
Towards the Characterization of Realistic Models:
Evaluation of Multidisciplinary Graph Metrics∗

Gábor Szárnyas
szarnyas@mit.bme.hu

Zsolt Kővári
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ABSTRACT
Custom generators of graph-based models are used in MDE
for many purposes such as functional testing and perfor-
mance benchmarking of modeling environments to ensure
the correctness and scalability of tools. However, while ex-
isting generators may generate large models in increasing
size, these models are claimed to be simple and synthetic,
which hinders their credibility for industrial and research
benchmarking purposes. But how to characterize a realistic
model used in software and systems engineering? This ques-
tion is investigated in the paper by collecting over 17 differ-
ent widely used graph metrics taken from other disciplines
(e.g. network theory) and evaluating them on 83 instance
models originating from six modeling domains. Our prelim-
inary results show that certain metrics are similar within a
domain, but differ greatly between domains, which makes
them suitable input for future instance model generators to
derive more realistic models.

1. INTRODUCTION
Context. While empirical software engineering highly

relies on the source code repositories of large open-source
projects, scalability assessment of model-driven engineering
(MDE) tools on large models has been much more prob-
lematic. On the one hand, real complex industrial models
are rarely available to public as intellectual property rights
of all parties need to be protected. On the other hand,
faithfulness of scalability evaluations using synthetic, auto-
generated models are frequently considered as questionable.
Anyhow, there is an increasing interest in model generators
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to be used for validating, testing or benchmarking MDE
tools with advanced support for queries and transforma-
tions [18, 10, 2].

Objective. As a long-term objective and major research
challenge, we aim at generating domain-specific graph mod-
els that are scalable, realistic, consistent and diverse at the
same time.

Problem. But what makes a model realistic? Any engi-
neer can distinguish an auto-generated model from a man-
ually designed model by inspecting attributes (e.g. names).
But what if we abstract from all attributes of the model
and inspect only the (typed) graph structure? How can
we characterize and distinguish systems engineering mod-
els (e.g. Capella [32], AutoFOCUS [3]) from models reverse
engineered from source code, for instance?

Method. We identify and evaluate graph-based model
metrics known from other disciplines to decide which can
best describe the characteristics of real models taken from
software and systems engineering. We calculate these met-
rics on 83 models, and carry out an initial evaluation using
statistical and visual exploratory data analysis techniques.
The output of our evaluation includes recommendations on
characteristic metrics and potential hints for constructing
future model generators of realistic domain-specific models.

We reuse several graph metrics of network theory [30, 38,
15] already used in other disciplines (e.g. physics, biology, so-
cial network analysis) to reveal hidden structural properties
of complex systems, and observe structural differences be-
tween them. However, since most of the analyzed networks
are one-dimensional (untyped), i.e. they only contain edges
of a single dimension (type), their direct adaptation to MDE
models may not be sufficient due to their strongly typed
nature. Therefore, we also collected and evaluated sev-
eral graph metrics for multidimensional (multi-typed) net-
works [31]. Such multidimensional metrics [6, 4, 31] express
structural properties with respect to a dimension, and how
different dimensions emerge together.

Contributions of the paper. This paper presents the
following specific contributions:

• We collected 17 graph metrics from different disciplines
(mostly network theory).

• We evaluated these metrics over 6 different modeling
tools (domains) on 83 real models.

• We carried out statistical and visual exploratory data
analysis to identify characteristic metrics.

http://models2016.irisa.fr/
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2. PRELIMINARIES
Our running example is a statechart (Figure 1a) describ-

ing the behaviour of a light switch. The statechart is defined
over a simplified metamodel of Yakindu [40] (Figure 1b).
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Figure 1: The statechart example, the statechart metamodel
and the multidimensional graph representing the statechart.

To calculate the metrics of models, we map them to multi-
dimensional graphs [5]. A multidimensional graph is defined
as G = (V,E,D), where V is the set of nodes (vertices), E
is the set of directed edges between the nodes, and D rep-
resents the set of dimensions that label the edges. An edge
is defined with a triple (v, w, d) ∈ E, where v, w ∈ V and
d ∈ D is the dimension of the edge.
Mapping. Each model is an instance of a metamodel de-

fined in Ecore, the metamodeling language of EMF (Eclipse
Modeling Framework) [35]. The models are mapped to mul-
tidimensional graphs using the following rules:

• Each object is mapped to a node (v ∈ V ).
• Each reference type is mapped to a dimension (d ∈ D).
• Each reference instance is mapped to a directed edge

between nodes, (v, w, d) ∈ E. Nodes v and w are the
corresponding nodes of the reference’s source and tar-
get objects. The dimension d is determined by the
reference type.

• Object types are omitted. As a consequence, the graph
does not contain information on the classes in the model.

• Derived references and attributes are omitted from the
graph. Opposite edges of containment references are
also removed (see Section 4.2 for details).

Figure 1c shows the statechart model as a multidimen-
sional graph. The dimensions include the reference types
vertices, outgoing, incoming, target and regions (while exclud-
ing the source dimension as it is the inverse of the outgoing
containment reference.) The objects and references in the
instance model are mapped to nodes and edges of the graph.

Basic concepts in multidimensional graphs. Nodes
v, w ∈ V are connected in a dimension d ∈ D if they have
an edge in that dimension. Formally,

Connected(v, w, d) ⇐⇒ (v, w, d) ∈ E ∨ (w, v, d) ∈ E.

A node v ∈ V is active in a dimension d ∈ D if the node
has at least one connection in that dimension:

Active(v, d) ⇐⇒ ∃w ∈ W : Connected(v, w, d)

In the statechart graph (Figure 1c), node E1 is connected
to node R1 along vertices and to T1 along outgoing. Hence,
node R1 is active in dimensions vertices and outgoing.

Note on terminology. Different terminologies exist in
the literature for multidimensional networks [6], such as
multi-layered networks [8, 9] and multiplex networks [31,
4], as summarized in [23].

3. GRAPH METRICS
We collected single one-dimensional metrics [15], and mul-

tidimensional metrics successfully used in other fields of sci-
ence to characterize multidimensional graphs. Our assump-
tion is that they can likely be useful in the context of soft-
ware and systems models. We also demonstrate the metrics
on our example model (Figure 1c).

3.1 One-Dimensional Metrics
One-dimensional metrics include the number of nodes n =

|V | and the number of edges e = |E|. For a node v ∈ V ,
the in-degree kin

v is the number of incoming edges and the
out-degree kout

v is the number of outgoing edges. The degree
kv equals to the total number of the incoming and outgoing
edges of node v, i.e. kv = kin

v + kout
v . The average degree of

a graph is ⟨k⟩ = 2e
n
, where ⟨⟩ denotes the average.

The clustering coefficient C (v) measures the probabil-
ity that the neighbours of a node v ∈ V are also connected
to each other [38]. Formally, it is calculated as

C(v) =
2ev

kv(kv − 1)
,

where ev denotes the number of connected pairs among the
neighbours of v. C(v) is normalized to the interval [0, 1],
equalling to 1 if every neighbour of v is connected to each
other and to 0 if there are no connections between the neigh-
bours of v. In short, C(v) measures the ratio of exist-
ing/possible triangles (subgraphs with 3 nodes and 3 edges)
containing node v.

In the example model (Figure 1c), |V | = 14, |E| = 25, |D| =
5, kin

R2 = 1, kout
R2 = 3 and ⟨k⟩ = 3.57. The clustering coeffi-

cient is 0 for every node in the graph due to the absence of
triangles.



Name Notation Scope Nd.

Dimensional degree [6] Degree (v, d) D/N #
Node dimension activity [31] NDA(d) D #
Node dimension connectivity [6] NDC (d) D  
Node exclusive dimension conn. [6] NEDC (d) D  
Edge dimension activity EDA(d) D #
Edge dimension connectivity [6] EDC (d) D  
Node activity [31] NA(v) N #
Multiplex participation coeff. [4] MPC (v) N  
Dimensional clustering coeff. [4] DC (v) N  
Pairwise multiplexity [31] Q(d1, d2) D2  

Table 1: Summary of metrics for multidimensional graphs
(Scope: N = Nodes, D = Dimensions, D2 =Dimension pairs;
Nd: Normalized; v ∈ V ; d, d1, d2 ∈ D)

3.2 Multidimensional Metrics
The Scope column lists whether the metric is interpreted

on Dimensions, Nodes, both or Dimension pairs. We also
denote if a metric is normalized, i.e. it takes values in [0, 1].

3.2.1 Metrics for Dimensions and Nodes
For a node v ∈ V and a dimension d ∈ D, the dimen-

sional degree [6] is the number of neighbours of v with
respect to dimension d. Formally,

Degree (v, d) =
∣∣{w∈V

∣∣Connected(v, w, d)
}∣∣ .

The metric is also defined for a set of a dimensions D̂ ⊆ D:

Degree
(
v, D̂

)
=

∑
d∈D̂ Degree (v, d) .

If D̂ = D, the dimensional degree of a node v equals to its
one-dimensional degree kv as every dimension is aggregated.
In the example graph (Figure 1c), Degree (T3, target) = 1,

and Degree (R2, vertices) = 3.

3.2.2 Metrics for Dimensions
Node dimension activity (NDA) (introduced as layer

activity in [31]) characterizes a dimension d ∈ D, and equals
to the number of nodes that are active in dimension d:

NDA(d) =
∣∣{v ∈ V |Active(v, d)}

∣∣.
Node dimension connectivity (NDC ) [6] computes the

ratio of nodes in the network that belong to dimension d:

NDC (d) =
NDA(d)

|V | .

Node exclusive dimension connectivity (NEDC ) [6]
is similar to node dimension connectivity, but it calculates
the ratio of nodes that belong exclusively to dimension d.
In other words, it calculates the ratio of nodes that do not
have other dimensions than d.
Edge dimension activity (EDA) determines the num-

ber of edges that belong to a dimension d ∈ D:

EDA(d) =
∣∣{(v, w, d) ∈ E | v, w ∈ V }

∣∣.
Edge dimension connectivity (EDC ) [6] determines

the ratio of edges labeled with dimension d ∈ D:

EDC (d) =
EDA(d)

|E| .

In the example graph (Figure 1c):

• NDA(outgoing) = 12 and NDC (outgoing) = 0.85 im-
plying that the majority of nodes are active in dimen-
sion outgoing. However, there are no nodes exclusively
active in this dimension, hence NEDC (outgoing) = 0.

• EDA(outgoing) = 6 and EDC (outgoing) = 0.24, mean-
ing that 24% of edges are in dimension outgoing.

3.2.3 Metrics for Nodes
Node activity (NA) [31] identifies the number of dimen-

sions in which node v ∈ V is active. Formally,

NA(v) =
∣∣{d ∈ D |Active(v, d)}

∣∣.
The multiplex participation coefficient (MPC ) [4]

measures whether the connections of node v ∈ V are uni-
formly distributed among dimensions D:

MPC (v) =
|D|

|D| − 1

[
1−

∑
d∈D

(
Degree(v, d)

Degree(v,D)

)2
]
.

MPC (v) takes values in [0, 1], equalling to 0 if all the edges
of v belong to a single dimension, and to 1 if v has exactly
the same number of edges on each of dimensions D.

In the example graph (Figure 1c), NA(L) = 4, as node L is
active in 4 dimensions. MPC (R1) = 0 meaning that all the
edges belonging to R1 are from a single dimension (vertices),
while MPC (R2) = 0.46 implying that more dimensions be-
long to node R2 and they are not uniformly distributed.

Dimensional clustering coefficient (DC ) measures the
ratio of multidimensional triangles centered in a node v ∈ V .
We use three definitions of DC , denoted by DC1 , DC 2, and
DC 3. Each one is normalized to [0, 1] by the possible number
of triangles centered in v. To demonstrate the definitions,
we use the example graph in Figure 2.

v1 v2 v3 v4

C(v) 0.67 1.00 0.67 1.00
DC 1(v) 1.00 0.50 0.00 0.00
DC 2(v) 0.25 1.00 0.50 0.00
DC 3(v) 0.17 0.33 0.50 0.33

Figure 2: Example for the clustering coefficient metrics.

DC 1(v) [4] considers triangles where dimensions between
node v and its neighbours are the same, but the dimension
between the neighbours is different. DC 1(v1) = 1 as only
v3 and v4 are connected to v1 on the same dimension (a),
while v3 and v4 are connected on a different dimension (b).

DC 2(v) [4] considers triangles with 3 different dimensions.
The edges of v1 could be completed to a three-dimensional
triangle 4 ways:

1. (v1, v2, b), (v1, v3, a) with (v2, v3, c)
2. (v1, v2, c), (v1, v3, a) with (v2, v3, b) (this one exists)
3. (v1, v2, b), (v1, v4, a) with (v2, v4, c)
4. (v1, v2, c), (v1, v4, a) with (v2, v4, b)

From these, only one triangle exists in the graph (v1v2v3
on dimensions c, a, b), hence DC 2(v1) =

1
4
= 0.25.

We also introduce DC 3(v), a slight variation of DC 2. DC 3

considers triangles where the dimension between the neigh-
bours is not necessarily different from the dimension between
v and its neighbours. For example, DC 3(v1) = 2

12
= 0.17,

since there are 12 possible triangles around v, but only two
exist in the graph (v2v1v3 on dimensions b, a, b and c, a, b).



3.2.4 Metrics for Dimension Pairs
Pairwise multiplexity (Q) [31] is defined for a pair of

dimensions, d1, d2 ∈ D. Its value determines the ratio of
nodes from the network, which are active in both dimen-
sions d1 and d2. Intuitively, the more mutual nodes the two
dimensions have, the higher their pairwise multiplexity is.
The node activity binary vector av (v ∈ V ) is defined as:

av =
{
a[1]
v , a[2]

v , ... , a[|D|]
v

}
,where a[d]

v =

{
1, if Active(v, d),

0, otherwise.

Using this vector, the pairwise multiplexity metric is

Q(d1, d2) =
1

|V |
∑
v∈V

a[d1]
v a[d2]

v .

Q(d1, d2) takes values from the [0, 1] interval, and equals to

1 if the activity vectors a
[d1]
v and a

[d2]
v are identical when d1

and d2 belong to the same nodes.
In the example graph (Figure 1c), Q(incoming, outgoing) =

0.71, as these two dimensions often appear together. This
can be explained by the fact that every State node belongs
to both dimensions. However, the value is less than 1 as
Entry nodes are never active in dimension incoming.

4. EXPERIMENTAL SETUP
We analyzed the characteristics of 83 graph models by

evaluating single and multidimensional metrics on them.

4.1 Domains and Instance Models
Models were taken from six different domains:

• AutoFOCUS [3] is an MDE systems engineering tool
for designing distributed, embedded software systems.

• Building Information Model (BIM) [16] is a represen-
tation format for architecture designs. BIM models
were provided by Uninova, an industrial partner in the
MONDO EU FP7 project [28].

• Capella [32] is a graphical modeling workbench for
model-based systems engineering developed at Thales
to support the Arcadia engineering method.

• JaMoPP [20] parses Java source code into EMF-based
models and vice versa by constructing abstract syntax
trees (ASTs) from the source code with the extension
of cross-references (e.g. method calls, variable access).

• Yakindu Statecharts Tools [40] is an integrated mod-
eling environment developed by Itemis AG. It can be
used for the specification and development of reactive,
event-driven systems using statecharts.

• The Train Benchmark [36] is a benchmark with con-
tributions from several authors of this paper to mea-
sure the performance of continuous model validation
on graph-based models in a railway system domain
that originates from the MOGENTES EU FP7 [27]
project. We used 4 synthetic models from the Train
Benchmark in experiments, while all models from other
domains were real models created by engineers.

Table 2 shows the basic graph characteristics of the mod-
els. Each domain contains several instance models (3–34)
with different sizes, where BIM and JaMoPP models are
the largest (up to 10M nodes). The average degree ⟨k⟩
ranges from 2.2 to 7.8 which shows a significant difference
between our models and social networks [8, 14] where the

Domain # |D| |V | ⟨k⟩ EDC (ctm.)

AutoF. 24 16 – 74 10 – 1k 2.2 – 3.2 0.7 – 0.92
BIM 34 51 – 117 10k – 10M 2.2 – 5.2 0 – 0
Capella 3 103 – 182 1k – 10k 4.2 – 5.0 0.41 – 0.48
JaMoPP 9 67 – 98 100k – 1M 2.6 – 2.6 0.8 – 0.8
Yakindu 9 4 – 4 10 – 1k 3.2 – 4.6 0.41 – 0.52
Train B. 4 12 – 12 1k – 10k 7.2 – 7.8 0.16 – 0.16

Table 2: Characteristics of the instance models. #: number
of instance models; |D|: number of dimensions; |V |: number
of nodes; ⟨k⟩: average degree; EDC (ctm.): ratio of contain-
ment edges.

average degree is often ten times as much. The number
of dimensions |D| varies across domains: while Yakindu or
Train Benchmark models are built from 4–12 dimensions,
Capella models of similar size may contain 10 times more
dimensions. The ratio of containment edges, EDC (ctm.), is
higher for AutoFOCUS and JaMoPP models which means
fewer cross-references between the objects. This also ex-
plains the smaller average degrees for these models. Note
that the BIM models are flat graphs without a containment
hierarchy.

4.2 Data Preparation
When we first evaluated the multidimensional metrics on

these models, we observed outlying values along several dis-
tribution functions, which were caused by some extremities
of models. Therefore, we carried out some data preparation
and cleansing prior to the actual data analysis below.

Omitting layout information. Some modeling tools
(AutoFOCUS and Yakindu) persisted graphical information
of diagram elements to the model itself. As several metrics
were dominated by the large number of such elements, we
decided to remove the layout information from these models
(except for BIM where graphics is the key information in
the models).

Omitting models of extreme sizes. We omitted mod-
els that were very small (e.g. overly simple example models)
compared to all other models of the domain and therefore
distorted metric values and thus the results of the analysis.

No derived edges. All derived edges were removed,
including inverse edges of containment (see Section 2).

5. EVALUATION
We calculated the values of each multidimensional metric

of Section 3 for every instance model which yielded over 160
million data records as input for our analysis. This paper
only contains plots related to some interesting findings while
data sets and detailed plots are available online.1

Below, we investigate three research questions, which are
highly important for (i) understanding the structural differ-
ences between real vs. synthetic models and (ii) parameter-
izing future model generators to create realistic models.

5.1 Which Metrics Are Characteristic?
For describing the structure of models, we consider a met-

ric characteristic if it has both of the following properties.

1See http://docs.inf.mit.bme.hu/model-metrics/.

http://docs.inf.mit.bme.hu/model-metrics/


• Homogeneity: models within a specific domain have
similar distribution in this metric.

• Distinctiveness: models from different domains can
be distinguished based on their distribution in this
metric.

Metrics ranking high in one aspect do not necessarily per-
form well in the other one: values belonging to even very
narrow ranges can overlap entirely with each other (indicat-
ing indistinguishable domains) and diverse domains can be
separated efficiently, if they are different enough.
Table 3 contains the homogeneity values for each metric–

domain pairs. Cells with black background indicate that the
metric is highly homogeneous within a certain domain, while
white cells mark that it is heterogeneous. Grey cells usually
indicate domains containing outlier models which do not fall
into previous categories (with homogeneity values between
0.3 and 0.7). For example, AutoFOCUS and Yakindu mod-
els are heterogeneous along each dimension-related metric,
while Train Benchmark models are highly homogeneous here
(as expected) due to their synthetic nature.
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Dimensional c. c. 1 0.06 0.00 0.04 0.00 0.02 0.00
Dimensional c. c. 2 0.21 0.01 0.27 0.14 0.02 0.00
Dimensional c. c. 3 0.21 0.01 0.27 0.14 0.02 0.00
Clustering c. 0.21 0.28 0.19 0.14 0.02 0.00
Multiplex p. coeff. 0.55 0.78 0.30 0.42 0.01 0.29
Pairwise multiplexity 0.60 0.39 0.30 0.21 0.41 0.52
Node dimension conn. 0.86 0.63 0.42 0.33 0.42 0.50
Node exclusive dim. conn. 0.86 0.63 0.42 0.33 0.42 0.50
Node dim. activity 0.86 0.63 0.42 0.33 0.42 0.50
Edge dim. connectivity 0.82 0.59 0.40 0.33 0.42 0.76
Node activity 0.98 0.96 0.64 0.51 0.01 0.12
Degree list 0.99 0.99 0.92 0.99 0.99 0.99

Table 3: Summary of metric homogeneity (see Section 5.4).

Figure 3 summarizes the distinctiveness of metrics for
each pair of domains. Red cells indicate that a certain do-
main pair can be separated with a high confidence using the
metric (e.g. by visually inspecting the shape of their distri-
bution or applying unsupervised learning algorithms), while
black cells indicate indistinguishable domain pairs. For ex-
ample, Capella and JaMoPP models have similar character-
istics in edge-related metrics such as NDC and Q but can
be distinguished based on their MPC distribution.
In Table 3 and Figure 3, the metrics are ranked by homo-

geneity and distinctiveness. DC 2 andDC 3 rank high in both
properties, which makes them the best candidates for do-
main characterization. Models of real domains are entirely
homogeneous in DC 1 due to the dominance of zero values
(99-100%) in their distributions. Therefore, it is not useful
for distinguishing domains in general, even if some models
have shown completely different values (e.g. Train Bench-
mark models because of their tightly connected structure).
Some metrics, e.g. k, perform poorly in both properties.
Figure 4 presents the distribution functions of two ex-

trema DC 2 (left) and k (right). Except for AutoFOCUS
models, the domains are mainly distinguishable using DC 2.
Inability of k for characterization is clearly noticeable in the
figure: the distributions between different domains overlap
significantly, making separation impossible.
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Figure 3: Summary of metric distinctiveness (Section 5.4).
AF: AutoFOCUS, CAP: Capella, JMP: JaMoPP, TB: Train
Benchmark, YAK: Yakindu.
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Figure 4: Distributions of DC 2 and k values.

5.2 How Do Domains Differ?
Some metrics turned out to be useful also for describ-

ing models by revealing structural characteristics or hid-
den properties. During the analysis, we made the following
domain-specific observations.

Clusteredness. The metrics indicating the number of
triangles have significant differences across domains. Yakindu
and Train Benchmark models represent the two extrema:
while the former ones have almost exclusively zero C values
resulting in an average value of 0.008, the latter ones have
an average of 0.38. This is caused by the structural proper-
ties of the Train Benchmark [36]: railway segments and their
sensors are tightly connected leading to many triangles.

Dominant dimensions. All domains contain a small set
of dominant dimensions, with at most four of them covering
80% of the graph. In particular, BIM and JaMoPP models
contain a single dimension covering 40-50%. For BIM, these
edges encode the layout of the buildings, while for JaMoPP,
they form the containment hierarchy following the AST.

Dominance of containment edges. We categorized di-
mensions by splitting them in two groups indicating whether
they represent a containment relation or not. Containment
edges are the structural building blocks of models in software
and systems engineering, while non-containment edges rep-
resent other semantic information between model elements.

We found that the ratio of containment edges vary dras-
tically across the domains, e.g. it is approx. 45% in case
of Capella and 80% in case of JaMoPP models. Moreover,



there is no obvious relationship between the ratio of contain-
ment types in the metamodel and the containment edges in
the instance models, thus metamodels in themselves are in-
sufficient sources for characterizing realistic models.

AutoFOCUS Bim Capella JaMoPP Train Benchmark Yakindu
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Figure 5: Distribution of NDC values in containment and
non-containment subnetworks.

Figure 5 shows the NDC values for the containment and
non-containment dimensions. For real models, there are ob-
vious differences in the non-containment subnetworks, only
the synthetic Train Benchmark models provide identical char-
acteristics. We observed significant differences even in the
containment dimensions for AutoFOCUS and Yakindu mod-
els. Although BIM models have no explicit containment
edges, some of their dimensions provide extreme similarity
to containment subnetworks in other models, e.g. JaMoPP.

5.3 What Makes a Model Realistic?
As one of our long-term research objectives is to generate

realistic instance models, we attempted to identify a set of
metrics which are able to capture the characteristics of real
models. To achieve this, we compared real and synthetic
instance models from four domains (AutoFOCUS, Capella,
JaMoPP and Yakindu). We created synthetic models with
a random model generator, using the following approach:

1. We removed all edges from the model that are not part
of the containment hierarchy.

2. For each removed edge, we inserted a new edge of the
same type. The start and end nodes of the new edge
were chosen using a pseudorandom generator with a
uniform distribution from the nodes which fulfill the
type constraints prescribed by the edge type.

Compared to a fully random model generator, our setup
presents a more adverse situation for a metrics-based dis-
tinction since a significant part of the models remains real.
We calculated the metrics on both real and synthetic mod-

els. Figure 6 illustrates the influence of randomization on
two metrics, C and Q in Capella models. We found that
while the majority of metrics did not show any particular
difference (see e.g. Q in the right part of Figure 6), clus-
tering metrics such as C, DC 2 and DC 3 showed significant
changes both in their ranges (the maximum decreased) and
distribution. This change may be explained by the fact that
randomization decreased the clusteredness of the graph, as
the randomly inserted edges are less likely to form a triangle
(compared to a model designed by a domain expert). We
observed this phenomenon in each domain with a strength
depending on the number of removed edges. Thus, it was
less drastic in Yakindu instances than in large models.
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Figure 6: The distribution of C values (left) is significantly
different between the real and randomized version of a par-
ticular model.

5.4 Statistical Methodology
In order to objectively characterize homogeneity and dis-

tinctiveness, we needed a concept describing the similar-
ity of model pairs for a certain metric. We compared the
whole distributions of values (and not only their descriptive
summary like mean or variance) and we chose Kolmogorov-
Smirnov statistic (KS) [24] as a distance measure of models.

The KS statistics quantifies the maximal difference be-
tween the empirical distribution function lines at a given
value. It is sensitive to both shape and location differences,
it takes a 0 value only if the distributions are identical, while
it is 1 if the values of models are in disjunct ranges (even if
their shapes are identical).

Figure 7: Comparing model pairs with KS distance in DC 2.

Figure 7 illustrates the KS distance of DC 2 distributions
of models originating from three different domains (density
functions on the left, empirical distribution functions on the
right). KS distance between JaMoPP and Train Benchmark
is 0.8, reflecting that their lines are far from each other:
while 74% of JaMoPP values are smaller than 0.05 (this is
the value where the difference is the largest, marked with
the red dashed line), 90% of Train Benchmark values lay
above this threshold. On the contrary, the maximal distance
between Capella and JaMoPP models is only 0.1 (orange
dotted line). Based on this distance function, we defined
homogeneity and distinctiveness as the following.

Homogeneity of a domain is calculated as the ratio of
the maximal KS distance within the domain and the maxi-
mal distance across each model pair; it is 0 if every model of
the domain has an identical distribution and 1 if this domain
spans across the entire metric space.

Distinctiveness of domain pairs is calculated as the
average membership confidence of their models, which is
the ratio of domain-identical instances (i.e. models from



the same domain) in its kth neighbourhood, using the idea
of kNN classification methods [39]. Distinctiveness is 1 if
the minimal inter-cluster distance is larger than each kth

intra-cluster distance and decreases with every pair of mod-
els, which, while belonging to different domains, produce a
smaller distance to each other than to their domain-identical
neighbours.
Table 3 contains the homogeneity values of the domains.

Distinctiveness is computed with a k of 2, cells of Figure 3
are colored red if their distinctiveness is 1.

5.5 Threats to Validity
Metrics cannot capture semantics. The metrics used

in this paper describe the structure of the models, thus they
cannot explicitly express semantic content. However, the
semantics of different domains may be captured in a signifi-
cantly different way, which further hinders the characteriza-
tion from different domains.
How real are our models? We used a variety of sources

to gather models for analysis. BIM models are real mod-
els obtained from an industrial partner. JaMoPP models
are generated from open-source code repositories, this way
they are real large models. For Capella, AutoFOCUS and
Yakindu, we used openly available tutorial models provided
by the tool developers themselves who are experts in their
domain. As an intentional exception, the Train Benchmark
models are fully synthetic as they were created by the model
generator of the benchmark.

5.6 Summary of Findings
Our analysis provides some insights that need to be con-

sidered in future generators to synthesize realistic models.

1. Relying only upon metamodel-level information is clearly
insufficient, real instance models of human engineers
are required to characterize the domain.

2. Containment edges frequently dominate distributions,
which necessitates data preparation (Section 4.2). How-
ever, such edges can be exploited for model generation.

3. Many edges follow the locality principle, i.e. they often
lead to neighbouring nodes (and not to distant ones).

4. Characteristic metrics can be used as an objective func-
tion for a search-based model generator.

6. RELATED WORK
Reuse of metrics. A collection of multidimensional met-

rics is defined in [6, 31, 4] where the authors study the ex-
pressiveness of their metrics on real-life networks from het-
erogeneous domains e.g. from a social network (Flickr), co-
authorship data (DBLP), query log analysis, social, engi-
neering and biological networks. In this paper, we reuse the
metrics proposed in [6, 31, 4] and evaluate them on models
taken dominantly from software and systems engineering.
Comparative studies of networks from other dis-

ciplines. Revealing essential structural similarities and dif-
ferentiations among networks from different domains is a
fundamental objective in network theory. Such studies [1,
14] characterize a diverse set of models derived from dif-
ferent domains. However, these studies are carried out on
one-dimensional networks. So far, existing multidimensional
studies only focused on a single application domain, such
as neighbourhood and centrality analysis of a Polish social
network [8], relevance and correlation analysis of different

dimensions in Flickr [22], community detection in the net-
work of YouTube [37], analysis of co-authorship in the DBLP
network [9] and characteristics of different transportation
networks (European Air Network [12, 11], cargo ship move-
ments [21]). In this paper, we aim to find structural differ-
ences between MDE models of different domains by taking
multidimensionality into account.

Use of network analysis in software engineering.
The authors of [7] use graph metrics to capture the struc-
ture and evolution of software products and processes in
order to detect significant structural changes, help estimate
bug severity, prioritize debugging efforts, and predict defect-
prone releases in software engineering. Additionally, the
principles of complex networks are used to measure the struc-
tural complexity of software systems [25, 26] and to predict
defects on dependency graphs [41]. Our motivation is to find
metrics that are able to characterize and distinguish models
used in tools of software and systems engineering.

Metrics in MDE. Our research group investigated the
correlation between model query performance and metrics
describing the queries and the models [19]. The authors
of [33] use metrics to understand the main characteristics
of domain-specific metamodels and to study model trans-
formations with respect to the corresponding metamodels,
and search correlations between them via analytical mea-
sures [34]. A generic σ-metric is proposed in [29] to assist
in empirically validating various quality attributes. Finally,
several approaches exist to define metrics using high-level
constraint languages [13, 17]. The main novel aspect of our
work is to identify characteristic graph metrics for describ-
ing real instance models on a statistical basis to help develop
future model generators.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we identified several graph metrics known

from other disciplines and evaluated them on 83 instance
models of 6 different tools dominantly from software and
systems engineering domains in order to identify character-
istic metrics using statistical and visual data analysis tech-
niques. We consider a metric characteristic if it separates
models of different domains from each other, while provides
similar values for models within the same domain. We also
discussed whether some of these metrics can distinguish real
models from auto-generated synthetic ones, which is the first
investigation of graph models for such a purpose up to our
best knowledge. Our initial finding is that different ver-
sions of clustering coefficients were particularly useful for
such classifications. But, unsurprisingly, no single metric
was able to sufficiently handle all the domains.

In the future, we plan to use our findings for (i) devel-
oping domain-specific model generators that are capable of
synthesizing realistic models, and (ii) fine-tuning search-plan
based graph query optimization techniques. We also need to
improve the performance of computing some metrics, which
turned out to be time-consuming when computing metrics
which take different values for each node-dimension pair.
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