An Introduction to NNs
using Keras

Michela Paganini

michela.paganini@cern.ch

Yale University

mailto:michela.paganini@cern.ch

Keras

« Modular, powerful and intuitive Deep Learning python library built on Theano
and Tensort-low

o Minimalist, user-friendly interface

e CPUs and GPUs

o Open-source, developed and maintained by a community of contributors, and
oublicly hosted on github

e Extremely well documented, lots of working examples

e \ery shallow learning curve —> it is by far one of the best tools for both
Deginners and experts

http://keras.io

Neural Networks

e A stack of tensor operators

e A series of linear and non-linear transformations with the
goal of finding the optimal parameters to transform inputs
and approximate targets

e [Or classification and regression

* Deep nets > shallow nets

e (Great for raw inputs instead of highly-engineered variables

m Sequential Model

e Seqguential: linear stack of layers

o Graph: multi-input, multi-output, with arbitrary
connections inside

e Sequential allows us to build NNs like legos, by adding
one layer on top of the other, swapping layers in and out

http://keras.io

114 sequential Mode

Getting started with the Keras Sequential model

The Sequential modelis alinear stack of layers.
You cancreatea Sequential model by passing a list of layer instances to the constructor:

from keras.models import Sequential

model = Sequential(([
Dense(32, input_dim=784),
Activation('relu’),
Dense(10),
Activation('softmax'),

D

You can also simply add layers viathe .add() method:

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))

http://keras.io

Dense

e Core unit of a Multi-Layer Perceptron

e | inear transformation of the input vector x € R™, which
can be expressed using the matrix W e R™*" as:

u=Wax+0>b
where b € R is the bias unit

e All entries in both VW and b are trainable

https://github.com/fchollet/keras/blob/master/keras/layers/core.py#L507

Dense

* |In Keras:

keras.layers.core.Dense(
output _dim,
init="glorot _uniform',
activation='linear"',
weights=None,
W regularizer=None,
b _regularizer=None,
activity regularizer=None,
W _constraint=None,
b _constraint=None,
input_dim=None)

* input_dim (or input_shape) are necessary arguments for the 1st layer of the net

Example

as first Layer i1n a sequential model:

model = Sequential(Dense(32, input_dim=16))

now the model will take as input arrays of shape (*, 16)
and output arrays of shape (*, 32)

this 1s equivalent to the above:

model = Sequential(Dense(32, input_shape=(16,)))
after the first lLayer, you don't need to specify

the size of the input anymore:

model.add(Dense(32))

http://keras.io

Activation

e Mathematical way of guantitying the activation state of a
node —> whether it's firing or not

e Non-linear activation functions are the key to Deep
Learning

e Allow NNs to learn complex, non-linear transtormations
of the INputs

http://keras.io/layers/core/#activation

K Activation

e Some popular choices:

Sigmoid Tanh
1 2
f@) = = / f(2) = tanh(2) = 5 - 1f
Rel_u LU

] 0 for <0 | a(e*—1) for <0
f(a:)—{ r for >0 / f(a:)—{ x for a:>0/

http://keras.io/layers/core/#activation

Activation

Activations can either be used through an Activation layer, or throughthe activation argument

supported by all forward layers:

from keras.layers.core import Activation, Dense

model.add(Dense(64))
model.add(Activation('tanh'))

is equivalent to:

model.add(Dense(64, activation='tanh'))

Available activations

« softmax: Softmax applied across inputs last dimension. Expects shape either
(nb_samples, nb_timesteps, nb_dims) or (nb_samples, nb_dims) .

« softplus

* relu

e tanh

* sigmoid

* hard_sigmoid

¢ linear

On Advanced Activations

Activations that are more complex than a simple Theano/TensorFlow function (eg. learnable activations,
configurable activations, etc.) are available as Advanced Activation layers, and can be found in the module
keras.layers.advanced_activations . These include PReLU and LeakyRelLU.

http://keras.io/layers/core/#activation

14 Weignts Initialization

» Before training, NN weights need to be initialized to some values

 |nitial values must be suitable for the optimization problem to converge as quickly
as possiple

e [ots of local minima in non-convex optimization problem:

poor choice of initial weights may lead to convergence to sub-optimal
minimum

« Cannot intialize all weights in a layer 1o a constant
e Big risk = saturation —> very slow leaming

e Variance of initialization distribution should be a function of one or both the input
and output dimensions —> done automatically by Keras

http://keras.io/layers/core/#activation

Weignhts Initialization

Initializations define the probability distribution used to set the initial random weights of Keras layers.

The keyword arguments used for passing initializations to layers will depend on the layer. Usually it is simply

init :
model.add(Dense(64, init="uniform'))

Available initializations

e uniform

e lecun_uniform: Uniform initialization scaled by the square root of the number of inputs (LeCun 98).
e normal

 identity: Use with square 2D layers (shape[@] == shape[1]).

» orthogonal: Use with square 2D layers (shape[@] == shape[1]).

e zero

» glorot_normal: Gaussian initialization scaled by fan_in + fan_out (Glorot 2010)

e glorot_uniform

e he_normal: Gaussian initialization scaled by fan_in (He et al., 2014)

e he_uniform

http://keras.io/layers/core/#activation

Forward Propagation

Sequential series of operations

Transforms input vector of features x through the layers on the NN to obtain the final output y

y depends not only on the input vector x but also on the current values of the weights VW and b in
each layer

* A sequential model with L layers is simply computing:
y =f(1')(51.-1)

k
e =f " zi-)

p=4X

Fach fis simply a non-linear tensor map

Result of forward propagation of the same input through the NN will be different during each
update

» Qutput y represents the net's current attempt at reproducing the target y

» ForaFFNN, this step consists of just traversing a linear graph where each node is a tensor op

Loss Function

e Mathematical way of guantifying how much y deviates from y

e Dictates how strongly we penalize certain types of mistakes
e (Cost of inaccurately classifying an event (‘cost function”)
o Used by the optimizer to evaluate performance of NN

e Core of the training: it's the objective of the optimization process, the value that
we're trying to minimize (“objective function”)

The goal of optimization is not to maximize the area under the ROC curve. That
can e used as a metric to evaluate performance and determine the best weight
configuration, but it can't be directly maximized during training by your optimization

algorithm, because it's a non-differentiable quantity.

http://keras.io/objectives/

. L. oss Function

e Common loss functions included in Keras:

1 n R l n .
MSE= =) (¥;-Y)? = — i —Yi
- ;() MAE = — ; ¥; - Vi
~ 1 - Yi - Yi 1 . l - (Vv (V. 2
MAPE = — ; 7 MSLE = — ;(log(yz +1) —log(Y; + 1))
Hinge = ! i max(1 — Y;Y;,0) okl = ! i (ma.x(l — Y,Y-.O))2
g v' g ?

I — _% ,2::1 [Y,']og)}i + (1 -Y;)log (1 B Y')]

 [he choice of loss simply resides in understanding what types of errors are or
aren't acceptable in the specific problem under consideration

http://keras.io/objectives/

. Loss Function

Usage of objectives

An objective function (or loss function, or optimization score function) is one of the two parameters required
to compile a model:

model.compile(loss="mean_squared_error', optimizer="sgd')

You can either pass the name of an existing objective, or pass a Theano/TensorFlow symbolic function that
returns a scalar for each data-point and takes the following two arguments:

e y true: True labels. Theano/TensorFlow tensor.
e y_pred: Predictions. Theano/TensorFlow tensor of the same shape as y_true.

The actual optimized objective is the mean of the output array across all datapoints.

http://keras.io/objectives/

m Optimizers

* [he leaming process Is just a global optimization
oroblem, where the weights will take on values such
that the loss function is minimized

e Optimizers = methods to quickly take steps in

parameter space that are going to be good for
minimizing the global loss function

http://keras.io/objectives/

m Optimizers

Stochastic Gradient Descent (SGD)

Ay = —a) VL (i) + A1)

1=1

* Learning rate a: how large a step to take
« Momentum p: how important previous update is in calculating current update
 Decay: exponential rate of change of the learning rate as a function of the number of iteration

at each iteration: a(k) — Oé(k_l)/(]. -+ decay X k)

Adam, Adagrad, Adamax, Adadelta, ...

e Smoothing between steps
e Infer 2nd order information about optimization problem, like curvature

* Adaptive optimization algorithms adapt to the landscape and vary the parameters accordingly, performing
parameterized scheduling with no human involvement

http://keras.io/optimizers/

. Optimizers

Usage of optimizers

An optimizer is one of the two arguments required for compiling a Keras model:

model = Sequential()

model.add(Dense(64, init='uniform', input_dim=10))
model.add(Activation('tanh'))
model.add(Activation('softmax"'))

sgd = SGD(1r=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="mean_squared_error', optimizer=sgd)

You can either instantiate an optimizer before passing it to model.compile() ,asinthe above example, or

you can call it by its name. In the latter case, the default parameters for the optimizer will be used.

pass optimizer by name: default parameters will be used
model.compile(loss="mean_squared_error', optimizer="sgd')

http://keras.io/optimizers/

Back Propagation

o \Way of taking derivatives through graphically representable systems
o Loss must be differentiable with respect to any parameter (end-to-end differentiable)

 Modem DL libraries, like Keras, use tensor math libraries such as Theano and Tk to do
automatic differentiation of symbolically expressed DAGs, simplify operations, and
compile logic into the graph

» The hardest part about deep learmning is completely solved!
You don't have to do anything at all, no matrix derivatives or any ugly stuff like
that

e Theano compiles CUDA code directly on the GPU (or machine instructions on CPU,
that are specific to the matrix math library installed). If you have both, specity
THEANO FLAGS=device=gpu or cpu, or change itin your ~/ . theanorc

m Regularization

» Series of methods to avoid overfitting

Mathematical encouragement towards simpler models

Explicitly penalize weights that get too large

Two main categories:

1. norm-based:
generally uses loss functions of the form L(x, y, 0) = L,.q(x,y) + Af(0)
where f(8) is some function of the parameters, and A is the regularization parameter. Common examples of f are:

. W F' the Frobenius norm — encourages small weights

. W 1 the 1-norm — encourages parameter sparsity

2. stochastic:
Main example = Dropout —> randomly sets some percentage of output nodes in a layer equal to zero
The more commonly used form of regularization in deep nets in the modermn era —> fast and lead to simpler,
sparser models

http://keras.io/regularizers/

14 Regularizatior

N Keras:

e Dropout is added in as a layer
[t masks the outputs of the previous layer such that some of them will
randomly become inactive and will not contribute to information propagation

Dropout [source]

keras.layers.core.Dropout(p)

Applies Dropout to the input. Dropout consists in randomly setting a fraction p of input units to O at each

update during training time, which helps prevent overfitting.

http://keras.io/optimizers/

1] Regularization

 Norm-based regularization is specified per layer
It represents an added cost associated with the weights of that specific layer being too large in magnitude
Usually set to zero by default, but can be modified in the definition of the layer

Usage of regularizers

Regularizers allow to apply penalties on layer parameters or layer activity during optimization. These
penalties are incorporated in the loss function that the network optimizes.

The penalties are applied on a per-layer basis. The exact API will depend on the layer, but the layers Dense ,
TimeDistributedDense , MaxoutDense , ConvolutionlD and Convolution2D have aunified API.

These layers expose 3 keyword arguments:

e W_regularizer :instance of keras.regularizers.WeightRegularizer
e b_regularizer :instanceof keras.regularizers.WeightRegularizer

e activity_regularizer :instance of keras.regularizers.ActivityRegularizer

Example

from keras.regularizers import 12, activity 12
model.add(Dense(64, input_dim=64, W_regularizer=12(©.01), activity_regularizer=activity 12(9.01)))

http://keras.io/regularizers/

K Validation

NN need to be able to generalize well to new examples

e [t should not simply memorize the training set

 Minimizing training loss is not enough —> check validation loss to
stop the training!

e But, this way we indirectly fit to the validation set —> overestimate
real performance

* Need final, unbiased test on another separate sample (test set) to get
accurate estimate of error

http://keras.io/callbacks/

Validation

— training command

model.fit(x, vy,
batch _size=32, nb_epoch=10, verbose=1,
callbacks=[], validation split=0.0, validation _data=None,
shuffle=True, class weight=None, sample weight=None)

V\/hel’e "« validation_split: float between 0 and 1: fraction of the training data to be used as validation data. The model will set
apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data
at the end of each epoch.

« validation_data: data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not

be trained on this data. This could be a tuple (x_val, y_val) or a tuple (val_x, val_y, val_sample_weights).

and:
A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to
get a view on internal states and statistics of the model during training. You can pass a list of callbacks (as the
keyword argument callbacks)tothe .fit() method of the Sequential model. The relevant methods of
the callbacks will then be called at each stage of the training.
ModelCheckpoint [source]| |EarlyStopping [source)
keras.callbacks.ModelCheckpoint(filepath, monitor='val _loss', verbose=8, save_best_only=False, modes='auto’ keras.callbacks.EarlyStopping(monitors'val_loss', patience«8, verboses8, modes'auto’)
Save the model after every epoch. Stop training when a monitored quantity has stopped improving.

http://keras.io/regularizers/

m Training a Simple NN

-- build net

model = Sequential()
model.add(Dense(16, input_shape= (10,)))
model.add(Activation('relu’))
model.add(Dense(8, activation="relu’))
model.add(Dense(4, activation="relu’))
model.add(Dense(1, activation="sigmoid’))

-- compile net, specifying optimizer and loss function
model. (‘adam’, ‘binary_crossentropy’)

-- train!
model.fit(X_train, y_train)

-- test
yhat = model. (X_test, verbose = True, batch_size = 516)

Input (10) # Dense(16) P RelLu # Dense(8) P Relu 1 Dense(4) P Rel_u = Dense(1) P Sigmoid

http://keras.io

m Training a Simple NN

-- build net
model = Sequential()
model.add(Dense(16, input_shape= (10,)))

model.add(Activation('relu’)) STO@S Uaiﬁiﬂg @ﬁ@f 2@

model.add(Dense(8, activation="relu'))

(
(
model.add(Dense(4, activation="relu')) ‘ ' .
model.add(Dense(1, activation="'sigmoid')) @DQChS ‘f Th@ Vﬁ“d@ﬂ@ﬂ
l0ss does not improve

-- compile net, specifying optimizer and loss function
model. (‘adam’', ‘binary_crossentropy')

ty: saves net it the

-- train! ‘ ‘
model.7it(X_train, y_train, batch_size=16, \/a‘ \dﬁﬂ@ﬁ ‘QSS
callbacks = [imDrQV@S

EarlyStopping(verbose=True, patience=20, monitor='val_loss'), /
ModelCheckpoint(‘TestModel-progress', monitor='val_loss', verbose=True, save_best_only=True)],
nb_epoch=100,

validation_split = 0.2,
show_accuracy=True)

except Keyboardinterrupt: < Tarn Uﬁ‘ ‘y
print "Training ended early.' N@Wu Dt vammg

-- load in best network
model.load_weights(‘TestModel-progress’)

-- test

yhat = model. (X_test, verbose = True, batch_size = 516)

http://keras.io

Congratulations!

e YOU can now use and understand the coolest visualization tool ever:

http://playground.tensorflow.org/

http://playground.tensorflow.org/

