefore a different temperature Tk, obtaining a non-increasing sequence of
values Tk such that limk→∞ Tk = 0.
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If the temperature decreases in a sufficiently slow way:

Tk ≥
A

log(k + k0)
(25.9)

for A > 0 and k0 > 2, then the Markov chain converges in distribution to q∗ or, in other words

lim
k→∞

Pr(X(k) ∈ X ∗) = 1 (25.10)

The theoretical value of A depends on the depth of the deepest local, non-global optimum, a value which is not easy
to calculate for a generic instance.

The above cited asymptotic convergence results of SA in both the homogeneous and inhomogeneous model are
unfortunately irrelevant for the application of SA to optimization. In any finite-time approximation one must resort to
approximations of the asymptotic convergence. The “speed of convergence” to the stationary distribution is determined
by the second largest eigenvalue of the transition probability matrix P (T ) (not easy to calculate!). The number
of transitions is at least quadratic in the total number of possible configurations in the search space [1]. For the
inhomogeneous case, it can happen (e.g., Traveling Salesman Problem) that the complete enumeration of all solutions
would take less time than approximating an optimal solution arbitrarily closely by SA [1].

In addition, repeated local search [126], and even random search [88] has better asymptotic results. According
to [1] “approximating the asymptotic behavior of SA arbitrarily closely requires a number of transitions that for
most problems is typically larger than the size of the solution space. Thus, the SA algorithm is clearly unsuited for
solving combinatorial optimization problems to optimality.” Of course, SA can be used in practice with fast cooling
schedules, i.e., ways to progressively reduce the temperature during the search, but then the asymptotic results are not
directly applicable. The optimal finite-length annealing schedules obtained on specific simple problems do not always
correspond to those expected from the limiting theorems [351].

More details about cooling schedules can be found in [273, 196, 169]. Extensive experimental results of SA for
graph partitioning, coloring and number partitioning are presented in [219, 220]. A comparison of SA and Reactive
Search Optimizaiton (RSO) is presented in [38, 39].

The authors share with [390] an overall skepticism about using Markov Chain Montecarlo (MCMC) methods
for efficiently optimizing functions, even in small dimensions.

25.7 The Inertial Shaker algorithm
A suggestion derived from our experience with optimization is: Be lazy! Always try simple methods first, add
complication only if motivated by a measurable improvement.

The simpler Inertial Shaker (IS) technique, outlined in Fig. 25.6 can be a practical choice to go beyond Pure
Random Search, while allowing on-the-job learning to rapidly adapt the probability of generating the next sample.

In IS the generation probability is uniform over a search box identified by vectors parallel to the coordinate axes
(therefore the search box is defined by a single vector b. In addition, a trend direction is identified by averaging a
number of previous displacements [36]: the find trend function used at line 7 simply returns a weighted average of the
mdisp previous displacements:

δt = amplification ·

T∑
u=1

δt−ue
− u

(history depth)2

T∑
u=1

e
− u

(history depth)2

,

where amplification and history depth are defined in the algorithm, while mdisp is chosen in order to cut off negligible
exponential weights and to keep the past history reasonably small.
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f (input) Function to minimize
x (input) Initial and current point
b (input) Box defining search regionR around x
δ (parameter) Current displacement
amplification (parameter) Amplification factor for future displacements
history depth (parameter) Weight decay factor for past displacement average

1. function InertialShaker (f, x, b)
2. t← 0
3. repeat
4. success← double shot on all components ( δ)
5. if success = true
6. x← x + δ
7. find trend ( δ)
8. if f( x + δ) < f( x)
9. x← x + δ;
10. increase amplification and history depth
11. else
12. decrease amplification and history depth
13. until convergence criterion is satisfied
14. return x;

Figure 25.6: The Inertial Shaker algorithm, from [36].

Fig. 25.9 shows how the double-shot strategy is applied to all components of the search position x. A displacement
is applied at every component as long as it improves the result. If no improvement is possible, then the function returns
false, and the search box is accordingly shrunk.

Figure 25.7: An illustration of the trend direction in the Inertial Shaker.
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Figure 25.8: An illustration of the “double shot” in the Inertial Shaker.

f Function to minimize
x Current position
b Vector defining current search box
δ Displacement

1. function double shot on all components (f, x, b, δ)
2. success← false
3. x̂← x
4. for i ∈ {1, . . . , n}
5. E ← f( x̂)
6. r← random in [−bi, bi]
7. x̂i ← x̂i + r
8. if f(x̂) > E
9. x̂i ← x̂i − 2r
10. if f(x̂) > E
11. bi ← ρcompbi
12. x̂i ← x̂i + r
13. else
14. bi ← ρexpbi
15. success← true
16. else
17. bi ← ρexpbi
18. success← true
19. if success = true
20. δ← x̂ - x
21. return success

Figure 25.9: The double-shot strategy from [36]: apply a random displacement within the search box to all coordinates,
keep the improving steps; return false if no improvement is found.
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Gist
Stochastic Global Optimization is simple and robust technique relying on the random generation of
sample points in the search space. It is a bit like in the piñata or pentolaccia game in which a blindfolded
kid tries to break a container filled with treats. If one is patient, sooner or later a random point will fall in the
vicinity of a global optimum. Asymptotic convergence can be demonstrated but it is irrelevant in practice

The curse of dimensionality is unavoidable: when the dimension is large there are just too many places
to hide the global optimum and the number of sample grows exponentially. But there is still hope if the
objective function has a very rich structure with regularities (e.g., a “big valley” structure), a frequent case
in practical applications

Simulated Annealing goes beyond local optima by allowing for controlled worsening of the current
solutions, and it generates Markov chains (memory-less).

The more effective methods in SGO use some form of learning from the past generated samples along
the search directory. Statistical inference and “learning” techniques can be used to modify probabilities
of generating new samples, so that they are more concentrated on interesting regions.

The Inertial Shaker is a pragmatic example: samples are generated from a search box. Both the search
box and a the trend direction are adapted (learnt) during the run.
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Chapter 26

Derivative-Based Optimization

In this world - I am gonna walk
Until my feet - refuse to take me any longer
Yes I’ m gonna walk - and walk some more.

(Macy Gray and Zucchero Fornaciari)

Most if not all problems can be cast as finding the optimal value for a suitable objective function, subject to con-
straints. If you are buying a house, you will have a bounded budget and objectives like number of rooms, neighborhood,
view, vicinity to workplace, schools, etc. If you are searching for a partner you will have objectives like intelligence,
beauty, companionship, etc. If you are running a company you will aim at maximizing profit, given constraints re-
garding your resources of people and equipment. . . You may notice that defining the proper function to be optimized
is not trivial (think about the preference function for your preferred partner) but, once this crucial preliminary work is
finished, one is left with the problem of minimizing or maximizing a function which maps independent variables
to an output value. Maximizing means identifying the input values causing the maximum output value. If constraints
are given, the input needs to be feasible, i.e., it needs to satisfy all constraints.

287
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Methods to optimize functions are the source of power for most problem-solving and decision making activities,
either explicitly or implicitly, a sound motivation for understanding the basic ideas and tools. While one does not
need to know the underlying math before using the technology, mastering the basis facilitates faster and more effective
choices. We consider the following related problems.

• Nonlinear equations, i.e. solving a set of nonlinear equations (individual functions fi are collected in vector
F ):

Given F : Rn −→ Rn

find x∗ ∈ Rn such that F (x∗) = 0 ∈ Rn.

The solution x∗, if it exists, minimizes
∑n
i=1(fi(x))2. This is obvious because the sum of squares is not

negative, and equal to zero if and only if all individual functions evaluate to zero.

• Unconstrained minimization:

Given f : Rn −→ R
find x∗ ∈ Rn such that f(x∗) ≤ f(x) for every x ∈ Rn.

A point x∗ satisfying the above condition is called a global optimum, by definition it is the best possible solution
to the problem: no other solution is better.

In this chapter we collect some basic and traditional methods to optimize smooth functions of continuous vari-
ables (of real numbers), with some demonstrations about their convergence properties.

In mathematics, a function is smooth if a derivative exists. You may recollect the mathematical definition of
derivative f ′(a) of function f at point a, as the limit for a step h going to zero of the difference in function value
divided by the step:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
. (26.1)

What does this abstract definition have in common with learning, making approximated models, optimizing? A
lot.

The practical “meaning” of the derivative is that, if x values are very close to a starting point of interest a (so that
the displacement h = x− a is small) one can use it to obtain a good local approximation as:

f(a+ h) ≈ f(a) + f ′(a) h (26.2)

The approximation is linear in the displacement h and it gets better and better when h becomes very small. The
original functions can be approximated, in a local area, with its tangent line, which is linear and therefore easier to
handle (with linear algebra!).

Counter-examples where derivatives do not exist are discontinuous functions (with sudden jumps) which cannot
be approximated with a straight line at the jump position, or functions with sharp corners, which again do not have a
single well-defined tangent line. A ski on a gentle slope is a nice image for a derivative of a smooth function. Skiing
works because tangent lines are a good approximation to the slope. A ski on a spiky rock gets broken because there is
no local smooth distribution of forces along a tangent line.

Like skis are tools for descending slopes, first and second derivatives are useful tools to build local models to
improve a tentative configuration x. The improvements are typically obtained in an iterative manner, from an initial
point x1, to an improving point x2 (with a different local model), to an improving x3 (with a different local model)...

If the model is linear, one gets only indications about possible descent directions. In one dimension, after knowing
the derivative at point x1, one knows whether to do a small step to the right or to the left, depending on the slope. For
sure, the step has to be sufficiently small. If the derivative is not zero, the model given by the tangent line does not lead
to a well-defined minimization problem, the y value is unbounded and goes to minus infinity. A quadratic model using
also the second derivatives can lead to a well-defined minimization problem if the parabola is U-shaped (opening to
the top). In this case, one can to define the next point x2 as the minimum of the parabolic model. A quadratic model
built by using the fist and second derivatives of the function in Fig. 26.3 is shown in Fig. 26.2.
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Figure 26.1: The graph of a function, drawn in black, and a tangent line to that function, drawn in red. The circular
inset shows that the tangent line is a good local model of the function when one stays close to the point of interest.

26.1 Optimization and machine learning
To increase our motivation before jumping into the more terse mathematical results, let’s note that there is a strong
connection between machine learning and optimization.

When going in the direction of using optimization for learning, for sure optimization has to be used to select,
among a class of models, one that is most consistent with the data provided for learning, one that better explains the
observed data. An example is the usual “sum of squared differences” used in fitting curves and in supervised learning.
Of course, the final scope of learning is generalization, but this only means that the function to be minimized will
contain more pieces, to take the model complexity into account, so that simpler models will be favored over more
complex ones.

When going in the contrary direction of using learning for optimization, some forms of learning are also used
in efficient optimization algorithms. Preliminary examples of “learning” methods, although the inventors did not use
that term, can be found in standard techniques for continuous optimization, where local models (obtained by using
local information about function and derivatives) are constructed, whose validity can be limited to regions around the
current point (model-trust-regions methods). Both the models and the trust-regions are typically adapted during a
sequence of steps homing at a local minimizer.

While these techniques are traditionally associated with continuous optimization, the same principle of having a
local model learned during optimization (or parameters tuned to the instance and local properties) can be useful
in the different context of discrete (combinatorial) optimization, see for example the local search (Chapter 24) and
Reactive Search Optimization (RSO) techniques [26] (Chapter 27).

A leitmotiv of many methods is to build the final solution by a sequence of steps which modify a tentative
solution. At each step a local model of the function being optimized is built and used for a local move, modifying the
tentative solution by small changes. The methods are therefore short-sighted and there is no guarantee of convergence
to the global optimum. Nonetheless, in practice the presence of local minima (where local searchers will be stuck)
did not prevent gradient-descent, local search and related techniques from becoming probably the simplest and most
successful problem-solving machines.

Let us now see how the principle of having a flexible local model (with parameters) learned during optimization
of a given instance acts in the case of continuous functions. The purpose of the following sections is to taste some
of the most basic and successful paradigms of continuous optimization, with emphasis on intuition more than on
mathematical details, that can be found in [115].
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Figure 26.2: The graph of a function, drawn in black, and a local quadratic model at point x1. The minimizer of the
parabola x2 is close to the (local) minimizer x∗ of the function.

A discrimination has to do with the availability of derivatives of the function to be minimized. In most real-
world cases derivatives are not available, actually in many cases the relationship between inputs and outputs can be
discontinuous, or some inputs can be discrete (for example integer values). Try asking a businessman for the derivative
of profit as a function of significant business choices, we doubt that you will get an answer!

If you are lucky and you are dealing with a function f(x) of real numbers, which is continuous and differentiable,
standard methods can be used. In particular, we summarize methods for one-dimensional optimization (Section 26.2),
then review techniques for solving models (quadratic positive definite forms) in more dimensions (Section 26.3) and
methods that use the model-solving techniques for the optimization of nonlinear functions of many variables (Sec-
tion 26.4).

If your function does not have derivatives, you may consider the methods based on function evaluations only, like
those described in Chapter 25.

26.2 Derivative-based techniques in one dimension
Intuition is easier in one dimension and let’s therefore start with some classical results for functions of one variable.
The historic, and still fundamental way to find a point where a differentiable function f(x) is equal to zero, a.k.a. a
root, is to start with a point sufficiently close to the target and iterate the two following steps:

1. find a local solvable model,

2. solve the local model.

The local model around the current point xc can be derived from Taylor series approximation by stopping at the
quadratic term:

f(x) = f(xc) + f ′(xc)(x− xc) +
f ′′(xc)(x− xc)2

2!
+ . . . ,

or from Newton’s theorem:
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x* xcx+

Figure 26.3: Local model for Newton’s method.

f(x) = f(xc) +

∫ x

xc

f ′(z) dz ≈ f(xc) + f ′(xc)(x− xc).

A local model (actually an affine model) around the current estimate xc is therefore

Mc(x) = f(xc) + f ′(xc)(x− xc),

and by finding the root of the model one gets a prescription for the next value x+ of the current estimate (the local step
is from xc to x+ ), as illustrated in Fig. 26.3:

x+ = xc −
f(xc)

f ′(xc)
.

If the function is linear, convergence occurs in one step. If the function is nonlinear, let us study the local con-
vergence properties of Newton’s method: we demonstrate that, if one starts with a point xc sufficiently close to the
root, one will eventually converge to it. The proof proceeds by bounding the lack of linearity of the model, and by
demonstrating that the distance to the target root is contracted at every step.

The lack of linearity, or the error by using the model is:

f(x)−Mc(x) =

∫ x

xc

[f ′(z)− f ′(xc)] dz.

We need now to bound the variation of a function proportionally to the difference in its inputs.

Definition 1 (Lipschitz continuity) A function g is Lipschitz continuous with constant γ in a set X ( g ∈ Lipγ(X) )
if for every x, y ∈ X:

|g(x)− g(y)| ≤ γ|x− y|.

Lemma 1 Let f ′ ∈ Lipγ(D) for an open interval D. Then for any x, y ∈ X:

|f(y)− f(x)− f ′(x)(y − x)| ≤ γ (x− y)2

2
.

Proof.

|f(y)− f(x)− f ′(x)(y − x)| =
∫ 1

0

[f ′(x+ t(y − x))− f ′(x)](y − x) dt,
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f’(x0)

x* x1 x0

error of affine model

~ |x0 - x*|^2

Figure 26.4: Convergence is guaranteed if the starting point x0 is close to x∗.

and by using the triangle inequality and Lipschitz continuity:

≤ |y − x|
∫ 1

0

γ|t(y − x)| dt = γ|y − x|2/2.

We are now ready to demonstrate the convergence theorem of Newton’s method in one dimension. Fig. 26.4
can help to follow the demonstration.

Theorem 1 Let f : D −→ R for open interval D, f ′ ∈ Lipγ(D) (Lipschitz), |f ′(x)| ≥ ρ (derivative bounded away
from zero) in D.

If f(x) = 0 has a solution x∗ ∈ D, then the solution can be found by Newton method if the starting point x0 is
sufficiently close:
there is η > 0 such that if |x0 − x∗| < η, the sequence:

xk+1 = xk −
f(xk)

f ′(xk)

exists and converges to x∗. In addition:

|xk+1 − x∗| ≤
γ

2ρ
|xk − x∗|2.

Proof. Find a starting ball such that:

|xk+1 − x∗| ≤ τ |xk − x∗| for a τ ∈ (0, 1),

this would also imply that the point remains in the ball. Let’s see.

x1 − x∗ = x0 − x∗ −
f(x0)

f ′(x0)
= x0 − x∗ −

f(x0)− f(x∗)

f ′(x0)
,
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=
1

f ′(x0)
[f(x∗)− f(x0)− f ′(x0)(x∗ − x0)] =

1

f ′(x0)
[f(x∗)−M0(x∗)],

where we identify the error of the affine model based on x0 at x∗, bounded by γ
2 |x0 − x

∗|2. Therefore

|x1 − x∗| ≤
γ

2|f ′(x0)|
|x0 − x∗|2 ≤

γ

2ρ
|x0 − x∗|2.

The distance is contracted if γ
2ρ |x0 − x

∗| < 1, or

|x0 − x∗| ≤
2ρ

γ
τ,

and contraction is obtained if one starts from the ball of radius:

η = τ
2ρ

γ
(possibly reduced to fit the interval D).

The above theorems guarantee convergence in a fast (quadratic) manner, provided that one starts already
sufficiently close to the target root. This can be the case if a good approximation of the solution is already obtained,
but, in general, one starts far away and does not have any guarantee that the starting point will be such that the steps
will eventually lead to the solution.

The issue is global convergence. In practice, in the absence of strong guarantees, many techniques are hybrid,
using Newton method when it works, otherwise falling back to a slower but safe global method, like the bisection
method, as illustrated in Fig. 26.5.

r0x3l0 x1 x2

Figure 26.5: The bisection method. The initial interval is divided into two equal parts. One of the two sub-intervals is
chosen depending on a test at the middle point. The subdivision is repeated for the chosen interval...

In the bisection method for root finding, one looks for a root of a continuous function by subdividing an initial
interval (from l0 to r0) into two equal parts, observing the f value at the middle point x1 and then continuing the
search by considering only the left or the right sub-interval (while of course maintaining the invariant that the picked
sub-interval contains the root). The function is continuous (smoothness implies continuity) and therefore it cannot
have abrupt jumps. If the value is negative at l0 and positive at r0, there must be an internal point with value zero. If
the value at x1 is negative, at least one root must be in the right sub-interval. If the value at x1 is positive, at least one
root must be in the left sub-interval. One picks the appropriate sub-interval and iterates.

The bisection method is simple and effective, and it converges in a logarithmic number of steps. In fact, each step
divides the interval into two equal parts, so that the length of the interval is divided by 2s after s steps. It is unfortunate
that this simple method is not easily extended to more than one dimension.
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X’’NXc XNX’N

Figure 26.6: Backtracking: Newton step gives the direction.

1. function hybrid quasi newton (f : R→ R, x0)
2. while not finished
3. Make local model of f around xk, find xN that solves the model;
4. if xk+1 is acceptable then move
5. else pick xk+1 by using a safe global strategy.

Figure 26.7: The hybrid quasi-Newton algorithm.

Fig. 26.6 illustrates the idea of backtracking: if Newton’s step leads too far, beyond the position of the root, one
reverts the direction coming back closer to the root position. One moves from Newton point xN towards the starting
point xc until one finds x+ with |f(x+)| < |f(xc)|.

A generic scheme for hybrid methods is to combine global convergence and fast local convergence, as illustrated
in Fig. 26.7. One should try Newton step first but always insisting that the iteration decreases some measure of the
closeness to a solution.

26.2.1 Derivatives can be approximated by the secant
If derivatives are not available or they are too costly to calculate, one can approximate them with the secant passing
through two points (with a finite-difference approximation). The secant method consists of using the previous iterate
x− as follows:

ac =
f(xc)− f(x−)

xc − x−
.

A convergence theorem is valid although the convergence rate is now slower (linear).

Theorem 2 Let f : D −→ R for open interval D, f ′ ∈ Lipγ(D) (Lipschitz), |f ′(x)| ≥ ρ (derivative bounded away
from zero) in D.

If f(x) = 0 has a solution x∗ ∈ D, then there exist positive constants η, η′ such that if 0 < |hk| ≤ η′ and if
|x0 − x∗| < η, then the sequence

xk+1 = xk −
f(xk)

ak
, ak =

f(xk + hk)− f(xk)

hk
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converges q − linearly to x∗.

The lesson is that methods based on derivatives can often be used as starting points to develop methods without
derivatives. The approximations will sacrifice some efficiency but convergence can still be obtained.

26.2.2 One-dimensional minimization
Up to now we discussed finding a root, a point where the value of f is equal to zero. To minimize a differentiable
function one starts from this necessary condition 1: the minimum must be at a point with f ′(x∗) = 0. It all amounts to
finding a root of the derivative function and we now know how to solve it! We can use the Hybrid Newton’s method,
plus the requirement that f(xk) decreases. After substituting the original function f with the first derivative f ′ one
obtains

x+ = xc −
f ′(xc)

f ′′(xc)
.

Note that the affine model of f ′ implies a quadratic model of f around xc:

mc(x) = f(xc) + f ′(xc)(x− xc) +
1

2
f ′′(xc)(x− xc)2.

The iteration will converge locally and Q-quadratically to x∗ of f(x) if f ′′(x∗) 6= 0 and f ′′ satisfies the Lipschitz
condition near x∗. If it is necessary, one backtracks until f(x+) < f(xc).

26.3 Solving models in more dimensions (positive definite quadratic forms)
Before using local quadratic models for optimization, let’s increase our motivation by confirming that these local
models can actually be solved. Let’s now consider more than one variable. Solving the local quadratic model amounts
to solving a quadratic form. An plot of a quadratic positive-definite form is shown in Fig. 26.8.

Newton’s method now requires that the gradient of the model be equal to zero. Given a step s the quadratic
model is

Q(s) =

n∑
i=1

gisi +

n∑
i=1

n∑
j=1

Hijsisj ≡ gT s+
1

2
sTHs.

After deriving the gradient, one demands

∇Q(s) = 0 = g +Hs; (26.3)
HsN = −g (Newton equation) . (26.4)

The solution of the linear system can be found in one step of cost O(n3) for the matrix inversion 2.
Because of the finite-precision computation carried out by computers one has to deal with issues of numerical

stability: with some techniques the errors accumulate in a dangerous way, and one may end up with a numerical
solution which is wildly different from the exact mathematical solution (reachable only if real numbers could be
represented with infinite precision in computers).

Ill-conditioning is a term used to measure how the solution is sensitive to changes in the data (because of finite
precision computation). Fig. 26.9 shows an example in two dimensions (two similar equations corresponding to almost
parallel lines in the plane).

1 Sufficient additional condition is f ′′(x∗) > 0 , e.g., use Taylor series with remainder:

f(x) − f(x∗) = f ′(x∗)(x− x∗) +
1

2
f ′′(x̄)(x− x∗)2.

2Actually matrix inversion can be done with O(nlog2 7) or even better asymptotic requirements with more refined techniques, which are
nonetheless not often used in practice because of complexity and numerical computing issues.
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Figure 26.8: Quadratic positive definite f of two variables.

x

solution_1

solution_2

x

y y

Figure 26.9: Ill-conditioning: solution is very sensitive to changes in the data. In this case two linear equations are
very similar and a small change in the line direction is sufficient to shift the solution by a large amount.
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In detail, one introduces the condition number κ(H) of a matrix H defined as ‖H‖ ‖H−1‖, where ‖ ∗ ‖ is the
matrix operator norm induced by the vector norm: ‖H‖ = maxx(‖Hx‖/‖x‖). The conditioning number is the ratio
of the maximum to the minimum stretch induced byH and measures the sensitivity of the solution of a linear system
to finite-precision arithmetic. If a linear system Hx = b is perturbed in the following way with an error proportional
to ε:

(H + εF )s(ε) = g + εf, (26.5)

the relative error in the solution can be bounded as:

‖s(ε)− s‖
‖s‖

≤ κ(H) (
‖εF‖
‖H‖

+
‖εf‖
‖g‖

) +O(ε2).

For the case of symmetric and positive definite matrices, an extremely stable triangular decomposition can be
found with Cholesky factorization. Writing H (symmetric positive definite) as

H = LDLT ,

with L unit lower-triangular, D diagonal with strictly positive elements (LDLT factorization).
Because the diagonal is strictly positive:

H = LD1/2D1/2LT = L̄L̄T = RTR,

where R is a general upper triangular, the Cholesky factor can be considered the “square root” of the matrix H , a
generalization of the usual square root for the case of matrices.

R can be computed directly from the element-by-element equality:
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 =


r11
r21 r22

...
...

. . .
rn1 rn2 . . . rnn



r11 r12 . . . r1n

r22 . . . r2n
. . .

...
rnn

 .

Let’s equate element (1,1):
a11 = r211, r11 =

√
a11,

continue with first row:
a12 = r11r12, a13 = r11r13, . . . .

After the entire first row is known, start with second row, element:

a22 = r212 + r222.

The above process needs about 1
6n

3 multiplications and additions and n square roots (which are avoided if LDLT is
used). No dramatic growth in the elements of R occurs because the following holds:

akk = r21k + r22k + · · ·+ r2kk.

Now the original equation becomes
RTRs = g, (26.6)

and it can be solved by back-substitution (repeatedly solving for one variable and substituting into the remaining
equations). Peel off factors in this way:

RT s1 = −g use forward substitution; (26.7)
Rs = s1 use backward substitution. (26.8)

The cost for solving the equation is O(n2) and therefore the dominant cost is in the factorization.
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Figure 26.10: Two gradient-descent experts on the mountains surrounding Trento, Italy.

26.3.1 Gradient or steepest descent
In many cases, finding the minimum of the quadratic model by matrix inversion is not the most efficient and robust
manner if the linear system becomes very large, a frequent case in machine learning. Furthermore, in many cases the
H matrix of second partial derivatives is not available or it is too costly to calculate.

In all these cases gradient descent is a possible simple strategy to gradually improve a starting solution aiming at
a locally optimal configuration.

If the gradient is different from zero, and one moves along the negative gradient:

x+ = xc − ε∇f,

considering the Taylor expansion of equation 4.4, there is a sufficiently small ε so that the function decreases f(x+) <
f(xc). Although naive and requiring some care to choose a small ε value, the above technique is used in many different
applications (see for example the popular error back-propagation method for training neural networks in Chapter 10).

Steepest descent has very natural and intuitive interpretations. A drop of water on a surface moves according to the
local gradient scouting for local minima, at least approximately. Skiers, like those in Fig. 26.10, know very well the
meaning of steepest descent, and the fact that skis must be positioned perpendicularly to the gradient to stop. Discrete
analogies of steepest descent have been encountered in Chapter 24 in the form of local search. The idea is that a search
process decides about a local step by sampling the function values at neighboring configurations and then deciding.
No form of global vision is available to guide the search, only local information.

In addition to being a descent direction, it is well known that the negative gradient −g is the direction of fastest
descent. A method which looks promising is to execute a one-dimensional minimization while moving along the
gradient direction:

min
t
Q(xc − gt).
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"correct" scaling                                                                            "wrong" scaling

Figure 26.11: The gradient is not always an appropriate direction when searching for a minimizer.

Unfortunately, the intuition is wrong: in many cases spending a lot of effort in minimizing along the gradient
direction is not the best way to solve a minimization problem.

The problem is caused by the fact that, when the matrix is ill-conditioned, the gradient direction does not point
towards the optimal value but tends more and more to point in a perpendicular direction! Ill-conditioning in two
dimensions can be visualized by thinking about contour lines becoming more and more stretched along a specific
direction, see Fig. 26.11. When one follows the gradient, the resulting trajectory zigzags and the time to reach the
minimum increases.

It can be shown that, when steepest descent is used to minimize a quadratic function Q(s) = gT s + 1
2s
THs (H

symmetric and positive definite) the convergence can become very slow. In detail, by using the condition number
κ, when κ increases, the difference between the current value and the best value is multiplied at each iteration by a
number which tends to 1:

|Q(sk+1)−Q(s∗)| ≈
(
ηmax − ηmin
ηmax + ηmin

)2

|Q(sk)−Q(s∗)|

≈
(
κ− 1

κ+ 1

)2

|Q(sk)−Q(s∗)|.

If you permit us a far-fetched analogy, the above case may have some implication for life: being greedy and aiming
at minimizing as much as possible along an appealing local direction can make one miss more “global” opportunities.

26.3.2 Conjugate gradient
The concept of non-interfering directions motivates the conjugate gradient method (CG) for minimization. Two
directions are mutually conjugate with respect to the matrix H if

pTi Hpj = 0 when i 6= j. (26.9)

After minimizing in direction pi, the gradient at the minimizer will be perpendicular to pi. If a second minimization
is in direction pi+1, the change of the gradient along this direction is gi+1 − gi = αHpi+1 (for some constant α).
The matrix H is indeed the Hessian, the matrix containing the second derivatives, and in the quadratic case the model
coincides with the original function. Now, if equation (26.9) is valid, this change is perpendicular to the previous
direction (pTi (gi+1 − gi) = 0), therefore the gradient at the new point remains perpendicular to pi and the previous
minimization is not spoiled. For a quadratic function the conjugate gradient method is guaranteed to converge to the
minimizer in at most (n + 1) function and gradient evaluations (at least for infinite-precision calculations). For a
general function the steps must be iterated until a suitable approximation to the minimizer is obtained.
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Let us introduce the vector yk = gk+1 − gk. The first search direction p1 is given by the negative gradient −g1.
Then the sequence xk of approximations to the minimizer is defined by:

xk+1 = xk + αkpk, (26.10)
pk+1 = −gk+1 + βkpk, (26.11)

where gk is the gradient, αk is chosen to minimize E along the search direction pk and βk is given by:

βk =
yTk gk+1

gTk gk
(Polak-Ribiere choice), (26.12)

or by:

βk =
gTk+1gk+1

gTk gk
(Fletcher-Reeves choice). (26.13)

The different choices coincide for a quadratic function [331]. A major difficulty with the above forms is that, for a
general function, the obtained directions are not necessarily descent directions and numerical instability can result.

The use of a momentum term to avoid oscillations in back-propagation [311] can be considered as an approximated
form of conjugate-gradient.

26.4 Nonlinear optimization in more dimensions
Let’s now consider the convergence properties of Newton’s method in more dimensions. The method consists of
solving the quadratic model:

mc(xc + p) = f(xc) +∇f(xc)
T p+

1

2
pT∇2f(xc)p,

and iterating, as shown in Fig. 26.12.
If the initial point is close to the minimizer x∗ and ∇2f(x∗) is positive definite, the method converges Q-

quadratically to x∗.
The possible problems arise if:

• the Hessian is not positive definite: there are directions of negative curvature pTHp < 0, which means that
the quadratic local model can assume arbitrarily large negative values when the step length along p increases to
infinity;

• the Hessian is singular or ill-conditioned, leading to the impossibility or numerical difficulty of inverting the
matrix.

The above problems lead to what are called Modified Newton’s methods, which change the local model to obtain
a sufficiently positive-definite and non-singular matrix. Furthermore they deal with global convergence, indefinite H ,
and iterative approximations to H . The method is to combine a fast tactical local method with a robust strategic
method to assure global convergence.

26.4.1 Global convergence through line searches
Global convergence is obtained by adopting line searches along the identified direction: one tries Newton’s method
first and then possibly backtracks. Of course one needs to ensure that the direction is indeed a descent direction!
Fortunately, if H (that is symmetric) is positive definite, Newton’s direction is a descent direction:

df

dλ
(xc + λsN ) = ∇f(xc)

T sT = −∇f(xc)
TH−1c ∇f(xc) < 0.
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1. function multi dimensional newton (f : Rn → R, x0 ∈ Rn)
2. f is twice continuously differentiable
3. while not finished
4. solve∇2f(xc)s

N = −∇f(xc);
5. xk+1 ← xk + sN .

Figure 26.12: Newton method in more dimensions.

current point

allowed region

Figure 26.13: Armijo - Goldstein conditions.

If the Hessian has to be approximated, for sure one wants to maintain the symmetry and positive definiteness, so that
the descent direction is guaranteed.

A way to ensure global convergence is to demand that the f value decreases by a sufficient amount with respect
to the step length, that the step is long enough and that the search direction is kept away from being orthogonal to the
gradient. A popular way to guarantee the above points is by Armijo and Goldstein conditions [157], also illustrated in
Fig. 26.13:

1.
f(xc + λcp) ≤ f(xc) + αλc∇f(xc)

T p,

where α ∈ (0, 1) and λc > 0;

2.
∇f(xc + λcp)

T p ≥ β∇f(xc)
T p,

where β ∈ (α, 1).

If the Armijo-Goldstein conditions are satisfied at each iteration and if the error is bounded below, one has the
following global convergence property:

lim
k→∞

∇f(xc) = 0,

provided that each step is away from orthogonality to the gradient:

lim
k→∞

∇f(xc)sk/‖sk‖ 6= 0.

If the Armijo-Goldstein conditions are maintained, one can use fast approximated one-dimensional searches
without losing global convergence [115].
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26.4.2 Cure for indefinite Hessians
If the Hessian is indefinite one can use the modified Cholesky method. Let’s consider the spectral decomposition:

H = UΛUT =

n∑
i=1

ηiuiu
T
i ,

where Λ is diagonal and Λii is the eigenvalue ηi.
It is easy to see what will happen if ηi are negative (no minimum exists: values can grow to minus infinity) or close

to zero (the inverse will have eigenvalues close to infinity).
If H is not positive definite or it is ill-conditioned one remedies in a very direct way by adding a simple diagonal

matrix:
H ′ = ∇f(xc) + µcI, µc > 0

to correct the Hessian so that∇2f(xc) + µcI is positive definite and well conditioned.
This leads to the modified Cholesky factorization: one finds the Cholesky factors of a different matrix H̄c,

differing only by a diagonal matrix K with non-negative elements:

H̄c = LDLT = Hc +K,

where all elements in D are positive and all elements of L are uniformly bounded

dk > δ, |lij |
√
dk ≤ β,

see [147] for an appropriate choice of β. The modified Cholesky factorization is used to correct Hessian [115, 20] so
that∇2f(xc) + µcI is positive definite and well conditioned.

This amounts to adding a positive definite quadratic form to our original model. The effect is that large steps tend
to be penalized.

26.4.3 Relations with model-trust region methods
The previous techniques were based on finding a search direction and moving by an acceptable amount in that direction
(“step-length-based methods”).

Because the last modification consisted of adding to the local model a quadratic term:

mmodified(xc + s) = mc(xc + s) + µcs
T s,

one may suspect that minimizing the new model is equivalent to minimizing the original one with the constraint that
the step s not be too large.

This can be executed by choosing first the maximum step length and then using the full (and not one-dimensional)
quadratic model to determine the appropriate direction. In model-trust region methods the model is trusted only
within a region, that is updated by using the experience accumulated during the search process.

Theorem 3 Suppose that we are looking for the step sc that solves:

minmc(xc + s) = f(xc) +∇f(xc)
T s+

1

2
sTHcs (26.14)

subject to ‖s‖ ≤ δc. (26.15)

The above problem is solved by:
s(µ) = −(Hc + µI)−1∇f(xc), (26.16)

for the unique µ ≥ 0 such that the step has the maximum allowed length (‖s(µ)‖ = δc), unless the step with µ = 0 is
inside the trusted region (‖s(0)‖ ≤ δc), in which case s(0), the Newton step, is the solution.
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The diagonal modification of the Hessian is a compromise between gradient descent and Newton’s method:
when µ tends to zero the original Hessian is (almost) positive definite and the step tends to coincide with Newton’s
step; when µ has to be large the diagonal addition µI tends to dominate and the step tends to one proportional to the
negative gradient:

s(µ) = −(Hc + µI)−1∇f(xc) ≈ −
1

µ
∇f(xc).

There is no need to decide from the beginning, the algorithm selects in an adaptive manner the move that is
appropriate to the local configuration of the error surface.

26.4.4 Secant methods
Secant techniques are useful if the Hessian is not available or costly to calculate.

In one dimension the second derivative can be approximated with the slope of the secant through the values of the
first derivatives at two near points:

d2f(x)

dx2
(x2 − x1) ≈

(
df(x2)

dx
− df(x1)

dx

)
. (26.17)

In more dimensions one equation is not sufficient. Let the current and next point be xc and x+, respectively, and
let’s define sc = x+ − xc and yc = ∇f(x+)−∇f(xc) (difference of gradients). The analogous “secant equation” is

H+sc = yc. (26.18)

The above equation does not determine a uniqueH+ but leaves the freedom to choose from a (n2−n) dimensional
affine subspace Q(sc, yc) of matrices obeying equation (26.18).

A possibility to cure this issue is to use the previous “history.” In other words, equation (26.18) will not be used to
determine but to update a previously available approximation.

In particular (Broyden method), one can use a least change principle, finding the matrix in Q(sc, yc) (“quotient”)
that is closest to the previously available matrix. This is obtained by projecting the matrix onto Q(sc, yc), in the
Frobenius norm (matrix as a long vector).

The resulting Broyden’s update is

(H+)1 = Hc +
(yc −Hcsc)s

T
c

sTc sc
. (26.19)

Unfortunately, Broyden’s update does not guarantee a symmetric matrix (remember that we want descent direc-
tions).

Projecting Broyden’s matrix onto the subspace of symmetric matrices is not enough: the obtained matrix may be
out of Q(sc, yc).

Fortunately, if the two above projections are repeated, the obtained sequence (H+)t converges to a matrix that is
both symmetric and in Q(sc, yc). This is the symmetric secant update of Powell:

H+ = Hc +
(yc −Hcsc)s

T
c + sc(yc −Hcsc)

T

sTc sc
− < yc −Hcsc, sc > scs

T
c

(sTc sc)
2

. (26.20)

We are closer to a satisfactory update, but we insist on a positive definite approximation of the Hessian. The matrix
H+ is symmetric and positive definite if and only if H+ = J+J

T
+ , for some non-singular J+. A proper update can be

obtained by using Broyden’s method to derive a suitable J+.
The resulting update is historically known as the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update [68]

and is given by:

H+ = Hc +
ycy

T
c

yTc sc
− Hcscs

T
c Hc

sTc HcSc
. (26.21)

The positive-definite secant update converges q − superlinearly [68].
It is possible to take the initial matrix H0 as the identity matrix, so that the first step is along the negative gradient.
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ε Learning rate
ε̄ Average learning rate
wcurr Weights
d Search direction

1. procedure oss minimize
2. begin or restart
3. ε← 10−5

4. ε̄← 10−5

5. wcurr ← random initial weights
6. iterations← 1
7. while convergence criterion is not satisfied
8. if iterations is multiple of N
9. begin or restart
10. iterations← iterations + 1
11. d← find search direction See Eq. (26.22)
12. if fast line search( d) = false
13. begin or restart

14. procedure begin or restart
15. find the current energy value
16. ε← ε̄
17. d←−g
18. fast line search( d)

Figure 26.14: The one-step secant algorithm (Part I), from [19].

26.4.5 Closing the gap: second-order methods with linear complexity
Computing the exact Hessian requires order O(n2) operations and order O(n2) memory to store the Hessian compo-
nents, in addition the solution of the equation to find the step (or search direction) in Newton’s method (see Fig. 26.12)
requires O(n3) operations, at least when using traditional linear algebra routines. Fortunately, some second-order
information can be calculated by starting from the last gradients, and therefore reducing the computation and memory
requirements to find the search direction to O(n). The term “secant methods” used in [115] is reminiscent of the fact
that derivatives are approximated by the secant through two function values.

Historically the one-step-secant method OSS is a variation of what is called one-step (memory-less) Broyden-
Fletcher-Goldfarb-Shanno method, see [331]. The OSS method has been used for multilayer perceptrons in [19] and
[31]. The main procedures are illustrated in Fig. 26.14–26.15.

Note that BFGS (see [376]) stores the whole approximated Hessian, while the one-step method requires only
vectors computed from gradients. In fact, the new search direction p+ is obtained as:

p+ = −gc +Acsc +Bcyc, (26.22)

where the two scalars Ac and Bc are the following combination of scalar products of the previously defined vectors
sc, gc and yc (last step, gradient and difference of gradients):

Ac = −
(

1 +
yTc yc
sTc yc

)
sTc gc
sTc yc

+
yTc gc
sTc yc

; Bc =
sTc gc
sTc yc

.

The search direction is the negative gradient at the beginning of learning and it is restarted to −gc every N steps
(N being the number of weights in the network).
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The fast one-dimensional minimization along the direction pc is crucial to obtain an efficient algorithm. This
part of the algorithm (derived from [115]) is described in Fig. 26.15. The one-dimensional search is based on the
backtracking strategy. The last successful learning rate λ is increased (λ ← λ × 1.1) and the first tentative step is
executed. To use the same notation as that of Fig. 26.14–26.15 let us denote with E (“energy”) the function to be
optimized. If the new value E is not below the “upper-limiting” curve, then a new tentative step is tried by using
successive quadratic interpolations until the requirement is met. Note that the learning rate is decreased by Ldecr after
each unsuccessful trial. Quadratic interpolation is not wasting computation. In fact, after the first trial one has exactly
the information that is needed to fit a parabola: the value of E0 and E′0 at the initial point and the value of Eλ at the
trial point. The parabola P (x) is

P (x) = E0 + E′0x+

[
Eλ − E0 − λE′0

λ2

]
x2, (26.23)

and the minimizer λmin is

λmin =
−E′0

2
[
Eλ−E0−λE′0

λ2

] ≤ 1

2(1−Gdecr)
λ. (26.24)

If the “gradient-multiplier” Gdecr in Fig. 26.14 is 0.5, the λmin that minimizes the parabola is less than λ.

26.5 Constrained optimization: penalties and Lagrange multipliers
Imagine that you are the owner of a factory and you want to maximize production. With unconstrained optimization
your workers may complain if asked to work day and night without pauses, lunches and vacation. A reasonable
constraint can be that each worker has to work for exactly 48 hours per week. Truck drivers have safety requirements
on the number of continuous driving hours before a break is required, otherwise they risk falling asleep while driving
(e.g., drive for no more that 6 hours).

A general constrained minimization problem is:

min f(x)
subject to gi(x) = ci for i = 1, . . . , n Equality constraints

hj(x) = dj for j = 1, . . . ,m Inequality constraints
(26.25)

where gi(x) = ci for i = 1, . . . , n and hj(x) ≥ dj for j = 1, . . . ,m are constraints that are required to be satis-
fied. Hard constraints need to be satisfied for a solution to be feasible. Even for smooth objective functions, hard
constraints complicate matters by introducing unsurmountable walls in the input parameter space.

Some ways to take care of constraints are problem-specific, e.g. they are easily handled in Linear and Quadratic
Programming tasks (Chapter 33). But there are two simple general-purpose ways to address constraints. Both ways
transform an optimization problem with constraints into an unconstrained one and are widely used.

The first method considers that hard constraints are very rare in practice. 48 working hours can be surpassed in
some cases provided that overtime is paid more than the standard rate. In engineering, all physical measures are in any
case subject to stochastic errors. If a truck on a freeway cannot weigh more than 10 tons, a policeman will hopefully
not confiscate it if the maximum weight is surpasses by one gram. Soft constraints can be violated but there is a
penalty to be paid, henceforth the name of penalty method. The harder the constraint, the higher the penalty.

For each equality constraint a quadratic penalty can be added for violation, leading to a penalized objective
function:

min f(x) +
∑
i

γi(gi(x)− ci)2 (26.26)

If the constraint is not satisfied, a penalty proportional to γi times the (quadratic) violation is paid. Of course, different
penalties are possible, e.g., absolute values, logarithmic, or different formulas for inequality constraints.
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One may be tempted to set γi to a huge positive value to bring the constraint very close to perfect satisfaction. In
fact, even a small violation of the constraint will cause an explosion of the penalty in the objective function. Unfortu-
nately, very large constraints imply that very steep walls (although not perpendicular) will be created in the penalized
objective, creating numerical problems and difficulties in the practical minimization. In practice, the proper γi values
are a result of a tradeoff between minimizing f and accepting some violation. One can start with tentative values,
see the results, discuss acceptability of constraint violation, repeat with different γi values until satisfied. Multiple-
objective optimization (Chapter 40) gives equal standing to the initial objective and to the constraint violations, leading
to a more systematic management of the solution.

If the function is smooth and has partial derivatives, a second possibility in mathematical optimization is the
method of Lagrange multipliers. The problem is transformed into an unconstrained one by adding each constraint
multiplied by a parameter λi (a Lagrange multiplier).

min f(x) +
∑
i

λigi(x) (26.27)

Minimizing the transformed function yields a necessary condition for optimality. Additional checks are therefore
necessary (for example, the identified point can be a saddle point and not a global minimum), but in many cases, in
the presence of a single global optimum, the method of Lagrange multipliers will deliver the correct solution.

Let’s develop some intuition with a graphical analysis.
Consider a two-dimensional problem:

maximize f(x, y)

subject to g(x, y) = c.

We can visualize contours of f given by
f(x, y) = d

for various values of d and the contour of g given by g(x, y) = c, as shown in Fig. 26.17.
Suppose we walk along the contour line with g = c. In general the contour lines of f and g may be distinct, so

the contour line for g = c will intersect with or cross the contour lines of f . This is equivalent to saying that while
moving along the contour line for g = c the value of f can vary. Only when the contour line for g = c meets contour
lines of f tangentially, do we neither increase nor decrease the value of f — that is, when the contour lines touch but
do not cross.

The contour lines of f and g touch when the tangent vectors of the contour lines are parallel. Since the gradient
of a function is perpendicular to the contour lines, this is the same as saying that the gradients of f and g are parallel.
Thus we want points (x, y) where g(x, y) = c and

∇f(x, y) = λ∇g(x, y).

The above analysis is valid for more than two input dimensions. If the two gradients are not parallel at the minimizer,
a local direction ∆x can be found which is perpendicular to the constraint gradient, and therefore keeps the constraint
satisfied in the linear approximation of Taylor series, but not perpendicular to the gradient of the original objective
function. A small step along ∆x (or minus ∆x) will therefore lead to smaller f values, contradicting the assumption
of minimality.

The Lagrange multiplier λ specifies how one gradient needs to be multiplied to obtain the other one!
Because of linearity of the gradient, requiring∇f(x, y)−λ∇g(x, y) = 0 is the same as requiring∇ [f(x, y)− λg(x, y)] =

0. But this is the necessary condition for a stationary point of function:

f(x, y)− λg(x, y)

the original function minus the constraint multiplied by the Lagrange multiplier.
The above can be generalized for more constraints and for inequality constraints.
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A practical application of Lagrange multipliers is in economics. Let’s remember that the gradient is used to find
a first-order difference when x is changed, and that the two gradients are parallel and related by the λ∗ multiplier. A
Lagrange multiplier can be interpreted as the “marginal” change in the optimal value of the objective function (profit)
due to a change (relaxation) of a given constraint. In such a context λ∗ is the marginal cost of the constraint, and is
referred to as the shadow price.

The shadow price can provide decision-makers with insights. For instance if a constraint limits the amount of labor
available to 40 hours per week, the shadow price tells how much you should be willing to pay for an additional hour
of labor. If pay more than the shadow price, the increase in in the total production value (the objective function) will
be less that your labor cost.

Applications of Lagrange multipliers in ML are for example in the LASSO technique in Section 9.3, of in SVM in
Section 12.1.1.
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d Search direction
g Function gradient
w Weights
dl Projection of d along the gradient
E Current energy
Esaved Best energy
ok Improving step found
trials Number of iterations
MAXTRIALS Maximum allowed number of iterations
Ldecr Step decrease at each iteration

1. procedure fast line search ( d)
2. dl ← g · d
3. if dl > 0
4. d← - g; dl ← g · d
5. Esaved ← E
6. ε← Lincr ε; ok← false; trials = 0
7. repeat
8. trials← trials + 1
9. w← wcurr + ε d
10. E ← E( w)
11. if E < Esaved +Gdecrdlε
12. ok← true
13. else
14. εquad ← parabola minimizer(Esaved, dl,f) See Eq. (26.24)
15. w← wcurr + εquad d
16. E ← E( w)
17. if E < Esaved +Gdecrdlεquad
18. ok← true; ε← εquad
19. else
20. ε← Ldecr ε
21. until ok = true or trials > MAXTRIALS
22. if ok = true
23. p← ε d
24. wcurr ← w
25. g←∇wE(w)
26. ε̄← 0.9 ε̄ + 0.1 ε
27. return ok

Figure 26.15: The one-step secant algorithm (Part II), from [19]: fast one-dimensional search along the chosen direc-
tion d.
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Figure 26.16: Find x and y to maximize f(x, y) subject to a constraint (shown in red) g(x, y) = c.

Figure 26.17: Lagrange multipliers.
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Gist
Optimization of functions (models) with real numbers as input parameters is an old area, starting approx-
imately during the second world war, and now reaching high levels of sophistication. The purpose is to
design automated techniques to identify inputs leading to maximum (or minimum) output values.

In spite of the mathematical sophistication, the basis of most optimization techniques is very under-
standable, even if you do not remember anything from your courses in calculus (the mathematical study of
change). A drop of water fallen from the sky reaches the sea without any conscious mathematical finesse.

The basic steps are as follows. Start from an initial value for the input parameters. Apply small local
changes to the various inputs and test their effects (are they leading to higher or smaller output values?).
Based on the test results decide whether to accept the local change or not. Repeat until there is progress,
leading to better and better output values.

If one can calculate derivatives, one has a simple way to predict the effect of small local changes. In
fact, you can consider the derivative as a local predictor of change. If the step is sufficiently small,
the approximation “change equals derivative times step” tends to be very good. If derivatives are not
available, one can test small changes directly (like in RAS) and keep locally adapted models to reduce
wasted function evaluations. Local adaptation occurs by learning from the previous steps of the search.

Understanding the principles, even without math theorems, is sufficient to use optimization software
with competence, and to avoid most pitfalls. After all, you do not need calculus and mathematical analysis
to ski without falling down and with a reasonable guarantee to reach your gondola ski lift.



Part IV

Learning for intelligent optimization
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Chapter 27

Reactive Search Optimization (RSO):
Online Learning Methods

This then is the first duty of an educator:
to stir up life but leave it free to develop

(Maria Montessori)

After considering basic Local Search and memory-less (Markovian) search, this chapter presents the more ad-
vanced schemes for using machine learning to improve optimization,

In many cases a single relevant instance has to be solved, so that online learning schemes for optimization
(Reactive Search Optimization, RSO) are of particular interest.

Even if the initial optimization problem is black-box, the more points are generated in input space and evaluated,
the more knowledge is accumulated, in implicit form. Data about the past history of the search can be exploited to
generate internal explicit models and improve the efficiency and effectiveness of the future optimization effort. In a
way, RSO tends towards truly intelligent problem-solving machines, which learn and self-improve the more they
work, in a way similar to humans, or similar to reactive biological systems. Think about the lifelong learning of a
violinist, from the first mechanical and “symbolic” rule-based movements, to the real mastery of a Paganini.
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The above figure shows an example in the history of bicycle design. Do not expect historical fidelity here, this
book is about the LION way and not about bike technology. The first model is a starting solution with a single wheel,
it works but it is not optimal yet. The second model is a randomized attempt to add some pieces to the original design,
the situation is worse. One could revert back to the initial model and start other changes. But let’s note that, if one
insists and proceeds with a second addition, one may end up with the third model, clearly superior from a usability
and safety point of view. This story has a lesson: local search by small perturbations is a tasty ingredient but
additional spices are in certain cases needed to obtain superior results.

Reactive Search Optimization (RSO) advocates the integration of online machine learning techniques into op-
timization heuristics. The word reactive hints at a ready response to events during the search through an internal
feedback loop for online self-tuning and dynamic adaptation. In RSO the past history of the search and the knowl-
edge accumulated while moving in the configuration space is used for self-adaptation in an automated manner: the
algorithm maintains the internal flexibility needed to address different situations during the search, but the adaptation
is automated, and executed while the algorithm runs on a single instance and reflects on its past experience. Machine
learning is therefore an essential ingredient in the RSO soup, as illustrated in Fig. 27.1.

RSO
Com

S

Machine Learning
and

Neural Networks

Operations

Research

(optimization)

Figure 27.1: RSO is at the intersection of optimization, computer science (algorithms and data structures) and machine
learning.

Reactive Search Optimization adopts ideas and methods from machine learning and statistics, in particular rein-
forcement learning, active or query learning, and neural networks. Let’s note that the effort towards adaptive and
self-tuning optimization schemes is deeply rooted also in the generation of adaptive probability density functions in
stochastic global optimization (Chapter 25) or in the use of derivative-based local models in continuous optimization
(Chapter 26). RSO deals with the systematic application of ML into optimization, also for solving a single instance!

The following sections are mostly dedicated to discrete optimization, but with some examples also for functions of
real variables. After an introduction (Sec. 27.1), we present some notable ways of reacting from the search history to
affect different parameters or critical choices of the search mechanism, in particular reacting on temporary prohibition
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periods (Sec. 27.2), adapting the neighborhood in variable-neighborhood search (Chapter 28), iterating local search to
escape from an attractor (Chapter 29), self-tuning the temperature in Simulated Annealing (Chapter 30), dynamically
adapting fitness surfaces or the amount of stochasticity (Chapter 31).

27.1 RSO: Learning while searching
Let’s cite the main motivations for passing from simple local search to Reactive Search Optimization, by summarizing
the more extended presentations of the subject [25, 27, 26].

Many problem-solving methods are characterized by a certain number of choices and free parameters, whose
appropriate setting and tuning is complex. In some cases the parameters are tuned through a feedback loop that
includes the user as a crucial learning component: different options are developed and tested until acceptable
results are obtained. The quality of results is not automatically transferred to different instances and the feedback loop
can require a slow “trial and error” process when the algorithm has to be tuned for a specific application. In Machine
Learning a rich variety of “design principles” is available that can be used in the area of parameter tuning and optimal
choice for heuristics. The lack of human intervention does not imply higher unemployment rates for researchers. On
the contrary, one is now loaded with a heavier task: the algorithm developer must transfer his intelligent expertise
into the algorithm itself, a task that requires the exhaustive description of the tuning phase in the algorithm. The
algorithm complexity will increase, but the price is worth paying if the two following objectives are reached.

• Reproducibility of results through complete and unambiguous documentation. The algorithm becomes self-
contained and its quality can be judged independently from the designer or specific user. This requirement is
particularly important for science, in which objective evaluations are crucial. The widespread usage of software
archives further simplifies the test and simple re-use of heuristic algorithms.

• Automation. The time-consuming handmade tuning phase is now substituted by an automated process, as
illustrated in Fig. 27.2. Let us note that only the final user will typically benefit from an automated tuning
process. On the contrary, the algorithm designer faces a longer and harder development phase. There are no free
meals: complexity does not disappear, it is only shifted from the decision maker to the method (and software)
designer.

The metaphors for Reactive Search Optimization derive mostly from the individual human experience. Its motto
is “learning on the job.” As already mentioned, real-world problems have a rich structure. While many alternative
solutions are tested in the exploration of a search space, patterns and regularities appear. The human brain quickly
learns and drives future decisions based on previous observations. This is the main inspiration source for inserting
online machine learning techniques into the optimization engine of RSO. Memetic algorithms share a similar focus on
learning, although their concentration is on cultural evolution, describing how societies develop over time, more than
on the capabilities of a single individual.

Nature and biology-inspired metaphors for optimization abound today. It is to some degree surprising that
most of them derive from genetics and evolution, or from the emergence of collective behaviors from the interaction
of simple living organisms which are mostly hard-wired with little or no learning capabilities. One almost wonders
whether this is related to ideological prejudices in the spirit of Jean-Jacques Rousseau, who believed that man was
good when in the state of nature but is corrupted by society, or in the spirit of the “evil man against nature” principle
of commercial Hollywood B-movies. Metaphors can lead us astray from our main path: we are strong supporters of a
pragmatic approach, an algorithm is effective if it solves a problem in a competitive manner without requiring an
expensive tailoring, not because it corresponds to one’s favorite elaborate, fanciful or sexy analogies. Furthermore,
at least for a researcher, in most cases an algorithm is of scientific interest if there are ways to analyze its behavior and
explain why and when it is effective. Seminal papers related to using memory in a strategic manner to guide heuristics
to continue exploration beyond local minima are the ones by Fred Glover about tabu search, scatter search and path
relinking, and related metaheuristics, see for example [150], [153] and the amusing [152]. Other inspiring papers that
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Figure 27.2: Algorithms with self-tuning capabilities like RSO make life simpler for the final user. Complex problem
solving does not require technical expertise but is available to a much wider community of final users (adapted from
[27]).

you may want to read to get a taste of related topics are [275] about memetic algorithms, [388] about evolving neural
networks, [56] about meta-heuristics, and [200] about performance prediction and automated tuning.

27.2 RSO based on prohibitions
The idea of using prohibitions to encourage creativity and diversification, i.e., to encourage a decision maker, an
engineer, or a designer, to consider radically new alternatives, is deeply rooted in the practice of research. Quoting
from Konrad Lorenz, the Austrian Nobel-prize winner and creator of modern ethology, “it is a good morning exercise
for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young.” What a brilliant
illustration of the fact that you want to prohibit the consideration of old solutions in order to be truly creative.

In the initial figure, one has to prohibit the consideration of monocycles and insist with local changes to eventually
invent bicycles, although the process may include some intermediate inferior designs. Success is fueled by persistence
and acceptance of repeated failure.

As mentioned above, local search generates a trajectory X(t) of points in the admissible search space. The suc-
cessor of a point X is selected from a neighborhood N(X) that associates to the current point X a subset of X . A
point X is locally optimal with respect to N, or a local minimum if: f(X) ≤ f(Y ) for all Y ∈ N(X). For the
following discussion we consider the case in which X consists of binary strings with a finite length L: X = {0, 1}L
and the neighborhood is obtained by applying the elementary moves µi(i = 1, ..., L) that change the i-th bit of the
string X = [x1, ..., xi, ..., xL]:

µi([x1, ..., xi, ..., xL]) = [x1, ..., x̄i, ..., xL]; (27.1)

where x̄i is the negation of the i-th bit: x̄i ≡ (1− xi).
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To avoid entrapment in local attraction basins, one can bias the search toward points with low f values but incor-
porate reactive prohibition strategies to discourage the repetitions of already-visited configurations. Local moves are
executed even if f increases with respect to the value at the current point, to exit from local minima of f . But soon as a
move is applied, the inverse move is temporarily prohibited (the name “tabu search” derives from this prohibition).

In detail, at a given iteration t, the set of moves M is partitioned into the set T (t) of the tabu moves, and the
set A(t) of the admissible moves. Superscripts with parenthesis are used for quantities that depend on the iteration.
At the beginning, the search starts from an initial configuration X(0), that is generated randomly, and all moves are
admissible: A(0) =M, T (0) = ∅. The search trajectory X(t) is then generated, by applying the best admissible move
µ(t) from the set A(t):

X(t+1) = µ(t)(X(t)) where µ(t) = arg min
ν∈A(t)

f(ν(X(t))).

In isolation, the “modified greedy search” principle can generate cycles. For example, if the current point X(t) is
a strict local minimum, the cost function at the next point must increase: f(X(t+1)) = f(µ(t)(X(t))) > f(X(t)), and
there is the possibility that the move at the next step will be its inverse (µ(t+1) = µ(t)−1) so that the state after two
steps will come back to the starting configuration

X(t+2) = µ(t+1)(X(t+1)) = µ(t)−1 ◦ µ(t)(X(t)) = X(t).

At this point, if the set of admissible moves is the same, the system will be trapped forever in a cycle of length 2. In
this example, the cycle is avoided if the inverse move µ(t)−1 is prohibited at time t + 1. In general, the inverses of
the moves executed in the most recent part of the search are prohibited for a period T . For binary strings a move
coincides with its inverse: a move is prohibited if and only if its most recent use has been at time τ ≥ (t− T (t)). The
period is finite because the prohibited moves can be necessary to reach the optimum in a later phase of the search. In
prohibition-based-RSO (tabu-RSO for short) the prohibition period T (t) is time-dependent.

The diversification effect of prohibiting moves on the search trajectory has been clarified by the fundamental re-
lationships between prohibition and diversification demonstrated by Battiti in [42]. Let H(X,Y ) be the Hamming
distance between two stringsX and Y , defined as the number of corresponding bits that are different in the two strings.
Now, if only allowed moves are executed, and T satisfies T ≤ (n − 2), which guarantees that at least two moves are
allowed at each iteration, one obtains the following.

• The Hamming distance H between a starting point and successive points along the trajectory is strictly increas-
ing for T + 1 steps:

H(X(t+τ), X(t)) = τ for τ ≤ T + 1.

• The minimum repetition interval R along the trajectory is 2(T + 1):

X(t+R) = X(t) ⇒ R ≥ 2(T + 1).

The above relationships clearly show how the prohibition is related to the amount of diversification: the larger
T , the larger is the distance H that the search trajectory must travel before it is allowed to come back to a previously
visited point. But T cannot be too large, otherwise a shrinking number of moves will be allowed after an initial phase,
leading to less freedom of movement.

The demonstration of the relationships is immediate as soon as one notices that, after a bit is changed, it is “frozen”
for the next T iterations. To visualize this behavior, Fig. 27.3 shows the evolution of the configuration X(t), when the
function to be optimized is given by f(X) ≡ number(X), where number(X) is obtained by considering X as the
standard binary encoding of an integer number. The prohibition T is equal to three.

In a physical analogy, as soon as a bit is changed, an ice cube is placed on it so that it will not be changed during
the future T iterations. When the period T elapses, the ice cube melts down and the bit can be changed again. The
situation in which a bit is “frozen” and cannot be changed is shown with a shaded box in Fig. 27.3. In the example,
the configuration starts with the all-zero string, a locally optimal point. At iteration 0, the best move changes the least



318 CHAPTER 27. REACTIVE SEARCH OPTIMIZATION (RSO)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0

4 0 0 0 0

0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

1

3

5

0

1

3

7

15

14

12

8

0

0

1

2

3

4

3

2

1

0

Xt
t(  )

Iteration

1

1

1

1

11

111

11

1

0

1

1

1

1

T  1

T  1

+

+

2(      )

 (     ) H X   X (    ,      )f  X
(  )t t(  ) (  )t

Figure 27.3: An example of the relationship between prohibition T , and diversification measured by the Hamming
distance H(X(t), X(0)). T = 3 in the example. Figure adapted from [42].

significant bit. At iteration 1 the least significant bit is frozen and the best allowed move changes the second bit. The
maximum Hamming distance is reached at iteration (T + 1), then the distance decreases and the initial configuration
is repeated at iteration 2(T + 1). When a cycle like the one above is generated, the set of configurations visited during
the initial part, up to H = T + 1, is different from the set visited when H decreases back toward zero. In other words,
the trajectory looks like a lasso around a local optimum, and one does not waste CPU time to revisit previously
visited configurations. In general, after visiting a locally optimal point, better values can be obtained by visiting other
local optima. Of course, as soon as a local minimizer is found, all points in its attraction basin (i.e., all points that are
mapped to the given minimizer by the local search dynamics) are not of interest. In fact, by definition, their f value is
equal to or larger than the value at the local minimizer. The value of T should be chosen so that a new attraction basin
leading to a new and possibly better local minimizer can be reached after reaching Hamming distance T + 1.

Because the minimal Hamming distance required (a sort of attraction radius for the given attraction basin) is not
known, one should determine T in a reactive way, by learning the proper value while the search executes. The basic
prohibition mechanism cannot guarantee the absence of cycles [37, 40]. In addition, the choice of a fixed T without a
priori knowledge about the possible search trajectories that can be generated in a given (X , f) problem is difficult. If
the search space is inhomogeneous, a size T that is appropriate in a region of X may be inappropriate in other regions.
For example, T can be too small and insufficient to avoid cycles, or too large, so that only a small fraction of the
movements are admissible and the search is inefficient.

Tabu-RSO uses a simple mechanism to change T during the search so that the value T (t) is appropriate to the
local structure of the problem (therefore the term “reactive”). The underlying design principle is that of determining,
for a given local configuration, the minimal prohibition value which is sufficient to escape from an attraction
basin around a minimizer, as illustrated in Fig. 27.4. The basic principle is that T is equal to one at the beginning
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(only immediately returning to a just left configuration is prohibited), T increases if the trajectory is trapped in an
attraction basin around a local optimum (repetitions of previously visited configuration can signal this situation), and
T decreases if unexplored search regions are visited, leading to different local optima. If the problem is so simple that
a single local optimum is present, and therefore it coincides with the global optimum, the power of tabu-RSO is not
needed, although not dangerous. Tabu-RSO will simply discover the optimal solution, save it, and then search for an
(impossible) improvement. It has to be noted that most real-world problems are infested with many locally optimal
points, so that tabu-RSO is crucial to transform a local search building block into an effective and efficient solver.

Figure 27.4: RSO with prohibitions in action. Three locally optimal points are shown together with contour lines of
the function to be optimized. When starting from a locally optimal point, RSO executes loops which reach bigger and
bigger distances from the attractor, until another attraction basin is encountered (if present).

The overhead (additional CPU time and memory) introduced by the reactive mechanisms is of small number of
CPU cycles and bytes, approximately constant for each step in the search process. By using hashing functions1 to
store and retrieve the relevant data, the additional memory required can be reduced to some bytes per iteration, while
the time is reduced to that needed to calculate a memory address from the current configuration and to execute a small
number of comparisons and updates of variables [37]. RSO with prohibitions has been used for problems ranging
from combinatorial optimization to the minimization of continuous functions and to sub-symbolic machine learning
tasks, a partial list is contained in [26].

1 Hashing is a nice trick — although maybe not well known outside of the computer science community — to create dictionaries (associations
of data with keywords), so that retrieval is fast and approximately constant-time, on average. A hash function is a deterministic procedure that takes
an arbitrary block of data (in our case the keyword) and returns a limited-size integer, the hash value, such that a change to the data will typically
change the hash value. The obtained integer can be used as a memory address to store the block of data, so that lookup is immediate: get the hash
value and go the memory address to read the data. Technical details related to having different keywords sharing by chance the same address can
be resolved by chaining, i.e., associating a linked list of data items with the memory address.
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Figure 27.5: Open hashing scheme: items (configuration, or compressed hashed value, etc.) are stored in “buckets.”
The index of the bucket array is calculated from the configuration.

27.3 Fast data structures for using the search history

The storage and access of the past events is executed through the well-known hashing or radix-tree techniques in a
CPU time that is approximately constant with respect to the number of iterations. Therefore the overhead caused by
the use of the history is negligible for tasks requiring a non-trivial number of operations to evaluate the cost function
in the neighborhood.

An example of a memory configuration for the hashing scheme is shown in Fig. 27.5. From the current configu-
ration phi one obtains an index into a “bucket array.” The items (configuration or hashed value or derived quantity,
last time of visit, total number of repetitions) are then stored in linked lists starting from the indexed array entry.
Both storage and retrieval require an approximately constant amount of time if: i) the number of stored items is not
much larger than the size of the bucket array, and ii) the hashing function scatters the items with a uniform probability
over the different array indices. More precisely, given a hash table with m slots that stores n elements, a load factor
α = n/m is defined. If collisions are resolved by chaining, searches take O(1 + α) time, on average.

27.3.1 Persistent dynamic sets

Persistent dynamic sets are proposed to support memory–usage operations in history-sensitive heuristics in [24, 22].
Ordinary data structures are ephemeral [119], meaning that when a change is executed the previous version is de-

stroyed. Now, in many contexts like computational geometry, editing, implementation of very high level programming
languages, and, last but not least, the context of history-based heuristics, multiple versions of a data structure must be
maintained and accessed. In particular, in heuristics one is interested in partially persistent structures, where all ver-
sions can be accessed but only the newest version (the live nodes) can be modified. A review of ad hoc techniques for
obtaining persistent data structures is given in [119] that is dedicated to a systematic study of persistence, continuing
the previous work of [285].

Hashing combined with persistent red-black trees

The basic observation is that, because Tabu Search is based on local search, configuration X(t+1) differs from con-
figuration X(t) only because of the addition or subtraction of a single index (a single bit is changed in the string).
It is therefore reasonable to expect that more efficient techniques can be devised for storing a trajectory of chained
configurations than for storing arbitrary states. The expectation is indeed true, although the techniques are not for
beginners. You are warned, proceed only if not scared by advanced data structures.
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Let us define the operations INSERT(i) and DELETE(i) for inserting and deleting a given index i from the set. As
cited above, configurationX can be considered as a set of indices in [1, L] with a possible realization as a balanced red-
black tree, see [46, 166] for two seminal papers about red-black trees. The binary string can be immediately obtained
from the tree by visiting it in symmetric order, in time O(L). INSERT(i) and DELETE(i) require O(logL) time, while
at most a single node of the tree is allocated or deallocated at each iteration. Re-balancing the tree after insertion or
deletion can be done in O(1) rotations and O(logL) color changes [357]. In addition, the amortized number of color
changes per update is O(1), see for example [259].

Now, the REM method [148, 149] is closely reminiscent of a method studied in [285] to obtain partial persistence,
in which the entire update sequence is stored and the desired version is rebuilt from scratch each time an access is
performed, while a systematic study of techniques with better space-time complexities is present in [312, 119]. Let us
now summarize from [312] how a partially persistent red-black tree can be realized. An example of the realizations
that we consider is presented in Fig. 27.6.

The trivial way is that of keeping in memory all copies of the ephemeral tree (see the top part of Fig. 27.6),
each copy requiring O(L) space. A smarter realization is based on path copying, independently proposed by many
researchers, see [312] for references. Only the path from the root to the nodes where changes are made is copied: a
set of search trees is created, one per update, having different roots but sharing common subtrees. The time and space
complexities for INSERT(i) and DELETE(i) are now of O(logL).

The method that we will use is a space-efficient scheme requiring only linear space proposed in [312]. The
approach avoids copying the entire access path each time an update occurs. To this end, each node contains an
additional “extra” pointer (beyond the usual left and right ones) with a time stamp. When attempting to add a pointer
to a node, if the extra pointer is available, it is used and the time of the usage is registered. If the extra pointer is
already used, the node is copied, setting the initial left and right pointers of the copy to their latest values. In addition,
a pointer to the copy is stored in the last parent of the copied node. If the parent has already used the extra pointer, the
parent, too, is copied. Thus copying proliferates through successive ancestors until the root is copied or a node with a
free extra pointer is encountered. Searching the data structure at a given time t in the past is easy: after starting from
the appropriate root, if the extra pointer is used the pointer to follow from a node is determined by examining the time
stamp of the extra pointer and following it if and only if the time stamp is not larger than t. Otherwise, if the extra
pointer is not used, the normal left-right pointers are considered. Note that the pointer direction (left or right) does not
have to be stored: given the search tree property it can be derived by comparing the indices of the children with that of
the node. In addition, colors are needed only for the most recent (live) version of the tree. In Fig. 27.6 NULL pointers
are not shown, colors are correct only for the live tree (the nodes reachable from the rightmost root), extra pointers are
dashed and time-stamped.

The worst-case time complexity of INSERT(i) and DELETE(i) remains O(logL), but the important result derived
in [312] is that the amortized space cost per update operation is O(1). Let us recall that the total amortized space cost
of a sequence of updates is an upper bound on the actual number of nodes created.

Let us now consider the context of history-based heuristics. Contrary to the popular usage of persistent dynamic
sets to search past versions at a specified time t, one is interested in checking whether a configuration has already been
encountered in the previous history of the search, at any iteration.

A convenient way of realizing a data structure supporting X-SEARCH(X) is to combine hashing and partially
persistent dynamic sets, see Fig. 27.7. From a given configuration X an index into a “bucket array” is obtained
through a hashing function, with a possible incremental evaluation in time O(1). Collisions are resolved through
chaining: starting from each bucket header there is a linked list containing a pointer to the appropriate root of the
persistent red-black tree and satellite data needed by the search (time of configuration, number of repetitions).

As soon as configuration X(t) is generated by the search dynamics, the corresponding persistent red-black tree is
updated through INSERT(i) or DELETE(i). Let us now describe X-SEARCH(X(t)): the hashing value is computed
from X(t) and the appropriate bucket searched. For each item in the linked list the pointer to the root of the past
version of the tree is followed and the old set is compared with X(t). If the sets are equal, a pointer to the item on the
linked list is returned. Otherwise, after the entire list has been scanned with no success, a NULL pointer is returned.

In the last case a new item is linked in the appropriate bucket with a pointer to the root of the live version of the
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tree (X-INSERT(X, t)). Otherwise, the last visit time t is updated and the repetition counter is incremented.
After collecting the above cited complexity results, and assuming that the bucket array size is equal to the maximum

number of iterations executed in the entire search, it is straightforward to conclude that each iteration of reactive-TS
requires O(L) average-case time and O(1) amortized space for storing and retrieving the past configurations and for
establishing prohibitions.

In fact, both the hash table and the persistent red-black tree require O(1) space (amortized for the tree). The
worst-case time complexity per iteration required to update the current X(t) is O(logL), the average-case time for
searching and updating the hashing table is O(1) (in detail, searches take time O(1 + α), α being the load factor, in
our case upper bounded by 1). The time is therefore dominated by that required to compare the configuration X(t)

with that obtained through X-SEARCH(X(t)), i.e., O(L) in the worst case. Because Ω(L) time is needed during the
neighborhood evaluation to compute the f values, the above complexity is optimal for the considered application to
history-based heuristics.
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Gist
Reactive Search Optimization (RSO) uses learning and adaptation during the optimization process, so that
the search technique can be fine-tuned to the instance being solved and to the local characteristics around
the current tentative solution. RSO deals with designing an intelligent module overseeing the basic local
search process, balancing diversification and intensification, optimizing components of the optimization
process itself (meta-optimization or meta-heuristics).

Reactive Search Optimization adapts in an online manner meta-parameters of heuristics. In par-
ticular prohibition mechanisms (“stay away from this area”) can be used to encourage diversification and
discovery of improving solutions. It is well known that real creativity and innovation requires staying away
from current solutions (“lateral thinking”, “out-of-the-box thinking” are popular terms in the management
literature). In a similar manner, prohibition mechanisms added to simple local-search schemes can be a very
direct manner to continue the search beyond local optimality.

Reactive Search Optimization schemes require saving and retrieving past configurations, operations
which can be very fast with appropriate data structures.

Let’s note that the term reactive as “readily responsive to a stimulus” used in our context is not in
contrast with proactive as “acting in anticipation of future problems, needs, or changes.” In fact, in order
to obtain a reactive algorithm, the designer needs to be proactive by appropriately planning modules into
the algorithm, to endow it with the capability of autonomous response. In other words, Reactive Search
Optimization algorithms need proactive algorithm designers.
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Chapter 28

Adapting neighborhoods and selection

Speak through me, O Muse,
of that man of many devices

who wandered much
once he’d sacked the sacred citadel of Troy.
(Odyssey by Homer, as translated by Stein,

Charles)

It looks like there is little online learning to be considered for a simple technique like local search. Nonetheless,
we already encountered a first possibility, that of prohibiting some local moves in Chapter 27. This chapter considers
a more structured organization of the possible local moves. Various possible moves are collected into a set of different
neighborhoods, which are chosen in a strategic manner depending on the current state of the search.

327
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As a mythological analogy consider how Odysseus (or Ulysses in Roman myths) escaped from the Sirens, beautiful
yet dangerous creatures, who lured nearby sailors with their enchanting music and voices to shipwreck on the rocky
coast of their island. He had all of his sailors plug their ears with beeswax and tie him to the mast. He ordered his
men to leave him tied tightly to the mast, no matter how much he would beg. What a nice analogy of the effort and
different set of moves required to escape from the attraction of a local minimum.

Let’s recollect the building block of local search considered in Section 24.2 In the function IMPROVING-NEIGHBOR
one has to decide about a neighborhood (a set of local moves to be applied) and about a way to pick one of the neigh-
bors to be the next point along the search trajectory. Selecting a neighborhood structure appropriate to a given
problem is the most critical issue in LS. Let’s concentrate on online learning strategies which can be applied while
local search runs on a specific instance. They can be applied in two contexts: selection of the neighbor or selection of
the neighborhood.

Let’s start from the first context where a neighborhood is chosen before the run is started, and only the selection
of an improving neighbor is dynamic. The average progress in the optimization per unit of computational effort (the
average “speed of descent” ∆fbest per second) will depend on two factors: the average improvement per move and the
average CPU time per move. There is a trade-off: the longer to evaluate the neighborhood, the better the chance of
identifying a move with a large improvement, but the shorter the total number of moves which one can execute in the
CPU time allotted. The optimal setting depends on the problem, the specific instance, and the local configuration of
the f landscape.

The immediate brute-force approach consists of considering all neighbors, by applying all possible basic moves,
evaluating the corresponding f values and moving to the neighbor with the best value, breaking ties randomly if they
occur. The best possible neighbor is chosen at each step. To underline this fact, the term “best-improvement local
search” is used.

A second possibility consists of evaluating a sample of the possible moves, a subset of neighbors. In this cases
IMPROVING-NEIGHBOR can return the first candidate with a better f value. This option is called first-move. If no
such candidate exists the trajectory is at a local optimum. A randomized examination order can be used to avoid
spurious effects. FIRSTMOVE is clearly adaptive: the exact number of neighbors evaluated before deciding the next
move depends not only on the instance but on the particular local properties in the configuration space around the
current point. One expects to evaluate a small number of candidates the early phase of the search, whereas identifying
an improving move will become more and more difficult during the later phases, close to local optimality. The analogy
is that of learning a new language: the progress is fast at the beginning but it gets slower and slower after reaching an
advanced level. To summarize, FIRSTMOVE works according to “keep evaluating until either an improving neighbor
is found or all neighbors have been examined”.

28.1 Variable Neighborhood Search: Learning the neighborhood
There are cases when the definition of a fixed neighborhood for a problem is not an optimal choice because adapting
the neighborhood to the local configuration around the current point is beneficial.

A possible way of tuning the neighborhood considers a set of neighborhoods, defined a priori at the beginning of
the search, and then aims at using the most appropriate one during the search, as illustrated in Fig. 28.1. This is the
seminal idea of the Variable Neighborhood Search (VNS) technique, see [171].

Let the set of neighborhoods be {N1, N2, ..., Nkmax}. A proper VNS strategy has to deal with the following
issues:

1. Which neighborhoods to use and how many of them. Larger neighborhoods may include smaller ones or be
disjoint.

2. How to schedule the different neighborhoods during the search (order of consideration, transitions between
different neighborhoods)

3. Which neighborhood evaluation strategy to use (first move, best move, sampling, etc.)
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Figure 28.1: Variable neighborhood search: the used neighborhood (“circle” around the current configuration) varies
along the search trajectory.

The first issue can be decided based on detailed problem knowledge, preliminary experimentation, or simply
availability of off-the-shelf software routines for the efficient evaluation of a set of neighborhoods.

The second issue leads to a range of possible techniques. A simple implementation can just cycle randomly
among the different neighborhoods during subsequent iterations: no online learning is present but possibly more
robustness for solving instances with very different characteristics or for solving an instance where different portions
of the search space have widely different characteristics.

Let’s note that local optimality depends on the neighborhood: as soon as a local minimum is reached for a
specific Nk, improving moves can in principle be found in other neighborhoods Nj with j 6= k. A possibility to use
online learning is based on the principle “intensification first, minimal diversification only if needed” which we
often encounter in heuristics [37]. One orders the neighborhoods according to their diameter, or to the strength of the
perturbation executed. For example, if the search space is given by binary strings, one may consider as N1 all changes
of a single bit, N2 all changes of two bits, etc. If local search makes progress one sticks to the default neighborhood
N1. As soon as a local minimum with respect to N1 is encountered one tries to go to greater Hamming distances from
the current point aiming at discovering a nearby attraction basin, possibly leading to a better local optimum.

Fig. 28.2 illustrates the reactive strategy: point a corresponds to the local minimum, point b is the best point in
neighborhood N1, and point c the best point in N2. The value of point c is still worse, but the point is in a different
attraction basin so that a better point e could now be reached by the default local search. The best point d in N3 is
already improving on a.

From the example one already identifies two possible strategies. In both cases one uses N1 until a local minimum
of N1 is encountered. When this happens one considers N2, N3, .... In the first strategy one stops when an improving
neighbor is identified (point d in the figure). In the second strategy one stops when one encounters a neighbor in a
different attraction basin with an improving local minimum (point c in the figure). How does one know that c is in a
different basin? One can perform a local search run from it and of look at which point the local search converges.

For both strategies, one reverts back to the default neighborhoodN1 as soon as the diversification phase considering
neighborhoods of increasing diameter is successful. Note a strong similarity with the design principle of Reactive Tabu
Search, see Sec. 27.2, where diversification through prohibitions is activated when there is evidence of entrapment in
an attraction basin and gradually reduced when there is evidence that a new basin has been discovered.

Many VNS schemes using the set of different neighborhoods in an organized way are possible [173]. Variable
Neighborhood Descent (VND), see Fig. 28.3, uses the default neighborhood first, and the ones with a higher number
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Figure 28.2: Variable neighborhoods of different diameters. Neighboring points are on the circumferences at different
distances. The figure is intended to help the intuition: the actual neighbors considered in the text are discrete.

only if the default neighborhood fails (i.e., the current point is a local minimum for N1), and only until an improving
move is identified, after which it reverts back to N1. When VND is coupled with an ordering of the neighborhoods
according to the strength of the perturbation, one realizes the principle “use the minimum strength perturbation
leading to an improved solution.”

REDUCED-VNS is a stochastic version where only one random neighbor is generated before deciding about mov-
ing or not. Line 5 of Fig. 28.3 is substituted with:

X ′ ← RANDOMEXTRACT(Nk(X))

SKEWED-VNS modifies the move acceptance criterion by accepting also worsening moves if they lead the
search trajectory sufficiently far from the current point (“I am not improving but at least I keep moving without
worsening too much during the diversification”), see Fig. 28.4. This version requires a suitable distance function
ρ(X,X ′) between two solutions to get controlled diversification (e.g., ρ(X,X ′) can be the Hamming distance for
binary strings), and it requires a skewness parameter α to regulate the trade-off between movement distance and
willingness to accept worse values. By looking at Fig. 28.2, one is willing to accept the worse solution c because it
is sufficiently far to possibly lead to a different attraction basin. Of course, determining an appropriate metric and
skewness parameter is not a trivial task in general.

Other versions of VNS employ a stochastic move acceptance criterion, in the spirit of Simulated Annealing as
implemented in the large-step Markov-chain version [264, 262], where “kicks” of appropriate strength are used to exit
from local minima, see also Chapter 29 about Iterated Local Search.

An explicitly reactive-VNS is considered in [64] for the VRPTW problem (vehicle routing problem with time
windows), where a construction heuristic is combined with VND using first-improvement local search. Furthermore,
the objective function used by the local search operators is modified to consider the waiting time to escape from a local
minimum. A preliminary investigation about a self-adaptive neighborhood ordering for VND is presented in [192].
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1. function VARIABLENEIGHBORHOODDESCENT (N1, . . . , Nkmax )
2. repeat until no improvement or max CPU time elapsed
3. k ← 1 default neighborhood
4. while k ≤ kmax:
5. X ′ ← BESTNEIGHBOR (Nk(X)) neighborhood exploration
6. if f(X ′) < f(X)
7. X ← X ′ ; k ← 1 success: back to default neighborhood
8. else
9. k ← k + 1 try with the following neighborhood

Figure 28.3: The VND routine. Neighborhoods with higher numbers are considered only if the default neighborhood
fails and only until an improving move is identified. X is the current point.

1. function SKEWEDVARIABLENEIGHBORHOODSEARCH (N1, . . . , Nkmax )
2. repeat until no improvement or max CPU time elapsed
3. k ← 1 default neighborhood
4. while k ≤ kmax
5. X ′ ← RANDOMEXTRACT (Nk(X))
6. X ′′ ← LOCALSEARCH(X ′) shake local search to reach local minimum
7. if f(X ′′) < f(X) + αρ(X,X ′′)
8. X ← X ′′ ; k ← 1 success: back to default neighborhood
9. else
10. k ← k + 1 try with the following neighborhood

Figure 28.4: The SKEWED-VNS routine. Worsening moves are accepted provided that the change leads the trajectory
sufficiently far from the starting point. X is the current point. ρ(X,X ′′) measures the solution distance.
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Ratings to the different neighborhoods are derived according to their observed benefits in the past and used periodically
to order the various neighborhoods.

To conclude this section, let’s note some similarities between VNS and the adaptation of the search region in
stochastic search technique for continuous optimization. In both cases the neighborhood is adapted to the local position
in the search space. In addition to many specific algorithmic differences, let’s note that the set of neighborhoods is
discrete in VNS while it consists of a portion of Rn for continuous optimization. Neighborhood adaptation in the
continuous case, see for example the Reactive Affine Shaker algorithm [36] in Sec. 32.1, is considered to speed-up
convergence to a local minimizer, not to jump to nearby valleys.

Gist
Local search heuristics build upon the definition of a suitable neighborhood (set of basic moves to apply to
tentative solutions). Unfortunately, it is difficult to know a priori which neighborhood will produce the best
results. In addition, configurations which are locally optimal for one neighborhood can be further improved
by a different neighborhood.

Variable Neighborhood Search (VNS) organizes the neighborhoods as sets of different strengths (amount
of perturbation), it uses the simplest neighborhood at the beginning, until a local minimum is reached. At
this point, neighborhoods leading to bigger perturbations are tried. Like the flexible Ulysses, the man
of many devices, rapidly adapts to new contexts to escape Polyphemus and the Sirens, VNS adapts the
neighborhood in a reactive fashion to the characteristics of a specific problem instance and to the
local situation along the search trajectory to escape locally optimal points.

VNS is a king of greedy strategy about the use of neighborhoods (therefore a kind of meta-greedy-
strategy).



Chapter 29

Iterated local search

Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time.
(Thomas A. Edison)

If a local search “building block” is available, for example as a concrete software toolkit, how can it be used by
some upper layer coordination mechanism to get better results? An answer is given by repeating calls to the local
search routine each time starting from a properly chosen configuration. If the starting configuration is random, one
starts from scratch and discards knowledge about the previous searches. This trivial form actually is called simply
repeated local search. It has no memory and just keeps trying, like the mythological Sisyphus, punished for his
deceitfulness and forced to roll an immense boulder up a hill, only to watch it roll back down, repeating this action for
eternity.

Learning implies that the previous history, for example the memory about the previously found local minima, is
mined to produce better and better starting points. The implicit assumption is again that of a clustered distribution
of local minima: determining good local minima is easier when starting from a local minimum with a low f value
than when starting from a random point. It is also faster because trajectory lengths from a local minimum to a nearby
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Figure 29.1: Probability of low f values is larger for local minima in X ∗ than for a point randomly extracted from X .
Large-dimensional problems tend to have a very spiky distribution for X ∗ values.

one tend to be shorter. Furthermore an incremental evaluation of f can often be used instead of re-computation from
scratch if one starts from a new point. Updating f values after a move can be much faster than computing them from
scratch. As usual, the only caveat is to avoid confinement in a given attraction basin, so that the “kick” to transform
a local minimizer into the starting point for the next run has to be appropriately strong, but not too strong to avoid
reverting to memory-less random restarts (if the kick is stochastic). Iterated Local Search is based on building a
sequence of locally optimal solutions by: (i) perturbing the current local minimum; (ii) applying local search after
starting from the modified solution.

As it happens with many simple — but sometimes very effective — ideas, the same principle has been rediscovered
multiple times, for example in [45]. One may also argue that iterated local search shares many design principles with
variable neighborhood search. A similar intuition is present in the iterated Lin-Kernighan algorithm of [221], where
a local minimum is modified by a 4-change (a “big kick” eliminating four edges and reconnecting the path) and used
as a starting solution for the next run of the Lin-Kernighan heuristic. In the stochastic local search literature based on
Simulated Annealing, the work about large-step Markov chain of [264, 262, 263, 370] contains very interesting results
coupled with a clear description of the principles.

Our description follows mainly [254]. LOCALSEARCH is seen by ILS as a black box. It takes as input an initial
configuration X and ends up at a local minimum X∗. Globally, LOCALSEARCH maps from the search space X to the
reduced set X ∗ of local minima. Obviously, the values of the objective function f at local minima are better than the
values at the starting points, unless one is so lucky to start already at a local minimum. If one searches for low-cost
solutions, sampling from X ∗ is therefore more effective than sampling from X , this is in fact the basic feature of local
search, see Fig. 29.1.

One may be tempted to sample in X ∗ by repeating runs of local search after starting from different random initial
points. Unfortunately, general statistical arguments [316] related to the “law of large numbers” indicate that when the
size of the instance increases, the probability distribution of the cost values f tends to become extremely peaked about
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Figure 29.2: Neighborhood among attraction basins induced a neighborhood definition on local minima in X ∗.

the mean value E[f(x∗)], mean value which can be offset from the best value fbest by a fixed percent excess. If we
repeat a random extraction from X ∗ we are going to get very similar values with a large probability.

Relief comes from the rich structure of many optimization problem, which tends to cluster good local minima
together. Instead of a random restart it is better to search in the neighborhood of a current good local optimum. What
one needs is a hierarchy of nested local searches: starting from a proper neighborhood structure on X ∗ (proper as
usual means that it makes the internal structure of the problem “visible” during a walk among neighbors). Hierarchy
means that one uses local search to identify local minima, and then defines a local search in the space of local minima.
One could continue, but in practice one limits the hierarchy to two levels. The sampling among X ∗ will therefore be
biased and, if properly designed, can lead to the discovery of f values significantly lower than those expected by a
random extraction in X ∗.

A neighborhood for the space of local minima X ∗, which is of theoretical interest, is obtained from the structure
of the attraction basins around a local optimum. An attraction basin contains all points which are mapped to the given
optimum by local search. The local optimum is an attractor of the dynamical system obtained by applying the local
search moves. By definition, two local minima are neighbors if and only if their attraction basins are neighbors, i.e.,
they share part of the boundary. For example, in Fig. 29.2, local minima b, c, d, e, f are neighbors of local minimum
a. Points g, h are not neighbors of a.

A weaker notion of closeness (neighborhood) which permits a fast stochastic search in X ∗ and which does not
require an exhaustive determination of the attraction basins geography — a daunting task indeed — is based on
creating a randomized path in X leading from a local optimum to one of the neighboring local optima, see the path
from a to b in the figure.

A final design issue is how to build the path connecting two neighboring local minima. An heuristic solution is the
following one, see Fig. 29.3 and Fig. 29.4: generate a sufficiently strong perturbation leading to a new point and then
apply local search until convergence at a local minimum. The perturbation strength and the acceptance decision can
change in a reactive manner, depending on the history of search. For example, the perturbation can become stronger if
the recent history indicates that the search is trapped in the neighborhood of a local minimum, it can become lighter if
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Figure 29.3: ILS: a perturbation leads from a to b, then local search to c. If perturbation is too strong one may end up
at d therefore missing the closer local minima.
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1. function ITERATEDLOCALSEARCH ()
2. X0 ← INITIALSOLUTION()
3. X∗ ← LOCALSEARCH (X0)
4. repeat
5. X ′ ← PERTURB (X∗, history)
6. X∗

′ ← LOCALSEARCH (X ′)
7. X∗ ← ACCEPTANCEDECISION (X∗, X∗

′
, history)

8. until (no improvement or termination condition)

Figure 29.4: Iterated Local Search. The perturbation strength and the acceptance decision depend on the history of the
search process.

new record values are generated after the most recent kicks (an evidence that new local optima are being visited after
the kicks).

One has to adapt the appropriate strength of the perturbation to avoid cycling and keep exploring. If the perturba-
tion is too small, one risks that the solution returns back to the starting local optimum. As a result, if the perturbation
and local search are deterministic, an endless cycle would be produced.

Learning based on the previous search history is of paramount importance to avoid cycles and similar traps. The
principle of “intensification first, minimal diversification only if needed” can be applied, together with stochastic
elements to increase robustness and discourage cycling. As we have seen for VNS, minimal perturbations maintain
the trajectory in the starting attraction basin, while excessive ones bring the method closer to a random sampling,
therefore loosing the boost from the problem structure properties. A possible solution consists of perturbing by a short
random walk of a length which is adapted by statistically monitoring the progress in the search.

It is already clear that the design principles underlying many superficially different techniques are in reality
strongly related. We already mentioned the issue related to designing a proper perturbation, or “kick,” or select-
ing the appropriate neighborhood, to lead a solution away from a local optimum, as well as the issue of using online
reactive learning schemes to increase the adaptation and robustness.

Gist
Local search mechanisms are simple to build and run but stop at the first locally optimal point encountered
along the search trajectory.

Repeated local search consists of repeating local search after starting from different (possibly random-
ized) initial solutions. The best solutions found in all repetitions in then returned. Repeated local search is
oblivious (memory-less).

In most cases better results cab be obtained by the smarter iterated local search, which can be seen
as local search among locally optimal points. Kicks (perturbations) are applied to push a local optimum
sufficiently away that the trajectory will not fall back to the starting point, but not too far away to make it
similar to random search (and therefore not exploiting the rich “Big-Valley” problem structure).

In a soccer analogy, a player kicks the ball and passes it to a different player to reach the goal, but if the
kick is too strong the referee will signal with a flag that the ball wnet off the field of play, leaving to wasted
time in the action.
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Chapter 30

Online learning in Simulated Annealing

“The poets did well to conjoin music and medicine, in Apollo, because the office of medicine is but to tune the curious harp of
man’s body and reduce it to harmony.”

(Francis Bacon, The Advancement Of Learning)

A notable feature of simulated annealing is its asymptotic convergence, a notable drawback is its asymptotic con-
vergence. For a practical application of SA, if the local configuration is close to a local minimizer and the temperature
is already very small in comparison to the upward jump which has to be executed to escape from the attractor, although
the system will eventually escape, an enormous number of iterations can be spent around the attractor. Given a finite
patience time, all future iterations can be spent while “circling like a fly around a light-bulb” (the light-bulb being a
local minimum). Animals with superior cognitive abilities get burnt once, learn, and avoid doing it again!

The memoryless property (current move depending only on the current state, not on the previous history) makes
SA look like a dumb animal indeed. It is intuitive that a better performance can be obtained by using memory,
by self-analyzing the evolution of the search, and by activating more direct escape strategies. One needs a better
time-management than the “let’s go to infinite time” principle. In the following sections we summarize the main
memory-based approaches developed in the years to make SA a competitive strategy.
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Figure 30.1: Simulated Annealing: if the temperature is very low w.r.t. the jump size SA risks a practical entrapment
close to a local minimizer.

30.1 Combinatorial optimization problems
Even if a vanilla version of a cooling schedule for SA is adopted (starting temperature Tstart, geometric cooling schedule
Tt+1 = α Tt, with α < 1, final temperature Tend), a sensible choice has to be made for the three involved parameters
Tstart, α, and Tend. If the scale of the temperature is wrong, extremely poor results are to be expected. The work [380]
suggests to estimate the distribution of f values, note that f is usually called “energy” when exploiting the physical
analogies of SA. The standard deviation of the energy distribution defines the maximum-temperature scale, while the
minimum change in energy defines the minimum-temperature scale. These temperature scales tell us where to begin
and end an annealing schedule.

The analogy with physics is pursued in [247], where concepts related to phase transitions and specific heat are
used. A phase transition is related to solving a sub-part of a problem. Before reaching the state after the transition, big
reconfigurations take place and this is signaled by wide variations of the f values. In thermodynamics and statistical
mechanics, the specific heat describes how the average function value (energy value) changes with temperature. A
phase transition occurs when the specific heat is maximal, a quantity estimated by the ratio between the estimated
variance of the objective function and the temperature: σf 2/T . After a phase transition corresponding to the big
reconfiguration, finer details in the solution have to be fixed, and this requires a slower decrease of the temperature.
It is a very bad idea to stop SA immediately after a phase transition, when new record values keep being generated.
Concretely, one defines two temperature-reduction parameters α and β, monitors the evolution of f along the trajectory
and, after the phase transition takes place at a given Tmsp, one switches from a faster temperature decrease given by α
to the slower one given by β. The value Tmsp is the temperature corresponding to the maximum specific heat, when
the scaled variance reaches its maximal value.

A monotonic decrease of the temperature has some weaknesses: for fixed values of Tstart and α in the vanilla
version one will reach an iteration so that the temperature will be so low that practically no tentative move will be
accepted with a non-negligible probability (given the finite users’ patience). The best value reached so far, fbest, will
remain stuck in a helpless manner even if the search is continued for very long CPU times, see also Fig. 30.1. In
other words, given a set of parameters Tstart and α, the useful span of CPU time is practically limited. After the initial



CHAPTER 30. ONLINE LEARNING IN SIMULATED ANNEALING 341

period the temperature will be so low that the system freezes and, with large probability, no tentative moves will be
accepted anymore within the finite span of the run. In many cases one would like to obtain an anytime algorithm, so
that longer allocated CPU times are related to possibly better and better values until the user decides to stop. Anytime
algorithms — by definition — return the best answer possible even if they are not allowed to run to completion, and
may improve on the answer if they are allowed to run longer.

Let’s note that, in many cases, the stopping criterion should be decided a posteriori, for example after estimating
that additional time has little probability to improve significantly on the result.

To avoid this problem is related to a monotonic temperature decrease, one considers non-monotonic cooling
schedules, see [97, 283, 3]. A very simple proposal [97] suggests to reset the temperature once and for all at a constant
temperature high enough to escape local minima but also low enough to visit them, for example, at the temperature
Tfound when the best heuristic solution is found in a preliminary SA simulation.

The basic design principle for a non-monotonic schedule is related to: i) exploiting an attraction basin rapidly
by decreasing the temperature so that the system can settle down close to the local minimizer, ii) increasing the
temperature to diversify the solution and visit other attraction basins, iii) decreasing again after reaching a different
basin. As usual, the temperature increase in this kind of non-monotonic cooling schedule has to be rapid enough to
avoid falling back to the current local minimizer, but not too rapid to avoid a random-walk situation (where all random
moves are accepted) which would not capitalize on the local structure of the problem (“good local minima close to
other good local minima”). The implementation details have to do with determining an entrapment situation, for
example from the fact that no tentative move is accepted after a sequence tmax of tentative changes, and determining
the detailed temperature decrease-increase evolution as a function of events occurring during the search. Possibilities
to increase the temperature include resetting the temperature to Treset = Tfound, the temperature value when the current
best solution was found [283]. If the reset is successful, one may progressively reduce the reset temperature: Treset ←
Treset/2. Alternatively [3] geometric re-heating phases can be used, which multiply T by a heating factor γ larger
than one at each iteration during reheat. Enhanced versions involve a learning process to choose a proper value of
the heating factor depending on the system state. In particular, γ is close to one at the beginning, while it increases
if, after a fixed number of escape trials, the system is still trapped in the local minimum. More details and additional
bibliography can be found in the cited papers.

Let’s note that similar “strategic oscillations” have been proposed in tabu search, in particular in the reactive tabu
search [37] see Sec. 27.2, and in variable neighborhood search, see Sec. 28.1.

Experimental evidence shows that the a priori determination of SA parameters and acceptance function does not
lead to efficient implementations [278]. Adaptations may be done “by the algorithm itself using some learning mech-
anism or by the user using his own learning mechanism.” The authors appropriately note that the optimal choices of
algorithm parameters depend not only on the problem but also on the particular instance and that a proof of conver-
gence to a globally optimum is not a selling point for a specific heuristic: in fact a simple random sampling, or even
exhaustive enumeration (if the set of configurations is finite) will eventually find the optimal solution, although they
are not the best algorithms to suggest. A simple adaptive technique suggested in [278] is the SEQUENCEHEURIS-
TIC: a perturbation leading to a worsening solution is accepted if and only if a fixed number of trials could not find
an improving perturbation. This method can be seen as deriving evidence of “entrapment” in a local minimum and
reactively activating an escape mechanism. In this way the temperature parameter is eliminated. The positive perfor-
mance of the SEQUENCEHEURISTIC in the area of design automation suggests that the success of SA is “due largely
to its acceptance of bad perturbations to escape from local minima rather than to some mystical connection between
combinatorial problems and the annealing of metals” [278].

30.2 SA for global optimization of continuous functions
The application of SA to continuous optimization (optimization of functions defined on real variables in R) is pio-
neered by [101]. The basic method is to generate a new point with a random step along a direction eh, to evaluate the
function and to accept the move with the probability given in equation (25.1). One cycles over the different directions
eh during successive steps of the algorithm. A first critical choice has to do with the range of the random step along
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the chosen direction. A fixed choice obviously may be very inefficient: this opens a first possibility for learning from
the local f surface. In particular a new trial point x′ is obtained from the current point x as:

x′ = x+ Rand(−1, 1)vheh

where Rand(−1, 1) returns a random number uniformly distributed between -1 and 1, eh is the unit-length vector
along direction h, and vh is the step-range parameter, one for each dimension h, collected into the vector v. The
exponential acceptance rule is used to decide whether to update the current point with the new point x′. The vh value
is adapted during the search with the aim of maintaining the number of accepted moves at about one-half of the total
number of tried moves. Although the implementation is already reactive and based on memory, the authors encourage
more work so that a “good monitoring of the minimization process” can deliver precious feedback about some crucial
internal parameters of the algorithm.

In Adaptive Simulated Annealing (ASA), also known as very fast simulated re-annealing [205], the parameters
that control the temperature cooling schedule and the random step selection are automatically adjusted according to
algorithm progress. If the state is represented as a point in a box and the moves as an oval cloud around it, the
temperature and the step size are adjusted so that all of the search space is sampled at a coarse resolution in the early
stages, while the state is directed to promising areas in the later stages [205].

Gist
The use of Simulated Annealing for optimization has been motivated with asymptotic convergence results.
When the number of iterations goes to infinity and the temperature is decreased slowly, the probability of
observing a global optimum goes to one. Unfortunately, life is too short for asymptotic results, even the life
of the universe is too short in some cases.

The problem is that the temperature parameter, when compared with the step in function value which
must be executed to escape from a local attraction basin, can be so low that all future steps can be spent in
the neighborhood of a single local optimum, in spite of the theoretical asymptotic convergence.

One has to abandon vanilla “Markov-process” SA in favor of more pragmatic versions which esti-
mate progress, determine a possible entrapment, and activate direct ways of escaping, e.g., by raising the
temperature (re-heating). The conditions for the validity of most math theorems are not valid anymore,
theoretical analysis becomes very complex if not impossible, but better local optima can be determined in
most practical cases.

Traditional SA can be compared to a fly randomly circling around a light bulb, getting burnt again
and again, with no memory and no learning possibility. The light bulb is an analogy for a local optimum
entrapping a search directory. When touching something hot, a kid will get burnt once, maybe twice, but
then online learning takes place. Which process sounds more sensible?



Chapter 31

Dynamic landscapes and noise levels

’Morsel’ is a perfect word. Forming those six letters on the lips and
tongue prompts an instantaneous physiological reaction.

The mouth waters. The lips purse.
(Shawn Amos)

This chapter considers reactive modification of the objective function in order to support appropriate diversification
of the search process. Contrary to the prohibition-based techniques of Sec. 27.2 the focus is not that of pushing the
search trajectory away from a local optimum though explicit and direct prohibitions but on modifying the objective
function so that previous promising areas in the solution space appear less favorable, and the search trajectory
will be gently pushed to visit new portions of the search space. To help the intuition, see also Fig. 31.1, one may
think about pushing up the search landscape at a discovered local minimum, so that the search trajectory will flow into
neighboring attraction basins. For a physical analogy, think about you sitting in a tent while it is raining outside. A
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Figure 31.1: Transformation of the objective function to gently push the solution out of a given local minimum.
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for i← 1 to MAX-TRIES

X ← random truth assignment
for j ← 1 to MAX-FLIPS

if Rand(0,1)< p then
var ← any variable occurring in some unsatisfied clause

else
var ← any variable with largest ∆f

FLIP(var)

Figure 31.2: The “GSAT-with-walk” algorithm. Rand(0, 1) generates random numbers in the range [0, 1]

way to eliminate dangerous pockets of water stuck on flat convex portions is to gently push the tent fabric from below
until gravity will lead water down.

As with many algorithmic principles, it is difficult to pinpoint a seminal paper in this area. The literature about
stochastic local search for the Satisfiability (SAT) problem is of particular interest. Different variations of local search
with randomness techniques have been proposed for Satisfiability and Maximum Satisfiability (MAX-SAT) starting
from the late eighties, for some examples see [164], [324], and the updated review of [208]. These techniques were
in part motivated by previous applications of “min-conflicts” heuristics in the area of Artificial Intelligence, see for
example [161] and [271].

Before arriving at the objective function modifications, let’s summarize the influential algorithm GSAT [324]. It
consists of multiple runs of LS+ local search, each one consisting of a number of iterations that is typically proportional
to the problem dimension n. Let f be the number of satisfied clauses. At each iteration of LS+, a bit which maximizes
∆f is chosen and flipped, even if ∆f is negative, i.e., after flipping the bit the number of satisfied clauses decreases.

The algorithm is briefly summarized in Fig. 35.16. A certain number of tries (MAX-TRIES) is executed, where
each try consists of a number of iterations (MAX-FLIPS). At each iteration a variable is chosen by two possible
criteria and then flipped by the function FLIP, i.e., xi becomes equal to (1 − xi). One criterion, active with noise
probability p, selects a variable occurring in some unsatisfied clause with uniform probability over such variables, the
other one is the standard method based on the function f given by the number of satisfied clauses. For a generic move
µ applied at iteration t, the quantity ∆µf (or ∆f for short) is defined as f(µ X(t)) − f(X(t)). The straightforward
book-keeping part of the algorithm is not shown. In particular, the best assignment found during all trials is saved and
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reported at the end of the run. In addition, the run is terminated immediately if an assignment is found that satisfies all
clauses. Different noise strategies to escape from attraction basins are added to GSAT in [322, 323]. In particular, the
GSAT-with-walk algorithm.

The breakout method suggested in [274] for the constraint satisfaction problem measures the cost as the sum of
the weights associated to the violated constraints (to the nogoods). Each weight is one at the beginning, at a local
minimum the weight of each nogood is increased by one until one escapes from the given local minimum (a breakout
occurs).

Clause–weighting has been proposed in [321] in order to increase the effectiveness of GSAT for problems char-
acterized by strong asymmetries. A positive weight is associated to each clause to determine how often the clause
should be counted when determining which variable to flip. The weights are dynamically modified and the qualitative
effect is that of “filling in” local optima while the search proceeds. Clause–weighting and the breakout technique can
be considered as “reactive” techniques where a repulsion from a given local optimum is generated in order to induce
an escape from a given attraction basin. The local adaptation is clear: weights are increased until the original local
minimum disappears, and therefore the current weights depend on the local characteristic of a specific local minimum
point.

In detail, a weight wi is associated to each clause, and the guiding evaluation function becomes not a simple count
of the satisfied clauses but a sum of the corresponding weights. New parameters are introduced and therefore new
possibilities for tuning the parameters based on feedback from preliminary search results. The algorithm in [325]
suggests a different way to use weights to encourage more priority on satisfying the “most difficult” clauses. One aims
at learning how difficult a clause is to satisfy. These hard clauses are identified as the ones which remain unsatisfied
after a try of local search descent followed by plateau search. Their weight is increased so that future runs will give
them more priority when picking a move. If weights are only increased, after some time their size becomes large
and their relative magnitude will reflect the overall statistics of the SAT instance, more than the local characteristics
of the portion of the search space where the current configuration lies. To combat this problem, two techniques are
proposed in [130], either reducing the clause weight when a clause is satisfied, or by a weight decay scheme (each
weight is reduced by a factor φ before updating it). Depending on the size of the increments and decrements, one
achieves “continuously weakening incentives not to flip a variable” instead of the strict prohibitions of Tabu Search.
The second scheme takes the recency of moves into account, the implementation is through a weight decay scheme
updating so that each weight is reduced before a possible increment by δ if the clause is not satisfied:

wi ← φ wi + δ

where one introduces a decay rate φ and a “learning rate” δ. A faster decay (lower φ value) will limit the temporal
extension of the context and imply a faster forgetting of old information. The effectiveness of the weight decay
scheme is interpreted by the authors as “learning the best way to conduct local search by discovering the hardest
clauses relative to recent assignments.” Some collateral damage (warping effects) can be caused clause-weighting
dynamic local search on the fitness surface [360]. The fitness surface is changed in a global way after encountering a
local minimum. Points which are very far from the local minimum, but which share some of the unsatisfied clauses,
will also see their values changed. This does not correspond to the naive “push-up” picture where only the area close
to a specific local minimum is raised, and the effects on the overall search dynamics are far from simple to understand.
Be aware of dangerous analogies!

A more recent proposal of a dynamic local search (DLS) for SAT is in [361]. The authors start from the Exponen-
tiated Sub-Gradient (ESG) algorithm [317], which alternates search phases and weight updates, and develop a scheme
with low time complexity of its search steps: Scaling and Probabilistic Smoothing (SAPS). Weights of satisfied clauses
are multiplied by αsat, while weights of unsatisfied clauses are multiplied by αunsat, then all weights are smoothed
towards their mean w̄: w ← w ρ+ (1− ρ) w̄. A reactive version of SAPS (RSAPS) is then introduced that adaptively
tunes one of the algorithm’s important parameters.
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31.1 Guided local search
While we concentrated on the SAT problem above, a similar approach has been proposed with the term of Guided
Local Search (GLS) [371, 373] for other applications. GLS aims at enabling intelligent search schemes that exploit
problem- and search-related information to guide a local search algorithm in a search space. Penalties depending on
solution features are introduced and dynamically manipulated to distribute the search effort over the regions of a search
space.

Let us stop for a moment with an historical digression to show how many superficially distinct concepts are in fact
deeply related. Inspiration for GLS comes from a previously proposed neural net algorithm (GENET) [375] and from
tabu search [148], simulated annealing [234], and tunneling [252]. The use of “neural networks” for optimization
consists of setting up a dynamical system whose attractors correspond to good solutions of the optimization problem.
Once the dynamical system paradigm is in the front stage, it is natural to use it not only to search for but also to
escape from local minima. According to the authors [372], GENET’s mechanism for escaping resembles reinforcement
learning [18]: patterns in a local minimum are stored in the constraint weights and are discouraged to appear thereafter.
GENET’s learning scheme can be viewed as a method to transform the objective function so that a local minimum
gains an artificially higher value. Consequently, local search will be able to leave the local minimum state and search
other parts of the space. In tunneling algorithms [252] the modified objective function is called the tunneling function.
This function allows local search to explore states which have higher costs around or further away from the local
minimum, while aiming at nearby states with lower costs. In the framework of continuous optimization similar ideas
have been rediscovered multiple times. Rejection-based stochastic procedures are presented in [252, 15, 282]. Citing
from a seminal paper [252], one combines “a minimization phase having the purpose of lowering the current function
value until a local minimizer is found and a tunneling phase that has the purpose of finding a point ... such that when
employed as starting point for the next minimization phase, the new stationary point will have a function value no
greater than the previous minimum found.” The “strict” prohibitions of tabu search become “softer” penalties in GLS,
which are determined by reaction to feedback from the local optimization heuristic under guidance [373].

A complete GLS scheme [373] defines appropriate solution features fi, for example the presence of an edge in a
TSP path, and combines three ingredients:

feature penalties pi to diversify the search away from already-visited local minima (the reactive part)

feature costs ci to account for the a priori promise of solution features (for example the edge cost in TSP)

a neighborhood activation scheme depending on the current state.

The augmented cost function h(X) is defined as:

h(X) = f(X) + λ
∑
i

pi Ii(X) (31.1)

where Ii(X) is an indicator function returning 1 if feature i is present in solution X , 0 otherwise. The augmented cost
function is used by local search instead of the original function.

Penalties are zero at the beginning: there is no need to escape from local minima until they are encountered! Local
minima are then the “learning opportunities” of GLS: when a local minimum of h is encountered the augmented cost
function is modified by updating the penalties pi. One considers all features fi present in the local minimum solution
X ′ and increments by one the penalties which maximize:

Ii(X
′)

ci
1 + pi

(31.2)

The above mechanism kills more birds with one stone. First a higher cost ci, and therefore an inferior a priori
desirability for feature fi in the solution, implies a higher tendency to be penalized. Second, the penalty pi, which is
also a counter of how many times a feature has been penalized, appears at the denominator, and therefore discourages
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penalizing features which have been penalized many times in the past. If costs are comparable, the net effect is that
penalties tend to alternate between different features present in local minima.

GLS is usually combined with “fast local search” FLS. FLS includes implementation details which speedup each
step but do not impact the dynamics and do not change the search trajectory, for example an incremental evaluation
of the h function, but it also includes qualitative changes in the form of sub-neighborhoods. The entire neighborhood
is broken down into a number of small sub-neighborhoods. Only active sub-neighborhoods are searched. Initially all
of them are active, then, if no improving move is found in a sub-neighborhood, it becomes inactive. Depending on
the move performed, a number of sub-neighborhoods are activated where one expects improving moves to occur as a
result of the move just performed. For example, after a feature is penalized, the sub-neighborhood containing a move
eliminating the feature from the solution is activated. The mechanism is equivalent to prohibiting examination of the
inactive moves, in a tabu search spirit. As an example, in TSP one has a sub-neighborhoods per city, containing all
moves exchanging edges where at least one of the edges terminates at the given city. After a move is performed, all
sub-neighborhoods corresponding to cities at the ends of the edges involved in the move are activated, to favor a chain
of moves involving more cities.

While the details of sub-neighborhoods definition and update are problem-dependent, the lesson learned is that
much faster implementations can be obtained by avoiding a brute-force evaluation of the neighborhood, the motto
is “evaluate only a subset of neighbors where you expect improving moves.” In addition to a faster evaluation per
search step one obtains a possible additional diversification effect related to the implicit prohibition mechanism. This
technique to speedup the evaluation of the neighborhoods is similar to the “don’t look bits” method in [50]. One flag
bit is associated to every node, and if its value is 1 the node is not considered as a starting point to find an improving
move. Initially all bits are zero, then if an improving move could not be found starting at node i the corresponding bit
is set. The bit is cleared as soon as an improving move is found that inserts an edge incident to node i.

The parameter λ in equation (31.1) controls the importance of penalties w.r.t the original cost function: a large λ
implies a large diversification away from previously visited local minima. A reactive determination of the parameter
λ is suggested in [373].

While the motivations of GLS are clear, the interaction between the different ingredients causes a somewhat com-
plicated dynamics. Let’s note that different units of measure for the cost in equation (31.1) can impact the dynamics,
something which is not particularly desirable: if the cost of edge in TSP is measured in kilometers the dynamics is
not the same as if the cost is measured in millimeters. Furthermore, the definition of costs ci for a general problem
is not obvious and the consideration of the “costs” ci in the penalties in a way duplicates the explicit consideration of
the real problem costs in the original function f . In general, when penalties are added and modified, a desired effect
(minimal required diversification) is obtained indirectly by modifying the objective function and therefore by possibly
causing unexpected effects, like new spurious local minima, or shadowing of promising yet-unvisited solutions. For
example, an unexplored local minimum of f may not remain a local minimum of h and therefore it may be skipped
by modifying the trajectory.

A penalty formulation for TSP including memory-based trap-avoidance strategies is proposed in [374]. One of
the strategies avoids visiting points that are close to points visited before, a generalization of the STRICT-TS strategy
[23]. A recent algorithm with an adaptive clause weight redistribution is presented in [206], it adopts resolution-
based preprocessing and reactive adaptation of the total amount of weight to the degree of stagnation of the search.
Stagnation is identified after a long sequence of flips without improvement, long periods of stagnation will produce
“oscillating phases of weight increase and reduction.”

31.2 Adapting noise levels
Up to know we have seen how to modify the objective function or the LS rules in a dynamic manner depending on the
search history and current state in order to deviate the search trajectory away from local optimizer. Another possibility
to reach similar (stochastic) deviations of the trajectory is by adding a controlled amount of randomized movements.
Clinamen is the name the philosopher Lucretius gave to the spontaneous microscopic swerving of atoms from a vertical
path as they fall, considered in discussions of possible explanation for free will. A kind of algorithmic clinamen can
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be used to influence the diversification of an SLS technique. A related usage of “noise” is also considered in Sec 25.5
about Simulated Annealing, in which upward moves are accepted with a probability depending on a temperature
parameter.

An opportunity for self-adaptation considering different amounts of randomness is given by adaptive noise mech-
anism for WalkSAT. In WalkSAT [322], one repeatedly flips a variable in an unsatisfied clause. If there is at least
one variable which can be flipped without breaking already satisfied clauses, one of them is flipped. Otherwise, a
noise parameter p determines if a random variable is flipped, or if a greedy step is executed, with probability (1− p),
favoring minimal damage to the already satisfied clauses.

In [265] it appears that appropriate noise settings achieve a good balance between the greedy “steepest descent”
component and the exploration of other search areas away from already considered attractors. The work in [265]
considers this generalized notion of a noise parameter and suggests tuning the proper noise value for a specific instance
by testing different settings through a preliminary series of short runs. Furthermore, the suggested statistics to monitor,
which is closely related to the algorithm performance, is the ratio between the average final values obtained at the end
of the short runs and the variance of the f values over the runs. Quite consistently, the best noise setting corresponds to
the one leading to the lowest empirical ratio increased by about 10%. faster tuning can be obtained if the examination
of a predefined series of noise values is substituted with a faster adaptive search which considers a smaller number
of possible values, see [294] which uses Brent’s method [67]. An adaptive noise scheme is also proposed in [188],
where the noise setting p is dynamically adjusted based on search progress. Higher noise levels are determined in
a reactive manner if and only if there is evidence of search stagnation. In detail, if too many steps elapse since the
last improvement, the noise value is increased, while it is gradually decreased if evidence of stagnation disappears. A
different approach based on optimizing the noise setting on a given instance prior to the actual search process (with a
fixed noise setting) is considered in [294].

Gist
Imagine dynamic pricing for street parking: the higher the price, the more people will avoid parking at
city centers. The “fitness landscape” for the appeal of parking spaces changes and drivers modify their
trajectories to stay in the periphery.

In a similar manner, when local minima are discovered and saved in memory, and therefore they become
uninteresting for additional explorations, artificially raising the value of the objective function can be a
way to encourage the search process to stay away from the known local minima. Unfortunately, depending
on how dynamic penalties are placed, some new promising solutions cab be hidden, so that the method has
to be used with great care.

Adapting the level of randomness during the search is a second mechanism to tradeoff intensification
and exploration. By turning the “noise knob” one transforms a greedy perturbative search more and more
into a random walk. One aims at a compromise which is appropriate for the local characteristics along the
optimization trajectory of a specific instance.



Chapter 32

Adaptive Random Search

Men nearly always follow the tracks made by others and proceed in their affairs by imitation, even though they cannot entirely
keep to the tracks of others or emulate the prowess of their models. So a prudent man should always follow in the footsteps of

great men and imitate those who have been outstanding. If his own prowess fails to compare with theirs, at least it has an air of
greatness about it. He should behave like those archers who, if they are skilful, when the target seems too distant, know the

capabilities of their bow and aim a good deal higher than their objective, not in order to shoot so high but so that by aiming high
they can reach the target.”

(Niccolo Machiavelli)

In many real-world situations partial derivatives cannot be used because the function is not differentiable or be-
cause computing derivatives is too expensive. This motivates the study of optimization techniques based only on
the knowledge of function values, like variants of the adaptive random search algorithm based on the theoretical
framework of [340].

The general scheme starts by choosing an initial point in the configuration space and an initial search region
surrounding it and proceeds by iterating the following steps.

349
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1. A new candidate point is generated by sampling the search region according to a given probability measure.

2. The search region is adapted according to the value of the function at the new point. It is compressed if the new
function value is greater than the current one (unsuccessful sample) or expanded otherwise (successful sample).

3. If the sample is successful, the new point becomes the current point, and the search region is moved so that the
current point is at its center for the next iteration.

For effective implementations, simple search regions around the current point suffice, for example regions defined
by boxes (with edges given by a set of linearly independent vectors) with uniform probability distributions inside the
box. In this case generating a random displacement is simple: the basis vectors are multiplied by random numbers in
the real range (-1.0, 1.0) and added: δ =

∑
j Rand× bj .

The requirement that the box edges are parallel to the coordinate axes can be relaxed so that the frames can
be compressed or expanded along arbitrary directions by using affine transformations, as explained in the following
section.

32.1 RAS: adaptation of the sampling region
A simple but surprisingly effective self-adaptive and derivative-free method is the Reactive Affine Shaker (RAS)
algorithm [69], based on [36]. RAS adapts a search region by an affine transformation. An affine transformation
(from the Latin, affinis, “connected with”) between two vector spaces consists of a linear transformation followed by
a translation:

x 7→ Ax+ b.

Geometrically, an affine transformation in Euclidean space preserves:

• (i) the collinearity relation between points; i.e., the points which lie on a line continue to be collinear after the
transformation,

• (ii) ratios of distances along a line; i.e., for distinct collinear points p11,p22,p33, the ratio |p2 − p1|/|p3 − p2| is
preserved. In general, an affine transformation is composed of linear transformations (rotation, scaling or shear)
and a translation (or “shift”).

In RAS, the region is translated when a successful sample is found, elongated along arbitrary success directions,
and compressed along the unsuccessful ones. The modification takes into account the local knowledge derived from
trial points generated with a uniform probability in the search region. The aim is to scout for local minima in the
attraction basin where the initial point falls, by adapting the step size and direction to maintain heuristically the
largest possible movement per function evaluation. The design is complemented by the analysis of some strategic
choices, like the double-shot strategy and the initialization [69]. Let’s now comment on the name (Reactive Affine
Shaker). The solver’s movements try to minimize the number of jumps towards the minimum region, and this is
achieved by constantly changing the movement direction and size. Search region and therefore step adjustments are
implemented by a feedback loop guided by the evolution of the search itself, therefore implementing a “reactive”
self-tuning mechanism. The generation of samples is tuned to the local properties of the f surface, in the spirit of
the Reactive Search Optimization principles explained in Chapter 24. The constant change in step size and direction
creates a “shaky” trajectory, with abrupt leaps and turns.

The pseudo-code of the RAS algorithm is shown in Fig. 32.1. At every iteration, a displacement ∆ is generated
so that the point x+ ∆ is uniformly distributed in the local search regionR (line 4). To this end, the basis vectors are
multiplied by different random numbers in the real range [−1, 1] and added:

∆ =
∑
j

Rand(−1, 1)bj .
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f (input) Function to minimize
x (input) Initial point
b1, . . . , bd (input) Vectors defining search regionR around x
ρ (input) Box expansion factor
t (internal) Iteration counter
P (internal) Transformation matrix
x, ∆ (internal) Current position, current displacement

1. function ReactiveAffineShaker (f , x, ( bj), ρ)
2. t← 0;
3. repeat
4. ∆←

∑
j Rand(−1, 1)bj ;

5. if f ( x + ∆) < f ( x)
6. x← x + ∆;

7. P← I + (ρ− 1)
∆∆T

‖∆ ‖2
;

8. else if f ( x - ∆) < f ( x)
9. x← x - ∆;

10. P← I + (ρ− 1)
∆∆T

‖∆ ‖2
;

11. else

12. P← I + (ρ−1 − 1)
∆∆T

‖∆ ‖2
;

13. ∀j bj ← P bj ;
14. t← t+1
15. until convergence criterion;
16. return x;

Figure 32.1: The Reactive Affine Shaker pseudo-code.

Rand(−1, 1) represents a call of the random-number generator. If one of the two points x+ ∆ or x−∆ improves the
function value, then it is chosen as the next point. Let us call x′ the improving point. In order to enlarge the box along
the promising direction, the box vectors bi are modified as follows.
The direction of improvement is ∆. Let us call ∆′ the corresponding vector normalized to unit length:

∆′ =
∆

‖∆‖
.

Then the projection of vector bi along the direction of ∆ is

bi|∆ = ∆′(∆′ · bi) = ∆′∆′T bi.

To obtain the desired effect, this component is enlarged by a coefficient ρ > 1, so the expression for the new vector b′i
is

b′i = bi + (ρ− 1)bi|∆ (32.1)
= bi + (ρ− 1)∆′∆′T bi

= bi + (ρ− 1)
∆∆T

‖∆‖2
bi

= Pbi,
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Figure 32.2: Reactive Affine Shaker geometry: two search trajectories leading to two different local minima, adapted
from [69].

where

P = I + (ρ− 1)
∆∆T

‖∆‖2
. (32.2)

The fact of testing the function improvement on both x+ ∆ and x−∆ is called double-shot strategy: if the first
sample x+∆ is not successful, the specular point x−∆ is considered. This choice drastically reduces the probability
of generating two consecutive unsuccessful samples. For a mental image, consider fitting a plane around the current
point: if a step increases f , the opposite step decreases it. Going from mental images to math, if one considers
differentiable functions and small displacements, the directional derivative along the displacement is proportional to
the scalar product between displacement and gradient ∆ · ∇f . If the first is positive, a change of sign will trivially
cause a negative value, and therefore a decrease in f for a sufficiently small step size. The empirical validity for
general functions, not necessarily differentiable, is caused by the correlations and structure contained in most of the
functions corresponding to real-world problems.

If the double-shot strategy fails, then the affine transformation (32.1) is applied by replacing the expansion factor
ρ with its inverse ρ−1 (line 12 of Fig. 32.1), causing a compression of the search area.

An illustration of the geometry of the Reactive Affine Shaker algorithm is shown in Fig. 32.2, where the function
to be minimized is represented by a contour plot showing isolines at fixed values of f , and two trajectories (ABC and
A’B’C’) are plotted. The search regions are shown for some points along the search trajectory. The design criteria
of RAS are given by an aggressive search for local minima: the search speed is increased when steps are successful
(points A and A’), reduced only if no better point is found after the double shot. When a point is close to a local
minimum, the repeated reduction of the search frame produces a very fast convergence of the search (point C). Note
that another cause of reduction for the search region can be a narrow descent path (a “canyon”, such as in point B’),
where only a small subset of all possible directions improves the function value. However, once an improvement is
found, the search region grows in the promising direction, causing a faster movement along that direction.
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f (input) Function to minimize
ρ, (input) Box expansion factor
L1, . . . , Ld, U1, . . . , Ud (input) Search range
L′1, . . . , L

′
d, U

′
1, . . . , U

′
d (input) Initialization range

b1, . . . , bd (internal) Vectors defining search regionR
around x

x, x′ (internal) Current position, final position of run

1. function RepeatedReaciveAffineShaker (f , ρ, (L′j), (U ′j), (Lj), (Uj))

2. ∀j bj ←
Uj − Lj

4
· ej ;

3. pardo
4. x← random point ∈ [L′1, U

′
1]× · · · × [L′d, U

′
d];

5. x’← ReactiveAffineShaker(f , x, ( bj), ρ);
6. return best position found;

Figure 32.3: The RAS algorithm, from [69].

32.2 Repetitions for robustness and diversification
In general, an effective estimation of the number of steps required for identifying a global minimum is clearly im-
possible. Even when a local minimum is found, it is generally impossible to determine whether it is global or not,
in particular if the knowledge about the function derives only from evaluations of f(x) at selected points, which is a
frequent case in dealing with real-world applications.

Because RAS does not include mechanisms to escape from local minima, it should be stopped as soon as the
trajectory is sufficiently close to a local minimizer. For instance, a single RAS run can be terminated if the search
region becomes smaller than a threshold value. In fact, the box tends to reduce its volume in proximity of a local
minimum because of repeated failures in improving the function value.

RAS searches for local minimizers and is stopped as soon as one is found. A simple way to continue the search
is to restart from a different initial random point. This approach is equivalent to a “population” of RAS searchers,
in which each member of the population is independent, completely unaware of what other members are doing
(Fig. 32.3). More complex ways of coordinating a team of searchers are considered in the C-LION framework in
Chapter 38.

Gist
Adaptive random search adapts a current search region around the current tentative solutions. New
points are sampled from the search region. Depending on finding better or worse solutions, the search
region is then adapted. In particular Reactive Affine Shaker (RAS) stretches or squeezes the search region
along the direction of the latest successful or unsuccessful step, respectively.

This chapter concludes our presentation of RSO. To summarize, Reactive Search Optimization can
adapt in an online manner at least the following choices or meta-parameters: prohibition periods (“stay
away from this area”), neighborhood (“if no improving move, get another neighborhood”), iterations – not
simply repetitions – of local search (“kick the system to a new attractor and call LS”), dynamic modifications
of the objective function (“push up so that a local minimum disappears”) amount of randomness in SA and
other stochastic schemes (“noise level up to jump out of an attractor”).
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Part V

Special optimization problems and
advanced topics
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Chapter 33

Linear and Quadratic Programming

I think many people’s deviant behavior starts with dreams because dreams are so non-linear... as if there’s an assumption that
everything has to be linear or has to be plotted.

(Robyn Hitchcock)

In the previous chapters we consider general-purpose methods for solving optimization problems, both discrete
and continuous. But before considering the above techniques, it is worth checking if your problem belongs to a few
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categories which can be solved exactly in acceptable (polynomial) time. These cases are not so frequent but some of
them are incredibly useful for relevant applications.

Full-fledged real world applications with realistic constraints can rarely be solved to optimality (in the worst case)
in acceptable CPU time. In theoretical computer science one abstracts from particular hardware and operating systems
and studies how the worst-case CPU time grows when the input size grows. One does not care about constants but
about rate-of-growth. A CPU time which increases as a polynomial in the input size n (e.g., like n2 or n5) is usually
considered affordable. For sure, it is better than an exponential increase like 2n which makes solving large-size
problems impossible.

On the other hand, a demonstration of global optimality is not required by most applications, and it your
problem cannot be solved in polynomial time in the worst case (for the worst possible input configuration) it does not
mean that your problem cannot be addressed in practice. First, the input configurations causing very large CPU times
can be very rare. Second, if a business obtains a 10% increase in profit by some optimization technique, the proof is in
the pudding and it may be of academic interest to demonstrate that the optimal solution would have been an increase
of 10.5%.

In any case, before starting your solution effort, you should always check that your problem is not in the list of
those solvable in acceptable CPU time, with dedicated algorithms (updated lists of problems can be found in the web).
Even if your case does not correspond exactly to one of these notable problems, in some cases you can consider radical
simplifications leading to solvable cases, insight and deeper knowledge.

While we cannot cover many specialized cases in this introductory book, one interesting case is Linear Pro-
gramming (LP), the solution of problems with a linear objective function and linear constraints. By the way,
“programming” has nothing to do with the modern meaning related to software, but with the organized solution with
help of a tabular representation (a tableau). Linear Optimization can be a modern name, but less used. Let’s consider
the diet problem, originally motivated the 1930s by the Army’s desire to minimize the cost of feeding GIs in the
field while still providing a healthy diet. Its goal is to select a set of food quantities that will satisfy a set of daily
nutritional requirement at minimum cost. The constraints regulate the minimum and maximum number of calories
and the amount of vitamins, minerals, fats, sodium, etc. in the diet. LP is considered in Sec. 33.1.

Integer Linear Programming (ILP) has the same objective function and constraints, with the additional require-
ments that input values are integers, which makes the problem much more difficult to solve (Sec. 33.2). Imagine a
diet problem in which foods are not “continuous-valued” like flour, but can be bought in boxes like canned soup in a
supermarket.

Because the number of interesting problems is simply to large to consider in a single book, we concentrate on
some relevant algorithm design principles, with at least a concrete example for each case: Linear and Quadratic
Programming in this Chapter, Branch and bound (Sec. 34.1), Dynamic Programming (Sec. 34.2), Perturbative and
Constructive Greedy in the introductory sections (Sec. 24.1).

33.1 Linear Programming (LP)
The diet problem can be easily stated as follows:

• Minimize the cost of food eaten during one day

• Subject to the requirements that the diet satisfy a person’s nutritional requirements and that not too much of any
one food be eaten.

The decision variables are the quantities for the different foods in an optimal diet. After knowing the relevant
constants like the cost per unit of weight and the content per unit of weight of nutrients, vitamins etc., for the different
foods, it is straightforward to demonstrate that both the objective function and the constraints are linear functions of
the decision variables. In fact, the cost is a sum over all foods of “quantity times unitary cost”, and the constraints
will bound above or below sums over all foods of “quantity times unitary content”. E.g., a sum will require calories
to be in a certain range, another sum will require vitamin A to be in a second range, etc. In addition to the historic
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diet problem, the number of applications of LP is wide and growing, including scheduling flight crews, drilling for oil
based on geological surveys, solving many graph-related and combinatorial problems[102].

Let’s now develop some geometrical intuition about minimizing a linear function subject to linear constraints.
We already encountered linear functions and constraints (of the form w · x) in the Chapters 4 and 5 about linear
models . If x is one-dimensional, a linear function is a straight line, constraints are inequalities like a ≤ x or x ≤ b.
If there are values of x satisfying the inequalities, and the slope of the line is different from zero, it should be evident
that an optimal solution will be one of the boundary values (a or b). Proof by contradiction: if optimal value x is an
interior point, we can move it right or left (depending on the slope) to get a lower f value, a contradiction. Be careful:
constraints like a < x are not acceptable (imagine f(a) is the minimum value). In fact, given a point close to a we
could always find a smaller x value with a smaller f value: one needs compact sets, closed —that is, containing all
its limit points— and bounded.

In higher dimensions constraints become planes and then hyper-planes, linear functions become inclined planes
and gently varying functions (boring, without any curvature, with straight and equally-separated contour lines). For a
concrete image, imagine a two-dimensional example, an inclined billiard table with four different legs. Minimization
means leaving a billiard ball to reach the lowest possible position. Guess what, the billiard ball will stop at a corner. If
the two lowest legs are equal, the ball may stop at another position along the lowest edge, but we can easily move it to
one corner without spending energy.

Let’s us now move from intuition to math. Linear programming is a technique for the optimization of a linear
objective function, subject to linear equality and linear inequality constraints. LP can be expressed in canonical form
as

maximize cTx

subject to Ax ≤ b (33.1)
and x ≥ 0

(33.2)

where x represents the vector of n variables (to be determined), c and b are vectors of coefficients, A is an m × n
matrix of coefficients, one row for each of the m constraints. If the form is not canonical, simple transformations can
lead to it [102].

There are two standard ways to reason about LP: the geometrical and the algebraic view. Let’s consider the
geometric way first.

The inequalities Ax ≤ b and x ≥ 0 are the constraints which specify a geometrical figure known as convex
polytope over which the objective function is to be optimized.

Each constraint, the scalar product between a row of matrix and the vector of variables: Ai · x ≤ bi, defines a
half-space of points satisfying it. Because all constraints have to be satisfied, the intersection of the half-spaces, when
bounded and non-empty, defines the convex polytope. Interestingly, the geometrical features can be defined also as
the convex hull of a set of vertices of the polytope.

Convexity plays a big role. A set is convex if, given any two points A, B in that set, the line AB joining them lies
entirely within that set. The demonstration that the LP polytope is convex is simple: a half-space is convex, and the
intersection of convex spaces is convex (the line AB belongs to all half-spaces and therefore to the intersection).

The polytope boundary consists of facets of dimension d − 1 (where one or more constraints are satisfied with
equality), vertices (faces of dimension zero, i.e., points) and edges, faces of dimension one, i.e., line segments.

The LP polytope contains an infinite number of points. A brute-force algorithm of the kind “consider all feasible
points and output one with maximum value of the objective function” is impossible.

Luckily, an optimal solution can always be found at a vertex. For a demonstration, convexity and linearity are the
keys. First, because the feasible region is convex and the objective function is linear, a local optimum is a global
optimum. The demonstration is easy, imagine the above does not hold, there will be a point xloc which is locally
optimal but with a global optimum point xopt 6= xloc of higher objective value. If one considers the line segment
connecting the two points, because of convexity belonging to the feasible region, the objective along this segment
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Figure 33.1: A a simple linear program with two variables and six inequalities. The set of feasible solutions is depicted
in yellow and forms a polygon, a 2-dimensional polytope. The linear cost function is represented by the red line and the
arrow: The red line is a level set of the cost function, and the arrow indicates the direction in which we are optimizing.
Contour lines are also shown.

will increase. In particular, it will increase also for points along the segment in all local balls surrounding the local
optimum, a contradiction with the fact that is is locally optimal.

In addition, a global optimum can always be found among the vertices. The proof is again by contradiction.
Assume that a local optimum xopt is in the interior of the LP polytope. If the gradient of the linear objective function
is non-zero( c 6= 0 ), one can more away from the local optimum along the line xopt + tc (t ≥ 0) and obtain higher
objective values, until a point on the boundary is met. If the point on the boundary is not a vertex, one considers the
vectors spanning the facet or edge. Either the gradient is perpendicular (in which case moving along the faces will not
change the objective), or its projection defines a direction to follow to get even higher objective values. In all cases
one can safely move (getting higher or equal objective values) until a vertex is reached.

This is an important result: instead of considering an infinite number of points one can consider only the vertices.
Actually, not all of them have to be checked. By the above conclusions that local optimality is sufficient one derives
the simplex algorithm for LP, possibly among the ten most used algorithms in the world. The term simplex has to do
with its operation on simplicial cones, the corners (i.e., the neighborhoods of the vertices) of the polytope.

The high-level description of the simplex algorithm is as follows.

• It starts at some vertex. If the problem is solvable (the feasible region is not empty), an initial vertex can be
determined by applying the simplex algorithm to a modified and easily solvable version of the original program.

• A sequence of local search (LS) steps are executed, in which the possible neighbors (in local search terminol-
ogy) of the current vertex are the vertices that can be reached by moving along an edge. LS always moves to an
improving local vertex (one with higher objective value). Different versions have to do with rules for picking an
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Figure 33.2: The simplex algorithm for solving LP problems.

improving vertex. In the LP terminology, a pivot is related to this passage to a neighboring vertex, and pivoting
rules are LS rules for selecting an improving neighbor.

• Simplex terminates when it reaches a local maximum, a vertex from which all neighboring vertices have a
smaller objective value. Because of convexity of feasible region and linearity of objective function, this is
actually a global optimum.

The simplex algorithm works by constructing a feasible solution at a vertex of the polytope and then walking
along a path on the edges of the polytope to vertices with non-decreasing values of the objective function until an
optimum is reached.

A couple of questions are related to convergence (in a finite number of steps) and computational complexity
(number of operations as a function of the dimension of the problem). For the first issue, the simple version above has
to be cured o avoid possible cycles (endless repetitions of a sequence of vertices) in rare but possible situations. This
“stalling” is possible only in the degenerate case of neighboring vertices with equal objective values. A randomized
rule for picking a vertex in case of ties is a simple way to cure cycling. For the second issues, unfortunately he worst-
case complexity of simplex method as formulated by Dantzig is exponential time. An exponential number of iterations
is rarely encountered for many practical problems, but there is no guarantee.

The existence of solutions algorithms for LP with guaranteed polynomial complexity has been an open problem
in computer science for many years. The LP problem was first shown to be solvable in polynomial time by Leonid
Khachiyan in 1979, but a larger breakthrough in the field came in 1984 when Narendra Karmarkar introduced a new
interior-point method. Nonetheless, the simplex algorithms with smart pivoting rules is still the de facto standard for
most applications of LP.
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33.1.1 An algebraic view of linear programming
Although the geometric view is intuitive, the algebraic view is useful to derive a workable algorithm. We refer to
[287, 102] for detailed demonstrations and give only a short summary here. A first observation is that the boundaries
of the polytope corresponds to some inequalities in the constraints becoming equality (the constraint is tight or active).
If one sits at a vertex, a small change in some directions will make the point exit the feasibility region.

Now, dealing with equalities only is simpler than dealing with inequalities. Luckily, one can transform an LP
problem into the slack form:

maximize cTx
subject to Ax = b

and x ≥ 0
(33.3)

by a simple trick of adding additional slack variables. For each constraint:

n∑
j=1

aijxj ≤ bi (33.4)

one introduces a new variable s and rewrites the above inequality as the two contraints:

n∑
j=1

aijxj + s = bi (33.5)

s ≥ 0 (33.6)

A constraint is satisfied if and only if there is a non-negative slack or difference between the left- and right-hand of
equation (33.4).

If A is the m × n matrix, with m < n, the algebraic definition of a corner is obtained as follows. There are
m linearly independent columns Aj of A, which make up a basis B = {A|∞, ...,A|m} of the linear space spanned
by all columns (A is of (full) rank, and “row rank equals column rank”, therefore rank is the minimum of the two
dimensions). We can collect the columns of the basis B as anm×m nonsingular (invertible) matrix B = [Aji ]. Being
a basis, all vectors in Rm can be derived by linear combination, in particular the vector b, the other columns are not
involved (their coefficient in the linear combination is zero).

A basic solution corresponding to the basis B is a vector x ∈ Rn with elements different from zero only for
indices corresponding to the basis columns. In detail:

xj = 0 forAj /∈ B
xjk = the k-th component of B−1b, k = 1, ...,m

The connection between geometry and algebra is that basic feasible solutions correspond to vertices of the polytope.
When LP is formulated in the slack form, the simplex algorithm works with the system of equalities by rewriting it

in an equivalent form. After a number of iterations, the system is rewritten so that the solution is immediate to obtain.
In a way, the simplex algorithm can be considered as a kind of “Gaussian elimination for inequalities”.

At each step, the linear program is reformulated so that the current basic solution has a greater objective value.
The action of moving along the edge of the polytope from a vertex to a neighboring one corresponds to changing the
basis B. At each step one chooses a nonbasic variable (initially set to zero - not in the basis) which appears with a
positive coefficient in the objective (if one increases the variable, the objective increases). The variable is raised away
from zero until a constraint becomes tight (some basis variable becomes zero). At this point, one can rewrite the slack
form, exchanging the roles of the basic and non-basic variables (a column exits the base B and a new column enters).
After rewriting, if all multiplicative constants in the objective function are negative, we are done. By increasing non-
basic variables we can only worsen the solution and therefore the vertex (basic feasible solution) is optimal. Pivoting
corresponds of course to having a new non-basic variable enter the basis (entering variable) and a basic variable exit
(leaving variable).
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33.2 Integer Linear Programming
An Integer Linear Programming problem (ILP) is an LP problem with the additional constraints that the variables
x must take on integral values. Imagine the diet problem, in which foods can only be bought in boxes of 1,2,3 ...
kilograms.

Figure 33.3: Integer Linear Program and relaxation.

Now, it can be demonstrated that ILP is NP-hard, therefore belonging to a hard class of problems for which there
is unlikely to be a polynomial-time algorithm in the worst case. What looks like a “small” change in the definition
(from real values to integers) completely changes the theoretical hardness of the problem. Actually, the problem is so
hard that just determining whether an ILP problem has a feasible solution is NP-hard.

Intuitively, the feasible region is not a nice polytope anymore but a set of dots corresponding to integer (feasible)
coordinates. No way to move continuously from vertex to vertex!

A heuristic way to proceed is to simply remove the constraint that x is integral, and solve the corresponding LP
(called the LP relaxation of the ILP). The optimal LP value is for sure an upper bound (when one relaxes to real
values, in particular one considers also integral values, and therefore has more possibilities to improve a solution). One
can then round the entries of the solution to the LP relaxation to the nearest integers. Of course, a solution obtained
by rounding may not be optimal, it may not even be feasible (it may violate some constraint). ILP problems can be
solved with heuritic local search techniques (but of course abandoning hopes of guaranteed optimality in polynomial
times).

33.3 Quadratic Programming (QP)
In addition to Linear Programming, a notable special case is that of Quadratic Programming (QP), the problem of
optimizing a quadratic function of several variables subject to linear constraints on these variables. An example has
been encountered in dealing with Support Vector Machines (Chapter 12). Quadratic Programming is defined as:

minimize 1
2xTQx + cTx subject to Ax ≤ b.
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For positive-definiteQ, the ellipsoid method solves the problem in polynomial time. But if Q is indefinite, the problem
becomes NP-hard. The mental image for positive-definite Q is that of Fig. 26.8. QP is considered to be solvable in
practice for dimensions ranging up to thousands of variables (depending on the problem characteristics).

An excellent introduction of some classic algorithms for discrete (combinatorial) are [287] and [102], an updated
“Bible of algorithms”. More than on a list of special cases it is more interesting to concentrate on high-level algorithm
design principles for optimization problems (with some concrete examples), in addition to the case of Local Search
considered in Section 24.2.

Gist
Linear Programming, the solution of optimization problems with linear objective functions and linear
constrains, creates mental images of gentle slopes and straight walls, and of balls ending up in low corners.
LP is among the most widely used problems.

The analysis of LP and the development of the simplex algorithm is an elegant mixture of continuous
(infinite) but convex feasible areas, and local search among the discrete set of vertices. The two different
views (geometric and algebraic) are useful to develop insight about the problem structure and its solution.

LP can be solved in polynomial time, although the most used algorithm (the simplex) has no worst-case
guarantee of always converging in a polynomial number of steps.

Remember that small changes in the definition can make huge changes in the difficulty of solving the
problem: if input values are constrained to be integers the problem (ILP) becomes one of the hardest to be
solved to optimality. But useful bounds and heuristic solutions can be obtained by relaxation: the problem
is solved with continuous variables (LP) and the results is then rounded to the nearest integers.

Quadratic Programming can be used to solve efficiently problems with quadratic objective functions
and linear constraints.

If you encounter an LP or QP in your business, enjoy, there is a wide variety of off-the-shelf software
which can be immediately used for its solution.



Chapter 34

Branch and bound, dynamic programming

Big fish eats little fish.

The number of different optimization problems is so large that one can easily feel lost in a maze of details. Luckily,
in many cases some common underlying algorithm design principles can be used for their solution. We therefore
concentrate on the most relevant algorithmic patterns in addition to greedy and local search: Branch and Bound (Sec.
34.1) and Dynamic Programming (Sec. 34.2), with at least a concrete example for each algorithmic principle.

Branch and bound is a little smarter than the exhaustive enumeration of all possible solutions. When branching
one considers all possible ways of fixing the value of a variable in the solution (leading to a subtree - a branch - in the
visual representation of the process). In the construction of a complete solution from a partial one, a bound is asso-
ciated to the current partial solution. One knows that, in whatever manner a solution is completed, one cannot obtain
more than the value given by the bound. If this value is surpassed by the current “record” solution, the completion of
the tentative solution is aborted and some iterations are spared.

Dynamic Programming is based on decomposing a problem, finding solutions to smaller instances, and re-using
them to build solutions to larger and large instances, in a bottom-up manner. Because smaller instances are found
many times, it makes sense to store their solutions in an organized memory structure. In an analogy, the big problem
contains little problems in its bellies, which can be eaten to build the complete solutions.

365
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34.1 Branch and bound

If one needs to find a best configuration out of a finite set, a brute-force algorithm is exhaustive search: generate all
possible configuration and evaluate the corresponding objective-function values, deliver the best one.

If a configuration corresponds to picking specific values for a set of variables, the entire set of configurations can be
organized as a solution tree: the root is the starting situation (no decision yet taken - no value given to the variables)),
the first level corresponds to different (but finite) ways of assigning a value to the first variable, the second-level
children correspond to the different values for the second variable, etc. Complete solutions correspond to the leaves
of the tree, while internal nodes are partial solutions. Let’s note that the tree is not unique, variables can be ordered
in different ways and not necessarily balances (some variables can be assigned values conditionally on the values of
other ones). Exhaustive search then is implemented by generating the entire tree and examining its leaves.

subtree (first variable fixed to 1)

0 1

0 0 10 1 0 1 1

0 0 0 0

? ? ?

? ? ? ?

? ? ? ?

0 1

partial solution

complete solutions

Figure 34.1: A solution tree for a binary sting with three variables.

As a concrete example, if the solution consists of a binary string, after a specific subset of bits is fixed (to 1 or 0) in
a partial solution, one is left with the possibility to fix in all possible ways the remaining variables (“free variables”).
When then the first free variable is fixed to zero one gets the left subtree, when it is fixed to one one gets the right
subtree (Fig 34.1).

As you imagine, exhaustive search is too simple to be a practical solution for most cases: the difficulty lies in the
enormous number of leaves, which can grow exponentially (e.g., if C values are possible for n variables, the total
number of possibilities is Cn).

A trembling flame of hope in the tunnel of exhaustive search, which is some cases can lead to a notable saving of
CPU time, is called Branch and Bound (BB or B&B). The core idea is that some parts of the trees can be “pruned”
(do not need to be generated) because one can demonstrate that some partial solutions have no hope of becoming
optimal when completed. B&B was used al lot in the early stages of Artificial Intelligence. A generalization of branch
and bound also subsumes the A*, B* and alpha-beta search algorithms from artificial intelligence [279]. In most cases,
although a lot of CPU time can be spared, the total remains exponential and the size of instances which can be solved
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to optimality increases only by a small quantity. Nonetheless, B&B can be used also with early stopping and therefore
becomes a useful heuristic when an optimal solution cannot be guaranteed in the allotted CPU time.

B&B is an algorithm design paradigm, mostly for discrete and combinatorial optimization problems. It consists
of a systematic enumeration of candidate solutions by means of state space search. Before we considered nodes as
decision points (fixing the value of a variable). An alternative and complementary view is to associates nodes with sets
of solutions, the complete slutions which can be obtained by fixing the remaining free variables in all possible ways.
The full set of candidate solutions is at the root. The algorithm explores branches of this tree, which represent subsets
of the solution set (all leaves of the subtree originating at a node). Branching means assigning a value to a variable in
a partial solution and finding, in a recursive manner, the best value in the corresponding subtree. Before enumerating
the candidate solutions of a branch, the branch is checked against an optimistic bound on the optimal solution, and
is discarded if it cannot produce a better solution than the current record value (the best value found so far by the
algorithm). We talk about “optimistic” bound to avoid the usual confusion between upper or lower bound, depending
on the max or min direction of optimization. The advantage w.r.t. exhaustive search depends on the existence, quality
and speed of computation of the optimistic bound used for pruning. If the bound is tight, a big fraction of the search
space can be cut.

To summarize (and after deciding for minimization), branch-and-bound aims at minimizing the value of a real-
valued function f(x), in which x ∈ S, the set of admissible, or candidate solutions, also called search space. A B&B
algorithm operates according to two principles:

1. It recursively splits the search space into smaller spaces (branching), then minimizing f(x) on these smaller
spaces.

2. It keeps track of an optimistic bound on the minimum value which can be reached by completing a given partial
solution in all possible ways. If the bound is larger than the current record value, the current subtree is pruned,
and control is returned to the first encountered higher level in the tree which has alternative ways to fix variables
not yet explored. This operation is called backtracking.

If one eliminates backtracking one obtains a single construction. The construction is greedy if the most promising
choice is executed at each step. Greedy is myopic and cannot undo early choices. With backtracking, early choices
will be undone in a systematic manner, until all possibilities are eventually tried. As one can imagine, programming
languages with recursive function calls permit very elegant software implementations of branch-and-bound methods.

In visiting the solution tree starting from the root, like in all graph visits, one can proceed depth-first or breadth-
first. The depth-first variant (going down the tree to produce an initial complete solution) quickly produces complete
solutions, and therefore record values. Intelligent implementations aim at producing a first high-quality solution early
in the search, so that its record value will help in pruning many future subtrees.

Fig. 34.3 shows a toy example related to maximizing the number of queens which can be placed on a chessboard
so that no queen can attack another queen. For each positioned queen, no other queen can be placed in the same
row, in the same column and in the two diagonals centered on the queen (Fig. 34.3). The first level of the tree is
given by placing the first queen in all possible squares in the first row. The second level is obtained by placing the
second queen in all possible admissible squares in the second row. The inadmissible squares do not lead to a subtree to
explore, and are immediately dismissed. Each subtree is deepened until no additional queen can be placed. When this
happens, the system backtracks to the first higher level in the tree with alternatives which have not been tried yet. A
simple optimistic bound on the new queens that can be placed is given by the number of free squares remaining after
eliminating all rows, columns and diagonals in which a queen is already placed.

Notice that Branch and Bound (much like Brute Force enumeration of all possible solutions) creates a search tree
that explodes exponentially as the problem size increases. Therefore it will hit the same scalability wall, only a little
bit later. In spite of its popularity in the initial study of Artificial Intelligence, Branch And Bound is unusable for most
real-world problem due to its CPU time requirements. In any case, careful implementations are in some cases crucial
to pass from solving problems with a few variables (say up to 5 or 10) to solving bigger problems, say with up to 20 or
30 variables. In some cases this permits to go from toy problems to cases which are closer to more complex real-world
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Figure 34.2: In chess, a queen is allowed to “take” any other queen on the board by moving along row, column or
diagonals (left). Eight queens (right), is this a solution so that no queen can eat another one?

situations. On the other hand, when used as an heuristic (with early termination and no proof of optimality) B&B can
be competitive if one employs smart bounds and rapid creation of good record values.

34.2 Dynamic programming
In some cases, the optimal solutions has a structure with interesting nesting characteristics, which can help in
building it efficiently and in demonstrating its optimality. In Dynamic Programming, “big fish eat little fish”, big
problems have shared optimal subproblems in their bellies.

Dynamic programming (DP) shares with the general divide-and-conquer method the principle of solving prob-
lems by combining solutions to subproblems, with the specific flavor that the subproblems are not independent, i.e.,
problems share subproblems. DP solves each subproblem only once and then saves its result in a table, therefore
avoiding useless re-computation. As it was the case for LP, “programming” has nothing to do with software but with
the use of a tabular solution method.

DP algorithms, originally studied by R. Bellman in 1955, are developed according to four steps:

1. Study and characterize the structure of an optimal solution (how it contains solutions to smaller instances).

2. Define the value of an optimal solution in a recursive manner from the values of solutions of subproblems.

3. Compute the value of the optimal solution in a bottom-up manner (by starting from the smallest subproblems).

4. Construct an optimal solution from information computed while finding the value.

The above may sound abstract but dynamic programming is actually fundamental in making cellular phones work
(Viterbi’s algorithm), in bio-informatics (finding longest common subsequences in DNA), scheduling to maximize
profit, in calculating shortest paths, and in hundreds of concrete applications including menial ones like pretty-printing
and LaTEx formatting. Some for of DP has been used also for making this book look nice!
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Figure 34.3: Branch and bound in action to maximize the number of queens placed on a 4× 4 chessboard. Queens are
positioned one row after another one. Positions are shown up to the first legal solution.

Figure 34.4: Viterbi’s dynamic programming algorithm applied to text recognition.

We focus on Viterbi’s algorithm here.
To help the intuition, let’s consider a simplified problem of text recognition first (Fig. 34.4, 34.5). Recognition of

characters from a text source can be done Optical Character Recognition (OCR) machines. The recognition of text can
work by trying to recognize individual characters but the error rate can be large if the image is corrupted by noise or if
the same letter can be written in many different ways. Imagine interpreting a hand-written prescription of medicines
by doctors. Pharmacists can do it because they have a large amount of additional background information.
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A model going beyond individual characters considers the fact that written text is a sequence generated from an
underlying correct word or phrase. The probability of recognizing a character at a certain position depends on the
underlying sequence, and therefore on the context given by additional nearby characters. In Fig. 34.4 (“THE-CAT”
example) the recognition of the central ambiguous character as “H” or “A” is for sure influenced by the presence of a
previous character “T” or “C”. In the same manner, our brain recognizes spoken words and phrases even in very noisy
and difficult situations, by considering its sequential nature and a lot of additional contextual knowledge.

Sequences abound in the real-world, as well as simple models to calculate overall probabilities of complete se-
quences. As noted before when discussing maximum a posteriori (MAP) probability, the principle of searching
for the most probable sequence given the observed signals and given a model of sequence generation is a sound
heuristic principle for identifying a “hidden” explanation of the observation. The “hidden” explanation of a recording
is the correct phrase which originated the specific utterance.

Very useful and used models of sequences generated by an underlying hidden process are called hidden Markov
model (HMM). The intention is to model a system with a hidden state (not directly measurable) which produces one
among a set of output signals (or symbols), with a probability for each symbol. In addition, the hidden state changes
probabilistically in discrete time (1,2,3...), with a certain transition probability. One measures the output signals and
aims at identifying the most probable sequence of hidden states producing the observed sequence of signals. Events
are independent so that probabilities are multiplied. We can view the probability of a path (a specific sequence if
hidden states in time) as the probability that a “random walk” beginning at time one with a given probability of being
in the different initial states will follow the given path.

If you want, you can introduce a fictitious state 0 with a probability πi of transiting to state i at time 1.
Mathematically the hidden Markov model is characterized by a state space S, initial probabilities πi of being in

state i, transition probabilities ai,j from state i to state j, and emission probabilities bi,o that state i emits a certain
observation o.

Say we observe outputs y1, . . . , yT .
Let Vt,k is the probability of the most probable state sequence ending at time t with k as its final (hidden) state.

The best way to reason about the shared optimal substructure of the optimal solution is to consider its structure in
time. Assume that (s1, ..., st−1, k) is the optimal sequence (the most probable one) ending at state k at iteration t, and
consider the most probable sequences stopping one iteration before, at t− 1. Let Vt−1,x be the probability of the most
probable path reaching configuration x at the previous time. Two other events must happen to reach k, a transition
from x to k and the emission of the measured signal yt. Because we are searching for the most probable sequence, we
must maximize the probability over all possible previous points x.

Therefore, the most likely state sequence x1, . . . , xT that produces the observations is given by the recurrence
relations:

V1,k = P
(
y1 | k

)
· πk

Vt,k = maxx∈S
(
P
(
yt | k

)
· ax,k · Vt−1,x

)
After determining the optimal value, the Viterbi path can be retrieved by saving back pointers that remember

which state x was the winning one in the second equation. Let Ptr(k, t) be the function that returns the value of x
used to compute Vt,k if t > 1, or k if t = 1. Then:

xT = arg maxx∈S(VT,x)
xt−1 = Ptr(xt, t)

The complexity of this algorithm is O(T × |S|2) while a complexity of a brute-force scheme considering all possible
paths is O(|S|T ). The reduction in CPU time is enormous for long sequences.

To illustrate how the Viterbi algorithm works, consider the short example in Fig. 34.5. One assumes a 4-letter
alphabet, A = {T,A,C,O}, and the observed string given by the OCR machine is Z = −CAT−, where “−” de-
notes blank or space. The features vectors z1, z2, and z3 are obtained when the feature extractor looks at C,A,T. The
available and relevant information that Viterbi’s algorithm traverses to make a decision on the word, is expressed in
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Figure 34.5: Viterbi’s dynamic programming algorithm applied to text recognition.

terms of a directed graph or trellis as in Fig. 34.5. All nodes (except the blank nodes “-”) and edges have probabilities
associated with them. The edge probabilities (Markov transition probabilities between letters) remain fixed no matter
what sequence of letters is presented to the machine. They represent static information. The node probabilities (like-
lihood of the feature vectors obtained from the characters), on the other hand, are a function on the actual characters
presented to the machine. They represent dynamic information. We see from the figure that any path from the start
node to the end node (the “−” nodes) represents a sequence of letters but not necessarily a valid word. Consider the
bold path, which represent the letter sequence CAT. The aim is to find the letter sequence which maximizes the product
of the probabilities of its corresponding path.

The pseudo-code of the algorithm is shown in Fig.34.6. Two support matrices are used to save values of the optimal
subproblems (T1) and to save the previous state in the temporal path, so that the optimal solution can be reconstructed
at the end.

Andrew Viterbi proposed its algorithm in 1967 as a decoding algorithm for “convolutional codes” over noisy digital
communication links. Being an application of dynamic programming, it has, however, a history of multiple invention.

A Dynamic Programming algorithm called the Bellman-Ford Algorithm is used to for the single-source shortest
path problem, while the Floyd-Warshall algorithms can be used to find shortest paths between all pairs of vertices.
The starting observation is that a shortest path between two vertices contains other shortest paths within it (otherwise
one could substitute sub-paths obtaining shortest overall paths).

Similar algorithms, with generalizations, are now in wide use for maximization problems involving probabilities
like statistical parsing, to find the most likely assignment of all or some subset of latent variables in some graphical
models, e.g., Bayesian networks, Hidden Markov Models (HMM), and Markov random fields. The latent variables
need in general to be connected in a way somewhat similar to an HMM, with a limited number of connections between
variables and some type of linear structure among them.
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O Set of observations emitted by states
S Set of states
π Initial probabilities for states
y Observed outputs
A Matrix of transition probabilities between states
B Matrix of emission probabilities

1. function Viterbi (O, S, π, y, A, B)
2. for each state si
3. T1[i, 1]← πi ·Bi,y1
4. T2[i, 1]← 0
5. for i← 2, 3, . . . , T
6. for each state sj
7. T1[j, i]←maxk(T1[k, i− 1] ·Akj ·Bj,yi)
8. T2[j, i]← arg maxk(T1[k, i− 1] ·Akj ·Bj,yi)
9. zT ← arg maxk(T1[k, T ])
10. xT ← szT
11. for i← T , T -1, . . . , 2
12. zi−1← T2[zi, i]
13. xi−1← szi−1

14. return x

Figure 34.6: Viterbi algorithm pseudo-code.

Gist
When solving problems with a set of discrete variables, brute-force exhaustive generation of all possible
solutions has a clear scalability issue: the CPU time explodes in an exponential manner when the number
of variables grows. One can imagine producing a tree, in which an additional variable is set to all possible
values at a node, generating the corresponding sub-trees (branching). Branching alone amounts to brute-
force enumeration of candidate solutions and testing them all. To improve the performance, Branch and
Bound keeps track of an optimistic bound on the solution which can be obtained by completing a partial
solution. This bound is compared with the current record value at each iteration to “prune” the search space,
eliminating partial solutions that are doomed (one is sure that their completions will not contain any optimal
solution). When a node in the tree is doomed, the search backtracks and continues from an upper-layer
node which contains new subtrees to explore.

The popularity of B&B in the initial part of Artificial Intelligence is somewhat surprising: given only
toy problems can be solved because of its exponential running times. For sure, the human species would
not have survived in the forest with B&B when confronted by very fast predators.

The core idea of dynamic programming is to avoid repeated work by remembering partial results. It
works when one can demonstrate that an optimal solution contains optimal solutions to smaller sub-
problems. The smaller subproblems can be solved once and saved in memory to build solutions to many
larger and larger problems. In some happy cases this process leads to an enormous reduction of CPU times
(and better scalability) w.r.t. the brute-force solution. Cellular phones would be impossible without Viterbi’s
algorithm.



Chapter 35

Satisfiability

I can’t get no satisfaction
’Cause I try and I try and I try and I try

(The Rolling Stones)

It is difficult to think about a problem which is more relevant for the applications and more interesting from an
algorithmic point of view than satisfiability of Boolean formulas. It is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean
formula can be consistently replaced by the values TRUE or FALSE so that the formula evaluates to TRUE.

Many instances of SAT that occur in practice, for example in symbolic artificial intelligence, circuit design
and automatic theorem proving. While the roots of formalised logic go back to Aristotle, the dream of automating
the derivation of all mathematical truth using axioms and inference rules of formal logic had a huge expansion in
the twentieth century. Applications in integrated circuit design and verification are of particular commercial interest,
given the huge losses caused by mistakes in the design of logic circuits. Solving SAT is a prototypical form of the
more general onstraint programming (CP) method, searching for a state of the world in which a large number of

373
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constraints are satisfied at the same time. The constraints are expressed as Boolean formulas of binary variables (with
two values usually called “true” and “false”).

In spite of their far-reaching mathematical interest, as an additional bonus, SAT and MAX-SAT are surprisingly
easy to define and visualize, and therefore helpful to make abstract procedures very concrete in our minds. This chapter
is somewhat more detailed than the other ones, and it requires therefore more effort and concentration, because most
of the algorithmic building blocks for solving optimization problems can be encountered for SAT in a simple and terse
version, with clear advantages for learning. In addition of the already presented topics, SAT gives the opportunity
to discuss approximation algorithms (with guaranteed performance ratio) and randomized algorithms in which
random numbers are used in the solution.

To start with a toy concrete example, let’s consider the organization of a meeting. Consider the following con-
straints: John can only meet either on Monday, Wednesday or Thursday, Catherine cannot meet on Wednesday, Anne
cannot meet on Friday, Peter cannot meet neither on Tuesday nor on Thursday. Question: Is the meeting possible and
when can it take place?

The constraints can be encoded into the following Boolean formula:

(Mon
∨
Wed

∨
Thu)

∧
(¬Wed)

∧
(¬Fri)

∧
(¬Tue

∧
¬Thu)

The formula can be satisfied by setting Monday to TRUE, and the other days to FALSE, and therefore the meeting can
take place on Monday. Sure, this can also be easily solved by hand, but imagine defining meetings in a large university
subject to many constraints regarding professors, classrooms, etc. Even approximated solutions become very hard!

In the following sections, by following mostly [35], we summarize the main methods, considering both exact
(complete) and approximated approaches.

35.1 Satisfiability and maximum satisfiability: definitions
In the Maximum Satisfiability (MAX–SAT ) problem one is given a Boolean formula in conjunctive normal form, i.e.,
as a conjunction of clauses, each clause being a disjunction. The task is to find an assignment of truth values to the
variables that satisfies the maximum number of clauses.

SAT is the decision version of the problem, i.e., to assess if all clauses can be satisfied or not. A MAX–SAT solution
solves SAT if the maximum number of clauses satisfied is equal to the total number of clauses.

In our work, n is the number of variables and m the number of clauses, so that a formula has the following form:∧
1≤i≤m

(
∨

1≤k≤|Ci|

lik)

where |Ci| is the number of literals in clause Ci and lik is a literal, i.e., a propositional variable uj or its negation uj ,
for 1 ≤ j ≤ n. The set of clauses in the formula is denoted by C. If one associates a weight wi to each clause Ci
one obtains the weighted MAX–SAT problem, denoted as MAX W–SAT: one is to determine the assignment of truth
values to the n variables that maximizes the sum of the weights of the satisfied clauses. Of course, MAX–SAT is
contained in MAX W–SAT (all weights are equal to one). In the literature one often considers problems with different
numbers k of literals per clause, defined as MAX–k–SAT , or MAX W–k–SAT in the weighted case. In some papers
MAX–k–SAT instances contain up to k literals per clause, while in other papers they contain exactly k literals per
clause. We consider the second option unless otherwise stated.

MAX–SAT is of considerable interest not only from the theoretical side but also from the practical one. On one
hand, the decision version SAT was the first example of an NP–complete problem [100], moreover MAX–SAT plays
an important role in the characterization of different approximation classes [13]. On the other hand, many issues
in mathematical logic and symbolic artificial intelligence can be expressed in the form of satisfiability or some of
its variants, like constraint satisfaction. Some relevant applications are consistency in expert system knowledge
bases [281], integrity constraints in databases [11, 142], approaches to inductive inference [187, 227], asynchronous
circuit synthesis [209, 302].
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We summarize the basic approaches for the exact or approximated solution of the MAX W–SAT and MAX–SAT
problem, to give a panoramic view of the extreme diversity of methods.

The presentation of algorithms for the SAT is limited to a quick overview.

35.1.1 Notation and graphical representation
MAX–SAT is easy to define and excellent to visualize, and therefore to remember.

A clause will be represented either as C = u ∨ v ∨ z or as a set of literals, as in C = {uvz}.
For the following discussion, it can be useful to help the intuition with a graphical representation of a formula in

conjunctive normal form, as depicted in Fig. 35.1. In the figure, one has a case of MAX 3–SAT : all clauses have three
literals and the formula is:

(u1 ∨ u3 ∨ u5) ∧ (u2 ∨ u4 ∨ u5) ∧ (u1 ∨ u3 ∨ u4)

Truth values to variables are assigned by placing a black triangle to the left if the variable is true, to the right if it is
false. Each literal is depicted with a small circle, placed to the left if the corresponding variable is true, to the right in
the other case. If a literal is matched by the current assignment (e.g., if the literal asks for a true value and the variable
is set to true, or if is asks for false and the variable is false), it is shown with a gray shade. The coverage of a clause is
the number of literals in the clause that are matched by the current assignment, and it is illustrated by placing a black
square in the appropriate position of an array with indices ranging from 0 to the number of literals in each clause |C|.

u1       u2         u3         u4        u5       

n

m

C1

C2

C3

0    1     2     3

coverage

falsetrue 

Figure 35.1: A formula in conjunctive normal form (CNF).

35.2 Resolution and Linear Programming

35.2.1 Resolution and backtracking for SAT

A simple approach to solve SAT consists of the smart generation and test of all possible truth assignment, adapting the
Branch and Bound method described in Section 34.1 to the particular structure os SAT .

In the adaptation, a basic tool is that of resolution, given by the recursive replacement of a formula by one or
more formulae, the solution of which implies the solution of the original formula.

In resolution a variable is selected and a new clause, called the resolvent is added to the original formula. The
process is repeated to exhaustion or until an empty clause is generated. The original formula is not satisfiable if and
only if an empty clause is generated [307].

One aims at demonstrating that the problem cannot be satisfied, if one fails, the problem is satisfiable.
Let us now consider some details: A clause R is the resolvent of clauses C1 and C2 iff there is a literal l ∈ C1

with l ∈ C2 such that R = (C1 \ {l}) ∪ (C2 \ {l}) and u(l), the variable associated to the literal, is the only variable
appearing both positively and negatively.
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For the two clauses C1 = (l ∨ a1 ∨ ... ∨ aA) and C2 = (l ∨ b1 ∨ ... ∨ bB) the resolvent is therefore the clause
R = (a1 ∨ ... ∨ aA ∨ b1 ∨ ... ∨ bB). The resolvent is a logical consequence of the logical and of the two clauses.
Therefore, if the resolvent is added to the original set of clauses, the set of solutions does not change. It is immediate
to check that, if both C1 and C2 are satisfied, i.e., have at least one matched literal, the resolvent must also be satisfied.
In fact, if it is not, in the original clauses there are no matched literals apart from either l or l, but this implies that both
clauses cannot be satisfied (see also Fig. 35.2 for a graphical illustration).

l         a       b        c        d

C1

C2

R

Figure 35.2: How to construct a resolvent, an example with variables l, a, b, c, d.

Davis and Putnam [111] started in 1960 the investigation of useful strategies for handling resolution. In addition
to applying transformations that preserve the set of solutions they eliminate one variable at a time in a chosen order
by using all possible resolvents on that variable. During resolution the lengths and the number of added clauses can
easily increase and become extremely large.

DPLL( C : set of clauses )
Input: Boolean CNF formula C = {C1, C2, . . . , Cm}
Output: Yes or No (decision about satisfiability)

1
2
3
4
5
6
7

if C is empty then return Yes
if C contains an empty clause then return No
if there is a pure literal l in C then return DPLL(C(l))
if there is a unit clause {l} ∈ C then return DPLL(C(l))
Select a variable u in C
if DPLL(C(u)) = Yes then return Yes
else return DPLL(C(u))

Figure 35.3: The DPLL algorithm by Davis, Logemann and Loveland in recursive form. The recursive calls are
executed on the problems derived after setting the truth value of the selected variable.

Davis, Logemann and Loveland [110] avoid the memory explosion of the original DP algorithm by replacing the
resolution rule with the splitting rule (Davis, Putnam, Logemann and Loveland, or DPLL algorithm for short). In
splitting, a variable u in a formula is selected. Now, if there exist a satisfying truth assignment for the original formula
then either u is true or u is true in the assignment. In the first case the formula obtained by eliminating all clauses
containing u and by deleting all occurrences of u must be satisfied, see Fig 35.4. This derived formula is called C(u)
in Fig. 35.3. In the second case, the formula obtained by eliminating all clauses containing u and all occurrences of u
must be satisfied. Vice versa, if both derived formulae cannot be satisfied, neither can the original problem.

A tree is therefore generated. At the root one has the original problem and no variables are assigned values. At
each node of the tree one generates two children by selecting one of the yet unassigned variables in the problem
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u  false

C1

C2

C3

C4

a       b        c        e a       b        c        e

a       b       c        u        e

u true

Figure 35.4: Example of splitting on a variable u.

corresponding to the node and by generating the two problems derived by setting the variable to true or false. A trivial
upper bound on the number of nodes in the tree is proportional to the number of possible assignments, i.e., O(2n). In
fact, sophisticated techniques are available to reduce the number of nodes, that nonetheless remains exponential in the
worst case.

The techniques include:

• avoiding the examination of a subtree when the fate of the current problem is decided (problems with an empty
clause have no solutions, problems with no clauses have a solution). If the current problem cannot be solved, or
if it is solved but one wants all possible solutions, one backtracks to the first unexplored branch of the tree. Note
that, when splitting is combined with a depth-first search of the tree (as in the DPLL algorithm) one avoids the
memory explosion because only one subproblem is active at a given time.

• selecting the next variable for the splitting based on appropriate criteria. For example, one can prefer variables
that appear in clauses of length one (unit clause rule), or select a pure literal (such that it occurs only positive,
or only negative), or select a literal occurring in the smallest clause.

Interesting reviews are [163], and [246]. A parallel implementation in given in [57].

35.2.2 Integer programming approaches
The MAX W–SAT problem has a natural integer linear programming formulation (ILP ), see Section 34.1. Let yj = 1
if Boolean variable uj is true, yj = 0 if it is false, and let the Boolean variable zi = 1 if clause Ci is satisfied, zi = 0
otherwise. The integer linear program is:

max
m∑
i=1

wi zi

subject to the following constraints:∑
j∈U+

i

yj +
∑
j∈U−i

(1− yj) ≥ zi , i = 1, · · · ,m

yj ∈ {0, 1} , j = 1, · · · , n
zi ∈ {0, 1} , i = 1, · · · ,m
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where U+
i and U−i denote the set of indices of variables that appear unnegated and negated in clause Ci, respectively.

Because the sum of the zi wi is maximized and because each zi appears as the right-hand side of one constraint
only, zi will be equal to one if and only if clause Ci is satisfied.

If one neglects the objective function and sets all zi variables to 1, one obtains an integer programming feasibility
problem associated to the SAT problem [55].

The integer linear programming formulation of MAX–SAT suggests that this problem could be solved by a standard
branch-and-bound method. A tree is generated, see also the DPLL method, where the root corresponds to the initial
instance and two children are obtained by branching, i.e., by selecting one free variable and setting it true (left
child) and false (right child). An upper bound on the number of satisfied clauses can be obtained by using a linear
programming relaxation: the constraints yj ∈ {0, 1} and zi ∈ {0, 1} are replaced by yj ∈ [0, 1] and zi ∈ [0, 1]. One
obtains a Linear Programming (LP ) problem that can be solved in polynomial time and, because the set of admissible
solutions is enlarged with respect to the original problem, one obtains an upper bound.

Unfortunately this is not likely to work well in practice [172] because the solution yj = 1/2, j = 1, · · · , n,
zi = 1, i = 1, · · · ,m is feasible for the LP relaxation unless there exist some constraint containing only one variable.
The bounds so obtained would be very poor.

Better bounds can be obtained by using Chvátal cuts. In [187] it is shown that the resolvents in the propositional
calculus correspond to certain cutting planes in the integer programming model of inference problems.

A general cutting plane algorithm for ILP , see for example [287], works as follows. One solves the LP relaxation
of the problem: if the solution is integer the algorithm terminates, otherwise one adds linear constraints to the ILP that
do not exclude integer feasible points. The constraints are added one at a time, until the solution to the LP relaxation
is integer.

LP relaxations of integer linear programming formulations of MAX–SAT have been used to obtained upper bounds
in [170, 387, 155]. A linear programming and rounding approach for MAX 2–SAT is presented in [85].

35.3 Continuous approaches
The ILP feasibility problem obtained from SAT as described in the previous section is solved with an interior point
algorithm in [227, 228], which applies a function minimization method based on continuous mathematics to the
inherently discrete SAT problem.

In [228] the application is to a problem of inductive inference, in which one aims at identifying a hidden Boolean
function using outputs obtained by applying a limited number of random inputs to the hidden function. The task is
formulated as a SAT problem, which is in turn formulated as an integer linear program:

AT y ≤ c , y ∈ {−1, 1}n (35.1)

where AT is an m× n real matrix and c a real m vector.
The interior point algorithm is based on finding a local minimum in the box−1 ≤ yj ≤ 1 of the potential function:

φ(y) = log

{
n− yT y∏m

k=1(ck − akT y)1/m

}
(35.2)

by an iterative method. The denominator of the argument of the log is the geometric mean of the slacks (ak is the
k-th column of matrix A). It is shown that, if the integer linear program has a solution, y∗ is a global minimum of
this potential function if and only if y∗ solves the integer program. The next iterate yk+1 (interior point solution,
i.e., such that AT y < c) is obtained by moving in a descent direction ∆y from the current iterate yk such that
φ(yk+1) = φ(yk + α∆y) < φ(yk). Each iteration in [228] is based on the trust region approach of continuous
optimization where the Riemannian metric used for defining the search region is dynamically modified.

In some techniques the MAX–SAT (or SAT ) problem is transformed into an unconstrained optimization problem
on the real space Rn and solved by using existing global optimization techniques.
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Some examples of this approach include the UNISAT models [207] and the neural network approaches [222, 76].
In general, these techniques do not have performance guarantees because they assure only the local convergence to
a locally optimal point, not necessarily the global optimum. The local convergence properties of some optimization
algorithms are considered in [162]. To obtain these results, one assumes that the initial solution is “sufficiently close”
to the optimal solution.

35.4 Approximation algorithms
MAX–SAT is a playground for algorithms with guaranteed quality of approximation. The basic principle is to
guarantee that the delivered result will be within a certain percentage of the optimal solution, which is of interest
for many applications. Let’s remember that the real world is complex and noisy so that small differences in the
solutions can become irrelevant when compared with experimental noise and approximations related to defining the
problem. For a detailed treatment of complexity classes we refer to [35], we focus here on some notable approximated
algorithms.

The two first approximate algorithms for MAX W–SATwere proposed by Johnson [218] and use greedy construc-
tion strategies. The original paper [218] demonstrated for both of them a performance ratio 1/2. Actually the second
one reaches a performance ratio 2/3 [83].

The first algorithm chooses, at each step, the literal that occurs in the maximum number of clauses. If the literal is
positive, the corresponding variable is set to true; if the literal is negative, the corresponding variable is set to false.
The clauses satisfied by the literal are deleted from the formula and the algorithm stops when the formula is satisfied or
all variables have been assigned values. More formally, this procedure is developed in algorithm GREEDYJOHNSON1
of Fig. 35.5.

GREEDYJOHNSON1
Input: Boolean CNF formula C = {C1, C2, . . . , Cm};
Output: Truth assignment U ;
4 The satisfied clauses will be incrementally inserted in the set S;
4 U is the truth assignment;
4 for every literal l, u(l) is the corresponding variable;
1
2
3
4
5
6
7
8
9
10
11
12

S← ∅; LEFT ← C; V ← {u | u variable in C};
repeat

Find l, with u(l) ∈ V , that is in max. no. of clauses in LEFT
Solve ties arbitrarily
Let {Cl1 , . . . , Clk} be the clauses in which l occurs
S← S ∪ {Cl1 , . . . , Clk}
LEFT ← LEFT \ {Cl1 , . . . , Clk}
if l is positive then u(l)← true else u(l)← false
V ← V \ {u(l)}

until no literal l with u(l) ∈ V is contained in any clause of LEFT
if V 6= ∅ then forall u ∈ V do u← true
return U

Figure 35.5: The GREEDYJOHNSON1 algorithm, a k/(k + 1)-approximate algorithm.

Theorem 35.4.1 Algorithm GREEDYJOHNSON1 is a polynomial time 1/2-approximate algorithm for MAX–SAT .

Proof. One can prove that, given a formula with m clauses, algorithm GREEDYJOHNSON1 always satisfies at least
m/2 clauses, by induction on the number of variables. Because no optimal solution can be larger than m, the theorem
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follows. The result is trivially true in the case of one variable. Let us assume that it is true in the case of i−1 variables
(i > 1) and let us consider the case in which one has i variables. Let u be the last variable to which a truth value
has been assigned. We can suppose that u appears positive in k1 clauses, negative in k2 clauses and does not appear
in m − k1 − k2 clauses. Without loss of generality suppose that k1 ≥ k2. Then, by inductive hypothesis, algorithm
GREEDYJOHNSON1 allows us to choose suitable values for the remaining i − 1 variables in such a way to satisfy at
least (m− k1 − k2)/2 clauses; if according to the algorithm we now choose u = true we satisfy

m− k1 − k2
2

+ k1 ≥
m

2

clauses.
�

"wounds"

for the inductive hypothesis

at least half of these clauses  for the greedy choice

at least  half of these clauses 

m
 -

 k
1
 -

 k
2

k
2

k
1

Figure 35.6: Illustration of the GREEDYJOHNSON1 algorithm.

Let us note that one does not use the fact that the chosen literal occurs in the maximum number of clauses for the
above proof. What is required is that, given an unset variable that appears in at least an unsatisfied clause, the variable
is set to true or false in a way that maximizes the number of newly satisfied clauses.

This result can be made more specific by considering the number of variables in a clause.

Theorem 35.4.2 Let k be the minimum number of variables occurring in any clause of the formula. For any integer
k ≥ 1, algorithm GREEDYJOHNSON1 achieves a feasible solution y of an instance x such that

m(x, y)

m∗(x)
≥ 1− 1

k + 1
.

Proof. Because of the greediness, when literal l is picked in line 3 of Fig. 35.5, the number of newly satisfied clauses
is at least as large as the number of new wounds, defined as the number of occurrences of literal l in clauses of LEFT
that will never be matched in the future steps, given the choice of l, see Fig. 35.6. When the algorithm halts, the only
clauses remaining in LEFT are those that have a number of wounds equal to the number of their literals, and hence are
dead. This means that, when the algorithm halts, there are at least k|LEFT | wounds, and therefore |S| ≥ k|LEFT |.
Thus m∗ ≤ m = |S|+ |LEFT | ≤ (k+1)

k |S|. The bound follows.
�
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Note that, according to the definition of performance ratio, algorithm GREEDYJOHNSON1 is k
k+1–approximate. In

particular, for k = 1, the performance ratio is 1/2, for k = 2 the performance ratio is 2/3, for k = 3 the performance
ratio is 3/4 and so on. This means that the goodness of the algorithm improves for larger values of k. Therefore the
worst case is given by k = 1, that is, when one has unit clauses (clauses with just one literal).

Johnson introduced a second algorithm (GREEDYJOHNSON2). This algorithm improves the performance ratio and
obtains a bound 2/3 [83]. Until very recently, only a performance ratio 1/2 was demonstrated [218]. The original
theorem in [218] is here presented, because of its simplicity and paradigmatic nature and because it gives a better
performance as a function of k, the minimum number of literals in some clause. In the algorithm one associates a
mass w(Ci) = 2−|Ci| to each clause. The term mass is used instead of the original term “weight” in order to avoid
confusions with the clause weight in the MAX W–SAT problem. The mass will be proportional to the weight in the
version of the algorithm for the MAX W–SAT problem (w(Ci) = wi 2−|Ci|). In [218] the analysis of the performance
of algorithm GREEDYJOHNSON2 leads to the following:

GREEDYJOHNSON2
Input: Boolean CNF formula C = {C1, C2, . . . , Cm};
Output: Truth assignment U ;
4 The satisfied clauses will be incrementally inserted in the set S;
4 U is the truth assignment;
4 for every literal l, let u(l) be the corresponding variable;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

S← ∅; LEFT ← C; V ← {u | u variable in C};
Assign to each clause Ci a mass w(Ci) = 2−|Ci|

repeat

Determine u ∈ V , appearing in at least a clause ∈ LEFT
Let CT be the clauses ∈ LEFT cont. u, CF those cont. u
if
∑
Ci∈CT w(Ci) ≥

∑
Ci∈CF w(Ci) then

u(l)← true
S← S ∪ CT
LEFT ← LEFT \ CT
forall Ci ∈ CF do w(Ci)← 2 · w(Ci)

else
u(l)← false
S← S ∪ CF
LEFT ← LEFT \ CF
forall Ci ∈ CT do w(Ci)← 2 · w(Ci)

until no literal l in any clause of LEFT is such that u(l) is in V
if V 6= ∅ then forall u ∈ V do u← true
return U

Figure 35.7: The GREEDYJOHNSON2 algorithm, a (1− 1/2k)-approximate algorithm.

Theorem 35.4.3 Let k be the minimum number of clauses occurring in any clause of the formula. For any integer
k ≥ 1, algorithm GREEDYJOHNSON2 achieves a feasible solution y of an instance x such that

m(x, y)

m∗(x)
≥ 1− 1

2k
.

Proof. Initially, because each clause has at least k literals, the total mass of all the clauses in LEFT cannot exceed
m/2k. During each iteration, the total mass of the clauses in LEFT cannot increase. In fact, the mass removed from
LEFT is at least as large as the mass added to those remaining clauses which receive new wounds, see lines 6–15 of
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Fig. 35.7. Therefore, when the algorithm halts, the total mass still cannot exceed m/2k. But each of the dead clauses
in LEFT when the algorithm halts must have been wounded as many times as it had literals, hence must have had
its mass doubled that many times, and so must have final mass equal to one. Therefore |LEFT | ≤ m/2k, and so
|S| ≥ m(1− 1/2k) and the bound follows.
�

Again, for larger values of k, algorithm GREEDYJOHNSON2 obtains better performance ratios and, generally
speaking, because 1− 1

2k
> 1− 1

k+1 for any integer k ≥ 2, algorithm GREEDYJOHNSON2 has a better performance
than that of algorithm GREEDYJOHNSON1.

The performance ratio 2/3 has been proved in a paper by Chen, Friesen, and Zheng [83]. Because they consider
the MAX W–SAT problem, line 2 in Fig. 35.7 must be modified to take the weights wi into account: the mass becomes
w(Ci) = wi 2−|Ci|. The preceding bound 1/2 depends on the fact that the only upper bound used in the above proofs
was given by the total weight of the clauses; of course this upper bound can be far from the optimal value. The novelty
of the approach of [83] is that the performance ratio can be derived by using the correct value of the optimal solution.
In order to prove that algorithm GREEDYJOHNSON2 has this better performance ratio let us introduce a generalization
of the algorithm. It is important to stress that this generalization is introduced to perform a more accurate analysis of
the performance ratio and it is used in the following as a theoretical tool.

The difference between GREEDYJOHNSON2 and its generalization is rather subtle. The generalized algorithm, that
we denote as GENJOHNSON2, considers an arbitrary Boolean array b[1..n] of size n as additional input, and examines
b to decide what to do if an equality is present in line 6 of Fig. 35.7. Let us assume that the variable one is considering
is uj . In line 6 of GREEDYJOHNSON2 in Fig. 35.7, when

∑
Ci∈CT w(Ci) =

∑
Ci∈CF w(Ci), the if condition is true

and uj is set to true. Now, instead, when one obtains an equality one considers two different cases: if the variable b[j]
is true uj is set to true; if the variable b[j] is false uj is set to false.

This generalized algorithm is then used in the proof with this Boolean array equal to the optimal assignment. Of
course the optimal assignment cannot be derived in polynomial time but here we are not interested in running an
algorithm but in performing a theoretical analysis.

We will prove that GENJOHNSON2 has a performance ratio 2/3 and this fact will imply that also GREEDYJOHNSON2
has performance ratio 2/3.

Let us give some definitions needed in the proof.

Definition 2 • A literal is positive if it is a Boolean variable ui for some i.

• A literal is negative if it the negation ūi of a Boolean variable for some i.

Definition 3 Assume that algorithm GENJOHNSON2 is applied to a formula C and consider a fixed moment in the
execution.

• A literal l is active if it has not been assigned a truth value yet.

• A clause Cj is killed if all literals in Cj are assigned value false.

• A clause Cj is negative if it is neither satisfied nor killed, and all active literals in Cj are negative literals.

Definition 4 Let 0 ≤ t ≤ n. Assume that in GENJOHNSON2 the t–th iteration has been completed (a truth assignment
has been given to t variables). Then St denotes the set of satisfied clauses, Kt denotes the set of killed clauses, Nti
denotes the set of negative clauses with exactly i active liberals.

Without less of generality, one assumes that each clause in the formula has at most r literals. The proof of the
performance ratio 2/3 depends on the following Lemma.

Given a set of clauses C, let us define as w(C) the sum of the weights of all clauses of C.
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Lemma 2 For any formula C of MAX W–SAT and for any Boolean array b[1..n], when the algorithm GENJOHNSON2
is applied on C the following inequality holds at all iterations 0 ≤ t ≤ n:

w(St) ≥ 2w(Kt) +

r∑
i=1

1

2i−1
w(Nti)−A0 (35.3)

where A0 =
∑r
i=1

1
2i−1w(N0

i )

The proof of the Lemma proceeds by induction on t and can be found in [83].

Theorem 35.4.4 The performance ratio of algorithm GREEDYJOHNSON2 is 2/3.

Proof. Let C be an instance of MAX W–SAT and let U0 an optimal truth assignment for C. Now one considers another
formula C′ that is derived from C as follows. If U0(ut) = false for a variable ut then one negates ut (ut and ūt are
interchanged) in C′. No change on the weights is done. Therefore there exists a one–to–one correspondence between
the set of clauses in C and the set of clauses in C′; moreover the corresponding clauses have the same weight. In
addition, the Boolean array b[1..n] is constructed such that b[j] = false if and only if U0(uj) = false.

It is easy to see (for the details, see again [83]) that

• the weight of an optimal assignment to C′ is equal to the weight of an optimal assignment to C.

• the truth assignment for C found by GREEDYJOHNSON2 and the truth assignment for C′ found by GENJOHNSON2
have the same weight.

This means that, if we prove that GENJOHNSON2 has a performance ratio 2/3 on the formula C′, the theorem is
shown.

Note that the truth assignment U
′

0 for C′ that gives value true to all variables corresponds to the optimal truth
assignment U0 for C. Therefore U

′

0 is optimal for C′.
When GENJOHNSON2 stops, that is, for t = n, Sn is the set satisfied by the algorithm and Kn is the set of clauses

not satisfied. Nni is the empty set for any i.
Applying the inequality 35.3 of Lemma 2 to this case, one obtains:

w(Sn) ≥ 2w(Kn)−A0. (35.4)

On the other hand, A0 can be upperbounded in the following way:

A0 =

r∑
i=1

1

2i−1
w(N0

i ) ≤
r∑
i=1

w(N0
i ) ≤ 2

r∑
i=1

w(N0
i ). (35.5)

From inequalities 35.4 and 35.5 one has:

3

2
w(Sn) ≥ w(Sn) + w(Kn)−

r∑
i=1

w(N0
i ) (35.6)

Note that, on one hand, w(Sn) is the weight of the truth assignment found by GENJOHNSON2. On the other hand,
Sn ∪ Kn is the whole set of clauses in C′ and the optimal truth assignment U

′

0 for C′ that gives value true to all
variables satisfies all clauses in C′ except those belonging to N0

i for i = 1, 2, . . . , r.
Therefore an optimal truth assignment for C′ has weight exactly

w(Sn) + w(Kn)−
r∑
i=1

w(N0
i ).
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Then the inequality 35.6 says that the weight of the truth assignment found by GENJOHNSON2 is at least 2/3 of the
weight of an optimal assignment to C′. In consequence, the weight of the assignment constructed by the original
GREEDYJOHNSON2 algorithm for the instance C is at least 2/3 of the weight of an optimal assignment to C, thus
proving the theorem.
�

35.4.1 Randomized algorithms for MAX W–SAT

A randomized 1/2–approximate algorithm for MAX W–SAT

One of the most interesting approaches in the design of new algorithms is the use of randomization. During the
computation, random bits are generated and used to influence the algorithm process.

In many cases randomization allows to obtain better (expected) performance or to to simplify the construction of
the algorithm. Particularly in the field of approximation, randomized algorithms are widely used and, for many prob-
lems, the algorithm can be “derandomized” in polynomial time while preserving the approximation ratio. However, it
is important to note that, often, the derandomization leads to algorithms which are very complicated in practice.

Let us now use this approach to present more efficient approximate algorithms for MAX W–SAT. More precisely,
this section introduces two different randomized algorithms that achieve a performance ratio of 3/4. Moreover, it is
possible to derandomize these algorithms, that is, to obtain deterministic algorithms that preserve the same bound 3/4
for every instance.

The derandomization is based on the method of conditional probabilities that has revealed its usefulness in nu-
merous cases and is a general technique that often permits to obtain a deterministic algorithm from a randomized one
while preserving the quality of approximation.

Let us first present the algorithm RANDOM, a simple randomized algorithm, that, while just achieving a perfor-
mance ratio 1/2, will be used in the following subsections as an ingredient to reach the performance ratio 3/4.

RANDOM
Input: Set C of weighted clauses in conjunctive normal form
Output: Truth assignment U , C′,

∑
Cj∈C′ wj

1
2
3

Independently set each variable ui to true with probability 1/2
Compute C′ = {Cj ∈ C : Cj is satisfied }
Compute

∑
Cj∈C′ wj

Figure 35.8: The RANDOM algorithm, a randomized (1− 1/2k)-approximate algorithm.

It is difficult to think about a simpler (randomized) algorithm! Because the algorithm is randomized, one is
interested in the expected performance when the algorithm is run with different sequences of random bits (i.e., with
different random assignments).

Lemma 3 Given an instance of MAX W–SAT in which all clauses have at least k literals, the expected weight W of
the solution found by algorithm RANDOM is such that

W ≥ (1− 1

2k
)
∑
Cj∈C

wj .

Proof. The probability that any clause with k literals is not satisfied by the assignment found by the algorithm is 2−k

(all possible k matches must fail). Therefore the probability that a clause is satisfied is 1− 2−k. Then

W = (1− 1

2k
)
∑
Cj∈C

wj .
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�
As an immediate consequence of Lemma 3, one obtains the following Corollary.

Corollary 1 Algorithm RANDOM finds a solution for MAX W–SAT whose expected value is at least one half of the
optimum value.

The performance of algorithm RANDOM is the same, in a probabilistic setting, as that of algorithm GREEDYJOHNSON2.
Actually it is possible to show that, by applying the method of conditional probabilities to derandomize [35]

algorithm RANDOM, one essentially obtains algorithm GREEDYJOHNSON2.
For k = 1, algorithm RANDOMachieves an expected performance ratio 1/2. The performance of the algorithm

improves if we increase the number of literals. In particular, for k = 2, that is for formulae which do not contain unit
clauses, one obtains an expected value which is at least 3/4 of the optimal value. Therefore if one could discard unit
clauses, one would already have a 3/4-approximate algorithm for MAX W–SAT, after applying the derandomization.
This observation will reveal its usefulness in the following.

A randomized 3/4-approximate algorithm for MAX W–SAT

This subsection presents an algorithm that considerably improves the performance of algorithm RANDOM, and obtains
a performance ratio 3/4.

First of all we consider a generalization of algorithm RANDOM. In the previous case the value of every variable was
chosen randomly and uniformly, that is with probability 1/2; now the value of variable ui is chosen with probability
pi, obtaining algorithm GENRANDOM.

GENRANDOM
Input: Set C of weighted clauses in conjunctive normal form
Output: Truth assignment U , C′,

∑
Cj∈C′ wj

1
2
3

Independently set each variable ui to true with probability pi
Compute C′ = {Cj ∈ C : Cj is satisfied }
Compute

∑
Cj∈C′ wj

Figure 35.9: The GENRANDOM algorithm.

The expected number of clauses satisfied by algorithm GENRANDOM can be immediately computed as a function
of pi.

Lemma 4 The expected weight W of the set of clauses C is:

W =
∑
Cj∈C

wj(1−
∏
i∈U+

j

(1− pi)
∏
i∈U−j

pi)

where U+
j (U−j ) denotes the set of indices of the variables appearing unnegated (negated) in the clause Cj .

Proof. It is an obvious generalization of the proof given in the particular case pi = 1/2.
�

Now, if one manages to find suitable values pi such that W ≥ 3/4 m∗(C) for every formula C, one would obtain
a 3/4-approximate randomized algorithm.

To aim at this result, let us consider the representation of the instances of MAX W–SAT as instances of an integer
linear programming problem (ILP ) already presented in Section 2:
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max
∑
Cj∈C

wjzj

subject to : ∑
i∈U+

j

yi +
∑
i∈U−j

(1− yi) ≥ zj ,∀Cj ∈ C

yi ∈ {0, 1}, 1 ≤ i ≤ n

zj ∈ {0, 1},∀Cj ∈ C

Let u1, . . . , un be the Boolean variables appearing in the formula. An instance of MAX W–SAT is equivalent to an
instance of ILP if we choose the following conditions:

- yi = 1 iff variable ui is true;

- yi = 0 iff variable ui is false;

- zj = 1 iff clause Cj is satisfied;

- zj = 0 iff clause Cj is not satisfied.

The linear inequality states the fact that a clause can be satisfied (zj = 1) only if at least one of its literals is
matched.

One cannot compute the optimal value in polynomial time because ILP isNP–complete. However let us consider
the LP relaxation (by relaxation one means that the set of admissible solution increases with respect to that of the
original problem) in which one relaxes the conditions yi, zj ∈ {0, 1} with the new constraints 0 ≤ yi, zj ≤ 1. It is
known that LP can be solved in polynomial time finding a solution

(y∗ = (y∗1 , . . . , y
∗
n), z∗ = (z∗1 , . . . , z

∗
m))

with valuem∗LP (x) ≥ m∗ILP (x), for every instance x, wherem∗LP (x) andm∗ILP (x) denote the optimal value of the
LP and ILP instances, respectively. The upper bound is obvious given that the set of admissible solutions is enlarged
by the relaxation.

Let us consider algorithm GENAPPROX, see Fig. 35.10, that works as follows: first it solves the linear programming
relaxation and so computes the optimal values (y∗, z∗); then, given a function g to be specified later, it computes, for
each i, i = 1, . . . , n, the probabilities pi = g(y∗i). By Lemma 4 we know that a solution of weight:

W =
∑
Cj∈C

wj(1−
∏
i∈U+

j

(1− pi)
∏
i∈U−j

pi)

must exist; by applying the method of conditional probabilities, such solution can be deterministically found.
If the function g can be computed in polynomial time then algorithm GENAPPROX runs in polynomial time. In

fact the linear relaxation can be solved efficiently and the computation of the feasible solution can be computed in
polynomial time with the method of conditional probabilities explained before.

The quality of approximation naturally depends on the choice of the function g. Let us suppose that this function
finds suitable values such that:

(1−
∏
i∈U+

j

(1− pi)
∏
i∈U−j

pi) ≥
3

4
z∗j .
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GENAPPROX
Input: Set C of clauses in disjunctive normal form
Output: Set C′ of clauses, W =

∑
Cj∈C′ wj

1
2
3
4
5
6

Express the input C as an equivalent instance x of ILP
Find the optimum value y∗, z∗ of x in the linear relaxation
Choose pi ← g(y∗i), i = 1, 2, . . . , n, for a suitable function g
W ←

∑
Cj∈C wj(1−

∏
i∈X+

j
(1− pi)

∏
i∈X−j

pi)

Apply the method of conditional probabilities to find
a feasible solution C′ = {Cj ∈ C : Cj is satisfied} of value W

Figure 35.10: The GENAPPROX algorithm, deterministic version.

If this inequality is satisfied, then the algorithm is a 3/4-approximate algorithm for MAX W–SAT. In fact one has :

W =
∑
Cj∈C

wj(1−
∏
i∈U+

j

(1− pi)
∏
i∈U−j

pi) ≥
3

4

∑
Cj∈C

wjz
∗
j =

=
3

4
m∗LP (x) ≥ 3

4
m∗ILP (x)

More generally if one has :
(1−

∏
i∈U+

j

(1− pi)
∏
i∈U−j

pi) ≥ αz∗j

one obtains a α-approximate algorithm.
A first interesting way of choosing the function g consists of applying the following technique, called Randomized

Rounding, to get an integral solution from a linear programming relaxation. In order to get integer values one rounds
the fractional values, that is each variable yi is independently set to 1 (corresponding to the Boolean variable ui being
set to true) with probability y∗i , for each i = 1, 2, . . . , n. Hence the use of the randomized rounding technique is
equivalent to choosing pi = g(y∗i ) = y∗i , i = 1, 2, . . . , n.

Lemma 5 Given the optimal values (y∗, z∗) to LP and given any clause Cj with k literals, one has

(1−
∏
i∈U+

j

(1− y∗i )
∏
i∈U−j

y∗i ) ≥ αkz∗j

where

αk = 1−
(

1− 1

k

)k
.

Proof. Let us consider a clause Cj and, for the sake of simplicity, let us assume that every variable is unnegated. If a
variable ui would appear negated in Cj , one could substitute ui by its negation ui in every clause and also replace yi
by 1 − yi. So we can assume Cj = u1 ∨ · · · ∨ uk with the associated condition y∗1 + · · · + y∗k ≥ z∗j . The Lemma is
proved by showing that:

1−
k∏
i=1

(1− y∗i ) ≥ αkz∗j .

In the proof we exploit the geometric inequality based on the properties of the arithmetic mean: given a finite set of
nonnegative numbers {a1, . . . , ak},

a1 + · · ·+ ak
k

≥ k
√
a1a2 · · · ak.
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Now we apply the geometric inequality to the set {1 − y∗1 , . . . , 1 − y∗k}. Because
∑k
i=1

1−y∗i
k = 1 −

∑k
i=1 y

∗
i

k
,

one has

1−
k∏
i=1

(1− y∗i ) ≥ 1− (1−
∑k
i=1 y

∗
i

k
)k ≥ 1− (1−

z∗j
k

)k.

We note that the function g(z∗j ) = 1 − (1 − z∗j
k )k is concave in the interval [0, 1]; hence it is sufficient to prove that

g(z∗j ) ≥ αkz∗j at the extremal points of the interval. Because one has

g(0) = 0 and g(1) = αk

the Lemma is shown.
�

One can conclude that algorithm GENAPPROX with the choice pi = y∗i reaches an approximation ratio equal to
αk. In particular for k = 2, the ratio is 3/4. Note that, because αk is decreasing with k, algorithm GENAPPROX is an
αk–approximation algorithm for formulae with at most k literals per clause.

Moreover, it is well known that limk→∞(1 − 1
k )k = 1

e ; hence for arbitrary formulae one finds approximate
solutions whose value is at least 1− 1

e times the optimal value. Because 1− 1
e = 0.632 . . ., the randomized rounding

obtains a better performance than RANDOM, but it looks as if one is far from achieving a 3/4-approximation ratio.
Luckily, with a suitable merging of the above algorithm with RANDOM one obtains the desired performance ratio.

Firstly let us recall that RANDOM is a 3/4-approximation algorithm if all clauses have at least two literals. On
the other hand, GENAPPROX is a 3/4-approximation algorithm if we work with clauses with at most two literals.
One algorithm is good for large clauses, the other for short ones. A simple combination consists of running both
algorithm and choosing the best truth assignment obtained. Let us now consider the expected value obtained from the
combination.

Theorem 35.4.5 Let W1 be the expected weight corresponding to pi = 1/2 and let W2 be the expected weight
corresponding to pi = y∗i , i = 1, 2, . . . , n. Then one has :

max(W1,W2) ≥ 3

4
m∗LP (x), for any instance x.

Proof. Because max(W1,W2) ≥ W1+W2

2 , it is sufficient to show that W1+W2

2 ≥ 3
4m
∗
LP (x) for any x. Let us denote

by Ck the set of clauses with exactly k literals. By Lemma 3, because 0 ≤ z∗j ≤ 1 one has

W1 =
∑
k≥1

∑
Cj∈Ck

γkwj ≥
∑
k≥1

∑
Cj∈Ck

γkwjz
∗
j (35.7)

where γk = (1− 1
2k

).
Moreover, by applying Lemma 5, one obtains:

W2 ≥
∑
k≥1

∑
Cj∈Ck

αkwjz
∗
j . (35.8)

Summing 35.7 and 35.8 one has :

W1 +W2

2
≥
∑
k≥1

∑
Cj∈Ck

γk + αk
2

wjz
∗
j .

We note that γ1 + α1 = γ2 + α2 = 3/2 and for k ≥ 3 one has that γk + αk ≥ 7/8 + 1− 1
e ≥ 3/2; Therefore:

W1 +W2

2
≥
∑
k≥1

∑
Cj∈Ck

3

4
wjz

∗
j =

3

4
m∗LP (x).
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�
Note that it is not necessary to separately apply the two algorithms but it is sufficient to randomly choose one of

the two algorithms with probability 1/2, as it is done in algorithm 3/4–APPROXIMATE SAT.

3/4–APPROXIMATE SAT
Input: Set C of clauses in conjunctive normal form
Output: Set C′ of clauses, W =

∑
Cj∈C′ wj

1
2
3
4
5
6

Express the input C as an equivalent instance x of ILP
Find the optimum value (y∗, z∗) of x in the linear relaxation
With probability 1/2 choose pi = 1/2 or pi = y∗i , i = 1, 2, . . . , n
W ←

∑
Cj∈C wj(1−

∏
i∈U+

j
(1− pi)

∏
i∈U−j

pi)

Apply the method of conditional probabilities to find a feasible
solution C′ = {Cj ∈ C : Cj is satisfied} of value W

Figure 35.11: The 3/4–APPROXIMATE SAT algorithm: deterministic with performance ratio 3/4.

Corollary 2 Algorithm 3/4–APPROXIMATE SAT is a 3/4-approximation algorithm for MAX W–SAT.

Proof. The proof derives from the above theorem and from the use of the method of conditional probabilities.
�

35.5 Local search for SAT

MAX–SAT is among the problems for which perturbative local search, described in Section 24.2, has been very
effective: different variations of local search with randomness techniques have been proposed for SAT and MAX–SAT
starting from the late eighties, see for example [164, 324], motivated by previous applications of “min-conflicts”
heuristics in the area of Artificial Intelligence [270].

The general scheme is based on generating a starting point in the set of admissible solution and trying to improve it
through the application of simple basic moves. If a move (“trial”) is successful one accepts it, otherwise (“error”) one
keeps the current point. Of course, the successfulness of a local search technique depends on the neighborhood chosen
and there are often trade-offs between the size of the neighborhood (and the related computational requirements to
calculate it) and the quality of the obtained local optima.

In addition, as it will be demonstrated in Sec. 35.5.2, the use of a guiding function different from the original one
can in some cases guarantee local optima of better quality.

Because this presentation is dedicated to the MAX–SAT problem, the search space that we consider is given by all
possible truth assignments. Of course, a truth assignment can be represented by a binary string. For this presentation,
let us consider the elementary changes to the current assignment obtained by changing a single truth value. The
definitions are as follows.

Let U be the discrete search space: U = {0, 1}n, and let f : U −→ R (R are the real numbers) be the function to
be maximized, i.e., in our case, the number of satisfied clauses. In addition, let U (t) ∈ U be the current configuration
along the search trajectory at iteration t, and N(U (t)) the neighborhood of point U (t), obtained by applying a set
of basic moves µi (1 ≤ i ≤ n), where µi complements the i-th bit ui of the string: µi (u1, u2, ..., ui, ..., un) =
(u1, u2, ..., 1− ui, ..., un). Clearly, these moves are idempotent (µ−1i = µi).

N(U (t)) = {U ∈ U such that U = µi U
(t), i = 1, ..., n}
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The version of local search (LS) that we consider starts from a random initial configurationU (0) ∈ U and generates
a search trajectory as follows:

V = BEST-NEIGHBOR( N(U (t)) ) (35.9)

U (t+1) =

{
V if f(V ) > f(U (t))
U (t) if f(V ) ≤ f(U (t))

(35.10)

where BEST-NEIGHBOR selects V ∈ N(U (t)) with the best f value and ties are broken randomly. V in turn becomes
the new current configuration if f improves. Other versions are satisfied with an improving (or non-worsening) neigh-
bor, not necessarily the best one. Clearly, local search stops as soon as the first local optimum point is encountered,
when no improving moves are available, see eqn. 35.10. Let us define as LS+ a modification of LS where a specified
number of iterations are executed and the candidate move obtained by BEST-NEIGHBOR is always accepted even if
the f value remains equal or worsens.

35.5.1 Quality of local optima
Let m∗ be the optimum value and k the minimum number of literals contained in the problem clauses.

For the following discussion it is useful to consider the different degree of coverage of the various clause for a
given assignment. Precisely, let us define as COVs the subset of clauses that have exactly s literals matched by the
current assignment, and by COVs(l) the number of clauses in COVs that contain literal l.

_

0    1     2     3

_
L L

coverage

Cov2(L) = 1

Cov1(L) = 1

Cov0(L) = 1   ...

Figure 35.12: Literal L is changed from true to false.

One has the following theorem [172]:

Theorem 35.5.1 Let mloc be the number of satisfied clauses at a local optimum of any instance of MAX–SAT with at
least k literals per clause. mloc satisfies the following bound

mloc ≥
k

k + 1
m

and the bound is sharp.

Proof. By definition, if the assignment U is a local optimum, one cannot flip the truth value of a variable (from true
to false or vice versa) and obtain a net increase in the number of satisfied clauses f . Now, let (∆f)i by the increase in
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f if variable ui is flipped. By using the above introduced quantities one verifies that:

(∆f)i = −COV1(ui) + COV0(ui) ≤ 0 (35.11)

In fact, when ui is flipped one looses the clauses that contain ui as the single matched literal, i.e., COV1(ui) and gains
the clauses that have no matched literal and that contain ui, i.e., COV0(ui).

After summing over all variables:

n∑
i=1

COV0(ui) ≤
n∑
i=1

COV1(ui) (35.12)

k|COV0| ≤ |COV1| ≤ mloc (35.13)

where the equality
∑n
i=1 COV0(ui) = k|COV0| and

∑n
i=1 COV1(ui) = |COV1| have been used. The equality are

demonstrated by counting how many times a clause in COV0 (or COV1) is uncountered during the sum. For example,
because all literals are unmatched for the clauses in COV0, each of them will be encountered k times during the sum.

The conclusion is immediate:

m = mloc + |COV0| ≤ (1 +
1

k
)mloc =

k + 1

k
mloc (35.14)

�
The intuitive explanation is as follows: if there are too many clauses in COV0 , because each of them has k

unmatched literals, there will be at least one variable whose flipping will satisfy so many of these clauses to lead to a
net increase in the number of satisfied clauses.

There is therefore a very simple local search algorithm that reaches the same bound as the GREEDYJOHNSON1
algorithm. One starts from a truth assignments and keeps flipping variables that cause a net increase of satisfied
clauses, until a local optimum is encountered. Of course, because one gains at least one clause at each step, there is an
upper bound of m on the total number of steps executed before reaching the local optimum.

The following corollary is immediate:

Corollary 3 If mloc is the number of satisfied clauses at a local optimum, then:

mloc ≥
k

k + 1
m∗ (35.15)

Besides MAX–SAT , many important optimization problems share the property that the ratio between the value of
the local optimum and the optimal value is bounded by a constant. It is possible to define a class GLO composed of
these problems. It is of interest to note that the closure of GLO coincides with APX [14].

35.5.2 Non-oblivious local optima
In the design of efficient approximation algorithms for MAX–SAT a recent approach of interest is based on the use of
non-oblivious functions independently introduced in [8] and in [335].

Let us consider the classical local search algorithm LS for MAX–SAT , here redefined as oblivious local search
(LS-OB). Clearly, the feasible solution found by LS-OB typically is only a local and not a global optimum.

Now, a different type of local search can be obtained by using a different objective function to direct the search,
i.e., to select the best neighbor at each iteration. Local optima of the standard objective function f are not necessarily
local optima of the different objective function. In this event, the second function causes an escape from a given
local optimum. Interestingly enough, suitable non-oblivious functions fNOB improve the performance of LS if one
considers both the worst-case performance ratio and, as it has been shown in [34], the actual average results obtained
on benchmark instances.
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Let us mention a theoretical result for MAX 2–SAT . The d-neighborhood of a given truth assignment is defined as
the set of all assignment where the values of at most d variables are changed. The theoretically-derived non–oblivious
function for MAX 2–SAT is:

fNOB(U) =
3

2
|COV1|+ 2|COV2|

Theorems 7-8 of [335] state that:

Theorem 35.5.2 The performance ratio for any oblivious local search algorithm with a d-neighborhood for MAX 2–SAT
is 2/3 for any d = o(n). Non-oblivious local search with an 1-neighborhood achieves a performance ratio 3/4 for
MAX 2–SAT .

Proof. While one is referred to the cited papers for the complete details, let us only demonstrate the second part of
the theorem. The proof is a generalization of that for Theorem 35.5.1. Let the non-oblivious function be a weighted
linear combination of the number of clauses with one and two matched literals:

fNOB = a|COV1|+ b|COV2|

Let (∆f)i by the increase in f if variable ui is flipped. By using the definition of local optimum and the quantities
introduced in Sec. 35.5.1 one has that (∆f)i ≤ 0 for each possible flip of a variable ui. After expressing (∆f)i by
using the above introduced quantities, one obtains:

− a|COV1(ui)| − (b− a)|COV2(ui)|+ a|COV0(ui)|+ (b− a)|COV1(ui)| ≤ 0 (35.16)

In fact, when ui is flipped, all clauses that contain it decrease their coverage by one, while the clauses that contain ui
increase it by one, see also Fig. 35.12. As usual, let us assume that no clause contains both a literal and its negation.

After summing over all variables and collecting the sizes of the sets COVi one obtains:

n∑
i=1

(∆f)i ≤ 0 (35.17)

b− a
a
|COV2|+

2a− b
2a
|COV1| ≥ |COV0| (35.18)

Now one can fix the relative size of the values a and b in order to get the best possible bound. This occurs when
the coefficients of the terms |COV2| and |COV1| in equation 35.18 are equal, that is, for b = 4

3a.
For these values one obtains the following bound:

|COV2|+ |COV1| ≥ 3 |COV0| (35.19)

The number of satisfied clauses must be larger than three times the number of unsatisfied ones, which implies that
|COV0| ≤ 1

4m, or mloc ≥ 3
4m.

�
Therefore LS-NOB, by using a function that weights in different ways the satisfied clauses according to the number

of matched literals, improves considerably the performance ratio, even if the search is restricted to a much smaller
neighborhood. In particular the “standard” neighborhood where all possible flips are tried is sufficient.

With a suitable generalization the above result can be extended: LS-NOB achieves a performance ratio 1− 1
2k

for
MAX–k–SAT . The oblivious function for MAX–k–SAT is of the form:

fNOB(U) =

k∑
i=1

ci|COVi|
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and the above given performance ratio is obtained if the quantities ∆i = ci+1 − ci satisfy:

∆i =
1

(k − i+ 1)

(
k

i− 1

)
k−i∑
j=0

(
k
j

)
Because the positive factors ci that multiply |COVi| in the function fNOB are strictly increasing with i, the approx-
imations obtained through fNOB tend to be characterized by a “redundant” satisfaction of many clauses. Better
approximations, at the price of a limited number of additional iterations, can be obtained by a two-phase local search
algorithm (NOB&OB): after a random start fNOB guides the search until a local optimum is encountered [34]. As
soon as this happens a second phase of LS is started where the move evaluation is based on f . A further reduction
in the number of unsatisfied clauses can be obtained by a “plateau search” phase following NOB&OB: the search is
continued for a certain number of iterations after the local optimum of OB is encountered, by using LS+, with f as
guiding function [34].

An example of non-oblivious search

Let us consider the following task with number of variables n = 5, and clauses m = m∗ = 4, see also Fig. 35.13:

(u1 ∨ u2 ∨ u3) ∧ (u1 ∨ u2 ∨ u4) ∧ (u1 ∨ u2 ∨ u5) ∧ (u3 ∨ u4 ∨ u5)

Let us assume that the assignment U = (11111) is reached by OB local search. It is immediate to check that
U = (11111) is an oblivious local optimum with one unsatisfied clause (clause-4). While OB stops here, a possible
sequence to reach the global optimum starting from U is the following: i) u1 is set to false, ii) u3 is set to false. Now,
the first move does not change the number of satisfied clauses, but it changes the “amount of redundancy” (in clause-1
two literals are now satisfied, i.e., clause-1 enters COV2) and the move is a possible choice for a selection based on
the non-oblivious function. The oblivious plateau has been eliminated and the search can continue toward the globally
optimal point U = (01011).

35.5.3 Local search satisfies most 3–SAT formulae
An intriguing result by Koutsoupias and Papadimitriou [239] shows that, for the vast majority of satisfiable 3–SAT for-
mulae, the local search heuristic that starts at a random truth assignments and repeatedly flips a variable that improves
the number of satisfied clauses, almost always succeeds in discovering a satisfying truth assignment.

Let us consider all clauses that are satisfied by a given truth assignment Û and let us pick each of them with
probability p = 1/2 to build a 3–SAT formula. The following theorem [239] is demonstrated:

Theorem 35.5.3 Let 0 < ε < 1/2. Then there exists c,

c ≈
(

1−
√

1− (1/2− ε)2
)2
/6, such that for all but a fraction of at most n2ne−cn

2/2 satisfiable 3–SAT formulae
with n variables, the probability that local search succeeds in discovering a truth assignment in each independent trial
from a random start is at least 1− e−ε2n.

Proof. Let us focus on the structure of the proof, without giving the technical details. One assumes that there is an
assignment Û that satisfies all clauses and shows that, if one starts from a good initial assignment, i.e., one that agrees
with Û in at least (1/2− ε) variables, the probability that the local search is ever mislead is small. By “mislead” one
means that, when a variable is flipped, the Hamming distance between U (t) and Û increases. The Hamming distance
between two binary strings is given by the number of differing bits.

In detail, the quantity 1 − e−ε2n in the theorem is the probability that the initial random truth assignment is good
(use Chernoff bound). Then one demonstrates that, if the initial assignment is good, the probability that one does not
reduce the Hamming distance between U (t) and Û when an improving neighbor is chosen is at most 2e−cpn

2

, the
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0      1     2     3

coverage
u1         u2        u3         u4         u5

u1         u2        u3         u4         u5

0      1     2     3   

Figure 35.13: Non-oblivious search takes the different coverage into account.

probability being measured with respect to the random choice of the clauses to build the original formula (p = 1/2 for
the above theorem).

Finally, the probability that local search starting from a good assignment will ever be misled by flipping a variable
during the entire search trajectory is at most n2ne−cpn

2

, since there are at most n2n−1 such possible flippings – the
number of edges of the n-hypercube.
�

The original formulation of the above theorem is for a greedy version of local search, using the function BEST-NEIGHBOR
described in eqn. 35.9, but the authors note that greediness is not required for the theorem to hold, although it may be
important in practice.

Let us finally note that the result, while of theoretical interest, is valid for formulae with many clauses (p must be
such that the expected number of clauses is Ω(n2)), while the most difficult formulae have a number of clauses that is
linear in n, see also Sec 35.8.1.

35.5.4 Randomized search for 2–SAT (Markov processes)
A “natural” polynomial-time randomized search algorithm for 2–SAT is presented in [288]. While it has long been
known that 2–SAT is a polynomially solvable problem, the algorithm is of interest because of its simplicity and is
summarized here also because it motivated the GSAT-WITH-WALK algorithm of [325], see also Sec. 35.6.2.

In its “standard” form, local search is guided by the number of satisfied clauses and the basic criterion is that of
accepting a neighbor only if more clauses are satisfied. The paper by Papadimitriou [288] changes the perspective by
concentrating the attention to the unsatisfied clauses.

The algorithm for 2–SAT , is extremely simple:
Let us note that worsening moves, leading to a lower number of satisfied clause, can be accepted during the search.
One can prove that:

Theorem 35.5.4 The MARKOVSEARCH randomized algorithm for 2–SAT , if the instance is satisfiable, finds a satis-
fying assignment in O(n2) expected number of steps.
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MARKOVSEARCH
1
2
3

Start with any truth assignment
while there are unsatisfied clauses do

pick one of them and flip a random literal in it

Figure 35.14: The MARKOVSEARCH randomized algorithm for 2–SAT .

Proof. The proof involves an aggregation of the states of the Markov chain so that the chain is mapped to the gambler’s
ruin chain. A sketch of the proof is derived from [276]. Given an instance with a satisfying assignment Û , and the
current assignment U (t), the progress of the algorithm can be represented by a particle moving between the integers
{0, 1, ..., n} on the real line. The position of the particle indicates how many variables in U (t) agree with those of
Û . At each iteration the particle’s position can change only by one, from the current position i to i + 1 or i − 1 for
0 < i < n. A particle at 0 can move only to 1, and the algorithm terminates when the particle reaches position n,
although it may terminate at some other position with a satisfying assignment different from Û . The crucial fact is
that, in an unsatisfied clause, at least one of the two literals has an incorrect value and therefore, with probability at
least 1/2, the number of correct variables increases by one when a randomized step is executed.

The random walk on the line is one of the most extensively studied stochastic processes. In particular, the above
process is a version of the “gambler’s ruin” chain with reflecting barrier (that is, the house cannot lose its last dollar).
Average number of steps for the gambler to be ruined is O(n2).
�

35.6 Memory-less Local Search Heuristics

State-of-the-art heuristics for MAX–SAT are obtained by complementing local search with schemes that are capable of
producing better approximations beyond the locally optimal points. In some cases, these schemes generate a sequence
of points in the set of admissible solutions in a way that is fixed before the search starts. An example is given by
multiple runs of local search starting from different random points. The algorithm does not take into account the
history of the previous phase of the search when the next points are generated. The term memory-less denotes this lack
of feedback from the search history.

In addition to the cited multiple-run local search, these techniques are based on Markov processes (Simulated
Annealing), see Sec. 35.6.1, “plateau” search and “random noise” strategies, see Sec. 35.6.2, or combinations of
randomized constructions and local search, see Sec. 35.6.3.

35.6.1 Simulated Annealing

Simulated Annealing has been described in Seciton 25.5. The use of a Markov process (Simulated Annealing or SA
for short) to generate a stochastic search trajectory is illustrated in Fig. 35.15, adapted from [343].

For a certain number of tries, a random truth assignment is generated (line 2) and the temperature parameter is set
to MAX-TEMP. In the inner loop, new assignments are generated by probabilistically flipping each variable based
on the improvement δ in the number of satisfied clauses that would occur after the flip. Of course, the improvement
can be negative. The probability to flip is given by a logistic function that penalizes smaller or negative improvements
(line 9). The inner loop controls the annealing schedule: when iter increases the temperature slowly decreases
(line 5) until a minimum of MIN-TEMP is reached and the control exits the loop (line 6) Let us note that, when
the temperature is large, the moves are similar to those produced by a random walk, while, when the temperature
is low the acceptance criterion of the moves is that of local search and the algorithm resembles GSAT, that will be
introduced in Sec. 35.6.2. Implementation details, the addition of a “random walk” modification inspired by [325],
and experimental results are described in the cited paper.
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SA
1
2
3
4
5
6
7
8
9
10

for tries← 1 to MAX-TRIES

U ← random truth assignment ; iter ← 0
forever

if U satisfies all clause then return U
temperature← MAX-TEMP × e−iter×decay rate
if temperature < MIN-TEMP then exit loop
for i← 1 to n[

δ ← increase of satisfied clauses if ui is flipped
FLIP(ui)with probability1/(1 + e−

δ
temperature )

iter ← iter + 1

Figure 35.15: The Simulated Annealing algorithm for SAT .

35.6.2 GSAT with “random noise” strategies

SAT is of special concern to Artificial Intelligence because of its connection to reasoning. In particular, deductive
reasoning is the complement of satisfiability: from a collection of base facts A one should deduce a sentence F if and
only if A∪F is not satisfiable, see also Sec. 35.2.2. The popular and effective algorithm GSAT was proposed in [324]
as a model-finding procedure, i.e., to find an interpretation of the variables under which the formula comes out true.
GSAT consists of multiple runs of LS+, each run consisting of a number of iterations that is typically proportional
to the problem dimension n. The experiments in [324] show that GSAT can be used to solve hard (see sec. 35.8.1)
randomly generated problems that are an order of magnitude larger than those that can be solved by more traditional
approaches like Davis-Putnam or resolution. Of course, GSAT is an incomplete procedure: it could fail to find an
optimal assignment. An extensive empirical analysis of GSAT is presented in [145, 144].

Different “noise” strategies to escape from attraction basins are added to GSAT in [325, 323]. In particular, the
GSAT-WITH-WALK algorithm has been tested in [323] on the Hansen-Jaumard benchmark of [172], where a better
performance with respect to SAMD is demonstrated, although requiring much longer CPU times. See Sec. 35.7.1 for
the definition of SAMD.

GSAT-WITH-WALK
1
2
3
4
5
6
7
8

for i← 1 to MAX-TRIES

U ← random truth assignment
for j ← 1 to MAX-FLIPS

if RANDOMNUMBER < p then
u← any variable occurring in some unsat. clause

else
u← any variable with largest∆f

FLIP(u)

Figure 35.16: The GSAT-WITH-WALK algorithm. RANDOMNUMBER generates random numbers in the range [0, 1].

The algorithm is briefly summarized in Fig. 35.16. A certain number of tries (MAX-TRIES) is executed, where
each try consists of a number of iterations (MAX-FLIPS). At each iteration a variable is chosen by two possible
criteria and then flipped by the function FLIP, i.e., Ui becomes equal to (1 − Ui). One criterion, active with “noise”
probability p, selects a variable occurring in some unsatisfied clause with uniform probability over these variables, the
other one is the standard method based on the function f given by the number of satisfied clauses. The first criterion
was motivated by [288], see also Sec. 35.5.4. For a generic move µ, the quantity ∆µf (or ∆f for short) is defined
as f(µ U (t)) − f(U (t)). The straightforward book-keeping part of the algorithm is not shown. In particular, the
best assignment found during all trials is saved and reported at the end of the run. In addition, the run is terminated
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immediately if an assignment is found that satisfies all clauses. The original GSAT algorithm can be obtained by setting
p = 0 in the GSAT-WITH-WALK algorithm of Fig. 35.16.

35.6.3 Randomized Greedy and Local Search (GRASP)

A hybrid algorithm that combines a randomized greedy construction phase to generate initial candidate solutions,
followed be a local improvement phase is the GRASP scheme proposed in [304] for the SAT and generalized for the
MAX W–SAT problem in [305], a work that is briefly summarized in this section.

GRASP is an iterative process, with each iteration consisting of two phases, a construction phase and a local search
phase.

During each construction, all possible choices are ordered in a candidate list with respect to a greedy function
measuring the (myopic) benefit of selecting it. The algorithm is randomized because one picks in a random way one
of the best candidates in the list, not necessarily the top candidate. In this way different solutions are obtained at the
end of the construction phase.

Because these solutions are not guaranteed to be locally optimal with respect to simple neighborhoods, it is usually
beneficial to apply a local search to attempt to improve each constructed solution.

GRASP(RCLSize,MaxIter,RandomSeed)
1
2
3
4

4 Input instance and initialize data structures
for i← 1 to MaxIter[

U ← CONSTRUCTGREEDYRAND(RCLSize,RandomSeed)
U ← LOCALSEARCH(U)

CONSTRUCTGREEDYRAND(RCLSize,RandomSeed)
1
2
3
4
5

for k ← 1 to n
MAKERCL(RCLSize)
s← SELECTINDEX(RandomSeed)
ASSIGNVARIABLE(s)
ADAPTGREEDYFUNCTION(s)

Figure 35.17: The GRASP algorithm (above) and the randomized greedy construction (below).

A high-level description of the GRASP algorithm is presented in Fig. 35.17, a summarized version of the more
detailed description in [305]. After reading the instance and initializing the data structures one repeats for MaxIter
iterations the construction of an assignment U and the application of local search starting from U to produce a possibly
better assignment (lines 2–4). Of course, the best assignment found during all iterations is saved and reported at the
end. In addition to MaxIter, the parameters are RCLSize, the size of the restricted candidate list of moves out of
which a random selection is executed, and a random seed used by the random number generator. In detail, see function
CONSTRUCTGREEDYRAND in Fig. 35.17, the restricted candidate list of assignments is created by MAKERCL, the
index of the next variable to be assigned a truth value is chosen by SELECTINDEX, the truth value is assigned by
ASSIGNVARIABLE and the greedy function that guides the construction is changed by ADAPTGREEDYFUNCTION to
reflect the assignment just made.

The remaining details about the greedy function (designed to maximize the total weight of yet-unsatisfied clauses
that become satisfied after a given assignment), the creation of the restricted candidate list, and local search (based on
the 1-flip neighborhood) are presented in [305], together with experimental results.



398 CHAPTER 35. SATISFIABILITY

35.7 History-sensitive Heuristics
Different history-sensitive heuristics have been proposed to continue local search schemes beyond local optimality.
These schemes aim at intensifying the search in promising regions and at diversifying the search into uncharted terri-
tories by using the information collected from the previous phase (the history) of the search. The history at iteration t
is formally defined as the set of ordered couples (U, s) such that 0 ≤ s ≤ t and U = U (s).

Because of the internal feedback mechanism, some algorithm parameters can be modified and tuned in an on-line
manner, to reflect the characteristics of the task to be solved and the local properties of the configuration space in the
neighborhood of the current point. This tuning has to be contrasted with the off-line tuning of an algorithm, where
some parameters or choices are determined for a given problem in a preliminary phase and they remain fixed when the
algorithm runs on a specific instance.

35.7.1 Prohibition-based Search: TS and SAMD

Tabu Search (TS) is a history-sensitive heuristic proposed by F. Glover [148] and, independently, by Hansen and
Jaumard, that used the term SAMD (“steepest ascent mildest descent”) and applied it to the MAX–SAT problem in
[172]. The main mechanism by which the history influences the search in TS is that, at a given iteration, some
neighbors are prohibited, only a non-empty subset NA(U (t)) ⊂ N(U (t)) of them is allowed. The general way of
generating the search trajectory that we consider is given by:

NA(U (t)) = ALLOW(N(U (t)), U (0), ..., U (t)) (35.20)
U (t+1) = BEST-NEIGHBOR( NA(U (t)) ) (35.21)

The set-valued function ALLOW selects a non-empty subset of N(U (t)) in a manner that depends on the entire
previous history of the search U (0), ..., U (t). Let us note that worsening moves can be produced by eqn. 35.21, as it
must be in order to exit local optima.

The introduction of algorithm SAMD is motivated in [172] by contrasting the technique with Simulated Annealing
(SA) [234] for maximization. The directions of local changes are little explored by SA: for example, if the objective
function increases, the change is always accepted however small it may be. On the contrary, it is desirable to exploit
the information on the direction of steepest ascent and yet to retain the property of not being blocked at the first local
optimum found. SAMD performs local changes in the direction of steepest ascent until a local optimum is encountered,
then a local change along the direction of mildest descent takes place and the reverse move is forbidden for a given
number of iterations to avoid cycling with a high probability. The details of the SAMD technique as well as additional
specialized devices for detecting and breaking cycles are outlined in [172]. A computational comparison with SA and
with Johnson’s two algorithms is also presented. A specialized Tabu Search heuristic is used in [215] to speed up the
search for a solution (if the problem is satisfiable) as part of a branch-and-bound algorithm for SAT , that adopts both
a relaxation and a decomposition scheme by using polynomial instances, i.e., 2–SAT and Horn SAT .

35.7.2 HSAT and “clause weighting”
In addition to the already cited SAMD [172] heuristic that uses the temporary prohibitions of recently executed moves,
let us mention two variations of GSAT that make use of the previous history.

HSAT [145] introduces a tie-breaking rule into GSAT: if more moves produce the same (best) ∆f , the preferred
move is the one that has not been applied for the longest span. HSAT can be seen as a “soft” version of Tabu Search:
while TS prohibits recently-applied moves, HSAT discourages recent moves if the same ∆f can be obtained with
moves that have been “inactive” for a longer time. It is remarkable to see how this innocent variation of GSAT can
increase its performance on some SAT benchmark tasks [145].

Clause–weighting has been proposed in [321] in order to increase the effectiveness of GSAT for problems char-
acterized by strong asymmetries. In this algorithm a positive weight is associated to each clause to determine how
often the clause should be counted when determining which variable to flip. The weights are dynamically modified
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during problem solving and the qualitative effect is that of “filling in” local optima while the search proceeds. Clause–
weighting can be considered as a “reactive” technique where a repulsion from a given local optimum is generated in
order to induce an escape from a given attraction basin.

35.7.3 The Hamming-Reactive Tabu Search (H-RTS) algorithm
The Reactive Search Optimization (RSO) principles of “learning while searching” have been introduced in Chapter 27.

An algorithm that combines the previously described techniques of local search (oblivious and non-oblivious), the
use of prohibitions (see TS and SAMD), and a reactive scheme to determine the prohibition parameter is presented
in [33]. The algorithm is called HAMMING-REACTIVE-TS algorithm, and its core is illustrated in Fig. 35.18.

HAMMING-REACTIVE-TS
1
2
3
4

5
6
7

8
9
10
11
12

13
14
15

16
17
18

repeat

tr ← t
U ← random truth assignment
T ← bTf nc

repeat { NOB local search }[
U ← BEST-MOVE(LS, fNOB)

until largest ∆fNOB = 0

repeat

repeat { local search }[
U ← BEST-MOVE(LS, fOB)

until largest ∆fOB = 0
UI ← U

for 2(T + 1) iterations { reactive tabu search }[
U ← BEST-MOVE(TS, fOB)

UF ← U

T ← REACT(Tf , UF , UI)
until (t− tr) > 10 n

until solution is acceptable or max. number of iterations reached

Figure 35.18: The H-RTS algorithm.

The initial truth assignment is generated in a random way, and non-oblivious local search (LS-NOB) is applied
until the first local optimum of fNOB is encountered. LS-NOB obtains local minima of better average quality than
LS-OB, but then the guiding function becomes the standard oblivious one. This choice was motivated by the success
of the NOB & OB combination [34] and by the poor diversification properties of NOB alone, see [33].

The search proceeds by repeating phases of local search followed by phases of TS (lines 8–17 in Fig. 35.18), until
a suitable number of iterations are accumulated after starting from the random initial truth assignment (see line 17
in Fig. 35.18). A single elementary move is applied at each iteration. The variable t, initialized to zero, identifies
the current iteration and increases after a local move is applied, while tr identifies the iteration when the last random
assignment was generated. Some trivial bookkeeping details (like the increase of t) are not shown in the figure.

During each combined phase, first the local optimum of f is reached, then 2(T + 1) moves of Tabu Search are
executed. The design principle underlying this choice is that prohibitions are necessary for diversifying the search only
after LS reaches a local optimum. The fractional prohibition Tf is changed during the run by the function REACT to
obtain a proper balance of diversification and bias [33].



400 CHAPTER 35. SATISFIABILITY

The random restart executed after 10 n moves guarantees that the search trajectory is not confined in a localized
portion of the search space.

Being an heuristic algorithm, there is not a natural termination criterion. In its practical application, the algorithm
is therefore run until either the solution is acceptable, or a maximum number of moves (and therefore CPU time) has
elapsed. What is demonstrated in the computational experiments in [33] is that, given a fixed number of iterations,
HAMMING-REACTIVE-TS achieves much better average results with respect to competitive algorithms (GSAT and
GSAT-WITH-WALK). Because, to a good approximation, the actual running time is proportional to the number of
iterations, HAMMING-REACTIVE-TS should therefore be used to obtain better approximations in a given allotted
number of iterations, or equivalent approximations in a much smaller number of iterations.

35.8 Models of hardness and threshold effects
Given the hardness of the problem and the relevancy for applications in different fields, the emphasis on the experi-
mental analysis of algorithms for the MAX–SAT problem has been growing in recent years.

In some cases the experimental comparisons have been executed in the framework of “challenges,” with support
of electronic collection and distribution of software, problem generators and test instances. Practical and industrial
MAX–SAT problems and benchmarks, with significant case studies are also presented in [120], see also the contained
review [163].

In some cases it is of interest to model the hardness of instances with appropriate models. Let us describe some ba-
sic problem models that are considered both in theoretical and in experimental studies of MAX–SAT algorithms [163].

• k-SAT model, also called fixed length clause model. A randomly generated CNF formula consists of indepen-
dently generated random clauses, where each clause contains exactly k literals. Each literal is chosen uniformly
from U = {u1, ..., un} without replacement, and negated with probability p. The default value for p is 1/2.

• average k-SAT model, also called random clause model. A randomly generated CNF formula consists of
independently generated random clauses. Each literal has ha probability p of being part of a clause. In detail,
each of the n variables occurs positively with probability p(1 − p), negatively with probability p(1 − p), both
positively and negatively with probability p2, and is absent with probability (1− p)2.

Both models have many variations depending on whether the clauses are required to be different, whether a variable
and its negation can be present in the same clause, etc.

Although superficially similar, the two models differ in the difficulty to solve the obtained formulae and in the
mathematical analysis. In particular, when the initial formula comes from the average k-SAT model, a step that fixes
the value of a variable produces a set of clauses from the same model, while if the same step is executed in the k-SAT
model, the resulting clauses do not necessarily have the same length and therefore do not come from the k-SAT model.

Other structured problem models are derived from the mapping of instances of different problems, like coloring,
n-queens, etc. [207]. The performance of algorithms on these more structured models tend to have little correlation
with the performance tested on the above introduced random problems. Unfortunately, the theoretical analysis of these
more structured problems is very hard. The situation worsens if one considers “real-world” practical applications,
where one is typically confronted with a few instances and little can be derived about the “average” performance, both
because the probability distribution is not known and because the number of instances tends to be very small.

A compromise can be reached by having parametrized generators that capture some of the relevant structure of the
“real-world” problems of interest.

35.8.1 Hardness and threshold effects
Different algorithms demonstrate a different degree of effort, measured by number of elementary steps or CPU time,
when solving different kinds of instances. For example, Mitchell et al. [272] found that some distributions used in
past experiments are of little interest because the generated formulae are almost always very easy to satisfy. They also
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reported that one can generate very hard instances of k-SAT, for k ≥ 3. In addition, they report the following observed
behavior for random fixed length 3–SAT formulae: if r is the ratio r of clauses to variables (r = m/n), almost all
formulae are satisfiable if r < 4, almost all formulae are unsatisfiable if r > 4.5. A rapid transition seems to appear
for r ≈ 4.2, the same point where the computational complexity for solving the generated instances is maximized, see
[235, 99] for reviews of experimental results.

A series of theoretical analyses aim at approximating the unsatisfiability threshold of random formulae. Let us
define the notation and summarize some results obtained.

Let C be a random k-SAT formula. The research problem that has been considered, see for example [236], is to
compute the least real number κ such that, if r is larger than κ, then the probability of C being satisfiable converges
to 0 as n tends to infinity. In this case one says that C is asymptotically almost certainly satisfiable. Experimentally, κ
is a threshold value marking a “sudden” change from probabilistically certain satisfiability to probabilistically certain
unsatisfiability. More precisely [5], given a sequence of events Ei, one says that En occurs almost surely (a.s.) if
limn→∞ Pr [En] = 1, where Pr [event] denotes the probability of an event. The behavior observed in experiments
with random k-SAT leads to the following conjecture:
For every k ≥ 2, there exist rk such that for any ε > 0, random instances of k-SAT with (rk − ε)n clauses are a.s.
satisfiable and random instances with (rk + ε)n clauses are a.s. unsatisfiable

For k = 2 (i.e., for the polynomially solvable 2–SAT ) the conjecture was proved [89, 156], in fact showing that
r2 = 1. For k = 3 much less progress has been made: neither the existence of r3 nor its value has been determined.

In the fixed-length 3–SAT model, the total number of all possible clauses is 8
(
n
3

)
and the probability that a random

clause is satisfied by a truth assignment U is 7/8.
Let Un be the set of all truth assignments on n variables, and let Sn be the set of assignments that satisfy the

random formula C. Therefore the cardinality |Sn| is a random variable. Given C, let |Sn(C)| be the number of
assignments satisfying C.

The expected value of the number of satisfying truth assignments of a random formula, E [|Sn|], is defined as:

E [|Sn|] =
∑
C

(Pr [C] |Sn(C)|) (35.22)

The probability that a random formula is satisfiable is:

Pr [the random formula is satisfiable] =
∑
C

(Pr [C] IC) (35.23)

where IC is 1 if C is satisfiable, 0 otherwise.
From equations (35.22) and (35.23) the following Markov’s inequality follows:

Pr [the random formula is satisfiable] ≤ E [|Sn|] (35.24)

Let us now consider the “first moment” argument to obtain an upper bound for κ in the 3–SAT model. First one
observes that the expected number of truth assignments that satisfy C is 2n(7/8)rn, then one lets this expected value
converge to zero and uses the above Markov’s inequality. From this one obtains

κ ≤ log8/7 2 = 5.191

This result has been found independently by many people, including [129] and [90]. More refined studies are present
for example in [77, 236, 226, 5]
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Gist
SAT and MAX–SAT deal with assigning truth values to variables in Boolean formulas to make them true
(“satisfied”). They are interesting and extremely relevant optimization problems, easy to define and visual-
ize, for which most algorithmic ideas have been tried with success in creative combinations.

These include branch-and-bound, integer linear programming, continuous approaches, approximation
algorithms, randomized algorithms, perturbative local search and greedy constructions, reactive search op-
timization, experimental studies of hardness.

A full grasp of the approaches for solving SAT and MAX–SAT is therefore beneficial to fully understand
how to apply these principles for a very concrete simple problem, before considering more complicated
versions like constraint programming (CP).

The satisfaction of studying and using SAT and MAX–SAT is never ending.



Chapter 36

Design of experiments, query learning, and
surrogate model-based optimization

Scientists and engineers study the behavior of systems to find improving or optimal configurations. Consider for
example the fuel consumption of a motor; it will depend on various parameters, including the motor geometry, the
temperature of operation, the kind of fuel, etc. To minimize it, one needs a model of how the consumption depends on
the design parameters.

In abstract terms, one deals with a system transforming a vector of inputs X into an output Y. Only in some
very rare cases an explicit and exact analytic model is available. In other and more frequent cases, deriving the
output Y requires running a simulator or even building prototypes. The two operations can be very costly in terms
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of time or money. Minimizing the number of simulator runs or experiments is a therefore a critical issue. Building
a surrogate (approximated) model based on the executed experiments can be a way, if the model evaluation is much
faster than the real system. When an initial model is available, it can be used to make predictions of to identify optimal
configurations by optimization. If calculating Y (x) for different x values is very costly, all evaluations done are
collected to build initial models, useful to guide the generation of the future input configurations to be evaluated. This
is a paradigmatic case of “learning while optimizing”, also known as surrogate optimization, or optimization based
on response surfaces (Response Surface Methodology or RSM), and related to Kriging (Section 1.2), to locally-
weighted regression (Section 9.2), and to global optimization schemes based on memory and statistical inference
(Section 25.4).

In this chapter we focus on data-driven models for which experimental data is not available at the beginning and
needs to be acquired in a strategic and intelligent manner. In medicine, one may want to understand if a medical
treatment is successful or not. Experiments imply treating patients with different medicines in a carefully controlled
context, to avoid placebo effects, or effects caused by different populations of patients. Some patients may have
dangerous side-effects during the tests, some may even die. As one can imagine, these experiments are incredibly
costly and slow, causing years of delay between the invention of new treatments and their commercialization. In
manufacturing, one may want to fine-tune a casting process. Through casting a liquid material is poured into a mold,
which contains a hollow cavity of the desired shape, and then allowed to solidify. It is the main method to produce
most of our physical goods, but also very complex and fragile. Variations of temperature, pressure, speed of injection,
composition of the metal, may lead to defective parts which need to be discarded. In manufacturing, simulating a
specific setting or - even worse - running a production facility just to accumulate data can be very time-consuming and
costly.

Figure 36.1: Design of Experiments (DOE): how to generate appropriate inputs to study and model an unknown
system.

When one needs experimental data to study a system or to generate training examples in machine learning, the
objectives are to limit costs, while getting informative data, sufficient to build precise models. The topic is not recent,
being deeply related with the scientific method. In science and engineering it is known as design of experiments. In
ML, with a different but related context, it is known as active or query learning.

36.1 Design of experiments (DOE)
Experimentation is a goal-directed activity. In spite of stories of apples falling on sleeping scientists leading to
elegant theories of gravitation, most experiments need to be designed with precise objectives and with a careful
allocation of physical or computational resources. Inspiration and creativity are crucial to define the initial goals but
sterile without the 90% “perspiration” in the experimental work.

If the objective is to model a system and understand which inputs are relevant to predict the output, the questions
(the input points x) have to be produced in order to derive accurate models, and to identify the factors of variation.
The concept of factors of variations is related to the concept of informative features in ML. Inputs that do not influence
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the output in a significant manner can be eliminated from the model. Design of experiments refers to a systematic
and principled manner to generate examples to characterize, predict, and then improve the behavior of any system or
process.

All experimental activity is usually accompanied by experimental noise in the form of measurement errors, hidden
and uncontrollable factors affecting the experiments, and by the possibility to be fooled by chance into deriving wrong
conclusions.

Because physical measurements are subject to errors, one often assumes that the measured output Y (X) is equal
to a “true” response Yt(X) plus a random error term ε : Y (X) = Yt(X) + ε, ε being a random variable chracterized
by a given distribution (usually, a Gaussian with a given standard deviation σ).

We will first introduce some DOE methods popular with engineers and then (in Section 36.3) present the different
but related concept of active and query learning.

In DOE, inputs are usually called “design variables” or “factors”, output is called “response”. Let’s note that
no simple receipt exists to apply DOE and response surfaces. All techniques depend on assumptions that can be
easily violated in real systems, so that the focused attention by the experimenter and the critical use of more than one
technique are required to avoid the most obvious mistakes. Let’s just make a motivating example. Imagine that we
want to measure the effect of a medication on cholesterol level and let’s assume that the cholesterol levels depend both
on taking the medication but also on age. If the original experimental data are not generated with a careful DOE, it
can happen – by chance, or by having two different hospitals with patients of different age collecting the data - that the
patients receiving the medication are much older, so that cholesterol levels are higher in spite of the medication. The
effect of the medication can be canceled or reversed by the effect of age. To separate the medication effect, the sample
of people should have their age randomized (no statistically significant age distribution should be present in the two
groups).

In many engineering applications, a simulator can be used to generate example outputs Y corresponding to user-
chosen inputs X. The situation can be different if examples require running a physical system, or observing a process
in action. But if one is in the lucky case, designing an experiment means deciding the appropriate number of examples
to generate and where they are generated in the input space. The overall DOE objective of getting a surrogate model
is clear, but the devil is in the details, and one must consider the assumptions and how the model is going to be used.
Selection of a proper DOE is a matter that requires expert advice, knowledge of the problem, and estimates of the
time-budget allocated to the generation of sample output values, which usually is the most time-consuming part.

A simple constraint on the input can be given by specifying a design space, usually by setting separate upper
and lower bounds on each x variable. Without loss of generality, if n is the input dimension, we can think about
the hypercube [−1, 1]n or [0, 1]n. The original range can then be recovered by appropriately scaling the individual
variables. If one has reasons to believe that the form of the model is correct (for example, that the real physical process
is described by a low-order polynomial), placing the examples near or on the boundaries of the design space makes
sense because this choice will minimize the effect of the random error ε on the determination of the model parameters.
Think about fitting a line with two points, the more separated they are in the x direction, the more stable will be the
line with respect to random noise in the y position. On the contrary, if the model is a rough approximation, and one
aims at using the model in the interior part of the design space, for example for finding an optimal configuration, a
good fraction of the points should be placed also in the interior part of the design space. In other words, one could
aim at minimizing the average model discrepancy (called generalization error in the language of machine learning)
more than at determining individual coefficients with a high precision. Another critical parameter is the total number
of examples. In general, the more examples the better (provided that they are well distributed), but the computational
cost of running the simulator can be very large and one must settle for the minimal number which is sufficient to
identify a workable model. A second possibility is to use multiple iterations, by first running an exploratory analysis
in the entire design space, and then additional investigations in more concentrated areas of the design space.

As a rule of thumb, the number of examples has to be larger than the number of parameters in the model (i fpossible
much larger). Otherwise the model will easily fit the examples but produce wildly-oscillating “nonsense” results in
regions of the design space far from the chosen examples. As an overall advice, randomization will avoid the most
serious faults inherent in advanced DOE methods based on specific assumptions. The popular design of experiment
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techniques are summarized in the following sections.

36.1.1 Full factorial design

In spite of the sophisticated name, this is the most obvious (and naive) way to proceed. It is based on determining
the number of levels (i.e. different values) for each variables and then generating sample points on a regular grid.
For two levels the points are placed at the left and right boundary of the design space variable. For three levels, an
additional point is added in the middle, and so on.

Figure 36.2: A full factorial design.

The figure shows a full-factorial DOE with 5 levels for each factor, in three dimensions. The advantage of the
full factorial design is its simplicity; its disadvantage lies in its regular grid-like nature. The generated samples may
miss some relevant effect between the sample points. The number of points generated, if the number of levels L is the
same for all variables, is equal to Ln, a number which will explode very rapidly to make this method applicable only
to problems with a small number of input variables. Full factorial designs are very expensive: the number of samples
grows exponentially when the input dimension grows. It is not surprising that reduced factorial designs using only a
subset of the full factorial design points are considered.

36.1.2 Randomized design: pseudo Montecarlo sampling

A full factorial design ie very expensive. In spite of its cost it can be fragile. If the interesting areas of parameters lie
between the regularly-spaced points, they will never be identified. A more robust design, which can generate more
points if more time is available, is based on a simple randomization. A randomized design will a uniform probability
generates points in every area with a probability different from zero.

Pseudo-random number generators can be used to generate random numbers uniformly distributed in an interval,
for example [0,1]. By repeated calls of a good-quality pseudo-random number generator, one can create random
vectors uniformly distributed in the design space. X = {rand(), rand(), rand(), . . .}



CHAPTER 36. DOE AND SURROGATE 407

Figure 36.3: A randomized design.

Fig. 36.3 shows a pseudo-Monte Carlo DOE with 100 points in three dimensions. The distribution of points along
the three different factors is shown in the parallel coordinates plot in Fig. 36.4 (the parallel coordinate plot is explained
in Section 18.3). Two rather large gaps in the factor corresponding to the first coordinate are highlighted with an arrow.
By chance, Some large areas can remain empty of sample points.

Figure 36.4: Parallel coordinates plot: a randomized design may leave some holes.
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By suitable transformations, one can easily generate random samples for simple design spaces, like circles, circular
regions, triangles, etc. In the absence of detailed and trusted information about the physical system under analysis,
it is difficult to beat the simplicity and the robustness of the pseudo-random design. The more advanced techniques
must be used with care and with more competence, and it is not guaranteed that they will add a lot of information with
respect to what can be gained by simple randomization. Another advantage of a randomized design is that it works
for any number of samples, and that it can be immediately repeated (by using a different random number seed and
therefore a different sequence of random numbers) to check for the robustness or fragility of the first DOE. A weakness
of the basic pseudo-random design is that, because of the random and independent nature of the samples, it will often
leave large regions of the design space unexplored. The stratified Monte Carlo sampling was developed to cure the
above problem, provided that one can afford the required number of samples. The idea is to divide each interval into
subintervals (or “bins”) of equal probability. Once the bins are defined, a sample position is then randomly selected
within each bin. This trivially guarantees that at least a sample will be present in each interval. The drawback is that,
if the minimum of two intervals is generated for each input dimension, the number of samples grows at best like 2n.

36.1.3 Latin hypercube sampling

Figure 36.5: Stained glass window in the dining hall of Caius College, in Cambridge, commemorating Ronald Fisher
and representing a Latin square.

Latin Hypercube sampling (LHS)[266, 204] is a modern and popular randomized DOE method than can work
with any user-selected number of samples k. Under certain assumptions, LHS provides a more accurate estimate of
the mean value of the Y function than the standard Monte Carlo sampling. Its motivation is to ensure that, for a given
number of samples k, and k equally-spaced bins, for all one-dimensional projections of the samples there will be one
and only one sample in each bin. A square grid containing sample positions is a Latin square if (and only if) there is
only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary
number of dimensions, whereby each sample is the only one in each axis-aligned hyperplane containing it.
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Figure 36.6: A Latin hypercube sampling.

Fig. 36.6 shows a LHS DOE with 100 samples, in three dimensions. The parallel coordinates visualization in
Fig. 36.7 shows the uniform distribution of points along each factor: each one of the 100 bins is covered by one and
only one point.

The method to generate LHS samples is the following. In one dimension x1, partition the range into k bins
and then generate one sample per bin with uniform probability. In two dimensions, x1 and x2, after generating the
x1 values, pick the bin in the x2 direction according to a permutation of the x1 bin index. The permutation will
ensure that all vertical bins will be covered by one and only one sample. After generalizing, and picking a separate
random permutation of the bins for each input variable, one obtains the complete LHS design. In detail, in the [0, 1]n

hypercube, if p is the number of samples and x(i)j is the j-th component of the i-th sample, for 1 ≤ j ≤ n and

1 ≤ i ≤ k, and π(i)
j is the permutation for variable j, permuting integers 0, 1, .., k − 1, evaluated at i, the coordinates

are obtained as:
x
(i)
j = (x

(i)
j + U

(i)
j )/k

where U is a uniform random value on [0, 1].

36.2 Surrogate model-based optimization
A surrogate model is an engineering method used when an outcome of interest cannot be easily directly measured,
so a model of the outcome is used instead. Most engineering design problems require experiments and/or simulations
to evaluate design objective and constraint functions as function of design variables. For example, in order to find
the optimal airfoil shape for an aircraft wing, an engineer simulates the air flow around the wing for different shape
variables (length, curvature, material, ..). For many real-world problems, however, a single simulation can take many
minutes, hours, or even days to complete. As a result, routine tasks such as design optimization, design space ex-
ploration, sensitivity analysis and what-if analysis become impossible since they require thousands or even millions
of simulation evaluations. To alleviate this burden on can use approximated models, known as surrogate models,
response surface models, meta-models or emulators, that mimic the behavior of the system as closely as possible
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Figure 36.7: A Latin hypercube sampling: The parallel coordinates visualization shows the uniform distribution of
points along each factor.

while being computationally cheaper to evaluate. Surrogate models are constructed by using a data-driven, bottom-up
approach. The exact, inner working of the simulation code is not assumed to be known (or even understood), solely the
input-output behavior is available (the system is considered as a black box). A surrogate model is constructed based
on measuring the response of the simulator to a limited number of intelligently chosen data points obtained by a careful
design of experiments. The surrogate model can be called “approximation model” “DACE model” (DACE stays for
design and analysis of computer experiments), or “response surface approximation”, leading to the term of Response
Surface Methodology (RSM) in the optimization o fsystems. The main goal of response surface methodology is to
create a predictive model of the relationship between the inputs and the outputs and then using the model to determine
optimal operating settings for the system.

The surrogate models need to be determined (“trained”) by considering a set of example pairs (Xe, Ye), giving
input and the corresponding output for a set of example values, used to fix the model parameters.

Let’s consider a single input and output parameter: if the models of the relationship between input and output is
given by a polynomial function withM parameters a0, a1, . . . , a(M−1) then Y (X) = a0+a1X+...+a(M−1)X

(M−1).
The model parameters can be fixed by requiring that some measure of the average difference, on the examples, between
the Y values of the polynomial and the corresponding Ye values of the examples, is minimized. This amounts to asking
that the model approximately reproduces the desired input-output relationships on the examples. A widely used and
statistically motivated way can be to find the values of the parameters a0, a1, . . . , a(M−1) which minimizes the average
quadratic error on the examples as described in Section 5.1-5.2 (least-squares fit and maximum-likelihood estimation).

An alternative when the functional form is not known is to consider non-parametric models in machine learning.
Because the model is approximated, in Response Surface Methodology (RSM) for optimization, care must be taken

to ensure that the optimal point determined by using the response surface indeed corresponds to the optimal point of
the real system. In practice, this requires an iterative process, where a first model is built and used to determine a first
candidate optimal X value, and then a second more localized model is built in the neighborhood of this first candidate
optimizer for additional checking and refinement.

An example of a model (in this particular case Bayesian Locally-Weighted Regression (Section 9.2.1) applied to
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Figure 36.8: A response surface obtained by fitting the generated experimental points (black circles). The oscillating
curve shows the original Rastrigin benchmark function. The surrogate model (crosses) in this case filters out the rapid
oscillations and extracts the large-scale behavior of the system.

the Rastrigin benchmark function) is shown in Fig. 36.8. The sample points are used to build the model which in this
case “irons out” the small oscillations and is therefore very useful to identify the area of x values corresponding to the
optimal configurations.

36.3 Active or query learning
Acquiring training examples for supervised learning tasks is typically an expensive and time-consuming process.
Active learning approaches attempt to reduce this cost by actively suggesting inputs for which supervision should
be collected, in an iterative process alternating learning and feedback elicitation. At each iteration, active learning
methods select the inputs maximizing an informativeness measure, which estimates how much an input would improve
the current model if it was added to the current training set. The informativeness of the query inputs can be defined
in different ways, and several active learning techniques exist [330].

The uncertainty sampling (US) principle [330] considers the input with highest predictive uncertainty as the
most informative training example for the current model. This requires a learning model that can quantify its predictive
uncertainty. The ability of Gaussian Process Regression GPR in estimating the confidence for individual predictions
enables a suitable application of the uncertainty sampling principle. A Gaussian process is a statistical distributionXt,
t ∈ T , for which any finite linear combination of samples has a joint Gaussian distribution. This property permits the
analytic calculation of relevant quantities, like the uncertainty in the prediction. A large variance σ2 of the predictive
distribution for a single test input x means that the test sample is not represented by the Gaussian Process (GP)
model learned from the training data. The predictive variance quantifies the predictive uncertainty of the GP model.
Therefore the input maximizing the predictive variance is selected by the uncertainty sampling principle. With GPR,
the predictive uncertainty grows in regions away from training inputs. Active learning strategies more sophisticated
than the US principle exist, but they usually demand more expensive computation.
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The query-by-committee strategy maintains a committee of models, trained on the current set of examples and
representing competing hypotheses. Each committee member votes on the output value of the candidate inputs, and
the input considered most informative is the one on which they disagree most.

The expected model change principle considers as the most informative query the input that, when added to the
training set would yield the greatest change in the current model (i.e., that has the greatest influence on the model
parameters).

The expected error reduction criterion selects the input that is expected to yield the greatest reduction in the
generalization error of the current model. Computing the expected generalization error is, however, computationally
expensive, and, in general, it cannot be expressed analytically.

To overcome this limitation, the variance reduction approach queries the input that minimizes the model variance.
The generalization error can in fact be decomposed into three components, refereed to as the noise, the bias, and the
model variance. The noise component defines the variance of the output distribution given the input and is independent
of the model and the training set. The bias error is introduced by the model class (e.g., a linear model class adopted
to approximate a nonlinear function). The model variance estimates how much the model predictions vary when
changing the training set. Because the model parameters can influence neither the noise nor the bias, the only way
to reduce the future generalization error consists of minimizing the model variance. An effective application of the
variance reduction approach is possible only under the assumption that the bias error is negligible.

An application of active learning principles in the area of multi-objective optimization, for the active learning of
Pareto fronts, is presented in [74].

Gist
Contrary to some popular stories, the experimental activity combines abundant creativity with a strate-
gic focus on a goal to be reached. If the focus is to model a system, often to identify improving configu-
rations via automated optimization, sample input points need to be chosen carefully, depending on the goal
and without wasting computational or real resources.

Samples generated by DOE can be used as starting points for explorations by optimization techniques
based on local search.

Picking the appropriate design of experiments is not trivial and has consider carefully the type of model
and the problem. If the form of the model is known and the model is parametric (e.g., the model is a
polynomial of degree three), the experimental points can be generated to reduce the uncertainty in the
estimated parameters, usually at the boundary of the admissible region. If the form is not known, like in the
“non-parametric” modeling characterizing machine learning, a randomized design can be the most robust
choice.



Chapter 37

Measuring problem difficulty in local search

A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty.
(Winston Churchill)

37.1 Measuring and modeling problem difficulty
When using machine learning strategies in the area of heuristics, finding appropriate features to measure and appro-
priate metrics is a precious guide for the design of effective methods and for explaining and understanding.

Some challenging questions for the design of heuristics are:

• How can one predict the future evolution of an optimization algorithm? E.g., the running time to completion,
the probability of finding a solution within given time bounds, etc.
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• What is is the most effective heuristic for a given problem, or for a specific instance?

• What are the intrinsically more difficult problems or instances for a given search technique?

In this chapter we mention some interesting research issues related to measuring problem difficulty, measuring
individual algorithm components, and selecting them through a diversification and bias metric.

Let us consider the issue of understanding why a problem is more difficult to solve for a stochastic local search
method. One aims at discovering relationships between problem characteristics and problem difficulty. Because the
focus is on local search methods, one would like to characterize statistical properties of the solution landscape causing
poor or slow results by local search.

The effectiveness of a stochastic local search method is determined by how microscopic local decisions made at
each search step interact to determine the macroscopic global behavior of the system. In particular, one studies how
the function value f depends on the input configuration and changes after small and local modifications. Statistical
mechanics has been very successful in the past at relating local and global behaviors of systems [184], for exam-
ple starting from the molecule-molecule interaction to derive macroscopic quantities like pressure and temperature.
Statistical mechanics builds upon statistics, by identifying appropriate statistical ensembles (configurations with their
probabilities of occurrence) and deriving typical global behaviors of the ensemble members. When the number of sys-
tem components is very large, the variance in the behavior is very small: most members of the ensemble will behave
in a similar way. As an example in Physics, if one has two communicating containers of one liter and a gas with five
flying molecules, the probability to find all molecules in one container is not negligible. On the other hand, if the
containers are filled with air at normal pressure, the probability to observe more than 51% of the molecules in one
container is very close to zero : even if the individual motion is very complex, the macroscopic behavior will produce
a 50% subdivision with a very small and hardly measurable random deviation.

Unfortunately, the situation for combinatorial search problems is much more complicated than the situations for
physics-related problems, so that the precision of theoretical results is more limited. Nonetheless, a growing body of
literature exists, which sheds light onto different aspects of combinatorial problems and permits a level of understand-
ing and explanation which goes beyond the simple empirical models derived from massive experimentation.

37.2 Phase transitions in combinatorial problems
Models inspired by statistical mechanics have been proposed for some well known combinatorial problems. An
extensive review of models applied to constraint satisfaction problems, in particular the graph coloring problem, is
present in [184]. The SAT problem, in particular the 3-SAT, has been the playground for many investigations [94, 104,
292, 334].

Phase-transitions have been identified as a mechanism to study and explain problem difficulty. A phase transi-
tion in a physical system is characterized by the abrupt change of its macroscopic properties at certain values of the
defining parameters. For example, consider the transitions from ice to water to steam at specific values of temperature
and pressure. Phenomena analogous to phase transitions have been studied for random graphs [125, 60]: as a func-
tion of the average node degree, some macroscopic property like connectivity change in a very rapid manner. The
work in [198] predicts that large-scale artificial intelligence systems and cognitive models will undergo sudden phase
transitions from disjointed parts into coherent structures as their topological connectivity increases beyond a critical
value. Citing from the paper: “this phenomenon, analogous to phase transitions in nature, provides a new paradigm
with which to analyze the behavior of large-scale computation and determine its generic features.”

Phase transitions in Constraint Satisfaction and SAT problems have been widely analyzed [82, 272, 326, 235,
337, 292]. A clear introduction to phase transitions and the search problem is present in [185]. A surprising result
is that hard problem instances are concentrated near the same parameter values for a wide variety of common search
heuristics. This location also corresponds to a transition between solvable and unsolvable instances. For example,
when the control parameter that is changed is the number of clauses in SAT instances, different schemes like complete
backtracking and local search show very long computing times in the same transition region.
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For backtracking, this is due to a competition between two factors: number of solutions and facility of pruning
many subtrees. A small number of clauses (under-constrained problem) implies many solutions, it is easy to find
one of them. At the other extreme, a large number of clauses (over-constrained problem) implies that any tentative
solution is quickly ruled out (pruned from the tree). It is fast to rule out all possibilities and conclude that there is no
solution. The critically constrained instances in between are the hardest ones.

The local search method is not complete and one must limit the experimentation to solvable instances. One may
naı̈vely expect that the search becomes harder with a smaller number of solutions but the situation is not so simple. At
the limit, if only one solution is available but the attraction basin is very large, local search will easily find it. Not only
the number of solutions but also the number and depth of sub-optimal local minima play a role. A large number of
deep local minima is causing a waste of search time in a similar way to tentative solutions in backtracking, which fail
only after descending very deeply in the search tree. Among a growing body of experimental research, [94] presents
results on CSP and SAT, [104] results on the crossover point in random 3-SAT.

In addition to being of high scientific interest, identifying zones where the most difficult problems are is relevant
for generating difficult instances to challenge algorithms. As strange as it may sound at the beginning, it is not so
easy to identify difficult instances of NP-hard problems [326]. Computational complexity classes are defined through
a worst-case analysis: in practice the worst cases may be very difficult to encounter or to generate.

37.3 Empirical models of fitness surfaces
More empirical descriptive cost models of problem difficulty aim at identifying measurable instance characteristics
(features) influencing the search cost. A good descriptive model should account for a significant portion of the variance
in search cost [94, 292, 334, 377].

The performance of search algorithms depends on the features of the search space. In particular, a useful measure
of variability of the search landscape is given by the correlation between the values of the objective function f over all
pairs of configurations at distance d. The proper distance to be used depends on the nature of the solving technique. In
local search the distance between two configurations X and X ′ can be measured measured as the minimum number
of local steps to transform one into the other. After choosing the distance function, one defines the Landscape
Correlation Function [378]:

R(d) =
Edist(X,X′)=d[(f(X)− µ)(f(X ′)− µ)]

σ2
, (37.1)

where µ = E[X] and σ2 = Var[X]. This measure captures the idea of ruggedness of a surface: a low correlation
function implies high statistical independence between points at distance d. While it is expectable that for large
values of d the correlation R(d) goes to zero (unless the search landscape is very smooth), the value of R(1) can be
meaningful.

Intuitively, R(1) tells us whether a local move from the current configuration changes the f value in a manner
which is significantly different from a random restart. R(1) ≈ 0 means that, on average, there is little correlation
between the objective value at a given configuration and the value of its neighbors. This can signal of a poor choice of
the neighborhood structure, or that the problem is particularly hard for local search. On the other hand, R(1) ≈ 1 is a
clear indication that the neighborhood structure produces a smooth fitness surface.

Computing equation (37.1) for large search spaces can be difficult. A common estimation technique uses random
walks. In particular, Big-Valley models [59] (a.k.a. massif central models) have been considered to explain the success
of local search, and the preference for continuing from a given local optimum instead of restarting from scratch. These
models measure the autocorrelation of the time-series of f values produced by a random walk. The autocorrelation
function (ACF) of a random process describes the correlation between the process at different points in time. Let X(t)

be the search configuration at time t. If f(X(t)) has mean µ and variance σ2 then the ACF can be defined as

R′(d) =
Et[(f(X(t))− µ)(f(X(t+d))− µ)]

σ2
. (37.2)
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Figure 37.1: Estimating autocorrelation on a rugged (top) and a smooth (bottom) landscape by means of a random
walk. Vectors between fitness values at subsequent steps are shown on the right; in particular, R′(1) is determined as
the correlation between the endpoints of these arrows with respect to the mean value (dashed line).

Fig. 37.1 provides a pictorial view of autocorrelation estimation by means of a random walk. In particular, the
right side of each plot shows how subsequent moves are correlated: every arrow shows one step, so that correlation is
computed between the head and the tail of each arrow with respect to the mean value (dashed line). It is apparent that
the bottom walk represents a smoother landscape, and this translates to correlated arrow endpoints.

As noted above, it is expected that both R(d) and R′(d) become smaller and smaller as long as d increases: points
separated by a small path are more correlated than separated ones. Empirical measurements show that R′(d) often
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follows an exponential decay law:
R′(d) ≈ e− dλ . (37.3)

The value of λ that best approximates the R′(·) sequence is called the correlation length, and it measures the range
over which fluctuations of f in one region of space are correlated. An approximation of λ can be obtained by solv-
ing (37.3) when d = 1:

λ ≈ − 1

lnR′(1)
.

Clearly, we are assuming that correlation between nearby configurations is positive: otherwise, no significant approx-
imation can be obtained and the whole correlation analysis loses its meaning.

Equation (37.3) defines the correlation length as the distance where autocorrelation decreases by a factor of e,
so that the definition is somewhat arbitrary. Moreover, for many problems the correlation length is a function of the
problem’s size and it does not explain the variance in computational cost among instances of the same size [377].
However, it is possible to normalize it with respect to some measure of the problem’s instance (e.g., number of
dimensions, size of the neighborhood) in order to make it a useful tool for comparisons.

An example of fitness landscape analysis for the Quadratic Assignment Problem is presented in [267], where
autocorrelation analysis and fitness-distance correlation analysis [223] are adopted for choosing suitable evolutionary
operators.

A fitness distance correlation (FDC) c an be calculated by measuring the Hamming distances between sets of
bit-strings and the global optimum, and comparing with their fitness. Of course, the technique can be generalized to
deal with different distance measures. An instructive counterexample is presented in [9].

37.4 Tunable landscapes
The NK landscape model [230], proposed in the field of computational biology, provides a parametric and tunable
landscape for the generation of problem instances. NK landscapes capture the intuition that every coordinate in the
search space contributes to the overall fitness in a complex way, often by enabling or disabling the contribution of
other variables in a process that is known in biology as epistasis.
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Figure 37.2: Epistatic contribution of bit i in an NK model for K = 3.
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An NK system is defined by N binary components (e.g., bits in the configuration string) and by the number K of
other components that interact with each component. In other words, each bit identifies a (K+1)-bit interaction group.
A uniform random-distributed mapping from {0, 1}K+1 to [0, 1] determines the contribution of each interaction group
to the total fitness, which is computed as the average of all contributions.

In mathematical terms, let the configuration space be the N -bit strings {0, 1}N . The current configuration is
S = s1 . . . sN , si ∈ {0, 1}. For every position i = 1, . . . , N , let us define its interaction group as a set of K + 1
different indices Gi = (gi0, gi1, . . . , giK) so that gi0 = i, gij ∈ {1, . . . , N} and if l 6= m then gil 6= gim. Let
w : {0, 1}K+1 → [0, 1], defined by random uniform distribution, represent the contribution of each interaction group.
Then

f(S) =
1

N

N∑
i=1

w(sgi0sgi1 . . . sgiK ).

Fig. 37.2 shows how every bit contributes to the fitness value by means of its epistatic interaction group as defined
before. For small values of K the contribution function w can be encoded as a (2K+1)-entry lookup table.

The parameter K controls the so-called “ruggedness” of the landscape: K = 0 means that no bitwise interaction
is present, so that every bit independently contributes to the overall fitness, leading to an embarrassingly simple
optimization task. On the other hand, ifK = N−1, then changing a single bit modifies all contributions to the overall
fitness value: the ruggedness of the surface is maximized.

NK systems have been used as problem generators in the study of various combinatorial optimization algo-
rithms [224, 175, 338].

37.5 Measuring local search components: diversification and bias

To ensure progress in algorithmic research it is not sufficient to have a horse-race of different algorithms on a set
of instances and declare winners and losers. Actually, very little information can be obtained by these kinds of
comparisons. In fact, if the number of instances for the benchmark is limited and if sufficient time is given to an
intelligent researcher (...and very motivated to get publication!) be sure that some promising results will be eventually
obtained, via a careful tuning of algorithm parameters.

A better method is to design a generator of random instances so that it can produce instances used during the
development and tuning phase, while a different set of instances extracted from the same generator is used for the final
test. This method mitigates the effect of “intelligent tuning done by the researcher on a finite set of instances,” but still
it does not explain why a method is better than another one. Explaining why is related to the generality and prediction
power of the model. If one can predict the performance of a technique on a problem (or on a single instance) – of
course before the run is finished, predicting the past is always easy! – then he takes some steps towards understanding.

This exercise takes different forms depending on what one is predicting, what are the starting data, what is the
computational effort spent on the prediction, etc. The work in [33] dedicated to solving the MAX-SAT problem
with non-oblivious local search aims at relating the final performance to measures obtained after short runs of
a method. In particular, the average f value (bias) and the average speed in Hamming distance from a starting
configuration (diversification) is monitored and related to the final algorithm performance.

Let us focus onto local-search based heuristics: it is well known that the basic compromise to be reached is that
between diversification and bias. Given the obvious fact that only a negligible fraction of the admissible points
can be visited for a non-trivial task, the search trajectory X(t) should be generated to visit preferentially points with
large f values (bias) and to avoid the confinement of the search in a limited and localized portion of the search
space (diversification). The two requirements are conflicting: as an extreme example, random search is optimal for
diversification but not for bias. Diversification can be associated with different metrics. Here we adopt the Hamming
distance as a measure of the distance between points along the search trajectory. The Hamming distance H(X,Y )
between two binary strings X and Y is given by the number of bits that are different.

The investigation follows this scheme:
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• After selecting the metric (diversification is measured with the Hamming distance and bias with mean f values
visited), the diversification of simple random walk is analyzed to provide a basic system against which more
complex components are evaluated.

• The diversification-bias plots (D-B plots) of different basic components are investigated and a conjecture is
formulated that the best components for a given problem are the maximal elements in the diversification-bias
(D-B) plane for a suitable partial ordering (Section 37.5.1).

• The conjecture is validated by a competitive analysis of the components on a benchmark.

Let us now consider the diversification properties of Random Walk. Random Walk generates a Markov chain
by selecting at each iteration a random move, with uniform probability:

X(t+1) = µr(t)X
(t) where r(t) = Rand{1, . . . , n}

Without loss of generality, let us assume that the search starts from the zero string: X(0) = (0, 0, ..., 0). In this
case the Hamming distance at iteration t is:

H(X(t), X(0)) =

n∑
i=1

x
(t)
i

and therefore the expected value of the Hamming distance at time t, defined as Ĥ(t) = Ĥ(X(t), X(0)), is:

Ĥ(t) =

n∑
i=1

x̂i
(t) = n x̂(t) (37.4)

The equation for x̂(t), the probability that a bit is equal to 1 at iteration t, is derived by considering the two possible
events that i) the bit remains equal to 1 and ii) the bit is set to 1. In detail, after defining as p = 1/n the probability
that a given bit is changed at iteration t, one obtains:

x̂(t+1) = x̂(t) (1− p) + (1− x̂(t)) p = x̂(t) + p (1− 2x̂(t)) (37.5)

It is straightforward to derive the following theorem:

Theorem 4 If n > 2 (and therefore 0 < p < 1
2 ) the difference equation (37.5) for the evolution of the probability x̂(t)

that a bit is equal to one at iteration t, with initial value x̂(0) = 0, is solved for t integer, t ≥ 0 by:

x̂(t) =
1− (1− 2p)t

2
(37.6)

The qualitative behavior of the average Hamming distance can be derived from the above. At the beginning Ĥ(t)

has a linear growth in time:
Ĥ(t) ≈ t (37.7)

For large t the expected Hamming distance Ĥ(t) tends to its asymptotic value of n/2 in an exponential way, with a
“time constant” τ = n/2

Let us now compare the evolution of the mean Hamming distance for different algorithms. The analysis is started
as soon as the first local optimum is encountered by LS, when diversification becomes crucial. LS+ has the same
evolution as LS with the only difference that it always moves to the best neighbor, even if the neighbor has a worse
solution value f . LS+, and Fixed-TS with fractional prohibition Tf equal to 0.1, denoted as TS(0.1), are then run for
10 n additional iterations. Fig. 37.3 shows the average Hamming distance as a function of the additional iterations
after reaching the LS optimum, see [33] for experimental details.
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Figure 37.3: Average Hamming distance reached by Random Walk, LS+ and TS(0.1) from the first local optimum of
LS, with standard deviation (MAX-3-SAT). Random walk evolution is also reported for reference.

Although the initial linear growth is similar to that of Random Walk, the Hamming distance does not reach the
asymptotic value n/2 and a remarkable difference is present for the two algorithms. The fact that the asymptotic value
is not reached even for large iteration numbers implies that all visited strings tend to lie in a confined region of the
search space, with bounded Hamming distance from the starting point.

Let’s note that, for large n values, most binary strings are at distance of approximately n/2 from a given string.
In detail, the Hamming distances are distributed with a binomial distribution with the same probability of success and
failure (p = q = 1/2): the fraction of strings at distance H is equal to(

n
H

)
× 1

2n
(37.8)

It is well known that the mean is n/2 and the standard deviation is σ =
√
n/2. The above coefficients increase up

to the mean n/2 and then decrease. Because the ratio σ/n tends to zero for n tending to infinity, for large n values
most strings are clustered in a narrow peak at Hamming distance H = n/2. As an example, one can use the Chernoff
bound [168]:

Pr[H ≤ (1− θ)pn] ≤ e−θ
2np/2 (37.9)

the probability to find a point at a distance less than np = n/2 decreases in the above exponential way (θ ≥ 0). The
distribution of Hamming distances for n = 500 is shown in Fig. 37.4.

Clearly, if better local optima are located in a cluster that is not reached by the trajectory, they will never be found.
In other words, a robust algorithm demands that some stronger diversification action is executed. For example, an
option is to activate a restart after a number of iterations that is a small multiple of the time constant n/2.

When a local search component is started, new configurations are obtained at each iteration until the first local
optimum is encountered, because the number of satisfied clauses increases by at least one. During this phase additional
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Figure 37.4: Probability of different Hamming distances for n = 500.

diversification schemes are not necessary and potentially dangerous, because they could lead the trajectory astray, away
from the local optimum.

The compromise between bias and diversification becomes critical after the first local optimum is encountered. In
fact, if the local optimum is strict, the application of a move will worsen the f value, and an additional move could be
selected to bring the trajectory back to the starting local optimum.

The mean bias and diversification depend on the value of the internal parameters of the different components.
All runs proceed as follows: as soon as the first local optimum is encountered by LS, it is stored and the selected
component is then run for additional 4n iterations. The final Hamming distance H from the stored local optimum and
the final value of the number of unsatisfied clauses u are collected. The values are then averaged over different tasks
and different random number seeds.

Different diversification-bias (D-B) plots are shown in Fig. 40.3. Each point gives the D-B coordinates (Ĥn, û),
i.e., average Hamming distance divided by n and average number of unsatisfied clauses, for a specific parameter
setting in the different algorithms. The Hamming distance is normalized with respect to the problem dimension
n, i.e., Ĥn ≡ Ĥ/n. Three basic algorithms are considered: GSAT-with-walk, Fixed-TS, and HSAT. For each of
these, two options about the guiding functions are studied: one adopts the “standard” oblivious function, the other
the non-oblivious fNOB introduced in Section 35.5.2. Finally, for GSAT-with-walk one can change the probability
parameter p, while for Fixed-TS one can change the fractional prohibition Tf : parametric curves as a function of a
single parameter are therefore obtained.

GSAT, Fixed-TS(0.0), and GSAT-with-walk(0.0) coincide: no prohibitions are present in TS and no stochastic
choice is present in GSAT-with-walk. The point is marked with “0.0” in Fig. 40.3. By considering the parametric
curve for GSAT-with-walk(p) (label “gsat” in Fig. 40.3) one observes a gradual increase of û for increasing p, while
the mean Hamming distance reached at first decreases and then increases. The initial decrease is unexpected because it
contradicts the intuitive argument that more stochasticity implies more diversification. The reason for the above result
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Figure 37.5: Diversification-bias plane. Mean number of unsatisfied clauses after 4 n iterations versus mean Hamming
distance. MAX-3-SAT tasks. Each run starts from GSAT local optimum, see [33].

is that there are two sources of “randomness” in the GSAT-with-walk algorithm (see Fig. 35.16), one deriving from
the random choice among variables in unsatisfied clauses, active with probability p, the other one deriving from the
random breaking of ties if more variables achieve the largest ∆f .

Because the first randomness source increases with p, the decrease in Ĥn could be explained if the second source
decreases. This conjecture has been tested and confirmed [33]. The larger amount of stochasticity implied by a larger p
keeps the trajectory on a rough terrain at higher values of f , where flat portions tend to be rare. Vice versa, almost no tie
is present when the non-oblivious function is used. The algorithm on the optimal frontier of Fig. 40.3 is Fixed-TS(Tf ),
and the effect of a simple aspiration criterion [148], and a tie-breaking rule for it is studied in [33].

The advantage of the D-B plot analysis is clear: it suggests possible causes for the behavior of different algorithms,
leading to a more focused investigation.

37.5.1 A conjecture: better algorithms are Pareto-optimal in D-B plots

A conjecture about the relevance of the diversification-bias metric is proposed in [33]. A relation of partial order,
denoted by the symbol ≥ and called “domination,” is introduced in a set of algorithms in the following way: given
two component algorithms A and B, A dominates B (A ≥ B) if and only if it has a larger or equal diversification and
bias: f̂A ≥ f̂B and ĤnA ≥ ĤnB .

By definition, component A is a maximal element of the given relation if the other components in the set do not
possess both a higher diversification, and a better bias. In the graph one plots the number of unsatisfied clauses versus
the Hamming distance, therefore the maximal components are in the lower–right corner of the set of (Ĥn, û) points.
The points are characterized by the fact that no other point has both a larger diversification and a smaller number of
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satisfied clauses.

Conjecture
If local-search based components are used in heuristic algorithms for optimization, the components producing the

best f values during a run, on the average, are the maximal elements in the diversification-bias plane for the given
partial order.

The conjecture produces some “falsifiable” predictions that can be tested experimentally. In particular, a partial
ordering of the different components is introduced: component A is better than component B if ĤnA ≥ ĤnB and
ûA ≤ ûB . The ordering is partial because no conclusions can be reached if, for example, A has better diversification
but worse bias when compared with B.

Clearly, when one applies a technique for optimization, one wants to maximize the best value found during the
run. This value is affected by both the bias and the diversification. The search trajectory must visit preferentially
points with large f values but, as soon as one of this point is visited, the search must proceed to visit new regions. The
above conjecture is tested experimentally in [33], with fully satisfactory results. We do not expect this conjecture to
be always valid but it is a useful guide when designing and understanding component algorithms.

A definition of three metrics is used in [318] [342] for studying algorithms for SAT and CSP. The first two metrics
depth (average unsatisfied clauses) and mobility (Hamming distance speed) correspond closely to the above used bias
and diversification. The third measure (coverage) takes a more global view at the search progress. In fact, one may
have a large mobility but nonetheless remain confined in a small portion of the search space. A two-dimensional
analogy is that of bird flying at high speed along a circular trajectory: if fresh corn is not on the trajectory it will
never discover it. Coverage is intended to measure how systematically the search explores the entire space. In other
words, coverage is what one needs to ensure that eventually the optimal solution will be identified, no matter how
it is camouflaged in the search landscape. The motivation for a speed of coverage measure is intuitively clear, but
the detailed definition and implementation is somewhat challenging. In [318] a worst-case scenario is considered and
coverage is defined as the size of the largest unexplored gap in the search space. For a binary string, this is given by
the maximum Hamming distance between any unexplored assignment and the nearest explored assignment.

Unfortunately, measuring the speed of coverage it is not so fast, actually it can be NP-hard for problems with
binary strings, and one has to resort to approximations [318]. For an example, one can consider sample points given
by the negation of the visited points along the trajectory and determine the maximum minimum distance between these
points and points along the search trajectory. The rationale for this heuristic choice is that the negation of a string is
the farthest point from a given string (one tries to be on the safe side to estimate the real coverage). After this estimate
is available one divides by the number of search steps. Alternatively, one could consider how fast coverage decreases
during the search (a discrete approximation of the coverage speed). Dual measures on the constraints are studied in
[342].
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Gist
A motivated researcher may use junk heuristics and get positive results after carefully tuning their meta-
parameters on single benchmark instances. Science and technology will not advance with this kind of brutal
horse-racing but they require predictive and explanatory models.

In a manner similar to machine learning, to get usable flexible algorithms, tuning should be done in
an automated manner on some “training instances”, and performance should be tested on novel instances
characterized by similar statistical properties.

Measures of problem difficulty are a first step in this scientific process. Phase-transitions can explain
why some instances are very easy and other instances almost impossible to solve.

Empirical models of fitness surfaces can explain if local search will be effective and can help in
selecting the proper local moves.

Tunable landscapes and problem generators are useful probes to validate different choices in algo-
rithm design.

Diversification-bias plots (D-B plots) can measure the effectiveness of single building blocks and de-
liver insight on their balance of exploration versus exploitation.

For comparable results, the simplest algorithms (with less meta-parameters) should always be chosen
because they are more robust and simpler to study and understand. Complexity in optimization heuristics
should grow in stages, after careful motivations of each addition and demonstrations of the gained perfor-
mance benefits. Less is more, also in heuristics.



Part VI

Cooperation and multiple objectives in
optimization
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Chapter 38

Cooperative Learning And Intelligent
Optimization (C-LION)

Whenever any important business has to be done in the monastery,
let the Abbot call together the whole community and state the matter to be acted upon.

Then, having heard the advice of the monks, let him turn the matter over in his own mind
and do what he shall judge to be most expedient.

The reason why we said that all should be consulted is that the Lord often reveals to the younger what is best.
(The Rule of Saint Benedict, 530-550, Montecassino)

As we have seen in the previous chapters, for each problem there are often many possible algorithms for solving
it. Their effectiveness depends on the characteristics of the specific instances. Even if the performance of a single
algorithm is dominating, when the algorithm has meta-parameters or stochastic components, there are opportunities
to improve performance or to reduce the risk of suboptimal results by considering different runs. The objective of
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C-LION is to increase the level of automation by designing an additional intelligent coordination layer after starting
from individual algorithmic building blocks.

When considering local search (LS), we have seen that learning from the previous phase of the stochastic search
by modifying the probabilities of generating new sample points can lead to more efficient schemes w.r.t. simple Pure
Random Search, like Markov Chain Montecarlo, a.k.a. Simulated Annealing. The local minima traps can be cured
by Reactive Search Optimization (RSO). Up to now the discussion was mostly dedicated to single solution schemes.
One can now generalize: instead of information from a single running algorithm, one can use information from
many solution processes running in parallel, with complex interaction and coordination. In particular, one can keep a
sample (population) of points (current good solutions) and modify it with a generation probability that depends on all
points in the population. Population-based algorithms do exactly this: they transform one group of points (current
generation) to a new group of points (next generation) by probabilistic rules. Some more robustness and diversification
can be obtained. The population can be seen as the concrete representation of a probability distribution on the input
space, which is dynamically changing to reflect the accumulated knowledge and the interesting regions for future
sampling.

Cooperative Learning and Intelligent Optimization (C-LION) denotes a framework for solving problems by a
strategic use of memory and cooperation among a team of self-adaptive solution processes. Widely popular genetics
and evolution-based analogies will be covered in Chapter 39. This chapter consider mostly analogies based on the
organization of human society. Our species is particularly remarkable in this capability to coordinate individual hu-
man problem solvers. Our culture and civilization have a lot to do with cooperation and coordination of intelligent
human beings. Coming closer to our daily work, the history of science shows a steady advancement caused by the
creative interplay of many individuals, both during their lifetimes and through the continuation of work by the future
generations. We are all dwarfs standing on the shoulders of giants (nanos gigantium humeris insidentes, Bernard of
Chartres).

C-LION is a paradigm and not a single technique, so that different names have been used for specific tech-
niques [41], but for the sake of brevity the following discussion reflects on some long-term goals of this effort, with a
more focussed example for the coordination of Local Search streams. In this context, the three pillars of C-LION are:
multiple local searchers in charge of districts (portions of input space), mutual coordination, and continuous “reactive”
learning and adaptation.

C-LION adopts a sociological/political paradigm. Each local searcher takes care of a district (an input area),
generates samples and decides when to fire local search in coordination with the other members. The organized
subdivision of the configuration space is adapted in an online manner to the characteristics of the problem instance.
Coordination by use of globally collected information is crucial to identify promising areas in configuration space
and allocate search effort. Analogies are to be used only to guide intuition, the final algorithm does not have to use the
terminology of the field of the analogy [341].

38.1 Intelligent and reactive solver teams
The appetite for more effective and efficient basic solvers can be satisfied by adopting more complex higher-level
techniques, built on top of basic mechanisms and embodying elements of meta-optimization and self-tuning. Meta-
optimization is the process of optimizing parameters which define a flexible optimization algorithm (e.g., the prohi-
bition parameter in RSO based on prohibitions in Section 27.2).

When one considers the relevant issues in designing solver teams, one encounters striking analogies with sociolog-
ical and behavioral theories related to human teams, with a similar presence of apparently contradictory conclusions.
Let us mention some of the basic issues from a qualitative and analogical point of view, deferring more specific
algorithmic implementations in the next sections.

We tend to prefer the term solver teams to underline that an individual solver can be an arbitrarily intelligent agent
capable of collecting information, developing models, exchanging the relevant part of the obtained information with
his fellow searchers, and responding in a strategic manner to the information collected. Teamwork is the concept of
people working together cooperatively, as in a sports team.
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Why does it make sense to consider the team members separately from the team? After all, one could design a
complex entity where the boundary between the individual team members and the coordination strategy is fuzzy, a
kind of Star Trek borg hive depicted as an amalgam of cybernetically enhanced humanoid drones of multiple species,
organized as an inter-connected collective with a hive mind and assimilating the biological and technological distinc-
tiveness of other species to their own, in pursuit of perfection.

The answer lies in the simpler design of more advanced and effective search strategies and in the better possibility
to explain the success of a particular team by separating its members’ capabilities from the coordination strategy
(divide et impera). Let’s note that alternative points of view exist and are perfectly at home in the scientific arena:
for example, one may be interested in explaining how and why a collection of very simple entities manages to solve
problems not solvable by the individuals. For example how simple ants manage to transport enormous weights by
joining forces. In all cases, solver team existence cannot motivated by its sexiness or by its correspondence to poetic
biological analogies [341], but only by a demonstrated superiority w.r.t. the state of the art of the individual solvers.

Individual quality of the team members. A basic issue is the relationship between the quality of the members and
the collective quality of the team. If the team members are poor performers one should not expect an exceptional
team. Nonetheless, it is of scientific and cultural interest to assess the potential for problem solving through
the interaction of a multitude of simple members. An inspiring book [353] deals with the wisdom of crowds:
“why the many are smarter than the few and how collective wisdom shapes business, economies, societies,
and nations.” Of course, acid comments go back ages, like in Nietzsche’s citation “I do not believe in the
collective wisdom of individual ignorance.” Adapting a conclusion from the review [306], “in matters for which
true expertise can be identified, one would much rather rely on the best judgments of the most knowledgeable
specialists than a crowd of laymen. But in matters for which no expertise or training is genuinely involved, in
dealing with fields of study whose principles are ambiguous, contentious, and rarely testable, ...then yes, there
is sense to polling a group of people.” In optimization, one expects a much bigger effectiveness by starting from
the most competitive single-thread techniques, but some dangers lurk depending on how the team is integrated
and information is shared and used.

Diversity of the team members. If all solvers act in same manner the advantage of a team is lost (see lower panes of
Fig. 39.3). Diversity can be obtained in many possible ways, for example by using different solvers, or identical
solvers but with different random initializations. In some cases, the effects of an initial randomization is prop-
agated throughout a search process that shows a sensitive dependence on initial conditions that is characteristic
for chaotic processes [360].

Diversity means that, in some cases, combining simpler and inferior performers with more effective ones can
increase the overall performance and/or improve robustness. By the way, diversity is also crucial for ensembles
of learning machines [364, 29].

Information sharing and cooperation. When designing a solver team one must decide about the way in which in-
formation collected by the various solvers is shared and used to modify the individual member decisions. An
extreme design principle consists of complete independence and periodic reporting of the best solution to
a coordinator. Simplicity and robustness make this extreme solution the first to try. More complex interaction
schemes should always be compared against this baseline, see for example [30] where independent parallel
walks of tabu search are considered.

More complex sharing schemes involve periodic collection of the best-so-far (record) values and configurations,
the current configurations, more complex summaries of the entire search history of the individual solvers, for
example the list of local minima encountered.

After the information is shared, a decision process modifies the individual future search in a strategic manner.
Here complexities and open research issues arise. Let’s consider a simple case: if a solver is informed by a team
member about a new best value obtained for a configuration which is far from the current search region, is it
better for it to move to the new and promising area or to keep visiting the current region? See also Fig. 39.3.
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An example of the dangerous effects of interaction in the social arena is called groupthink [213], a mode of
thinking that people engage in when they are deeply involved in a cohesive group, when the members’ strivings
for unanimity override their motivation to realistically appraise alternative courses of action. Design by commit-
tee is a second term referring to the poor results obtained by a group, particularly in the presence of poor and
incompetent leadership. A camel is a horse designed by a committee.

An example of a pragmatic use of memory in cooperation is [295], where experiments highlight that “memory
is useful but its use from the very beginning of the search is not recommended.”

Centralized versus distributed management schemes This issue is in part related to computing hardware and com-
munication networks, in part related to the software abstraction adopted for programming. The centralized
schemes, often related to some form of synchronous communication, see a central coordinator acting in a
master-slave relationship w.r.t. the individual solvers. The team members are given instructions (for exam-
ple initialization points, parameters, detailed strategies) by the coordinator and periodically report about search
progress and other parameters. The opposite design point consists of distributed computation by peers, which
periodically and often asynchronously exchange information and autonomously decide about their future steps.
Gossiping optimization schemes fall in this category. The design alternatives are related to efficiency but also
to simplicity of programming and understanding. For example, a synchronous parallel machine may be han-
dled more efficiently through a central coordination, while a collection of computers distributed in the world,
connected by internet and prone to disconnections, may find a more natural coordination scheme by gossiping.
Reviews of parallel strategies for local search and meta-heuristics are presented in [368] (see for example the
multiple walks parallelism), in [160] (“controlled pool maintenance”) and [103].

Reactive versus non-reactive schemes Last but not least comes the issue of learning on the job and self-tuning of
algorithm parameters. In addition to the adaptation of individual parameters based on individual search history,
which is by now familiar to the reader, new possibilities for a reactive adaptation arise by considering the search
history of other team members and the overall coordination scheme. As examples, adaptation in evolutionary
computation is surveyed in [178, 124]. Adaptation can act on the representation of the individuals, the evaluation
function, the variation, selection and replacement operators and their probabilities, the population (size, topol-
ogy, etc.). In their taxonomy, parameter tuning coincides with our “off-line tuning,” while parameter control
coincides with “on-line tuning,” adaptive parameter control has a reactive flavor, while self-adaptive parameter
control means that one want to use the same golden hammer (GA) for all nails, including meta-optimization
(the parameters are encoded into chromosomes). Strategic design embodying intelligence more than random-
ization is also advocated in the scatter search and path relinking approach [151, 154]. Scatter search is a general
framework to maintain a reference set of solutions, determined by their function values but also by their level of
diversity, and to build new ones by “linearly interpolating and extrapolating” between subsets of these solutions.
Of course, interpolation must be interpreted to work in a discrete setting (the uniform cross-over in GA is a
form of interpolation) and adapted to the problem structure. Path relinking generalizes the concept: instead of
creating a new solution from a set of two parents, an entire path between them is created by starting from one
extreme and progressively modifying the solution to reduce the distance from the other point. The approach is
strongly pragmatic, alternatives are tried and judged in a manner depending on the final results and not on the
adherence to biological and evolutionary principles.

38.2 Portfolios and restarts
Let us consider Las Vegas algorithms, which always terminate with a correct solution and have a stochastic distribution
of the runtime, the time required to terminate. We are interested both in the expected value of the runtime and in its
standard deviation. The standard deviation is related to the risk; in some cases having a larger average CPU time with
a small deviation is preferable to having a smaller average but with some instances requiring enormous times. There
are two simple ways to combine the execution of different algorithms or of different versions of the same algorithm
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(with different random seeds) to obtain different expected runtimes and standard deviations: one is based on restarting
an algorithm if it does not terminate within a given time limit, the other one is based on combining more runs in a
time-sharing interleaving manner: the portfolio approach.

Algorithm portfolios, first proposed in [199], follow the standard practice in economics to obtain different return-
risk profiles in the stock market by combining stocks characterized by individual return-risk values. Risk is related to
the standard deviation of return. An algorithm portfolio runs more algorithms concurrently on a sequential computer,
in a time-sharing manner, by allocating a fraction of the total CPU cycles to each of them. The first algorithm to finish
determines the termination time of the portfolio, while the other algorithms are stopped immediately after one reports
the solution, see Fig. 38.1.

It is intuitive that the CPU time can be radically reduced in this manner. To clarify ideas consider an extreme
example where, depending on the initial random seed, the runtime can be of 1 second or of 1000 seconds, with the
same probability. If one runs a single process, the expected runtime is approximately of 500 seconds. If one runs more
copies, the probability that at least one of them is lucky (i.e., that it terminates in 1 second) increases very rapidly
towards one. Even if termination is now longer than 1 second because more copies share the same CPU, it is intuitive
that the expected time will be much shorter than 500.

A portfolio can consist of different algorithms but also of different runs of the same algorithm, with different
random seeds. In the case of more runs of the same algorithm, there is a different way to have more runs share a given
CPU, by terminating a run prematurely and restarting the algorithm.

In the above example, a run can be stopped if it does not terminate within 1 second. Because the probability to
have a sequence of unlucky cases rapidly goes to zero, again the expected runtime of the restart strategy will be much
less than 500 seconds.

As an example in web surfing, the response time to deliver a page can vary a lot. The customary behavior of
clicking again on the same link after patience is finished can save the user from an “endless” waiting time.

38.3 Predicting the performance of a portfolio from its component algo-
rithms

To make the above intuitive arguments precise let TA be the random variable describing the time of arrival of process
A when the whole CPU time is allocated to it. Let pA(t) be its probability distribution. The survival function SA(t)
is the probability that process A takes longer that t to complete:

SA(t) = Pr(TA > t) =

∫
τ>t

pA(τ) dτ = 1− FA(t)

where FA(t) is the corresponding cumulative distribution function. If only a fraction α of the total CPU time is
dedicated to it in a time-sharing fashion, with arbitrarily small time quanta and no process swapping overhead, we can
model the new system as a process A′ whose time of completion is described by random variable TA′ = α−1TA. Its
probability distribution and cumulative distribution function are respectively:

pA′(t) = pA(αt), FA′(t) = FA(αt), SA′(t) = SA(αt).

Consider a portfolio of two algorithmsA1 andA2. To simplify the notation, let T1 and T2 be the random variables
associated with their termination times (each being executed on the whole CPU), with survival functions S1 and S2.
Let α1 be the fraction of CPU time allocated to process running algorithm A1. Then the fraction dedicated to A2 is
α2 = 1− α1. The completion time of the two-process portfolio system is therefore described by the random variable

T = min{α−11 T1, α
−1
2 T2}. (38.1)
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Figure 38.1: A sequential portfolio strategy.
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Figure 38.2: Expected runtime versus standard deviation (risk) plot. The efficient frontier contains the set of non-
dominated configurations (a.k.a. Pareto-optimal or extremal points).

The survival function of the portfolio is

S(t) = Pr(T > t) = Pr(min{α−11 T1, α
−1
2 T2} > t)

= Pr(α−11 T1 > t ∧ α−12 T2 > t) = Pr(α−11 T1 > t) Pr(α−12 T2 > t)

= Pr(T1 > α1t) Pr(T2 > α2t)

= S1(α1t)S2(α2t).

The probability distribution of T can be obtained by differentiation:

p(t) = −∂S(t)

∂t
.

Finally, the expected termination value E(T ) and the standard deviation
√

Var(T ) can be calculated.
By turning the α1 knob, therefore, a series of possible combinations of expected completion time E(T ) and risk√

Var(T ) becomes available. Fig. 38.2 illustrates an interesting case where two algorithms A and B are given. Algo-
rithmA has a fairly low average completion time, but it suffers from a large standard deviation, because the distribution
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Figure 38.3: A portfolio strategy on a parallel machine.

is bimodal or heavy-tailed, while algorithm B has a higher expected runtime, but with the advantage of a lower risk
of having a longer computation. By combining them as described above, we obtain a parametric distribution whose
expected value and standard deviation are plotted against each other for α1 going from 0 (only B executed) to 1 (pure
A). Some of the obtained distributions are dominated (there are parameter values that yield distributions with lower
mean time and lower risk) and can be eliminated from consideration in favor of better alternatives, while the choice
among the non-dominated possibilities (on the efficient frontier shown in black dots in the figure) has to be specified
depending on the user preferences between lower expected time or lower risk. The choice along the Pareto frontier is
similar when investing in the stock market: while some choices can be immediately discarded, there are no free meals
and a higher return comes with a higher risk.

38.3.1 Parallel processing

Let us consider a different context [159] and assume that N equal processors and two algorithms are available so that
one has to decide how many copies ni to run of the different algorithms, as illustrated in Fig. 38.3. Of course no
processor should remain idle, therefore n1 + n2 = N .

Consider time as a discrete variable (clock ticks or fractions of second), let Ti be the discrete random variable as-
sociated with the termination time of algorithm i having probability pi(t), the probability that process i halts precisely
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at time t. As in the previous case, we can define the corresponding cumulative probability and survival functions:

Fi(t) = Pr(T ≤ t) =

t∑
τ=0

pi(τ), Si(t) = Pr(T > t) =

∞∑
τ=t+1

pi(τ).

To calculate the probability p(t) that the portfolio terminates exactly at time T = t, we must sum probabilities for
different events: the event that one processor terminates at t while the other ones take more than t, the event that two
processors terminate at t while the other ones take more than t, and so on. The different runs are independent and
therefore probabilities are multiplied. If n1 = N (all processors are assigned to the same algorithm), this leads to:

p(t) =

N∑
i=1

(
N

i

)
p1(t)iS1(t)

N−i (38.2)

The portfolio survival function S(t) is easier to compute on the basis of the survival function of the single process
S1(t):

S(t) = S1(t)N (38.3)

When two algorithms are considered, the probability computation has to be modified to consider the different ways
to distribute i successes at time t among the two sets of copies such that i1 + i2 = i (i1 and i2 being non-negative
integers).

p(t) =
∑

0≤i1≤n1
0≤i2≤n2
i1+i2≥1

(
n1
i1

)
p1(t)i1S1(t)

n1−i1
(
n2
i2

)
p2(t)i2S2(t)

n2−i2 . (38.4)

Similar although more complicated formulas hold for more algorithms. As before, the complete knowledge about p(t)
can then be used to calculate the mean and variance of the runtimes. Portfolios can be effective to cure the heavy-
tailed behavior of pi(t) in many complete search methods, where very long runs occur more frequently than one may
expect, in some cases leading to infinite mean or infinite variance [158]. Heavy-tailed distributions are characterized
by a power-law decay, also called tails of Pareto-Lévy form, namely:

P (X > x) ≈ Cx−α

where 0 < α < 2 and C is a constant.
Experiments with the portfolio approach [199, 159] show that, in some cases, a slight mixing of strategies can be

beneficial provided that one component has a relatively high probability of finding a solution fairly quickly. Portfolios
are also particularly effective when negatively correlated strategies are combined: one algorithm tends to be good on
the cases which are more difficult for the other one, and vice versa. In branch-and-bound applications [159] one finds
that ensembles of risky strategies can outperform the more conservative best-bound strategies. In a suitable portfolio,
a depth-first strategy which often quickly reaches a solution can be preferable to a breadth first strategy with lower
expected time but longer time to obtain a first solution.

Portfolios can also be applied to component routines inside a single algorithm, for example to determine an ac-
ceptable move in a local-search based strategy.

38.4 Reactive portfolios
The assumption in the above analysis is that the statistical properties of the individual algorithms are known before-
hand, so that the expected time and risk of the portfolio can be calculated, the efficient frontier determined and the
final choice executed depending on the risk-aversion nature of the user. The strategy is therefore off-line: a preliminary
exhaustive study of the components precedes the portfolio definition.
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Variable Scope Meaning
Ai (input) i-th algorithm (i = 1, . . . , n)
bk (input) k-th problem instance (k = 1, . . . ,m)
fP (input) Function deciding time slice according to expected completion time
fτ (input) Function estimating the expected completion time based on history
τi (local) Expected remaining time to completion of current run of algorithm Ai
αi (local) Fraction of CPU time dedicated to algorithm Ai
history (local) Collection of data about execution and status of each process

1. function AOTA(A1, . . . ,An, b1, . . . , bm, fP , fτ )
2. repeat ∀bk
3. initialize (τ1, . . . , τn)
4. while (bk not solved)
5. update (α1, . . . , αn)← fP (τ1, . . . , τn)
6. repeat ∀Ai
7. run Ai for a slot of CPU time αi∆t
8. update history of Ai
9. update estimated termination τi ← fτ (history)
10. update model fτ considering also the complete history of the last solved instance

Figure 38.4: The inter-problem AOTA framework.

If the distributions pi(t) are unknown, or if they are only partially known, one has to resort to reactive portfolios,
where the strategy is dynamically changed in an online manner when more information is obtained about the
task(s) being solved and the algorithm status. For example, one may derive a maximum-likelihood estimate of pi(t),
use it to define the first values αi of the CPU time allocations, and then refine the estimate of pi(t) when more
information is received and use it to define subsequent allocations. A preliminary suggestion of dynamic online
strategies is present in [199].

Dynamic strategies for search control mechanisms in a portfolio of algorithms are considered in [91, 92]. In this
framework, statistical models of the quality of solutions generated by each algorithm are computed online and used
as a control strategy for the algorithm portfolio, to determine how many cycles to allocate to each of the interleaved
search strategies.

A “life-long learning” approach for dynamic algorithm portfolios is considered in [140]. The general approach of
“dropping the artificial boundary between training and usage, exploiting the mapping during training, and including
training time in performance evaluation,” also termed Adaptive Online Time Allocation [139], is fully reactive. In the
inter-problem AOTA framework, see Fig. 38.4, a set of algorithms Ai is given, together with a sequence of problem
instances bk, and the goal is to minimize the runtime of the whole set of instances. The model used to predict the
runtime pi(t) of algorithmAi is updated after each new instance bk is solved. The portion of CPU time αi is allocated
to each algorithm Ai in the portfolio through a heuristic function which is decreasing for longer estimated runtimes
τi.

An Extreme Reactive Portfolio (XRP) is proposed in [71]. It is based on simple performance indicators: record
value and iterations elapsed from the last record. The two indicators are used for a combined ranking and a stochastic
replacement of the worst-performing members with a new searcher with random parameters or a perturbed version of
a well-performing member.
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38.5 Defining an optimal restart time
Restarting an algorithm at time τ is beneficial if its expected time to convergence is less than the expected additional
time to converge, given that it is still running at time τ [366]:

E[T ] < E[T − τ |T > τ ]. (38.5)

Whether restart is beneficial or not depends of on the distribution of runtimes. As a trivial example, if the distribu-
tion is exponential, restarting the algorithm does not modify the expected runtime.

If the distribution is heavy-tailed, restart easily cures the problem. For example, heavy tails can be encountered
if a stochastic local search algorithm like simulated annealing is trapped in the neighborhood of a local minimizer.
Although eventually the probability of visiting the optimal solution will be one, an enormous number of iterations can
be spent in the attraction basin around the local minimizer before escaping. Restart is a direct method to escape deep
local minima!

If the algorithm is always restarted at time τ , each run corresponds to a Bernoulli trial which succeeds with proba-
bility Pτ = Pr(T ≤ τ) — remember that T is the random variable associated with termination time of an unbounded
run of the algorithm. The number of runs executed by the restart strategy before success follows a geometric distribu-
tion with parameter Pτ , in fact the probability of a success at repetition k is (1 − Pτ )k−1Pτ . The distribution of the
termination time Tτ of the restart strategy with restart time τ can be derived by observing that at iteration t one has
had bt/τc restarts and (t mod τ) remaining iterations. Therefore, the survival function of the restart strategy is

Sτ (t) = Pr(Tτ > t) = (1− Pτ )bt/τc Pr(T > t mod τ). (38.6)

The tail decays now in an exponential manner: the restart portfolio is not heavy-tailed.
In general, a restart strategy consists of executing a sequence of runs of a randomized algorithm, to solve a given

instance, stopping each run k after a time τ(k) if no solution is found, and restarting an independent run of the same
algorithm, with a different random seed. The optimal restart strategy is uniform, i.e., one in which a constant τk = τ
is used to bound each run [255]. In this case, the expected value of the total runtime Tτ , i.e., the sum of runtimes of
the successful run, and all previous unsuccessful runs is equal to:

E(Tτ ) =

τ −
∫ τ

0

F (t) dt

F (τ)
(38.7)

where F (τ) is the cumulative distribution function of the runtime T for an unbounded run of the algorithm, i.e., the
probability that the problem is solved before time τ . The demonstration is simple. For a given cutoff τ , each run
succeeds with probability F (τ) (Bernoulli trials) and the mean number of trials before a successful run is encountered
is 1/F (τ). The expected length of each run is:∫ τ

0

tp(t) dt+ τ(1− F (τ))

Consider the cases when termination is within τ or later, so that the run is terminated prematurely. Because p(t) =
F ′(t), this is equal to: ∫ τ

0

tF ′(t) dt.

The result follows from the fact that:
d
dt

(tF (t)) = tF ′(t) + F (t)

and therefore: ∫ τ

0

tF ′(t) dt+

∫ τ

0

F (t) dt = τF (τ)
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giving (38.7).
In the discrete case:

E(Tτ ) =
τ −

∑
t<τ F (t)

F (τ)
(38.8)

If the distribution is known, an optimal cutoff time can be determined by minimizing (38.7). If the distribution
is not known, a universal non-uniform strategy, with cutoff sequence: (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, . . . ) achieves a
performance within a logarithmic factor of the expected runtime of the optimal policy, see [255] for details.

Calculating the runtime distribution can require large amounts of CPU time in case of heavy tails because one has
to wait for the termination of very long runs. In this case the censored sampling approach can be used. Censored
sampling allows to bound the duration of each experimental run and still exploit the information obtained from the
runs which converge before the censoring threshold [280]. Let us model the probability density function as g(t|θ), θ
being the parameter to be identified from the experiments. Without censoring one can determine g by maximizing the
likelihood L of the obtained sequence of termination times T = (t1, t2, . . . , tk) given θ:

L(T |θ) =

k∏
i=1

L(ti|θ) =

k∏
i=1

g(ti|θ) (38.9)

With censoring, some experimental runs will exceed the cutoff time tc. In these cases the corresponding multiplicative
term in (38.9) is substituted with

Lc(tc|θ) =

∫ ∞
tc

g(τ |θ) dτ = 1−G(tc|θ) (38.10)

where G(t|θ) is the conditional cumulative distribution function corresponding to g.
One has to decide about a proper cutoff threshold tc. A way to determine it is to ask for target u on the fraction

of terminated runs (uncensored samples), run k experiments in parallel (or with interleaving) and stop as soon as the
desired target is reached.

The final receipt is therefore: i) choose an appropriate parametric model for the runtime distribution, ii) determine
the best parameters of the model by maximizing the likelihood, where some terms are substituted with the censored
likelihood of (38.10), iii) use the estimated runtime distribution to determine the optimal restart time. Some examples
of parametric models are considered in [141].

38.6 Reactive restarts
Up to now the assumption has been that the only observation which can be used is given by the length of a run and
that the runs are independent. Let us now consider more advanced strategies where at least one of these assumptions
is relaxed. Given the results mentioned in the previous section, it looks as if the problem is solved for the complete
knowledge case and the zero knowledge case (within a multiplicative constant and logarithmic factor which can be
large for practical applications). Actually, the most interesting case is between the two situations, when a partial
knowledge is available which is increasing as soon as more data become available during a run or during a sequence
of runs on related instances. Real-time observations about the characteristics of a specific instance and about the state
of the solver during a run permit better results.

In [191, 231] features capturing the state of a solver during the initial phase of the run are used to predict the
length of a run, so that the prediction can be used by dynamic restart policies. Bayesian models to predict the runtime
starting from both structural evidence available at the beginning of the run, and execution evidence available during
the run (in a reactive manner) are trained with supervised machine learning. To be more precise, the discrimination is
between long and short runs, i.e., runs longer or shorter than the median. The dynamic policy considered in [191] is
as follows:

1. observe a run for O steps (observation horizon)
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2. if the run is not terminated predict whether it will converge in a total of L steps

3. if the prediction is negative, restart immediately, otherwise run up to a total of L steps before restarting.

Because the model is not perfect, an important parameter is the model accuracy A, the probability of a correct pre-
diction. If pi is the probability of a run ending within i steps, the probability of convergence during a single run is
therefore pO+A(pL−pO) and the expected number of runs until a solution is found isE(n) = 1/(pO+A(pL−pO)).
An upper bound on the expected number of steps in a single run can be derived by assuming that runs ending within O
steps take exactlyO steps, while runs terminating betweenO+1 andO+L steps take exactly L steps. The probability
of continuation, taking the limited accuracy into account, is ApL + (1−A)(1− pL). An upper bound on the length of
a single run is therefore Eub(R) = O + (L−O)(ApL + (1−A)(1− pL)), and an upper bound on the expected time
to solve a problem with the above policy is E(n)Eub(R). The estimate can be now minimized by varying L and the
observation horizon. The model is rude; for example, no observations during the steps after O are used, only a bound
and not the exact expected number of steps is minimized. In spite of its roughness, significantly superior results of
the dynamic policy w.r.t. the static one are demonstrated. Three different contexts are defined: in the single instance
context one has to solve a specific instance as soon as possible, in the multiple instance context one draws cases from
a distribution of instances and has to solve either any instance as soon as possible, or as many instances as possible
for a given amount of time allocated (max instances problem) [191].

The assumption of independence among runs is relaxed in [310]. For example, independence is not valid if more
runs are on the same instance picked at the beginning from one of several probability distributions. As an example,
consider two distributions, one consisting of instances which are solved in 10 iterations, the other one of instances
which are solved in 100 iterations. If an instance is not solved in 10 iterations we know that 100 iterations are needed
and restarting would only waste computing cycles. Compare this with the situation of a single distribution with
probability 0.5 of converging at iteration 10, probability 0.5 of converging at iteration 1000, with independence among
the runs. Here restarting is clearly useful as shown in Section 38.5. The work in [310] considers the context where one
among several RTDs is picked at the beginning - without informing the user - and a new sample is extracted at each
run from the same distribution (e.g., consider two different distributions corresponding to satisfiable or unsatisfiable
instances of SAT). The task is to find the optimal restart policy (t1, t2, . . . ) but now, after each unsuccessful run,
the solver’s belief about the source distribution can be updated. The problem of finding the optimal restart policy is
formulated as a Markov decision process and solved with dynamic programming, considering both the case in which
only the termination time is observed, and the case when other predictors of the distribution can be used, for example
the evidence obtained during the run about the fact that a SAT instance is or is not satisfiable.

38.7 Racing: Exploration and exploitation of candidate algorithms
Portfolios and restarts are simple ways to combine more algorithms, or more runs of a given randomized strategy, to
obtain either a lower expected convergence time, or a lower risk (variance), or both.

We have already seen that more advanced reactive strategies can be obtained by using a reactive learning loop
while the portfolio or restart scheme runs. In this way, some of the portfolio parameters or the restart threshold can
take fresh information into account.

A related strategy using a “life-long learning” loop to optimize the allocation of time among a set of alternative
algorithms for solving a specific instance is termed racing. Running algorithms are like horses: after the competition
is started one gets more and more information about the relative performance and periodically updates the bets on the
winning horses, which are assigned a growing fraction of the available future computing cycles, see Fig. 38.5.

A racing strategy is characterized by two components: i) the estimate of the future potential given the current state
of the search, i.e., given the history of the previous iterations and the corresponding results, ii) the allocation of the
future CPU cycles to speedup the overall objective of minimizing a function.

Racing is related to a paradigmatic problem in machine leaning and intelligent heuristics known as the k-armed
bandit problem. One is faced with a slot machine with k arms which, when pulled, yield a payoff from a fixed but
unknown distribution. One wants to maximize the expected total payoff over a sequence of n trials. If the distribution
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B is the most promising horse
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Figure 38.5: A racing strategy. The different horses (algorithms) are evaluated periodically to reallocate the CPU time
shares.

is known one would immediately pull only the best performing arm. What makes the problems intriguing is that one
has to split the effort between exploration to learn the different distributions and exploitation to pull the best arm,
once the winner becomes clear. One is reminded of the critical exploration-versus-exploitation dilemma observed in
optimization heuristics, but there is an important difference: in optimization one is not interested in maximizing the
total payoff but in maximizing the best pull (the maximum value obtained by a pull in the sequence). The paper [128]
is dedicated to determining a sufficient number of pulls to select with a high probability an arm (an hypothesis) whose
average payoff is near-optimal. The max version of the bandit problem is considered in [93, 92]. An asymptotically
optimal algorithm is presented in [350], in the assumption of a generalized extreme value (GEV) payoff distribution
for each arm. Our explanation follows closely [349], which presents a simple distribution-free approach.

38.7.1 Racing to maximize cumulative reward by interval estimation

The first algorithm CHERNOFF-INTERVAL-ESTIMATION is for the classical bandit problem, which is then used as a
starting point for the THRESHOLD-ASCENT algorithm dedicated to the max k-armed bandit problem. The assumption
is that pulling an arm produces a random variableXi ∈ [0, 1]. Because some effort is spent in exploration to determine
(in an approximated manner) the best arm, of course the performance is less than that obtainable by knowing the best
arm and pulling it all the time. What one misses by not having the information about the winning horse at the beginning
is called regret. Precisely, regret is the difference between the payoff obtained by always pulling the best arm on a
specific instance minus the cumulative payoff actually received during the racing strategy.

CHERNOFF-INTERVAL-ESTIMATION pulls arms and keeps an estimate of: the number of times ni of pulls of
the i-th arm, the expected reward µ̄i = xi

ni
and an upper bound (with a specific minimum probability) on the reward

U(µ̄i, ni). At each iteration, the arm with the highest upper bound is pulled (Fig. 38.6 and Fig. 38.7). The upper
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Figure 38.6: Racing with interval estimation. At each iteration an estimate of the expected payoff of each arm as well
as its “error bar” are available.

1. function Chernoff Interval Estimation(n, δ)
2. forall i ∈ {1, 2, ..., k} Initialize xi ← 0, ni ← 0
3. repeat n times:
4. î← arg maxi U(µ̄i, ni)

5. pull arm î, receive payoff R
6. xi ← xi +R, ni ← ni + 1

Figure 38.7: The CHERNOFF-INTERVAL-ESTIMATION routine.
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bound is derived from Chernoff’s inequality and is as follows:

U(µ, n) =

{
µ+

α+
√

2nµα+α2

n if n > 0
∞ otherwise

(38.11)

where α = ln
(
2nk
δ

)
and δ regulates our confidence requirements, see later.

Chernoff’s inequality estimates how much the empirical average can be different from the real average. Let X =∑n
i=1Xi be the sum of independent identically distributed random variables with Xi ∈ [0, 1], and µ = E[Xi] be the

real expected value. The probability of an error of the estimate greater than βµ decreases in the following exponential
way:

P

[
X

n
< (1− β)µ

]
< e−

nµβ2

2 (38.12)

From this basic inequality, which does not depend on the particular distribution, one derives that, if arms are pulled
according to the algorithm in Fig. 38.7, with probability at least (1 − δ/2), for all arms and for all n repetitions the
upper bound is not wrong: U(µ̄i, ni) > µi. Therefore each suboptimal arm (with µi < µ∗, µ∗ being the best arm
expected reward) is not pulled many times and the expected regret is limited to at most:

(1− δ)2
√

3µ∗n(k − 1)α+ δµ∗n (38.13)

A similar algorithm based on Chernoff-Hoeffding’s inequality has been presented in a previous work [12]. In
their simple UCB1 deterministic policy, after pulling each arm once, one then pulls the arm with the highest bound

U(µ̄, ni) = µ̄+
√

2 lnn
ni

, see [12] for more details and experimental results.

38.7.2 Aiming at the maximum with threshold ascent

Our optimization context is characterized by a set of horses (different stochastic algorithms) aiming at discovering the
maximum value for an instance of an optimization problem, for example different greedy procedures characterized
by different ordering criteria, see [349] for an application to the Resource Constrained Project Scheduling Problem.
The “reward” is the final result obtained by a single run of an algorithm. Racing is a way to allocate more runs to the
algorithms which tend to get better results on the given instance.

We are therefore not interested in cumulative reward, but in the maximum reward obtained at any pull. A way
to estimate the potential of different algorithms is to put a threshold Thres, and to estimate the probability that each
algorithm produces a value above threshold. The estimate is the corresponding empirical frequency. Unfortunately, the
appropriate threshold is not known at the beginning, and one may end up with a trivial threshold - so that all algorithms
become indistinguishable - or with an impossible threshold, so that no algorithm will reach it. The heuristic solution
presented in [349] reactively learns the appropriate threshold while the racing scheme runs (Fig. 38.9 and Fig. 38.8).

The threshold starts from zero (remember that all values are bounded in [0, 1]), and it is progressively raised raised
until a selected number s of experimented payoffs above threshold is left. For simplicity, but it is easy to generalize,
one assumes that payoffs are integer multiples of a suitably small ∆, R ∈ {0,∆, 2∆, ..., 1 −∆, 1}. In the figure, ν̄i
is the frequency with which arm i received a value greater than Thres in the past, an estimate of the probability that
it will do so in the future. This quantity is easily calculated from ni,R, the number of payoffs equal to R received by
horse i. The upper bound U is the same as before.

The parameter s controls the tradeoff between intensification and diversification. If s = 1 the threshold becomes
so high that no algorithm reaches it: the bound is determined only by ni and the next algorithm to run is the one with
the lowest ni (Round Robin). For larger values of s one start differentiating between the individual performance. A
larger s means a more robust evaluation of the different strategies (not based on pure luck - so to speak), but a very
large value means that the threshold gets lower and lower so that even poor performers have a chance of being selected.
The specific setting of s is therefore not so obvious and it looks like more work is needed.
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1. function Threshold Ascent(s, n, δ)
2. Thres← 0
3. forall i ∈ {1, 2, ..., k}
4. forall R values
5. Initialize ni,R ← 0
6. repeat n times:
7. while (number of payoffs received above threshold ≥ s)
8. Thres← Thres+ ∆ (raise threshold)
9. î← arg maxi U(ν̄i, ni)

10. pull arm î, receive payoff R
11. ni,R ← ni,R + 1

Figure 38.8: The THRESHOLD-ASCENT routine.
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Figure 38.9: Threshold ascent: the threshold is progressively raised until a selected number of experimented payoffs
is left.
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38.7.3 Racing for off-line configuration of heuristics
The context here is that of selecting in an off-line manner the best configuration of parameters θ for a heuristic solving
repetitive problems [54]. Let’s assume that the set of possible θ values is finite. For example, a pizza delivery service
receives orders and, at regular intervals, has to determine the best route to serve the last customers. In this case an
off-line algorithm tuning (or “configuration”), even if expensive, is worth the effort because it is going to be used for
a long time in the future.

There are two sources of randomness in the evaluation: the stochastic occurrence of an instance, with a certain
probability distribution, and the intrinsic stochasticity in the randomized algorithm while solving a given instance.
Given a criterion C(θ) to be optimized with respect to θ, for example the average cost of the route over different
instances and different runs, the ideal solution of the configuration problem is:

θ∗ = arg min
θ
C(θ) (38.14)

where C(θ) is the following Lebesgue integral (I is the set of instances, C is the range for the cost of the best solution
found in a run, depending on the instance i and the configuration θ):

C(θ) = EI,C [c(θ, i)] =

∫
I

∫
C

c(θ, i)dPC(c|θ, i)dPI(i) (38.15)

The probability distributions are not known at the beginning. Now, to calculate the expected value for each of the finite
configurations, ideally one could use a brute force approach, considering a very large number of instances and runs,
tending to infinity. Unfortunately, this approach is tremendously costly, usually each run to calculate c(θ, i) implies a
non-trivial CPU cost, and one has to resort to smarter methods.

Firstly, the above integral in equation (38.15) is estimated in a Monte Carlo fashion by considering a set of in-
stances. Secondly, as soon as the first estimates become available, the manifestly poor configurations are discarded
so that the estimation effort is more concentrated onto the most promising candidates. This process is actually a
bread-and-butter issue for researchers in heuristics, with racing one aims at a statistically sound hands-off approach.
In particular, one needs a sound criterion to determine that a candidate configuration θj is significantly worse than the
current best configuration available, given the current state of the experimentation.

The situation is illustrated in Fig. 38.10, at each iteration a new test instance is generated and the surviving candi-
dates are run on the instance. The expected performance and error bars are updated. Afterwards, if some candidates
have error bars that show a clear inferior performance, they are eliminated from further consideration. Before deciding
for elimination, a candidate is checked to see whether its optimistic value (top error bar) can beat the pessimistic value
of the best performer.

The advantage is clear: costly evaluation cycles to get better estimates of performance are dedicated only to the
most promising candidates. Racing is terminated when a single candidate emerges as the winner or when a certain
maximum number of evaluations have been executed, or when a target error bar ε has been obtained, depending on
available CPU time and application requirements.

The variations of the off-line racing technique depend on the way in which error bars are derived from the
experimental data.

In [261], racing is used to select models in a supervised learning context, in particular for lazy or memory-based
learning. Two methods are proposed for calculating error bars. One is based on Hoeffding’s bound which makes the
only assumption of independence of the samples: the probability that the true error Etrue being more than ε away
from the estimate Eest is:

Prob(‖Etrue − Eest‖ > ε) < 2e
−nε2

B2 (38.16)

where B bound the largest possible error. In practice, this can be heuristically estimated as some multiple of the
estimated standard deviation. Given the confidence parameter δ for the right-hand side of equation (38.16) (we want
the probability of a large error to be less than δ), one easily solves for the error bar ε(n, δ):

ε(n, δ) =

√
B2 log(2/δ)

2n
(38.17)
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Figure 38.10: Racing for off-line optimal configuration of meta-heuristics. At each iteration an estimate of the expected
performance with error bars is available. Error bars are reduced when more tests are executed, their values depend also
on confidence parameter δ. In the figure, configurations 2 and 6 perform significantly worse than the best performer 4
and can be immediately eliminated from consideration: even if the real value of their performance is at the top of the
error bar they cannot beat number 4.
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Figure 38.11: Racing for off-line optimal configuration of meta-heuristics. The most promising candidate algorithm
configurations are identified asap so that these can be evaluated with a more precise estimate (more test instances).
Each block corresponds to results of the various configurations on the same instance.

If the accuracy ε and the confidence δ are fixed, one can solve for the required number of samples n. The value (1− δ)
is the confidence in the bound for a single model during a single iteration, additional calculations provide a confidence
(1−∆) of selecting the best candidate after the entire algorithm is terminated [261].

Tighter error bounds can be derived by making more assumptions about the statistical distribution. If the evaluation
errors are normally distributed one can use Bayesian statistics, the second method proposed in [261]. One candidate
model is eliminated if the probability that a second model has a better expected performance is above the usual
confidence threshold:

Prob(Ejtrue > Ej
′

true‖ej(1), ..., ej(n), ej′(1), ..., ej′(n)) > 1− δ (38.18)

Additional methods for shrinking the intervals, as well as suggestions for using a statistical method known as blocking
are explained in [261]. Model selection in continuous space is considered in [121].

In [54] the focus is explicitly on meta-heuristics configuration. Blocking through ranking is used in the F-RACE
algorithm, based on the Friedman test, in addition to an aggregate test over all candidates performed before considering
pairwise comparisons. Each block (Fig. 38.11) consists of the results obtained by the different candidate configurations
θj on an additional instance i. From the results one gets a ranking Rlj of θj within block l, from the smallest to the
largest, and Rj =

∑k
l=1Rlj the sum of the ranks over all instances. The Friedman test [98] considers the statistics T :

T =
(n− 1)

∑n
j=1

(
Rj − k(n+1)

2

)2
∑k
l=1

∑n
j=1Rlj

2 − kn(n+1)2

4

(38.19)

Under the null hypothesis that the candidates are equivalent so that all possible rankings are equally likely, T is χ2

distributed with (n − 1) degrees of freedom. If the observed t value exceeds the (1 − δ) quantile of the distribution,
the null hypothesis is rejected in favor of the hypothesis that at least one candidate tends to perform better than at
least another one. In this case one proceed with a pairwise comparison of candidates. Configurations θj and θh are
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θ

Figure 38.12: Bayesian elimination of inferior models, from the posterior distribution of costs of the different models
one can eliminate the models which are inferior in a statistically significant manner, for example model θ3 in the figure,
in favor of model θ2, while the situation is still undecided for model θ1.
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Figure 38.13: The distributed setting for the memory-based Reactive Affine Shaker.

considered different if:
‖Rj −Rh‖√

2k(1− T
k(n−1)

)
(∑k

l=1

∑n
j=1 Rij

2− kn(n+1)2

4

)
(k−1)(n−1)

> t1−δ/2 (38.20)

where t1−δ/2 is the (1− δ/2) quantile of the Student’s t distribution. In this case the worse configuration is eliminated
from further consideration.

38.8 Gossiping Optimization
Let’s consider the following scenario: a set of intelligent searchers is spread on a number of computers, possibly
throughout the world. While every searcher executes a local search heuristic, it takes advantage from the occasional
injection of new information coming from its partners on other machines.

For instance, let’s consider the field of continuous optimization, for which the RAS heuristic has been introduced
in Section 32.1. In memory-based RAS [72] a fast local minimizer, the Reactive Affine Shaker, interacts with a model
of the search space by feeding it with new data about the search and retrieving suggestions about the best starting point
for a new run.

While MRAS has been devised as a sequential heuristic [72], it can be extended to a distributed one as described
in Fig. 38.13: a gossiping component, described below, communicates model information to other nodes, and feeds
information coming from other nodes to the model.

Sharing information among nodes is a delicate issue. The algorithm aims at function optimization, so it should
spend most of its time doing actual optimization, not just broadcasting information to other nodes. Let’s now discuss
some communications issues arising in this context.

38.8.1 Epidemic communication for optimization
The use of parallel and distributed computing for solving complex optimization tasks has been investigated extensively
in the last decades [356, 30]. Most works assume the availability of either a dedicated parallel computing facility or of
a specialized clusters of networked machines that are coordinated in a centralized fashion (master-slave, coordinator-
cohort, etc.). While these approaches simplify management, they have limitations with respect to scalability and
robustness and require a dedicated investment in hardware.
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Recently, the peer-to-peer (P2P) paradigm for distributed computing has demonstrated that networked applica-
tions can scale far beyond the limits of traditional distributed systems without sacrificing efficiency and robustness.

A well known problem with P2P systems is their high level of dynamism: nodes join and leave the system con-
tinuously, in many cases unexpectedly and without following any “exit protocol.” This phenomenon, called churn,
together with the large number of computational nodes, are the two most prominent research challenges posed by P2P
systems: no node has an up-to-date knowledge of the entire system, and the maintenance of consistent distributed
information may as well be impossible.

On the other hand, a clear advantage of P2P architectures is the exploitation of unused computational resources,
such as personal desktop machines, volunteered by people who keep using their computers while participating to a
shared optimization effort. The systems based on a central coordinator repeat a simple loop: every involved machine
receives from a central server a subset of the search space (samples, parameter intervals), performs an exhaustive
coverage of the subset and reports the results, receiving another search subset.

More distributed schemes originated in the context of databases [114], where epidemic protocols have been able to
deal with the high levels of unpredictability associated with P2P systems. Apart from the original goal of information
dissemination (messages are “broadcasted” through random exchanges between nodes), epidemic protocols are now
used to solve several different problems, from membership and topology management to resource sharing.

We focus our attention onto stochastic local search schemes based on memory, where little or no information
about the function to be optimized is available at beginning of the search. In this context, the knowledge acquired
from function evaluations at different input points during the search can be mined to build models so that the future
steps of the search process can be optimized. An example is the online adaptive self-tuning of parameters while solving
a specific instance proposed by Reactive Search Optimization (RSO). Recent developments of interest consider the
integration of multiple techniques and the feedback obtained by preliminary phases of the execution for a more efficient
allocation of the future effort.

In the P2P scenario the crucial issues and tradeoffs to be considered when designing distributed optimization
strategies are:

Coordination and interaction One has a choice of possibilities ranging from independent search processes reporting
the end results, to fully coordinated “teams” of searchers exchanging new information after each step of the
search process.

Synchronization In a peer-to-peer environment the synchronization must be very loose to avoid wasting computa-
tional cycles while waiting for synchronization events.

Type and amount of exchanged information It ranges from the periodic exchange of current configurations and
related function values, see for example particle swarm [95] and genetic algorithms, to the exchange of more
extensive data about past evaluations, possibly condensed into local heuristic models of the function [72].

Frequency of gossiping, convergence issues We consider a simple basic interaction where a node picks a random
neighbor, exchanges some information and updates its internal state (memory). The spreading of the information
depends both on the gossiping frequency and on the interconnection topology. Tradeoffs between a more rapid
information exchange and a more rapid advancement of each individual search process are of interest.

Effects of delays on “distributed snapshots” Because of communication times, congestion and possible temporary
disconnections, the received information originated from a node may not reflect accurately the current state, so
that decisions are made in a suboptimal manner.

The distributed realization of a gossiping optimization scheme ranges between two extremes:

• Independent execution of stochastic processes — Some global optimization algorithms are stochastic by
nature; in particular, the first evaluation is not driven by prior information, so the earliest stages of the search
often require some random decision. Different runs of the same algorithm can evolve in a very different way, so
that the parallel independent execution of identical algorithms with different random seeds permits to explore
the tail of the outcome distribution towards lower values.
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• Complete synchronization and sharing of information — Some optimization algorithms can be modeled as
parallel processes with shared memory. Processes can be coordinated in such a way that every single step of
each process, i.e., decision on the next point to evaluate, is performed while considering information about all
processes.

Between the two extremal cases, a wide spectrum of algorithms can be designed to perform individual searches
with some form of loose coordination. An example is the “GOSH!” paradigm (Gossiping Optimization Search Heuris-
tics) proposed in [52]. In this proposal, in order to distribute the Memory-Based Affine Shaker (MRAS) algorithm,
every node maintains its own past history and uses it to model the function landscape and locate the best suitable
starting point. Occasionally, pairs of nodes communicate and share relevant information about their past history in
order to build a better common model.

38.9 Intelligent coordination of local search processes

Models of cultural evolution inspire a set of powerful optimization techniques known as Memetic Algorithms (MAs).
According to a seminal paper [275], memetic algorithms are population-based approaches that combine a fast heuristic
to improve a solution (and even reach a local minimum) with a recombination mechanism that creates new individuals.

The fast heuristic to improve a solution is some form of local search (LS) already explained in Chapter 24. As
explained, the motivation for the effectiveness of stochastic local search for many real-world optimization tasks lies in
the correlation between function values at nearby points. The probability to find points with lower values is larger for
neighbors of points which are already at low function values.

Although powerful, LS finds locally optimal points, which are not necessarily globally optimal. The paradigm is
that of starting from a basin of attraction around a locally optimal point (or region) and generating a trajectory in the
configuration space through a discrete dynamical system which is “flowing like a drop of water towards the bottom
of the basin.” Repeated LS, starting from different initial points, is a partial cure of the local minima problem but is
completely memory-less: no information about previous searches influences future efforts.

In many cases a given optimization instance is characterized by structure at different levels, as explained with the
big valley property of Fig. 24.7 in Chapter 24. If we reduce the initial search space to a set of attractors (the local
minima), again it may be the case that nearby attractors – having an attraction basin close to each other – tend to
have correlated values. This means that knowledge of previously found local optima can be used to direct the future
investigation efforts. Starting from initial points close to promising attractors favors the discovery of other good quality
local optima, provided of course that a sufficient diversification mechanism avoids falling back to previously visited
ones.

In sequential local search the knowledge accumulated about the fitness surface flows from past to future searches,
while in parallel processes with more local searchers active at the same time, knowledge is transferred by mutual
sharing of partial results. We argue that the relevant subdivision is not between sequential and parallel processes (one
can easily simulate a parallel process on a sequential machine) but between different ways of using the knowledge
accumulated by set of local search streams to influence the strategic allocation of computing resources to the
different LS streams, which will be activated, terminated, or modified depending on a shared knowledge base, either
accumulated in a central storage, or in a distributed form but with a periodic exchange of information.

MAs fit in this picture, a set of individuals described by genes and subjected to genetic evolution scouts the fitness
surface to search for successful initial points, while LS mechanisms (analogous to life-time learning) lead selected
individuals to express their full potential by reaching local optima through local search. The Genetic Algorithms
used in standard MAs follow the biological paradigms of selection/reproduction, cross-over and mutation. While GAs
are effective for many problems, there is actually no guarantee that specific biologically-motivated genetic operators
must be superior to human-made direct mechanisms to share the knowledge accumulated about the fitness surface
by a set of parallel search streams (a.k.a. population). Alternative coordination mechanisms have been proposed for
example in [363].
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38.10 C-LION: a political analogy

We like analogies derived from the human experience more that analogies based on animals or genetics. Politics is a
process by which groups of people make collective decisions. Groups can be governments, but also corporate, aca-
demic, and religious institutions. The issue is one of finding deliberate plans of action to guide decisions and achieve
rational outcome(s). In politics one aims at making important organizational decisions, including the identification of
spending priorities, and choosing among them on the basis of the impact they will have.

Local search is an effective building block for starting from an initial configuration of a problem instance and
progressively building better solutions by moving to neighboring configurations. In an organized institution, like a
corporation composed of individuals with intelligent problem-solving capabilities, each expert, when working on a
tentative solution in his competence area, will after some time come up with an improved solution. The objective
is to strategically allocate the work so that, depending on the accumulated performance of the different experts and
competencies, superior solutions are obtained.

Memetic Algorithms start from local search and consider a hybridized genetic mechanism to implicitly accumu-
late knowledge about past local search performance by the traditional biologically-motivated mechanisms of selec-
tion/reproduction, mutation and cross-over. The first observation is that an individual can exploit its initial genetic
content (its initial position) in a more directed and determined way. This is effected by considering the initial string as
a starting point and by initiating a run of local search from this initial point, for example scouting for a local optimum.
The term memetic algorithms [241, 275] has been introduced for models which combine the evolutionary adaptation
of a population with individual learning within the lifetime of its members. The term derives from Dawkins’ concept
of a meme which is a unit of cultural evolution that can exhibit local refinement [112]. Actually, there are two obvious
ways in which individual learning can be integrated: a first way consists of replacing the initial genotype with the
better solution identified by local search (Lamarckian evolution), a second way can consist of modifying the fitness
function by taking into account not the initial value but the final one obtained through local search. In other words,
the fitness does not evaluate the initial state but the value of the “learning potential” of an individual, measured by the
result obtained after local search. This evaluation changes the fitness landscape, while the evolution is still Darwinian
in nature.

Figure 38.14: Different ways of allocating local searchers: by Memetic Algorithms (left) and by a political analogy
(right). Crosses represent starting points, circles local optima reached after running local search. In the second case
each individual is responsible for an area of configuration space. The political analogy is with territorial subdivisions
given by electoral districts, or areas assigned to different marketing managers in a business example. Some local
search streams are shown.



452 CHAPTER 38. COOPERATIVE LION

When the road of cultural paradigms is followed, it is natural to consider models derived from organizations
of intelligent individuals equipped with individual learning and social interaction capabilities also in the strategic
allocation of resources to the different search streams. In particular, the work in [41] presents a hybrid algorithm for
the global optimization of functions (called continuous reactive tabu search), in which a fast combinatorial component
(the Reactive Search Optimization based on prohibitions) identifies promising districts (boxes) in a tree-like partition
of the initial search space, and a stochastic local search minimizer (the Reactive Affine Shaker — RAS — algorithm)
finds the local minimum in a promising attraction basin. The social analogy can be that of organizing a marketing
effort in a large company, see also Fig. 38.14: each individual (in the analogy a marketing manager) is responsible for
a geographical area, the size of the geographical area is adapted to the interest of the different regions and the budget
allocated to the different individuals is related to results obtained during their previous campaigns. A second political
analogy is with a territorial subdivision given by electoral districts, again adapted to the interest of the different areas
(population density) and again fighting for resources according to the area potentials.

But now it is time to stop with analogies and to consider the algorithms. The development of the C-LION frame-
work is guided by the following design principles.

• General-purpose optimization: no requirements of differentiability or continuity are placed on the function f
to be optimized.

• Global optimization: while the local search component identifies a local optimum in a given attraction basin,
the combinatorial component favors jumps between different basins, with a bias toward regions that plausibly
contain good local optima.

• Multi-scale search: the use of grids at different scales in a tree structure is used to spare CPU time in slowly-
varying regions of the search space and to intensify the search in critical regions.

• Simplicity, reaction and adaptation: the algorithmic structure of C-LION is simple, the few parameters of the
method are adapted in an automated way during the search, by using the information derived from memory. The
dilemma between intensification and diversification is solved by using intensification until there is evidence that
diversification is needed (when too many districts are repeated excessively often along the search trajectory).
The tree-like discretization of the search space in districts is activated by evidence that the current district
contains more than one attraction basin.

• Tunable precision: the global optimum can be located with high precision both because of the local adaptation
of the grid size and because of the decreasing sampling steps of the stochastic RAS when it converges.

C-LION is characterized by an efficient use of memory during the search, as advocated by the Reactive Search
Optimization (RSO). In addition, simple adaptive (feedback) mechanisms are used to tune the space discretization, by
growing a tree of search districts, and to adapt the prohibition period of RSO acting on prohibitions. This adaptation
limits the amount of user intervention to the definition of an initial search region, by setting upper and lower bounds
on each variable, no parameters need to be tuned.

The C-LION framework based on Local Search fuses Reactive Search Optimization with a problem-specific
Local Search component. An instance of an optimization problem is a pair (X , f), where X is a set of feasible points
and f is the cost function to be minimized: f : X → R. In the following we consider continuous optimization tasks
where X is a compact subset of RN , defined by bounds on the N independent variables xi, where BLi ≤ xi ≤ BU i
(BL and BU are the lower and upper bounds, respectively).

In many popular algorithms for continuous optimization one identifies a “local minimizer” that locates a local
minimum by descending from a starting point, and a “global” component that is used to diversify the search and to
reach the global optimum. We define as attraction basin of a local minimum Xl the set of points that will lead to Xl

when used as starting configurations for the local minimizer.
In some cases, as we noted in our starting assumptions, an effective problem-specific local search component is

available for the problem at hand, and one is therefore motivated to consider a hybrid strategy, whose local minimizer
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has the purpose of finding the local minimum with adequate precision, and whose combinatorial component has the
duty of discovering promising attraction basins for the local minimizer to be activated. Because the local minimizer is
costly, it is activated only when the plausibility that a region contains a good local optimum is high. On the contrary,
a fast evaluation of the search districts is executed by the combinatorial component, and the size of the candidate
districts is adapted so that it is related to that of a single attraction basin. A district is split when there is evidence that
at least two different local minima are located in the same district.

38.11 A C-LION example: RSO cooperating with RAS
We now briefly summarize a concrete example of the C-LION framework based on Local Search, called continuous
reactive tabu search (C-RTS) in the original publication [41].

As local minimizer, the Reactive Affine Shaker described in Section 32.1 is used in this case, although the C-LION
method can of course be developed with other local searchers with demonstrated efficiency on the problem at hand. In
the hybrid scheme, RSO identifies promising regions for the local minimizer to be activated.

The initial search region is specified by bounds on each independent variable xi, where BLi ≤ xi ≤ BU i, for
i = 1, ..., N . The basic structure through which the initial search region is partitioned consists of a tree of districts
(boxes with axes parallel to the coordinate axes). The tree is born with 2N equal-size leaves, obtained by dividing in
half the initial range on each variable. Each district is then subdivided into 2N equally-sized children, as soon as two
different local minima are found in it. Because the subdivision process is triggered by the local properties of f , after
some iterations of C-RTS the tree will be of varying depth in the different regions, with districts of smaller sizes being
present in regions that require an intensification of the search. Only the leaves of the tree are admissible search points
for the combinatorial component of C-RTS. The leaves partition the initial region: the intersection of two leaves is
empty, the union of all leaves coincides with the initial search space. A typical configuration for a two-dimensional
task is shown in Fig. 38.15, where each leaf-district is identified by thick borders and a bold binary string.

Each existing district for a problem of dimension N is identified by a unique binary string BS with n × N bits:
BS = [g11, ..., g1n, ..., gN1, ..., gNn]. The value n is the depth of the district in the tree: n = 0 for the root district,
n = 1 for the leaves of the initial tree (and therefore the initial string has N bits), n increases by one when a given
district is subdivided. The length of the district edge along the i-th coordinate is therefore equal to (BU i − BLi)/2n.
The position of the district origin BOi along the i-th coordinate is

BOi = BLi + (BU i −BLi)
n∑
j=1

gij
2j
.

The evaluated neighborhood of a given district consists only of existing leaf-districts: no new districts are created
during the neighborhood evaluation. Now, after applying the elementary moves to the identifying binary string BS
of a given district B, one obtains N × n districts of the same size distributed over the search space as illustrated in
Fig. 38.15, for the case of BS = (1010, 1011). Because the tree can have different depth in different regions, it can
happen that some of the obtained strings do not correspond to leaf-districts, others can cover more than a single leaf-
district. In the first case one evaluates the smallest enclosing leaf-district, in the second case one evaluates a randomly-
selected enclosed leaf-district. The random selection is executed by generating a point with uniform probability in
the original district, and by selecting the leaf that contains the point. This assures that the probability for a leaf to be
selected is proportional to its volume.

Evaluating opportunities for the different districts

While the RSO algorithm for combinatorial optimization generates a search trajectory consisting of points X(t), C-
RTS generates a trajectory consisting of leaf-districts B(t). There are two important changes to be underlined: firstly,
the function f(X) must be substituted with a routine measuring the potential that the current district contains good
local optima, secondly, the tree is dynamic and the number of existing districts grows during the search.
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Figure 38.15: C-RTS: tree of search districts. Thick borders and bold strings identify existing leaf-districts, hatched
districts show the neighborhood of district (1010,1011).

The combinatorial component must identify promising districts quickly. In the absence of detailed models about
the function f to be minimized, a simple evaluation of a district B can be obtained by generating a point X with
a uniform probability distribution inside its region and by evaluating the function f(X) at the obtained point. Let
us use the same function symbol, the difference being evident from its argument: f(B) ≡ f(rand X ∈ B). The
potential drawback of this simple evaluation is that the search can be strongly biased in favor of a district in the case
of a “lucky” evaluation (e.g., f(X) close to the minimum in the given district), or away from a district in the opposite
case. To avoid this drawback, when a district is encountered again during the search, a new point X is generated and
evaluated and some collective information is returned. The value f(B) returned is then the average of the evaluated
Xi: f(B) ≡ (1/NB)

∑NB
i=1 f(Xi), where NB is the number of points.

Let us consider the example of Fig. 38.15. The current district (1010,1011) has the neighbors shown with a hatched
pattern. The neighbor (0010,1011) in the upper left part is not an existing leaf-district, it is therefore transformed
into the enclosing existing leaf-district (0,1). Vice versa the neighbor (1010,0011) in the lower right part contains
four leaves, one of them (10100,00111) is the output of a random selection. Fig. 38.16 specifies the complete final
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Figure 38.16: C-RTS: Evaluation of the neighborhood of district (1010,1011).

neighborhood obtained for the given example.

Decision about activating Local Search in a given region

According to the RSO dynamics the neighborhood districts obtained starting from a current district are evaluated only
if the corresponding basic move from the current point is not prohibited. Only if the evaluation f(B(t)) of the current
district is less than all evaluations executed in the neighborhood, a decision is taken about the possible triggering of
the Local Search component (the Reactive Affine Shaker). In other words, a necessary condition for activating high-
precision and expensive searches with Local Search is that there is a high plausibility — measured by f(B) — that the
current region can produce local minima that are better with respect to the given neighborhood of candidate districts.
Given the greedy nature of the combinatorial component, the current district B(t) on the search trajectory moves
toward non-tabu locally optimal districts, therefore it will eventually become locally optimal and satisfy the conditions
for triggering RAS. Let us note that, if a given district B loses the above contest (i.e., it is not locally optimal for
RSO), it maintains the possibility to win when it is encountered again during the search, because the evaluation of a
different random point X can produce a better f(B) value. Thanks to the evaluation method C-RTS is fast in optimal
conditions, when the f surface is smooth and f(B) is a reliable indicator of the local minimum that can be obtained
in region B, but it is robust in harder cases, when the f(B) values have a high standard deviation or when they are
unreliable indicators of good local minima obtainable with the Reactive Affine Shaker.

The local optimality of the current district B is necessary for activating RAS but it is not sufficient, unless B is
locally optimal for the first time, a case in which RAS is always triggered. Otherwise, if r > 1 is the number of
times that district B has been locally optimal during the search, an additional RAS run must be justified by a sufficient
probability to find a new local minimum in B. Bayesian rules to estimate the probability that all local optima have
been visited can be applied in the context of a single district, where a multi-start technique is realized with repeated
activations of RAS from uniformly distributed starting points. Because of our splitting criterion, at most one local
optimum will be associated to a given district (a district is split as soon as two different local optima are found, see
Section 38.11). In addition, some parts of the district can be such that RAS will exit the borders if the initial point
belongs to these portions. One can therefore partition the district region into W components, the attraction basins of
the local minima contained in the district and a possible basin that leads RAS outside, so that the probabilities of the
basins sum up to one (

∑W
w=1 Pw = 1).

According to [58], if r > W + 1 restarts have been executed and W different cells have been identified, the total
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relative volume of the “observed region” (i.e., the posterior expected value of the relative volume Ω) can be estimated
by

E(Ω|r,W ) =
(r −W − 1) (r +W )

r (r − 1)
; r > W + 1. (38.21)

The Reactive Affine Shaker is always triggered if r ≤ W + 1, because the above estimate is not valid in this
case, otherwise the RAS is executed again with probability equal to 1 − E(Ω|r,W ). In this way, additional runs of
RAS tend to be spared if the above estimate predicts a small probability to find a new local optimum, but a new run is
never completely prohibited for the sake of robustness: it can happen that the Bayesian estimate of equation (38.21) is
unreliable, or that the unseen portion (1− E(Ω|r,W )) contains a very good minimum with a small attraction basin.

The initial conditions for RAS (described in Fig. 32.1) are that the initial search point is extracted from the uniform
distribution inside B, the initial search frame is ~bi = ~ei × (1/4) × (BU i − BLi) where ~ei are the canonical basis
vectors of RN . The Reactive Affine Shaker generates a trajectory that must be contained in the district B enlarged
by a border region of width (1/2) × (BU i − BLi), and it must converge to a point contained in B. If RAS exits the
enlarged district or the root-district, it is terminated, the function evaluations executed by RAS are discarded. If it
converges to a point outside the original district but inside the enlarged district, the point location is saved. In both
cases the C-RTS combinatorial component continues in the normal way: the next district B(t+1) is the best one in the
admissible neighborhood of B(t). In any case the “best so far” value is always updated by considering all admissible
points evaluated (those that are inside of the root-district).

A possible exception to the normal C-RTS evolution can happen only in the event that RAS converges inside B(t)

to a local minimum Xl. If Xl is the first local minimum found, it is saved in a memory structure associated to the
district. If a local minimum Yl was already present, andXl corresponds to the same point, it is discarded, otherwise the
current district is split until the “siblings” in the tree divide the two points. After the splitting is completed, the current
district B(t) does not correspond to an existing leaf anymore: to restore legality a point is selected at random with
uniform distribution inB(t) and the legalB(t) becomes the leaf-district that contains the random point. Therefore each
leaf-district in the partition of the initial district has a probability of being selected that is proportional to its volume.
The splitting procedure is explained in the following section.

Adapting the district area to the local fitness surface

As soon as two different local minima Xl and Yl are identified in a given district B, the current district is subdivided
into 2N equal-sized boxes. If Xl and Yl belong to two different leaf-districts of the new partition, the splitting is
terminated, otherwise the splitting is applied to the district containing Xl and Yl, until their separation is obtained.

In all cases the old district ceases to exist and it is substituted with the collection obtained through the splitting. The
local minimaXl and Yl are associated with their new boxes. Numerically, the criterion used in the tests for considering
different two local minima Xl and Yl is that ‖Xl − Yl‖ < ε, where ε is a user-defined precision requirement.

All local minima identified are saved and reported when C-RTS terminates.
An example of the tree structure produced during a run of C-RTS is shown in Fig. 38.17, for the case of a two-

dimensional function (a “Strongin” function described in [41]). The local optima are clearly visible as “mountain
tops.” One notices that the points evaluated (the points used to calculate f(B)) are distributed quasi-uniformly over
the search space: this is a result of the volume-proportional selection, and it guarantees that all regions of the search
space are treated in a fair manner. The RAS trajectories either converge to a local minimum (bullet) or are terminated
when they exit from the enlarged district, as explained in Section 38.11. Because of our splitting criterion, each district
contains at most one local minimum. Although it is not visible from the figure, most points (about 85% in the example)
are evaluated during the local search phases, that are the most expensive parts of the C-RTS algorithm.

38.12 Other C-LION algorithms
C-LION is a paradigm to increase automation, by using different optimization building blocks (or different instances
of randomized algorithms), and by coordinating and managing them in an intelligent adaptive manner.
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Figure 38.17: A C-RTS tree structure adapted to a fitness surface and calculated points. Evaluated points (crosses),
local minima (bullets), LS trajectories (jagged lines). Figure derived from [41].

The cooperation structure exemplified by C-RTS can be used with different local search components, or different
details about splitting the original space and firing local searches.

The work [70] proposes a variation of C-RTS (called CoRSO)in which the Inertial Shaker method generates candi-
date points in an adaptive search box and a moving average of the steps filters out evaluation noise and high-frequency
oscillations. Finally, a portfolio of independent search streams (P-CoRSO) is proposed to increase the robustness of
the algorithm.

Other notable examples are strategies like the ‘Divide-the-Best’ algorithms based on Lipschitz assumptions and
on efficient diagonal partitions and the P-algorithm with simplicial partitioning [390].

If f(x) satisfies the Lipschitz condition over the search hyper-interval with an unknown Lipschitz constant K,
a deterministic ‘Divide-the-Best’ algorithm based on efficient diagonal partitions of the search domain and smooth
auxiliary functions is proposed in [329]. The method adaptively estimates the unknown Lipschitz constant K and
the objective function and its gradient are evaluated only at two vertices corresponding to the main diagonal of the
generated hyperintervals.

The second case assumes that the functions satisfies some statistical model, so that theoretically justified methods
can be developed, in the framework of rational decision making under uncertainty, to generate new sample points
based on information derived from previous samples, and to study convergence properties [390]. The P -algorithm
[393] generates the next point to be evaluated as the one maximizing the probability to improve the current record,
given the previously observed samples. In multiple dimensions, if yon is the current record value and (xi, yi) are the
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previous evaluated points and corresponding values, the next (n+ 1)-th optimization step is defined as:

xn+1 = argmax
x

Pr
{
ξ(x) 6 (yon − ε) | ξ(x1) = y1, ..., ξ(xn) = yn

}
.

The P -algorithm with simplicial partitioning is proposed in [394] to obtain a practical algorithm. The observation
points coincide with the vertices of the simplices and different strategies for defining an initial covering and subdividing
the interesting simplices are proposed and considered. The P ∗-algorithm, combining the P -algorithm with local
search, is related to the algorithm presented in this paper, which is also based on a combination of global models and
efficient local searches when the current area is deemed sufficiently interesting.

Gist
Many optimization problems of real-world interest are complex and need enormous computing times for
their solution. Luckily, there are often many different algorithms to try, different by their design or by
the value of their meta-parameters. In addition, the use of many computers working in parallel (maybe
living in the cloud, rented when they are needed) comes to the rescue to reduce the clock time to produce
acceptable solutions.

In some cases, one can consider independent search streams, periodically reporting the best solu-
tions found so far to some central coordinator. You should never ever underestimate the power of simple
solutions!

In other cases, more intelligent schemes of coordination among the various running algorithms lead to
higher automation, and better efficiency and effectiveness. The C-LION paradigm proposes to coordinate
and manage a team of interacting optimization algorithms through adaptation based on intelligent reflection
on their current and past results.

Paradigms derived from human organizations, characterized by “learning on the job” capabilities,
can lead to superior results with respect to paradigms derived from simpler living organisms or genetic
principles.

Sane human people solve complex problems better than viruses, normally with less deadly conse-
quences. Flies do not learn a lot during their lives, and easily end up burnt by incandescent light bulbs.
Kids need to touch a hot bulb once to become aware and avoid doing that again in the future.
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Genetics, evolution and nature-inspired
analogies

What a book a devil’s chaplain might write on the clumsy, wasteful,
blundering, low, and horribly cruel work of nature!

(Charles Darwin)

Population-based algorithms using multiple search streams became popular by using analogies derived from
genetics, nature, and evolution. This emphasis on the imitation of very simple living organism is not always justified
and more effective schemes can be developed by considering more explicit learning and self-tuning schemes. But if
you are selling optimization, be aware of the surprising effect of nature-inspired analogies. In this area, biological
analogies derived from the behavior of different species abound [341]. Elegant flocks of birds search for food or
migrate in effective manners, herds of sheep get better guidance and protection than isolated members. Groups of
hunting animals can often prevail over much bigger and powerful but isolated ones.

Analogies from nature can be inspiring but also misleading when they are translated directly into procedures for
problem solving and optimization. Let’s consider a flock of birds or an ant colony searching for food. If an individual
finds food, it makes perfect sense for the survival of the species to inform other members so that they can also get their
share of nutrients. The analogy between food and good solutions of an optimization problems is not only far-fetched
but quite simply wrong. If one searcher already found a good suboptimal solution, attracting other searchers in the
same attraction basin around the locally optimal point only means wasting precious computational resources which
could be spent by exploring different regions of the search space. One encounters here the basic tradeoff between
intensification and diversification.

The adoption of a set of interacting search streams has a long history, not only when considering natural evolution,
but also heuristics and learning machines. It is not surprising to find very similar ideas under different names, includ-
ing ensembles, pools, agents, committees, multiple threads, mixture of experts, genetic algorithms, particle swarms,

459
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evolutionary strategies. The terms are not synonymous because each parish church has specific strong beliefs and true
believers.

39.1 Genetic algorithms and evolution strategies

A rich source of inspiration for adopting a set of evolving candidate solutions is derived from the theory natural
evolution of the species, dating back to the original book by Charles Darwin [108] “On the Origin of Species by
Means of Natural Selection, or the preservation of favored races in the struggle for life.” It introduced the theory that
populations evolve over the course of generations through a process of natural selection: individuals more suited
to the environment are more likely to survive and more likely to reproduce, leaving their inheritable traits to future
generations. After the more recent discovery of the genes, the connection with optimization is as follows: each
individual is a candidate solution described by its genetic content (genotype). The genotype is randomly changed by
mutations, the suitability for the environment is described by a fitness function, which is related to the function to be
optimized. Fitter individuals in the current population produce a larger offspring (new candidate solutions), whose
genetic material is a recombination of the genetic material of their parents.

Seminal works include [17, 303, 131, 319, 186]. A complete presentation of different directions in this huge area
is out of the scope of this section, let’s concentrate on some basic ideas, and on the relationships between GA and
intelligent search strategies.

Let’s consider an optimization problem where the configuration is described by a binary string, mutation consists
of randomly changing bit values with a fixed probability Πmute and recombination consists of the so called uniform
cross-over: starting from two binary strings X and Y a third string Z is derived where each individual bit is copied
from X with probability 1/2, from Y otherwise

The pseudo-code for a slightly more general version of a genetic algorithm, with an additional parameter for cross-
over probability Πcross is shown in Fig. 39.1, and illustrated in Fig. 39.2. After the generation of an initial population
P , the algorithm iterates through a sequence of basic operations: first the fitness of each individual is computed and,
if goals are met, the algorithm stops. Some individuals are chosen by a random selection process that favors elements
with a high fitness function; a crossover is applied to randomly selected pairs in order to combine their features, then
some individuals undergo a random mutation. The algorithm is then repeated on the new population.

Let the population of candidate solutions be a set of configurations scattered on the fitness surface. Such config-
urations explore their neighborhoods through the mutation mechanism: usually the mutation probability is very low,
so that in the above example a small number of bits is changed. After this very primitive form of local (perturbative)
search move the population is substituted by a new one, where the better points have a larger probability to survive
and a larger probability to generate offspring points. With a uniform cross-over the offspring is generated through a
kind of “linear interpolation” between the two parents. Because a real interpolation is excluded for binary values, this
combination is obtained by the random mechanism described: if two bits at corresponding positions in X and Y have
the same value, this value is maintained in Z - as it is in a linear interpolation of real-valued vectors - otherwise a way
to define a point in between is to pick randomly from either X or Y if they are different.

There are at least three critical issues when adopting biological mechanisms for solving optimization problems:
first one should demonstrate that they are effective - not so easy because defining the function that biological organisms
are optimizing is far from trivial. One risks a circular argument: survival of the fittest means that the fittest are the
ones who survived. Second, one should demonstrate that they are efficient. Just consider how many generations were
needed to adapt our species to the environment. Third, even assuming that GA are effective, one should ask whether
natural evolution proceeds in a Darwinian way because it is intrinsically superior or because of hard biological
constraints, which may be masochistic to keep in a human-designed algorithm.

For example, it is now believed that Lamarck was wrong in assuming that the experience of an individual could be
passed to his descendants: genes do not account for modifications caused by lifelong learning. Airplanes do not
flap their wings and, in a similar manner, when a technological problem has to be solved, one is free to depart from
the biological analogy and to design the most effective method with complete freedom.
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Initialization — Compute a random population with M members P = {s(j) ∈ S`, j = 0, . . . ,M − 1}, where each
string is built by randomly choosing ` symbols of S.

Repeat :

Evaluation — Evaluate the fitness f (i) = f(s(i)); compute the rescaled fitness f̄ (j):

fmin = min
j

f (j); fmax = max
j

f (j); f̄ (j) =
f (j) − fmin

fmax − fmin

Test — If the population P contains one or more individuals achieving the optimization goal within the
requested tolerance, stop the execution.

Stochastic selection — Build a new population Q = {q(j), j = 0, . . . , N − 1} such that the probability
that an individual q ∈ P is member of Q is given by f(q)/

∑
p∈P f(p):

Reproduction — Choose N/2 distinct pairs (q(i), q(j)) using the N individuals of Q. For each pair
build, with probability Πcross, a new pair of offsprings mixing the parents’ genes, otherwise copy
the original genes:

for i← 0, . . . , (M − 1)/2
if Rand(1) < Πcross

for j← 0, . . . , l − 1
if Rand(1) < .5

q̄
(2i)
j ← q

(2i)
j ; q̄(2i+1)

j ← q
(2i+1)
j

else
q̄
(2i)
j ← q

(2i+1)
j ; q̄(2i+1)

j ← q
(2i)
j

else
q̄(2i)← q(2i); q̄(2i+1)← q(2i+1)

Mutation — In each new individual q̄(j) change, with probability Πmutate, each gene q̄(j)i with a randomly
chosen gene of S. Let us denote the new population Q′.

Replacement — Replace the population P with the newly computed one Q′.

Figure 39.1: Pseudocode for a popular version of GA.
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Figure 39.2: Representation of a genetic algorithm framework. Counter-clockwise from top left: starting from an
initial population, stochastic selection is applied, then genes are mixed and random mutations occur to form a new
population.
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A second departure from the biological world is as follows: in biology one is interested in the convergence of the
entire population/species to a high fitness value, in optimization one aims at having at least one high-fitness solutions
during the search, not necessarily at the end, and one could not care less whether most individuals are far from the
best when the search is terminated.

When using the stochastic local search language adopted in this book, the role of the mutation/selection and
recombination operators cannot be explained in a clear-cut manner. When the mutation rate is small, the effect of
the combined mutation and selection of the fittest can be interpreted as searching in the neighborhood of a current
point, and accepting (selecting) the new point in a manner proportional to the novel fitness value. The behavior is of
intensification/exploitation provided that the mutation rate is small, otherwise one ends up with a random restart, but
not too small, otherwise one is stuck with the starting solution. The explanation of cross-over is more dubious. Let’s
consider uniform cross-over: if the two parents are very different, the distance between parents and offspring is large
so that cross-over has the effect of moving the points rapidly on the fitness surface, while keeping the most stable bits
constant and concentrating the exploration on the most undecided bits, the ones varying the most between members of
the population. But if the similarity between parents is large, the cross-over will have little effect on the offspring, the
final danger being that of a premature convergence of the population to a suboptimal point. The complexity inherent in
explaining Darwinian metaphors for optimization makes one think whether more direct terms and definitions should
be used [107] (“metaphors are not always rhetorically innocent”).

At this point, you may wonder whether the term “team member” is justified in a basic GA algorithm. After all, each
member is a very simple individual indeed, it comes to life through some randomized recombination of its parents and
does a little exploration of its neighborhood. If it is lucky by encountering a better fitness value in the neighborhood,
it has some probability to leave some of its genetic material to its offspring, otherwise it is terminated. No memory
is kept of the individuals, only a collective form of history is kept through the population. Yes, “team member” is
exaggerated. But now let’s come back to the issue “airplanes do not flap their wings” to remember that as computer
scientists and problem solvers our design freedom is limited only by our imagination.

We may imagine at least two different forms of hybridized genetic algorithms. The first observation is that, in
order to deserve its name, a team member can execute a more directed and determined exploitation of its initial genetic
content (its initial position). This is effected by considering the initial string as a starting point and by initiating a
run of local search from this initial point, for example scouting for a local optimum. Lamarck can have his revenge
here, now nobody prohibits substituting the initial individual with its ameliorated version after the local search. The
term memetic algorithms [275, 241] has been introduced for models which combine the evolutionary adaptation of a
population with individual learning within the lifetime of its members. The term derives from Dawkins’ concept of a
meme which is a unit of cultural evolution that can exhibit local refinement [112].

Actually, there are two obvious ways in which individual learning can be integrated: a first way consists of replac-
ing the initial genotype with the better solution identified by local search (Lamarckian evolution), a second way can
be of modifying the fitness by taking into account not the initial value but the final one obtained through local search.
In other words, the fitness does not evaluate the initial state but the value of the “learning potential” of an individual,
measured by the result obtained after the local search. This has the effect of changing the fitness landscape, while
the resulting form of evolution is still Darwinian in nature. This and related forms of combinations of learning and
evolution are known as the Baldwin effect [179, 381].

An interesting observation in [390] is that having two parents to generate a descendant may actually lead to less
efficient algorithms with respect to simple versions of population-based algorithms in which each descendant has only
one parent. Airplaned do not flap their wings to fly, in a similar manner efficient population-based algorithms do
not need to imitate nature for the sake of imitating it, therefore leaving more freedom to the algorithm designer to
experiment with effective novel ideas.
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(a) Intelligent searchers

GOLD!

(b) Dumb searchers

GOLD!

Figure 39.3: Opportunities and pitfalls of teams of searchers: an intelligent searcher may decide to move between two
successful ones (top panes), while dumb searchers (bottom) swarm to the same place, so that diversification can be
lost. If you were a 49er, which model would you choose (and, besides, would you scream your findings)?
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Gist
There is little doubt that considering more search processes during optimization with some form of
coordination is a useful higher level, going beyond a single search process.

There are more doubts on the intrinsic usefulness of specific analogies from nature, genetics and
evolution to develop effective state-of-the-art algorithms.

For sure, these analogies have a positive effect on the marketing of optimization and may help in con-
verting new researchers to the growing area of optimization heuristics.

On the other hand, if one cares about scientific progress, one should be completely free to abandon
analogies - based on nature or culture - in order to design the most effective algorithms.

In particular, one should remember that viruses do not learn a lot while they are living, and that by using
memory and machine learning strategies, one can greatly improve most primitive techniques, even if the
final method does not use sex for mating individuals and is therefore less sexy.

Everybody would like that math studied during lifetime could be passed to his children via genes, but
biological constraints so far failed to implement a Lamarckian mechanism: the passage occurs by more
direct training mechanisms! Feel free to improve this sad state of affairs in your algorithms.
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Chapter 40

Multi-Objective Optimization

Non si può avere la botte piena e la moglie ubriaca.
One cannot have a full wine-barrel and a drunk wife.

(Italian proverb)

Life is full of compromises, popular wisdom says that one cannot “ride two horses with one ass.” Most of the
real-world problem cannot be cast into the simple and mathematically crystal-clear form of minimizing a function
f(x).

There are two crucial difficulties. First, most problems have more than one objective to reach, to be maximized.
This is the case in multi-objective optimization problems (MOOP), for which many conflicting objectives have
to be traded off in selecting the preferred choice. Most real-world problems are of this kind. When you buy a car,
you have different objectives in mind: speed, cost, size, etc. and you have your own way of weighing the different
objectives. If you bought a Ferrari, your preferences are probably different from someone who bought a city car. If you
are searching for a partner, different combinations of beauty and intelligence are available for the possible candidates

467
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Figure 40.1: Problem solving and optimization frequently involves an iterative process with crucial learning steps.

(agreed, this is a coarse simplification!). Unfortunately, it is rare that a candidate simultaneously maximizes both
parameters, compromises and tradeoffs must be accepted.

Even if an optimal abstract combination of two or more objectives into an overall utility function to be maximized
exists, obtaining a function in a closed mathematical form can be very difficult, if not impossible. Try asking
your best friend (better not to ask directly your partner): “Can you give me the utility function describing your
best combination of beauty and intelligence?”, or, if you limit your model to linear combinations, “Can you tell
me your weights to combine beauty and intelligence?” Problem solving and optimization techniques often deliver
a large number of potential solutions. Design process innovation, virtual prototyping, business process engineering
are some examples. The decision maker is left with the crucial task of identifying a preferred solution, taking into
account explicitly defined objectives (one or more mathematical functions to maximize), hard and soft constraints, and
preferences which are not explicit but often crucial for an intelligent decision.

Problem-solving is often an iterative process with learning, as illustrated in Fig. 40.1. A learning path occurs
between two entities: the decision maker and the supporting software system. The decision maker analyzes some
representative solutions, learning about concrete possibilities and updating his objectives. The software memorizes
the user preferences and shifts the focus of attention to regions of the design/solution space which are deemed more
relevant by the final user. The iterative process is continued until a satisfactory solution is found or patience is ex-
hausted.

MORSO (multi-objective Reactive Search Optimization) denotes solution methods intended for multi-objective
optimization characterized by incremental and learning paths. Learning takes places in the user mind and in the
solution algorithms. A closely related term is that of interactive multi-objective optimization, but we intend to stress
systematic, automated and online learning techniques in a more direct manner.

In the following sections, the concept of Pareto-optimality is formally defined in Sec. 40.1 and the main solution
techniques are presented in Sec. 40.2. Finally, a way to keep the final decision maker in the loop as a provider of
learning signals is illustrated in Sec. 40.4 about brain-computer optimization.
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Figure 40.2: Individual objectives in Pareto-optimization are building blocks, but the preferred combination is not
given (image courtesy of LEGO).

40.1 Multi-objective optimization and Pareto optimality
In the classic case of multi-objective optimization problems (MOOPs), the user specifies a set of m desirable objec-
tives, but he does not spell out the tradeoffs, the relative importance of the different objectives, the proper combination
of them into an overall utility function. A MOOP can be stated as:

minimize f(x) = {f1(x), . . . , fm(x)}
subject to x ∈ Ω,

where x ∈ Rn is a vector of n decision variables; Ω ⊂ Rn is the feasible region, typically specified as a set of
constraints on the decision variables. In the above example of looking for a suitable partner, Ω could be the set of all
persons of a given sex (male or female) who can at least read and write. You will not even consider a partner who does
not satisfy these constraints.

The vector f : Ω→ Rm is made of m objective functions which need to be jointly minimized1. Objective vectors
are images of decision vectors and can be written as z = f(x) = {f1(x), . . . , fm(x)}. The above problem is ill-posed
whenever objective functions are conflicting, a frequent situation in real-world contexts. In these cases, an objective
vector is considered optimal if none of its components can be improved without worsening at least one of the others.
An objective vector z is said to dominate z′, denoted as z ≺ z′, if zk ≤ z′k for all k and there exist at least one h such
that zh < z′h. A point x̂ is Pareto-optimal if there is no other x ∈ Ω such that f(x) dominates f(x̂). Fig. 40.3 illustrates
the concept. The Pareto frontier (or Pareto front, PF for short) consists of all Pareto-optimal points. In the example,
a partner is Pareto-optimal if no other partner is at the same time nicer and more intelligent, or nicer with the same
intelligence level, etc. As you immediately recognize, considering only Pareto-optimal candidates makes sense: no
rational person would ever prefer a dominated partner! By restricting attention to the Pareto frontier (the set of choices
that are Pareto-efficient), a designer can make tradeoffs within this set, rather than considering the full range of every
parameter. “Rob Peter to pay Paul” well expresses the concept related to modifying a solution in a way that makes
some aspect better but some aspect worse, producing no net gain for all objectives.

Vilfredo Pareto had the courage to cross boundaries between disciplines. After graduating in Civil Engineering
while working in Florence, he was among the first to analyze economic problems with mathematical tools [291]. In

1In the case of levels of beauty and intelligence, which must clearly be maximized, just minimize their opposites.



470 CHAPTER 40. MULTI-OBJECTIVE OPTIMIZATION

Figure 40.3: Pareto optimality. All dominated points like the persons in the middle are not considered as potential
candidates for the final choice. On the Pareto frontier, shown with a dashed line, tradeoffs need to be considered.

1893, he became the Chair of Political Economy at the University of Lausanne in Switzerland, where he defined his
concept of Pareto-optimality: “The optimum allocation of the resources of a society is not attained so long as it is
possible to make at least one individual better off in his own estimation while keeping others as well off as before in
their own estimation.” After the translation of Pareto’s Manual of Political Economy into English, Stadler [344] applied
the notion of Pareto Optimality to the fields of engineering and science in the middle 1970’s. Then the applications
of multi-objective optimization in engineering design grew rapidly [123] and is now a tool used in most engineering
companies.

Notable examples of Pareto-optimization are in economics (consumer demand and indifference curves, production
possibilities frontier, macroeconomic policy-making), in finance (optimal portfolios maximizing return and minimiz-
ing risk, or variance of return), in engineering (engine design, controller design, product and process optimization,
radio resource management, electric power systems, etc.).

40.2 Pareto-optimization: main solution techniques.

Let’s mention some solution techniques to solve the MOOP defined in equation (40.1).
As mentioned, a Pareto-optimal solutions is one that cannot be improved in any of the objectives without degrading

at least one of the other objectives. In mathematical terms, a feasible solution x1 ∈ Ω is said to (Pareto) dominate
another solution x2 ∈ Ω, if

fi(x
1) ≤ fi(x2)for all indicesi ∈ {1, 2, . . . , k}
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Figure 40.4: Point b belongs to the Pareto front: no other feasible solution is strictly better in one objective and at least
as good for the other ones (here minimization is assumed). Point a doesn’t.

and
fj(x

1) < fj(x
2)for at least one indexj ∈ {1, 2, . . . , k} .

A solution x1 ∈ Ω is called Pareto optimal, if there does not exist another solution that dominates it.
The Pareto front of a multi-objective optimization problem is bounded by a so-called nadir objective vector znad

and a zenith (or ideal) objective vector zzen, defined as follows:

znad
i = sup

x∈X is Pareto optimal
fi(x) for all i = 1, . . . , k (40.1)

zzen
i = inf

x∈X
fi(x) for all i = 1, . . . , k. (40.2)

When finite, the components of a nadir and an ideal objective vector define upper and lower bounds for the ob-
jective function values of Pareto optimal solutions. The nadir objective vector can only be approximated as, typically,
the whole Pareto optimal set is unknown. In addition, a utopian objective vector zutopian can be defined because of
numerical reasons as:

zutopian
i = zzen

i − ε for all i = 1, . . . , k, (40.3)

where ε > 0 is a small constant.
A standard way to deal with multiple objective is to obtain a single one by combining them (this is called aggre-

gation by utility functions, utility being the combined objective). Linear scalarization (also called weighted-sum)
build a linear utility function. The aggregated problem to solve is defined as:

min
x∈X

k∑
i=1

λi fi(x), (40.4)
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Figure 40.6: Scalarization cannot identify some Pareto-optimal solutions (unless the PF is convex).

where the weights of the objectives λi > 0 are the parameters (“weights”) of the scalarization. Needless to say, the
solution depends on the weights. Because what matters are relative sizes and not absolute values, weights are usually
normalized:

∑k
i=1 λi = 1.

To visualize the process, one is approaching the Pareto front with a line (a plane, a hyperplane) oriented in a certain
manner. When the line touches a Pareto-optimal solution, the contact point is picked as the preferred solution (Fig.
40.5). A Pareto optimal solution is called supported-efficient if it is an optimal solution to equation (40.4) with a
particular weight vector [232]. If the Pareto-front is not convex, some Pareto-optimal solutions cannot be identified
by solving (40.4) with some weights, so that the scalarization technique must be used with some care.

One can define a neighborhood of a locally or globally optimal solution to (40.4), and then identify more Pareto
optimal solutions via some form of local search, with a reasonable amount of computational effort

In Tchebycheff approach [269] the scalar utility function is in the form:

min
x∈X

k
max
i=1
{λi|fi(x) − zideali|}, (40.5)

where zideal is the reference point defined above. For each Pareto-optimal point x∗ there exists a weight vector such
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that x∗ is the optimal solution of (40.5) and each optimal solution of (40.5) is a Pareto optimal solution. One weakness
with this approach is that its aggregation function is not smooth for a continuous MOOP, and the simpler scalarization
is often preferred.

To obtain an approximation to the PF via a certain number of Pareto-optimal points, one can solve a set of the
above single objective problems with different carefully selected weight coefficient vectors. This decomposition
idea has been successfully used in MOEA/D [389]. MOEA/D decomposes a multiobjective optimization problem
into a number of scalar optimization subproblems, using a set of different weight vectors λ, one for each scalarized
problem, and optimizes them simultaneously (Fig.40.7). By modifying local search to consider Pareto-optimality and
the existence of more Pareto-optimal solutions, each subproblem can be improved in an iterative manner by using
information from its several neighboring subproblems. A subproblem is a neighbor if their defining weight vectors are
close.

Pareto local search (PLS) is a natural extension of single objective local search methods [290, 257]. It works with
a set of mutually nondominated solutions, explores some or all of the neighbors of these solutions to find new solutions
for updating this set at each iteration. PLS exploits local search algorithms for single-objective problems, and solves
a multi-objective problem by chains of related aggregations and chains of good solutions for aggregations. Good
solutions provide starting points for a search regarding a next aggregation. After finding an initial set of supported
efficient solutions, the objective is to identify non-supported efficient solutions located between the supported efficient
ones. In PLS, the neighborhood of every solution of a population is explored, and if the neighbor is not dominated
by a solution of the list, the neighbor is added to the population. The exclusion of dominated neighbors is the basic
modification w.r.t. standard LS.

The work [232] combines ideas from evolutionary algorithms, decomposition approaches, and Pareto local search.
It suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic
algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a num-
ber of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1)
population PL for recording the current solution to each subproblem; 2) population PP for storing starting solutions
for Pareto local search; and 3) an external population PE for maintaining all the nondominated solutions found so
far during the search. At each generation, a Pareto local search method is first applied to search a neighborhood of
each solution in PP to update PL and PE. Then a single objective local search is applied to each perturbed solution
in PL for improving PL and PE, and reinitializing PP. MOMAD provides a generic hybrid multiobjective algorithmic
framework in which problem specific knowledge, well developed single objective local search and Pareto local search
methods can be hybridized. It is a population-based iterative method and thus an anytime algorithm.

40.3 MOOPs: how to get missing information and identify user preferences

Pareto-optimization is caused by lack of complete information in the definition of the problem. Some information
is present, given by a set of positive objectives to reach (the individual fi(x) functions, a sort of “building blocks”),
but information about how the different objectives have to be combined is missing. The tradeoffs are not yet solved,
otherwise one would come up with a single combined objective.

When discussing about the role of the final user (decision maker) in providing information to pick a preferred
solution among the Pareto front, one distinguishes the three following possibilities.

• A priori methods require that sufficient preference information is expressed before the solution process for
example by picking weights in the the linearly-scalarized utility function method of equation (40.4), or by
setting the goal in goal programming [251, 81]. In goal programming, a desired target is set for the solution
vector, the single-objective problem associated becomes that of minimizing the deviation between the obtained
solution and the target (deviation measured with a suitable metric). The drawback of a priori methods is that
the DM often does not know before how realistic his expectations are, and that there are no subsequent learning
possibilities.
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Figure 40.7: Population-based approaches (e.g., based on decomposition) can be used to obtain a set of representative
solutions along the Pareto-front. The differens subproblems are iteratively improved to move them closer to the PF.

• A posteriori methods aim at producing all the Pareto optimal solutions or a representative subset thereof. The
set is then presented to the decision maker (DM) for selecting the preferred solution. These methods demand a
lot of computing and place a heavy burden on the shoulders of the DM. A human person can typically choose one
among a limited set (say 10) solution, but he has difficulty in choosing one among one million of alternatives!

• In Interactive methods, the solution process is iterative and the decision maker continuously interacts with the
method when searching for the most preferred solution. The decision maker is expected to express preferences
at each iteration in order to get Pareto optimal solutions that are of interest to him and learn what kind of
solutions are attainable.

40.4 Brain-computer optimization (BCO): the user in the loop
As mentioned, asking a user to quantify his utility function (for example by choosing weights of a linear combination
of the different objectives) a priori, before seeing the actual optimization results, is challenging. If the final user is
cooperating with an optimization expert, misunderstanding between the persons may arise. This problem can become
dramatic when the number of the conflicting objectives in MOOP increases. As a consequence, the final user may be
dissatisfied with the solutions, because some of the objectives remain hidden in his mind. Different drawbacks are
present in a posteriori approaches, which deliver to the final user a representative set of solutions on the entire Pareto
front so that he can pick his most preferred solution.

Although a user may have difficulties in providing explicit weights and mathematical formulas, for sure he can
evaluate the returned solutions. In most cases, the situation improves with an interactive process between the final
user and the optimizer to change the definition of the problem. The optimizer will then be run over the new version
of the problem. This process may be iterated an arbitrary number of times, as shown in Fig. 40.1.

We are now entering the most advanced and exciting topic of this book: the integration of analytics, visualization
and optimization. Abstract solution points are vectors of numbers which convey a specific meaning.

In interactive problem-solving sessions, the user can get information about a specific solution by calling a
problem-specific routine. This routine, which has to be provided for the different applications, can be used to vi-
sualize detailed information about a specific point, e.g., through a graphical display of a solution.
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Figure 40.8: Brain-Computer Optimization: learning the problem definition from the final user in the case of interac-
tive multi-objective optimization (adapted from [28]).

The same problem-specific routine can be used to accept feedback about the specific solution, such as a personal
evaluation, as illustrated in Fig. 40.8.

As a rule of thumb, most of the problem-solving effort in the real world is spent on defining the problem, on
specifying in a computable manner the function to be optimized. After this modeling work is completed, optimization
becomes in certain cases a commodity. The implication for researchers and developers is that much more effort should
be devoted to design supporting techniques and tools to help the final user, often without expertise in mathematics and
in optimization, to define and refine the function to be optimized so that it corresponds to his real objectives. Think
about defining your favorite weights for beauty versus intelligence while searching for a partner. If somebody asks
you for quantitative ways to specify the tradeoff before starting the search, you may feel very embarrassed (we hope!).
Only after seeing some examples you may clarify your weights and objectives.

Reactive Search Optimization is dedicated to online learning techniques to support the quest for a solution by
self-adapting a local search method in a manner depending on the previous history of the search. The learning
signals consist of data about the structural characteristics of the instance collected while the algorithm is running.
For example, data about sizes of basins of attraction, entrapment of trajectories, repetitions of previously visited
configurations. The algorithm learns by interacting with a previously unknown environment given by an existing (and
fixed) problem definition.

We argue that there is a second interesting online learning loop, where learning signals originate from a final user
and are intended to modify and refine the problem definition itself. This context is potentially very wide, depending
on the amount of knowledge about the problem given a priori, on the allowed modifications, on the kind of questions
asked.

An example of Interactive Multi-Objective Optimization with RSO is described in [28]. The methods share with
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the work in [395, 113, 346] the interaction with the final user realized via pairwise comparison of solutions, but tackle
a broader class of problems with nonlinear preference functions. This case is of interest because many (maybe most)
decision problems are nonlinear, to reflect our preference for reasonable compromise solutions. A presentation of the
state of the art for learning arbitrary (nonlinear) models is in [32].

We focus here on the simpler and classical linear case [28] and the goal consists of learning the non-dominated
solution preferred by the final user. Assume that the user provides the different objectives in the MOOP problem,
but he cannot quantify the weights of the different objectives before seeing the actual optimization results. The system
aims at learning the weights vector w = (w1, w2, . . . , wm) optimizing the linear combination g:

g(x,w) = w1f1(x) + w2f2(x) + · · ·+ wmfm(x).

In a more compact form:
g(x1, x2, . . . , xn,w) = f(x)Tw,

where f = (f1, f2, . . . , fm). Without loss of generality, assume that g must be minimized.
The feedback from the decision maker at each iteration is obtained by presenting two solutions and asking him

to indicate his favorite solution between them, if any. This is the simplest question to be asked, a qualitative overall
preference. If the decision maker cannot answer, he should probably get another job. The preferences stated by the
final user are translated into constraints that the weights must satisfy. This guarantees that the obtained utility function
is consistent with the user’s judgments. If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are the two solutions provided
by the system, the preference a ≺ b of the final user for the solution a with respect to the solution b is represented by
the following constraint:

g(a,w) < g(b,w).

Therefore, a new linear constraint on the weights is generated for each question asked to the final user. The
problem of learning the user preference then becomes that of finding a solution w for the set of constraints on the
weights generated by the user’s feedback.

The weights are initialized with random values in the interval (0,1), and then normalized so that their sum is 1. At
each iteration, two non-dominated solutions a and b are compared by the final user. Both solutions are obtained by
minimizing a linear combination of the objective functions of the input problem:

min
x
g(x,w).

In particular, the first solution a is obtained by using the current weights vectorwcurr found by applying the middlemost
weights technique [297], by solving the following linear programming problem:

max
w

γ

subject to


g(a,w) ≤ g(b,w)− γ ∀a ≺ b
wi ≥ γ ∀i = 1, . . . ,m

γ ≥ 0.

The meaning of the above is to search for a weight which is consistent but also far from the boundaries of the consistent
region. The bigger the positive γ parameter, the safer the inequalities. Even if limited noise is added (for example
caused by physical quantities with measurements errors) and the g values are slightly changed, there is still a safety
margin before the direction of the inequality is changed.

The second solution b can be obtained by using the weights vector wpert, generated by perturbing wcurr, and by
ensuring that the two generated solutions are sufficiently dissimilar. Issues related to considering possible infeasible
sets of linear constraints (which can be generated by a confused decision maker, or because a linear approximation is
a too rough) are considered in [28]. The more complex non-linear case is solved with machine learning techniques
based on the Support Vector Machine method in [32].
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A novel approach based on active learning of Pareto fronts (ALP) is presented in [74]. ALP casts the identification
of the Pareto front into a supervised machine learning task. The computational effort in generating the supervised
information is reduced by an active learning strategy. In particular, the model is learned from a set of informative
training objective vectors.

To finish this introductory presentation, remember, if you have a challenging problem to solve, the source of power
of intelligent optimization will help you both to define exactly what you want to accomplish and to actually compute
one or more solutions.

In many cases some decisions can be, and maybe should be, deferred until some initial possible solutions are
evaluated by an expert user.

Gist
When visiting a business as a consultant, a healthy carrier of the traditional math-oriented approach to
optimization will ask the typical question “What is the function that you want to optimize in your business?”
By “function” he means an explicit mathematical model, a formula relating inputs (decisions to be made)
to output (like profit) without any ambiguity. This attitude and the lack of clearly defined models for most
businesses probably explains why the power of optimization is still stifled in the real world.

After the business owner tells him “Sorry, I have no mathematical function,” the LION way opens a
window of hope and opportunity to unleash the power of optimization. He can reply with “Do not worry,
even if you cannot give me your model, I can build it for you from your data and your feedback.” Using
a personal computer to support decision-making should not lead you to scrap your expert personal brain.

Most problem-solving and optimization efforts are intrinsically iterative processes with learning in-
volved, learning from data, and learning from the decision makers. When this is acknowledged, a bright
new era of opportunities is ushered in. A lot of effort is still required, which is good news for data scientists,
but the road ahead is mapped.
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Chapter 41

Conclusion

Rem tene, verba sequentur
Master the data, verbal interpretations will follow

(attributed to Cicero and Cato)

Congratulations for reaching this point. You have now in your pockets powerful tools to build models from data,
to understand and explain, to identify improvements and to create disruptive new solutions, in a never-ending loop
leading to better products and better services.

It is time to read the introduction again, and check if it means something different now. Contact or visit us, we are
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happy to know that there are other sane people with a insane passion for data mining, building models, optimizing,
and developing new ideas and business methods in the process.

Exit your building and use your knowledge to build a better world.

Figure 41.1: Ciclo dei mesi, Trento, January, circa 1397
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k-armed bandit problem, 439

accuracy-rejection compromise, 167
activation function, 205
adaptive random search, 349
additive logistic regression, 163
attraction basin, 263, 450
authority, 153
auto-encoder, 105

denoising —, 108
autocorrelation, 415
average, 55

backpropagation, 99
batch —, 100
bold driver, 100
stochastic, 101

Bagging, 160
Baldwin effect, 463
basin of attraction, see attraction basin
Bayes error rate, 76
BCO, see brain-computer optimization
be lazy, 282
BFGS method, 304
big valley property, 263
bisection method, 293
Blending, 158
Blind Source Separation (BSS), 226
Boosting, 160
box plot, 57
brain-computer optimization, 474
breakout technique, 345

C-LION, see learning optimization, Cooperative —
Chernoff inequality, 440
chi-squared, 49

reduced, 53
churn, 449
classification, 22
classification forests, 160
clause–weighting, 345

clustering
agglomerative, 196
bottom-up, see clustering, agglomerative
constraint-based, 251
hard, 190
k-means algorithm, see k-means
soft, 192
use by search engines, 154

CNN, see neural network, convolutional —
collaborative recommendation, 82
configuration

illegal, 263
conjugate gradient method, 299
convolution, 109
coordination

of local search processes, 450
correlation coefficient, 72
correlation length, 417
correlation ratio, 73
covariance matrix, 198, 213
Cross-validated committees, 160
cross-validation, 27
curriculum learning, 108

data
making it confess anything you want, 21, 69

Decision forest, see Democratic forests
Decision tree, 60
Democratic forest, 64
dendrogram, 196
differential entropy, 78
discriminative algorithm, 26
distance

Euclidean, 189
Mahalanobis, 197
Manhattan, 189
normalization, 189, 198

district search, 453
diversification, 256, 317, 353
DLS, 345
document indexing techniques, 142
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document ranking
HITS, 153
PageRank, 150

double-shot strategy, 352
Dynamic programming, 368

ellipsoid morphing, 199
empirical risk, 118

minimization, 118
ensemble, 160
entropy, 63, 75

conditional, 76
epistasis, 417
Error-correcting codes, 161
escape

minimal required prohibition value, 318
ESG, 345
evolution strategies, 460
extreme learning, 177

feature, 10
Feature ranking in decision forests, 67
feature selection, 69, 225
feature-weighted linear stacking, 159
feedback

in optimization sessions, 475
fitting vs. interpolation, 48
Flatland, 211
fly

learning to —, 87
focus and context visualization, 237
force-directed approach, 236

generative method, 26
genetic algorithms, 460
Gini impurity, 63
GLS, 346
gradient descent, 263, 298
grandmother cell, 203
graph

undirected weighted, 235
graph layout, 237, 240

degenerate, 241
GSAT, 344

hashing and fingerprinting, 14, 320
Hopfield network, 174
hub, 153

ill-conditioning, 295

ILS, see iterated local search
Independent Component Analysis (ICA), 228
inertial shaker, 282
Information gain, 62
interactive optimization, 474
iterated local search, 264, 333

Jaccard coefficient, 147
approximation by permutations, 148

k-means, 190
KISS principle, 282
Kohonen map, see self-organizing map

label, 10
Lamarckian evolution, 451, 460, 463
landscape correlation function, 415
Laplacian matrix, 214, 248
lazy learner, 11
LDA, see linear discriminant analysis
learning on the job, 315
learning rate, 205
least-squares method, 49
linear discriminant analysis, 219
Linear Programming (LP), 358
linear projection, 213

orthogonal, 214
Lipschitz continuity, 291
local minimizer, 263
local minimum, see local optimum, 316
local optimum, 263
local search, 450
Logistic regression, 164
low-density separation assumption, 246
LS, see local search
LS-SVM, see support vector machine, least-squares —

MA, see memetic algorithm
machine learning, 26

semi-supervised, 246
supervised, 9
unsupervised, 190

Majority rule, 158
manifold assumption, 246
Margin maximization, 161
Markov chain, 280
Markov processes, 280
measurement errors, 48
median, 57
memetic algorithm, 450, 451
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memetic algorithms, 463
memex, 133
metric learning, 251
Missing values, 64
MLP, see Multilayer perceptron
MOOP, see multi-objective optimization
MoRSO, see reactive search optimization, multi-objective

—
multi-objective optimization, 467, 475
multidimensional scaling (MDS), 237
Multilayer perceptron, 97
multiple-classifiers systems, 160
mutual information, 75, 76

nearest neighbors, 11
weighted, 12

neighborhood, 263, 316
neural network, 95

convolutional —, 109
deep —, 104
recurrent —, 172

Newton’s method, 292, 295
Newton’s theorem, 290
NK landscape model, 417
noise, 48

Occam’s razor, 48
off-line configuration, 444
one-step secant method, 304
optimization, 255, 287, 313, 428
OSS, see one-step secant method
overfitting, 27, 51

P2P, 449
Pareto frontier, 469
Pareto optimality, 469
PCA, see principal component analysis
peer-to-peer, 449
percentile, 57
perceptron, 39
performance indices, 143
persistent dynamic sets, 320
perturbation, 262
pooling layer, 112
population-based search, 428
portfolio, 431
precision, 143
preference

implicit vs. explicit, 468
principal component analysis, 214

sensitivity to outliers, 215
weighted, 216

Principal Component Analysis (PCA), 224, 228
problem definition

modify and refine the —, 475
prohibition and diversification

fundamental relationship, 317
Projection pursuit (PP), 224
prototype, 188, 205

quantization error, 190, 206
quartile, 57

racing, 439
RAS, see reactive affine shaker
rating matrix, 82
reactive affine shaker, 349, 350, 453
reactive prohibition strategy, 317
reactive search optimization, 313, 314, 350

Cooperative, 428
multi-objective —, 468

reactive search optimization (RSO), 255
recall, 143
recommendation

collaborative, 82
regression, 22

linear —, 36
locally weighted —, 89
ridge —, 43

Renyi entropy, 233
representation

internal vs. external, 188
reservoir learning, 176
restart, 256, 353, 437
RNN, see neural network, recurrent —
Rocchio method, 147
RSAPS, 345
RSO, see reactive search optimization

scatter search and path relinking, 430
search district, 452
search region

adapting the —, 350
sampling the —, 350

search trajectory, 262
secant method, 294, 303
self-labeling, 246
self-organizing map, 204

naming cells, 206
semi-supervised learning, 246
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separation of concerns, 269
SGO, see Sochastic Global Optimization269
similarity

between users or items, 82
cosine —, 146

similarity metric, 188
simulated annealing, 280

adaptive, 342
non-monotonic cooling schedules, 341
phase transitions, 340

SOM, see self-organizing map
spectral graph drawing, 237
Stacking, 158, 159
statistical learning theory, 118
steepest descent, see gradient descent
Stochastic global optimization, 269
stress minimization, 236
structural risk, 119
subsampling, 112
supervised learning, 9
support vector machine, 117, 119

dual quadratic problem, 120
for regression, 122
kernel trick, 121
least-squares —, 126
weighted least-squares —, 127

SVM, see support vector machine

tabu search, 315
Taylor series, 290
term frequency, 145
TF-IDF, see term frequency
Tichonov regularization, 44
tokenization, 142
training, 26
trajectory, 316
Traveling Salesman Problem, 257
TSP, see Taveling Salesman Problem257

unsupervised learning, 190
user

as a crucial learning component, 315
user-item matrix, 82

factorization, 84

validation, 26
Vapnik-Chervonenkis dimension, 118
variable neighborhood search, 264, 328
Variance reduction, 158
VC-dimension, see Vapnik-Chervonenkis dimension

vector-space model, 145
VNS, see variable neighborhood search
Voronoi diagram, 192

web crawler, 141
web mining, 140


	Introduction
	Learning and Intelligent Optimization: a prairie fire
	Searching for gold and for partners
	All you need is data
	Beyond traditional business intelligence
	Implementing LION
	Teaching and learning in Internet times
	A ``hands on'' community approach

	Lazy learning: nearest neighbors
	Nearest Neighbors Methods
	From brute-force to smarter lookups: Hashing
	Locality-sensitive Hashing (LSH) and approximated nearest neighbors
	Space-partitioning data structure: k-d trees

	Learning requires a method
	Learning from labeled examples: minimization and generalization
	Learn, validate, test!
	Errors of different kinds

	I Supervised learning
	Linear models
	Linear regression
	A trick for nonlinear dependencies
	Linear models for classification
	How does the brain work?
	Why are linear models popular and successful?
	Minimizing the sum of squared errors
	Numerical instabilities

	Mastering generalized linear least-squares
	Goodness of fit and and chi-square
	Least squares and maximum likelihood estimation
	Hypothesis testing
	Cross-validation

	Bootstrapping your confidence (error bars)

	Rules, decision trees, and forests
	Building decision trees
	Democracy and decision forests

	Ranking and selecting features
	Selecting features: the context
	Correlation coefficient
	Correlation ratio
	Chi-square test to deny statistical independence
	Heuristic relevance based on nearest neighbors: Relief
	Entropy and mutual information (MIFS)
	Entropy and Mutual Information for continuous variables


	Models based on matrix factorization
	Combining ratings by similar users
	Models based on matrix factorization
	A more refined model: adding biases


	Specific nonlinear models
	Logistic regression
	Locally-Weighted Regression
	Bayesian LWR

	LASSO to shrink and select inputs

	Neural networks: multi-layer perceptrons
	Multilayer Perceptrons (MLP)
	Learning via backpropagation
	Batch and ``Bold Driver'' Backpropagation
	On-Line or stochastic backpropagation
	Advanced optimization for MLP training


	Deep and convolutional networks
	Deep neural networks
	Auto-encoders
	Random noise, dropout and curriculum

	Local receptive fields and convolutional networks

	Statistical Learning Theory and Support Vector Machines (SVM)
	Empirical risk minimization
	Linearly separable problems
	Non-separable problems
	Nonlinear hypotheses
	Support Vectors for regression


	Least-squares and robust kernel machines
	Least-Squares Support Vector Machine Classifiers
	Robust weighted least square SVM
	Recovering sparsity by pruning
	Algorithmic improvements: tuned QP, primal versions, no offset

	Structured Machine Learning, Text and Web Mining
	Bayesian networks
	Markov networks
	Inductive logic programming (ILP)
	Text and web mining: the context
	Retrieving and organizing information from the web
	Crawling
	Indexing

	Information retrieval and ranking
	From Documents to Vectors: the Vector-Space Model
	Relevance feedback
	More complex similarity measures

	Using the hyperlinks to rank web pages
	Identifying hubs and authorities: HITS
	Clustering

	Democracy in machine learning
	Stacking and blending
	Diversity by manipulating examples: bagging and boosting
	Diversity by manipulating features
	Diversity by manipulating outputs: error-correcting codes
	Diversity by injecting randomness during training
	Additive logistic regression
	Gradient boosting machines
	Democracy for better accuracy-rejection compromises

	Recurrent networks and reservoir computing
	Recurrent neural networks
	Energy-minimizing Hopfield networks
	RNN and backpropagation through time
	Reservoir learning for recurrent neural networks
	Extreme learning machines


	II Unsupervised learning and clustering
	Top-down clustering: K-means
	Approaches for unsupervised learning
	Clustering: Representation and metric
	K-means for hard and soft clustering

	Bottom-up (agglomerative) clustering
	Merging criteria and dendrograms
	A distance adapted to the distribution of points: Mahalanobis
	Visualization of clustering and parallel coordinates

	Self-organizing maps
	An artificial cortex to map entities to prototypes
	Using an adult SOM for classification

	Dimensionality reduction by projection
	Linear projections
	Principal Components Analysis (PCA)
	Weighted PCA: combining coordinates and relationships
	Linear discrimination by ratio optimization
	Fisher discrimination index for selecting features

	Fisher's linear discriminant analysis (LDA)
	Projection Pursuit: searching for interesting structure guided by an explicit index
	Normal Gaussian distributions are non-interesting: sphering or whitening
	Index to measure non-normality


	Feature extraction and Independent Component Analysis
	Simple preprocessing for feature extraction
	Independent Component Analysis (ICA)
	ICA and Projection Pursuit

	Feature Extraction by Mutual Information Maximization

	Visualizing graphs and networks by nonlinear maps
	Multidimensional Scaling (MDS) Visualization by stress minimization
	A one-dimensional case: spectral graph drawing
	Complex graph layout criteria

	Semi-supervised learning
	Learning with partially unsupervised data
	Separation in low-density areas
	Graph-based algorithms
	Learning the metric
	Integrating constraints and metric learning



	III Optimization: basics
	Greedy and Local Search
	Case study: the Traveling Salesman Problem
	Greedy constructions
	Greedy algorithms for minimum spanning trees

	Local search based on perturbations
	Local search and big valleys
	Local search and the TSP


	Stochastic global optimization
	Stochastic Global Optimization Basics
	A digression on Lipschitz continuity
	Pure random search (PRS)
	Rate of Convergence of Pure Random Search

	Statistical inference in global random search
	Markov processes and Simulated Annealing
	Simulated Annealing and Asymptotics
	Asymptotic convergence results

	The Inertial Shaker algorithm

	Derivative-Based Optimization
	Optimization and machine learning
	Derivative-based techniques in one dimension
	Derivatives can be approximated by the secant
	One-dimensional minimization

	Solving models in more dimensions (positive definite quadratic forms)
	Gradient or steepest descent
	Conjugate gradient

	Nonlinear optimization in more dimensions
	Global convergence through line searches
	Cure for indefinite Hessians
	Relations with model-trust region methods
	Secant methods
	Closing the gap: second-order methods with linear complexity

	Constrained optimization: penalties and Lagrange multipliers


	IV Learning for intelligent optimization
	Reactive Search Optimization (RSO): Online Learning Methods
	RSO: Learning while searching
	RSO based on prohibitions
	Fast data structures for using the search history
	Persistent dynamic sets


	Adapting neighborhoods and selection
	Variable Neighborhood Search: Learning the neighborhood

	Iterated local search
	Online learning in Simulated Annealing
	Combinatorial optimization problems
	SA for global optimization of continuous functions

	Dynamic landscapes and noise levels
	Guided local search
	Adapting noise levels

	Adaptive Random Search
	RAS: adaptation of the sampling region
	Repetitions for robustness and diversification


	V Special optimization problems and advanced topics
	Linear and Quadratic Programming
	Linear Programming (LP)
	An algebraic view of linear programming

	Integer Linear Programming
	Quadratic Programming (QP)

	Branch and bound, dynamic programming
	Branch and bound
	Dynamic programming

	Satisfiability
	Satisfiability and maximum satisfiability: definitions
	Notation and graphical representation

	Resolution and Linear Programming
	Resolution and backtracking for SAT 
	Integer programming approaches

	Continuous approaches
	Approximation algorithms
	Randomized algorithms for MAX W–SAT

	Local search for SAT 
	Quality of local optima
	Non-oblivious local optima
	Local search satisfies most 3–SAT  formulae
	Randomized search for 2–SAT  (Markov processes)

	Memory-less Local Search Heuristics
	Simulated Annealing
	Gsat with ``random noise'' strategies
	Randomized Greedy and Local Search (Grasp)

	History-sensitive Heuristics
	Prohibition-based Search: TS and Samd
	Hsat and ``clause weighting''
	The Hamming-Reactive Tabu Search (H-RTS) algorithm

	Models of hardness and threshold effects
	Hardness and threshold effects


	Design of experiments, query learning, and surrogate model-based optimization 
	Design of experiments (DOE)
	Full factorial design
	Randomized design: pseudo Montecarlo sampling
	Latin hypercube sampling

	Surrogate model-based optimization
	Active or query learning

	Measuring problem difficulty in local search
	Measuring and modeling problem difficulty
	Phase transitions in combinatorial problems
	Empirical models of fitness surfaces
	Tunable landscapes
	Measuring local search components: diversification and bias
	A conjecture: better algorithms are Pareto-optimal in D-B plots



	VI Cooperation and multiple objectives in optimization
	Cooperative Learning And Intelligent Optimization (C-LION)
	Intelligent and reactive solver teams
	Portfolios and restarts
	Predicting the performance of a portfolio from its component algorithms
	Parallel processing

	Reactive portfolios
	Defining an optimal restart time
	Reactive restarts
	Racing: Exploration and exploitation of candidate algorithms
	Racing to maximize cumulative reward by interval estimation
	Aiming at the maximum with threshold ascent
	Racing for off-line configuration of heuristics

	Gossiping Optimization
	Epidemic communication for optimization

	Intelligent coordination of local search processes
	C-LION: a political analogy
	A C-LION example: RSO cooperating with RAS
	Other C-LION algorithms

	Genetics, evolution and nature-inspired analogies
	Genetic algorithms and evolution strategies

	Multi-Objective Optimization
	Multi-objective optimization and Pareto optimality
	Pareto-optimization: main solution techniques.
	MOOPs: how to get missing information and identify user preferences
	Brain-computer optimization (BCO): the user in the loop

	Conclusion
	Bibliography
	Index


