
An Introduction to NNs
using Keras

Michela Paganini 
michela.paganini@cern.ch 

 
Yale University

1

Yale

mailto:michela.paganini@cern.ch

Yale

Keras
• Modular, powerful and intuitive Deep Learning python library built on Theano

and TensorFlow

• Minimalist, user-friendly interface

• CPUs and GPUs

• Open-source, developed and maintained by a community of contributors, and
publicly hosted on github

• Extremely well documented, lots of working examples

• Very shallow learning curve —> it is by far one of the best tools for both
beginners and experts

2

http://keras.io

Yale

Neural Networks
• A stack of tensor operators

• A series of linear and non-linear transformations with the
goal of finding the optimal parameters to transform inputs
and approximate targets

• For classification and regression

• Deep nets > shallow nets

• Great for raw inputs instead of highly-engineered variables

3

Yale

Sequential Model

• Sequential: linear stack of layers

• Graph: multi-input, multi-output, with arbitrary
connections inside

• Sequential allows us to build NNs like legos, by adding
one layer on top of the other, swapping layers in and out

4

http://keras.io

Yale

Sequential Model

5

http://keras.io

Yale

Dense
• Core unit of a Multi-Layer Perceptron

• Linear transformation of the input vector , which
can be expressed using the matrix as:  
 
 
where is the bias unit

• All entries in both W and b are trainable

6

https://github.com/fchollet/keras/blob/master/keras/layers/core.py#L507

Yale

Dense

7

• In Keras:
keras.layers.core.Dense( 
 output_dim,  
 init='glorot_uniform',  
 activation='linear',  
 weights=None,  
 W_regularizer=None,  
 b_regularizer=None,  
 activity_regularizer=None,  
 W_constraint=None,  
 b_constraint=None,  
 input_dim=None)

• input_dim (or input_shape) are necessary arguments for the 1st layer of the net

http://keras.io

Yale

Activation
• Mathematical way of quantifying the activation state of a

node —> whether it's firing or not

• Non-linear activation functions are the key to Deep
Learning

• Allow NNs to learn complex, non-linear transformations
of the inputs

8

http://keras.io/layers/core/#activation

Yale

Activation

9

Sigmoid Tanh

ReLu ELu

• Some popular choices:

http://keras.io/layers/core/#activation

Yale

Activation

10

http://keras.io/layers/core/#activation

Yale

Weights Initialization

11

• Before training, NN weights need to be initialized to some values

• Initial values must be suitable for the optimization problem to converge as quickly
as possible

• Lots of local minima in non-convex optimization problem:

poor choice of initial weights may lead to convergence to sub-optimal
minimum

• Cannot initialize all weights in a layer to a constant

• Big risk = saturation —> very slow learning

• Variance of initialization distribution should be a function of one or both the input
and output dimensions —> done automatically by Keras

http://keras.io/layers/core/#activation

Yale

Weights Initialization

12

http://keras.io/layers/core/#activation

Yale

Forward Propagation

13

• Sequential series of operations

• Transforms input vector of features x through the layers on the NN to obtain the final output ŷ

• ŷ depends not only on the input vector x but also on the current values of the weights W and b in
each layer

• A sequential model with L layers is simply computing: 
 
 

• Each f is simply a non-linear tensor map

• Result of forward propagation of the same input through the NN will be different during each
update

• Output ŷ represents the net's current attempt at reproducing the target y

• For a FFNN, this step consists of just traversing a linear graph where each node is a tensor op

Yale

Loss Function
• Mathematical way of quantifying how much ŷ deviates from y

• Dictates how strongly we penalize certain types of mistakes

• Cost of inaccurately classifying an event (“cost function”)

• Used by the optimizer to evaluate performance of NN

• Core of the training: it's the objective of the optimization process, the value that
we're trying to minimize (“objective function”)

14

The goal of optimization is not to maximize the area under the ROC curve. That
can be used as a metric to evaluate performance and determine the best weight
configuration, but it can't be directly maximized during training by your optimization

algorithm, because it's a non-differentiable quantity.

http://keras.io/objectives/

Yale

Loss Function

15

• Common loss functions included in Keras:

• The choice of loss simply resides in understanding what types of errors are or
aren't acceptable in the specific problem under consideration

http://keras.io/objectives/

Yale

Loss Function

16

http://keras.io/objectives/

Yale

Optimizers

• The learning process is just a global optimization
problem, where the weights will take on values such
that the loss function is minimized

• Optimizers = methods to quickly take steps in
parameter space that are going to be good for
minimizing the global loss function

17

http://keras.io/objectives/

Yale

Optimizers

18

Stochastic Gradient Descent (SGD)

Adam, Adagrad, Adamax, Adadelta, …

• Learning rate α: how large a step to take
• Momentum μ: how important previous update is in calculating current update
• Decay: exponential rate of change of the learning rate as a function of the number of iteration 

  
 at each iteration:

• Smoothing between steps
• Infer 2nd order information about optimization problem, like curvature
• Adaptive optimization algorithms adapt to the landscape and vary the parameters accordingly, performing

parameterized scheduling with no human involvement

http://keras.io/optimizers/

Yale

Optimizers

19

http://keras.io/optimizers/

Yale

Back Propagation
• Way of taking derivatives through graphically representable systems

• Loss must be differentiable with respect to any parameter (end-to-end differentiable)

• Modern DL libraries, like Keras, use tensor math libraries such as Theano and TF to do
automatic differentiation of symbolically expressed DAGs, simplify operations, and
compile logic into the graph

The hardest part about deep learning is completely solved!  
You don't have to do anything at all, no matrix derivatives or any ugly stuff like
that

• Theano compiles CUDA code directly on the GPU (or machine instructions on CPU,
that are specific to the matrix math library installed). If you have both, specify
THEANO_FLAGS=device=gpu or cpu, or change it in your ~/.theanorc

20

Yale

Regularization
• Series of methods to avoid overfitting

• Mathematical encouragement towards simpler models

• Explicitly penalize weights that get too large

• Two main categories:

1. norm-based: 
generally uses loss functions of the form  
where f(θ) is some function of the parameters, and λ is the regularization parameter. Common examples of f are:

• the Frobenius norm — encourages small weights

• the 1-norm — encourages parameter sparsity

2. stochastic: 
Main example = Dropout —> randomly sets some percentage of output nodes in a layer equal to zero  
The more commonly used form of regularization in deep nets in the modern era —> fast and lead to simpler,
sparser models

21

http://keras.io/regularizers/

Yale

Regularization

22

In Keras:

• Dropout is added in as a layer 
It masks the outputs of the previous layer such that some of them will
randomly become inactive and will not contribute to information propagation

http://keras.io/optimizers/

Yale

Regularization

23

• Norm-based regularization is specified per layer 
It represents an added cost associated with the weights of that specific layer being too large in magnitude  
Usually set to zero by default, but can be modified in the definition of the layer

http://keras.io/regularizers/

Yale

Validation

24

• NN need to be able to generalize well to new examples

• It should not simply memorize the training set

• Minimizing training loss is not enough —> check validation loss to
stop the training!

• But, this way we indirectly fit to the validation set —> overestimate
real performance

• Need final, unbiased test on another separate sample (test set) to get
accurate estimate of error

http://keras.io/callbacks/

Yale

Validation

25

— training command  
model.fit(x, y,  
 batch_size=32, nb_epoch=10, verbose=1,  
 callbacks=[], validation_split=0.0, validation_data=None,  
 shuffle=True, class_weight=None, sample_weight=None)

where:

and:

http://keras.io/regularizers/

Yale

Training a Simple NN

26

-- build net
model = Sequential()
model.add(Dense(16, input_shape= (10,)))
model.add(Activation('relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

-- compile net, specifying optimizer and loss function
model.compile('adam', ‘binary_crossentropy')

-- train!
model.fit(X_train, y_train)

-- test
yhat = model.predict(X_test, verbose = True, batch_size = 516)

Dense(16) Dense(8) Dense(4) Dense(1)ReLu ReLu ReLu SigmoidInput (10)

http://keras.io

Yale

Training a Simple NN

27

-- build net
model = Sequential()
model.add(Dense(16, input_shape= (10,)))
model.add(Activation('relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

-- compile net, specifying optimizer and loss function
model.compile('adam', ‘binary_crossentropy')

try:
-- train!
model.fit(X_train, y_train, batch_size=16,

 callbacks = [
 EarlyStopping(verbose=True, patience=20, monitor='val_loss'),
 ModelCheckpoint(‘TestModel-progress', monitor='val_loss', verbose=True, save_best_only=True)],
 nb_epoch=100,
 validation_split = 0.2,
 show_accuracy=True)

except KeyboardInterrupt:
 print 'Training ended early.'

-- load in best network
model.load_weights(‘TestModel-progress’)
-- test
yhat = model.predict(X_test, verbose = True, batch_size = 516)

stops training after 20
epochs if the validation
loss does not improve

saves net if the
validation loss

improves

manually
interrupt training

http://keras.io

Yale

Congratulations!

28

• You can now use and understand the coolest visualization tool ever:

http://playground.tensorflow.org/

http://playground.tensorflow.org/

