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A. Histone, phosphoproteomic and transcriptomic data 

acquisition 

The experimental data were generated by the NIH LINCS 

Proteomic Characterization Center for Signaling and 

Epigenetics (PCCSE) repository. Level 3 (log 2 normalized) 

targeted phosphoproteomics assay (P100) against 96 

phosphopeptides data, and level 3 (log 2 normalized) global 

chromatin profiling assay (GCP) against 60 probes that monitor 

combinations of post-translational modification on histones 

data using various cancer cell lines including MCF7 (breast), 

YAPC (pancreas), A375 (melanoma), PC3 (prostate), A549 

(lung) and NPC (Neural Progenitor) were downloaded. These 

assays were treated with 31 serine/threonine kinase inhibitors 

(drugs) at various concentrations, DMSO as a negative control 

and consisted of three biological replicates. Three time points 

(3, 6, 24 hour) were available for P100 data while a single time 

point (24 hour) was available for GCP data in MCF7 cells. 

Single time point (24 hour) was available for GCP data in 

YAPC, A375, PC3, A549, and NPC cell lines (Supplementary 

Table 1). 

The experimental transcriptomic data was generated by the NIH 

LINCS Connectivity Map (CMap) using microarray platform. 

This assay, which is known as L1000, contained 978 landmark 

transcripts whose expressions were invariant across cell states. 

Level 3 (log 2 normalized) L1000 data for breast cancer cell 

line MCF7 were downloaded.  

Patient-level data were downloaded from The Cancer Genome 

Atlas (TCGA) where breast tissue samples were obtained from 

113 normal patients and breast cancer tissue samples were 

obtained from 303 ER+/HR+/HER2- cancer patients from 

molecular taxonomy of breast cancer international consortium 

(METABRIC) study [29] (Supplementary Table 4).  

B. Data pre-processing 

Replicates were used to impute missing data by taking their 

weighted average values during the pre-processing step. 

Differential histone modifications and phosphorylation changes 

were computed by taking fold changes of each perturbed 

phosphopeptide and histone code with respect to 

DMSO.  These resulted in two data matrices, i) phosphoprotein 

profiles consisting of [96 peptides x 31 drugs], and ii) global 

chromatin profiles consisting of [60 histone modifications x 31 

drugs]. Prior to modeling, P100 data were normalized with 

respect to the mean and standard deviation of the respective 

variables.  

C. Experimental Validation 

L1000 genes expressions were used to validate differential gene 

expressions of the 31 functionally significant genes (cell cycle 

genes, CDK inhibitor gene CDKN2A, transcription factor MYC 

and genes representing the enriched phosphoproteins) to 

capture in vitro gene activity levels in (MCF7) cell line. 

D. Quantification and Statistical Analysis 

Histone Signature Identification 

An unsupervised clustering technique, non-negative matrix 

factorization (NMF), was used to stratify histone signatures. R 

Statistics package was used for the calculation and Cytoscape 

was used to generate network graphs. Similar to vector 

quantization methods such as principal components analysis 

(PCA) and singular value decomposition (SVD), the objective 

of NMF is to explain the observed data using a compact number 

of latent features, i.e., basis components, which when combined 

with loading/mixture components approximate the original data 

as accurately as possible.  In our NMF formulation both the 

matrix representing the basis components (histone signatures) 

as well as the matrix of mixture coefficients (drug prototypes) 

are constrained to have non-negative values, and unlike PCA 

and SVD, no independence or orthogonally constraints are 

imposed on the basis components leading to a simple and 

intuitive interpretation of the factors that allow the basis 

components to overlap. This unique feature is particularly 

interesting in histone modules, where overlapping basis 

components identify combinatorial histone codes resulting 

from multiple signaling pathways and indicate a specific 

signature. Because NMF assumes an additive model, anti-log 

transformed values were used in our analysis. 

Mathematically, NMF consists of finding an approximation 

 

A  WH,  `        (1) 

    𝑊, 𝐻 ≥ 0 

 

where W, H are n   k and k   m non-negative matrices 

respectively where n are rows – samples and m are columns –

the measured features in A. Since the objective is to reduce the 

dimension of the original data A, the factorization rank k is 

often chosen such that k  (n, m). W contains basis vectors 

and H contains encoding vectors that estimate the extent to 

which each basis vector is used to reconstruct each input vector. 

We used a version of NMF to minimize the divergence function 

(KL divergence) given by Brunet et al. [35]. The function is 

related to the Poisson likelihood of generating A from W and 

H, more specifically, based on randomly initialized matrices W 

and H, NMF finds the solution of  

min D(A||WH) = 

 ∑  𝑛
𝑖=1 ∑ (𝐴𝑖𝑗𝑙𝑜𝑔

𝐴𝑖𝑗

(𝑊𝐻)𝑖𝑗

𝑚
𝑗=1 −  𝐴𝑖𝑗 + (𝑊𝐻)𝑖𝑗)       (2) 
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where, D is a loss function, via an iterative process [11]. At each 

step, W and H are updated by using the following coupled 

divergence equations: 

 

𝐻𝑎𝜇 ← 𝐻𝑎𝜇 

∑ 𝑊𝑖𝑎𝐴𝑖𝜇/(𝑊𝐻)𝑖𝜇𝑖

∑ 𝑊𝑘𝑎𝑘
               (3) 

 

𝑊𝑖𝑎 ← 𝐻𝑊𝑖𝑎 

∑ 𝑊𝐻𝑎𝜇𝐴𝑖𝜇/(𝑊𝐻)𝑖𝜇𝜇

∑ 𝐻𝑎𝑣𝑣
        (4) 

 

where Ai,j = [A]i,j indicates (i,j)-th element of the matrix A.  

Because (1) is non-convex optimization with respects to W and 

H, there is no guarantee of obtaining a local minimum. 

Moreover, the above iterative update rules are notorious for 

slow convergence (i.e., require more iterations) and have a 

complexity of O(mnk2NiNo) where Ni is the number of inner 

iterations to solve the non-negative linear model and No is the 

number of outer iterations to alternate W and H steps. As a 

result, the initialization of the pair of factors (W, H) is 

considered an important component in the design of successful 

NMF methods [11]. We used a robust initialization strategy 

using the seeding algorithm, that is based on a non-negative 

double singular value decomposition (nndSVD) [12]. The 

whole process then becomes deterministic and needs to run 

once and the complexity is reduced to O (mnk2Ni + No). Our 

NMF framework works as follows: 

 

1. Initialize W, H ∈ Rm×k, Rk×n respectively with non-

negative elements using nndSVD. 

 

2. Repeat until a convergence criterion is satisfied:  

𝐻𝑎𝜇 ← 𝐻𝑎𝜇 

∑ 𝑊𝑖𝑎𝐴𝑖𝜇/(𝑊𝐻)𝑖𝜇𝑖

∑ 𝑊𝑘𝑎𝑘
    

    𝐻 ≥ 0 

where W is fixed, and 

 

𝑊𝑖𝑎 ← 𝐻𝑊𝑖𝑎 

∑ 𝑊𝐻𝑎𝜇𝐴𝑖𝜇/(𝑊𝐻)𝑖𝜇𝜇

∑ 𝐻𝑎𝑣𝑣
    

     𝑊 ≥ 0 

where H is fixed 

 

3. The columns of W are normalized and the rows of H are 

scaled accordingly. 

E. Cluster Validation 

To identify the optimal rank k, we used the cophenetic 

correlation coefficient [36] to determine the most robust 

clustering as: 

        (5) 

 

It measures how reliably the same histone codes are assigned to 

the same cluster across many iterations of the clustering 

algorithm with random initializations. The cophenetic 

correlation coefficient lies between 0 and 1 and reflects the 

probability that samples i and j cluster together. Higher values 

indicate more stable cluster assignments. We selected optimal 

k= 4 (Supplementary Fig S1A, S1B) based on the largest 

observed cophenetic coefficient and where the magnitude of the 

cophenetic correlation begins to decrease by varying values of 

k from 2 to 10 (Supplementary Fig S1C). We used the NMF 

package in R to implement and compute these calculations. 

In eq 5, x(i, j) = | xi − xj |, is the ordinary Euclidean distance 

between the ith and jth observations. t (i, j) = the 

dendrogrammatic distance between the model points ti and tj 

(height of the node at which these two points are first joined), x 

bar is the average of the x(i, j), and t bar is the average of the 

t(i, j). After factorizing A into the basis matrix W and the 

encoding matrix H, we used the basis matrix W for histone 

stratification. Specifically, we grouped histone codes into four 

groups (k=4). We assigned histone code xi to cluster k* which 

has the highest value based on the basis vector, as: 

 

k∗ = arg maxkWi,k          (6) 

 

Similarly, we assigned targeted pathways for each drug dj to 

cluster k* which has the highest value based on the encoding 

vector, as: 

 

k∗ = arg maxkHj,k        (7) 

F. Histone Prediction Model 

Histone-peptide interaction network was generated using 

partial least square regression (PLSR) method based on 

Kraemer et al. formulation [13]. PLSR is a multivariate 

regression method for constructing predictive model when the 

number of factors/predictor variables (in our case 

phosphopeptides) exceeds the number of responses / dependent 

variables (histone marks), and collinearity exists 

(phosphopeptides are correlated with one another). A past study  

[37] had shown the effectiveness of partial least square (PLS) 

application in understanding crosstalk between phosphoprotein 

signaling in macrophage cells, thus, prompting us to consider a 

PLS-based regression model. The general idea behind PLSR is 

to try to extract latent factors, accounting for as much of the 

observed variation as possible while modeling the responses 

well. For each sample n, the value ynj is defined as: 

𝑦𝑛𝑗 = ∑ 𝑏𝑖
𝑘
𝑖=0 𝑥𝑛𝑖 + 𝜀𝑛𝑗        (8) 

 

Where ynj is a response, 𝑏𝑖is the coefficient, 𝑥𝑛𝑖is an 

explanatory variable and 𝜀𝑛𝑗 is an error term. This model is 

similar to linear regression; however, the way these i are found 

is different. To see this, a matrix format of equation (7) can be 

expressed as Y=XB+E where Y is an n cases by m variables 

response matrix (in our case it is drugs x histone data), X is 

an n cases by p variables predictor matrix (in our case it is drugs 

x phosphopeptides data), B is a p by m regression coefficient 

matrix, and E is a noise term for the model which has the same 

dimensions as Y. For our X predictor matrix, we first 

normalized all the phosphosignal values to their corresponding 

z-scores and centered Y response matrix (histone values). 

Intuitively, partial least squares regression produces 

a p by c weight matrix W for X such that T=XW, i.e., the 

columns of W are weight vectors for the X columns producing 

the corresponding n by c factor score matrix T. These weights 

are computed so that each of them maximizes the covariance 

between responses and the corresponding factor scores. 

Ordinary least squares procedures for the regression 

of Y on T are then performed to produce Q, the loadings 

for Y (or weights for Y) such that Y=TQ+E. Once Q is 

https://paperpile.com/c/iL63ZC/sqe9W
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computed where B=WQ, we have Y=XB+E, and the prediction 

model is complete. To provide a complete description of PLSR, 

we also need a p by c factor loading matrix P which gives a 

factor model X=TP+F, where F is the unexplained part of 

the X scores. 

On the training data, we calculated the optimal model parameter 

using 10-fold cross-validation. We assessed the predictive 

performance by computing the residual sum of square (RSS) 

error of prediction on the test set (Supplementary Fig S2). 

We identified the optimal number of components (principal 

component, PC) that could be used to predict the model 

accurately using residual square sum (RSS) value < 0.05. Once 

the coefficients (i) are generated, we retained only the 

significant peptides (p_value < 0.0001) using a t-test where the 

degree of freedom DOF was computed as: 

DOF = min (column of X, row of X) – PC – 1. 

G. Integrated Phosphoprotein-Histone-Drug Network 

(iPhDNet) 

Using the coefficients from the histone signatures (c1, c2, c3, 

and c4) and the drug prototypes using NMF and model 

coefficients of phosphoproteins towards histone model 

prediction using PLSR, an integrated 3D network file is 

constructed connecting drugs to phosphoproteins and 

phosphoproteins to histones (iPhDNet).  iPhDNet is visualized 

using Cytoscape highlighting hub nodes (most connected 

histones) linking histone to phosphoproteins to drugs. 

Influences of each drug or phosphoprotein towards a histone 

code then can be visualized by the properties of edges 

connecting them. For example, the thickness of the edges 

signifies the amount of contributions by each phosphoprotein 

or drug, colors of edges signify how they are correlated (i.e., 

positive or negative). 

H. Mechanistic Causal Network (MCN) Reconstruction 

A time-varying mechanistic causal network was constructed by 

back propagating iPhDNet, previously generated for 24 hour 

from P100 data. We first used a one-way ANOVA with a p-

value of 1.0e-4 to populate enriched (statistically significant) 

phosphoproteins at 6 and 3-hour time points. We then inferred 

protein-protein interactions for the phosphoproteins enriched in 

24 hour by mapping them to the STRING database. An 

interaction score of 0.8 and above, experimentally validated 

PPIs, and gene fusions criteria were used to obtain these 

inferred proteins. Our final MCN was constructed by back 

propagating our mapping of the inferred proteins from 24 hour 

to enriched phosphoproteins in 6 and to 3 hour. Additional 

protein-coding genes were generated and added to the final 

MCN using the EnrichR tool 

(http://amp.pharm.mssm.edu/Enrichr/enrich). We then 

validated our MCN by matching them against significant 

differentially expressed (DE) genes in L1000. Cytoscape was 

used to view the final reconstructed MCN. 

I. Transcriptomic Analyses - Differential Expression of 

L1000 and TCGA Data 

Differential expression analyses for 978 landmark genes from 

L1000 assay treated with flavopiridol and dinaciclib were 

performed using the unpaired t-test implemented in 

CyberT.  Cyber-T is based on a regularized Bayesian 

framework that addresses technology biases and low replication 

levels in high throughput data [38]. These analyses were 

performed on 3, 6 and 24-hour datasets. Multiple corrections 

were applied to p-values using Benjamini Hochberg. Similarly, 

differential expression analyses of TCGA matched normal vs 

cancer patients were performed using unpaired t-tests. Cyber-T 

web server [39] was used to generate these analyses 

(Supplementary Table 4). 

J. Cluster Similarity Evaluation 

We used the Rand Index (RI) to evaluate the similarity of 

cluster assignments between every paired treatments in breast 

cancer and other cell lines. RI computes the percentage of pairs 

of objects for which both classification methods, the computed 

and the ideal one, agree. It is computed using False Positives 

(FP), False Negatives (FN), True Positives (TP) and True 

Negatives (TN) as follows: 

 

𝑅𝐼 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
         (9) 

 

The RI value ranges from 0 (completely dissimilar group 

assignment) to 1 (exactly same group assignment). 

K. Software Availability 

Genomic, transcriptomic, epigenetic, and proteomic data files 

are available from the public online portal 

(https://panoramaweb.org/project/LINCS/GCP/begin.view?). 

Source codes are implemented in R 3.3.1 and are freely 

available for download at 

(https://github.com/smollah/iPhDNet).  

L. Supplementary Figures 

 

https://panoramaweb.org/project/LINCS/GCP/begin.view
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Fig S1. Estimation of the factorization rank of NMF and its cluster components. (A) Heatmap of the basis components (histones and their cluster memberships). 

Showing likelihood of each histone code belonging to a specific signature module. (B) Showing membership contributions of each drug toward 4 signature modules 

(k=4). (C) Cophenetic score is computed from 100 runs for each value of rank k by varying k= 2, 3...10 on 24-hour GCP data. Rank k represents the number of 

clusters or basis components. The solid line represents the original data and the dotted line represents random data. (D) Showing these 4 basis components 

corresponds to 4 pathway-based functional modules (c1, c2, c3 and c4). These functional modules constitute histone signatures.  
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Fig S2. Performance of PLRS model, related to Figure1. Showing three examples of histone codes (H3K27me3K36me3, H3K9ac1S10ph1K14ac0 and 

H3K18ub1K23ac0). (A) Showing model performance using optimal number of components. The optimal number of components (principal component, PC) is used 

to predict the model accurately using residual square sum (RSS) value < 0.05. Once the coefficients (i) are generated, only the significant phosphoproteins (p_value 

< 0.0001) are retained using t-test. (B) Depicting model performance using sub optimal number of components for e.g., using 5 components fewer than the optimal 

component number. 
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Fig S3. Phosphoprotein and global chromatin correlation profiles between drug pairs.  (A) Pearson correlation between paired drugs at 3 and 6 hours. Showing a 

strong positive correlation (r=0.59) between flavopiridol and dinaciclib (circled) at 3 and 6 hours. (B) Strong positive correlation (r=0.69) is sustained between 

flavopiridol and dinaciclib (circled) at 6 and 24 hours. (C) Pairwise correlation between flavopiridol and dinaciclib based on 24 hour GCP data. Showing positive 

correlations between flavopiridol and dinaciclib (positive slope), using a linear regression line on 24 hour normalized global chromatin data (p-value = 1.85e-11, 

adjusted r-squared =0.536). 
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Cell line GCP data GCP time point P100 data P100 time point

MCF7 (Breast cancer) LINCS_GCP_Plate29_annotated_minimized

_2016-01-08_09-27-26_unprocessed.gct

24 hour LINCS_P100_PRM_Plate29_03H_annotated_minimized_2016-

01-28_11-00-43.gct

LINCS_P100_PRM_Plate29_06H_annotated_minimized_2016-

01-28_17-11-17.gct

LINCS_P100_PRM_Plate29_24H_annotated_minimized_2016-

01-28_17-11-22.gct

3, 6, 24 hour

YAPC (Pancreas cancer) LINCS_P100_PRM_Plate32_annotated_mini

mized_2016-07-22_11-29-42.gct

24 hour

A375 (Melanoma) LINCS_GCP_Plate28_annotated_minimized

_2016-04-14_14-24-24.gct

24 hour

PC3 (Prostate cancer) LINCS_GCP_Plate34_annotated_minimized

_2016-07-07_14-16-01.gct

24 hour

A549 (Lung cancer) LINCS_GCP_Plate33_annotated_minimized

_2016-06-03_14-58-02.gct

24 hour

NPC (Neural Progenitor Cells) LINCS_GCP_Plate27_annotated_minimized

_2016-04-14_14-24-09.gct

24 hour

Supplementary Table 1. Library of Integrated Network-Based Cellular Signatures (LINCS) proteomics dataset used in our study
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Histone signature # of Histone codes Histone codes # of Drugs Drugs Canonical pathways

c1 46 H3K4me0, H3K4me1, H3K4me2, 

H3K4me3,H3K4ac1,

H3K9me0K14ac0, H3K9me1K14ac0, 

H3K9me2K14ac0, H3K9me3K14ac0,

H3K9ac1K14ac0, H3K9me0K14ac1,

H3K9me1K14ac1, H3K9me2K14ac1,

H3K9me3K14ac1, H3K9ac1K14ac1,

H3K9me0S10ph1K14ac1,

H3K9me1S10ph1K14ac1,

H3K18ac0K23ac0, H3K18ac1K23ac0,

H3K18ac0K23ac1, H3K18ac1K23ac1,

H3K27me1K36me0, H3K27me1K36me1,

H3K27me1K36me2, H3K27me1K36me3,

H3K27me2K36me0, H3K27me2K36me1,

H3K27me2K36me2, H3K27me2K36me3,

H3K27me3K36me0, H3K27me3K36me1,

H3K27me3K36me2, H3K27me3K36me3,

H3K27ac1K36me1, H3K27ac1K36me2,

H3K27ac1K36me3, H3.3K27me0K36me0,

H3NORM.41.49_1, H3NORM.41.49_2,

H3K56me0, H3K79me0,

H3K79me1, H3K79me2,

H3K27me0K36me1,

H3K27me0K36me2,

H3K27me0K36me3

10 AR-A014418,

Dinaciclib,

Flavopiridol,

Lenalidomide,

Pazopanib,

PD-0332991,

SCH900776,

TG101348,

Vemurafenib,

VX970

GSK3 inhibitor,

CDK/1,2,4,5,6,9 

inhibitor,

immunomodulator,

PDGFR and VEGFR; 

Also c-KIT, FGFR, 

inhibitor,

Rep. stress/CHK1 

inhibitor,

Jak2 inhibitor,

Raf inhibitor,

Rep. stress/ATR 

inhibitor

c2 3 H3K9ac1S10ph1K14ac0,

H3K9ac1S10ph1K14ac1,

H3K18ub1K23ac0

10 afuresertib,

BMS906024,

BYL719,

dactolisib,

IPI145,

Pravastatin,

PS-1145,

SP600125,

staurosporine,

vorinostat

Ras/AKT inhibitor,

Notch/other inhibitor,

Ras/PI3K-P110a 

inhibitor,

Ras/PI3K inhibitor,

Ras/PI3K-P110g,d 

inhibitor,

Stat1 inhibitor,

IkKB inhibitor,

Jnk inhibitor,

Kinase inhibitor; 

general,

HDAC inhibitor; 

general

c3 2 H3K56me1,

H3K56me2

5 CC-401,

Nilotinib,

Selumetinib,

Tofacitinib,

Verteporfin

Jnk inhibitor,

Multikinase inhibitor,

Mek1/2 inhibitor,

Jak3 inhibitor,

Hippo inhibitor

c4 9 H3K9me0S10ph1K14ac0,

H3K9me1S10ph1K14ac0,

H3K9me2S10ph1K14ac0,

H3K9me3S10ph1K14ac0,

H3K9me2S10ph1K14ac1,

H3K9me3S10ph1K14ac1,

H3K18ac0K23ub1,

H3K27me0K36me0,

H3K27ac1K36me0

6 BMS-345541,

Everolimus,

losmapimod,

PD0325901,

PRI-724,

RO4929097

IkKB inhibitor,

mTOR inhibitor,

p38 MAPK inhibitor,

Mek1/2 inhibitor,

Notch/Wnt/Hedgehog 

inhibitor,

Notch/gamma 

secretase inhibitor

Supplementary Table 2. Characteristics of the NMF based four histone signatures in MCF7
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Phosphoprotein Description Function

BRD4 Bromodomain Containing 4 An epigenetic “reader” and belongs to BET family protein that maintains 

epigenetic memory and regulates cell cycle progression; BRD4 has been 

shown to have an intrinsic binding  specificity for transcription factors such 

as c-MYC and p53 which are known to promote cancer (Delmore et al. 

2011), making it a promising drug target. 

ATAD2 ATPase Family, AAA Domain Containing 2 A bromodomain protein. It is a novel cofactor for MYC, overexpressed and 

amplified in aggressive tumors. It has been shown that downregulation of 

ATAD2 via siRNA results in increased apoptotic activity, suggesting a role 

for inhibitors of ATAD2 in cancer cell death and tumor regression (Caron 

et al. 2010).

NOLC1 Nucleolar and Coiled-Body Phosphoprotein 1 A nucleolar protein that regulates RNA polymerase I by connecting RNA 

polymerase I to ribosomal processing and remodeling enzymes, resulting 

in translational remodeling. It has a high binding affinity to c-MYC and 

Max transcription factors which play an important role in cancer. Although 

NOLC1 has not been studied extensively, a previous study found NOLC1 

to have transcription factor-like activity in nasopharyngeal cancer 

progression suggesting its possible role in other cancers (Hwang et al. 

2009).

SRRM2 Serine/Arginine Repetitive Matrix 2 Known to be involved in pre-mRNA splicing and has binding specificity for 

p53. SRRM2 has been detected as a 5'-3' Exoribonuclease 2 (Xrn2)-

interacting protein that is involved in premature termination of RNA 

polymerase II transcription (Sansó et al. 2016; Brannan et al. 2012) thus 

affecting cell cycle progression. 

CASC3 Cancer Susceptibility Candidate 3 Also known as MLN51 is a component of the exon junction complex (EJC) 

whose expression as been shown to be elevated in some breast cancer 

cell lines (Tomasetto et al. 1995). 

The EJC is known to be involved in a surveillance mechanism that 

degrades mRNAs with premature translation termination codons through 

a nonsense-mediated mRNA decay (NMD) function, thereby, promoting 

cell cycle arrest.

Supplementary Table 3. Characteristics of the enriched phosphoproteins

L1000 data Treatment Concentration L1000 time point P100 data Data Level

0.37 uM 3, 24 hour Slicr_data_3_mcf7_alvocidib_dmso.zip

Slicr_data_24_mcf7_alvocidib_dmso.zip
3

0.4 uM 6 hour 6hr_L1000_LEVEL4_n1667x978.txt(Jaffe et al) 4

0.37 uM 24 hour Slicr_data_24_mcf7_dinaciclib_dmso.zip 3

0.4 uM 6 hour 6hr_L1000_LEVEL4_n1667x978.txt (Jaffe et al) 4

Sample data

Normal breast tissue Matched normals, controls=113 (TCGA)

Breast cancer tissue PAM 50 subtype: ER+, PR+, Her2- 

METABRIC cohort, cases=303

http://www.cbioportal.org/

Curtis C, et al., Nature (2012); Pereira B, et al., Nature communications (2016) 

http://www.cbioportal.org/

Supplementary Table 4. Transcriptomic datasets used in our study.  

MCF7

(Breast cancer)

Flavopiridol

Dinaciclib

Data RepositoryPatient derived data
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Regulators Drug Observations / characteristics

BRD4, TMPO, FAM76B, RBM17 Flavopiridol Remained enriched across 3, 6, and 24 hour time points

TMPO, FAM76B, TPX2 Dinaciclib Remained enriched across 3, 6, and 24 hour time points

BRD4, NSD3, H3K36 methylation Flavopiridol, Dinaciclib Binding of BRD4/NSD3 which is consistent with a 

previous study  where they found that reduced H3K36 

methylation was a result of depletion of BRD4 or NSD3 

(Rahman et al., 2011).

NSD3, BRD4, H3K36me3 Flavopiridol, Dinaciclib Nuclear receptor SET domain-containing 3 (NSD3), also 

known as WHSCL1, is a methyltransferase that binds to 

BRD4 complexes at the promoter region to regulate 

levels of H3K36me3, affecting DNA repair, transcription 

initiation and elongation / termination process (Wen et al., 

2014; Li et al., 2013).

MYC, POU5F1, ESR2, UPF1

SMARCA4, BRCA1

Flavopiridol, Dinaciclib The enrichment analysis identified these as commonly 

enriched upstream/core regulators of phosphoproteins for 

these drugs.

MYC, POU5F1, ESR2, UPF1

SMARCA4, BRCA1

Flavopiridol, Dinaciclib These core regulatory factors have been shown to 

interact with super-enhancer genes which are master 

transcription factors that control cell identity by exhibiting 

higher sensitivity to transcription activities (Whyte et al., 

2013).

POU5F1, H3K36me3 Flavopiridol, Dinaciclib POU5F1 (OCT4) is a pioneer transcription factor whose 

expression has been shown to have association with a 

high level of H3K36me3 active mark (Musselman et al., 

2012). 

BRD4 Flavopiridol, Dinaciclib BRD4 is reduced. Reduction of BRD4 is linked to reduced 

transcription of genes at super-enhancers (Loven et al. 

2013). This further implicates the efficacy of flavopiridol 

and dinaciclib targeting BRD4 in breast cancer

E2F4, UPF1, ILF3, SMARCA4 Flavopiridol, Dinaciclib Enrichment analysis showed interactions between 

spliceosome mediated activities through these core 

regulators and the components of exon junction complex 

(EJC), comprised of enriched genes namely, NOLC1, 

SRRM2, CASC3, EIF4A3  and RBM8A  (Le et al., 2016). 

EJC has been shown to have association with Wnt/Notch 

signaling activity in the cancer signaling pathway  (Liu, et 

al., 2016)suggesting a crosstalk among pathways with 

possible off-target effects.

TPX2, AURKA, TP53, ATAD2 Flavopiridol, Dinaciclib The enrichment analysis showed interactions among the 

mitotic regulators (TPX2, AURKA ) with TP53 activity and 

ATAD2  that formed a cluster, regulating cell cycle through 

alternative splicing. 

TPX2, AURKA, EJC, BRD4 Flavopiridol, Dinaciclib TPX2, AURKA and EJC complex are potential substrates 

of positive transcription elongation factor’s (P-TEFb), 

which bind indirectly with BRD4.

ESR1, ESR2, SRRM2, NOLC1, MYC Flavopiridol, Dinaciclib Observed enrichment of estrogen receptors ESR1 and 

ESR2 as upstream regulators for SRRM2 and NOLC1 

supporting possible MYC mediated endocrine activities.

MYC, SRRM2, NOLC1, BRD4 Flavopiridol, Dinaciclib A recent study showed high MYC transcription mediated 

by CDK9 as a critical determinant of endocrine-therapy 

resistance breast cancers (Sengupta et.al, 2014). 

Therefore, it is reasonable to postulate that inhibition of 

SRRM2 and NOLC1 which interact with BET proteins may 

prove to be efficacious for endocrine therapy refractory 

breast cancers in a clinical setting.

Supplementary Table 5. Summary results from MCN and Enrichment analysis
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Regulator Affected pathway

BRD4, NSD3, SRRM2, NOLC1, MYC, 

P-TEFb complex

Inhibition of CDK by flavopiridol and dinaciclib shows molecular cascades of 

interactions among BRD4, NSD3, SRRM2, NOLC1, MYC with the P-TEFb 

complex and its recruitment to the proximal promoter region of MYC to block 

transcriptional elongation of RNA Pol II.

AURKA, TPX2 Presence of crosstalk among CDK, IkK, AKT, PI3K, and Map3K7 pathways 

when P-TEFb binds to AURKA, TPX2, and other proteins.

P-TEFb, AURKA IkB, an enzyme complex that is part of the NF-κB signaling pathway, interacts 

with P-TEFb via AURKA to activate the CDK pathway. P-TEFb targets the 

intrinsic kinase activity directed towards RNA Pol II essential for 

transcriptional initiation, elongation, and inhibition.

BRD4, P-TEFb, RELA BRD4 has been implicated in activating NF-κB pathway by recruiting P-TEFb 

to acetylated RELA. (Huang et al. 2009)

BRD4, H3K56me2 As a consequence of the CDK and BRD4 inhibition, we observed a reduction 

of Map3K7  phosphorylation, which inhibits JNK expression resulting in an 

increase of H3K56me2  level.

PDPK1 Hyperactive RAS then acts as a signaling switch that converts JNK's role 

from pro- to anti-tumor signaling through the regulation of Hippo signaling 

activity 

by inhibiting the PDPK1 phosphoprotein.

BET proteins A recent study has shown that the combined effect of PI3K and BET inhibition 

in a wide range of cancer cell lines resulted in apoptosis, tumor regression, 

and clamped inhibition of PI3K signaling.  (Stratikopoulos et al., 2015)

EJC, P-TEFb, BRD4, RBM8A, ZC3H18 While EJC regulators indirectly bind to P-TEFb recruited by BRD4 via 

RBM8A and ZC3H18, they have a secondary binding effect with Wnt/Notch 

signaling pathway components.

SRRM2, CASC3, EIF4A3, 

RBM8A, NOLC1, H3K18ac0K23ub1

We observed NOLC1 interacted with the EJC  regulators: SRRM2, CASC3, 

EIF4A3 and RBM8A proteins; Thus, we postulate that NOLC1 mediates 

Wnt/Notch signaling activity through Notch intracellular domain (NICD) and 

monoubiquitylation of H3K23 (H3K18ac0K23ub1) by translocating to RNA 

Pol I.

Supplementary Table 6. Results of Crosstalk among regulators in breast cancer signaling pathway


