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Searching for BSM:

fundamentally about finding the boundary between models that are
consistent with the data and those that are not.

1D: intervals

2D: contours

ND: (hyper-)surfaces

Boundary is usually defined by iso-surfaces of a test statistic (e.g.
CLs) at certain values.

Problem:
assessing models is computationally expensive.
This Talk:

how to find excursion sets / iso-surfaces of generic R*n functions in an
efficient way.
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Current Approach (mostly):

e Choose ~reqgular grid of points ahead of time

e Simulate sufficient number of events per point

¢ Run sample through analysis + stats T T—
e Interpolate between point results to 5l G mas| 3
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e need dense grid to resolve contour
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Instead of choosing all points at once, irrespective of what the
eventual contour looks like ...

... can we construct an smart algorithm that helps us find the points
that actually make sense to generate, by iteratively working in what

we learn from already generated points.

...perhaps we can do with much fewer points / only generate points
close to contour

HEP largely easily parallellizable — reorder the loops and save
corpputations
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1) observe contour
2) decide next point
3) improve contour
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http://Iheinric.web.cern.ch/lheinric/contour/gifs/demo_ gif.gif
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http://lheinric.web.cern.ch/lheinric/contour/gifs/demo_gif.gif

http://Iheinric.web.cern.ch/lheinric/contour/gifs/methods_checkmate.qgif
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http://Iheinric.web.cern.ch/lheinric/contour/animation3ddarkhiggs.qif

6 Evaluations in 1 iterationsr ! 6 Evaluations in 1 iterations

————————————— -‘J_‘
To1
‘ T2
e ©
! T0.3
@
o T0.4
09
1 os _ , | | | os
07 |
01 0.6
SR i\ 06
02 \| “EESE BR | ' ' ' ‘ ' 0.7
N\ os ;
Ay It | | | | | _ | 1os
1 03
;f 02 il g t t B— t t t +0.9

01 02 03 04 05 06 07 08 09

(?’ NEW YORK UNIVERSITY


http://lheinric.web.cern.ch/lheinric/contour/animation3ddarkhiggs.gif

http://Ineinric.web.cern.ch/lheinric/contour/animation3dtoy.gif
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Gaussian Processes:

A generalization of multivariate normal distribution to stochastic fields,

such that for any vector of points,

Y(x) = N(p(x), k(x,x))

GP is specified by a Kernel function and its hyperparameters.

Given a limited set of data points (i.e.
function evaluations) the hyper-
parameters can be fitted and the GP
be used to predict function values
across the entire domain.

Prediction includes mean value
but also uncertainty.
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for each point, the value of the
function modeled by the GP is
described by a normal distribution.

Given a set if thresholds, a discrete
pdf S(x) describes probability of x
being a member of a given excursion
set

Entropy of S(x) gives measure of
uncertainty of classification.

<S> gives global assessment of
current contour uncertainty.

H[S] = Si(z) log Si(x)

(H[S)) = / da’ H[S(z")



Bayesian Optimization:

With given dataset D, we can construct levelset estimates via the GP as
well as assess the (average) (un-)certainty of those estimates

Bayesian Optimization: optimize a given objective function through
sequential design, i.e. choose new, optimal, points to evaluate functions
to improve the model based on prior information.

balance exporation of unknown space vs exploitation of already
acquired data towards the objective.

answer to the question:

Which point(s) should we evaluate next to improve quality of
contours / excursion sets.

Strategy: based on the current model, build an acquisition function that
indicates quality / helpfulness of new points to reach the objective (low
uncertainty about excursion sets)
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Bayesian Optimization:

For each candidate point x, GP gives us a p.d.f of possible evaluations
Y(x). Use this to compute the expected improvement in the global

guality assessment:

acq(r) = /dx’ H[S(z'|D)] — Eyoy (a) /dx’ H[S(z'|'DU (z,y))]

Integrand H[S(X")] - E[H[S(X)IY(X)]] is the mutual information between
S(x’) and Y(x).

I(S(a"), Y (2)) = H[S(z")] = Eyy (z) H[S(@'|Y (27)] =
H[Y (z)] — Eg(ury H[S(Y (2)|S(2")]

second formulation H[Y] - E[YIS] is computationally more tractable.
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Bayesian Optimization:

I(S(a"), Y (2)) = H[S(z")] = Eyoy (z) H[S(@'|Y (2")] =
H[Y (z)] — Eg(ury HIS(Y (2)|S(2")]

H[Y]: entropy of a normal distribution with parameters specified by GP

H[YIS]: entropy of a marginal distribution of bivariate ..
normal distribution with one dimension truncated

moments of this distribution can be derived
analytically. Use normal distribution® with same
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Benchmarking
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Compared Bayesian

Optimization to two strategies

for 2D and 3D cases:

1. regular grids with random
alignments

2. latin hypercube sampling

BO vyields level sets of equal
qguality with much fewer
evaluations (e.g. generated
samples). E.g. three
dimensional parameters
scans quite possible < 100
points.

Works reobustly for large
batch sizes.
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Conclusion:

Regular grids do not scale for high dimensions to determine
(iso-)surfaces of scalar functions (such as CLs). Many points irrelevant
for determining the surfaces — wasted compute.

Designed Bayesian Optimization algorithm that sequentially incorporates
prior information to determine the best points to evaluate next to reach
the objective (i.e. an accurate contour/(hyper-)surface)

Evaluated on real physics examples (CheckMate, MadGraph) —
observerd significant savings potential in computational resources.

Future Work:

e higher dimensions (pMSSM - 10 /-19 ?) through parallel GP
computation

e adaptive batching techniques
e GPUs
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Backup
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ran_regulargrids 9 points
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