
144

RacerD: Compositional Static Race Detection

SAM BLACKSHEAR, Facebook, USA
NIKOS GOROGIANNIS, Facebook and Middlesex University London, UK
PETER W. O’HEARN, Facebook and University College London, UK
ILYA SERGEY∗, Yale-NUS College and University College London, Singapore and UK

Automatic static detection of data races is one of the most basic problems in reasoning about concurrency.
We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can
scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge,
RacerD is the first inter-procedural, compositional data race detector which has been empirically shown to
have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and
this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment
within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors
reporting high-confidence bugs over ensuring their absence. RacerD has been in deployment for over a year at
Facebook, where it has flagged over 2500 issues that have been fixed by developers before reaching production.
It has been important in enabling the development of new code as well as fixing old code: it helped support the
conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture.
In this paper we describe RacerD’s design, implementation, deployment and impact.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →
Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom

ACM Reference Format:
Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional Static
Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (November 2018), 28 pages. https://doi.org/
10.1145/3276514

1 INTRODUCTION

Concurrent programming is hard. It is difficult for humans to think about the vast number of
potential interactions between processes, and this makes concurrent programs hard to get right in
the first place. Further, concurrency errors are difficult to debug and even reproduce after they have
been observed, making them time-consuming to fix. Because of both its difficulty and importance,
formal reasoning about concurrency has been studied for over 40 years and has seen many research
advances. However, despite numerous interesting ideas not much of the work has made it out of
the research setting and into deployment, where it can help programmers in their daily jobs.

At Facebook, we are working on techniques for automated reasoning about concurrency. RacerD,
our new race detector, searches for data races—unsynchronized memory accesses, where one is a
∗Work done while employed as a part-time contractor at Facebook.

Authors’ addresses: Sam Blackshear, Facebook, USA, shb@fb.com; Nikos Gorogiannis, Facebook and Middlesex University
London, UK, nikosgorogiannis@fb.com; Peter W. O’Hearn, Facebook and University College London, UK, peteroh@fb.com;
Ilya Sergey, Yale-NUS College and University College London, Singapore and UK, i.sergey@ucl.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART144
https://doi.org/10.1145/3276514

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://doi.org/10.1145/3276514
https://doi.org/10.1145/3276514
https://doi.org/10.1145/3276514

144:2 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

write—in Java programs. Races are one of the most basic forms of concurrency errors, and removing
them can help simplify the mental task of understanding a concurrent program. RacerD is a static
analysis: it employs formal symbolic reasoning to cover many paths through a program without
running it. It has been in production at Facebook for over a year, during which time over 2500
concurrency issues it has flagged have been fixed by engineers before reaching production. Also,
even though it is possible to generate artificial false negatives (data races that the analysis does not
flag), only three have been reported from production during the past year, and these were due to
(since corrected) implementation errors on our part.

Even more significantly, RacerD has been used to support the conversion of the layout portion
of the News Feed in Facebook’s main Android app from a single-threaded to multi-threaded
architecture. One of the Facebook Android engineers, Benjamin Jaeger, stated the impact as follows:

“Without Infer, multithreading in News Feed would not have been tenable.”1

This conversion also had a positive effect on the performance of the Android app. Thus, not only is
our static analysis used to find and fix problems, it is enabling the new development of important
industrial code. (Note that the quote is not saying that Infer/RacerD is the only tool that might
ever exist that could have enabled multi-threading in News Feed, but rather that they would not
have been able to tackle the project without it or some other similarly effective data race detector.
That practicing engineers regard a static analysis as enabling code they write can be taken to be a
positive for static race detection in general, not only RacerD.)

From the point of view of its users, RacerD has four important features:
(i) speed, reporting issues quickly;
(ii) scale, ability to run on large codebases;
(iii) low friction, can be run without huge startup time for developers in terms of annotating code;
(iv) effective signal, its reports are seen as valuable and not ignored by developers.

Speed and scale together are necessary to cope with the kind of high momentum software engi-

neering practiced at Facebook, where a codebase in the millions of lines of code undergoes frequent
modification by thousands of programmers. RacerD performs continuous reasoning (O’Hearn 2018a)
by analyzing these code changes (known as diffs) as they are submitted to the internal code review
process. With each diff, an instance of RacerD is spun up in Facebook’s continuous integration
system, so it acts as a bot participating in code review by automatically commenting on the code.
Low friction allows RacerD to achieve incremental impact on existing codebases, without

starting from scratch. In particular, RacerD does not rely on annotations for saying which pieces of
memory are guarded by what locks. These kinds of annotations, which are used in @GuardedBy type
systems for Java (Ernst et al. 2016; Goetz et al. 2006) and in Rust (e.g., the Mutex type), are useful
when present, but requiring them to get started causes considerable friction; enough that relying
on them in the conversion of Facebook Android News Feed would have been a show stopper.
Effective signal is related to the concept of false positive rate, but is not the same thing. It is

entirely possible to have an analysis with a low false positive rate, but where developers ignore the
reports; this phenomenon has been observed multiple times in industrial program analysis (Ayewah
et al. 2008; Bessey et al. 2010; Sadowski et al. 2018). Effectiveness of signal is partly dependent on
false positive rate, but also on speed of reporting and on the deployment model. Our continuous
reasoning takes place as part of code review, in the developers’ workflow, when they are thinking
about a code change; it avoids the mental effort of human context switch which comes with, for
example, batch deployment.

1RacerD is part of the Infer analysis platform. This quote was from https://code.facebook.com/posts/1985913448333055/
multithreaded-rendering-on-android-with-litho-and-infer/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/
https://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/

RacerD: Compositional Static Race Detection 144:3

1 @ThreadSafe
2 class RaceWithMainThread {
3 int mCount;
4 void protectedWriteOnMainThread_OK() {
5 OurThreadUtils.assertMainThread();
6 synchronized (this) { mCount = 1; }
7 }

8 int unprotectedReadOnMainThread_OK() {
9 OurThreadUtils.assertMainThread();
10 return mCount;
11 }
12 synchronized int protectedReadOffMainThread_OK() {
13 return mCount;
14 }

15 synchronized void
16 protectedWriteOffMainThread_BAD() {
17 mCount = 2;
18 }

19 int unprotectedReadOffMainThread_BAD() {
20 return mCount;
21 }

Fig. 1. Top: simple example capturing a common safety pattern used in Android apps: threading information
is used to limit the amount of synchronization required. As a comment from the original code explains:
“mCount is written to only by the main thread with the lock held, read from the main thread with no lock held,
or read from any other thread with the lock held.” Bottom: unsafe additions to RaceWithMainThread.java.

From the point of view of the analysis designer, the distinguishing technical property of RacerD
is that it is compositional: the analysis result of a composite program can be obtained from the
results of its parts. This means, in particular, that an “analysis result of a part” is meaningful
independently of the context (composite program) it is placed in. Compositionality opens the way
to analyzing a code fragment (e.g., the code change under review) without knowing the context
that it will run in. This is useful for checking a piece of code for thread-safety issues before placing
it in a concurrent context. It is also fairly straightforward to parallelize a compositional analysis,
helping it scale to big code, which is important given the size of codebases at Facebook.

Our analysis differs from much previous static analysis work in that we are not aiming to prove
absence of races, but rather to report a set of high-confidence races; we are favoring reduction of
false positives over false negatives. This presents different challenges, but also allows us to make
tradeoffs (cf. Section 8) that would not be justified if the aim were to show absence of races.
In the remainder of the paper we describe RacerD’s design, implementation, deployment and

evaluation.2 We present a number of design decisions which can be seen alternately as limitations
or, more positively, as engineering compromises that unlock the potential for impact. The primary
evidence for our claim of effectiveness comes from RacerD’s deployment at Facebook. As far as
we are aware, no previous static race detector has demonstrated comparable impact as part of the
software development process for major industrial products. We additionally present case studies
comparing RacerD to other open-source Java race detectors.

Note that we are using the terminology ‘race detector’ to refer to a tool which accepts a piece of
code and then searches for races within that, without the human first adding annotations describing
(say) the relationships between locks and fields. The latter form of tool, though still useful, is less
automatic and functions like a type checker. We will describe how RacerD fits into the broader
context of race detectors and other concurrency checking tools in Section 7.

2 A BEGINNING EXAMPLE

To help ground the discussion that follows we begin with a simple example in Figure 1 (top)
that illustrates some of RacerD’s ideas. The example is motivated by a coding pattern used in
Components*.java classes in the Litho codebase to avoid excess synchronization.3

2A tutorial on RacerD is available at http://fbinfer.com/docs/racerd.html.
3https://github.com/facebook/litho

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

http://fbinfer.com/docs/racerd.html
https://github.com/facebook/litho

144:4 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

If we run RacerD on this code it doesn’t find a problem. The unprotected read at line 10 and
the protected write at line 6 do not race with one another because they are known to be on the
same thread. This code illustrates just one way that developers try to write thread safe code while
avoiding synchronization in places for performance reasons.

RacerD works by first computing a summary for each method in a class, which records potential
accesses together with information such as whether they are protected by a lock or confined to a
thread. While analysing a method, RacerDmight consult summaries for methods it calls if they are
present in cache, or make a recursive call to the analyzer to provide such summaries on demand if
they are not present. The creation of summaries is done in a context-independent way; a procedure
body will not need to be processed multiple times taking into account different call sites.
Next, RacerD looks through all the summaries for the class in question checking for potential

conflicts. In this example, the summaries record an approximation of the information that the
accesses to mCount are both protected by being on the same thread:
protectedWriteOnMainThread_OK()
Thread: true, Lock: true, Write to this.RaceWithMainThread.mCount at line 6
unprotectedReadOnMainThread_OK()
Thread: true, Lock: false, Read of this.RaceWithMainThread.mCount at line 10
protectedReadOffMainThread_OK()
Thread: false, Lock: true, Read of this.RaceWithMainThread.mCount at line 13

Thus, RacerD’s summary processing phase concludes that a race is not possible because the
threading information for the accesses indicates mutual exclusion. On the other hand, if we include
additional methods that do conflict, then RacerD will report potential races, as in Figure 1, bottom.
The summaries for the additional methods record information about the accesses as follows:
protectedWriteOffMainThread_BAD()
Thread: false, Lock: true, Write to this.RaceWithMainThread.mCount at line 17
unprotectedReadOffMainThread_BAD()
Thread: false, Lock: false, Read of this.RaceWithMainThread.mCount at line 20

When we look at the summary for protectedWriteOffMainThread_BAD we can see the potential
conflict with the unprotected read on the main thread. One is protected by a lock, and the other is
protected by knowledge that it is on the main thread, but these are not sufficient to provide mutual
exclusion: RacerD reports a race between this access and the one at line 8. Similarly, the access at
line 20 in unprotectedReadOffMainThread_BAD is protected by neither a lock nor a thread. RacerD
will report it as racing with both the access at line 6 and the access at line 17.

In general, RacerD accepts a Java program as input and checks each of its classes for data races
between the non-private methods of the class when run in parallel with one another. It looks for
“deep” races arising from arbitrarily long chains of method calls into other classes.4 RacerD checks
classes marked @ThreadSafe in the program, as well as classes marked with other annotations that
we treat as aliases of @ThreadSafe (this aliasing facility was used in the application to News Feed
multithreading). In addition, RacerD performs concurrent context inference to trigger race checking
on classes that use locks or otherwise indicate that they are intended to be used concurrently, even
when they are not annotated as @ThreadSafe. We have also developed a system of annotations in
collaboration with Android engineers for documenting certain assumptions, such as that a method
behaves functionally or that a method is only used on the UI thread. These annotations help the
user experience, but are not necessary for getting started. RacerD can be run on any Java program
without adding annotations.

4According to a recent survey, 65% of the races found by Infer required inspecting multiple procedures and/or multiple files:
https://code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

RacerD: Compositional Static Race Detection 144:5

3 ANALYSIS REQUIREMENTS

In early 2016 we began working on a static analysis for concurrency, devising algorithms for proving
that no data race errors whatsoever could occur within a program, The technical timeline we had
in mind for creating our tool for proving data race freedom was roughly 2 years for launching a
proof of concept, and then further time to refine the developer experience.

In late 2016, engineers working on Facebook for Android caught wind of our project and reached
out asking to leverage our work. They were embarking on a major venture: converting part of
the Android News Feed from a sequential to a multi-threaded architecture. This was challenging
because the transformation could introduce concurrency errors.We decided to pivot our research, by
shifting our attention from the idealized goal of eventually, perhaps in several years, automatically
proving that no races could occur in real production code, to the aim of helping people now by
quickly finding many races in existing code, with high signal. Together with the Android engineers,
we sketched out the requirements for a minimal viable product to serve their needs:

(1) High signal: detect actionable races that developers find useful and respond to.
(2) Interprocedural: ability to track data races involving arbitrarily nested procedure calls.
(3) No reliance on manual annotations to specify which locks protect which bits of data.
(4) Fast: able to report in 15 minutes on modifications to a millions-of-lines codebase, so as to catch

concurrency regressions during code review.
(5) Accurate treatment of coarse-grained locking (i.e., not relying on custom-made synchronisation

via, e.g., compare-and-swap), as used in most of code written in production, but no need for
precise analysis of intricate fine-grained synchronization (the minority, and changing rarely).

A companion paper says more on the human aspects of how the project unfolded, particularly on
the interaction between science and engineering as the project unfolded (O’Hearn 2018b). For the
purposes of this paper, the important point is that requirements helped us determine what to focus
on, and what not to focus on.
For example, one of the most straightforward first steps in concurrency static analysis is to

require that fields be annotated with the locks that guard them, and then to have the analyzer check
them. But while this makes life easier for the analysis designer, it shifts effort from the analyzer to
the human and would have been a non-starter for the job of making News Feed multithreaded: the
Feed team needed to refactor many thousands of lines of code, and they needed to understand where
concurrency issues might be lurking when doing so. It would have taken many more programmers
to do this manually, too many—better for the computer to perform that search.

Story

Title Content Feedback

Text Network Image

Fig. 2. UI layout of Facebook News Feed.

On the other hand, the Feed team asked for interpro-
cedural analysis from the outset. The reason is that UI
architecture is arranged as trees, such as in Figure 2,
where each node corresponds to an object in a different
class. Furthermore, concurrent UI layout raised the issue
of “data races at a distance”, where two methods in one
class are called concurrently, but they race only on fields
in classes accessed via interprocedural call chains. In fact,
the design model of the Litho library, which is used for
multi-threaded UI, is such that data races are almost never localized to the parent classes. This,
together with the requirement to catch regressions during code review, meant that we had to do
interprocedural race detection, fast. Neither a slow interprocedural analysis, say, an analysis taking
over an hour for a modest size diff (hundreds of lines), on a codebase of a million lines of code, nor
a fast intraprocedural analysis would do.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:6 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

4 DESIGN PRINCIPLES

RacerD’s goal is to find data races. Its design is based on the following ideas:
(1) Be compositional; don’t do whole-program analysis.
(2) Reason sequentially about memory accesses, locks and threads; don’t explore interleavings,

rather, reason out of methods’ summaries wrt. employed synchronization and memory accesses.
(3) Report races between syntactically identical access paths; don’t attempt a general alias analysis.

As explained in Section 1, the first decision is motivated by the need to run RacerD in a “move
fast” deployment where it prevents regressions at code review time. Compositionality is helpful
both for analyzing a code change at diff time and for checking for concurrency errors before code
is placed into a context to run. It is also well known that compositionality is one useful way to
make an interprocedural analysis scale to large codebases (Calcagno et al. 2015, 2011).

The next two decisions come from observing the difficulty of balancing precision and scalability
in the history of program analysis for concurrency. The second requirement is motivated by the
sheer number of potential interleavings between threads. For example, the number of interleavings
for 2 threads with n instructions each is the binomial coefficient C(2n, n). This is a quantity that
grows extremely rapidly. For example, suppose that n = 40 instructions and we have an analyzer
that can process interleavings at the blazing rate of 1 billion per second. It would still take more than
3.4 million years to process them all. The inescapable conclusion is that, even though computers
are powerful, we can’t explore all the possibilities by brute force.
A more positive view of the second requirement is based on programming intuition. Humans

do not design code by considering all potential interleavings in detail—they cannot—and we may
hope that an analyzer could behave similarly. The theory of Concurrent Separation Logic (Brookes
and O’Hearn 2016) encodes a programming discipline for race-free programs, and it has shown
that we can get surprisingly far with purely sequential reasoning; it takes the extreme step of not
exploring interleavings at all, instead tracking properties that are true inside and outside of locking.
RacerD follows this idea of doing sequential reasoning and recording facts about synchronization
and threading information that can provide mutual exclusion between different accesses. It then
uses this information, collected for sequential executions, when considering summaries of pairs of
methods, in order to identify executions that can race with each other.
For the third principle, precise alias analysis is a classically hard problem even for sequential

programs (Smaragdakis and Balatsouras 2015). Because we focus on finding definite races, we can
get away without a precise analysis for saying when arbitrary pairs of accesses may alias. We look
for potentially-concurrent occurrences of syntactically identical access paths, on the intuition that
they are probable races. This can miss races that can occur via distinct access paths that refer to
the same memory, but it vastly simplifies the analysis and lets us focus on finding likely races.
We grant that it might be possible to improve our analysis if there were a sufficiently precise

alias analysis that worked compositionally and at scale. A claim of this work is, though, that alias
analysis is not necessary for having an impactful race analysis.
We don’t claim that these design principles are the only way one might go about obtaining an

effective analyzer satisfying the requirements of the previous section. Indeed, we have thought of
other directions ourselves, and we hope that researchers will be motivated to go further.

5 HIGH CONFIDENCE STATIC RACE DETECTION

We divide our explanation of RacerD into two parts: an algorithm for reporting data races given
procedure summaries that can answer certain semantic questions (Section 5.1), and specific abstract
domains we use for computing this information in a compositional fashion (Section 5.2). The
first part constitutes a framework for detecting and reporting data races, and is in a sense more

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:7

variables x ∈ Var
field names f ∈ Field
method names m ∈ Method
access paths π ∈ Path ::= Var × Field∗

expressions e ∈ Exp ::= π | . . .
commands c ∈ Cmd ::= π1 := π2 | π := new() | π := callm(®e) | lock | unlock
statements s ∈ Stmt ::= c1; c2 | . . .

Fig. 3. Syntax of minimal heap-manipulating language with locks.

fundamental. The second shows one way we have found to compute the entities needed for race
detection in a way that is consistent with the analyzer requirements laid out in Section 3; see
Section 6 for experimental justification for our claim of effectiveness. In a sense, the second part is
about existence but not uniqueness: effective race reporting at scale seemed non-obvious when we
set out, but there are many other tradeoffs in terms of precision, efficiency, and simplicity that one
could conceivably make and still effectively utilize the detection-and-reporting framework.

5.1 Part 1: abstract domain and reporting algorithm

RacerD seeks to report data races that can result from client code calling methods of a class C
concurrently from different threads. Given a procedure summary representing a set of “access
snapshots” Am for each methodm in class C , RacerD aggregates the summaries of non-private
methods ofC into a single access snapshot setAC for the classC , such thatAC =

⊔
m∈methods(C)Am ,

where methods(C) yields all the non-private methods in a class C . The access snapshot set AC
gives us an overapproximation of all the heap accesses in (or reachable from) methods of C . The
representation of a heap access is intentionally quite basic—we use a syntactic access path (Jones
and Muchnick 1979) (a base variable followed by a sequence of fields, as defined in Figure 3) along
with its source location.

Given a pair of access snapshots, in order to report a race we must be able to answer two
questions:

(1) Can the accesses touch the same address?
(2) Can the accesses happen concurrently?

RacerD’s abstract domain needs to record information that will allow us to answer these
questions in an underapproximate fashion (i.e., we want a subset of accesses that touch the same
address and happen concurrently). Remarkably, access paths alone almost convey enough semantic
information to answer (1) on their own! If two access paths are syntactically equal, it’s almost (but
not quite) true that they must refer to the same address. Syntactically identical paths can refer to
different addresses if (a) they refer to different instances of the same class or (b) a prefix of the path
is reassigned along one execution trace, but not the other. Stated differently, conditions (a) and
(b) cannot hold if an access path is stable; i.e., if none of its proper prefixes appear in assignments
during a given execution trace, then it touches the same memory as all other stable accesses to the
same syntactic path.

A formal treatment of access path stability, including a theorem we have proven stating sufficient
conditions for reports involving stable paths to be true positives, will be given in a sequel to this
work. But for the purpose of explaining why RacerD is effective in practice (the goal of this paper),
it’s enough for the reader to accept that syntactic equality of access paths is a reasonably effective
way to answer (1) in an underapproximate fashion.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:8 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

lock count ℓ ∈ L = N⊤

concurrent threads t ∈ T = NoThread ⊏ AnyThreadButMain ⊏ AnyThread
ownership value o ∈ O = OwnedIf(℘(N)) ⊏ Unowned
ownership environment E ⊆ E = Path → O

access snapshots A ⊆ A = {⟨π ,k, ℓ, t ,o⟩ | k ∈ {rd,wr}}
domain d ∈ D = L × T × E × A

Fig. 4. Components of the RacerD abstract domain.

Question (2) arises because two accesses to the same memory only race if they can run concur-
rently. To answer this question, RacerD computes mutual exclusion information to associate with
each access path as part of an access snapshot. The three domains RacerD uses for this (along with
the semantic questions they answer) are as follows.

• Locks domainL: detects mutual exclusion due to being protected by the same lock. The essential
feature of this domain is determining when a lock must not be held during a heap access.

• Threads domain T : detects mutual exclusion due to running on the same thread. The key
feature of this domain is determining whether an access must occur on a thread that runs
concurrently with other threads.

• Ownership domain E: detects mutual exclusion owing to memory that is held exclusively by
one thread, and thus not shared between threads. This is similar to the way a thread escape
analysis is used in optimization or in overapproximate race detectors (Choi et al. 1999; Cohen
et al. 2008; Naik et al. 2006). This domain must be able to determine when two syntactically
identical access pathsmay refer to different addresses when run on different threads (i.e., satisfies
condition 1(a) above).

The access snapshot domain A associates mutual exclusion information with a syntactic access.
As we show in Figure 4, an individual access snapshot is represented a quintuple ⟨π ,k, ℓ, t ,o⟩. The
first two components of the tuple are the path accessed π and the kind k of the access (either a read
or write). The final three components are mutual exclusion information represented as abstract
values in the three previously described domains: lock count ℓ, concurrent threads t , and ownership
value o. The domain itself is a set of individual access snapshots ordered by inclusion.

We will explain one way to implement these domains shortly in Section 5.2, but for now let us
demonstrate the semantic questions the domains can answer to report high-confidence data races.

Reporting conflicting accesses. A potential data race between a pair of accesses can be prevented if
the accesses touch different memory, if a lock is held during both accesses, if the accesses occur on
threads that cannot run concurrently, or if neither of the accesses is a write. RacerD’s domain allows
us to answer semantic questions that rule out each of these preventative measures in turn and report
a race when no measure is in place. Specifically, for each pair of access snapshots ⟨π1,k1, ℓ1, t1,o1⟩,
⟨π2,k2, ℓ2, t2,o2⟩ in the access snapshot set AC (including reflexive pairings), RacerD reports a data
race if all of the following conditions hold:

(1) π1 = π2 (accesses are to the same syntactic path)
(2) o1 , Owned ∧ o2 , Owned (neither access is to thread-local memory)
(3) ℓ1 = 0 ∨ ℓ2 = 0 (at least one of the accesses is not protected by a lock)
(4) t1 ⊔ t2 = AnyThread (at least one of the accesses runs in a “background” thread distinct from

the main thread)
(5) k1 = wr ∨ k2 = wr (at least one of the accesses is a write)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:9

As we will explain in the next section, Owned is an abstract value whose concretization is a
thread-local address. AnyThread is an abstract value whose concretization is a thread id assumed
to run in parallel with other threads.

5.2 Part 2: implementing domains and computing summaries

Now that we have explained the domain structure for data race reporting Section 5.1, we will
present specific domains that match this structure. We will use the simple programming language
in Figure 3 to informally explain our transfer functions. This language resembles Java in ways that
are relevant to race detection: it has heap allocation, reads and writes of fields via access paths,
function calls, and locks. We leave the expressions and statements in the language unspecified for
ease of explication, but our implementation handles the full Java language.

5.2.1 Locks domain: counting locks held. RacerD focuses on identifying accesses that are unsafe
because they are not guarded by any lock rather than accesses that are unsafe because they are
guarded by the wrong lock(s). It overapproximates the number of locks held at a given program
point. This is consistent with our desire for underapproximate reporting of races; if we know that a
lock may be held at the time when an access occurs, we will assume it is protected by the lock.
Abstract values ℓ in the lock domain are non-negative integers or a special ⊤ element. The

ordering on integer elements is ≤, and all integer values are below the ⊤ element on the ordering.
Widening any two abstract values produces the ⊤ value. We define a lifting of integer addition
(+⊤) and subtraction (-⊤) to handle the ⊤ element in the obvious way (any value +/- ⊤ is also ⊤).
Acquiring a lock via the lock command increments the abstract value by 1, and releasing a lock via
the unlock command decrements the abstract value by 1.
Java’s synchronized keyword is essentially syntactic sugar for calling lock at the beginning of

the procedure and calling lock at the end. Thus, the initial lock count for a procedure is 1 if the
procedure is marked synchronized and 0 otherwise. If the number of locks held at the end of a
procedure is ℓpost , we use ℓpost -⊤ 1 if the procedure is marked synchronized and ℓpost otherwise.
Lexical synchronized blocks are handled in a similar way.

synchronized (lock1) {

synchronized (lock2) {

x.f = ...

}

y.g = ...

}

z.h = ...

The lock count is only used to determine whether a lock might be
currently held during an access (i.e., we only care whether it’s zero or
nonzero). Given this, a boolean abstraction might seem like a better
choice than our counting domain. However, a boolean abstraction does
not work well in the presence of nested locks. Consider the simple
example to the right. A boolean domain will be unable to determine
that a lock is held during the accesses to x.f and y.g, but not during
the access to z.h. We use a counting domain instead, in order to avoid this issue; it also allows us
to underapproximate Java’s reentrant locks.

5.2.2 Threads domain: tracking concurrent threads. In order for RacerD to identify races, it
needs to understand which accesses can run concurrently on separate threads. Since our goal is
to report a small set of high-confidence races, we need to be fairly certain that an access can run
in a concurrent context before implicating it in a race. RacerD does this using concurrent context
inference: assuming that a code fragment cannot be run in parallel with other threads unless it sees
“evidence” that the fragment is intended to be run in a concurrent context. The forms of evidence
RacerD considers are:

• Lock usage. We assume that code only uses locks if it is meant to be run in a concurrent context.
• java.util.concurrent annotations like @ThreadSafe or @GuardedBy. Developers use these anno-
tations to document that the annotated code is intended to be used in a concurrent context.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:10 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

• Android utility functions such as assertMainThread() and assertOnBackgroundThread(). We as-
sume these functions should only be used if there is a possibility that the code fragment can be
run on a thread that is running concurrently with other threads.

Based on these forms of evidence, RacerD infers which threads may run in parallel with the
thread of the current procedure. It uses three abstract values: the current procedure does not
run concurrently with any other threads (NoThread), the current procedure runs on the main
thread (AnyThreadButMain) and may run in parallel with code on background threads, or the
current procedure runs on a thread that can interleave with any other thread (AnyThread). Let us
emphasize that the concretization of these values is the set of threads that can run in parallel with
the current thread, so (perhaps confusingly) a procedure that can only run on the main thread is
AnyThreadButMain.

The default value for a procedure is NoThread. Annotating a procedure @UiThread or calling a
utility method like assertMainThread() changes the abstract value to AnyThreadButMain. Anno-
tating a procedure @ThreadSafe, tagging it with the synchronized keyword, or using a lock in the
body of a method changes the abstract value to AnyThread. Annotating a class @ThreadSafe is the
same as annotating all of its non-private methods as @ThreadSafe. Subtypes of the annotated class
are treated in the same way. Thus, our interpretation of a @ThreadSafe classC is: “Any non-private
methodm of C can be safely called in parallel with all other non-private methods of C and its sub-
classes, includingm itself.” We have found that this generally fits well with the intention developers
have when marking a class C as @ThreadSafe.

5.2.3 Ownership domain: identifying clearly safe accesses. An individual access may be involved
void ownedAccess() {

C x = new C();

x.f = 42;

}

in a race if it can run concurrently with other accesses to the same
memory. Some accesses are impossible to race with, even by (a copy of)
themselves, by virtue of the fact that they touch addresses which are
newly allocated and have not leaked to other threads. For example, if
the method ownedAccess() to the right is run in parallel with itself, then we won’t have a race, even
though the accesses to x.f in both threads are syntactically identical. RacerD uses an ownership
analysis to recognize such accesses. It leverages the fact that an access path π assigned to freshly
allocated memory via the π := new() command is owned and aggressively propagates ownership
across assignments.
The ownership abstract domain maps access paths to ownership abstract values, which are

abstractions of concrete addresses, where a map is a finite partial function. The abstract ownership
states are Unowned and OwnedIf({n1, . . . ,ni }). An Unowned value is potentially unsafe to access;
intuitively, it represents an address that may be reachable from local variables of multiple threads.
OwnedIf represents ownership that is conditional on ownership of all of the formal parameters at
the given indexes. For example, OwnedIf({1, 2}) means that the associated path is owned if both
the first and second parameters of the current procedure are owned at the call site. OwnedIf(∅)
means that the value is owned; we use Owned and OwnedIf(∅) interchangeably.
The OwnedIf values form a powerset lattice with OwnedIf(∅) as the bottom element. The

Unowned value is used as a distinguished top value for the powerset lattice.
Initially, each local and global variable is mapped to Unowned, and the ith formal parameter is

bound to OwnedIf({i}). In constructors, we assume that this is Owned. Ownership is propagated
via the assignment command π1 := π2. Assignment to an access path propagates the ownership
value bound to the right-hand side of the assignment π2 to the left-hand side of the assignment π1.

The current implementation of RacerD maintains an invariant: if an access path is owned,
then the path and its suffixes remain owned for the duration of the current procedure. This

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:11

can lead to false negatives. An example illustrating this is in the code to the right. A local ob-
ject is leaked to another thread, and if the other thread accesses field f we will have a race.

void FN_escapeThenWriteLocalBad() {

Obj local = new Obj();

leakToAnotherThread(local);

local.f = 1;

}

We attempted an escape analysis, paired with a more
accurate treatment of ownership and an alias analysis,
to detect data races like this, but we never deployed it
because it caused large numbers of false positives. This is
not a fundamental limitation of our approach; if a better
analysis existed, it could be easily plugged into the detection framework described in the previous
section. But the discussion also illustrates how our choice to focus on minimizing false positives
justifies analyzer choices that both simplify the analysis and that are the opposite of ones (e.g., use
escape and alias analysis) that are often adopted.

5.2.4 Access snapshots domain. The access domain captures a snapshot of the relevant state
at the time of each heap access. As in Figure 4, an individual access snapshot is represented as a
quintuple ⟨π ,k, ℓ, t ,o⟩. The first two components are the path accessed π and the kindk of the access
(either a read or write).5 The final three components are mutual exclusion information represented
as abstract values in the three previously described domains: lock count ℓ, concurrent threads t , and
ownership value o. The domain itself is a set of individual access snapshots ordered by inclusion.

Any usage of an access path in π1 := π2, π := new(), or π := callm(®e) will add access snapshots
for each path used and all of its prefixes. For example, the code x.f.g = y.h would generate read
access snapshots for x.f, and y.h and a write access snapshot for x.f.g. Each snapshot will be
associated with the current mutual exclusion information tracked by the other three domains.
Our implementation supports accesses to containers and arrays as well as simpler accesses to

fields. Supported containers (e.g., java.util.Map) have models that specify which container methods
perform writes and which perform reads. We omit containers from our simple language for ease of
explication; our implementation models container accesses by using a dummy contents field.

5.2.5 Creating procedure summaries. A summary has the same type as an abstract state. We
create a summary by running the analysis starting from an empty pre-state (described above), and
installing the post-state as the procedure summary. This is done without taking any calling context
information into account, and that is what makes the analysis compositional. Each procedure is
visited only once by the analysis algorithm (or twice, in the case of recursive calls; we do not
compute an interprocedural fixed point), and that enables it to scale.
This way of creating summaries is very simple, but having simple summaries is useless if they

cannot be applied to obtain somewhat precise information at call sites. Summary application is a
fundamental step for the analysis, so we will now describe it in some detail.

5.2.6 Applying procedure summaries. At a high level, applying a summary to an abstract state at
a call site involves two steps:
(1) Updating the caller’s mutual exclusion information based on the locks acquired, threading

information, and ownership value returned by the callee.
(2) Updating the callee’s access snapshots with the caller’s mutual exclusion information, then

joining the updated snapshot set with the caller’s access snapshots.
Figure 5 defines an apply function for combining caller and callee state for each of four components
of the abstract state. We will now walk through each one and explain how it works.

5We remark that we only record snapshots on paths π = x .f1 . · · · .fn where n , 0, as accesses to variables without field
selectors do not touch the heap.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:12 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

apply(ℓ
caller

, ℓ
callee

) ≜ ℓ
caller

+⊤ ℓ
callee

(A)

apply(t
caller

, t
callee

) ≜

{
AnyThreadButMain if t

callee
= AnyThreadButMain

t
caller

otherwise
(B)

E(e) ≜

o if e = π and (π , o) ∈ E
Unowned if e = π and π < dom (E)
OwnedIf(∅) otherwise

(C)

apply(E
caller

, ®e, o
callee

) ≜

Unowned if o

callee
= Unowned

OwnedIf(∅) if o
callee

= OwnedIf(∅)⊔
i∈N

E
caller

(ei) if o
callee

= OwnedIf(N)

(D)

apply(E
caller

, ®e, πret, Ecallee) ≜ E
caller

[πret 7→ apply(E
caller

, E
callee

(ret), ®e)] (E)

subst(π , ®e) ≜

y .f1 . · · · .fn .g1 . · · · .gm if

π = x .g1 . · · · .gm,

x is the ith formal, and
ei = y .f1 . · · · .fn

π otherwise

apply(A
caller

, ℓ
caller

, t
caller

, E
caller

, ®e, A
callee

) ≜ A
caller

⊔

〈
π ′, k, ℓ′, t ′, o′

〉
����������
π ′ = subst(π , ®e),
ℓ′ = apply(ℓ

caller
, ℓ),

t ′ = apply(t
caller

, t),
o′ = apply(E

caller
, o, ®e),

⟨π , k, ℓ, t, o ⟩ ∈ A
callee

(F)

Fig. 5. Applying a callee summary at a call site πret := callm(®e).

(A) Instantiating lock summaries. The apply(ℓcaller , ℓcallee) function for the locks domain adds the
number of locks held in the caller ℓcaller to the number of locks held in the callee ℓcallee using the
lifted addition operator +⊤. We wish to overapproximate the number of locks held after the call,
and the sum will achieve this. In practice, ℓcallee will typically be 0 unless the callee acquires a lock
without releasing it (e.g., void acquire(){ mLock.lock(); }).

(B) Instantiating thread summaries. If a caller runs concurrently, then clearly its callees do too.
However, consider the case when we have evidence that a callee can be concurrent, but don’t know
anything about what context is expected for the caller. Inheriting the callee’s context (i.e., joining
the abstract values of the caller and callee) seems like a natural choice. However, we found that this
introduces a large number of false positives in practice. The primary problem is this: calling code
that is safe to run concurrently does not necessarily imply that the caller will run concurrently.

To see why this is true, consider the example in Figure 6. The problem captured in this example
is that in practice, @ThreadSafe is sometimes intended to mean only “safe to use in a concurrent
context” (e.g., immutable classes) and sometimes intended to mean “safe and intended to be used
only in a concurrent context” (e.g., a thread-safe data structure like ConcurrentHashMap). RacerD
does not have a reliable way of understanding which meaning is intended.

To handle this, apply(tcaller , tcallee) uses AnyThreadButMain as the state after the call if the callee’s
abstract value is AnyThreadButMain and the caller’s abstract value otherwise. If the callee is known
to run on the main thread (e.g., it calls assertMainThread), then the caller must also. But in any
other case, the callee’s context doesn’t necessarily tell us anything about the caller’s context.

(C) - (E) Instantiating ownership summaries. Applying an ownership summary Ecallee to an caller
ownership environment Ecaller at a call site πret := callm(®e) is defined in three parts:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:13

@ThreadSafe class ImmutableData {

private final int mData;

public ImmutableData(int data) { this.mData = data; }

int getData() { return mData; }

}

public void sequential(ImmutableData data) { this.mField = data.getData(); }

Fig. 6. Developers often annotate immutable classes like ImmutableData with @ThreadSafe. ImmutableData
can itself be safely used in either a sequential or concurrent context, but a class that uses ImmutableDatamay
or may not be run in a concurrent context. If we assume that the sequential method runs in a concurrent
context because it uses the getData method of a @ThreadSafe class, it will lead us to (incorrectly) report a
self-race on the write to this.mData.

static Builder make() { return new Builder(); } // summary: [ret |-> Owned]

Builder setX(int x) { // ...

this.x = x;

return this;
} // summary: [ret |-> OwnedIf({0})]

void useBuilder() {

Builder b1 = make(); // [b1 |-> Owned]

Builder b2 = b1.setX(1); // [b1 |-> Owned, b2 |-> Owned]

}

Fig. 7. Interprocedural ownership analysis is required to understand how ownership is propagated in the
commonly used Java Builder pattern for constructing immutable objects.

(C) A utility function E(e) to determine whether expression e is owned in ownership environment
O . If e is an access path π , this function retrieves the ownership value for π in E (if present) or
Unowned (if not present). If e is a non-access path expression (e.g., a constant), the function
returns OwnedIf(∅).

(D) The apply(Ecaller ,ocallee, ®e) function for updating the ownership abstract value ocallee based
on the caller’s ownership environment Ecaller and list of caller actual parameters ®e. This
function leaves the callee ownership value unchanged if it is either Unowned or OwnedIf(∅).
Intuitively, there’s nothing the caller can do to change the ownership of a callee access that
has no relationship to the actuals passed by the caller.
On the other hand, if the callee ownership value isOwnedIf(N) for some nonempty set of callee
formal indexes N , the caller looks up the caller ownership value for the ith actual expression ei
associated with an index i ∈ N . The new ownership value is the join of all the corresponding
caller ownership values for N . Intuitively, the ownership of an access rooted in a formal of the
callee depends on the ownership status of the actual bound to that formal in the caller.
This function is also used for updating the ownership value associated with a callee access.

(E) The apply(Ecaller ,Ecallee, ®e,π) function for updating the caller’s ownership environment Ecaller
by binding the caller return value πr et to the callee return value ret from the callee ownership
environment Ecallee . This function discards the callee ownership environment except for the
return value.

Figure 7 shows RacerD’s interprocedural ownership analysis in action. The make procedure
returns a freshly allocated Builder, which the analysis summarizes as the ownership environment
ret |-> Owned. The setX procedure writes to the x field of its receiver this and then returns it. The
summary expresses that the return value is owned if the receiver this is owned at the call site.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:14 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

static void multiOwn(Obj o1, Obj o2) { // [o1 |-> OwnedIf({0}), o2 |-> OwnedIf({1})]

Obj local;

if (*) // non-deterministic choice

local = o1; // [local |-> OwnedIf({0})]

else
local = o2; // [local |-> OwnedIf({1})]

// [local |-> OwnedIf({0, 1})]

local.f = 7;

} // summary: <local.f, Write, locks: 0, threads: NoThread, OwnedIf({0, 1})>

static void useMultiOwn(Object x) {

Obj y = new Obj(); // [x |-> OwnedIf({0}), y |-> Owned], locks: 0, threads: NoThread

synchronized (...) { // [x |-> OwnedIf({0}), y |-> Owned], locks: 1, threads: AnyThread

multiOwn(x, y); // <local.f, Write, locks: 1, threads: AnyThread, OwnedIf({0})>

}

}

Fig. 8. Updating callee accesses with the caller’s locking and ownership information.

Finally, the procedure useBuilder calls both make and setX, which requires instantiating the
summaries for each procedure. The summary for make is applied to caller return value b1 using
the apply(Ecaller ,Ecallee, ®e,π) function, which yields a state where b1 is owned. Then, the call to
b1.setX(1) triggers application of the summary for setX to return value b2 and caller actuals b1
and 1. The summary for setX says that the return value is owned if the actual at index 0 is owned in
the caller. That is b1, which is indeed owned in the caller according to the ownership environment.
Thus, the caller return value b2 is also bound to Owned.

(F) Summarizing callee access snapshots. Finally, we explain how we apply a summary of accesses
performed in a callee via the apply(Acaller , ℓcaller , tcaller ,Ecaller , ®e,Acallee) function. Intuitively, the
caller applies its mutual exclusion information to each of the access snapshots and then joins
the updated set of snapshots with its local snapshot set Acaller . This means that if a lock is held
in the caller, RacerD will know that a lock was also held at the time of the access in the callee
(apply(ℓcaller , ℓ) part). Similarly, the apply(Ecaller ,o, ®e) part updates the ownership status of a callee
access based on the caller actuals were bound at the call site. Also, the caller applies the subst
function on each callee snapshot, translating access paths rooted at callee formals by substituting
in the expression provided as argument for that formal.
The example in Figure 8 illustrates the process of updating. The multiOwn procedure contains

an access to local.f whose ownership status is somewhat complicated: it is an access to owned
memory if the actuals bound to formals o1 and o2 are both owned: OwnedIf({0, 1}). At the call site
in the useMultiOwn procedure, the actual y is owned and the actual x is a formal of useMultiOwn.
Using the apply function on the caller and callee states, we convert the original OwnedIf({0, 1})
value to Ecaller (x) ⊔ Ecaller (y) =Owned⊔OwnedIf({0}) = OwnedIf({0}). This reflects that the access
in multiOwn can only be involved in a race if the formal x is not owned at the call site of useMultiOwn.

In addition, a lock is held in the caller via a synchronized block. Updating the lock count for the
callee access works in a similar way. At the multiOwn call site, the lock count is 1. When we use
apply on the access in the callee, we update the callee lock count to 1 +⊤ 0 = 1. This reflects that a
lock is held at the time of the access in multiOwn.

5.3 Implementation

RacerD is implemented as a specialized program analysis using the Infer.AI analysis framework.6
The framework provides an API to Infer’s backend compositional analysis infrastructure, based on
6http://fbinfer.com/docs/absint-framework.html

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

http://fbinfer.com/docs/absint-framework.html

RacerD: Compositional Static Race Detection 144:15

abstract interpretation (Calcagno and Distefano 2011; Calcagno et al. 2015). You give the framework
an ‘abstract domain’ (symbolic values for the analysis to track), transfer functions that specify how
program statements transform these values, and a way to make a ‘summary’ of a procedure, which
is independent of its calling context. Out pops a program analysis that works compositionally and
can (often) scale to big code.
In addition to the pure logic for race detection, RacerD implements a non-trivial amount of

scaffolding related to error reporting. The basic issue is that data races are challenging to explain
to developers, and RacerD takes several steps to try to make its reports easier to understand:
• Reporting a full stack trace to each access involved in a race. Though we didn’t formalize this
above, our access snapshot domain tracks the location where a syntactic access occurred. When
a snapshot is propagated to a callee via summary application, the domain records the call site for
the callee. This gives us enough information to produce a full call stack to any access involved in
a race by repeatedly “unrolling” summaries until the location of the original access is reached.

• De-duplicating ‘similar’ reports. An important principle of effective reporting is ‘don’t spam the
developers’. On the other hand, RacerD’s race identification is effective enough to be able to
identify tens or even hundreds of potential races caused by a code change; effective reporting
needs to contend with this effective identification. In the beginning we sometimes reported tens
of races on the same line, and also tens of reports of races on a single field from different source
lines. Interprocedural errors were particularly susceptible to a multiplication of issues.
It is not necessarily helpful for a developer to be see hundreds of reports of a similar nature
and with (perhaps) related causes. To avoid spamming developers RacerD ‘de-duplicates’ its
reports to show at most one for a given syntactic access and at most one report per pair of
procedures. This can suppress true alarms in the case that a warning filtered by de-duplication is
a distinct issue from the one displayed to the developer. But in this case, the developer will see
the suppressed warning after fixing the displayed warning and re-running the tool. Also, if a
class has more than zero reports prior to de-duping, then it will also have more than zero after.

• Explaining which access(es) occur with a lock held or in a concurrent context. Because RacerD’s lock
and thread domains track locking and threading information interprocedurally, a racy access may
occur far away from a lock acquisition or other evidence that a procedure runs in a concurrent
context. RacerD’s error messages point out whether an access occurs inside of a lock and explain
why RacerD thinks the access may run in a concurrent context.

• Assumed safe features. Recall above our determination to go after coarse-grained locking errors
but not fine-grained. The semantics of volatile are quite complicated, so if you mark a field
volatile, RacerD will assume that you know what you are doing and will not report any races.
This crude heuristic has proven to be stunningly effective in practice. For instance, double-
checked locking is well known to suffer from subtle flaws (Bacon et al. 2012), but we find that
it is often the volatile part that folks get wrong, not the guards. In fact, RacerD has caught
several significant errors related to double-checked locking when the volatile was left out.
RacerD also supports the annotations @Functional, @ThreadConfined, @ReturnsOwnership, and
@VisibleForTesting, for guiding the analyzer to understand some subtle, but correct, patterns
common in Facebook code. These annotations are fully explained in RacerD’s online documen-
tation.7

6 EVALUATION

This section presents an evaluation of RacerD. The first part describes the use of RacerD at
Facebook. In the second part, we compare RacerD against other static and dynamic race detectors.

7http://fbinfer.com/docs/racerd.html

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

http://fbinfer.com/docs/racerd.html

144:16 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

We could not find other directly comparable race detectors that allow for incremental analysis of
large codebases like RacerD does, so we compare using a “from-scratch” analysis setup (i.e., other
tools’ home turf, not RacerD’s).

6.1 Deployment and Impact at Facebook

At Facebook, developers primarily use RacerD for two purposes:
• Preventing regressions in safe concurrent code
• Adapting sequential code for safe use in a concurrent context

Both use-cases leverage RacerD’s deployment as a bot participating in code review for Facebook,
Messenger, Instagram and other apps. RacerD runs as part of the Facebook continuous integration
(CI) system; the developer never needs to make the decision to run the tool. For each code change
a developer submits, the CI runs RacerD alongside other jobs for compilation and testing. This
deployment applies to all Android developers, whether they are thinking about concurrency or not.

The CI deployment only reports bugs that were introduced by each code change, which is ideal
for the first use-case: catching regressions. If RacerD thinks a code change introduces a data race, it
comments on the offending line and reports a full stack trace to each of the heap accesses involved.

For the second use-case, developers are interested in adapting code that was previously intended
to run in a sequential context (e.g., a Litho class that wishes to use Litho’s background layout
feature, as we will explain below) to be safely used in a concurrent context. By default, RacerD will
not report any races on code that appears to run sequentially (see Section 5.2.2 for more details).
Developers use a workflow where they send a diff adding @ThreadSafe annotations to the classes
of interest and wait for the CI deployment to report RacerD warnings on the annotated code.
The developers resolve as many warnings as they see fit to, send an update to the diff to fix the
warnings, and make sure that RacerD thinks the fix is ok. Once the code is free of warnings, the
diff can be landed and the code is (hopefully!) safe to use in a concurrent context.

Deployment. In order for RacerD to be deployed effectively as part of the CI system, the analysis
must report issues quickly and use resources efficiently. We have found compositional analysis to
be useful for meeting these requirements. With a whole-program analysis, the only obvious way to
analyze a code change is to re-analyze the entire app. On a machine much more powerful than
the ones used in the CI, running RacerD on the Facebook Android app takes about 130 minutes.
Figure 9 highlights the benefits of running on code changes instead: RacerD can analyze much
less code and run much faster. This diff-based workflow is thus much more user-friendly than the
“from-scratch” analysis mode we will speak about below.

Case study: Litho background layout migration. Litho is an open-source Facebook framework for
creating performant scrolling UI’s,8 which is used by the Facebook App, Instagram, Messenger,
FB Lite, and Messenger Android codebases. All of those codebases have a lot of concurrent code
that does not involve Litho, which we analysed using RacerD as well; however, here, we focus the
discussion on Litho exclusively.
One of the important features of Litho is its ability to run as much work as possible on non-

blocking background threads instead of the main UI thread. In early 2017, the Litho team had
just finished implementing a new feature: the ability to perform the computationally expensive
layout step of UI rendering (i.e., sizing UI elements appropriately and determining their relative
positioning). Moving this step off of the main thread had the potential to unlock a significant
performance improvement.

8https://fblitho.com/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://fblitho.com/

RacerD: Compositional Static Race Detection 144:17

Fig. 9. Kernel density estimate showcasing the distribution of RacerD running times on code changes in a
typical week. This time includes building the code, running RacerD and several other analyzers, and reporting
errors. The plot shows that more than half of the code changes are analyzed in less than 12 minutes. This is
an order of magnitude faster than running a from-scratch analysis, and it is also much less resource-intensive
(which is very important for being a good citizen of the CI). We note that the time taken to actually run the
RacerD analysis is a tiny fraction of the time in this plot. As we will show in Table 1, RacerD can analyze
tens of thousands of lines a second. The vast majority of the diff analysis time is consumed by the supporting
steps.

But there was a problem: the Facebook app already had hundreds of Litho-based classes running
in production (totaling many millions of lines including dependencies), and none of the layout steps
had been written with concurrency in mind. Enabling background layout is as simple as flipping a
flag, but blindly enabling multithreading for previously-sequential chunks of code is doomed to
cause data races. Manual inspection of the code to be migrated isn’t tractable because of its sheer
size: races can occur anywhere in a class itself or in its massive tree of transitive dependencies.

Fortunately, the automated bug detection of RacerD empowered a very small group of concur-
rency experts to migrate all of the classes in a few months and safely enable background layout
in production.9 The experts used the @ThreadSafe-annotation based CI workflow described above
to gradually adapt Litho classes to use the background layout feature. The CI deployment also
prevented product engineers who weren’t aware of the migration from accidentally introducing
new concurrency errors in an already-migrated component.

Impact. From the safety standpoint, the migration was a success. All told, hundreds of Litho
classes have been checked by RacerD during the migration, and over 2,500 analyzer issues detected
by the two CI-based workflows described above have been addressed in the past 6 months (the
majority were regressions). The issues addressed are split between non-functional changes where
annotations are added that document threading assumptions, and functional changes that avoid
races, with each category having seen fixes numbering in the hundreds.
9https://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/

144:18 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

The migration was also a success from a performance standpoint. Switching to background
layout improved scroll performance in the Facebook for Android News Feed by more than 5%.
News Feed is a core product component that has been highly optimized over many years, so a
performance improvement at this level is noteworthy.

False positives, false negatives, and fix rate. We closely monitor the (immediate) fix rate of RacerD:
the percentage of issues reported as introduced in a diff that are fixed before committing the same
diff. The fix rate over the last six months was 50%. It’s important to keep in mind that fix rate is not
the same as false positive rate.10 False positives are only one of many legitimate reasons why a
developer may choose not to fix an issue in the same code change. To name a few others that we
commonly see: the issue may be fixed in a follow-up diff (or series of diffs), the diff may rename a
class/file/method/field in a way that makes RacerD think a pre-existing issue is a new one, the root
cause of the surfaced issue might be outside of the code being changed, and so on. One example we
have often seen is that of ‘distant’ bugs, where a data race is flagged in class A which is changed by
a developer, but the root cause is in class B which is called by the developer but owned by someone
else. Typically, class A is product code and class B is framework code; the product engineer is then
not well advised to change the class B, and the issue should not be addressed in the same diff.

Because there are several reasons for not immediately fixing a warning within the same diff, we
posit that even a fully precise diff analysis that reports no false positives will still pay a fix rate
“tax”. Our best estimate on how large this tax is comes from the fix rate of another analysis we have
that is fully precise. We have an analysis that flags dead stores of variables in C++. This check is
implemented using a basic liveness analysis and is fully precise modulo bugs in the analyzer. Even
though this analyzer reports no false positives in theory, its fix rate over the last six months is only
70%. Thus, we think that the fix rate tax a diff analysis must pay is somewhere around at least 30%.
If we speculatively subtract this tax from the RacerD fix rate, we can guess that the RacerD false
positive rate is around 20%. In fact, it is likely even lower: we expect that RacerD’s tax is higher
than that of dead stores owing to more “distant” bugs being surfaced.

Note that these comments about fix rate tax have to do with Facebook’s particular deployment
and code review model. The tax rate might vary from one organization to another.

We have monitored the ignored reports over the past year, and we look at a sample from time to
time. Our observations from monitoring are consistent with the impression above that the false
positive rate is around 20%. We say “around” because we are cautious in making definitive claims
about false positive rate. Not infrequently, neither a programmer nor a diff reviewer can determine
if a report is a true positive even after hours of inspection; a judgment call is made before such
a determination is reached. In a large-scale deployment the false positive rate is, for all practical
purposes, non-measurable and hence un-knowable. What we find useful is to measure and track
the fix rate, and to observe and respond to reported false positives that arise; knowing specific false
positives is useful, without leading us to claim that we know precisely what the general rate is.

On the flip side, RacerD isn’t designed to catch all possible races, which raises questions about
how often it has missed bugs. As it turns out, fixing all RacerD warnings has been an effective
proxy for preventing races in practice thus far. Only a small number of races slipped by RacerD into
production during the Litho background migration – we are aware of only three – and these were
due to bugs in the tool (later fixed) rather than more fundamental issues related to our design goals.
Our experience with false negatives on diffs has been similar; to date, we have only received one
report of a regression that RacerD missed (a double-checked locking bug). But it turned out that
RacerD had in fact reported the bug on the diff in question; the warning was just misunderstood.
Therefore, to date there have been no confirmed false negatives reported from production over
10See the paper by Sadowski et al. (2018) and the presentation at https://www.youtube.com/watch?v=xc72SYVU2QY.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://www.youtube.com/watch?v=xc72SYVU2QY

RacerD: Compositional Static Race Detection 144:19

hundreds of thousands of lines of code, except for those from implementation errors on our part.
The implementation errors have the interesting side effect of confirming that RacerD does find
bugs that could occur in production.
In making these remarks we emphasize that “no confirmed false negatives” from production

does not say that no false negatives have occurred; they might have occurred by not been noticed.
Nevertheless, that no false negatives were not observed took us completely by surprise. It is possible
to generate hypotheses on why this is so, but there is little built-up engineering experience we are
aware of on false negative rates from production in static analysis as a whole; we have been wrong
so often in making hypotheses about what works in production that we are hesitant to speculate.
Rather, we would say generally that deeper understanding of false negatives is a worthwhile
problem for both academics and industrialists.

Summary. We summarize our findings with the following two claims.
(1) Static race detection can be effectively applied and provide positive impact as part of an industrial

software development process.
(2) Due to its speed, scale and incrementality, RacerD can be deployed at diff time on large code.

6.2 Comparison to other Race Detectors

RacerD is a static analysis tool, but it is philosophically closer to dynamic race detectors in its goal
of reporting high-confidence races with very few false positives. Thus, we have chosen to compare
RacerD to both static and dynamic race detectors for Java.

6.2.1 Static Race Detectors. There is a surprising lack of publicly available race detectors for
Java. A query11 about open source static race detectors for Java or Android in the public “Abstract
Interpretation” Facebook group (383 members) did not receive any responses. The only publicly
available tool we could find was Chord, a pioneering static race detector for Java by Naik et al.
(2006). The techniques behind Chord are intended to be sound for proving the absence of races,
i.e., providing an over-approximation, except for specific language features (e.g., Java reflection)
that are not accounted for. Chord is a whole-program analysis, and it relies on a suite of auxiliary
static analyses, such as points-to and escape analysis,. Chord works for plain Java (once the user
has specified entry points), but not Android, so we conducted our comparison using plain Java.

Experimental setup. The original Chord implementation dates back to 2006 and has not been
maintained, so is difficult to run on current Java projects. However, the recent work on the Bingo
tool by Raghothaman et al. (2018) has included a compilable version of the Chord algorithm, as
well as a harness for running it on specific projects, as a part of a benchmark suite to demonstrate
the use of Bayesian inference to improve static analysis results. The authors of Bingo have kindly
shared their Chord-related artifacts with us and helped us carry out a comparison.
We used the benchmarks that were used to evaluate Chord in the context of the Bingo

work (Raghothaman et al. 2018). The chosen programs are all concurrent applications from different
domains. hedc is a web-crawler, ftp is Apache web server, weblech is a tool for downloading
web pages, jspider is a web spider engine. The last four programs are taken from the DaCapo
suite (Blackburn et al. 2006): avrora is an AVR microcontroller simulator, luindex is a tool for
document indexing, sunflow is an image rendering system, and xalan is a tool for transforming
XML to HTML. All measurements were performed on a 24-core 2.5 GHz Intel x64 machine with
55 GB RAM running Linux. Running times were averaged for multiple runs of each of the analyses.

11 https://www.facebook.com/groups/abstract.interpretation/permalink/10155965198993945/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://www.facebook.com/groups/abstract.interpretation/permalink/10155965198993945/

144:20 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Table 1. RacerD reports >3X fewer alarms than Chord on every benchmark, and an order of magnitude fewer
alarms on four of the benchmarks. RacerD is at least one or two orders of magnitude faster on all benchmarks.
The “Alarm Overlap” column indicates the percentage of racy lines implicated by Chord (in source files) that
also appeared in a report from RacerD.

Program # Files # LOC Chord RacerD Alarm
Alarms Runtime # Alarms Runtime Overlap

hedc 133 11,767 152 4m 47s 49 1.5s 11%
ftp 140 12,050 522 5m 14s 39 1.5s 20%
weblech 12 1,309 30 11m 02s 9 0.6s 63%
jspider 214 7,413 257 1m 54s 13 1.4s 10%
avrora 470 68,864 966 8m 49s 81 7s 18%
luindex 331 36,151 940 3m 26s 183 5s 64%
sunflow 170 21,960 958 42m 44s 43 2.8s 49%
xalan 975 175,784 1870 1h 47m 421 21.5s 38%

Summary of results. Table 1 shows the results of our comparison. Alarm Overlap is the number
of source lines of races reported by both RacerD and Chord (after de-duplication of reports, which
Chord does not do). The key takeaway from the table is that RacerD reports at least 3 times less
frequently and an order of magnitude faster than Chord in all cases. We also note that:
(1) Chord and RacerD have comparable precision on the benchmark results that we manually

examined. Furthermore, RacerD finds all of the true bugs found by Chord on these projects
except for a handful of benign races on jspider (see next section);

(2) Chord and RacerD have a high intersection of alarms by historical standards in static analysis;12
(3) RacerD has better cost-to-value ratio of alarms/minute;
(4) Chord could not be deployed at diff time on large code bases as RacerD as at Facebook because

it is not incremental;
(5) Chordwould also be difficult to run in nightly mode (i.e., the full analysis of very large codebases

from scratch, run by CI agents over night) because it has limited scalability.
Given that Chord uses more sophisticated techniques such as alias and escape analysis, we were
surprised that RacerD compared as well as it did on smaller projects, particularly in the intersection
of issues detected. The metric of alarms/minute is an important one when judging whether to
deploy an analysis industrially, e.g., informing considerations related to CI capacity budget.

Manual triaging. Table 1 shows that RacerD reports much less frequently than Chord, but does
reporting less means missing true bugs instead of hiding false positives? To answer this question
and gain a better understanding of the relation between Chord and RacerD in terms of precision,
we manually examined results from the weblech and jspider benchmarks.

In weblech, Chord reports 30 potential concurrency issues, but only 6 are true bugs. All races
reported by Chord occur either in the weblech.spider.Spider class (21 alarms) or in utility classes
from the standard org.apache.log4j package. Because the latter class is a library JAR that does not
include sources, RacerD does not report any races in it. RacerD does report 9 potential issues in
the Spider class, including the 6 true bugs reported by Chord. All reported races involve concurrent
accesses to the Spider object itself. The remaining 3 issues are true positives, all of which are missed
by Chord. These races involve the urlsDownloading and queue fields, modified in a synchronized

section as well as without synchronization. Here is an example of racy code involving the queue

field of the Spider class:

12See, e.g., Figure 3 of the paper by Pendergrass et al. (2013).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:21

public void readCheckpoint() { queue = (DownloadQueue) ois.readObject(); }

public void run() {

synchronized(queue) { queue.queueURLs(u2dsToQueue); downloadsInProgress--; }

}

We also examined the results on jspider benchmark. Both tools reported the same races (modulo
the differences in reporting strategy explained below) in the WorkerThread, DispatcherThread and
SchedulerImpl classes. RacerD also reported a confirmed race in RuleFactory that was missed by
Chord.Chord raised a large number of alarms for (seemingly benign) races in the ResourceInternal
class. These races are not flagged by RacerD because it does not have a container model for this class
(see 5.2.4). Finally, Chord mistakenly reports a non-race in the class DistributedLoadThrottleImpl.
All races reported by RacerD for weblech and jspider were (manually) confirmed to be true
positives.

The Bingo paper reports numbers of true positives in the other benchmarks as well. We did not
conduct a manual inspection of these other cases due to time constraints. But in both weblech and
jspider, RacerD found all of the true positives that Chord did.

Race detection and reporting in Chord and RacerD. We comment briefly on some important
differences between the reporting strategies in RacerD and Chord that we noticed during manual
triaging. In the reports produced by the Bingo version of Chord, every detected race is reported
as a potential read/write conflict between accesses occurring at certain lines of a certain file. A
race between two read/write instructions in a class org.project.MyClass, on lines 85 and 32 will
be reported as:

5667:org/project/MyClass.java:85 5670: org/project/MyClass.java:32 ...

If reported accesses occur on the same line, this reporting scheme can make it difficult to
determine the actual fields that are involved in a race. For example, one race reported by both
Chord and RacerD in weblech references line 166 with the statement:

while ((queueSize() > 0 || downloadsInProgress > 0) && quit == false)

BecauseChord provides no fields names, it is impossible to tell whether the reported race implicates
the queueSize, downloadsInProgress, or quit field. The corresponding RacerD report provides both
the field name and line number, which makes the issue much easier to understand:
Read/Write race. Non-private method `weblech.spider.Spider.run` reads without synchronization
from `weblech.spider.Spider.quit`. Potentially races with write in method `Spider.stop()`.
165. System.err.println("queueSize = "+queueSize());
166. > while((queueSize() > 0 || downloadsInProgress > 0) && quit == false)

In addition, the Chord approach can make it difficult to understand the high-level cause of a race.
Imagine that a private method f() allows for an unsynchronized concurrent read/write into a field
x of a class. Imagine further that this method can be called from two public methods of the same
class, g() and h(). The cause of the actual conflict can be better understood by pointing out that it
is dangerous to call g() and h() concurrently. Pointing directly at the problematic code location
within f() isn’t always helpful, particularly if the race involves a long call chain that bottoms out
in the call to f().

As explained in Section 5.3, RacerD attempts to mitigate these issues by using techniques such
as reporting a full call stack to conflicting accesses and grouping races with the same high-level
cause (i.e., the public method whose invocation triggers a racy access).

6.2.2 Dynamic race detectors for Android. Because RacerD is primarily used to analyze Face-
book’s Android code, we sought to compare it with two state-of-the-art dynamic race detectors for

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

144:22 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Table 2. RacerD reports more true bugs than DroidRacer. The “# Alarms” column gives the number of
reports for each tool and the number of true positives in parentheses. We give a lower bound for RacerD’s
true positives on K9Mail because we only triaged a sample of the RacerD results. We manually added
@ThreadSafe annotations to SGTPuzzles; see explanation below.

Program # Files # LOC # Alarms (true bugs) RacerD
DroidRacer RacerD Runtime

SGTPuzzles 33 9,459 11 (10) 18 (18) 12s
OpenSudoku 62 9,021 1 (0) 14 (14) 14s
K-9 mail 3303 78,503 2 (1) 185 (>3) 2m 33s

Android: DroidRacer by Maiya et al. (2014) and EventRacer by Bielik et al. (2015). DroidRacer
and EventRacer automatically attempt to discover inputs leading to races rather than asking
for the user to provide them, which is analogous to the push-button nature of RacerD. We also
considered comparing to the leading Java race detector FastTrack (Flanagan and Freund 2009),
but its usage model differs significantly from RacerD, DroidRacer, and EventRacer in that it
requires inputs to be manually provided.
DroidRacer and EventRacer both focus mostly on event races, races that take place due to

non-deterministic scheduling of events (such as read/write operations) in Android the runtime.
DroidRacer’s execution model combines multi-threading and asynchronous event-based dispatch,
which allows it to detect true concurrent data races manifested only during multi-threaded execu-
tions. Because RacerD does not detect event races, we only considered data races detected by the
tools during our comparison.
We ran both EventRacer and RacerD on the Android Connectbot and K-9 mail applications.

EventRacer is not designed for multi-threading races, and, thus, any concurrency bugs reported it
might report are incidental to event races. Unsurprisingly, EventRacer did not report any data
races on the benchmarks, while RacerD reported over 100 on each. We manually confirmed that
several of the RacerD reports were true positives and then halted the comparison.
DroidRacer works only with a specific Android version (4.0.1), and building it requires a

particular machine configuration that we could not obtain in a timely fashion. However, with the
help of the authors we managed to analyze the raw output from the corresponding conference
paper (Maiya et al. 2014). We ran RacerD on the same versions of several of the larger projects that
were used in evaluating DroidRacer (except for OpenSudoku; see below). All reported runtimes
for RacerD were obtained on a 3.1 GHz Intel Core i7 Macbook Pro with 16 GB of RAM.
Table 2 summarizes the results of the comparison. We comment briefly on the results for each

benchmark:
• SGTPuzzles.13 DroidRacer detected 11 data races, including 10 true positives in the SmallKeyboard
and SGTPuzzles classes. However, we could not identify the fields involved in the races reported
by DroidRacer, because its output does not contain the names of non-static fields in conflict,
only their offsets. RacerD failed to find races at first, so we manually annotated containing key
classes such as SmallKeyboard and SGTPuzzles with @ThreadSafe. RacerD reported 18 races on
the annotated code, and all of them were true positives.

• OpenSudoku.14 Unfortunately, we could not compile the version of OpenSudoku that was
originally used to evaluate DroidRacer. Instead, we analyzed the latest available and hoped for
an overlap in the reports. In the original version, DroidRacer reported one data race that was
ruled a false positive. In the newer version, RacerD reported 14 concurrency errors in the Cell

and CellCollection classes All of these reports are confirmed true positives.
13Version 9561.1, https://github.com/chrisboyle/sgtpuzzles/releases/tag/9561.1
14Version 2.4.2, https://github.com/ogarcia/opensudoku/releases/tag/2.4.2

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://github.com/chrisboyle/sgtpuzzles/releases/tag/9561.1
https://github.com/ogarcia/opensudoku/releases/tag/2.4.2

RacerD: Compositional Static Race Detection 144:23

• K-9 mail.15 DroidRacer reported two races, including one true positive. The false positive
involves the private static pushingRequested field of the MailService class. The read/write accesses
implicated in the report both run on the UI thread, and thus cannot occur concurrently.
RacerD reports 185 concurrency issues, including at least 3 true positives (we only triaged a
small sample of the reports). It does not report the false positive on the pushingRequested field
because RacerD’s concurrent context inference does not observe evidence that the accesses to
this field can occur on a background thread (see Section 5.2.2).

Observations on dynamic executions and missed races. In our comparison with DroidRacer,
RacerD reports nearly twice as many legitimate data races in all cases. One obvious explanation
for this is the fact that DroidRacer is a dynamic analysis tool that explores a subset of concrete
executions, whereas RacerD is a static analysis tool that explores an approximation of all possible
concrete behaviors. Specifically, dynamic tools might not report as many races (including possible
false positives), because they could not “get past” certain functionality (e.g., entering a password in a
mail client), and thus would not have a chance to dynamically exercisemost of the code. For example,
in K-9 mail RacerD reported four legitimate thread safety violations in the classes Pop3Store and
EmailProviderCache, but none of these races are present in the traces generated by DroidRacer,
which might be because the latter has simply not reached that code.

On the other hand, DroidRacer’s random generation of input effects and dynamic construction
of happens-before orderings can (in principle) detect races that RacerDmight miss if its concurrent
context inference underapproximates the concrete concurrent behavior of the program.

The key takeaway from our comparison is that RacerD reports more true bugs than the leading
dynamic race detectors (EventRacer and DroidRacer) for Android by a considerable margin.
Although an apples-to-apples comparison of static and dynamic analyses is difficult, one other
relevant metric for bugfinding tools is the alarms found per minute of CPU time (as we previously
discussed in relation to Chord). We do not have enough detailed data on the performance of
DroidRacer to compute its alarms/minute, but the DroidRacer paper said that it “took a few
seconds to a few hours to analyze traces” Because RacerD finishes in less than three minutes in
all cases and we have looked at the largest applications that they considered, it seems likely that
RacerD performs better by this metric as well.
We might summarize the overall results in this section by saying that there is some evidence

that RacerD represents a new sweet spot in the race detection design space: it reports fewer false
positives than existing static tools, and it reports more true bugs than existing dynamic tools.
In saying this, we acknowledge that our evaluation was hampered by both the lack of available
tools for comparison and the difficulties we encountered in running them on comparable code. We
therefore do not argue this conclusion too strongly, but we have sought to provide what evidence
we could given these practical obstacles.

7 CONTEXT AND SELECTED RELATEDWORK

Reasoning about concurrency has attracted much attention from researchers. The rapid growth
in the number of interleavings is a key problem for tools that attempt exhaustive exploration.
There has been important work which uses various techniques to attempt to reduce the number of
interleavings while still in principle covering all possibilities (Flanagan and Godefroid 2005), but
scale is still a challenge. Note that RacerD is not exhaustive: it has false negatives (missed bugs).
But to compensate it is fast and effective: it finds bugs in practice and sees them fixed.

One reaction to the technical challenge of reasoning about concurrency is to ask the programmer
to do more work to help the analyzer. Numerous full-blown verifiers have been developed in
15Version 4.803, https://github.com/k9mail/k-9/releases/tag/4.803

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://github.com/k9mail/k-9/releases/tag/4.803

144:24 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

the research sector for proving strong properties of concurrent programs, including fine-grained
synchronization. Leading examples include the semi-automatic tools VCC (Cohen et al. 2009),
VeriFast (Jacobs et al. 2011), Viper (Müller et al. 2016), Caper (Dinsdale-Young et al. 2017), and
Starling (Windsor et al. 2017), as well as interactive verifiers FCSL (Sergey et al. 2015) and Iris
Proof Mode (Krebbers et al. 2017) (the latter two based on Coq Proof Assistant). These tools can
show a lot more about a program than can RacerD, but they are also more costly to use. Because
a verification expert is typically needed to drive such a tool, they are not in widespread use by
software engineers.

An intermediate approach is to ask the programmer for help, but require only relatively simple
annotations that make the analyzer’s life easier. This is the idea behind @GuardedBy annotations in
Java (Goetz et al. 2006) (checked by ErrorProne16 and other analyzers), GUARDED_BY and similar
annotations in Clang (checked by Clang’s Thread Safety Analyzer (Hutchins et al. 2014)), and
Mutex (Turon 2015) locks on Rust (checked by the compiler). These tools aim to be (and can be)
driven by engineers rather than dedicated verification experts. Facebook’s Infer analyzer also
includes a @GuardedBy checker, which can find some bugs that RacerD does not (namely, races
related to using the wrong lock), but RacerD finds a greater number because it can work on
un-annotated code. In the past year @GuardedBy checking has seen 382 fixes in Facebook’s Android
codebase, where RacerD’s data race reports have seen over 2500.

RacerD has significantly lower startup time and ongoing friction for the developer than methods
based on lock annotations do. A key finding of ours, then, is that is possible to have an effective
race analysis without decreeing that such annotations must be present in order to provide signal.
This was important for our deployment to News Feed, since manually inserting lock annotations
would have been much less efficient for the task of converting many thousands of lines of code to a
concurrent context. We believe that this finding should be transportable to new language designs.
RacerD is in a category of automatic data race detection tools that aim for lower friction than

tools based on lock annotations or program specifications. Such tools allow a programmer to
identify races without asking a human to describe the relationships between locks and fields.
Automatic race detection has seen significant work in the research community. An early static race
detector, RacerX by Engler and Ashcraft (2003), has been influential. It computed an approximation
of the locks held at each program point, and it employed numerous heuristics designed to filter out
likely false alarms. While it scaled to large code bases, it did not find many races; e.g., it reported
only 13 potential races when applied to Linux 2.5.62 (including three confirmed and fixed bugs, two
suspected bugs, two benign races, and six false alarms). With the caveat that it applies to different
code (Java and not C), RacerD has demonstrated a considerably better bugs/minute ratio, a key
quantity in deciding whether to deploy. The Chord tool that we compared to in Section 6 is one
of the most advanced approaches in this line of work. As we saw there, RacerD has considerable
advantages concerning speed, while being competitive in terms of precision.

The industrial static analysis tool ThreadSafe by Contemplate targets proving thread safety of
Java classes, but limits the amount of inter-procedural reasoning: “This analysis is interprocedural,
but to keep the overall analysis scalable, only calls to private and protected methods on the
same class are followed” (Atkey and Sannella 2015). In contrast, RacerD does deep cross-file and
cross-class inter-procedural reasoning, yet still scales. The inter-class capability was one of the
first requests from Facebook engineers. We inspected 100 recent data race fixes in our deployment
at Facebook, and observed that 53 of them were inter-file (and thus involve multiple classes). After
the work in this paper was completed Robert Atkey explained to us that, although the ThreadSafe
analysis itself does not do cross-file inter-procedural reasoning, at reporting time summaries from

16https://github.com/google/error-prone

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://github.com/google/error-prone

RacerD: Compositional Static Race Detection 144:25

multiple classes can be consulted when deciding whether there is a potential race. We are as a
result unsure how it would compare to RacerD on precision. ThreadSafe is not implemented in
an incremental way, so would be challenging to deploy at diff time, but it could likely be modified
to be incremental.

Also after the work in this paper was completed we became aware of D4, which provides a fast
differential analysis of data races (Liu and Huang 2018). The research on D4 was apparently done
virtually in parallel with that on RacerD. They do not demonstrate precision or effectiveness, but
preserve the precision of an underlying analysis. Their analysis is very fast, targeting IDE time
and not only diff time (i.e., a few seconds instead of minutes). As mentioned earlier, our results in
Table 1 suggest that RacerD’s underlying algorithm is also fast enough for potential deployment
in an IDE. In any case, perhaps ideas like in D4 and RacerD could complement one another in the
future, for example to find bugs with high signal and then to confirm that altered code is correct.

The company Juliasoft provides a race detector, which infers information similar to @GuardedBy

annotations as part of its proprietary offering (Spoto 2016). It is apparently a non-compositional,
whole program analysis (Ferrara 2013) and, as such, would likely be challenging to deploy at diff
time on a fast-changing, large codebase. The tool suite by Coverity also includes a proprietary data
race detector which, according to invited POPL talk by Chou (2014), uses global statistical data.
RacerD is open source.17
A reaction to challenges in static race detection has been to instead develop dynamic analyses.

Google’s ThreadSanitizer is a widely used and mature tool in this area, which has been used
in production to find many bugs in C-family languages (Serebryany and Iskhodzhanov 2009).
The ThreadSanitizer authors explicitly call out limitations with static race analyzers as part of
their motivation: “It seems unlikely that static detectors will work effectively in our environment:
Google’s code is large and complex enough that it would be expensive to add the annotations
required by a typical static detector”.

We have worked to limit the annotations that RacerD needs for reasons similar to those expressed
by the ThreadSanitizer authors. And we have sought to bring the complementary benefits of
static analysis—possibility of computationally cheaper analysis with fast reporting, and ability
to analyze code before it is placed in context—to industrial race detection. We were surprised to
find in Section 6 how well RacerD compared to state-of-the-art Android dynamic tools on their
whole-program home turf.

What is perhaps even more surprising is how we have obtained useful results in practice using
such simple techniques. As mentioned before, we have not used the alias or escape analysis
techniques from static analysis, and neither have we used advanced techniques from dynamic tools
such as based on the happens before order, favouring the less precise but fast methods based on
tracking locks (see the paper by Flanagan and Freund (2009) for discussion). In developing RacerD
we have rigorously applied occam’s razor, adding techniques when dictated by examples from
practice and not from artificial examples that we could easily generate. Keeping to as simple a
design as possible was a practical necessity; for instance, the ownership domain was evolved in a
feedback loop with engineers, and having a complicated analysis would have made this evolution
more difficult to keep track of.

RacerD represents a new sweet spot in the race detection design space: it reports less often than
a state-of-the-art static tool, and it reports more often than state-of-the-art dynamic tools (where
“reports” include both false and true positives). Our evaluation has shown that it could be difficult
to replicate the impact of RacerD at Facebook using existing tools.

17It is available as a part of Facebook Infer framework https://github.com/facebook/infer.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://github.com/facebook/infer

144:26 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

On the other hand, static and dynamic tools are often complementary. At Facebook we routinely
run both static and dynamic tools that search for the same kind of bug; for instance, Infer and the
dynamic tool Sapienz (Mao et al. 2016) both search for NPEs in our Android apps. In the future, we
would be very interested in deploying an effective dynamic race detector alongside RacerD.

8 LIMITATIONS

There are a number of known limitations of RacerD’s design:

• It looks for races involving syntactically identical access paths, but misses races due to aliasing.
• It misses races that arise from a locally declared object escaping its scope (see Section 5.2.3).
• It abstracts lock counts rather than lock identities, and thus misses races where two accesses are
mistakenly protected by different locks.

• It works for mutex locks, but will not catch races due to misuse of subtler forms of locking such
as read/write locks.

• It assumes a “deep” ownership model (Clarke and Drossopoulou 2002), which misses races where
local objects refer to or contain non-owned objects.

• It avoids reasoning about weak memory, Java’s volatiles, and other fine-grained concurrency.

It is likely possible to make progress on a number of these limitations, though it would be essential
to do so without compromising speed and effective signal18. But, perhaps the most surprising part
of this work is that, even with these limitations, it is possible to have an analyzer that demonstrably
helps engineers write concurrent code. Most of these limitations are consistent with the design goal
of reducing false positives, even if they lead to false negatives. They also allow technical tradeoffs
which are different than if we were to favor reduction of false negatives over false positives.

RacerD is limited to Java, but would be very worthwhile to have effective static race detectors
in other languages, e.g., C++, where much important concurrent code is written.

Finally, RacerD focuses on reducing false positives over false negatives, but the goal of proving
thread safety at scale remains a worthwhile one. More precisely: an open problem is whether one
can have an over-approximating analyzer that proves absence of races, but is similar to RacerD in
its low friction, speed, scale and demonstrably effective signal.

9 CONCLUSIONS

RacerD demonstrates that a static concurrency analysis can be developed and effectively applied
at the speed and scale demanded by Facebook’s development model, where a large codebase is
undergoing frequent modification by many programmers. It has enabled a project that converted
Facebook’s Android News Feed to a multi-threaded architecture, which in turn moved metrics
related to performance. RacerD can scale to a codebase in the millions of lines of code, and it
can deliver incremental results quickly on code changes, allowing it to participate as a bot during
the code review process. The analysis has a high degree of automation, where the relationship
between threads, locks and memory is discovered rather than specified by a person; this means that
it can immediately scale to many programmers with low friction. Without these characteristics—
speed, scale and low friction—using RacerD to support the conversion of the News Feed to a
multi-threaded architecture would not have been possible.
Concurrency in general remains a fundamental and difficult problem area, but these results

make us hopeful: with sufficient innovation, more techniques and tools might be developed to help
working programmers in the challenging task of engineering concurrent systems.

18See (Harman and O’Hearn 2018) for further discussion on problems related to friction, signal, etc in program analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

RacerD: Compositional Static Race Detection 144:27

ACKNOWLEDGMENTS

We wish to thank Martino Luca for his help with scripting for mining RacerD traces. We are
very grateful to Sulekha Kulkarni, Mayur Naik, and Kihong Heo for providing us with the Bingo
benchmark suite and for their assistance in running Chord. We thank Pallavi Maiya for her help
with DroidRacer benchmarks, and Pavol Bielik for answering our questions about EventRacer.
We benefited a lot from discussions with Mehdi Bouaziz and Francesco Logozzo, whose comments
helped to improve the paper. We are grateful to Don Stewart for his encouragement and support.
Finally, we wish to thank the anonymous referees from OOPSLA’18 PC for their many helpful
suggestions for improving the presentation.

REFERENCES

Robert Atkey and Donald Sannella. 2015. ThreadSafe: Static Analysis for Java Concurrency. ECEASST 72 (2015).
Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and William Pugh. 2008. Using Static Analysis to

Find Bugs. IEEE Software 25, 5 (2008), 22–29.
David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr, Doug Lea, Tom May, Jan-Willem Maessen, Jeremy Manson,

John D.Mitchell, Kelvin Nilsen, Bill Pugh, and Emin Gün Sirer. 2012. The “Double-Checked Locking is Broken” Declaration.
Available online: https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html. (July 2012).

Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles-Henri Gros, Asya Kamsky, Scott
McPeak, and Dawson R. Engler. 2010. A few billion lines of code later: using static analysis to find bugs in the real world.
Commun. ACM 53, 2 (2010), 66–75.

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2015. Scalable race detection for Android applications. In OOPSLA.
ACM, 332–348.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.
2006. The DaCapo benchmarks: Java benchmarking development and analysis. In OOPSLA. ACM, 169–190.

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. SIGLOG News 3, 3 (2016), 47–65.
Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program Verifier for Memory Safety of C Programs. In

NASA Formal Methods (LNCS), Vol. 6617. Springer, 459–465.
Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn,

Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In NASA

Formal Methods (LNCS), Vol. 9058. Springer, 3–11.
Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by Means

of Bi-Abduction. J. ACM 58, 6 (2011), 26:1–26:66.
Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P. Midkiff. 1999. Escape Analysis

for Java. In OOPSLA. ACM, 1–19.
Andy Chou. 2014. From the Trenches: Static Analysis in Industry. (2014). Invited keynote talk at POPL’14. Available at

https://popl.mpi-sws.org/2014/andy.pdf.
David G. Clarke and Sophia Drossopoulou. 2002. Ownership, encapsulation and the disjointness of type and effect. In

OOPSLA. ACM, 292–310.
Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram Schulte,

and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In TPHOLs (LNCS), Vol. 5674. Springer,
23–42.

Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. 2008. A Practical Verification Methodology for
Concurrent Programs. (2008).

Coq Development Team. 2018. The Coq Proof Assistant Reference Manual - Version 8.8.
Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and Lars Birkedal. 2017. Caper - Automatic

Verification for Fine-Grained Concurrency. In ESOP (LNCS), Vol. 10201. Springer, 420–447.
Dawson R. Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race conditions and deadlocks. In SOSP.

ACM, 237–252.
Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, and Javier Thaine. 2016. Locking discipline inference

and checking. In ICSE. IEEE/ACM, 1133–1144.
Pietro Ferrara. 2013. A generic static analyzer for multithreaded Java programs. Softw., Pract. Exper. 43, 6 (2013), 663–684.
Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic race detection. In PLDI. ACM,

121–133.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
https://popl.mpi-sws.org/2014/andy.pdf

144:28 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In PLDI. ACM,
110–121.

Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. 2006. Java Concurrency in Practice.
Addison-Wesley.

Mark Harman and Peter W. O’Hearn. 2018. From Start-ups to Scale-ups: Open Problems and Challenges in Static and
Dynamic Program Analysis for Testing and Verification (keynote paper). In International Working Conference on Source

Code Analysis and Manipulation.
DeLesley Hutchins, Aaron Ballman, and Dean Sutherland. 2014. C/C++ Thread Safety Analysis. In SCAM. IEEE, 41–46.
Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (LNCS), Vol. 6617. Springer, 41–55.
Neil D. Jones and Steven S. Muchnick. 1979. Flow Analysis and Optimization of LISP-like Structures. In POPL. ACM,

244–256.
Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic. In

POPL. ACM, 205–217.
Bozhen Liu and Jeff Huang. 2018. D4: fast concurrency debugging with parallel differential analysis. In PLDI. ACM, 359–373.
Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race detection for Android applications. In PLDI. ACM, 316–325.
Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated testing for Android applications. In ISSTA.

ACM, 94–105.
Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In VMCAI (LNCS), Vol. 9583. Springer, 41–62.
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In PLDI. ACM, 308–319.
Peter W. O’Hearn. 2018a. Continuous Reasoning: Scaling the impact of formal methods. In LICS. IEEE, 13–25.
Peter W. O’Hearn. 2018b. Experience developing and deploying concurrency analysis at Facebook. In SAS (LNCS), Vol. 11002.

Springer, 56–70.
J. Aaron Pendergrass, Susan C. Lee, and C. Durward McDonell. 2013. Theory and Practice of Mechanized Software Analysis.

In Johns Hopkins APL Technical Digest, Volume 32, Number 2. 499–508.
Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. Interactive Program Reasoning using

Bayesian Inference. In PLDI. ACM, 722–735.
Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building

Static Analysis Tools at Google. Commun. ACM 61, 4 (March 2018), 58–66.
Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection in practice. Proceedings of the

Workshop on Binary Instrumentation and Applications, 62–71.
Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized Verification of Fine-grained Concurrent

Programs. In PLDI. ACM, 77–87.
Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages 2,

1 (2015), 1–69.
Fausto Spoto. 2016. The Julia Static Analyzer for Java. In SAS (LNCS), Vol. 9837. Springer, 39–57.
Aaron Turon. 2015. Fearless Concurrency with Rust. (10 April 2015). The Rust Programming Language Blog, available at

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html.
Matt Windsor, Mike Dodds, Ben Simner, and Matthew J. Parkinson. 2017. Starling: Lightweight Concurrency Verification

with Views. In CAV (I) (LNCS), Vol. 10426. Springer, 544–569.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

	Abstract
	1 Introduction
	2 A Beginning Example
	3 Analysis Requirements
	4 Design principles
	5 High Confidence Static Race Detection
	5.1 Part 1: abstract domain and reporting algorithm
	5.2 Part 2: implementing domains and computing summaries
	5.3 Implementation

	6 Evaluation
	6.1 Deployment and Impact at Facebook
	6.2 Comparison to other Race Detectors

	7 Context and Selected Related Work
	8 Limitations
	9 Conclusions
	Acknowledgments
	References

