
HAL Id: inria-00326754
https://inria.hal.science/inria-00326754v1

Submitted on 5 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Video Surveillance using a Multi-Camera Tracking and
Fusion System

Zhong Zhang, Andrew Scanlon, Weihong Yin, Li Yu, Péter L. Venetianer

To cite this version:
Zhong Zhang, Andrew Scanlon, Weihong Yin, Li Yu, Péter L. Venetianer. Video Surveillance using
a Multi-Camera Tracking and Fusion System. Workshop on Multi-camera and Multi-modal Sensor
Fusion Algorithms and Applications - M2SFA2 2008, Andrea Cavallaro and Hamid Aghajan, Oct 2008,
Marseille, France. �inria-00326754�

https://inria.hal.science/inria-00326754v1
https://hal.archives-ouvertes.fr

Video Surveillance using a
Multi-Camera Tracking and Fusion System

Zhong Zhang, Andrew Scanlon, Weihong Yin, Li Yu, Péter L. Venetianer
ObjectVideo Inc.

{zzhang, ascanlon, wyin, liyu, pvenetianer}@ObjectVideo.com

Abstract. Usage of intelligent video surveillance (IVS) systems is spreading
rapidly. These systems are being utilized in a wide range of applications. In
most cases, even in multi-camera installations, the video is processed
independently in each feed. This paper describes a system that fuses tracking
information from multiple cameras, thus vastly expanding its capabilities. The
fusion relies on all cameras being calibrated to a site map, while the individual
sensors remain largely unchanged. We present a new method to quickly and
efficiently calibrate all the cameras to the site map, making the system viable
for large scale commercial deployments. The method uses line feature
correspondences, which enable easy feature selection and provide a built-in
precision metric to improve calibration accuracy.

1 Introduction

The usage of IVS systems is spreading rapidly. Based on user defined rules or
policies, IVS systems can automatically detect potential threats or collect business
intelligence information by detecting, tracking and analyzing the targets in the scene.
In large, multi-camera installations, a central management console provides unified
access to all systems, allowing centralized configuration and quick access to all rules,
alerts and results. The user interface may display all results together on a map, or a
counting application may aggregate the counts from different feeds. But processing of
the camera feeds, the rules and the alerts are still independent. While this setup is
sufficient for some scenarios, its effectiveness is limited by detecting only local
events. More complex events spanning multiple cameras cannot be detected, thus
potentially missing important events. The system described in this paper fuses
information from multiple cameras, thus providing much better awareness of what is
going on in the whole area. Different from the majority of the previous works, which
mainly address computer vision or data fusion topics such as object appearance
matching [1,2,3], camera topological relationship estimation [4,5] and statistical data
association [6,7], the objective of the present work is to develop a commercial viable
system that has real-time performance, low bandwidth requirement and in particular,
easy installation so that an ordinary security personnel can configure and operate it
easily.

The paper is organized as follows: Section 2 describes the architecture of a
typical single camera surveillance system. Section 3 explains how this architecture is
expanded into a multi-camera system. Section 4 provides some real-life applications
of the system. Section 5 lists potential extensions for future work, before concluding
remarks in Section 6.

2 Single Camera Surveillance System Architecture

A typical IVS system is illustrated in Figure 1. A dynamic background model is
continuously being built and updated from the incoming video frames. In each video
frame, pixels that are statistically different from the background are marked as
foreground. These foreground pixels are spatially grouped into blobs, which are
tracked over time to form spatio-temporal targets, e.g. using a Kalman filter. Next,
these targets are classified based on various features. Finally the events of interest
(rules) specified by the user are detected on the targets. For example, the user may
want to detect when people enter an area by defining a virtual tripwire.

The first part of the above processing pipeline up to and including the
classification is very generic, largely independent of the details of the application and
the user defined events of interest. These steps, marked as content analysis in Figure 1,
all deal with the actual video frames and generate a high level meta-data description
of what is happening in the video. This meta-data contains all target information
(location, velocity, classification, color, shape, etc.), and potentially the description of
the scene, including static (water, sky, etc.) and dynamic (lighting change)
descriptors. The end of the processing pipeline, the event detection uses this meta-
data description as its input instead of the video, and compares that with the user
defined rules. This mode of operation means that only the meta-data has to be stored,
instead of high quality video suitable for automated processing, and events can be
detected very quickly, simply by analyzing the meta-data, instead of the much slower
video analysis. And this meta-data enables the multi-camera surveillance system
described in more detail in the next section.

3 Multi-Camera Surveillance System Architecture

The IVS system, as described in the above section, can provide an adequate solution
for many applications. But by analyzing only a single video feed at a time, it offers a
somewhat myopic view into the world, with all its associated limitations. For example
the goal for the IVS system may be to detect suspicious activities around a facility
with several cameras daisy-chained around its fence line. A vehicle parking near that
fence line can easily be detected by the camera covering the area where the vehicle
parks. But a vehicle circling around the facility multiple times cannot be detected by
the single camera system. A multi-camera surveillance system tracking targets from

Figure 1: Flow-chart of typical IVS system

Background
model

generation

Frame
differencing

Blob
generation Tracking

Classifi
cation

Event
detection

video

foreground
mask blobs targets

alerts

Content Analysis

Rules
Video

meta-data

Video Inferencing

one camera to the next can overcome all these limitations. This section describes the
key challenges of such a system and a solution that has been demonstrated to work
well in several real life deployments.

3.1 Data Sharing

One of the key questions when designing the cross-camera surveillance system is to
decide at which stage in the pipeline of Figure 1 should the single camera units share
their information. Performing fusion before the foreground detection or blob
generation steps requires building a mosaic, which is very expensive on cpu, memory
and bandwidth usages. In addition, it usually requires the cameras having overlapped
field of views and similar illumination and image resolution, which may not always
be satisfied in real applications.

Fusing at the video meta-data level requires merging all the meta-data from the
cameras onto a full representation of the environment. This approach distributes the
most time consuming processing between the different sensors, eliminates the need
for a mosaic, and minimizes communication, since only the meta-data needs to be
transmitted, no video or imagery. Given these advantages, our system communicates
only the video meta-data for fusion. For example, the video meta-data from a single
camera unit for each video frame may include the following information: the camera
time stamp, list of targets with their ids and image properties such as bounding box,
centroid, footprint and classification label.

3.2 System Design

The cross-camera fusion system is illustrated in Figure 2. The video from each
camera is initially processed the same way as in a single camera system: the content
analysis module translates video into video meta-data, which is then sent from all
sensors to the centralized data fusion module. Fusion combines the video meta-data
from all sensors into a common coordinate system, but still maintaining the video
meta-data format, so that the fused meta-data can be fed to the event detection
module. This event detection module is identical to the one used in the single sensor

Figure 2: Cross-camera fusion system diagram

Content
Analysis

video
meta-data

Data
Fusion

Event
Detection

Content
Analysis video

meta-data

video

video

alerts

rules

Single camera (view) sensors Fusion (map) sensor

video
meta-data

system of Figure 1. The rules and meta-data are all represented as relative coordinates.
For a single camera sensor the coordinates are relative to a single frame, while for the
fusion sensor they are relative to the global map is used. This means that the meta-
data is the same whether it is generated by a view or a map sensor.

This design has many benefits. The time consuming video processing is
distributed among the single camera sensors, communication bandwidth requirements
are low due to transmitting only the video meta-data. The sensor architecture is
simple: the system running on the individual sensors is almost identical to the single
camera system. Content analysis turns the video into video meta-data. It is still
possible to have single camera event detection running on the individual sensors, if
required. The only difference is that the video meta-data is streamed out to the fusion
sensor to enable multi-camera event detection. The fusion sensor is more different,
but still has a lot in common to single camera sensors. The main difference is the
front end: it ingests multiple video meta-data streams instead of video, and uses the
data fusion module to convert it into fused meta-data. This similarity between the
different modes means that our system has only a single main executable, which can
be configured at installation to act as a stand-alone single camera sensor, as a single
camera sensor used for fusion, or as a fusion sensor. More and more IVS systems are
moving towards performing computations on the edge, embedded in a camera. This
architecture works well for that approach as well. The embedded system processes the
video and generates the meta-data, which is then sent to a centralized fusion sensor.

This approach also seamlessly supports the forensic applications described
earlier. The video meta-data can be stored in the individual sensors, performing fusion
and event detection at the time of forensic processing, or the fused meta-data can be
stored, in which case forensics is the same as with the single camera forensics.
Moreover it is also possible to later convert a standard installation into a cross-camera
system for forensic analysis. If the single camera video meta-data has been stored,
even calibration can be performed later, and forensics executed on the previously
stored data.

3.3 Cross-camera calibration

The major challenge of a cross-camera tracking system is how to associate the targets
detected and tracked in different individual cameras. The data fusion process
illustrated in Figure 2 requires the single camera sensors to be calibrated in such
manner that the targets in different cameras have a common coordinate system.

Traditional camera calibration approaches [8] rely on using a 3D reference
object with a known Euclidean structure. However, setting up the 3D reference object
with great accuracy is difficult, requires special equipment, and doesn’t scale well. To
overcome some of these problems, [9] and [10] introduced a simple and practical
camera calibration technique using a model plane with a known 2D reference pattern.
In this technique, the user places the model plane or the camera at two or more
locations and captures images of the reference points. Camera parameters are
recovered from the model plane to image plane homographies computed from
correspondences between the reference points and their projections. Although this
algorithm is simpler, it yields good results mainly for indoor and/or close range
applications, where the object is big enough that its features can be easily and

accurately detected and measured. To make this approach viable for large area
outdoor applications, the reference object would have to be very large to provide the
necessary accuracy.

In the proposed system, we introduce a cross-camera calibration approach
called map-view mapping, which maps each ground point in the image (“view”) to its
corresponding point on a global site map (“map”). The global site map here may be a
fine resolution satellite image for an outdoor application or a blueprint drawing for an
indoor application. In this approach, we assume that in each view the targets are on
the same plane, called image ground plane; and the global map also represents a
single plane in the world, called map ground plane. Thus for each camera, the
mapping between point x in the view and the corresponding point X in the map is
fully defined by a homography H [11,12]:

 HxX = (1)

where H is a 3x3 homogeneous matrix. The map and view points are represented by
homogeneous 3-vectors as X = (X, Y, 1)’ and x = (x, y, 1)’, respectively. The scale of
the matrix does not affect the equation, so only the eight degrees of freedom
corresponding to the ratio of the matrix elements are significant. The camera model is
completely specified once the matrix is determined. H can be computed from a set of
map-view correspondence points. From equation (1), each pair of correspondence
points provides two equations. Given the 8 unknowns in H, n≥4 point pairs are
needed. Writing H in vector form as h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)’ , (1)
for n points becomes Ah = 0, where A is a 2n x 9 matrix:

−−−
−−−

−−−
−−−
−−−
−−−

=

nnnnnnn

nnnnnnn

YYyYxyx

XXyXxyx

YYyYxyx

XXyXxyx

YYyYxyx

XXyXxyx

A

1000

0001

1000

0001

1000

0001

2222222

2222222

1111111

1111111

MMMMMMMMM

 (2)

The goal is to find the unit vector h that minimizes |Ah|, which is given by the
eigenvector of the smallest eigenvalue of A’A. This eigenvector can be obtained
directly from the SVD of A.

The key element of the process becomes finding correspondence points
between the map and each camera view. These correspondence points are also called
control points in image registration. They provide unambiguous matching pairs
between the map and the camera view. However, there are two potential problems
with using only matching points for calibration. The first problem is that it may be
difficult to find the precise corresponding point locations in some environments due
to limited resolution, visibility, or the angle of view. As an example, looking at an
overhead view of a road, the corner points of the broken lane dividing lines
theoretically provide good calibration targets. However, it may be difficult to reliably
determine which lane dividing line segment of the map view corresponds to which
line segment in the camera view.

The second problem is that the precision of the pairs of matching points is
usually unknown. The precision of a point measures the sensitivity of the accuracy of
the map matching location with respect to the accuracy of the view location. For
example, at one location in the camera image plane, one pixel movement away from
that location may cause 100 pixels of movement away from its original corresponding
location on the map. This means the precision of this pair of matching points is low.
When we calibrate the camera view onto the map, we minimize the distance between
these pairs of matching points. Assigning higher weight to points with higher
precision improves calibration performance.

To overcome the above two problems, we introduce matching line features in
conjunction with the matching points. A line feature is typically specified by two
points, as a line segment, but for a matching line feature only the corresponding lines
have to match, not the segments. For example when viewing a road, it might be
difficult to find point correspondences, but the dividing line and the edges of the road
define good line features. Hence the line features help to overcome the first limitation
above. Figure 3 illustrates matching line segments.

Matching line features also help overcome the second problem by providing a

good precision metric, which helps to improve calibration accuracy by allowing the
system to put increased weight on more precise control points. Line features can be
directly specified by the user, or computed from pairs of user defined calibration
control points. Additional control points are then computed from the intersection of
line features. The precision of such a computed control point is determined as
follows: First, use the point of intersection on the map as the reference point. Next,
add small random Gaussian noise with zero mean and small standard deviation (e.g.
0.5) to the end points of all the related line segments on the map and recompute the
point of intersection. Calculate the distance between the new and the reference point
of intersection. Repeat the above process many times and compute the mean distance,
which reflects the precision of the corresponding point of intersection. The point of
intersection will be used as a control point only if its corresponding mean distance is
less than a threshold, determined by the desired accuracy of the calibration.

+
+

Figure 3: Selecting matching features. In this corresponding pair of map (left) and view
(right), it is much easier to find matching lines than points. Matching features are
represented by the same color.

Figure 4 illustrates the view-to-map camera calibration process. First, control

points are computed as described above using the matching features selected by the
operator on a GUI provided by the system. Next, the image plane to map plane
homography is computed using the Direct Linear Transformation algorithm [12]. This
least squares based method is very sensitive to the location error of the control points;
especially if the number of the control points is small or the points are clustered in a
small portion of the image. In the proposed approach, matching line features are used
to iteratively improve the calibration. In each iteration, control points are added or
adjusted, till the change in the error of feature matching falls below a threshold. Since
a line segment is a more representative feature than a single point and its location is
more reliable than that of a single point, this iterative refinement process very
effectively reduces calibration errors and in our system it always rapidly converges to
the optimal result.

In each iteration, the corresponding view and map features are used to estimate
the homography. That homography is used to transform the view features onto the
map. Then the calibration error is computed as the average distance on the map
between the transformed view features and the corresponding map features. For a
point feature, the distance is simply point to point distance. For a line feature, the
distance is the enclosed area between the two line segments, as illustrated by the
shaded area in Figure 5. In order to reduce this calibration error, we add new control
points based on line features. In Figure 5, L1 and l1 represent a pair of matching line
segments on the map and view, respectively. Note that their ending points are not
required to be matching points, thus they may not be in the control point list initially.
Once H is estimated, the view line segment l1 is transformed into the map line
segment L1’ with points P1’ and P2’. The goal is to find an estimate of H that
minimizes the distance between L1’ and the original matching line segment L1 on the
map. This is obtained by minimizing the shaded area between L1 and L1’. To achieve
this, P1’ and P2’ are projected onto line L1, yielding P1 and P2. Thus, point pairs (p1,

Map-view mapping

Compute
control points

Compute view to
map homograph

Adjust control points

Calibration features

Compute
calibration errors

Match error
< threshold?

Yes

No

Figure 4: Camera calibration block diagram

P1) and (p2, P2) become matching pairs of points and are added to the list of control
points for the next iteration. In subsequent iterations, these additional control points
are further adjusted by projecting them on the line L1 based on the newly estimated
homography H, as long as these adjustments further improve the calibration accuracy.
The above calibration processes are all performed automatically except the manual
matching feature selection operation using a GUI.

Although the map-view mapping or the H matrix obtained above is not a full
camera calibration, it provides the most valuable information for the cross camera
target tracking. First, since all of the camera views are calibrated to the same map, the
corresponding targets from multiple cameras can be naturally associated based on
their map locations. Second, by using actual map scales, the physical size and velocity
of the target can be estimated, providing useful new target information. Third, the
map-view mapping can be used to estimate the effective field of view (EFOV) of each
camera on the map. The EFOV defines the effective monitoring area of each camera,
helping with planning camera placement, and performing cross camera target handoff.
The EFOV of a camera includes the points where the view size of a human is above a
threshold and the mapping error is low.

3.4 Data Fusion

The data fusion module of the fusion sensor continuously receives video meta-data of
all targets from all individual sensors. As the first step, the fusion sensor projects each
data onto the map using the calibration information of the sensor. After this step the
fusion sensor introduces some delay (dependent on the typical network delay) to
make sure that all target information for a given time instance is received from all
sensors before processing. To achieve this it is crucial that all sensors are time
synchronized with each other, ensuring that the fusion sensor can properly combine
them. In the fusion sensor, we maintain a data buffer on the input meta-data from the
view sensors and batch process them after every T seconds. The T is determined by
the maximum network latency. Once the actual view sensor to fusion sensor delay is
less than T, the input data will be properly synchronized. In our installations, the T is
usually less than 1 second.

Figure 6 illustrates one iteration of the target data fusion process. Based on the
incoming synchronized video meta-data, the update view target module builds its own
representation of each view target, adding in additional data such as map location and
physical size, computed from the map-view mapping. Next, the view target fusion
module checks if any stable new view target matches an existing map target. If it

P2’

P1’

L1

P2

P1

L1’

Map p1

p2

View

H

l1

Figure 5: Adjusting control points

does, the map target is updated with the view target. Otherwise, the system may
produce a new map target from the new stable view target. Here, a “stable” view
target means the target has a consistent appearance and is tracked with high
confidence. This requirement is used to temporarily ignore non-salient targets,
partially occluded targets, and targets on the image boundaries, where both location
and appearance may be inaccurate. The matching measure between two targets is the
combination of the location, size and appearance matching probabilities. The location
matching probability is estimated using the target map location from the map-view
mapping. The size matching probability is computed from the relative physical size of
each target. The appearance matching probability is obtained by comparing the
appearance models of the targets under investigation. The appearance model used in
our system is a distributed intensity histogram, which includes multiple histograms
for different spatial partitions of the target. The appearance matching score is the
average correlation between the corresponding spatially partitioned histograms.

One map target can represent multiple view targets from different views, e.g.
when a target is in the overlapping area of two cameras. For each time stamp, the map
target has a primary view target that provides the most reliable representation of the
physical object at that time. The map target update process determines this primary
view target and updates the general target properties such as map location, velocity,
classification type, etc. It may also reclassify targets based on additional map target
properties, such as physical size and speed.

Since target occlusion can cause significant map location estimation errors, the
map target fusion module tests whether a map target corresponds to another existing
map target when the stability status of the map target changes. Each target has an
associated stability status based on how consistent its shape and size is in a temporal
window. If a merge is needed, the map target with shorter history is merged into the
other target.

4 Examples

The system described in the paper was successfully installed in a number of
applications. This section describes two very different installations. Both installations
are using Windows XP on Intel processors. A 2.8GHz dual-CPU machine can
comfortably run up to four sensors each at around 10 fps.

4.1 Critical Infrastructure Protection

The most typical application of the camera fusion system is protecting a larger site
with several cameras daisy chained around the perimeter, as illustrated in Figure 7.
The system was installed around a military airfield, with 48 fixed and 16 PTZ
cameras covering a 5 mile perimeter. The 48 fixed cameras were daisy chained, with
overlapping fields-of-views, providing full fence coverage. As the first step of the
installation all these cameras were calibrated to the site map by manually selecting
corresponding point and line features. The PTZ cameras were installed to provide
better resolution imagery in case of intrusion. The details of PTZ calibration and
operation are beyond the scope of this paper.

The system allows the user to setup rules either on individual camera views or
on the map or both view and map. The most important rule for the user was a multi-
segment tripwire following the fence-line around the whole perimeter, configured to
detect when targets cross it from outside to in. The user interface for defining rules
has several features to help the precise definition of rules. The rule can be drawn
initially at a more zoomed out setting showing the full area. Then portions can be
viewed and fine tuned in higher zoom levels. Besides seeing the rule on the map, the
interface also allows projecting, visualizing and editing it in a camera view. This
method typically provides the highest resolution, and it also allows fixing some
inaccuracies resulting from potential calibration errors. In the far view of a camera,
being just a pixel off may translate into meters on the map, and that discrepancy in
turn can mean the difference between a rule aligned with the fence, or being on the
public road around the fence, generating several false alarms. Such inaccuracies can
easily be visualized and corrected by viewing the rules on the map. In addition to the
multi-segment tripwire rule, some areas are protected with rules detecting enters and
loiters in an area of interest.

All alerts contain the location of the detected event. By default, the location
includes location in the camera with the best view of the target; and location on the
map. If the map is just an image, then location is represented as an image coordinate.
If the map has associated geographical information, such as a world file, than the
location is expressed as lat/long coordinates as well.

The system is very flexible, can easily accommodate configuration changes.
Additional cameras can be added quickly by calibrating them to the map and the PTZ
cameras. The rest of the sensors and rules are completely unaffected by this addition.

4.2 Hazardous Lab Safety Verification

The same system was used in a very different application scenario by a major
research university. The goal was to detect violations of the so called two-person rule
in some infectious disease laboratories. The rule means that a person should never be
alone in the lab, i.e. if there is anybody in the lab, there should be at least two people.
The only exception is the few seconds around people entering and exiting, so if a
person enters the empty lab, there should be no alert as long as another person enters
within a few seconds.

Update View
Target

View Target
Fusion

Update Map
Target

Map Target
Fusion

Data Fusion

Synchronized
Video meta-data Map-view mappings

Map meta-data

Figure 6: Block diagram of data fusion process

The most straightforward solution would be to count the number of people
entering and exiting the lab, and use the difference of the two as the person count. The
big drawback of this approach is that it has no mechanism for correcting errors. For
example if two people enter and are counted correctly, but they leave so close to each
other that they are miscounted as a single person, the system will false alert, even
though there is nobody left inside. Similarly the system could miss an event, which is
an even greater problem. For this reason a robust system needs to monitor the whole
lab, so that it can continuously keep track of the people inside, maintaining an up-to-
date count. To obtain good coverage, minimizing occlusions which are the main
reason for counting errors, the cameras were mounted on the ceiling. Some labs were
small enough to be covered by a single wide angle camera, but others required more
than a single camera. For these larger labs fusion was very important, otherwise
people in the area where two cameras overlap would have been counted by both
cameras.

System configuration was conceptually similar to the critical infrastructure
example, but there were some differences. The map was replaced with a blueprint or
sketch of the lab. The requirement is that the blueprint has to be of the correct scale
and contain sufficient identifiable features on the floor (ground plane) for the
calibration. The camera was calibrated to the blueprint using the manually selected
feature correspondences. The cameras were running content analysis, reporting all
human targets to the fusion sensor. The fusion sensor projected these targets onto the
blueprint, fusing targets in the overlap area into a single human. The fusion sensor
counted the number of people, and alerted if it saw only a single person for longer
than a user defined minimum time, typically around 30sec.

5 Future work

We are looking at improving the overall system in several ways. The current fusion,
as described in Section 3.4, uses location as the strongest cue for fusing targets, in

Figure 7: Wide area surveillance by daisy-chaining cameras (red cones)
around the perimeter of the protected facility

conjunction with some other features. In more crowded environments, however, a
more sophisticated method is required. We are looking into using additional features,
such color, shape, etc. to properly resolve this challenge.

We are also looking into how to make the system more scalable. The current
implementation was tested with over 50 individual sensors communicating with the
fusion sensor, but an installation covering really large areas with hundreds of sensors
would be problematic, with too much data flooding the fusion sensor and
overwhelming its processing. A more scalable solution can use multiple layers of
fusion: a fusion sensor handling a smaller cluster of sensors, and multiple such fusion
sensors communicating to higher level fusion sensors. Fusion itself requires target
information only from the overlapping areas of the cameras, but some of the event
logic requires full target history. For example to detect a target circling around a
facility, the whole target track is required, so the information has to be combined from
all sensors to be able to generate the alert.

6 Conclusions

We presented a real-time cross-camera fusion system. It provides powerful new
capabilities over single camera system, but with very little extra complexity both in
terms of user interface and implementation. The system was successfully deployed in
a variety of commercial applications.

References
1. Guo Y, Sawhney H S, Kumar R, et al. Robust Object Matching for Persistent Tracking

with Heterogeneous Features. In Joint IEEE Int. Workshop VS-PETS. 2005, 81-88.
2. Shan Y, Sawhney H S, Kumar R. Unsupervised Learning of Discriminative Edge

Measures for Vehicle Matching between Non-Overlapping Cameras. In CVPR. 2005, 894-
901.

3. Javed O, Shafique K, Shah M. Appearance Modeling for Tracking in Multiple
Non-overlapping Cameras. In CVPR. 2005, 26-33.

4. Ellis T J, Makris D, Black J. Learning a multi-camera topology. In Joint IEEE Int.
Workshop VS-PETS. 2003, 165-171.

5. Tieu K, Dalley G, Grimson W E L. Inference of Non-Overlapping Camera Network
Topology by Measuring Statistical Dependence. In ICCV. 2005, 1842-1849.

6. Huang T, Russell S. Object identification: A Bayesian analysis with application to traffic
surveillance. Artific. Intell., 1998 (103): 1-17.

7. Kettnaker V, Zabih R. Bayesian Multi-camera Surveillance. In CVPR. 1999, 2253-2259.
8. Tsai R Y, A Versatile Camera Calibration Technique for High-Accuracy 3D Machine

Vision Metrology Using Off-the-Shelf TV Cameras and Lenses, IEEE Journal of Robotics
and Automation, Aug 1987, 3(4):323–344.

9. Sturm P F, SMaybank S.J. On Plane-Based Camera Calibration: A General Algorithm,
Singularities, Applications, Proc. Computer Vision and Pattern Recognition, 1999, volume
1, 432–437.

10. Zhang Z, Flexible Camera Calibration by Viewing a Plane from Unknown Orientations,
Proc. 7th International Conference on Computer Vision, 1999, volume 1, 666–673.

11. Semple J, Kneebone G, Algebraic Projective Geometry. Oxford University Press, 1979.
12. Hartley R, Zisserman A, Multiple View Geometry in Computer Vision. Cambridge

University Press, 2003.

