
An Introduction to NNs 
using Keras

Michela Paganini 
michela.paganini@cern.ch 

 
Yale University

1

Yale

mailto:michela.paganini@cern.ch


Yale

Keras
• Modular, powerful and intuitive Deep Learning python library built on Theano 

and TensorFlow 

• Minimalist, user-friendly interface 

• CPUs and GPUs  

• Open-source, developed and maintained by a community of contributors, and 
publicly hosted on github 

• Extremely well documented, lots of working examples 

• Very shallow learning curve —> it is by far one of the best tools for both 
beginners and experts
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Neural Networks
• A stack of tensor operators 

• A series of linear and non-linear transformations with the 
goal of finding the optimal parameters to transform inputs 
and approximate targets 

• For classification and regression 

• Deep nets > shallow nets 

• Great for raw inputs instead of highly-engineered variables
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Sequential Model

• Sequential: linear stack of layers 

• Graph: multi-input, multi-output, with arbitrary 
connections inside 

• Sequential allows us to build NNs like legos, by adding 
one layer on top of the other, swapping layers in and out
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Sequential Model
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Dense
• Core unit of a Multi-Layer Perceptron  

• Linear transformation of the input vector            , which 
can be expressed using the matrix                     as:  
 
 
where                is the bias unit 

• All entries in both W and b are trainable
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Dense
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• In Keras: 
keras.layers.core.Dense(  
        output_dim,  
        init='glorot_uniform',  
        activation='linear',  
        weights=None,  
        W_regularizer=None,  
        b_regularizer=None,  
        activity_regularizer=None,  
        W_constraint=None,  
        b_constraint=None,  
        input_dim=None) 

• input_dim (or input_shape) are necessary arguments for the 1st layer of the net

http://keras.io
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Activation
• Mathematical way of quantifying the activation state of a 

node —> whether it's firing or not 

• Non-linear activation functions are the key to Deep 
Learning 

• Allow NNs to learn complex, non-linear transformations 
of the inputs
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Activation
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Sigmoid Tanh

ReLu ELu

• Some popular choices:

http://keras.io/layers/core/#activation
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Activation
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Weights Initialization
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• Before training, NN weights need to be initialized to some values  

• Initial values must be suitable for the optimization problem to converge as quickly 
as possible 

• Lots of local minima in non-convex optimization problem: 

poor choice of initial weights may lead to convergence to sub-optimal 
minimum 

• Cannot initialize all weights in a layer to a constant 

• Big risk = saturation —> very slow learning 

• Variance of initialization distribution should be a function of one or both the input 
and output dimensions —> done automatically by Keras

http://keras.io/layers/core/#activation
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Weights Initialization
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Forward Propagation
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• Sequential series of operations 

• Transforms input vector of features x through the layers on the NN to obtain the final output ŷ 

• ŷ depends not only on the input vector x but also on the current values of the weights W and b in 
each layer 

• A sequential model with L layers is simply computing: 
 
 

• Each f is simply a non-linear tensor map 

• Result of forward propagation of the same input through the NN will be different during each 
update 

• Output ŷ represents the net's current attempt at reproducing the target y 

• For a FFNN, this step consists of just traversing a linear graph where each node is a tensor op
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Loss Function
• Mathematical way of quantifying how much ŷ deviates from y 

• Dictates how strongly we penalize certain types of mistakes 

• Cost of inaccurately classifying an event (“cost function”) 

• Used by the optimizer to evaluate performance of NN 

• Core of the training: it's the objective of the optimization process, the value that 
we're trying to minimize (“objective function”)
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The goal of optimization is not to maximize the area under the ROC curve. That 
can be used as a metric to evaluate performance and determine the best weight 
configuration, but it can't be directly maximized during training by your optimization 

algorithm, because it's a non-differentiable quantity. 

http://keras.io/objectives/
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Loss Function
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• Common loss functions included in Keras:

• The choice of loss simply resides in understanding what types of errors are or 
aren't acceptable in the specific problem under consideration

http://keras.io/objectives/
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Loss Function
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Optimizers

• The learning process is just a global optimization 
problem, where the weights will take on values such 
that the loss function is minimized 

• Optimizers = methods to quickly take steps in 
parameter space that are going to be good for 
minimizing the global loss function
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Optimizers
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Stochastic Gradient Descent (SGD)

Adam, Adagrad, Adamax, Adadelta, …

• Learning rate α: how large a step to take 
• Momentum μ: how important previous update is in calculating current update 
• Decay: exponential rate of change of the learning rate as a function of the number of iteration 

             
            at each iteration:

• Smoothing between steps 
• Infer 2nd order information about optimization problem, like curvature 
• Adaptive optimization algorithms adapt to the landscape and vary the parameters accordingly, performing 

parameterized scheduling with no human involvement

http://keras.io/optimizers/
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Optimizers
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Back Propagation
• Way of taking derivatives through graphically representable systems 

• Loss must be differentiable with respect to any parameter (end-to-end differentiable) 

• Modern DL libraries, like Keras, use tensor math libraries such as Theano and TF to do 
automatic differentiation of symbolically expressed DAGs, simplify operations, and 
compile logic into the graph 

The hardest part about deep learning is completely solved!  
You don't have to do anything at all, no matrix derivatives or any ugly stuff like 
that 

• Theano compiles CUDA code directly on the GPU (or machine instructions on CPU, 
that are specific to the matrix math library installed). If you have both, specify 
THEANO_FLAGS=device=gpu or cpu, or change it in your ~/.theanorc
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Regularization
• Series of methods to avoid overfitting 

• Mathematical encouragement towards simpler models 

• Explicitly penalize weights that get too large 

• Two main categories:  

1. norm-based: 
generally uses loss functions of the form  
where f(θ)  is some function of the parameters, and λ is the regularization parameter. Common examples of f are: 

•                    the Frobenius norm — encourages small weights 

•                    the 1-norm — encourages parameter sparsity 

2. stochastic: 
Main example = Dropout —> randomly sets some percentage of output nodes in a layer equal to zero  
The more commonly used form of regularization in deep nets in the modern era —> fast and lead to simpler, 
sparser models
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Regularization
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In Keras: 

• Dropout is added in as a layer 
It masks the outputs of the previous layer such that some of them will 
randomly become inactive and will not contribute to information propagation 

http://keras.io/optimizers/
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Regularization
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• Norm-based regularization is specified per layer 
It represents an added cost associated with the weights of that specific layer being too large in magnitude  
Usually set to zero by default, but can be modified in the definition of the layer

http://keras.io/regularizers/
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Validation

24

• NN need to be able to generalize well to new examples 

• It should not simply memorize the training set  

• Minimizing training loss is not enough —> check validation loss to 
stop the training! 

• But, this way we indirectly fit to the validation set —> overestimate 
real performance 

• Need final, unbiased test on another separate sample (test set) to get 
accurate estimate of error

http://keras.io/callbacks/
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Validation
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# — training command  
model.fit( x, y,  
           batch_size=32, nb_epoch=10, verbose=1,  
           callbacks=[], validation_split=0.0, validation_data=None,  
           shuffle=True, class_weight=None, sample_weight=None ) 

where:

and:

http://keras.io/regularizers/
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Training a Simple NN
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# -- build net
model = Sequential()
model.add(Dense(16, input_shape= (10,)))
model.add(Activation('relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# -- compile net, specifying optimizer and loss function
model.compile('adam', ‘binary_crossentropy')

# -- train!
model.fit(X_train, y_train)

# -- test
yhat = model.predict(X_test, verbose = True, batch_size = 516)

Dense(16) Dense(8) Dense(4) Dense(1)ReLu ReLu ReLu SigmoidInput (10)

http://keras.io


Yale

Training a Simple NN
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# -- build net
model = Sequential()
model.add(Dense(16, input_shape= (10,)))
model.add(Activation('relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# -- compile net, specifying optimizer and loss function
model.compile('adam', ‘binary_crossentropy')

try:
# -- train!
model.fit(X_train, y_train, batch_size=16,

                   callbacks = [
                                        EarlyStopping(verbose=True, patience=20, monitor='val_loss'),
                                        ModelCheckpoint(‘TestModel-progress', monitor='val_loss', verbose=True, save_best_only=True)],
                   nb_epoch=100,
                   validation_split = 0.2,
                   show_accuracy=True)

except KeyboardInterrupt:
    print 'Training ended early.'

# -- load in best network                                                                                                                                                                                      
model.load_weights(‘TestModel-progress’)
# -- test
yhat = model.predict(X_test, verbose = True, batch_size = 516)

stops training after 20 
epochs if the validation 
loss does not improve

saves net if the 
validation loss 

improves

manually 
interrupt training

http://keras.io
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Congratulations!
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• You can now use and understand the coolest visualization tool ever: 

http://playground.tensorflow.org/

http://playground.tensorflow.org/

