
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Comparison of Evaluation Metrics for
Short Story Generation
PONRUDEE NETISOPAKUL1, USANISA TAOTO2
1School of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok (e-mail: ponrudee@it.kmitl.ac.th )
2School of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok (e-mail: 61606001@it.kmitl.ac.th)

Corresponding author: Ponrudee Netisopakul (e-mail: ponrudee@it.kmitl.ac.th).

ABSTRACT The aim of this study was to analyze the correlation among different automatic evaluation
metrics for text generation. In the study, texts were generated from short stories using different language
models: N-gram model, Continuous Bag-of-Word (CBOW) model, Gated recurrent unit (GRU) model, and
Generative Pre-trained Transformer 2 (GPT-2) model. All models were trained on short Aesop’s fables.
The quality of the generated text was measured with various metrics: Perplexity, BLEU score, the number
of grammatical errors, Self-BLEU score, ROUGE score, BERTScore, and Word Mover’s Distance (WMD).
The resulting correlation analysis of the evaluation metrics showed four groups of correlated metrics. Firstly,
perplexity and grammatical errors were moderately correlated. Secondly, BLEU, ROUGE and BERTScore
were highly correlated. Next, WMD was negatively correlated with BLEU, ROUGE and BERTScore. On
the other hand, Self-BLEU, which measures text diversity within the model, did not correlate with the other
metrics. In conclusion, to evaluate text generation, a combination of various metrics should be used to
measure different aspects of the generated text.

INDEX TERMS Natural language processing, Neural networks, Text processing, Text analysis

I. INTRODUCTION

Natural language generation or text generation is a task of,
given an input, generating a sequence of natural language
output that appropriately response to, or continuing from
the input. There are many applications of text generation,
for example, automatic message responses to user requests,
such as in a chatbot, text generation from data analysis to
describe the finding, text summarizing from long or diverse
documents, story generation from a given beginning text,
machine translation from another language, and so on. All
of these tasks eventually need to be objectively evaluated.
The problem of text generation evaluation is crucial and not
easy. The standard evaluation metrics used in many machine
learning classification tasks, such as precision, recall, and F-1
score cannot be applied to text generation tasks. In addition,
each generation task may have different objectives, which
require different evaluation metrics. Basically, evaluation
methods are either manual evaluation by human evaluators
or automatic evaluation [1]. Manual evaluation by humans
can be slow and costly, especially when dealing with large
datasets or multiple generated texts. Thus, using automatic
metrics evaluation are more appropriate in many cases.

There are many types of automatic metrics for evaluating

text generation tasks. For example, perplexity [2] and BLEU
score [3] are two well-known metrics. However, it is difficult
to determine which automatic metric is the best, as each has
its own advantages and disadvantages. For example, while
perplexity is widely used, it can be difficult to interpret and
may not always correlate with human evaluation. BLEU
score, on the other hand, is easy to understand and has a
clear interpretation, but it has been criticized for being biased
towards certain types of text and for not accounting for flu-
ency or coherence [4]. Other categories of automatic metrics
are N-gram overlapped and distance-based metrics, which
compare the generated text to a gold standard reference,
similar to the BLEU score metric.

In this research, we focused on short story generation from
a beginning phrase. Stories were generated from different text
generation models when given the same beginning text. Au-
tomatic text generation metrics are then applied to evaluate
the models’ performances.

The evaluation metrics covered in this study include per-
plexity, number of grammatical errors, BLEU score, Self-
BLEU [5], ROUGE score [6], BERTScore [7], and Word
Mover’s Distance [8].

Several language models were used in this study with

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the Aesop’s Fables corpus, including N-gram model [9],
neural network model (specifically, CBOW model) [10],
GRU model (gated recurrent unit) [11], Pretrained GPT-2
model [12], and Finetuned GPT-2 model. These models were
used for text generation. The study also involved evaluat-
ing the performance of each model using several automatic
evaluation metrics, including perplexity, BLEU, Self-BLEU,
ROUGE, BERTScore, and Word Mover’s Distance. Finally,
the study analyzed the correlation between these metrics.

The research questions for this study were the following:
1) Were there any correlation between these automatic

metrics? and why?
2) Which metric or a set of metrics was the best to use for

text generation evaluation?
3) Could automatic text evaluation metrics objectively

show the superiority of one text generation model over
the other?

In the upcoming section, we review previous research
studies related to text generation and their evaluation method-
ology. In the methodology section, we describe our own
experiment involving text generation, which was evaluated
with various metrics. The results of the experiments are then
analyzed and discussed to answer the research questions
above.

II. LITERATURE REVIEW
In the field of natural language intelligence, there are many
ways to generate messages that mimic those produced by hu-
mans. They can be broadly classified into rule-based models,
statistical models, and neural network models. This study did
not focus on rule-based models because of their inflexibility
[13]. It focused on various statistical and neural network
models that have been applied in natural language generation
applications.

Text generation is a simple concept that controls the input
and output. Just like humans who write message from left
to right, most language model works the same way. It takes
the context message as input and then predicts the next word.
The number of possible next words depends on the model’s
vocabulary and the provided context. From Equation 1 [14],
the input text (also known as context) is a sequence of words
or tokens x1, ..., xi−1. The language model generates the next
n words or tokens until the text is complete. In general, text
generation often ends when it finds an end-of-sentence token
(End token). Then, the generated text will be represented as
x1, ..., xm+n. According to Equation 1, the probability of
generating text from the start to the (m + n)th token of the
text is represented as

P (x1, ..., xm+n) =

m+n∏
i=1

P (xi|x1, ..., xi−1) (1)

Equation 1 represents the probability of a word sequence
(or token sequence) where the presence of each word is
conditional to the previous word. It is used in language
models to generate text. The output from the language model

is in the form of probabilities indicating the likelihood of
each word becoming the next word. Text generation generally
stops when it returns an end-of-sentence token.

Markov chains [15] are also a well-known method for
describing the process of generating sentences or paragraphs
based on existing text. This method computes a given text
and builds a probabilistic model that captures the transitions
between words or characters

N-gram [16] is a text generation technique that predicts the
next word or sequence of words based on the preceding n−1
words. N-gram models are based on the Markov assumption
[15] that the probability of a word depends only on the
preceding (n− 1) words.

However, N-gram models have limitations. For example,
they are sensitive to the context within the N-gram win-
dow, which can result in problems with unseen N-gram.
Additionally, they do not capture long-range dependencies
in the text. To address the issue of unseen N-gram, N-gram
smoothing techniques can be used. They can help handle
sparsity problems and improve the model’s accuracy. [17]
and [18] are two examples of smoothing techniques.

In 2013, word embedding was introduced. Word embed-
ding is a technique to transform a word into a vector in a
low-dimensional space using neural network. This technique
preserves the meaning of word in its context and is the core
reasons for the rise of the neural network language model
era. For example, [19] used neural networks to generate
biographies.

Recurrent Neural Networks were also widely used for
text generation tasks. RNNs could handle flexible lengths
of input and output, which were suitable for text generation
as text could have varying lengths of words in sentences or
passages. RNNs had hidden states, which acted like their
inside memory and enabled them to receive and update
information based on their input at each step. Even though
they were popular, they had some limitations. They had some
problems with sentences that were too long. Therefore, there
were updated versions like LSTM [20] and GRU [11] to fix
those issues. A recurrent model like this can generate text at
either the character or word level. For example, the authors
of [21] used various RNN language models, trained with a
special optimizer called Hessian-Free to generate text at the
character level.

The sequence-to-sequence (seq2seq) [22] model was an
improvement from the recurrent neural network model. It in-
troduced an encoder-decoder architecture, where the encoder
captured the contextual information vector from the input
sequence, and the decoder generated the output sequence step
by step. The seq2seq allowed the model to handle sequences
of different lengths and produce outputs that fit the context.
The work in [22] was also the first to apply seq2seq model to
a machine translation task.

The Transformer model was a big improvement over the
seq2seq model. Not only did it use the encoder and decoder
architecture, but it also used attention mechanisms, including
self-attention and multi-head attention, as well as positional

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

embedding. Transformers are used to create dialogue sys-
tems, chatbots, and other language generation tasks. GPT
[23] and its variants GPT-2 [12] GPT-3, [24] and GPT-3.5
[25] are examples of this technology. The decoder component
of the transformer architecture has been widely used for
natural language generation tasks.

In our research, it is important to experiment with text
generation using both non-transformer and transformer mod-
els. Non-transformer models, which include statistical lan-
guage models, neural network models, and recurrent neural
networks, can generate text by predicting the next word
in a sequence given the previous words, while transformer
models are able to generate text by attending to all the words
in a sequence at once.

Both models were important in our research to understand
the capability of measurement metrics for assessing the qual-
ities of the generated text.

Automatic evaluation metrics for text generation can
be categorized into 5 categories: N-gram overlap metric,
distance-based metric, diversity metric, content overlap met-
ric, and grammatical feature-based metric [1]. N-gram over-
lap metric involves breaking each text into smaller pieces
and comparing the overlap between the N-grams of each
text. Distance-based metric measures the distance between
the reference text and the generated text. Diversity metric
measures the diversity of the generated text, while content
overlap metric measures the similarity between the generated
text and the reference text. Grammatical feature-based metric
measures the accuracy of the generated text in terms of
grammar.

N-gram overlap metric is used in natural language pro-
cessing to measure the similarity between two texts. The
metric involves breaking each text into smaller pieces of n
consecutive words, and then comparing the overlap between
the N-gram in each text. Examples of N-gram overlap metrics
include BLEU [3], ROUGE [6], and METEOR [26].

Distance-based metric measures the distance between
the reference text and the generated text. One example of
distance-based metric is Word Mover’s Distance (WMD) [8],
which measures the distance between the embedding of two
texts.

Diversity metric measures the diversity of generated text,
which is important for ensuring that the text is both inter-
esting and informative. One example of diversity metric is
Self-BLEU [5], which is a variation of the BLEU score. Self-
BLEU measures the similarity between different generated
texts produced by the same model.

Content overlap metric measures the similarity between
the generated text and the reference text in terms of content.
Examples of this type of metric include PYRAMID [27] ,
SPICE [28], and SPIDER [29], which are used in image
captioning and dialog systems.

Grammatical feature-based metric gauges the accuracy
of the generated text in terms of grammar. Examples of
grammatical feature-based metric include Part-Of-Speech
accuracy, dependency accuracy, and fluency. They can be

challenging to compute and may require additional pre-
processing or annotation of the reference and generated texts.

Perplexity [2] is a metric not categorized into any of
the categories mentioned above. It is generally considered
to be a stand-alone metric used for evaluating the overall
performance of a language model. However, it can be seen as
a type of distance-based metric that measures the similarity
between the probability distributions of the predicted words
and the true words in the test set. In this sense, perplexity can
be considered a type of evaluation metric related to distance-
based metrics.

Each metric has its own limitations. For example, perplex-
ity measures the probability of a sequence of words and is
widely used, but it can be difficult to interpret, and it may
not always correlate with human evaluation. BLEU score
measures the similarity between the generated text and the
reference text in terms of N-gram overlap and is easy to
understand, but it has been criticized for being biased towards
certain types of text and for not accounting for fluency or
coherence [30]. Self-BLEU is a variation of BLEU score
that measures the similarity between different generated texts
produced by the same model. It is used to measure diversity
in generated text [5]. ROUGE score measures the similarity
between the generated text and the reference text in terms
of N-gram overlap, similar to the BLEU score but with a
different weighting scheme [6]. BERTScore is similar to
BLEU and ROUGE scores, but it uses a transformer-based
model instead of N-gram, while Word Mover’s Distance
measures the distance between the embeddings of two texts
and is used to measure similarity between the generated text
and the reference text [8].

Various automatic metrics have been used to evaluate text
generation tasks. For example, [22] used the BLEU metric
to evaluate text generated by sequence-to-sequence models.
Similarly, [31] evaluated the quality of generated dialogue
responses using metrics like BLEU, distinct N-gram, and hu-
man evaluation. In [32], metrics like ROUGE and METEOR
were used to evaluate the task of content selection in text
summarization.

Although there are some works that use evaluation metrics
to assess text generation, there are no related works that use
multiple metrics to evaluate text generation from a specific
domain, such as short stories generated from various lan-
guage models.

Based on the information provided, it did not seem ap-
propriate to incorporate content overlap in our research. This
was mostly because most of the research on content overlap
focused on image captioning, which involved both text and
images. However, our work solely focused on text.

Based on the aforementioned reasons, several evaluation
metrics were chosen in our research. Those were the number
of grammatical errors identified by the Grammatical feature-
based metric, the BLEU score, ROUGE which was an N-
gram overlap metric, Self-BLEU which was a Diversity
metric, Word Mover’s Distance which was a Distance-based
metric, and Perplexity which was not categorized above.

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Pipeline of the experiments for Text Generation and Evaluation.

III. METHODS
This study generated texts from different language models
trained within the same domain. To accomplish this, a short
story domain was chosen. The experiments were set up using
the same corpus but different language models. Once all the
models had been trained, the same starting text was used to
generate new text. The following subsection provides greater
detail on the corpus and language model used.

The pipeline for this research experiment methodology is
shown in Figure 1.

The corpus was first preprocessed into inputs and targets.
Then, the language models were trained and used to generate
new texts. After that, the generated texts were evaluated with
various metrics.

A. SHORT STORY COLLECTION
In the first step of the experimental pipeline, short stories
were selected from a corpus named Aesop’s Fables from
americanliterature.com [33]. These fables are a collection of
well-known stories. For this study, we used a total of 160

stories to train our language models. The corpus statistics are
shown in Table 1.

TABLE 1. Some statistics from the Aesop’s Fables corpus - some cells show
Median (Mean ± SD) [Minimum - Maximum]

Corpus property Value
Number of stories 160
Number of words 32,031
Vocabulary size 3,418
Number of words
per story

186 (200 ± 89.82)
[74 - 520]

Number of sentences
per story

10 (11 ± 5.3)
[3 - 31]

Lexical diversity (%) 10.67
Lexical diversity
per story (%)

55.56 (55.67 ± 6.92)
[37.58 - 75.67]

Table 1 provides the statistics on the corpus used in this
study. It consists of 160 short stories from Aesop’s Fables.
The table displays the number of stories, number of words,
vocabulary size, average words per story, and average sen-
tences per story. The Aesop’s Fables corpus contains 160

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

stories, totaling 32,031 words and including 3,418 unique
words in its vocabulary. The stories vary in length, with an
average of 186 words and a range of 74 to 520 words. The
lexical diversity of the corpus is 10.67%, A higher percentage
implies a richer vocabulary. The lexical diversity of each
story ranges from 37.58% to 75.67%. The lexical diversity
per story is higher than the lexical diversity of the entire
corpus, which means that each story uses a wider range of
words. However, when we consider all the stories together,
we see that the corpus as a whole does not have much
variation in its vocabulary.

B. TRAINING CORPUS PREPARATION

Before the model training process, the corpus was prepared
in a form acceptable to the language models; where input is
the sliding window of the context of the stories and output is
the next word prediction.

Stories in the corpus were first converted into word tokens.
For each story, special tokens were added: a "begin-of-story"
token before the first word, and an "end-of-story" token after
the last word in the story.

In training a non-transformer model, the model required
an exact number of input nodes, that is, the fixed number
of context words for input nodes. For this reason, we would
slide windows to capture every K word, when K was the
desired context word number. The input was a word sequence
(Wi,Wi+1,Wi+2, ...Wi+k), the output being the next word
in this sequence, word Wi+k+1, when i = 0, 1, 2, 3, and the
process moved one word at a time until the last word was
reached.

The table 2 showed an example of window sliding with a
context size of 4, and with the target word of the message "a
hare was making fun of the tortoise.”

TABLE 2. Context and target Word for non-transformer model training

Context (sliding windows of 4) Target Word
<BEGIN> <BEGIN> <BEGIN> a hare
<BEGIN> <BEGIN> a hare was
<BEGIN> a Hare was making
<BEGIN> a Hare was making fun
hare was making fun of
was making fun of the
making fun of the tortoise
fun of the tortoise .
of the tortoise . <END>
the tortoise . <END> <END>
tortoise . <END> <END> <END>
. <END> <END> <END> <END>

However, preparing texts for training with the transformer
model was slightly different. It was not necessary to limit
the input to an exact number of words in the context. The
input part, where words are the context, starts with the first
word in the text. The output would be the next word in the
context part. The example output and the context are shown
in Table 3.

TABLE 3. Context and Target Word for transformer model training

Context Target Word
<BEGIN> a
<BEGIN> a hare
<BEGIN> a hare was
<BEGIN> a hare was making
<BEGIN> a hare was making fun
<BEGIN> a hare was making fun of
<BEGIN> a hare was making fun of the
<BEGIN> a hare was making fun of the tortoise .
<BEGIN> a hare was making fun of the tortoise . <END>

C. LANGUAGE MODEL TRAINING
In this study, five types of language models were used. An
N-gram model was used for statistical language modelling.
A CBOW (Continuous Bag-of-Words) model was used as
a neural network model. A GRU model was used as a re-
current neural network model. Two models from Generative
Pretrained Transformer 2 (GPT-2), were used as transformer
models. Due to the large size of the GPT-2 model and the
large number of hyperparameters, pretrained model (Pre-
trained GPT-2) and transfer learning (Finetuned GPT-2) were
chosen instead of training the model from scratch.

We selected the aforementioned models not only because
they have different model structures, but also because of
the time period when each model was introduced and be-
came well-known in the field of language modeling. The N-
gram model has been a fundamental approach to language
modeling and has been widely used since the early days.
The CBOW model introduced embeddings to make language
models more efficient in understanding meaning. The GRU
model, with its recurrent neural network that can capture
word sequences, is a significant improvement over tradi-
tional recurrent neural networks (RNNs). The Transformer
architecture is a breakthrough in language modeling. It has
impressive text generation performance because it trains on a
large language model. During the time of its release, GPT-2
was a significant improvement in the field . It can generate
human-like text in a variety of contexts and have an impact
across a wide range of industries. That’s why GPT-2 stands
out as one of the most significant and influential.

The reason is that there are different models available, each
with its own historical context for when it was introduced
and became prominent in the field of language modeling.
That is why we have chosen to use the following models
in our experiment. Furthermore, we also want to check the
capability of each model in the aspects that we have chosen.

D. SHORT STORY GENERATION
After the language model was trained, the next step was to
use it for text generation. The algorithm generated text by
predicting from left to right. At each step, the model would
select the word with the highest probability and added it to
the generated text. However, in order to make the generated
text more diverse, the output word is chosen based on the
probability weights of next word prediction. That is the
higher the probability of the word, the more likely it is

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

chosen to be the next word output. The algorithm is shown
in Algorithm 1.

Algorithm 1 Text Generation Algorithm for Non-
Transformer Model

1: Procedure GenerateText(model, startingText, k, maxLength)
2: input← last k words of startingText
3: genText← startingText
4: while length(genText) ≤ maxLength and END_TOKEN not found

do
5: nextWordProbs← model.probs(input)
6: nextWord←RandomlySelectWord(nextWordProbs)
7: genText← genText+ nextWord
8: input← last (k-1) of input +nextWord

9: return genText
10: End Procedure

As the input length limit was fixed in non-transformer
models, step 8 of the text generation algorithm slid the
input window by removing the first word of the window and
concatenating the next word into the window. Meanwhile,
for transformers, there was no need to fix the input length
because the model embedded padding ability for input length
not exceed 1,024 for GPT-2. The algorithm is presented in
Algorithm 2.

Algorithm 2 Text Generation Algorithm for Transformer
Model

1: Procedure GenerateText(model, startingText, k, maxLength)
2: input← last k words of startingText
3: genText← startingText
4: while length(genText) ≤ maxLength and END_TOKEN not found

do
5: nextWordProbs← model.probs(input)
6: nextWord← RandomlySelectWord(nextWordProbs)
7: genText← genText+ nextWord
8: input← input + nextWord

9: return genText
10: End Procedure

For each model, we will generate text by using the first
sentence from every story in the Aesop’s Fables as the
initial text. We will generate three stories from each starting
text to evaluate and compare generated text from different
models for the following aspects: how close to human writing
(text from corpus), how good is the grammar (number of
grammatical errors), and also, the variation of text generated
within the same model.

E. EVALUATION
After the texts have been generated, the results needed to be
evaluated to judge the model’s performance. Seven different
scores were selected for reasons. Perplexity, and BLEU score
were chosen because of their popularity, number of gram-
matical errors to measure rule-based grammar. Self-BLEU to
measure variation within the same model, ROUGE-L score

to capture common longest word sequence, BERTScore as
a measure deploy transformer capability, and finally, Word
Mover’s Distance to measure the distance from original text.

1) Perplexity

Perplexity is a widely used metric to automatically evaluate
text generated by language models.

It is defined as geometric mean of the inverse probabilities
of the generated text. Simply put, it is inverse to the likeli-
hood of the generated text appearing in the corpus, that is,
how not likely the generated text is written by human. The
higher the value, the more perplex (or confuse) for human
reading the generated text. The formula for perplexity is
shown in Algorithm 3.

Algorithm 3 Compute Perplexity
1: procedure COMPUTEPPL(gentext,model)
2: tokens← Tokenize(gentext)
3: N ← length(tokens)
4: log_prob_sum← 0.0
5: prob_sum← 0.0
6: for i← 1 to N do
7: token← tokens[i]
8: context← tokens[1 : i− 1]
9: prob← model.Probability(token, context)

10: prob_sum← prob_sum× prob

11: perplexity ← power(prob_sum,−1/N))
12: return perplexity

2) Number of grammatical errors

Grammatical errors were considered an indicator for text
quality evaluation. In our experiment, we used an open-
source rule-based grammar detection software called Lan-
guageTools [34]. LanguageTools were used to detect gram-
matical errors both in the generated models and the text
corpus. Language Tools had many error detection rules, but
we did not use all of them. Table 4 shows the list of rules for
what we identified as errors.

TABLE 4. LanguageTools: Error Types as identified errors.

Rule Type Description
Grammar Checks for grammatical errors such as

subject-verb agreement, tense consistency,
and pronoun use

Punctuation Checks for errors related to the use of punc-
tuation marks such as commas, semicolons,
and colons

Misused word Checks for commonly misused words and
suggests alternatives

Contextual Takes into account the context in which a
word or phrase is used to provide more ac-
curate suggestions for correction

Idiom Checks for incorrect use of idiomatic expres-
sions and suggests appropriate alternatives

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

3) BLEU
The BLEU score (Bilingual Evaluation Understudy) is a
widely used evaluation metric, particularly in machine trans-
lation tasks, and can also be applied in other natural language
generation applications, including text generation.

BLEU score values range from 0 to 1. If the BLEU score
tends to be close to 1, this generated text is quite similar to
the reference, i.e., it resembles the corpus story. On the other
hand, 0 is the opposite, meaning it differs significantly from
the corpus.

The calculation of BLEU scores not weighs the precision
of the N-gram in the generated text that match the N-gram
in the reference text, but also involves a brevity penalty,
which takes into account the length of the generated text
compared to the reference text. BLEU score was calculated
with Algorithm 4.

Algorithm 4 Compute BLEU
1: procedure COMPUTEBLEU(refs, gentext, weights))
2: ▷ weight is a vector with n-gram size
3: ▷ sum of all elements is 1
4: c← length(gentext)
5: p← [0.0] ∗ length(weights) ▷ precision
6: for each ref in refs do
7: ref_counts← count_ngrams(ref, n)
8: gentext_counts← count_ngrams(gentext, n)
9: overlapped← ref_counts ∩ gentext_counts

10: for i← 0 to length(weights)− 1 do
11: num← count(overlapped)
12: d← max(1, c− i)
13: p[i]← p[i] + weights[i]× (num/d)

14: closest_ref_len← min_len_diff(refs, c)
15: bp← min(1.0, c/closest_ref_len)
16: bleu← bp× geometric_mean(p)
17: return bleu

In our experiment, every generate text would be compared
to the text from the corpus in each story as a reference text.
Because the model was generated by starting with the first
sentence of each story in the Aesop’s Fables corpus, the
original story from the Corpus could be used as the reference
text.

4) Self-BLEU
Self-BLEU is a modified version of the BLEU score that was
designed to be used for evaluating the diversity of generated
text. Self-BLEU compared the generated text to other texts
generated which came from the same model instead of com-
paring the generated text to a set of reference texts.

Similar to the BLEU score, the Self-BLEU score ranges
from 0 to 1. A lower score indicates that the model generated
more diverse texts, while a higher score indicates that the
model generated text that was quite similar. Self-BLEU score
was calculated with Algorithm 5.

As mentioned in section III-D, one model generated three
stories with the same starting text. We calculated the BLEU

score for each pair of texts and repeated this process for all
possible combinations. Hence, the BLEU score was calcu-
lated three times for one starting text, then, average these
three BLEU scores to obtain one Self-BLEU score.

Algorithm 5 Compute Self-BLEU
1: procedure COMPUTESELFBLEU(gentexts)
2: scores← ∅
3: for i← 0 to length(gentexts)− 1 do
4: others← gentexts[: i] + gentexts[i+ 1 :]
5: bleuSum← 0.0
6: for other in others do
7: bleu← ComputeBLEU(gentexts[i], other)
8: bleuSum← bleuSum+ bleu

9: selfBleu← bleuSum/len(others)
10: scores.append(selfBleu)

11: selfBleuAvg ← sum(scores)/len(scores)
12: return selfBleuAvg

5) ROUGE-L

ROUGE stands for Recall-Oriented Understudy for Gisting
Evaluation. It is an evaluation metric commonly used in text
summarization but can also be used in other natural language
generation tasks, such as text generation.

There are several types of ROUGE scores, including
ROUGE-N, which measures the N-gram overlap between
model-generated text and reference text from the corpus.
ROUGE-S evaluates the skip-gram similarity between the
generated summary and the reference summary, ROUGE-L
measures the longest common sequence similarity between
the generated text and the reference text.

In this study, ROUGE-L was used to assess the quality of
the model-generated text. ROUGE-L was chosen over other
types of ROUGE because it captured word order and allowed
for flexible matching. To calculate ROUGE-L, use Algorithm
6.

Algorithm 6 Compute ROUGE-L
1: procedure ROUGE-L(gentext, reference)
2: gentext_tokens← split(gentext)
3: ref_tokens← split(reference)
4: lcs← InitMatrix(len(gentext) + 1, len(ref_tokens) + 1)

5: for i← 1 to len(gentext) do
6: for j ← 1 to len(ref_tokens) do
7: if gentext[i− 1] = ref_tokens[j − 1] then
8: lcs[i][j]← lcs[i− 1][j − 1] + 1
9: else

10: lcs[i][j]← max(lcs[i− 1][j], lcs[i][j − 1])

11: lcs_length← lcs[len(gentext_tokens)][len(ref_tokens)]
12: precision← lcs_length

len(gentext_tokens)

13: recall← lcs_length
len(ref_tokens)

14: f1_score← 2·(precision·recall)
(precision+recall)

return precision, recall, f1_score

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ROUGE, like BLEU and Self-BLEU scores, has a range
of 0 to 1. A higher ROUGE score generally means that
the generated and reference texts are more similar. In this
study, ROUGE-L F1 score was used to evaluate the language
models. The reference text was taken from the corpus and the
generated text, using the same starting text for each model.

6) BERTScore
BERTScore was used to evaluate the quality of text generated
by a model in comparison with a reference text, based on
the BERT language model. BERTScore measures different
concepts from those used in perplexity, BLEU, Self-BLEU,
or ROUGE, which were mentioned previously. We selected
this metric because it used embedding from the state-of-the-
art BERT model.

BERTScore is an automatic evaluation metric for text
generation that aims to improve upon BLEU by taking into
account contextual information. It has been shown to corre-
late well with human judgments of text quality [7].

The BERTScore was calculated using cosine similarity
between the generated text and the reference text. Each text
was encoded into a vector with a BERT language model. The
algorithm for calculating BERTScore is Algorithm 7.

Algorithm 7 Compute BERTScore
1: procedure COMPUTEBERTSCORE(gentext, ref)
2: load model and tokenizer
3: tokenize gentext and ref
4: get tensor of gentext’s token and ref’s token
5: get embedding of gentext’s tensor and ref’s tensor
6: cos_sim← cosine_sim(gentext_embed, ref_embed)

7: n,m← length(gentext_embed), length(ref_embed)
8: scores← consineSimMatrix(n,m) ▷
9: precision, recall← zeros(n), zeros(m)

10: for i← 1 to n do
11: maxScore← −∞
12: for j ← 1 to m do
13: maxScore← max(maxScore, scores[i][j])

14: precision[i]← maxScore

15: for j ← 1 to m do
16: maxScore← −∞
17: for i← 1 to n do
18: maxScore← max(maxScore, scores[i][j])

19: recall[j]← maxScore

20: f1← zeros(n)
21: for i← 1 to n do
22: f1[i]← 2×precision[i]×recall[i]

precision[i]+recall[i]

23: bert_score← average(f1)
24: return bert_score

The BERTScore range was between 0 and 1. A score of
1 indicates perfect similarity between the generated text and
the reference text, while a score of 0 indicates no similarity
at all.

7) Word Mover's Distance

Word Mover’s Distance (WMD) uses a method of calculating
semantic similarity between texts that is different from using
simple word overlap alone. WMD calculates the minimum
amount of "movement" required to transform the words in
one text into the words in another text, and each word uses
word embeddings, which are vector representations. These
embeddings capture how words are similar by noting the
closeness between the vectors.

Algorithm 8 Compute WMD
1: procedure COMPUTEWMD(ref, gentext, word_embed)
2: ref_tokens← tokenize(ref)
3: gentext_tokens← tokenize(gentext)
4: ref_freqdist← word_freq(ref_tokens)
5: gentext_freqdist← word_freq(gentext_tokens)
6: totalDistance← 0
7: totalWeight← 0
8: unique← get_unique(ref_tokens, gentext_tokens)
9: for word in unique do

10: vector ← word_embed.get(word)
11: ref_freq ← ref_freqdist.freq(word)
12: gentext_freq ← gentext_freqdist.freq(word)
13: distance← calc_dist(vector, ref_freq, gentext_freq)
14: totalDistance← totalDistance+ distance
15: totalWeight← totalWeight+ ref_freq + gentext_freq

16: wmd← totalDistance
totalWeight

17: return wmd

When calculating the Word Mover’s Distance between the
generated text and the text from the Aesop’s Fables corpus
that started with the same words, the return value would be 0
when the generated text is the same as the reference text but
greater than 0 when the generated text is different from the
reference text. The algorithm for calculating WMD between
two texts is shown in Algorithm 8.

IV. RESULTS

This section presents the evaluation metric results and dis-
cusses each metric individually.

We begin with the examples of text generated by a variety
of selected and trained models, including N-gram, CBOW,
GRU, Pretrained GPT-2, and Finetuned GPT-2.

Table 5 shows an example of a short story generated by
these models. The first sentence was the same for all models:
“A Dog, to whom the butcher had thrown a bone, was
hurrying home with his prize as fast as he could go.” This
sentence was the starting point for the stories entitled “The
Dog and His Reflection” shown in Table 5 and 6.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Example generated texts when using same starting text from five
language models

Source or
Model

Sample Text

Aesop’s
fables

A Dog, to whom the butcher had thrown a
bone, was hurrying home with his prize as
fast as he could go. As he crossed a narrow
footbridge, he happened to look down and saw
himself reflected in the quiet water as if in a
mirror. But the greedy Dog thought he saw a
real Dog carrying a bone much bigger than
his own. If he had stopped to think he would
have known better. But instead of thinking, he
dropped his bone and sprang at the Dog in the
river, only to find himself swimming for dear
life to reach the shore. At last he managed to
scramble out, and as he stood sadly thinking
about the good bone he had lost, he realized
what a stupid Dog he had been. It is very
foolish to be greedy.

N-gram A Dog , to whom the butcher had thrown a
bone , was hurrying home with his prize as fast
as he could go . gold ! " cried Jupiter " Are you
not yet content ? You have what you asked for
and so you have only yourselves to blame for
your misfortunes . " Be sure of your pedigree
before you boast of it .

CBOW A Dog, to whom the butcher had thrown a
bone, was hurrying home with his prize as fast
as he could go. day " immediately up in sight
a gave . Do Do not to once away a government
! , " my " said , the off to they Put him him
to . The Bear No unwise nicely Wind , for got
Bat thorn . And One you Lion that pride he he
on " was a nest marsh tightly this , way them
feature , welcome . " came he to Bat it . ! "
have They As me foolishly digging Sure .

GRU A Dog, to whom the butcher had thrown a
bone, was hurrying home with his prize as fast
as he could go. , " said the Tortoise , " said my
gold , and when at last he he fell an easy prey
. " has there of sooner than to a so carry him
who were always a wolf . we should catch up
. The Hare now ran his whatever , that he fell
an easy prey . " The little wind one . I don’t
do without morning get will not being so The
Hare now ran his our stood drinking early one
day for being so fall into the fire .

The stories from Aesop’s Fables are quite engaging and
coherent with a clear narrative style. The language is simple
and clear, but the sentence structures varied, which makes the
story more interesting to read.

For the text generation result shown in Table 5 and 6, an
initial glimpse of the text quality showed that some models

TABLE 6. Example generated texts when using same starting text from five
language models (continued)

Source or
Model

Sample Text

Pretrained
GPT-2

A Dog, to whom the butcher had thrown a
bone, was hurrying home with his prize as
fast as he could go. It was a fair day, when
all was not well, and he was busy cutting
himself. The dog did not go back but sat
down at the front door of his garden home
with some sheep on their back and thought
of the dog and thought how great a pleasure
it was to have him. He knew that her mother
was sick, and she went to sit down before her
husband for supper and it happened that the
dog was at home and suddenly the lady called
to him and told him the little thing was not
well.

Finetuned
GPT-2

A Dog, to whom the butcher had thrown a
bone, was hurrying home with his prize as
fast as he could go. The Dog begged to be
allowed to enjoy a meal, but his companions
gave him no objection. When the Dog came
home, the butcher immediately carried him
aside. No sooner had the Dog been gone, than
he ran over it in his paws, and rolled it over
the wood to where he lay quietly. But he was
too far from it for a very long time. "Give me
a bite," he began, "and I’ll drink the bone you
gave me." Now the butcher was so alarmed
that he tried almost painfully to convince the
Dog of the fact. But he could not convince
him.

performed better than the others. The N-gram and CBOW
models generated disjointed and nonsensical text, while the
GRU model was more coherent but still lacked a clear
narrative style. Pretrained GPT-2 was somewhat engaging
but lacked focus, while Finetuned GPT-2 generated the most
coherent and engaging text with a clear narrative about a dog
and a bone.

Figure 2 to 10 show the results of applying the automated
evaluation metrics to the generated text from each model.

Each line plot shows the metric values for all stories,
with the x-axis representing the story ID, and the y-axis
representing the metric value of the story. As mentioned in
section III-D, we generated three text messages per one story
(one starting text), the line plot showed the measurement’s
median value for each story .

A. PERPLEXITY
A line plot compares the perplexity of the generated text
from each language model. Each line represents the median
perplexity of each story in Figure 2.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Comparison of Perplexity Medians Across Models (Lower scores
mean better performance)

It is evident that CBOW produced the highest perplexity,
and the second-highest perplexity belonged to the Pretrained
GPT-2. Finetuned GPT-2 produced a slightly higher perplex-
ity than GRU. The generated text from the N-gram model
showed the least perplexity, that is, it generated message
closest to the corpus’s prediction.

Perplexity ranking of the models from best to worst are
as follows: N-gram model, GRU model, Finetuned GPT-2
model, Pretrained GPT-2 model, and CBOW model.

We observed that the GPT-2 models, including the fine-
tuned version, did not achieve a lower perplexity than the
N-gram or GRU model. This can be attributed to factors
inherent to the nature of the models and the nature of
the perplexity calculation. Simple models such as N-gram
and GRU reused vocabulary from original corpus, hence,
yielded lower perplexity than Pretrained GPT-2 which was
pre-trained from another large text source. Notice that the
Fine-tuned GPT-2 yielded lower perplexity than their pre-
trained one, as expected. Other factors might relate to the
size of the corpus, the context window, and the limitations of
perplexity as a metric itself. Hence, perplexity metric alone
might not fully capture the overall quality of text generated
by the models.

B. NUMBER OF GRAMMATICAL ERRORS

To determine the number of grammatical errors made by each
model, we compared the text produced by each model to the
Aesop’s Fables corpus using the same starting text, which is
shown in Figure 3.

The CBOW and GRU models produced texts with signif-
icantly more grammatical errors than the other models. In
contrast, the corpus text and texts from other models, such as
the N-gram model, Pretrained GPT-2, and Finetuned GPT2,
had fewer errors - about zero or one grammatical error.

FIGURE 3. Comparison of Median Grammatical Errors in Text for Each Model
(Lower is Better)

When ranking the number of grammatical errors from
least to most, the best model was from the corpus, which
still contained at most one grammatical error. Next ones in
rank were N-gram, Finetuned GPT-2, and Pretrained GPT-2
models, respectively. These three produced almost the same
number of grammatical errors, as shown in Figure 3. They
are followed by the GRU model. The least favorable was the
CBOW model.

An interesting observation is that the N-gram model,
which was simpler than the GPT-2 models, produced the
same number of grammatical errors as the more complex
models did. However, regarding the text coherence aspect,
the N-gram text did not read as smoothly as those produced
by the GPT-2 models.

The reason why both N-gram and GPT-2 produced low
grammatical errors because N-gram model generated text
that adhered to the original text which had few grammar
errors, and GPT2 had the ability to learn basic grammar
rules, hence also generated few grammatical errors. N-gram-
generated text might not read as smoothly as the ones
produced by GPT-2 because the N-gram model relied on
frequency-based statistics and did not have a deep under-
standing of meaning. Nevertheless, the effectiveness of both
models depended on the quality of the training data, the size
of the models, and how they were tested.

C. BLEU
Figure 4, shows two separated groups of line graphs. The
first group, which yielded lower BLEU scores, consisted of
BLEU scores from the GRU and CBOW models. The second
group included much higher BLEU scores from the N-gram,
Pretrained GPT-2 and Finetuned GPT-2 models.

This means that the text generated by the N-gram model
and the GPT-2 models were closer to the corpus than those
produced by GRU and CBOW. The BLEU Score of the
corpus text compared to itself is 1.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. Comparison of text BLEU Scores Across Models (Higher is Better)

The BLEU scores of both the Finetuned and Pretrained
GPT-2 models were almost identical. The average BLEU
value for Finetuned GPT-2 was 0.151, which was only a bit
better than the average BLEU value 0.149 of Pretrained GPT-
2. However, the median BLEU score for Pretrained GPT-2
was 0.160, which was better than the median BLEU value of
0.158 of Finetuned GPT-2.

If we define better text quality as having more similarity
to the training corpus, we can summarize the sorted order of
BLEU scores from best to worst as follows: Finetuned GPT-
2 and Pretrained GPT-2 can be considered to be at the same
level (both were the best), followed by the n-gram model,
GRU model, and CBOW model.

Finetuned GPT-2 did not make a big difference in the
quality of the generated text. Comparison between Finetuned
and Pretrained models turned out to be almost the same. The
BLEU scores did not improve much either. This could be due
to various factors, such as the quality of the training corpus
or overfitting on the fine-tuning data. Training corpus might
be too small or not representative of the target domain, the
model might overfit the fine-tuning data. As a result, it might
perform well on the finetuned dataset but not generalize well
to new data.

D. SELF-BLEU
To enhance clarity, the Self-BLEU score plot was split into
two figures: Figure 5 and Figure 6. Figure 5 displays the Self-
BLEU score for the non-transformer models, while Figure 6
shows the score for the transformer models.

A higher Self-BLEU score indicates that the model gen-
erated more diverse text. Figure 5 compares the Self-BLEU
scores of non-transformer models, including the N-gram,
CBOW, and GRU models. The GRU model had a lower Self-
BLEU score than the N-gram and CBOW models, which
means that it generated less diverse texts than the N-gram
and CBOW models.

FIGURE 5. Comparison of Self-BLEU Scores for Non-Transformer Models:
N-gram, CBOW, and GRU Models. (Higher is more diverse)

FIGURE 6. Comparison of Self-BLEU Scores for Transformer Models:
Pretrained GPT-2 and Finetuned GPT-2 (Higher is more diverse)

The Self-BLEU score for transformer models in Figure 6,
including the Pretrained GPT-2 and Finetuned GPT-2, varied
only slightly, indicating that both models were capable of
generating diverse outputs at the same level of quality.

To determine which model generated the most diverse
text, we examined the Self-BLEU score in more detail by
looking at its average. the models can be ordered from most
diverse to least diverse as follows: The N-gram model had
the highest score of 0.51, followed closely by the CBOW
model at 0.49. The Finetuned GPT-2 model showed moderate
diversity with a score of 0.42, while the Pretrained GPT-2
model generated slightly less diverse text with a score of
0.39. Finally, the GRU model had the lowest Self-BLEU
score of 0.37, indicating the least diverse text among all
models. More information on the Self-BLEU score is shown

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

in Table 7.

E. ROUGE-L
The evaluation display in Figure 7 shows the F1 score of
ROUGE-L of the generated text relative to the text from the
Aesop’s Fables corpus starting with the same sentence.

FIGURE 7. Comparison of ROUGE-L (F-measure of ROUGE for Longest
Common Subsequence) Median Scores for Each Model. (Higher Scores
means Better Performance)"

It can be seen that the median ROUGE score for the text
generated with the CBOW model was the smallest. The score
for the text generated by the GRU model was slightly higher,
but still not as high as the score for the text generated by the
N-gram and GPT-2 models (Pretrained GPT-2 and Finetuned
GPT-2).

This means that the text from the model with a higher
ROUGE-L score was more similar to the original text, which
had a ROUGE score of 1.

If we define better text quality as having a more similar
style to a corpus, we can rank the ROUGE-L scores from best
to worst as follows: Fine-tuned GPT-2, Pretrained-GPT2, N-
gram model, GRU model, and CBOW model.

F. BERTSCORE
BERTScore measures contextual embeddings similarity be-
tween generated text and reference text. BERTScore for the
original corpus is 1. In Figure 8, we can see that the models
with the highest scores were N-gram, Pretrained GPT-2 and
Finetuned GPT-2. The next closest score was from the gen-
erated text from the GRU model, and the lowest score was
from the text from the CBOW model.

We can rank the BERTScore scores from best to worst as
follows: Finetuned GPT2, N-gram model, Pretrained GPT2,
GRU model, and CBOW model.

Observe that the n-gram model, which is a simple model,
obtained nearly the same BERTScore as the more complex

models like the transformer-based GPT-2 models, though the
N-gram generated text results did not read as smoothly.

FIGURE 8. Comparison of BERTScore Medians for Each Model: Higher is
Better

G. WORD MOVER'S DISTANCE
When calculating the Word Mover’s Distance between the
generated text and text from the Aesop’s Fables corpus that
started with the same words, the return value will be greater
than one when the generated text differed from the reference
text. The Word Mover’s Distance of the corpus itself is equal
to 0.

For WMD metric, five models resulting in overlapped
values, therefore, two plots (Figure 9 and 10) are displayed
separately to show WMD values from the non-transformer
model and transformer models.

FIGURE 9. Comparison of Median Word Mover’s Distance (WMD) for
non-transformer models. Lower values indicate better performance.

Figure 9 shows a comparison among the non-transformer
models. All three models had a similar Word Mover’s Dis-

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tance. Most of the CBOW models yielded a slightly longer
distance, i.e., they were less similar to the corpus text.

FIGURE 10. Comparison of Median Word Mover’s Distance (WMD) for
Transformer Models. Lower values indicate better performance.

Figure 10 compares the plots for the transformer models:
Pretrained GPT-2 and Finetuned GPT-2. We found that the
Word Mover’s Distances of the text obtained from both GPT-
2 models were nearly the same. Some of the generated
text from the Finetuned model had higher Word Mover’s
Distance values than the text generated by the Pretrained
GPT-2 model.

If we define better quality of generated text as having a
lower WMD score, which indicates that it is semantically
closer to the original text and of higher quality, we can rank
the WMD scores from best to worst as follows: Finetuned
GPT2, Pretrained GPT-2, N-gram model, GRU model, and
the worst one, the CBOW model.

The metrics for each model are summarized again in Table
7. It shows average, standard deviation and median of all
selected automatic evaluation metrics for the 5 language
models: N-gram, CBOW, GRU, Pretrained GPT-2, and Fine-
tuned GPT-2.

Table 7 displays the average of each model for each
evaluation metric. For example, the N-gram model has an
average perplexity of 703.99, an average number of gram-
matical errors of 0.60, an average BLEU score of 0.12, an
average Self-BLEU score of 0.52, an average ROUGE score
of 0.29, an average BERTScore of 0.55, and an average Word
Mover’s Distance of 1.87.

The observations on different language models made in
this section were based on various evaluation metrics. The
models being compared include N-gram, CBOW, Pretrained
GPT2, and Finetuned GPT2, and the evaluation metrics
used include Perplexity, Gram Error, BLEU, Self- BLEU,
ROUGE, BERT, and Word Mover’s Distance.

CBOW had the highest perplexity value, indicating that
it generated the most perplexing text, while N-gram had

TABLE 7. Average metric value for each model and evaluation.

Model Stats
Metrics

PPL Gram BLEU Self ROUGE BERT WMDError BLEU

N-gram
Med 697.26 0.00 0.119 0.51 0.29 0.55 1.85
Avg 703.99 0.60 0.12 0.52 0.29 0.55 1.87
SD 101.03 0.74 0.08 0.11 0.07 0.04 0.21

CBOW
Med 1958.97 7.00 0.029 0.49 0.21 0.42 2.07
Avg 1957.81 8.10 0.029 0.50 0.21 0.42 2.08
SD 256.24 4.72 0.01 0.08 0.03 0.02 0.15

GRU
Med 850.18 4.00 0.033 0.37 0.23 0.45 1.91
Avg 853.15 4.68 0.036 0.38 0.23 0.45 1.91
SD 117.30 2.99 0.02 0.06 0.04 0.02 0.15

Pretrained
GPT2

Med 1141.59 0.00 0.149 0.39 0.30 0.54 1.78
Avg 1184.76 0.62 0.160 0.41 0.31 0.55 1.78
SD 252.22 0.90 0.07 0.08 0.07 0.04 0.19

Finetuned
GPT2

Med 869.71 0.00 0.151 0.42 0.30 0.58 1.70
Avg 886.37 0.54 0.158 0.44 0.32 0.58 1.71
SD 154.03 0.75 0.08 0.10 0.07 0.04 0.18

the lowest median and average perplexity, although not by
a large margin compared to some other models. In terms
of grammatical error, CBOW had the highest median and
average values, while N-gram and Pretrained GPT2 had the
lowest values. Finetuned GPT-2 boasted the highest BLEU
score, indicating better translation quality or text generation,
while N-gram and Pretrained GPT-2 also performed reason-
ably well in this metric. N-gram had the highest Self BLEU
scores, which might indicate a lack of diversity in the gener-
ated text. Finetuned GPT2 led in the ROUGE metric, which
is commonly used to evaluate the quality of summaries. It
also led in the BERT metric. Finally, CBOW had the highest
WMD, suggesting that it might produce text that was more
dissimilar from the reference, while lower WMD is typically
preferred as the generated text is closer in semantic meaning
to the reference.

It can be seen that the Finetuned GPT2 model performed
well in almost all aspects, as shown in Table 7. The model
received high scores on the BLEU, ROUGE, and BERTScore
evaluations, and had a score close to the highest performing
model when evaluated on the Self-BLEU metric. Addition-
ally, it is one of the models with the lowest grammatical
errors when generating text.

We now describe the relationships between metrics. Ta-
ble 8 shows the correlations between all selected automatic
evaluation metrics, including perplexity, number of grammat-
ical errors, BLEU score, Self-BLEU score, ROUGE score,
BERTScore, and Word Mover’s Distance.

Based on the correlation table between each automatic
evaluation metric, we will group the metrics according to
their correlation strength as follows:

BLEU, ROUGE, and BERTScore are three metrics that
have strong correlations. The relationship between BLEU
and ROUGE was 0.796, the relationship between BLEU
and BERTScore was 0.798, and the relationship between
ROUGE and BERTScore was 0.805. These three measure-
ments measure similarity between the generated text and the
text from the reference corpus and range from 0 to 1, where

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 8. Correlation Relation between automatic metrics

PPL Gram. Errors BLEU Self-BLEU ROUGE BERT WMD

PPL 1 0.564 0.349 0.068 -0.406 -0.573 0.442
Gram.
Errors

0.564 1 -0.495 -0.016 -0.413 -0.629 0.277

BLEU 0.349 -0.495 1 0.009 0.796 0.798 -0.662
Self-
BLEU

0.068 -0.016 0.009 1 -0.022 -0.009 0.047

ROUGE -0.406 -0.413 0.796 -0.022 1 0.805 -0.767
BERT -0.573 -0.629 0.798 -0.009 0.805 1 -0.700
WMD 0.442 0.277 -0.662 0.047 -0.767 -0.700 1

0 indicates no similarity and 1 indicates exact replication
of the text. The correlation between the three matrices was
discovered to be strong indicated that all three matrices
measured the same aspect of text quality.

WMD had a strong negative correlation with the first group
we mentioned, including BLEU, ROUGE, and BERTScore.
The correlation between WMD and BLEU, ROUGE, and
BERTScore was -0.662, -0.767, and -0.700, respectively.

Word Mover’s Distance is a method for measuring the
difference between two texts. It calculates the total distance
needed to "move" words from one text to the other using
word embedding. A WMD score of 0 indicates that the two
texts are identical, while a higher score indicates dissimi-
larity. Because WMD scores were defined inversely from
BLEU, ROUGE, and BERTScore, it was expected to see a
negative correlation between WMD and those metrics.

Note that WMD could be sensitive to lexical variation
in text. If the generated texts used different synonyms or
paraphrases compared to the reference texts, WMD might
assign a higher distance. Metrics like BLEU and ROUGE
were also sensitive to lexical variation and word order in the
text.

The number of grammatical errors and BERTScore had a
strong negative correlation with a value of -0.629. This in-
dicates that text with higher grammatical errors also has low
BERTScore. The number of grammatical errors also had a
moderate negative correlation with BLEU and ROUGE, with
correlation values of -0.495 and -0.413, respectively. Mean-
while, the number of grammatical errors had a moderate pos-
itive correlation with perplexity at 0.564, while BERTSCore
had a moderate negative correlation with perplexity at -0.573.
This indicates that text with higher grammatical errors tended
to have higher perplexity and lower BERTScore.

The more the generated text resembles the reference text
from a corpus, the fewer grammatical errors it will have.
This is reasonable since the model should learn and capture
patterns of grammar from human writing.

Perplexity was correlated with multiple metrics. It had a
moderate correlation with the number of grammatical errors,
Word Mover’s Distance, and BLEU, with correlation values
of 0.564, 0.442, and 0.349, respectively. In contrast, perplex-
ity inversely correlated with ROUGE and BERT, with values
of -0.573 and -0.406, respectively.

Since perplexity measures how well a language model pre-

dicts a given sequence of words, a lower perplexity indicates
better prediction performance. Based on the correlation result
between perplexity and the number of grammatical errors,
we can see that worse prediction performance results in more
grammatical errors. Based on the correlation result between
perplexity and WMD, if the model has a poor prediction
performance, the words in the generated text will be further
away from the reference text.

Another interesting observation is that Perplexity corre-
lated differently with metrics that measure the similarity
between generated and reference texts, including BLEU,
BERTScore, and ROUGE. Perplexity has a positive corre-
lation with BLEU, but a negative correlation with ROUGE
and BERTScore. Despite these differences, the three latter
metrics consistently correlated well with each other.

This is likely because the three metrics used different
calculation methods. BLEU calculated based on N-gram
overlap at low levels of N-gram, while ROUGE (specifically
ROUGE-L) measured the longest common sub-sequence to
evaluate. BERTScore, on the other hand, used contextualized
embedding for calculation.

It can be interpreted that if a language model has a better
predictive performance, the generated text will be more sim-
ilar to the reference text. This is especially true if the com-
parison is made at the contextual level, like BERTScore, or
if the paired texts have a long common part, like ROUGE-L.
However, if the comparison is made on small chunks of text,
like BLEU, it may not necessarily mean that the language
model shows good performance.

Self-BLEU did not correlate well with any other met-
rics. According to the correlation table, Self-BLEU shows a
weak positive correlation with Perplexity, BLEU and Word
Mover’s Distance, with values of only 0.068, 0.009, and
0.047, respectively. Additionally, Self-BLEU show a weak
negative correlation with the number of grammatical errors,
ROUGE-L, and BERTScore, with values of only -0.016, -
0.022, and -0.009, respectively.

Self-BLEU measure determines the diversity within the
same text generation model. The correlation table shows that
Self-BLEU did not correlate with any other metrics. This
means that the degree of diversity that a model generated a
text neither related to the number of grammatical errors, nor
to the similarity between the generated story and the original
story, nor to the similarity between the whole text generated
and the corpus. In short, Self-BLEU is not related to any other
metrics.

V. DISCUSSION
Referring to the table of average metric values for each
model (Table 7). The best-performance model varies with
each specific evaluation metric.

If the purpose of generation is to generate texts with a
few grammatical errors, N-gram, Pretrained GPT-2, or Fine-
tuned GPT-2 models can be good candidates. These models
produced the smallest number of grammatical errors in our
experiment.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

To generate more diverse text, Pretrained GPT-2 model and
Finetuned GPT-2 model, can be considered. This is based on
their high Self-BLEU score from the experiment.

To generate text that closely matches a given corpus or
reference text, N-gram, Pretrained GPT-2, or Finetuned GPT-
2 models are all good models. These models produced the
best results in BLEU, ROUGE, and BERTScore evaluations
in the experiment.

To generate texts with more word variety, while still main-
taining similarity to reference texts, we suggest using Ngram,
Pretrained GPT-2, or Finetuned GPT-2 models based on their
high BERTScore and low Word Mover’s Distance.

Considering the overall metrics, the Finetuned GPT-2
model achieved better scores than the other models. Specif-
ically, it obtained the highest scores in 4 out of 7 metrics,
including BLEU, Self-BLEU, ROUGE-L, and the least num-
ber of grammatical errors, as well as achieved the second-best
perplexity score.

The correlation table in Table 8 suggests that there were
moderate to strong correlations between some evaluation
metrics, indicating that they measured similar aspects of text
quality.

Based on these correlations, we can group the following
metrics together:

• BLEU, BERTScore, ROUGE scores
• Word Mover’s Distance
• Perplexity and number of grammatical errors
• Self-BLEU
The reason why BLEU, BERT, and ROUGE scores were

correlated was that they all measured the similarity between
two pieces of text. BLEU measured the similarity between
the generated text and the reference text, while BERT and
ROUGE scores measured the similarity between the gener-
ated text and the corpus text. Therefore, it was not surprising
that these metrics were correlated, as they were all measuring
the same aspect of text quality.

Although the Word Mover’s Distance negatively correlated
with BLEU, BERTScore, and ROUGE scores, they were
not measuring different aspects of text quality. Instead, they
measured different aspects of the relationship between the
generated and reference text. The Word Mover’s Distance
measured the overall distance between two texts, while
BLEU, BERTScore, and ROUGE scores measured the simi-
larity between specific N-gram or sequences of words.

The reason why perplexity and the number of grammatical
errors were correlated is that perplexity was a metric that
measured how well a language model could predict the next
word in a story. Since perplexity was trained on a corpus,
it learned the exact language behavior that humans used.
Therefore, a high perplexity score means more grammatical
errors, indicating that the model was less certain about its
predictions. In other words, a high perplexity model may
generate less grammatically correct text than a model with a
lower perplexity. As a result, these two metrics are correlated.

Self-BLEU did not correlate with other metrics because it
measured a different aspect of text quality. It measured the

diversity of generated text. Therefore, it was not correlated
with other metrics that measured different aspects of text
quality.

Based on the reasons given, choosing only one metric
from metrics within the same group for evaluation can be
considered. The chosen metric can be based on its simplicity,
interpretation, focus on the baseline, speed of calculation, or
other factors. For instance, in considering metrics like BLEU,
ROUGE, and BERTScore, which are grouped together based
on their correlation, one can choose to focus on the baseline
or simplicity by using BLEU or ROUGE. Alternatively,
BERTScore can be used to take advantage of pre-trained
transformers.

Each metric has its own strengths and weaknesses. There-
fore, it is important to use multiple metrics to evaluate a gen-
erated text. Using different metrics in combination provided
a more comprehensive evaluation of the text. Additionally,
including a human evaluation could be beneficial in deter-
mining the quality of the generated text.

When choosing evaluation metrics, we recommend select-
ing multiple metrics to cover all aspects of the options we
have experimented with. We suggest using Perplexity as a
measure of how well a language model predicts a given
text. Additionally, we recommend using rule-based grammar
detection to check for any grammatical errors in the text.
Although perplexity and the number of grammatical errors
are correlated, we recommend using both measures to cover
all aspects. Self-BLEU can be used to measure the diversity
of generated text. To measure similarity effectively, you
can choose between BLEU, ROUGE, BERTScore and Word
Mover’s Distance. These metrics are strongly correlated with
each other. However, we recommend using BERTScore to
take advantage of pre-trained transformers.

VI. CONCLUSION
In conclusion, we evaluated five different language models
using seven automatic evaluation metrics. Each model has its
own strengths and weaknesses, evaluation metrics can indi-
cate some quality of the models from different viewpoints.

To generate texts with the fewest grammatical errors, or
to generate texts that are similar to reference texts, or to
generate texts with more word variety while still having
similarity to reference texts, evaluation metrics such as the
number of grammar errors, BLEU, ROUGE, BERTScore and
Word Mover’s Distance indicate that, N-gram, Pretrained
GPT-2, or Finetuned GPT-2 models are good choices for
short story generation. For more diverse text, Pretrained GPT-
2 or Finetuned GPT-2 models can be used.

The correlation table showed moderate to strong correla-
tions between some evaluation metrics, indicating that they
measure similar aspects of text quality. Automatic evaluation
metrics can be grouped based on their correlation as follows:

• BLEU, BERT, and ROUGE scores are correlated be-
cause they all measure the similarity between two pieces
of text. On the other hand, Word Mover’s Distance

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

measures the overall distance between the two texts and
is negatively correlated.

• Perplexity and the number of grammatical errors are
correlated because a model with high perplexity can
generate less grammatically correct text than a model
with lower perplexity.

• Self-BLEU does not correlate with other metrics be-
cause it measures a different aspect of text quality,
specifically the diversity of generated text.

It is important to use multiple metrics in combination
to provide a more comprehensive evaluation of the text.
Additionally, including human evaluation may be beneficial
in determining the quality of the generated text.

Overall, our evaluation provides insight into the strengths
and weaknesses of different language models for generating
text. Future work could involve exploring other evaluation
metrics and techniques, as well as further improving the
quality of generated text.

In a future work, we plan to use humans to rate various
aspects of text quality. We will explore strategies for selecting
sample words that minimize human workload while main-
taining the value of the ratings. To evaluate the effectiveness
of human ratings, we will compare them to automatic met-
rics. In addition, the correlation between the two approaches
will be analyzed to determine which metrics show the same
agreement.

REFERENCES
[1] A. Celikyilmaz, E. Clark, and J. Gao, “Evaluation of text generation: A

survey,” arXiv preprint arXiv:2006.14799, 2020.
[2] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies

with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[3] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
(Philadelphia, Pennsylvania, USA), pp. 311–318, Association for Compu-
tational Linguistics, July 2002.

[4] C. Callison-Burch, M. Osborne, and P. Koehn, “Re-evaluating the role of
Bleu in machine translation research,” in 11th Conference of the European
Chapter of the Association for Computational Linguistics, (Trento, Italy),
pp. 249–256, Association for Computational Linguistics, Apr. 2006.

[5] Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu, “Texygen:
A benchmarking platform for text generation models,” in The 41st interna-
tional ACM SIGIR conference on research & development in information
retrieval, pp. 1097–1100, 2018.

[6] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in
Text summarization branches out, pp. 74–81, 2004.

[7] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675,
2019.

[8] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embed-
dings to document distances,” in International conference on machine
learning, pp. 957–966, PMLR, 2015.

[9] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–480, 1992.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[12] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[13] E. Clark, Y. Ji, and N. A. Smith, “Neural text generation in stories using
entity representations as context,” in Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 2250–2260, 2018.

[14] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.

[15] A. Markov, “Probabilités supposées a priori et chaine de markoff,” Annales
de l’Institut Henri Poincare (B) Probabilites et Statistiques, vol. 9, no. 2,
pp. 1–26, 1913.

[16] P. F. Brown, P. V. Desouza, R. L. Mercer, S. A. D. Pietra, J. C. Lai,
H. Luan, A. V. Nguyen, and J. Sienkiewicz, “Class-based n-gram models
of natural language,” in Proceedings of the 1992 conference of the Centre
for Advanced Studies on Collaborative Research, pp. 3–13, Association
for Computational Linguistics, 1992.

[17] P.-S. Laplace, “Mémoire sur la probabilité des causes par les événemens,”
in Méemoires de l’Acadéemie Royale des Sciences de Paris, vol. 3,
pp. 235–288, 1788.

[18] R. Kneser and H. Ney, “Improved backing-off for m-gram language mod-
eling,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 181–184, IEEE, 1995.

[19] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from struc-
tured data with application to the biography domain,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing,
(Austin, Texas), pp. 1203–1213, Association for Computational Linguis-
tics, Nov. 2016.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent
neural networks,” in Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 1017–1024, 2011.

[22] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” Advances in neural information processing systems,
vol. 27, 2014.

[23] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training,” 2018.

[24] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” Advances in neural information processing sys-
tems, vol. 33, pp. 1877–1901, 2020.

[25] OpenAI, “Gpt-3.5: A language model for diverse applications,” URL:
https://www.openai.com/research/gpt-3-5, 2023.

[26] A. Agarwal and A. Lavie, “Meteor: An automatic metric for mt evaluation
with high levels of correlation with human judgments,” Proceedings of
WMT-08, 2007.

[27] A. Nenkova and R. J. Passonneau, “Evaluating content selection in sum-
marization: The pyramid method,” in Proceedings of the human language
technology conference of the north american chapter of the association for
computational linguistics: Hlt-naacl 2004, pp. 145–152, 2004.

[28] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part V 14, pp. 382–398, Springer, 2016.

[29] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved image
captioning via policy gradient optimization of spider,” in Proceedings of
the IEEE international conference on computer vision, pp. 873–881, 2017.

[30] P. Koehn and C. Monz, “Manual and automatic evaluation of machine
translation between European languages,” in Proceedings on the Work-
shop on Statistical Machine Translation, (New York City), pp. 102–121,
Association for Computational Linguistics, June 2006.

[31] L. Shao, S. Gouws, D. Britz, A. Goldie, B. Strope, and R. Kurzweil,
“Generating high-quality and informative conversation responses with
sequence-to-sequence models,” arXiv preprint arXiv:1701.03185, 2017.

[32] C. Kedzie, K. McKeown, and H. Daume III, “Content selection in deep
learning models of summarization,” arXiv preprint arXiv:1810.12343,
2018.

[33] Aesop, “Aesop’s fables.” https://americanliterature.com/author/aesop, n.d.
[34] “LanguageTool - Online Grammar, Style & Spell Checker.” https://

languagetool.org/.

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3337095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


