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Abstract. Usage of intelligent video surveillance (IVS) systems is spreading 
rapidly. These systems are being utilized in a wide range of applications. In 
most cases, even in multi-camera installations, the video is processed 
independently in each feed. This paper describes a system that fuses tracking 
information from multiple cameras, thus vastly expanding its capabilities. The 
fusion relies on all cameras being calibrated to a site map, while the individual 
sensors remain largely unchanged. We present a new method to quickly and 
efficiently calibrate all the cameras to the site map, making the system viable 
for large scale commercial deployments. The method uses line feature 
correspondences, which enable easy feature selection and provide a built-in 
precision metric to improve calibration accuracy. 

1 Introduction 

The usage of IVS systems is spreading rapidly. Based on user defined rules or 
policies, IVS systems can automatically detect potential threats or collect business 
intelligence information by detecting, tracking and analyzing the targets in the scene. 
In large, multi-camera installations, a central management console provides unified 
access to all systems, allowing centralized configuration and quick access to all rules, 
alerts and results. The user interface may display all results together on a map, or a 
counting application may aggregate the counts from different feeds. But processing of 
the camera feeds, the rules and the alerts are still independent. While this setup is 
sufficient for some scenarios, its effectiveness is limited by detecting only local 
events. More complex events spanning multiple cameras cannot be detected, thus 
potentially missing important events. The system described in this paper fuses 
information from multiple cameras, thus providing much better awareness of what is 
going on in the whole area. Different from the majority of the previous works, which 
mainly address computer vision or data fusion topics such as object appearance 
matching [1,2,3], camera topological relationship estimation [4,5] and statistical data 
association [6,7], the objective of the present work is to develop a commercial viable 
system that has real-time performance, low bandwidth requirement and in particular, 
easy installation so that an ordinary security personnel  can configure and operate it 
easily.  

The paper is organized as follows: Section 2 describes the architecture of a 
typical single camera surveillance system. Section 3 explains how this architecture is 
expanded into a multi-camera system. Section 4 provides some real-life applications 
of the system. Section 5 lists potential extensions for future work, before concluding 
remarks in Section 6. 



2 Single Camera Surveillance System Architecture 

A typical IVS system is illustrated in Figure 1. A dynamic background model is 
continuously being built and updated from the incoming video frames. In each video 
frame, pixels that are statistically different from the background are marked as 
foreground. These foreground pixels are spatially grouped into blobs, which are 
tracked over time to form spatio-temporal targets, e.g. using a Kalman filter. Next, 
these targets are classified based on various features. Finally the events of interest 
(rules) specified by the user are detected on the targets. For example, the user may 
want to detect when people enter an area by defining a virtual tripwire.  

The first part of the above processing pipeline up to and including the 
classification is very generic, largely independent of the details of the application and 
the user defined events of interest. These steps, marked as content analysis in Figure 1, 
all deal with the actual video frames and generate a high level meta-data description 
of what is happening in the video. This meta-data contains all target information 
(location, velocity, classification, color, shape, etc.), and potentially the description of 
the scene, including static (water, sky, etc.) and dynamic (lighting change) 
descriptors. The end of the processing pipeline, the event detection uses this meta-
data description as its input instead of the video, and compares that with the user 
defined rules. This mode of operation means that only the meta-data has to be stored, 
instead of high quality video suitable for automated processing, and events can be 
detected very quickly, simply by analyzing the meta-data, instead of the much slower 
video analysis. And this meta-data enables the multi-camera surveillance system 
described in more detail in the next section. 

3 Multi-Camera Surveillance System Architecture 

The IVS system, as described in the above section, can provide an adequate solution 
for many applications. But by analyzing only a single video feed at a time, it offers a 
somewhat myopic view into the world, with all its associated limitations. For example 
the goal for the IVS system may be to detect suspicious activities around a facility 
with several cameras daisy-chained around its fence line. A vehicle parking near that 
fence line can easily be detected by the camera covering the area where the vehicle 
parks. But a vehicle circling around the facility multiple times cannot be detected by 
the single camera system. A multi-camera surveillance system tracking targets from 

Figure 1: Flow-chart of typical IVS system 
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one camera to the next can overcome all these limitations. This section describes the 
key challenges of such a system and a solution that has been demonstrated to work 
well in several real life deployments. 

3.1 Data Sharing 

One of the key questions when designing the cross-camera surveillance system is to 
decide at which stage in the pipeline of Figure 1 should the single camera units share 
their information. Performing fusion before the foreground detection or blob 
generation steps requires building a mosaic, which is very expensive on cpu, memory 
and bandwidth usages. In addition, it usually requires the cameras having overlapped 
field of views and similar illumination and image resolution, which may not always 
be satisfied in real applications.  

Fusing at the video meta-data level requires merging all the meta-data from the 
cameras onto a full representation of the environment. This approach distributes the 
most time consuming processing between the different sensors, eliminates the need 
for a mosaic, and minimizes communication, since only the meta-data needs to be 
transmitted, no video or imagery. Given these advantages, our system communicates 
only the video meta-data for fusion. For example, the video meta-data from a single 
camera unit for each video frame may include the following information: the camera 
time stamp, list of targets with their ids and image properties such as bounding box, 
centroid, footprint and classification label.  

3.2 System Design 

The cross-camera fusion system is illustrated in Figure 2. The video from each 
camera is initially processed the same way as in a single camera system: the content 
analysis module translates video into video meta-data, which is then sent from all 
sensors to the centralized data fusion module. Fusion combines the video meta-data 
from all sensors into a common coordinate system, but still maintaining the video 
meta-data format, so that the fused meta-data can be fed to the event detection 
module. This event detection module is identical to the one used in the single sensor 

Figure 2: Cross-camera fusion system diagram 
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system of Figure 1. The rules and meta-data are all represented as relative coordinates. 
For a single camera sensor the coordinates are relative to a single frame, while for the 
fusion sensor they are relative to the global map is used. This means that the meta-
data is the same whether it is generated by a view or a map sensor.  

This design has many benefits. The time consuming video processing is 
distributed among the single camera sensors, communication bandwidth requirements 
are low due to transmitting only the video meta-data. The sensor architecture is 
simple: the system running on the individual sensors is almost identical to the single 
camera system. Content analysis turns the video into video meta-data. It is still 
possible to have single camera event detection running on the individual sensors, if 
required. The only difference is that the video meta-data is streamed out to the fusion 
sensor to enable multi-camera event detection. The fusion sensor is more different, 
but still has a lot in common to single camera sensors. The main difference is the 
front end: it ingests multiple video meta-data streams instead of video, and uses the 
data fusion module to convert it into fused meta-data. This similarity between the 
different modes means that our system has only a single main executable, which can 
be configured at installation to act as a stand-alone single camera sensor, as a single 
camera sensor used for fusion, or as a fusion sensor. More and more IVS systems are 
moving towards performing computations on the edge, embedded in a camera. This 
architecture works well for that approach as well. The embedded system processes the 
video and generates the meta-data, which is then sent to a centralized fusion sensor. 

This approach also seamlessly supports the forensic applications described 
earlier. The video meta-data can be stored in the individual sensors, performing fusion 
and event detection at the time of forensic processing, or the fused meta-data can be 
stored, in which case forensics is the same as with the single camera forensics. 
Moreover it is also possible to later convert a standard installation into a cross-camera 
system for forensic analysis. If the single camera video meta-data has been stored, 
even calibration can be performed later, and forensics executed on the previously 
stored data. 

3.3 Cross-camera calibration 

The major challenge of a cross-camera tracking system is how to associate the targets 
detected and tracked in different individual cameras. The data fusion process 
illustrated in Figure 2 requires the single camera sensors to be calibrated in such 
manner that the targets in different cameras have a common coordinate system.  

Traditional camera calibration approaches [8] rely on using a 3D reference 
object with a known Euclidean structure. However, setting up the 3D reference object 
with great accuracy is difficult, requires special equipment, and doesn’t scale well. To 
overcome some of these problems, [9] and [10] introduced a simple and practical 
camera calibration technique using a model plane with a known 2D reference pattern. 
In this technique, the user places the model plane or the camera at two or more 
locations and captures images of the reference points. Camera parameters are 
recovered from the model plane to image plane homographies computed from 
correspondences between the reference points and their projections. Although this 
algorithm is simpler, it yields good results mainly for indoor and/or close range 
applications, where the object is big enough that its features can be easily and 



accurately detected and measured. To make this approach viable for large area 
outdoor applications, the reference object would have to be very large to provide the 
necessary accuracy.   

In the proposed system, we introduce a cross-camera calibration approach 
called map-view mapping, which maps each ground point in the image (“view”) to its 
corresponding point on a global site map (“map”). The global site map here may be a 
fine resolution satellite image for an outdoor application or a blueprint drawing for an 
indoor application. In this approach, we assume that in each view the targets are on 
the same plane, called image ground plane; and the global map also represents a 
single plane in the world, called map ground plane. Thus for each camera, the 
mapping between point x in the view and the corresponding point X in the map is 
fully defined by a homography H [11,12]: 

 HxX =  (1) 

where H is a 3x3 homogeneous matrix. The map and view points are represented by 
homogeneous 3-vectors as X = (X, Y, 1)’ and x = (x, y, 1)’, respectively. The scale of 
the matrix does not affect the equation, so only the eight degrees of freedom 
corresponding to the ratio of the matrix elements are significant. The camera model is 
completely specified once the matrix is determined. H can be computed from a set of 
map-view correspondence points. From equation (1), each pair of correspondence 
points provides two equations. Given the 8 unknowns in H, n≥4 point pairs are 
needed. Writing H in vector form as h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)’ , (1) 
for n points becomes Ah = 0, where A is a 2n x 9 matrix:  
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 (2) 

The goal is to find the unit vector h that minimizes |Ah|, which is given by the 
eigenvector of the smallest eigenvalue of A’A. This eigenvector can be obtained 
directly from the SVD of A. 

The key element of the process becomes finding correspondence points 
between the map and each camera view. These correspondence points are also called 
control points in image registration. They provide unambiguous matching pairs 
between the map and the camera view. However, there are two potential problems 
with using only matching points for calibration. The first problem is that it may be 
difficult to find the precise corresponding point locations in some environments due 
to limited resolution, visibility, or the angle of view. As an example, looking at an 
overhead view of a road, the corner points of the broken lane dividing lines 
theoretically provide good calibration targets. However, it may be difficult to reliably 
determine which lane dividing line segment of the map view corresponds to which 
line segment in the camera view.  



The second problem is that the precision of the pairs of matching points is 
usually unknown. The precision of a point measures the sensitivity of the accuracy of 
the map matching location with respect to the accuracy of the view location. For 
example, at one location in the camera image plane, one pixel movement away from 
that location may cause 100 pixels of movement away from its original corresponding 
location on the map. This means the precision of this pair of matching points is low. 
When we calibrate the camera view onto the map, we minimize the distance between 
these pairs of matching points. Assigning higher weight to points with higher 
precision improves calibration performance.  

To overcome the above two problems, we introduce matching line features in 
conjunction with the matching points. A line feature is typically specified by two 
points, as a line segment, but for a matching line feature only the corresponding lines 
have to match, not the segments. For example when viewing a road, it might be 
difficult to find point correspondences, but the dividing line and the edges of the road 
define good line features. Hence the line features help to overcome the first limitation 
above. Figure 3 illustrates matching line segments.  

 

 
Matching line features also help overcome the second problem by providing a 

good precision metric, which helps to improve calibration accuracy by allowing the 
system to put increased weight on more precise control points. Line features can be 
directly specified by the user, or computed from pairs of user defined calibration 
control points. Additional control points are then computed from the intersection of 
line features. The precision of such a computed control point is determined as 
follows: First, use the point of intersection on the map as the reference point. Next, 
add small random Gaussian noise with zero mean and small standard deviation (e.g. 
0.5) to the end points of all the related line segments on the map and recompute the 
point of intersection. Calculate the distance between the new and the reference point 
of intersection. Repeat the above process many times and compute the mean distance, 
which reflects the precision of the corresponding point of intersection.  The point of 
intersection will be used as a control point only if its corresponding mean distance is 
less than a threshold, determined by the desired accuracy of the calibration. 
 

+ 
+ 

Figure 3: Selecting matching features. In this corresponding pair of map (left) and view 
(right), it is much easier to find matching lines than points. Matching features are 
represented by the same color. 



 
Figure 4 illustrates the view-to-map camera calibration process. First, control 

points are computed as described above using the matching features selected by the 
operator on a GUI provided by the system. Next, the image plane to map plane 
homography is computed using the Direct Linear Transformation algorithm [12]. This 
least squares based method is very sensitive to the location error of the control points; 
especially if the number of the control points is small or the points are clustered in a 
small portion of the image. In the proposed approach, matching line features are used 
to iteratively improve the calibration. In each iteration, control points are added or 
adjusted, till the change in the error of feature matching falls below a threshold. Since 
a line segment is a more representative feature than a single point and its location is 
more reliable than that of a single point, this iterative refinement process very 
effectively reduces calibration errors and in our system it always rapidly converges to 
the optimal result. 

In each iteration, the corresponding view and map features are used to estimate 
the homography. That homography is used to transform the view features onto the 
map. Then the calibration error is computed as the average distance on the map 
between the transformed view features and the corresponding map features. For a 
point feature, the distance is simply point to point distance. For a line feature, the 
distance is the enclosed area between the two line segments, as illustrated by the 
shaded area in Figure 5. In order to reduce this calibration error, we add new control 
points based on line features. In Figure 5, L1 and l1 represent a pair of matching line 
segments on the map and view, respectively. Note that their ending points are not 
required to be matching points, thus they may not be in the control point list initially. 
Once H is estimated, the view line segment l1 is transformed into the map line 
segment L1’ with points P1’ and P2’. The goal is to find an estimate of H that 
minimizes the distance between L1’ and the original matching line segment L1 on the 
map. This is obtained by minimizing the shaded area between L1 and L1’. To achieve 
this, P1’ and P2’ are projected onto line L1, yielding P1 and P2. Thus, point pairs (p1, 
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Figure 4: Camera calibration block diagram 



P1) and (p2, P2) become matching pairs of points and are added to the list of control 
points for the next iteration. In subsequent iterations, these additional control points 
are further adjusted by projecting them on the line L1 based on the newly estimated 
homography H, as long as these adjustments further improve the calibration accuracy. 
The above calibration processes are all performed automatically except the manual 
matching feature selection operation using a GUI.  

Although the map-view mapping or the H matrix obtained above is not a full 
camera calibration, it provides the most valuable information for the cross camera 
target tracking. First, since all of the camera views are calibrated to the same map, the 
corresponding targets from multiple cameras can be naturally associated based on 
their map locations. Second, by using actual map scales, the physical size and velocity 
of the target can be estimated, providing useful new target information. Third, the 
map-view mapping can be used to estimate the effective field of view (EFOV) of each 
camera on the map. The EFOV defines the effective monitoring area of each camera, 
helping with planning camera placement, and performing cross camera target handoff. 
The EFOV of a camera includes the points where the view size of a human is above a 
threshold and the mapping error is low. 

3.4 Data Fusion 

The data fusion module of the fusion sensor continuously receives video meta-data of 
all targets from all individual sensors. As the first step, the fusion sensor projects each 
data onto the map using the calibration information of the sensor. After this step the 
fusion sensor introduces some delay (dependent on the typical network delay) to 
make sure that all target information for a given time instance is received from all 
sensors before processing. To achieve this it is crucial that all sensors are time 
synchronized with each other, ensuring that the fusion sensor can properly combine 
them. In the fusion sensor, we maintain a data buffer on the input meta-data from the 
view sensors and batch process them after every T seconds. The T is determined by 
the maximum network latency. Once the actual view sensor to fusion sensor delay is 
less than T, the input data will be properly synchronized. In our installations, the T is 
usually less than 1 second.   

Figure 6 illustrates one iteration of the target data fusion process. Based on the 
incoming synchronized video meta-data, the update view target module builds its own 
representation of each view target, adding in additional data such as map location and 
physical size, computed from the map-view mapping. Next, the view target fusion 
module checks if any stable new view target matches an existing map target. If it 
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does, the map target is updated with the view target. Otherwise, the system may 
produce a new map target from the new stable view target. Here, a “stable” view 
target means the target has a consistent appearance and is tracked with high 
confidence. This requirement is used to temporarily ignore non-salient targets, 
partially occluded targets, and targets on the image boundaries, where both location 
and appearance may be inaccurate. The matching measure between two targets is the 
combination of the location, size and appearance matching probabilities. The location 
matching probability is estimated using the target map location from the map-view 
mapping. The size matching probability is computed from the relative physical size of 
each target. The appearance matching probability is obtained by comparing the 
appearance models of the targets under investigation. The appearance model used in 
our system is a distributed intensity histogram, which includes multiple histograms 
for different spatial partitions of the target. The appearance matching score is the 
average correlation between the corresponding spatially partitioned histograms.   

One map target can represent multiple view targets from different views, e.g. 
when a target is in the overlapping area of two cameras. For each time stamp, the map 
target has a primary view target that provides the most reliable representation of the 
physical object at that time. The map target update process determines this primary 
view target and updates the general target properties such as map location, velocity, 
classification type, etc. It may also reclassify targets based on additional map target 
properties, such as physical size and speed.  

Since target occlusion can cause significant map location estimation errors, the 
map target fusion module tests whether a map target corresponds to another existing 
map target when the stability status of the map target changes. Each target has an 
associated stability status based on how consistent its shape and size is in a temporal 
window. If a merge is needed, the map target with shorter history is merged into the 
other target. 

4 Examples 

The system described in the paper was successfully installed in a number of 
applications. This section describes two very different installations. Both installations 
are using Windows XP on Intel processors. A 2.8GHz dual-CPU machine can 
comfortably run up to four sensors each at around 10 fps.      

4.1 Critical Infrastructure Protection 

The most typical application of the camera fusion system is protecting a larger site 
with several cameras daisy chained around the perimeter, as illustrated in Figure 7. 
The system was installed around a military airfield, with 48 fixed and 16 PTZ 
cameras covering a 5 mile perimeter. The 48 fixed cameras were daisy chained, with 
overlapping fields-of-views, providing full fence coverage. As the first step of the 
installation all these cameras were calibrated to the site map by manually selecting 
corresponding point and line features. The PTZ cameras were installed to provide 
better resolution imagery in case of intrusion. The details of PTZ calibration and 
operation are beyond the scope of this paper.  



The system allows the user to setup rules either on individual camera views or 
on the map or both view and map. The most important rule for the user was a multi-
segment tripwire following the fence-line around the whole perimeter, configured to 
detect when targets cross it from outside to in. The user interface for defining rules 
has several features to help the precise definition of rules. The rule can be drawn 
initially at a more zoomed out setting showing the full area. Then portions can be 
viewed and fine tuned in higher zoom levels. Besides seeing the rule on the map, the 
interface also allows projecting, visualizing and editing it in a camera view. This 
method typically provides the highest resolution, and it also allows fixing some 
inaccuracies resulting from potential calibration errors. In the far view of a camera, 
being just a pixel off may translate into meters on the map, and that discrepancy in 
turn can mean the difference between a rule aligned with the fence, or being on the 
public road around the fence, generating several false alarms. Such inaccuracies can 
easily be visualized and corrected by viewing the rules on the map. In addition to the 
multi-segment tripwire rule, some areas are protected with rules detecting enters and 
loiters in an area of interest. 

All alerts contain the location of the detected event. By default, the location 
includes location in the camera with the best view of the target; and location on the 
map. If the map is just an image, then location is represented as an image coordinate. 
If the map has associated geographical information, such as a world file, than the 
location is expressed as lat/long coordinates as well. 

The system is very flexible, can easily accommodate configuration changes. 
Additional cameras can be added quickly by calibrating them to the map and the PTZ 
cameras. The rest of the sensors and rules are completely unaffected by this addition.  

4.2 Hazardous Lab Safety Verification 

The same system was used in a very different application scenario by a major 
research university. The goal was to detect violations of the so called two-person rule 
in some infectious disease laboratories. The rule means that a person should never be 
alone in the lab, i.e. if there is anybody in the lab, there should be at least two people. 
The only exception is the few seconds around people entering and exiting, so if a 
person enters the empty lab, there should be no alert as long as another person enters 
within a few seconds. 
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Figure 6: Block diagram of data fusion process 



The most straightforward solution would be to count the number of people 
entering and exiting the lab, and use the difference of the two as the person count. The 
big drawback of this approach is that it has no mechanism for correcting errors. For 
example if two people enter and are counted correctly, but they leave so close to each 
other that they are miscounted as a single person, the system will false alert, even 
though there is nobody left inside. Similarly the system could miss an event, which is 
an even greater problem. For this reason a robust system needs to monitor the whole 
lab, so that it can continuously keep track of the people inside, maintaining an up-to-
date count. To obtain good coverage, minimizing occlusions which are the main 
reason for counting errors, the cameras were mounted on the ceiling. Some labs were 
small enough to be covered by a single wide angle camera, but others required more 
than a single camera. For these larger labs fusion was very important, otherwise 
people in the area where two cameras overlap would have been counted by both 
cameras.  

System configuration was conceptually similar to the critical infrastructure 
example, but there were some differences. The map was replaced with a blueprint or 
sketch of the lab. The requirement is that the blueprint has to be of the correct scale 
and contain sufficient identifiable features on the floor (ground plane) for the 
calibration. The camera was calibrated to the blueprint using the manually selected 
feature correspondences. The cameras were running content analysis, reporting all 
human targets to the fusion sensor. The fusion sensor projected these targets onto the 
blueprint, fusing targets in the overlap area into a single human. The fusion sensor 
counted the number of people, and alerted if it saw only a single person for longer 
than a user defined minimum time, typically around 30sec.  

5 Future work 

We are looking at improving the overall system in several ways. The current fusion, 
as described in Section 3.4, uses location as the strongest cue for fusing targets, in 

Figure 7: Wide area surveillance by daisy-chaining cameras (red cones)  
around the perimeter of the protected facility 



conjunction with some other features. In more crowded environments, however, a 
more sophisticated method is required. We are looking into using additional features, 
such color, shape, etc. to properly resolve this challenge.  

We are also looking into how to make the system more scalable. The current 
implementation was tested with over 50 individual sensors communicating with the 
fusion sensor, but an installation covering really large areas with hundreds of sensors 
would be problematic, with too much data flooding the fusion sensor and 
overwhelming its processing. A more scalable solution can use multiple layers of 
fusion: a fusion sensor handling a smaller cluster of sensors, and multiple such fusion 
sensors communicating to higher level fusion sensors. Fusion itself requires target 
information only from the overlapping areas of the cameras, but some of the event 
logic requires full target history. For example to detect a target circling around a 
facility, the whole target track is required, so the information has to be combined from 
all sensors to be able to generate the alert. 

6 Conclusions 

We presented a real-time cross-camera fusion system. It provides powerful new 
capabilities over single camera system, but with very little extra complexity both in 
terms of user interface and implementation. The system was successfully deployed in 
a variety of commercial applications. 
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