
Software Foundations

Benjamin C. Pierce

Arthur Azevedo de Amorim

Chris Casinghino

Marco Gaboardi

Michael Greenberg

Cătălin Hriţcu

Vilhelm Sjöberg

Brent Yorgey

with Loris D’Antoni, Andrew W. Appel, Arthur Chargueraud, Anthony Cowley,
Jeffrey Foster, Dmitri Garbuzov, Michael Hicks, Ranjit Jhala, Greg Morrisett,
Jennifer Paykin, Mukund Raghothaman, Chung-chieh Shan, Leonid Spesivtsev,

Andrew Tolmach, Stephanie Weirich and Steve Zdancewic.

Idris translation by Eric Bailey, Alex Gryzlov and Erlend Hamberg.

i

Chapter 1. Preface 1
1. Welcome 1
2. Overview 1
2.1. Logic 2
2.2. Proof Assistants 2
2.3. Functional Programming 4
2.4. Program Verification 5
2.5. Type Systems 6
2.6. Further Reading 6
3. Practicalities 6
3.1. Chapter Dependencies 6
3.2. System Requirements 6
3.3. Exercises 7
3.4. Downloading the Coq Files 7
4. Translations 7

Chapter 2. Basics 9
1. Introduction 9
2. Enumerated Types 10
2.1. Days of the Week 10
3. Booleans 12
4. Function Types 15
5. Modules 15
6. Numbers 15
7. Proof by Simplification 20
8. Proof by Rewriting 21
9. Proof by Case Analysis 22
10. Structural Recursion (Optional) 24
11. More Exercises 25

Chapter 3. Induction : Proof by Induction 27
1. Proof by Induction 27
2. Proofs Within Proofs 29
3. More Exercises 30

Chapter 4. Lists : Working with Structured Data 33
1. Pairs of Numbers 33
1.1. Exercise: 1 star (snd_fst_is_swap) 34
1.2. Exercise: 1 star, optional (fst_swap_is_snd) 34
2. Lists of Numbers 35
2.1. Repeat 36
2.2. Length 36
2.3. Append 36
2.4. Head (with default) and Tail 36
2.5. Exercises 37
2.6. Bags via Lists 38
3. Reasoning About Lists 40
3.1. Induction on Lists 41

ii

3.2. Search 44
3.3. List Exercises, Part 1 45
3.4. List Exercises, Part 2 45
4. Options 46
5. Partial Maps 48

Chapter 5. Poly : Polymorphism and Higher-Order Functions 51
1. Polymorphism 51
1.1. Polymorphic Lists 51
1.2. Polymorphic Pairs 57
2. Functions as Data 59
2.1. Higher-Order Functions 60
2.2. Filter 60
2.3. Anonymous Functions 61
2.4. Map 62
2.5. Fold 63
2.6. Functions That Construct Functions 64
3. Additional Exercises 65

Chapter 6. Logic : Logic in Idris 69
1. Logical Connectives 71
1.1. Conjunction 71
1.2. Disjunction 72
1.3. Falsehood and Negation 73
1.4. Truth 75
1.5. Logical Equivalence 75
1.6. Existential Quantification 77
2. Programming with Propositions 78
3. Applying Theorems to Arguments 80
4. Idris vs. Set Theory 82
4.1. Functional Extensionality 82
4.2. Propositions and Booleans 84
4.3. Classical vs. Constructive Logic 87

Chapter 7. IndProp : Inductively Defined Propositions 91
1. Inductively Defined Propositions 91
2. Using Evidence in Proofs 93
2.1. Pattern Matching on Evidence 93
2.2. Exercise: 1 star (inversion_practice) 95
2.3. Induction on Evidence 96
2.4. Exercise: 4 stars, advanced, optional (ev_alternate) 97
2.5. Exercise: 3 stars, advanced, recommended (ev_ev__ev) 97
3. Inductive Relations 97
3.1. Exercise: 2 stars, optional (empty_relation) 99
3.2. Exercise: 4 stars, advanced (subsequence) 100
4. Case Study: Regular Expressions 101
4.1. The remember Tactic 106
5. Case Study: Improving Reflection 110

iii

6. Additional Exercises 112
6.1. Exercise: 4 stars, advanced, optional (NoDup) 115

Chapter 8. Maps: Total and Partial Maps 117
1. The Idris Standard Library 117
2. Identifiers 118
3. Total Maps 119
4. Partial maps 121

Chapter 9. ProofObjects : The Curry-Howard Correspondence 123
1. Proof Scripts 125
2. Programming with Tactics 127
3. Logical Connectives as Inductive Types 128
3.1. Conjunction 128
3.2. Disjunction 129
3.3. Existential Quantification 130
3.4. Unit and Void 130
4. Equality 131
4.1. Inversion, Again 132

Chapter 10. Rel : Properties of Relations 135
1. Basic Properties 136
1.1. Partial Functions 136
1.2. Reflexive Relations 137
1.3. Transitive Relations 137
1.4. Symmetric and Antisymmetric Relations 138
1.5. Equivalence Relations 139
1.6. Partial Orders and Preorders 139
2. Reflexive, Transitive Closure 139

Chapter 11. Imp : Simple Imperative Programs 141
1. Arithmetic and Boolean Expressions 141
1.1. Syntax 141
1.2. Evaluation 143
1.3. Optimization 143
2. Coq Automation 144
2.1. Tacticals 145
2.2. Defining New Tactic Notations 149
2.3. The omega Tactic 149
2.4. A Few More Handy Tactics 150
3. Evaluation as a Relation 150
3.1. Inference Rule Notation 151
3.2. Equivalence of the Definitions 152
3.3. Computational vs. Relational Definitions 153
4. Expressions With Variables 155
4.1. States 156
4.2. Syntax 156
4.3. Evaluation 157

iv

5. Commands 157
5.1. Syntax 157
5.2. More Examples 159
6. Evaluating Commands 159
6.1. Evaluation as a Function (Failed Attempt) 159
6.2. Evaluation as a Relation 160
6.3. Determinism of Evaluation 163
7. Reasoning About Imp Programs 163
8. Additional Exercises 165

Chapter 12. ImpParser: Lexing and Parsing in Idris 171
1. Internals 171
1.1. Lexical Analysis 171
1.2. Parsing 172
2. Examples 176

Chapter 13. ImpCEvalFun : Evaluation Function for Imp 179
1. A Broken Evaluator 179
2. A Step-Indexed Evaluator 180
3. Relational vs. Step-Indexed Evaluation 182
4. Determinism of Evaluation Again 184

Glossary 185

Contents

CHAPTER 1

Preface

1. Welcome

This electronic book is a course on Software Foundations, the mathematical un-
derpinnings of reliable software. Topics include basic concepts of logic, computer-
assisted theorem proving, the Idris programming language, functional program-
ming, operational semantics, Hoare logic, and static type systems. The exposition
is intended for a broad range of readers, from advanced undergraduates to PhD stu-
dents and researchers. No specific background in logic or programming languages
is assumed, though a degree of mathematical maturity will be helpful.

The principal novelty of the course is that it is one hundred percent formalized
and machine-checked: the entire text is Literate Idris. It is intended to be read
alongside an interactive session with Idris. All the details in the text are fully
formalized in Idris, and the exercises are designed to be worked using Idris.

The files are organized into a sequence of core chapters, covering about one se-
mester’s worth of material and organized into a coherent linear narrative, plus
a number of “appendices” covering additional topics. All the core chapters are
suitable for both upper-level undergraduate and graduate students.

2. Overview

Building reliable software is hard. The scale and complexity of modern systems,
the number of people involved in building them, and the range of demands placed
on them render it extremely difficult to build software that is even more-or-less
correct, much less 100% correct. At the same time, the increasing degree to which
information processing is woven into every aspect of society continually amplifies
the cost of bugs and insecurities.

Computer scientists and software engineers have responded to these challenges by
developing a whole host of techniques for improving software reliability, ranging
from recommendations about managing software projects and organizing program-
ming teams (e.g., extreme programming) to design philosophies for libraries (e.g.,
model-view-controller, publish-subscribe, etc.) and programming languages (e.g.,
object-oriented programming, aspect-oriented programming, functional program-
ming, …) to mathematical techniques for specifying and reasoning about properties
of software and tools for helping validate these properties.

1

2 1. PREFACE

The present course is focused on this last set of techniques. The text weaves
together five conceptual threads:

1. basic tools from logic for making and justifying precise claims about pro-
grams;

2. the use of proof assistants to construct rigorous logical arguments;

3. the idea of functional programming, both as a method of programming
that simplifies reasoning about programs and as a bridge between pro-
gramming and logic;

4. formal techniques for reasoning about the properties of specific programs
(e.g., the fact that a sorting function or a compiler obeys some formal
specification); and

5. the use of type systems for establishing well-behavedness guarantees for
all programs in a given programming language (e.g., the fact that well-
typed Java programs cannot be subverted at runtime).

Each of these topics is easily rich enough to fill a whole course in its own right,
so tackling all of them together naturally means that much will be left unsaid.
Nevertheless, we hope readers will find that the themes illuminate and amplify
each other and that bringing them together creates a foundation from which it
will be easy to dig into any of them more deeply. Some suggestions for further
reading can be found in the [Postscript] chapter. Bibliographic information for all
cited works can be found in the [Bib] chapter.

2.1. Logic. Logic is the field of study whose subject matter is proofs – unas-
sailable arguments for the truth of particular propositions. Volumes have been
written about the central role of logic in computer science. Manna and Waldinger
called it “the calculus of computer science,” while Halpern et al.’s paper On the Un-
usual Effectiveness of Logic in Computer Science catalogs scores of ways in which
logic offers critical tools and insights. Indeed, they observe that “As a matter of
fact, logic has turned out to be significantly more effective in computer science
than it has been in mathematics. This is quite remarkable, especially since much
of the impetus for the development of logic during the past one hundred years
came from mathematics.”

In particular, the fundamental notion of inductive proofs is ubiquitous in all of
computer science. You have surely seen them before, in contexts from discrete
math to analysis of algorithms, but in this course we will examine them much
more deeply than you have probably done so far.

2.2. Proof Assistants. The flow of ideas between logic and computer science
has not been in just one direction: CS has also made important contributions to
logic. One of these has been the development of software tools for helping construct
proofs of logical propositions. These tools fall into two broad categories:

• Automated theorem provers provide “push-button” operation: you give
them a proposition and they return either true, false, or ran out of time.

2. OVERVIEW 3

Although their capabilities are limited to fairly specific sorts of reasoning,
they have matured tremendously in recent years and are used now in a
huge variety of settings. Examples of such tools include SAT solvers,
SMT solvers, and model checkers.

• Proof assistants are hybrid tools that automate the more routine aspects
of building proofs while depending on human guidance for more diffi-
cult aspects. Widely used proof assistants include Isabelle, Agda, Twelf,
ACL2, PVS, Coq, and Idris among many others.

This course is based around Coq, a proof assistant that has been under develop-
ment, mostly in France, since 1983 and that in recent years has attracted a large
community of users in both research and industry. Coq provides a rich environ-
ment for interactive development of machine-checked formal reasoning. The kernel
of the Coq system is a simple proof-checker, which guarantees that only correct de-
duction steps are performed. On top of this kernel, the Coq environment provides
high-level facilities for proof development, including powerful tactics for construct-
ing complex proofs semi-automatically, and a large library of common definitions
and lemmas.

Coq has been a critical enabler for a huge variety of work across computer science
and mathematics:

• As a platform for modeling programming languages, it has become a stan-
dard tool for researchers who need to describe and reason about complex
language definitions. It has been used, for example, to check the secu-
rity of the JavaCard platform, obtaining the highest level of common
criteria certification, and for formal specifications of the x86 and LLVM
instruction sets and programming languages such as C.

• As an environment for developing formally certified software, Coq has
been used, for example, to build CompCert, a fully-verified optimizing
compiler for C, for proving the correctness of subtle algorithms involving
floating point numbers, and as the basis for CertiCrypt, an environment
for reasoning about the security of cryptographic algorithms.

• As a realistic environment for functional programming with dependent
types, it has inspired numerous innovations. For example, the Ynot
project at Harvard embedded “relational Hoare reasoning” (an extension
of the Hoare Logic we will see later in this course) in Coq.

• As a proof assistant for higher-order logic, it has been used to validate a
number of important results in mathematics. For example, its ability to
include complex computations inside proofs made it possible to develop
the first formally verified proof of the 4-color theorem. This proof had
previously been controversial among mathematicians because part of it
included checking a large number of configurations using a program. In
the Coq formalization, everything is checked, including the correctness of
the computational part. More recently, an even more massive effort led

4 1. PREFACE

to a Coq formalization of the Feit-Thompson Theorem – the first major
step in the classification of finite simple groups.

By the way, in case you’re wondering about the name, here’s what the official Coq
web site says: “Some French computer scientists have a tradition of naming their
software as animal species: Caml, Elan, Foc or Phox are examples of this tacit
convention. In French, ‘coq’ means rooster, and it sounds like the initials of the
Calculus of Constructions (CoC) on which it is based.” The rooster is also the
national symbol of France, and C-o-q are the first three letters of the name of
Thierry Coquand, one of Coq’s early developers.

2.3. Functional Programming. The term functional programming refers
both to a collection of programming idioms that can be used in almost any pro-
gramming language and to a family of programming languages designed to empha-
size these idioms, including Haskell, OCaml, Standard ML, F#, Scala, Scheme,
Racket, Common Lisp, Clojure, Erlang, and Coq.

Functional programming has been developed over many decades – indeed, its roots
go back to Church’s lambda-calculus, which was invented in the 1930s, before there
were even any computers! But since the early ’90s it has enjoyed a surge of interest
among industrial engineers and language designers, playing a key role in high-value
systems at companies like Jane St. Capital, Microsoft, Facebook, and Ericsson.

The most basic tenet of functional programming is that, as much as possible,
computation should be pure, in the sense that the only effect of execution should
be to produce a result: the computation should be free from side effects such
as I/O, assignments to mutable variables, redirecting pointers, etc. For example,
whereas an imperative sorting function might take a list of numbers and rearrange
its pointers to put the list in order, a pure sorting function would take the original
list and return a new list containing the same numbers in sorted order.

One significant benefit of this style of programming is that it makes programs easier
to understand and reason about. If every operation on a data structure yields a
new data structure, leaving the old one intact, then there is no need to worry
about how that structure is being shared and whether a change by one part of the
programmight break an invariant that another part of the program relies on. These
considerations are particularly critical in concurrent programs, where every piece
of mutable state that is shared between threads is a potential source of pernicious
bugs. Indeed, a large part of the recent interest in functional programming in
industry is due to its simpler behavior in the presence of concurrency.

Another reason for the current excitement about functional programming is re-
lated to the first: functional programs are often much easier to parallelize than
their imperative counterparts. If running a computation has no effect other than
producing a result, then it does not matter where it is run. Similarly, if a data
structure is never modified destructively, then it can be copied freely, across cores
or across the network. Indeed, the “Map-Reduce” idiom, which lies at the heart
of massively distributed query processors like Hadoop and is used by Google to
index the entire web is a classic example of functional programming.

2. OVERVIEW 5

For this course, functional programming has yet another significant attraction: it
serves as a bridge between logic and computer science. Indeed, Coq itself can be
viewed as a combination of a small but extremely expressive functional program-
ming language plus with a set of tools for stating and proving logical assertions.
Moreover, when we come to look more closely, we find that these two sides of
Coq are actually aspects of the very same underlying machinery – i.e., proofs are
programs.

2.4. Program Verification. Approximately the first third of the book is de-
voted to developing the conceptual framework of logic and functional programming
and gaining enough fluency with Coq to use it for modeling and reasoning about
nontrivial artifacts. From this point on, we increasingly turn our attention to two
broad topics of critical importance to the enterprise of building reliable software
(and hardware): techniques for proving specific properties of particular programs
and for proving general properties of whole programming languages.

For both of these, the first thing we need is a way of representing programs as
mathematical objects, so we can talk about them precisely, together with ways
of describing their behavior in terms of mathematical functions or relations. Our
tools for these tasks are abstract syntax and operational semantics, a method of
specifying programming languages by writing abstract interpreters. At the begin-
ning, we work with operational semantics in the so-called “big-step” style, which
leads to somewhat simpler and more readable definitions when it is applicable.
Later on, we switch to a more detailed “small-step” style, which helps make some
useful distinctions between different sorts of “nonterminating” program behaviors
and is applicable to a broader range of language features, including concurrency.

The first programming language we consider in detail is Imp, a tiny toy language
capturing the core features of conventional imperative programming: variables,
assignment, conditionals, and loops. We study two different ways of reasoning
about the properties of Imp programs.

First, we consider what it means to say that two Imp programs are equivalent in
the intuitive sense that they yield the same behavior when started in any initial
memory state. This notion of equivalence then becomes a criterion for judging the
correctness of metaprograms – programs that manipulate other programs, such as
compilers and optimizers. We build a simple optimizer for Imp and prove that it
is correct.

Second, we develop a methodology for proving that particular Imp programs satisfy
formal specifications of their behavior. We introduce the notion of Hoare triples –
Imp programs annotated with pre- and post-conditions describing what should be
true about the memory in which they are started and what they promise to make
true about the memory in which they terminate – and the reasoning principles
of Hoare Logic, a “domain-specific logic” specialized for convenient compositional
reasoning about imperative programs, with concepts like “loop invariant” built in.

6 1. PREFACE

This part of the course is intended to give readers a taste of the key ideas and
mathematical tools used in a wide variety of real-world software and hardware
verification tasks.

2.5. Type Systems. Our final major topic, covering approximately the last
third of the course, is type systems, a powerful set of tools for establishing properties
of all programs in a given language.

Type systems are the best established and most popular example of a highly suc-
cessful class of formal verification techniques known as lightweight formal methods.
These are reasoning techniques of modest power – modest enough that automatic
checkers can be built into compilers, linkers, or program analyzers and thus be
applied even by programmers unfamiliar with the underlying theories. Other ex-
amples of lightweight formal methods include hardware and software model check-
ers, contract checkers, and run-time property monitoring techniques for detecting
when some component of a system is not behaving according to specification.

This topic brings us full circle: the language whose properties we study in this
part, the simply typed lambda-calculus, is essentially a simplified model of the core
of Coq itself!

2.6. Further Reading. This text is intended to be self contained, but read-
ers looking for a deeper treatment of a particular topic will find suggestions for
further reading in the [Postscript] chapter.

3. Practicalities

3.1. Chapter Dependencies. A diagram of the dependencies between chap-
ters and some suggested paths through the material can be found in the file
[deps.html].

3.2. System Requirements. Coq runs on Windows, Linux, and OS X. You
will need:

• A current installation of Coq, available from the Coq home page. Every-
thing should work with version 8.4. (Version 8.5 will not work, due to a
few incompatible changes in Coq between 8.4 and 8.5.)

• An IDE for interacting with Coq. Currently, there are two choices:

– Proof General is an Emacs-based IDE. It tends to be preferred by
users who are already comfortable with Emacs. It requires a separate
installation (google “Proof General”).

– CoqIDE is a simpler stand-alone IDE. It is distributed with Coq,
so it should “just work” once you have Coq installed. It can also
be compiled from scratch, but on some platforms this may involve
installing additional packages for GUI libraries and such.

4. TRANSLATIONS 7

3.3. Exercises. Each chapter includes numerous exercises. Each is marked
with a “star rating,” which can be interpreted as follows:

• One star: easy exercises that underscore points in the text and that, for
most readers, should take only a minute or two. Get in the habit of
working these as you reach them.

• Two stars: straightforward exercises (five or ten minutes).

• Three stars: exercises requiring a bit of thought (ten minutes to half an
hour).

• Four and five stars: more difficult exercises (half an hour and up).

Also, some exercises are marked “advanced”, and some are marked “optional.”
Doing just the non-optional, non-advanced exercises should provide good coverage
of the core material. Optional exercises provide a bit of extra practice with key
concepts and introduce secondary themes that may be of interest to some readers.
Advanced exercises are for readers who want an extra challenge (and, in return, a
deeper contact with the material).

Please do not post solutions to the exercises in any public place: Software Founda-
tions is widely used both for self-study and for university courses. Having solutions
easily available makes it much less useful for courses, which typically have graded
homework assignments. The authors especially request that readers not post solu-
tions to the exercises anyplace where they can be found by search engines.

3.4. Downloading the Coq Files. A tar file containing the full sources for
the “release version” of these notes (as a collection of Coq scripts and HTML files)
is available here:

http://www.cis.upenn.edu/~bcpierce/sf

If you are using the notes as part of a class, you may be given access to a locally
extended version of the files, which you should use instead of the release version.

4. Translations

Thanks to the efforts of a team of volunteer translators, Software Foundations can
now be enjoyed in Japanese at [http://proofcafe.org/sf]. A Chinese translation is
underway.

CHAPTER 2

Basics

REMINDER:

###
PLEASE DO NOT DISTRIBUTE SOLUTIONS PUBLICLY
###

(See the Preface for why.)

||| Basics: Functional Programming in Idris
module Basics

%access public export

postulate is Idris’s “escape hatch” that says accept this definition without proof.
Instead of using it to mark the holes, similar to Coq’s Admitted, we use Idris’s holes
directly. In practice, holes (and postulate) are useful when you’re incrementally
developing large proofs.

1. Introduction

The functional programming style brings programming closer to simple, everyday
mathematics: If a procedure or method has no side effects, then (ignoring effi-
ciency) all we need to understand about it is how it maps inputs to outputs – that
is, we can think of it as just a concrete method for computing a mathematical
function. This is one sense of the word “functional” in “functional programming.”
The direct connection between programs and simple mathematical objects sup-
ports both formal correctness proofs and sound informal reasoning about program
behavior.

The other sense in which functional programming is “functional” is that it empha-
sizes the use of functions (or methods) as first-class values – i.e., values that can
be passed as arguments to other functions, returned as results, included in data
structures, etc. The recognition that functions can be treated as data in this way
enables a host of useful and powerful idioms.

Other common features of functional languages include algebraic data types and
pattern matching, which make it easy to construct and manipulate rich data struc-
tures, and sophisticated polymorphic type systems supporting abstraction and
code reuse. Idris shares all of these features.

9

10 2. BASICS

The first half of this chapter introduces the most essential elements of Idris’s func-
tional programming language. The second half introduces some basic tactics that
can be used to prove simple properties of Idris programs.

2. Enumerated Types

One unusual aspect of Idris, similar to Coq, is that its set of built-in features (see
the base package in the Idris distribution) is extremely small. For example, instead
of providing the usual palette of atomic data types (booleans, integers, strings,
etc.), Idris offers a powerful mechanism for defining new data types from scratch,
from which all these familiar types arise as instances.

Naturally, the Idris distribution comes with extensive standard libraries providing
definitions of booleans, numbers, and many common data structures like lists and
hash tables (see the prelude and contrib packages), as well as the means to write
type-safe effectful code (see the effects package) and pruvlioj, a toolkit for proof
automation and program construction. But there is nothing magic or primitive
about these library definitions. To illustrate this, we will explicitly recapitulate
all the definitions we need in this course, rather than just getting them implicitly
from the library.

To see how this definition mechanism works, let’s start with a very simple example.

2.1. Days of the Week. The following declaration tells Idris that we are
defining a new set of data values – a type.

namespace Days

||| Days of the week.
data Day = ||| `Monday` is a `Day`.

Monday
| ||| `Tuesday` is a `Day`.
Tuesday

| ||| `Wednesday` is a `Day`.
Wednesday

| ||| `Thursday` is a `Day`.
Thursday

| ||| `Friday` is a `Day`.
Friday

| ||| `Saturday` is a `Day`.
Saturday

| ||| `Sunday` is a `Day`.
Sunday

The type is called Day, and its members are Monday, Tuesday, etc. The right hand side
of the definition can be read “Monday is a Day, Tuesday is a Day, etc.”

Using the \idr{%name} directive, we can tell Idris how to choose default variable
names for a particular type.

2. ENUMERATED TYPES 11

%name Day day, day1, day2

Now, if Idris needs to choose a name for a variable of type Day, it will choose day
by default, followed by day1 and day2 if any of its predecessors are already in scope.

Having defined Day, we can write functions that operate on days.

Type the following:

nextWeekday : Day ౏> Day

Then with the point on nextWeekday, call idris-add-clause.

nextWeekday : Day ౏> Day
nextWeekday day = ?nextWeekday_rhs

With the point on day, call idris-case-split.

nextWeekday : Day ౏> Day
nextWeekday Monday = ?nextWeekday_rhs_1
nextWeekday Tuesday = ?nextWeekday_rhs_2
nextWeekday Wednesday = ?nextWeekday_rhs_3
nextWeekday Thursday = ?nextWeekday_rhs_4
nextWeekday Friday = ?nextWeekday_rhs_5
nextWeekday Saturday = ?nextWeekday_rhs_6
nextWeekday Sunday = ?nextWeekday_rhs_7

Fill in the proper Day constructors and align whitespace as you like.

||| Determine the next weekday after a day.
nextWeekday : Day ౏> Day
nextWeekday Monday = Tuesday
nextWeekday Tuesday = Wednesday
nextWeekday Wednesday = Thursday
nextWeekday Thursday = Friday
nextWeekday Friday = Monday
nextWeekday Saturday = Monday
nextWeekday Sunday = Monday

Call idris-load-file to load the Basics module with the finished nextWeekday definition.

Having defined a function, we should check that it works on some examples. There
are actually three different ways to do this in Idris.

First, we can evaluate an expression involving nextWeekday in a REPL.

λΠ> nextWeekday Friday
Monday : Day

λΠ> nextWeekday (nextWeekday Saturday)
Tuesday : Day

Mention other editors? Discuss idris-mode?

12 2. BASICS

We show Idris’s responses in comments, but, if you have a computer handy, this
would be an excellent moment to fire up the Idris interpreter under your favorite
Idris-friendly text editor – such as Emacs or Vim – and try this for and try this
for yourself. Load this file, Basics.lidr from the book’s accompanying Idris sources,
find the above example, submit it to the Idris REPL, and observe the result.

Second, we can record what we expect the result to be in the form of a proof.

||| The second weekday after `Saturday` is `Tuesday`.
testNextWeekday :
(nextWeekday (nextWeekday Saturday)) = Tuesday

This declaration does two things: it makes an assertion (that the second weekday
after Saturday is Tuesday) and it gives the assertion a name that can be used to refer
to it later.

Having made the assertion, we can also ask Idris to verify it, like this:

testNextWeekday = Refl

Edit this

The details are not important for now (we’ll come back to them in a bit), but
essentially this can be read as “The assertion we’ve just made can be proved by
observing that both sides of the equality evaluate to the same thing, after some
simplification.”

(For simple proofs like this, you can call idris-add-clause with the point on the
name (testNextWeekday) in the type signature and then call idris-proof-search with
the point on the resultant hole to have Idris solve the proof for you.)

Verify the ”main uses” claim.

Third, we can ask Idris to generate, from our definition, a program in some other,
more conventional, programming (C, JavaScript and Node are bundled with Idris)
with a high-performance compiler. This facility is very interesting, since it gives
us a way to construct fully certified programs in mainstream languages. Indeed,
this is one of the main uses for which Idris was developed. We’ll come back to this
topic in later chapters.

3. Booleans

namespace Booleans

In a similar way, we can define the standard type Bool of booleans, with members
False and True.

||| Boolean Data Type
data Bool = True | False

This definition is written in the simplified style, similar to Day. It can also be
written in the verbose style:

3. BOOLEANS 13

data Bool : Type where
True : Bool

False : Bool

The verbose style is more powerful because it allows us to assign precise types to
individual constructors. This will become very useful later on.

Although we are rolling our own booleans here for the sake of building up every-
thing from scratch, Idris does, of course, provide a default implementation of the
booleans in its standard library, together with a multitude of useful functions and
lemmas. (Take a look at Prelude in the Idris library documentation if you’re inter-
ested.) Whenever possible, we’ll name our own definitions and theorems so that
they exactly coincide with the ones in the standard library.

Functions over booleans can be defined in the same way as above:

not : (b : Bool) ౏> Bool
not True = False
not False = True

andb : (b1 : Bool) ౏> (b2 : Bool) ౏> Bool
andb True b2 = b2
andb False b2 = False

orb : (b1 : Bool) ౏> (b2 : Bool) ౏> Bool
orb True b2 = True
orb False b2 = b2

The last two illustrate Idris’s syntax for multi-argument function definitions. The
corresponding multi-argument application syntax is illustrated by the following
four “unit tests,” which constitute a complete specification – a truth table – for
the orb function:

testOrb1 : (orb True False) = True
testOrb1 = Refl

testOrb2 : (orb False False) = False
testOrb2 = Refl

testOrb3 : (orb False True) = True
testOrb3 = Refl

testOrb4 : (orb True True) = True
testOrb4 = Refl

Edit this.

We can also introduce some familiar syntax for the boolean operations we have
just defined. The syntax command defines a new symbolic notation for an existing
definition, and infixl specifies left-associative fixity.

14 2. BASICS

infixl 4 &&, ||

(&&) : Bool ౏> Bool ౏> Bool
(&&) = andb

(||) : Bool ౏> Bool ౏> Bool
(||) = orb

testOrb5 : False || False || True = True
testOrb5 = Refl

3.0.1. Exercise: 1 star (nandb). Fill in the hole ?nandb_rhs and complete the
following function; then make sure that the assertions below can each be verified
by Idris. (Fill in each of the holes, following the model of the orb tests above.) The
function should return True if either or both of its inputs are False.

nandb : (b1 : Bool) ౏> (b2 : Bool) ౏> Bool
nandb b1 b2 = ?nandb_rhs

test_nandb1 : (nandb True False) = True
test_nandb1 = ?test_nandb1_rhs

test_nandb2 : (nandb False False) = True
test_nandb2 = ?test_nandb2_rhs

test_nandb3 : (nandb False True) = True
test_nandb3 = ?test_nandb3_rhs

test_nandb4 : (nandb True True) = False
test_nandb4 = ?test_nandb4_rhs

□

3.0.2. Exercise: 1 star (andb3). Do the same for the andb3 function below. This
function should return True when all of its inputs are True, and False otherwise.

andb3 : (b1 : Bool) ౏> (b2 : Bool) ౏> (b3 : Bool) ౏> Bool
andb3 b1 b2 b3 = ?andb3_rhs

test_andb31 : (andb3 True True True) = True
test_andb31 = ?test_andb31_rhs

test_andb32 : (andb3 False True True) = False
test_andb32 = ?test_andb32_rhs

test_andb33 : (andb3 True False True) = False
test_andb33 = ?test_andb33_rhs

test_andb34 : (andb3 True True False) = False
test_andb34 = ?test_andb34_rhs

6. NUMBERS 15

□

4. Function Types

Every expression in Idris has a type, describing what sort of thing it computes.
The :type (or :t) REPL command asks Idris to print the type of an expression.

For example, the type of not True is Bool.

λΠ> :type True
True : Bool
λΠ> :t not True
not True : Bool

Confirm the ”function types” wording.

Functions like not itself are also data values, just like True and False. Their types
are called function types, and they are written with arrows.

λΠ> :t not
not : Bool ౏> Bool

The type of not, written Bool ౏> Bool and pronounced “Bool arrow Bool,” can be
read, “Given an input of type Bool, this function produces an output of type Bool.”
Similarly, the type of andb, written Bool ౏> Bool ౏> Bool, can be read, “Given two
inputs, both of type Bool, this function produces an output of type Bool.”

5. Modules

Flesh this out and discuss namespaces

Idris provides a module system, to aid in organizing large developments.

6. Numbers

namespace Numbers

The types we have defined so far are examples of “enumerated types”: their def-
initions explicitly enumerate a finite set of elements. A More interesting way of
defining a type is to give a collection of inductive rules describing its elements. For
example, we can define the natural numbers as follows:

data Nat : Type where
Z : Nat
S : Nat ౏> Nat

The clauses of this definition can be read:

• Z is a natural number.
• S is a “constructor” that takes a natural number and yields another one
– that is, if n is a natural number, then S n is too.

16 2. BASICS

Let’s look at this in a little more detail.

Every inductively defined set (Day, Nat, Bool, etc.) is actually a set of expressions.
The definition of Nat says how expressions in the set Nat can be constructed:

• the expression Z belongs to the set Nat;
• if n is an expression belonging to the set Nat, then S n is also an expression

belonging to the set Nat; and
• expression formed in these two ways are the only ones belonging to the
set Nat.

The same rules apply for our definitions of Day and Bool. The annotations we used
for their constructors are analogous to the one for the Z constructor, indicating
that they don’t take any arguments.

These three conditions are the precise force of inductive declarations. They imply
that the expression Z, the expression S Z, the expression S (S Z), the expression
S (S (S Z)) and so on all belong to the set Nat, while other expressions like True,
andb True False, and S (S False) do not.

We can write simple functions that pattern match on natural numbers just as we
did above – for example, the predecessor function:

pred : (n : Nat) ౏> Nat
pred Z = Z
pred (S k) = k

The second branch can be read: “if n has the form S k for some k, then return k.”

minusTwo : (n : Nat) ౏> Nat
minusTwo Z = Z
minusTwo (S Z) = Z
minusTwo (S (S k)) = k

Because natural numbers are such a pervasive form of data, Idris provides a tiny
bit of built-in magic for parsing and printing them: ordinary Arabic numerals can
be used as an alternative to the “unary” notation defined by the constructors S
and Z. Idris prints numbers in Arabic form by default:

λΠ> S (S (S (S Z)))
4 : Nat
λΠ> minusTwo 4
2 : Nat

The constructor S has the type Nat ౏> Nat, just like the functions minusTwo and pred:

λΠ> :t S
λΠ> :t pred
λΠ> :t minusTwo

These are all things that can be applied to a number to yield a number. However,
there is a fundamental difference between the first one and the other two: functions
like pred and minusTwo come with computation rules – e.g., the definition of pred says

6. NUMBERS 17

that pred 2 can be simplified to 1 – while the definition of S has no such behavior
attached. Although it is like a function in the sense that it can be applied to an
argument, it does not do anything at all!

For most function definitions over numbers, just pattern matching is not enough:
we also need recursion. For example, to check that a number n is even, we may
need to recursively check whether n-2 is even.

||| Determine whether a number is even.
||| @n a number
evenb : (n : Nat) ౏> Bool
evenb Z = True
evenb (S Z) = False
evenb (S (S k)) = evenb k

We can define oddb by a similar recursive declaration, but here is a simpler definition
that is a bit easier to work with:

||| Determine whether a number is odd.
||| @n a number
oddb : (n : Nat) ౏> Bool
oddb n = not (evenb n)

testOddb1 : oddb 1 = True
testOddb1 = Refl

testOddb2 : oddb 4 = False
testOddb2 = Refl

Naturally, we can also define multi-argument functions by recursion.

namespace Playground2

plus : (n : Nat) ౏> (m : Nat) ౏> Nat
plus Z m = m
plus (S k) m = S (Playground2.plus k m)

Adding three to two now gives us five, as we’d expect.

λΠ> plus 3 2

The simplification that Idris performs to reach this conclusion can be visualized
as follows:

plus (S (S (S Z))) (S (S Z))

↪ S (plus (S (S Z)) (S (S Z))) by the second clause of plus

↪ S (S (plus (S Z) (S (S Z)))) by the second clause of plus

↪ S (S (S (plus Z (S (S Z))))) by the second clause of plus

↪ S (S (S (S (S Z)))) by the first clause of plus

18 2. BASICS

As a notational convenience, if two or more arguments have the same type, they
can be written together. In the following definition, (n, m : Nat) means just the
same as if we had written (n : Nat) ౏> (m : Nat).

mult : (n, m : Nat) ౏> Nat
mult Z = Z
mult (S k) = plus m (mult k m)

testMult1 : (mult 3 3) = 9
testMult1 = Refl

You can match two expressions at once:

minus : (n, m : Nat) ౏> Nat
minus Z _ = Z
minus n Z = n
minus (S k) (S j) = minus k j

Verify this.

The _ in the first line is a wildcard pattern. Writing _ in a pattern is the same as
writing some variable that doesn’t get used on the right-hand side. This avoids
the need to invent a bogus variable name.

exp : (base, power : Nat) ౏> Nat
exp base Z = S Z
exp base (S p) = mult base (exp base p)

6.0.1. Exercise: 1 star (factorial). Recall the standard mathematical factorial
function:

𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑛) = {1, if 𝑛 = 0
𝑛 × 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙(𝑛 − 1), otherwise

Translate this into Idris.

factorial : (n : Nat) ౏> Nat
factorial n = ?factorial_rhs

testFactorial1 : factorial 3 = 6
testFactorial1 = ?testFactorial1_rhs

testFactorial2 : factorial 5 = mult 10 12
testFactorial2 = ?testFactorial2_rhs

□

We can make numerical expressions a little easier to read and write by introducing
syntax for addition, multiplication, and subtraction.

6. NUMBERS 19

syntax [x] ”+” [y] = plus x y
syntax [x] ”-” [y] = minus x y
syntax [x] ”*” [y] = mult x y

λΠ> :t (0 + 1) + 1

(The details are not important, but interested readers can refer to the optional
“More on Syntax” section at the end of this chapter.)

Note that these do not change the definitions we’ve already made: they are simply
instructions to the Idris parser to accept x + y in place of plus x y and, conversely,
to the Idris pretty-printer to display plus x y as x + y.

Mention interfaces here? Say this is infix

The (తథ) function tests Natural numbers for equality, yielding a Boolean.

||| Test natural numbers for equality.
(తథ) : (n, m : Nat) ౏> Bool
(తథ) Z Z = True
(తథ) Z (S j) = False
(తథ) (S k) Z = False
(తథ) (S k) (S j) = (తథ) k j

The lte function tests whether its first argument is less than or equal to its second
argument, yielding a boolean.

||| Test whether a number is less than or equal to another.
lte : (n, m : Nat) ౏> Bool
lte Z m = True
lte n Z = False
lte (S k) (S j) = lte k j

testLte1 : lte 2 2 = True
testLte1 = Refl

testLte2 : lte 2 4 = True
testLte2 = Refl

testLte3 : lte 4 2 = False
testLte3 = Refl

6.0.2. Exercise: 1 star (blt_nat). The blt_nat function tests Natural numbers
for less-than, yielding a boolean. Instead of making up a new recursive function
for this one, define it in terms of a previously defined function.

blt_nat : (n, m : Nat) ౏> Bool
blt_nat n m = ?blt_nat_rhs

test_blt_nat_1 : blt_nat 2 2 = False
test_blt_nat_1 = ?test_blt_nat_1_rhs

20 2. BASICS

test_blt_nat_2 : blt_nat 2 4 = True
test_blt_nat_2 = ?test_blt_nat_2_rhs

test_blt_nat_3 : blt_nat 4 2 = False
test_blt_nat_3 = ?test_blt_nat_3_rhs

□

7. Proof by Simplification

Now that we’ve defined a few datatypes and functions, let’s turn to stating and
proving properties of their behavior. Actually, we’ve already started doing this:
each of the functions beginning with test in the previous sections makes a precise
claim about the behavior of some function on some particular inputs. The proofs
of these claims were always the same: use Refl to check that both sides contain
identical values.

The same sort of “proof by simplification” can be used to prove more interesting
properties as well. For example, the fact that 0 is a “neutral element” for + on the
left can be proved just by observing that 0 + n reduces to n no matter what n is, a
fact that can be read directly off the definition of plus.

plus_Z_n : (n : Nat) ౏> 0 + n = n
plus_Z_n n = Refl

It will be useful later to know that [reflexivity] does some simplification – for
example, it tries “unfolding” defined terms, replacing them with their right-hand
sides. The reason for this is that, if reflexivity succeeds, the whole goal is finished
and we don’t need to look at whatever expanded expressions Refl has created by
all this simplification and unfolding.

Other similar theorems can be proved with the same pattern.

plus_1_l : (n : Nat) ౏> 1 + n = S n
plus_1_l n = Refl

mult_0_l : (n : Nat) ౏> 0 * n = 0
mult_0_l n = Refl

The _l suffix in the names of these theorems is pronounced “on the left.”

Although simplification is powerful enough to prove some fairly general facts, there
are many statements that cannot be handled by simplification alone. For instance,
we cannot use it to prove that 0 is also a neutral element for + on the right.

plus_n_Z : (n : Nat) ౏> n = n + 0
plus_n_Z n = Refl

When checking right hand side of plus_n_Z with expected type
n = n + 0

Type mismatch between

8. PROOF BY REWRITING 21

plus n 0 = plus n 0 (Type of Refl)
and

n = plus n 0 (Expected type)

Specifically:
Type mismatch between

plus n 0
and

n

(Can you explain why this happens?)

The next chapter will introduce induction, a powerful technique that can be used
for proving this goal. For the moment, though, let’s look at a few more simple
tactics.

8. Proof by Rewriting

This theorem is a bit more interesting than the others we’ve seen:

plus_id_example : (n, m : Nat) ౏> (n = m) ౏> n + n = m + m

Instead of making a universal claim about all numbers n and m, it talks about
a more specialized property that only holds when n = m. The arrow symbol is
pronounced “implies.”

As before, we need to be able to reason by assuming the existence of some numbers
n and m. We also need to assume the hypothesis n = m.

Edit, mention the ”generate initial pattern match” editor command

The intros tactic will serve to move all three of these from the goal into assumptions
in the current context.

Since n and m are arbitrary numbers, we can’t just use simplification to prove this
theorem. Instead, we prove it by observing that, if we are assuming n = m, then we
can replace n with m in the goal statement and obtain an equality with the same
expression on both sides. The tactic that tells Idris to perform this replacement is
called rewrite.

plus_id_example n m prf = rewrite prf in Refl

The first two variables on the left side move the universally quantified variables
n and m into the context. The third moves the hypothesis n = m into the context
and gives it the name prf. The right side tells Idris to rewrite the current goal
(n + n = m + m) by replacing the left side of the equality hypothesis prf with the
right side.

8.0.1. Exercise: 1 star (plus_id_exercise). Fill in the proof.

plus_id_exercise : (n, m, o : Nat) ౏> (n = m) ౏> (m = o) ౏> n + m = m + o
plus_id_exercise n m o prf prf1 = ?plus_id_exercise_rhs

22 2. BASICS

□

The prefix ? on the right-hand side of an equation tells Idris that we want to
skip trying to prove this theorem and just leave a hole. This can be useful for
developing longer proofs, since we can state subsidiary lemmas that we believe
will be useful for making some larger argument, use holes to delay defining them
for the moment, and continue working on the main argument until we are sure it
makes sense; then we can go back and fill in the proofs we skipped.

Decide whether to discuss postulate.

-- Be careful, though: every time you say `postulate` you are leaving a door
-- open for total nonsense to enter Idris's nice, rigorous, formally checked
-- world!

We can also use the rewrite tactic with a previously proved theorem instead of a
hypothesis from the context. If the statement of the previously proved theorem
involves quantified variables, as in the example below, Idris tries to instantiate
them by matching with the current goal.

mult_0_plus : (n, m : Nat) ౏> (0 + n) * m = n * (0 + m)
mult_0_plus n m = Refl

Unlike in Coq, we don’t need to perform such a rewrite for mult_0_plus in Idris and
can just use Refl instead.

8.0.2. Exercise: 2 starts (mult_S_1).

mult_S_1 : (n, m : Nat) ౏> (m = S n) ౏> m * (1 + n) = m * m
mult_S_1 n m prf = ?mult_S_1_rhs

□

9. Proof by Case Analysis

Of course, not everything can be proved by simple calculation and rewriting: In
general, unknown, hypothetical values (arbitrary numbers, booleans, lists, etc.)
can block simplification. For example, if we try to prove the following fact using
the Refl tactic as above, we get stuck.

plus_1_neq_0_firsttry : (n : Nat) ౏> (n + 1) తథ 0 = False
plus_1_neq_0_firsttry n = Refl -- does nothing!

The reason for this is that the definitions of both (తథ) and + begin by performing
a match on their first argument. But here, the first argument to + is the unknown
number n and the argument to (తథ) is the compound expression n + 1; neither can
be simplified.

To make progress, we need to consider the possible forms of n separately. If n is Z,
then we can calculate the final result of (n + 1) తథ 0 and check that it is, indeed,
False. And if n = S k for some k, then, although we don’t know exactly what number

9. PROOF BY CASE ANALYSIS 23

n + 1 yields, we can calculate that, at least, it will begin with one S, and this is
enough to calculate that, again, (n + 1) తథ 0 will yield False.

To tell Idris to consider, separately, the cases where n = Z and where n = S k, simply
case split on n.

Mention case splitting interactively in Emacs, Atom, etc.

plus_1_neq_0 : (n : Nat) ౏> (n + 1) తథ 0 = False
plus_1_neq_0 Z = Refl
plus_1_neq_0 (S k) = Refl

Case splitting on n generates two holes, which we must then prove, separately, in
order to get Idris to accept the theorem.

In this example, each of the holes is easily filled by a single use of Refl, which itself
performs some simplification – e.g., the first one simplifies (S k + 1) తథ 0 to False
by first rewriting (S k + 1) to S (k + 1), then unfolding (తథ), simplifying its pattern
matching.

There are no hard and fast rules for how proofs should be formatted in Idris.
However, if the places where multiple holes are generated are lifted to lemmas,
then the proof will be readable almost no matter what choices are made about
other aspects of layout.

This is also a good place to mention one other piece of somewhat obvious advice
about line lengths. Beginning Idris users sometimes tend to the extremes, either
writing each tactic on its own line or writing entire proofs on one line. Good style
lies somewhere in the middle. One reasonable convention is to limit yourself to
80-character lines.

The case splitting strategy can be used with any inductively defined datatype. For
example, we use it next to prove that boolean negation is involutive – i.e., that
negation is its own inverse.

||| A proof that boolean negation is involutive.
not_involutive : (b : Bool) ౏> not (not b) = b
not_involutive True = Refl
not_involutive False = Refl

Note that the case splitting here doesn’t introduce any variables because none of
the subcases of the patterns need to bind any, so there is no need to specify any
names.

It is sometimes useful to case split on more than one parameter, generating yet
more proof obligations. For example:

andb_commutative : (b, c : Bool) ౏> b && c = c && b
andb_commutative True True = Refl
andb_commutative True False = Refl
andb_commutative False True = Refl
andb_commutative False False = Refl

24 2. BASICS

In more complex proofs, it is often better to lift subgoals to lemmas:

andb_commutative'_rhs_1 : (c : Bool) ౏> c = c && True
andb_commutative'_rhs_1 True = Refl
andb_commutative'_rhs_1 False = Refl

andb_commutative'_rhs_2 : (c : Bool) ౏> False = c && False
andb_commutative'_rhs_2 True = Refl
andb_commutative'_rhs_2 False = Refl

andb_commutative' : (b, c : Bool) ౏> b && c = c && b
andb_commutative' True = andb_commutative'_rhs_1
andb_commutative' False = andb_commutative'_rhs_2

9.0.1. Exercise: 2 stars (andb_true_elim2). Prove the following claim, lift
cases (and subcases) to lemmas when case split.

andb_true_elim_2 : (b, c : Bool) ౏> (b && c = True) ౏> c = True
andb_true_elim_2 b c prf = ?andb_true_elim_2_rhs

□

9.0.2. Exercise: 1 star (zero_nbeq_plus_1).

zero_nbeq_plus_1 : (n : Nat) ౏> 0 తథ (n + 1) = False
zero_nbeq_plus_1 n = ?zero_nbeq_plus_1_rhs

□
Discuss associativity.

10. Structural Recursion (Optional)

Here is a copy of the definition of addition:

plus' : Nat ౏> Nat ౏> Nat
plus' Z right = right
plus' (S left) right = S (plus' left right)

When Idris checks this definition, it notes that plus' is “decreasing on 1st argument.”
What this means is that we are performing a structural recursion over the argument
left – i.e., that we make recursive calls only on strictly smaller values of left. This
implies that all calls to plus' will eventually terminate. Idris demands that some
argument of every recursive definition is “decreasing.”

This requirement is a fundamental feature of Idris’s design: In particular, it guar-
antees that every function that can be defined in Idris will terminate on all inputs.
However, because Idris’s “decreasing analysis” is not very sophisticated, it is some-
times necessary to write functions in slightly unnatural ways.

Verify the previous claims.

11. MORE EXERCISES 25

Add decreasing exercise.

11. More Exercises

11.0.1. Exercise: 2 stars (boolean_functions). Use the tactics you have learned
so far to prove the following theorem about boolean functions.

identity_fn_applied_twice : (f : Bool ౏> Bool) ౏>
((x : Bool) ౏> f x = x) ౏>
(b : Bool) ౏> f (f b) = b

identity_fn_applied_twice f g b = ?identity_fn_applied_twice_rhs

Now state and prove a theorem negation_fn_applied_twice similar to the previous one
but where the second hypothesis says that the function f has the property that
f x = not x.

-- FILL IN HERE

□
11.0.2. Exercise: 2 start (andb_eq_orb). Prove the following theorem. (You

may want to first prove a subsidiary lemma or two. Alternatively, remember that
you do not have to introduce all hypotheses at the same time.)

andb_eq_orb : (b, c : Bool) ౏> (b && c = b || c) ౏> b = c
andb_eq_orb b c prf = ?andb_eq_orb_rhs

□
11.0.3. Exercise: 3 stars (binary). Consider a different, more efficient repre-

sentation of natural numbers using a binary rather than unary system. That is,
instead of saying that each natural number is either zero or the successor of a
natural number, we can say that each binary number is either

• zero,
• twice a binary number, or
• one more than twice a binary number.

(a) First, write an inductive definition of the type Bin corresponding to this
description of binary numbers.

(Hint: Recall that the definition of Nat from class,

data Nat : Type where
Z : Nat
S : Nat ౏> Nat

says nothing about what Z and S “mean.” It just says “Z is in the set called Nat, and if
n is in the set then so is S n.” The interpretation of Z as zero and S as successor/plus
one comes from the way that we use Nat values, by writing functions to do things
with them, proving things about them, and so on. Your definition of Bin should
be correspondingly simple; it is the functions you will write next that will give it
mathematical meaning.)

26 2. BASICS

(b) Next, write an increment function incr for binary numbers, and a function
bin_to_nat to convert binary numbers to unary numbers.

(c) Write five unit tests test_bin_incr_1, test_bin_incr_2, etc. for your incre-
ment and binary-to-unary functions. Notice that incrementing a binary
number and then converting it to unary should yield the same result as
first converting it to unary and then incrementing.

-- FILL IN HERE

□

CHAPTER 3

Induction : Proof by Induction

module Induction

First, we import all of our definitions from the previous chapter.

import Basics

Next, we import the following Prelude modules, since we’ll be dealing with natural
numbers.

import Prelude.Interfaces
import Prelude.Nat

For import Basics to work, you first need to use idris to compile Basics.lidr into
Basics.ibc. This is like making a .class file from a .java file, or a .o file from a .c
file. There are at least two ways to do it:

• In your editor with an Idris plugin, e.g. Emacs:

Open Basics.lidr. Evaluate idris-load-file.

There exists similar support for Vim, Sublime Text and Visual Studio
Code as well.

• From the command line:

Run idris --check --total --noprelude src/Basics.lidr.

Refer to the Idris man page (or idris --help for descriptions of the flags.

%access public export

%default total

1. Proof by Induction

We proved in the last chapter that 0 is a neutral element for + on the left using an
easy argument based on simplification. The fact that it is also a neutral element
on the right…

Theorem plus_n_O_firsttry : forall n:nat,
n = n + 0.

… cannot be proved in the same simple way in Coq, but as we saw in Basics, Idris’s
Refl just works.

27

https://github.com/idris-hackers/idris-mode
https://github.com/idris-hackers/idris-vim
https://github.com/idris-hackers/idris-sublime
https://github.com/zjhmale/vscode-idris
https://github.com/zjhmale/vscode-idris

28 3. INDUCTION : PROOF BY INDUCTION

To prove interesting facts about numbers, lists, and other inductively defined sets,
we usually need a more powerful reasoning principle: induction.

Recall (from high school, a discrete math course, etc.) the principle of induction
over natural numbers: If p n is some proposition involving a natural number n and
we want to show that p holds for all numbers n, we can reason like this:

• show that p Z holds;
• show that, for any k, if p k holds, then so does p (S k);
• conclude that p n holds for all n.

In Idris, the steps are the same and can often be written as function clauses by
case splitting. Here’s how this works for the theorem at hand.

plus_n_Z : (n : Nat) ౏> n = n + 0
plus_n_Z Z = Refl
plus_n_Z (S k) =
let inductiveHypothesis = plus_n_Z k in
rewrite inductiveHypothesis in Refl

In the first clause, n is replaced by Z and the goal becomes 0 = 0, which fol-
lows by Reflexivity. In the second, n is replaced by S k and the goal becomes
S k = S (plus k 0). Then we define the inductive hypothesis, k = k + 0, which can
be written as plus_n_Z k, and the goal follows from it.

minus_diag : (n : Nat) ౏> minus n n = 0
minus_diag Z = Refl
minus_diag (S k) = minus_diag k

1.0.1. Exercise: 2 stars, recommended (basic_induction). Prove the following
using induction. You might need previously proven results.

mult_0_r : (n : Nat) ౏> n * 0 = 0
mult_0_r n = ?mult_0_r_rhs

plus_n_Sm : (n, m : Nat) ౏> S (n + m) = n + (S m)
plus_n_Sm n m = ?plus_n_Sm_rhs

plus_comm : (n, m : Nat) ౏> n + m = m + n
plus_comm n m = ?plus_comm_rhs

plus_assoc : (n, m, p : Nat) ౏> n + (m + p) = (n + m) + p
plus_assoc n m p = ?plus_assoc_rhs

□

1.0.2. Exercise: 2 stars (double_plus). Consider the following function, which
doubles its argument:

double : (n : Nat) ౏> Nat
double Z = Z
double (S k) = S (S (double k))

Use induction to prove this simple fact about double:

2. PROOFS WITHIN PROOFS 29

double_plus : (n : Nat) ౏> double n = n + n
double_plus n = ?double_plus_rhs

□

1.0.3. Exercise: 2 stars, optional (evenb_S). One inconvenient aspect of our
definition of evenb n is that it may need to perform a recursive call on n - 2. This
makes proofs about evenb n harder when done by induction on n, since we may
need an induction hypothesis about n - 2. The following lemma gives a better
characterization of evenb (S n):

evenb_S : (n : Nat) ౏> evenb (S n) = not (evenb n)
evenb_S n = ?evenb_S_rhs

□

2. Proofs Within Proofs

Edit the section

In Coq, as in informal mathematics, large proofs are often broken into a sequence of
theorems, with later proofs referring to earlier theorems. But sometimes a proof
will require some miscellaneous fact that is too trivial and of too little general
interest to bother giving it its own top-level name. In such cases, it is convenient
to be able to simply state and prove the needed “sub-theorem” right at the point
where it is used. The assert tactic allows us to do this. For example, our earlier
proof of the mult_0_plus theorem referred to a previous theorem named plus_Z_n. We
could instead use assert to state and prove plus_Z_n in-line:

mult_0_plus' : (n, m : Nat) ౏> (0 + n) * m = n * m
mult_0_plus' n m = Refl

The assert tactic introduces two sub-goals. The first is the assertion itself; by
prefixing it with H: we name the assertion H. (We can also name the assertion with
as just as we did above with destruct and induction, i.e., assert (0 + n = n) as H.)
Note that we surround the proof of this assertion with curly braces { ... }, both
for readability and so that, when using Coq interactively, we can see more easily
when we have finished this sub-proof. The second goal is the same as the one at
the point where we invoke assert except that, in the context, we now have the
assumption H that 0 + n = n. That is, assert generates one subgoal where we must
prove the asserted fact and a second subgoal where we can use the asserted fact
to make progress on whatever we were trying to prove in the first place.

The assert tactic is handy in many sorts of situations. For example, suppose
we want to prove that (n + m) + (p + q) = (m + n) + (p + q). The only difference
between the two sides of the = is that the arguments m and n to the first inner +
are swapped, so it seems we should be able to use the commutativity of addition
(plus_comm) to rewrite one into the other. However, the rewrite tactic is a little

30 3. INDUCTION : PROOF BY INDUCTION

stupid about where it applies the rewrite. There are three uses of + here, and it
turns out that doing rewrite ౏> plus_comm will affect only the outer one…

plus_rearrange_firsttry : (n, m, p, q : Nat) ౏>
(n + m) + (p + q) = (m + n) + (p + q)

plus_rearrange_firsttry n m p q = rewrite plus_comm in Refl

When checking right hand side of plus_rearrange_firsttry with expected type
n + m + (p + q) = m + n + (p + q)

_ does not have an equality type ((n1 : Nat) ౏>
(n1 : Nat) ౏> plus n1 m1 = plus m1 n1)

To get plus_comm to apply at the point where we want it to, we can introduce a local
lemma using the where keyword stating that n + m = m + n (for the particular m and
n that we are talking about here), prove this lemma using plus_comm, and then use
it to do the desired rewrite.

plus_rearrange : (n, m, p, q : Nat) ౏>
(n + m) + (p + q) = (m + n) + (p + q)

plus_rearrange n m p q = rewrite plus_rearrange_lemma n m in Refl
where
plus_rearrange_lemma : (n, m : Nat) ౏> n + m = m + n
plus_rearrange_lemma = plus_comm

3. More Exercises

3.0.1. Exercise: 3 stars, recommended (mult_comm). Use rewrite to help
prove this theorem. You shouldn’t need to use induction on plus_swap.

plus_swap : (n, m, p : Nat) ౏> n + (m + p) = m + (n + p)
plus_swap n m p = ?plus_swap_rhs

Now prove commutativity of multiplication. (You will probably need to define and
prove a separate subsidiary theorem to be used in the proof of this one. You may
find that plus_swap comes in handy.)

mult_comm : (m, n : Nat) ౏> m * n = n * m
mult_comm m n = ?mult_comm_rhs

□

3.0.2. Exercise: 3 stars, optional (more_exercises).

Edit

Take a piece of paper. For each of the following theorems, first think about whether
(a) it can be proved using only simplification and rewriting, (b) it also requires case
analysis (destruct), or (c) it also requires induction. Write down your prediction.
Then fill in the proof. (There is no need to turn in your piece of paper; this is just
to encourage you to reflect before you hack!)

3. MORE EXERCISES 31

lte_refl : (n : Nat) ౏> True = lte n n
lte_refl n = ?lte_refl_rhs

zero_nbeq_S : (n : Nat) ౏> 0 తథ (S n) = False
zero_nbeq_S n = ?zero_nbeq_S_rhs

andb_false_r : (b : Bool) ౏> b && False = False
andb_false_r b = ?andb_false_r_rhs

plus_ble_compat_l : (n, m, p : Nat) ౏>
lte n m = True ౏> lte (p + n) (p + m) = True

plus_ble_compat_l n m p prf = ?plus_ble_compat_l_rhs

S_nbeq_0 : (n : Nat) ౏> (S n) తథ 0 = False
S_nbeq_0 n = ?S_nbeq_0_rhs

mult_1_l : (n : Nat) ౏> 1 * n = n
mult_1_l n = ?mult_1_l_rhs

all3_spec : (b, c : Bool) ౏>
(b && c) || ((not b) || (not c)) = True

all3_spec b c = ?all3_spec_rhs

mult_plus_distr_r : (n, m, p : Nat) ౏> (n + m) * p = (n * p) + (m * p)
mult_plus_distr_r n m p = ?mult_plus_distr_r_rhs

mult_assoc : (n, m, p : Nat) ౏> n * (m * p) = (n * m) * p
mult_assoc n m p = ?mult_assoc_rhs

□

3.0.3. Exercise: 2 stars, optional (beq_nat_refl).

Edit

Prove the following theorem. (Putting the True on the left-hand side of the equality
may look odd, but this is how the theorem is stated in the Coq standard library,
so we follow suit. Rewriting works equally well in either direction, so we will have
no problem using the theorem no matter which way we state it.)

beq_nat_refl : (n : Nat) ౏> True = n తథ n
beq_nat_refl n = ?beq_nat_refl_rhs

□

3.0.4. Exercise: 2 stars, optional (plus_swap’).

Edit

The replace tactic allows you to specify a particular subterm to rewrite and what
you want it rewritten to: replace (t) with (u) replaces (all copies of) expression t
in the goal by expression u, and generates t = u as an additional subgoal. This is
often useful when a plain rewrite acts on the wrong part of the goal.

32 3. INDUCTION : PROOF BY INDUCTION

Use the replace tactic to do a proof of plus_swap', just like plus_swap but without
needing assert (n + m = m + n).

plus_swap' : (n, m, p : Nat) ౏> n + (m + p) = m + (n + p)
plus_swap' n m p = ?plus_swap__rhs

□
3.0.5. Exercise: 3 stars, recommended (binary_commute). Recall the incr and

bin_to_nat functions that you wrote for the binary exercise in the Basics chapter.
Prove that the following diagram commutes:

bin --------- incr ౪౪౪౪ౝ౧౑> bin
| |

bin_to_nat bin_to_nat
| |
v v

nat ---------- S ౪౪౪౪౪౪ౝ౧౑> nat

That is, incrementing a binary number and then converting it to a (unary) natural
number yields the same result as first converting it to a natural number and then
incrementing. Name your theorem bin_to_nat_pres_incr (“pres” for “preserves”).

Before you start working on this exercise, please copy the definitions from your
solution to the binary exercise here so that this file can be graded on its own. If
you find yourself wanting to change your original definitions to make the property
easier to prove, feel free to do so!

□
3.0.6. Exercise: 5 stars, advanced (binary_inverse). This exercise is a continu-

ation of the previous exercise about binary numbers. You will need your definitions
and theorems from there to complete this one.

(a) First, write a function to convert natural numbers to binary numbers.
Then prove that starting with any natural number, converting to binary,
then converting back yields the same natural number you started with.

(b) You might naturally think that we should also prove the opposite direc-
tion: that starting with a binary number, converting to a natural, and
then back to binary yields the same number we started with. However,
this is not true! Explain what the problem is.

(c) Define a “direct” normalization function – i.e., a function normalize from
binary numbers to binary numbers such that, for any binary number
b, converting to a natural and then back to binary yields (normalize b).
Prove it. (Warning: This part is tricky!)

Again, feel free to change your earlier definitions if this helps here.

□

CHAPTER 4

Lists : Working with Structured Data

module Lists

import Basics

%hide Prelude.Basics.fst
%hide Prelude.Basics.snd
%hide Prelude.Nat.pred
%hide Prelude.List.(++)

%access public export
%default total

1. Pairs of Numbers

In an inductive type definition, each constructor can take any number of arguments
– none (as with True and Z), one (as with S), or more than one, as here:

data NatProd : Type where
Pair : Nat ౏> Nat ౏> NatProd

This declaration can be read: “There is just one way to construct a pair of numbers:
by applying the constructor Pair to two arguments of type Nat.”

λΠ> :t Pair 3 5

Here are two simple functions for extracting the first and second components of a
pair. The definitions also illustrate how to do pattern matching on two-argument
constructors.

fst : (p : NatProd) ౏> Nat
fst (Pair x y) = x

snd : (p : NatProd) ౏> Nat
snd (Pair x y) = y

λΠ> fst (Pair 3 5)
3 : Nat

Since pairs are used quite a bit, it is nice to be able to write them with the standard
mathematical notation (x,y) instead of Pair x y. We can tell Idris to allow this with
a syntax declaration.

syntax ”(” [x] ”,” [y] ”)” = Pair x y

33

34 4. LISTS : WORKING WITH STRUCTURED DATA

The new pair notation can be used both in expressions and in pattern matches
(indeed, we’ve actually seen this already in the previous chapter, in the definition
of the minus function – this works because the pair notation is also provided as part
of the standard library):

λΠ> fst (3,5)
3 : Nat

fst' : (p : NatProd) ౏> Nat
fst' (x,y) = x

snd' : (p : NatProd) ౏> Nat
snd' (x,y) = y

swap_pair : (p : NatProd) ౏> NatProd
swap_pair (x,y) = (y,x)

Let’s try to prove a few simple facts about pairs.

If we state things in a particular (and slightly peculiar) way, we can complete
proofs with just reflexivity (and its built-in simplification):

surjective_pairing' : (n,m : Nat) ౏> (n,m) = (fst (n,m), snd (n,m))
surjective_pairing' n m = Refl

But Refl is not enough if we state the lemma in a more natural way:

surjective_pairing_stuck : (p : NatProd) ౏> p = (fst p, snd p)
surjective_pairing_stuck p = Refl

When checking right hand side of
surjective_pairing_stuck with expected type p = Pair (fst p) (snd p)

...
Type mismatch between p and Pair (fst p) (snd p)

We have to expose the structure of p so that Idris can perform the pattern match
in fst and snd. We can do this with case.

surjective_pairing : (p : NatProd) ౏> p = (fst p, snd p)
surjective_pairing p = case p of (n,m) ౬> Refl

Notice that case matches just one pattern here. That’s because NatProds can only
be constructed in one way.

1.1. Exercise: 1 star (snd_fst_is_swap).

snd_fst_is_swap : (p : NatProd) ౏> (snd p, fst p) = swap_pair p
snd_fst_is_swap p = ?snd_fst_is_swap_rhs

□

1.2. Exercise: 1 star, optional (fst_swap_is_snd).

fst_swap_is_snd : (p : NatProd) ౏> fst (swap_pair p) = snd p
fst_swap_is_snd p = ?fst_swap_is_snd_rhs

2. LISTS OF NUMBERS 35

□

2. Lists of Numbers

Generalizing the definition of pairs, we can describe the type of lists of numbers
like this: “A list is either the empty list or else a pair of a number and another
list.”

data NatList : Type where
Nil : NatList
(௜௜) : Nat ౏> NatList ౏> NatList

For example, here is a three-element list:

mylist : NatList
mylist = (௜௜) 1 ((௜௜) 2 ((௜௜) 3 Nil))

Edit the section - Idris’s list sugar automatically works for anything with con-
structors Nil and (௜௜)

As with pairs, it is more convenient to write lists in familiar programming notation.
The following declarations allow us to use :: as an infix Cons operator and square
brackets as an “outfix” notation for constructing lists.

It is not necessary to understand the details of these declarations, but in case you
are interested, here is roughly what’s going on. The right associativity annotation
tells Coq how to parenthesize expressions involving several uses of :: so that, for
example, the next three declarations mean exactly the same thing:

mylist1 : NatList
mylist1 = 1 ௝௞ (2 ௝௞ (3 ௝௞ Nil))

mylist2 : NatList
mylist2 = 1௝௞2௝௞3௝௞[]

mylist3 : NatList
mylist3 = [1,2,3]

The at level 60 part tells Coq how to parenthesize expressions that involve both ::
and some other infix operator. For example, since we defined + as infix notation
for the plus function at level 50,

Notation ”x + y” ௜= (plus x y)
(at level 50, left associativity).

the + operator will bind tighter than ௝௞ , so 1 + 2 ௝௞ [3] will be parsed, as we’d
expect, as (1 + 2) ௝௞ [3] rather than 1 + (2 ௝௞ [3]).

(Expressions like “1 + 2 ௝௞ [3]” can be a little confusing when you read them in a
.v file. The inner brackets, around 3, indicate a list, but the outer brackets, which
are invisible in the HTML rendering, are there to instruct the “coqdoc” tool that
the bracketed part should be displayed as Coq code rather than running text.)

36 4. LISTS : WORKING WITH STRUCTURED DATA

The second and third Notation declarations above introduce the standard square-
bracket notation for lists; the right-hand side of the third one illustrates Coq’s
syntax for declaring n-ary notations and translating them to nested sequences of
binary constructors.

2.1. Repeat. A number of functions are useful for manipulating lists. For
example, the repeat function takes a number n and a count and returns a list of
length count where every element is n.

repeat : (n, count : Nat) ౏> NatList
repeat n Z = []
repeat n (S k) = n ௝௞ repeat n k

2.2. Length. The length function calculates the length of a list.

length : (l : NatList) ౏> Nat
length [] = Z
length (h ௝௞ t) = S (length t)

2.3. Append. The app function concatenates (appends) two lists.

app : (l1, l2 : NatList) ౏> NatList
app [] l2 = l2
app (h ௝௞ t) l2 = h ௝௞ app t l2

Actually, app will be used a lot in some parts of what follows, so it is convenient to
have an infix operator for it.

infixr 7 ++

(++) : (x, y : NatList) ౏> NatList
(++) = app

test_app1 : [1,2,3] ++ [4,5,6] = [1,2,3,4,5,6]
test_app1 = Refl

test_app2 : [] ++ [4,5] = [4,5]
test_app2 = Refl

test_app3 : [1,2,3] ++ [] = [1,2,3]
test_app3 = Refl

2.4. Head (with default) and Tail. Here are two smaller examples of pro-
gramming with lists. The hd function returns the first element (the “head”) of the
list, while tl returns everything but the first element (the “tail”). Of course, the
empty list has no first element, so we must pass a default value to be returned in
that case.

hd : (default : Nat) ౏> (l : NatList) ౏> Nat
hd default [] = default
hd default (h ௝௞ t) = h

2. LISTS OF NUMBERS 37

tl : (l : NatList) ౏> NatList
tl [] = []
tl (h ௝௞ t) = t

test_hd1 : hd 0 [1,2,3] = 1
test_hd1 = Refl

test_hd2 : hd 0 [] = 0
test_hd2 = Refl

test_tl : tl [1,2,3] = [2,3]
test_tl = Refl

2.5. Exercises.

2.5.1. Exercise: 2 stars, recommended (list_funs). Complete the definitions of
nonzeros, oddmembers and countoddmembers below. Have a look at the tests to understand
what these functions should do.

nonzeros : (l : NatList) ౏> NatList
nonzeros l = ?nonzeros_rhs

test_nonzeros : nonzeros [0,1,0,2,3,0,0] = [1,2,3]
test_nonzeros = ?test_nonzeros_rhs

oddmembers : (l : NatList) ౏> NatList
oddmembers l = ?oddmembers_rhs

test_oddmembers : oddmembers [0,1,0,2,3,0,0] = [1,3]
test_oddmembers = ?test_oddmembers_rhs

countoddmembers : (l : NatList) ౏> Nat
countoddmembers l = ?countoddmembers_rhs

test_countoddmembers1 : countoddmembers [1,0,3,1,4,5] = 4
test_countoddmembers1 = ?test_countoddmembers1_rhs

□

2.5.2. Exercise: 3 stars, advanced (alternate). Complete the definition of
alternate, which “zips up” two lists into one, alternating between elements taken
from the first list and elements from the second. See the tests below for more
specific examples.

Note: one natural and elegant way of writing alternate will fail to satisfy Idris’s
requirement that all function definitions be “obviously terminating.” If you find
yourself in this rut, look for a slightly more verbose solution that considers elements
of both lists at the same time. (One possible solution requires defining a new kind
of pairs, but this is not the only way.)

alternate : (l1, l2 : NatList) ౏> NatList
alternate l1 l2 = ?alternate_rhs

38 4. LISTS : WORKING WITH STRUCTURED DATA

test_alternate1 : alternate [1,2,3] [4,5,6] =
[1,4,2,5,3,6]

test_alternate1 = ?test_alternate1_rhs

test_alternate2 : alternate [1] [4,5,6] = [1,4,5,6]
test_alternate2 = ?test_alternate2_rhs

test_alternate3 : alternate [1,2,3] [4] = [1,4,2,3]
test_alternate3 = ?test_alternate3_rhs

test_alternate4 : alternate [] [20,30] = [20,30]
test_alternate4 = ?test_alternate4_rhs

□

2.6. Bags via Lists. A Bag (or Multiset) is like a set, except that each element
can appear multiple times rather than just once. One possible implementation is
to represent a bag of numbers as a list.

Bag : Type
Bag = NatList

2.6.1. Exercise: 3 stars, recommended (bag_functions). Complete the follow-
ing definitions for the functions count, sum, add, and member for bags.

count : (v : Nat) ౏> (s : Bag) ౏> Nat
count v s = ?count_rhs

All these proofs can be done just by Refl.

test_count1 : count 1 [1,2,3,1,4,1] = 3
test_count1 = ?test_count1_rhs

test_count2 : count 6 [1,2,3,1,4,1] = 0
test_count2 = ?test_count2_rhs

Multiset sum is similar to set union: sum a b contains all the elements of a and of b.
(Mathematicians usually define union on multisets a little bit differently, which is
why we don’t use that name for this operation.)

How to forbid recursion here? Edit

For sum we’re giving you a header that does not give explicit names to the arguments.
Moreover, it uses the keyword Definition instead of Fixpoint, so even if you had
names for the arguments, you wouldn’t be able to process them recursively. The
point of stating the question this way is to encourage you to think about whether
sum can be implemented in another way – perhaps by using functions that have
already been defined.

sum : Bag ౏> Bag ౏> Bag
sum x y = ?sum_rhs

test_sum1 : count 1 (sum [1,2,3] [1,4,1]) = 3
test_sum1 = ?test_sum1_rhs

2. LISTS OF NUMBERS 39

add : (v : Nat) ౏> (s : Bag) ౏> Bag
add v s = ?add_rhs

test_add1 : count 1 (add 1 [1,4,1]) = 3
test_add1 = ?test_add1_rhs

test_add2 : count 5 (add 1 [1,4,1]) = 0
test_add2 = ?test_add2_rhs

member : (v : Nat) ౏> (s : Bag) ౏> Bool
member v s = ?member_rhs

test_member1 : member 1 [1,4,1] = True
test_member1 = ?test_member1_rhs

test_member2 : member 2 [1,4,1] = False
test_member2 = ?test_member2_rhs

□
2.6.2. Exercise: 3 stars, optional (bag_more_functions). Here are some more

bag functions for you to practice with.

When remove_one is applied to a bag without the number to remove, it should return
the same bag unchanged.

remove_one : (v : Nat) ౏> (s : Bag) ౏> Bag
remove_one v s = ?remove_one_rhs

test_remove_one1 : count 5 (remove_one 5 [2,1,5,4,1]) = 0
test_remove_one1 = ?test_remove_one1_rhs

test_remove_one2 : count 5 (remove_one 5 [2,1,4,1]) = 0
test_remove_one2 = ?test_remove_one2_rhs

test_remove_one3 : count 4 (remove_one 5 [2,1,5,4,1,4]) = 2
test_remove_one3 = ?test_remove_one3_rhs

test_remove_one4 : count 5 (remove_one 5 [2,1,5,4,5,1,4]) = 1
test_remove_one4 = ?test_remove_one4_rhs

remove_all : (v : Nat) ౏> (s : Bag) ౏> Bag
remove_all v s = ?remove_all_rhs

test_remove_all1 : count 5 (remove_all 5 [2,1,5,4,1]) = 0
test_remove_all1 = ?test_remove_all1_rhs

test_remove_all2 : count 5 (remove_all 5 [2,1,4,1]) = 0
test_remove_all2 = ?test_remove_all2_rhs

test_remove_all3 : count 4 (remove_all 5 [2,1,5,4,1,4]) = 2
test_remove_all3 = ?test_remove_all3_rhs

test_remove_all4 : count 5
(remove_all 5 [2,1,5,4,5,1,4,5,1,4]) = 0

test_remove_all4 = ?test_remove_all4_rhs

40 4. LISTS : WORKING WITH STRUCTURED DATA

subset : (s1 : Bag) ౏> (s2 : Bag) ౏> Bool
subset s1 s2 = ?subset_rhs

test_subset1 : subset [1,2] [2,1,4,1] = True
test_subset1 = ?test_subset1_rhs

test_subset2 : subset [1,2,2] [2,1,4,1] = False
test_subset2 = ?test_subset2_rhs

□

2.6.3. Exercise: 3 stars, recommended (bag_theorem). Write down an interest-
ing theorem bag_theorem about bags involving the functions count and add, and prove
it. Note that, since this problem is somewhat open-ended, it’s possible that you
may come up with a theorem which is true, but whose proof requires techniques
you haven’t learned yet. Feel free to ask for help if you get stuck!

bag_theorem : ?bag_theorem

□

3. Reasoning About Lists

As with numbers, simple facts about list-processing functions can sometimes be
proved entirely by simplification. For example, the simplification performed by
Refl is enough for this theorem…

nil_app : (l : NatList) ౏> ([] ++ l) = l
nil_app l = Refl

… because the [] is substituted into the “scrutinee” (the value being “scrutinized”
by the match) in the definition of app, allowing the match itself to be simplified.

Also, as with numbers, it is sometimes helpful to perform case analysis on the
possible shapes (empty or non-empty) of an unknown list.

tl_length_pred : (l : NatList) ౏> pred (length l) = length (tl l)
tl_length_pred [] = Refl
tl_length_pred (n௝௞l') = Refl

Here, the Nil case works because we’ve chosen to define tl Nil = Nil. Notice that
the case for Cons introduces two names, n and l', corresponding to the fact that
the Cons constructor for lists takes two arguments (the head and tail of the list it
is constructing).

Usually, though, interesting theorems about lists require induction for their proofs.

3.0.1. Micro-Sermon. Simply reading example proof scripts will not get you
very far! It is important to work through the details of each one, using Idris and
thinking about what each step achieves. Otherwise it is more or less guaranteed
that the exercises will make no sense when you get to them. ’Nuff said.

3. REASONING ABOUT LISTS 41

3.1. Induction on Lists. Proofs by induction over datatypes like NatList
are a little less familiar than standard natural number induction, but the idea is
equally simple. Each data declaration defines a set of data values that can be built
up using the declared constructors: a boolean can be either True or False; a number
can be either Z or S applied to another number; a list can be either Nil or Cons
applied to a number and a list.

Moreover, applications of the declared constructors to one another are the only
possible shapes that elements of an inductively defined set can have, and this fact
directly gives rise to a way of reasoning about inductively defined sets: a number
is either Z or else it is S applied to some smaller number; a list is either Nil or else
it is Cons applied to some number and some smaller list; etc. So, if we have in
mind some proposition p that mentions a list l and we want to argue that p holds
for all lists, we can reason as follows:

• First, show that p is true of l when l is Nil.

• Then show that P is true of l when l is Cons n l' for some number n and
some smaller list l', assuming that p is true for l'.

Since larger lists can only be built up from smaller ones, eventually reaching Nil,
these two arguments together establish the truth of p for all lists l. Here’s a
concrete example:

app_assoc : (l1, l2, l3 : NatList) ౏> ((l1 ++ l2) ++ l3) = (l1 ++ (l2 ++ l3))
app_assoc [] l2 l3 = Refl
app_assoc (n௝௞l1') l2 l3 =
let inductiveHypothesis = app_assoc l1' l2 l3 in
rewrite inductiveHypothesis in Refl

Edit

Notice that, as when doing induction on natural numbers, the as … clause provided
to the induction tactic gives a name to the induction hypothesis corresponding to
the smaller list l1’ in the cons case. Once again, this Coq proof is not especially
illuminating as a static written document – it is easy to see what’s going on if you
are reading the proof in an interactive Coq session and you can see the current goal
and context at each point, but this state is not visible in the written-down parts
of the Coq proof. So a natural-language proof – one written for human readers –
will need to include more explicit signposts; in particular, it will help the reader
stay oriented if we remind them exactly what the induction hypothesis is in the
second case.

For comparison, here is an informal proof of the same theorem.

Theorem: For all lists l1, l2, and l3,

\idr{(l1 ++ l2) ++ l3 = l1 ++ (l2 ++l3)}.

Proof : By induction on l1.

• First, suppose l1 = []. We must show

42 4. LISTS : WORKING WITH STRUCTURED DATA

([] ++ l2) ++ l3 = [] ++ (l2 ++ l3),

which follows directly from the definition of ++.

• Next, suppose l1 = n ௝௞ l1', with

(l1' ++ l2) ++ l3 = l1' ++ (l2 ++ l3)

(the induction hypothesis). We must show

((n ௝௞ l1') ++ l2) ++ l3 = (n ௝௞ l1') ++ (l2 ++ l3).

By the definition of ++, this follows from

n ௝௞ ((l1' ++ l2) ++ l 3) = n ௝௞ (l1' ++ (l2 ++ l3)),

which is immediate from the induction hypothesis. □
3.1.1. Reversing a List. For a slightly more involved example of inductive

proof over lists, suppose we use app to define a list-reversing function rev:

rev : (l : NatList) ౏> NatList
rev Nil = Nil
rev (h ௝௞ t) = (rev t) ++ [h]

test_rev1 : rev [1,2,3] = [3,2,1]
test_rev1 = Refl

test_rev2 : rev Nil = Nil
test_rev2 = Refl

3.1.2. Properties of rev. Now let’s prove some theorems about our newly de-
fined rev. For something a bit more challenging than what we’ve seen, let’s prove
that reversing a list does not change its length. Our first attempt gets stuck in
the successor case…

rev_length_firsttry : (l : NatList) ౏> length (rev l) = length l
rev_length_firsttry Nil = Refl
rev_length_firsttry (n ௝௞ l') =
-- Now we seem to be stuck: the goal is an equality involving `++`, but we don't
-- have any useful equations in either the immediate context or in the global
-- environment! We can make a little progress by using the IH to rewrite the
-- goal...
let inductiveHypothesis = rev_length_firsttry l' in
rewrite inductiveHypothesis in

-- ... but now we can't go any further.
Refl

So let’s take the equation relating ++ and length that would have enabled us to
make progress and prove it as a separate lemma.

app_length : (l1, l2 : NatList) ౏>
length (l1 ++ l2) = (length l1) + (length l2)

app_length Nil l2 = Refl
app_length (n ௝௞ l1') l2 =

3. REASONING ABOUT LISTS 43

let inductiveHypothesis = app_length l1' l2 in
rewrite inductiveHypothesis in
Refl

Note that, to make the lemma as general as possible, we quantify over all NatLists,
not just those that result from an application of rev. This should seem natural,
because the truth of the goal clearly doesn’t depend on the list having been reversed.
Moreover, it is easier to prove the more general property.

Now we can complete the original proof.

rev_length : (l : NatList) ౏> length (rev l) = length l
rev_length Nil = Refl
rev_length (n ௝௞ l') =
rewrite app_length (rev l') [n] in

-- Prelude's version of `Induction.plus_comm`
rewrite plusCommutative (length (rev l')) 1 in
let inductiveHypothesis = rev_length l' in
rewrite inductiveHypothesis in Refl

For comparison, here are informal proofs of these two theorems:

Theorem: For all lists l1 and l2,

\idr{length (l1 ++ l2) = length l1 + length l2}.

Proof : By induction on l1.

• First, suppose l1 = []. We must show

length ([] ++ l2) = length [] + length l2,

which follows directly from the definitions of length and ++.

• Next, suppose l1 = n ௝௞ l1', with

length (l1' ++ l2) = length l1' + length l2.

We must show

length ((n ௝௞ l1') ++ l2) = length (n ௝௞ l1') + length l2).

This follows directly from the definitions of length and ++ together with
the induction hypothesis. □

Theorem: For all lists l, length (rev l) = length l.

Proof : By induction on l.

• First, suppose l = []. We must show

length (rev []) = length [],

which follows directly from the definitions of length and rev.

• Next, suppose l = n :: l’ , with

length (rev l') = length l'.

44 4. LISTS : WORKING WITH STRUCTURED DATA

We must show

length (rev (n ௝௞ l')) = length (n ௝௞ l').

By the definition of rev, this follows from

length ((rev l') ++ [n]) = S (length l')

which, by the previous lemma, is the same as

length (rev l') + length [n] = S (length l').

This follows directly from the induction hypothesis and the definition of
length. □

The style of these proofs is rather longwinded and pedantic. After the first few,
we might find it easier to follow proofs that give fewer details (which can easily
work out in our own minds or on scratch paper if necessary) and just highlight the
non-obvious steps. In this more compressed style, the above proof might look like
this:

Theorem: For all lists l, length (rev l) = length l.

Proof : First, observe that length (l ++ [n]) = S (length l) for any l (this follows by
a straightforward induction on l). The main property again follows by induction
on l, using the observation together with the induction hypothesis in the case
where l = n' ௝௞ l'. □

Which style is preferable in a given situation depends on the sophistication of the
expected audience and how similar the proof at hand is to ones that the audience
will already be familiar with. The more pedantic style is a good default for our
present purposes.

3.2. Search.

Edit, mention :s and :apropos?

We’ve seen that proofs can make use of other theorems we’ve already proved, e.g.,
using rewrite. But in order to refer to a theorem, we need to know its name!
Indeed, it is often hard even to remember what theorems have been proven, much
less what they are called.

Coq’s Search command is quite helpful with this. Typing Search foo will cause Coq
to display a list of all theorems involving foo. For example, try uncommenting the
following line to see a list of theorems that we have proved about rev:

(* Search rev. *)

Keep Search in mind as you do the following exercises and throughout the rest of
the book; it can save you a lot of time!

If you are using ProofGeneral, you can run Search with C-c C-a C-a. Pasting its
response into your buffer can be accomplished with C-c C-;.

3. REASONING ABOUT LISTS 45

3.3. List Exercises, Part 1.

3.3.1. Exercise: 3 stars (list_exercises). More practice with lists:

app_nil_r : (l : NatList) ౏> (l ++ []) = l
app_nil_r l = ?app_nil_r_rhs

rev_app_distr : (l1, l2 : NatList) ౏> rev (l1 ++ l2) = (rev l2) ++ (rev l1)
rev_app_distr l1 l2 = ?rev_app_distr_rhs

rev_involutive : (l : NatList) ౏> rev (rev l) = l
rev_involutive l = ?rev_involutive_rhs

There is a short solution to the next one. If you find yourself getting tangled up,
step back and try to look for a simpler way.

app_assoc4 : (l1, l2, l3, l4 : NatList) ౏>
(l1 ++ (l2 ++ (l3 ++ l4))) = ((l1 ++ l2) ++ l3) ++ l4

app_assoc4 l1 l2 l3 l4 = ?app_assoc4_rhs

An exercise about your implementation of nonzeros:

nonzeros_app : (l1, l2 : NatList) ౏>
nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2)

nonzeros_app l1 l2 = ?nonzeros_app_rhs

□
3.3.2. Exercise: 2 stars (beq_NatList). Fill in the definition of beq_NatList,

which compares lists of numbers for equality. Prove that beq_NatList l l yields True
for every list l.

beq_NatList : (l1, l2 : NatList) ౏> Bool
beq_NatList l1 l2 = ?beq_NatList_rhs

test_beq_NatList1 : beq_NatList Nil Nil = True
test_beq_NatList1 = ?test_beq_NatList1_rhs

test_beq_NatList2 : beq_NatList [1,2,3] [1,2,3] = True
test_beq_NatList2 = ?test_beq_NatList2_rhs

test_beq_NatList3 : beq_NatList [1,2,3] [1,2,4] = False
test_beq_NatList3 = ?test_beq_NatList3_rhs

beq_NatList_refl : (l : NatList) ౏> True = beq_NatList l l
beq_NatList_refl l = ?beq_NatList_refl_rhs

□

3.4. List Exercises, Part 2.

3.4.1. Exercise: 3 stars, advanced (bag_proofs). Here are a couple of little
theorems to prove about your definitions about bags above.

count_member_nonzero : (s : Bag) ౏> lte 1 (count 1 (1 ௝௞ s)) = True
count_member_nonzero s = ?count_member_nonzero_rhs

46 4. LISTS : WORKING WITH STRUCTURED DATA

The following lemma about lte might help you in the next proof.

ble_n_Sn : (n : Nat) ౏> lte n (S n) = True
ble_n_Sn Z = Refl
ble_n_Sn (S k) =
let inductiveHypothesis = ble_n_Sn k in
rewrite inductiveHypothesis in Refl

remove_decreases_count : (s : Bag) ౏>
lte (count 0 (remove_one 0 s)) (count 0 s) = True

remove_decreases_count s = ?remove_decreases_count_rhs

□

3.4.2. Exercise: 3 stars, optional (bag_count_sum). Write down an interest-
ing theorem bag_count_sum about bags involving the functions count and sum, and
prove it. (You may find that the difficulty of the proof depends on how you de-
fined count!)

bag_count_sum : ?bag_count_sum

□

3.4.3. Exercise: 4 stars, advanced (rev_injective). Prove that the rev function
is injective – that is,

rev_injective : (l1, l2 : NatList) ౏> rev l1 = rev l2 ౏> l1 = l2
rev_injective l1 l2 prf = ?rev_injective_rhs

(There is a hard way and an easy way to do this.)

□

4. Options

Suppose we want to write a function that returns the nth element of some list.
If we give it type Nat ౏> NatList ౏> Nat, then we’ll have to choose some number to
return when the list is too short…

nth_bad : (l : NatList) ౏> (n : Nat) ౏> Nat
nth_bad Nil n = 42 -- arbitrary!
nth_bad (a ௝௞ l') n = case n తథ 0 of

True ౬> a
False ౬> nth_bad l' (pred n)

This solution is not so good: If nth_bad returns 42, we can’t tell whether that value
actually appears on the input without further processing. A better alternative is
to change the return type of nth_bad to include an error value as a possible outcome.
We call this type NatOption.

data NatOption : Type where
Some : Nat ౏> NatOption
None : NatOption

4. OPTIONS 47

We can then change the above definition of nth_bad to return None when the list is
too short and Some a when the list has enough members and a appears at position
n. We call this new function nth_error to indicate that it may result in an error.

nth_error : (l : NatList) ౏> (n : Nat) ౏> NatOption
nth_error Nil n = None
nth_error (a ௝௞ l') n = case n తథ 0 of

True ౬> Some a
False ౬> nth_error l' (pred n)

test_nth_error1 : nth_error [4,5,6,7] 0 = Some 4
test_nth_error1 = Refl

test_nth_error2 : nth_error [4,5,6,7] 3 = Some 7
test_nth_error2 = Refl

test_nth_error3 : nth_error [4,5,6,7] 9 = None
test_nth_error3 = Refl

This example is also an opportunity to introduce one more small feature of Idris
programming language: conditional expressions…

nth_error' : (l : NatList) ౏> (n : Nat) ౏> NatOption
nth_error' Nil n = None
nth_error' (a ௝௞ l') n = if n తథ 0

then Some a
else nth_error' l' (pred n)

Edit or remove this paragraph, doesn’t seem to hold in Idris

Coq’s conditionals are exactly like those found in any other language, with one
small generalization. Since the boolean type is not built in, Coq actually supports
conditional expressions over any inductively defined type with exactly two con-
structors. The guard is considered true if it evaluates to the first constructor in
the Inductive definition and false if it evaluates to the second.

The function below pulls the Nat out of a NatOption, returning a supplied default in
the None case.

option_elim : (d : Nat) ౏> (o : NatOption) ౏> Nat
option_elim d (Some k) = k
option_elim d None = d

4.0.1. Exercise: 2 stars (hd_error). Using the same idea, fix the hd function
from earlier so we don’t have to pass a default element for the Nil case.

hd_error : (l : NatList) ౏> NatOption
hd_error l = ?hd_error_rhs

test_hd_error1 : hd_error [] = None
test_hd_error1 = ?test_hd_error1_rhs

48 4. LISTS : WORKING WITH STRUCTURED DATA

test_hd_error2 : hd_error [1] = Some 1
test_hd_error2 = ?test_hd_error2_rhs

test_hd_error3 : hd_error [5,6] = Some 5
test_hd_error3 = ?test_hd_error3_rhs

□

4.0.2. Exercise: 1 star, optional (option_elim_hd). This exercise relates your
new hd_error to the old hd.

option_elim_hd : (l : NatList) ౏> (default : Nat) ౏>
hd default l = option_elim default (hd_error l)

option_elim_hd l default = ?option_elim_hd_rhs

□

5. Partial Maps

As a final illustration of how data structures can be defined in Idris, here is a
simple partial map data type, analogous to the map or dictionary data structures
found in most programming languages.

First, we define a new inductive datatype Id to serve as the “keys” of our partial
maps.

data Id : Type where
MkId : Nat ౏> Id

Internally, an Id is just a number. Introducing a separate type by wrapping each
Nat with the tag MkId makes definitions more readable and gives us the flexibility
to change representations later if we wish.

We’ll also need an equality test for Ids:

beq_id : (x1, x2 : Id) ౏> Bool
beq_id (MkId n1) (MkId n2) = n1 తథ n2

5.0.1. Exercise: 1 star (beq_id_refl).

beq_id_refl : (x : Id) ౏> True = beq_id x x
beq_id_refl x = ?beq_id_refl_rhs

□

Now we define the type of partial maps:

namespace PartialMap

data PartialMap : Type where
Empty : PartialMap
Record : Id ౏> Nat ౏> PartialMap ౏> PartialMap

This declaration can be read: “There are two ways to construct a PartialMap: either
using the constructor Empty to represent an empty partial map, or by applying

5. PARTIAL MAPS 49

the constructor Record to a key, a value, and an existing PartialMap to construct a
PartialMap with an additional key-to-value mapping.”

The update function overrides the entry for a given key in a partial map (or adds a
new entry if the given key is not already present).

update : (d : PartialMap) ౏> (x : Id) ౏> (value : Nat) ౏> PartialMap
update d x value = Record x value d

Last, the find function searches a PartialMap for a given key. It returns None if the
key was not found and Some val if the key was associated with val. If the same key
is mapped to multiple values, find will return the first one it encounters.

find : (x : Id) ౏> (d : PartialMap) ౏> NatOption
find x Empty = None
find x (Record y v d') = if beq_id x y

then Some v
else find x d'

5.0.2. Exercise: 1 star (update_eq).

update_eq : (d : PartialMap) ౏> (x : Id) ౏> (v : Nat) ౏>
find x (update d x v) = Some v

update_eq d x v = ?update_eq_rhs

□
5.0.3. Exercise: 1 star (update_neq).

update_neq : (d : PartialMap) ౏> (x, y : Id) ౏> (o : Nat) ౏>
beq_id x y = False ౏>
find x (update d y o) = find x d

update_neq d x y o prf = ?update_neq_rhs

□
5.0.4. Exercise: 2 stars (baz_num_elts). Consider the following inductive def-

inition:

data Baz : Type where
Baz1 : Baz ౏> Baz
Baz2 : Baz ౏> Bool ౏> Baz

How many elements does the type Baz have? (Answer in English or the natural
language of your choice.)

□

CHAPTER 5

Poly : Polymorphism and Higher-Order Functions

module Poly

import Basics

%hide Prelude.List.length
%hide Prelude.List.filter
%hide Prelude.List.partition
%hide Prelude.Functor.map
%hide Prelude.Nat.pred
%hide Basics.Playground2.plus

%access public export

%default total

1. Polymorphism

In this chapter we continue our development of basic concepts of functional pro-
gramming. The critical new ideas are polymorphism (abstracting functions over the
types of the data they manipulate) and higher-order functions (treating functions
as data). We begin with polymorphism.

1.1. Polymorphic Lists. For the last couple of chapters, we’ve been working
just with lists of numbers. Obviously, interesting programs also need to be able to
manipulate lists with elements from other types – lists of strings, lists of booleans,
lists of lists, etc. We could just define a new inductive datatype for each of these,
for example…

data BoolList : Type where
BoolNil : BoolList
BoolCons : Bool ౏> BoolList ౏> BoolList

… but this would quickly become tedious, partly because we have to make up
different constructor names for each datatype, but mostly because we would also
need to define new versions of all our list manipulating functions (length, rev, etc.)
for each new datatype definition.

To avoid all this repetition, Idris supports polymorphic inductive type definitions.
For example, here is a polymorphic list datatype.

51

52 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

data List : (x : Type) ౏> Type where
Nil : List x
Cons : x ౏> List x ౏> List x

(This type is already defined in Idris’ standard library, but the Cons constructor is
named (௜௜)).

This is exactly like the definition of NatList from the previous chapter, except that
the Nat argument to the Cons constructor has been replaced by an arbitrary type
x, a binding for x has been added to the header, and the occurrences of NatList
in the types of the constructors have been replaced by List x. (We can re-use the
constructor names Nil and Cons because the earlier definition of NatList was inside
of a namespace definition that is now out of scope.)

What sort of thing is List itself? One good way to think about it is that List is
a function from Types to inductive definitions; or, to put it another way, List is
a function from Types to Types. For any particular type x, the type List x is an
inductively defined set of lists whose elements are of type x.

With this definition, when we use the constructors Nil and Cons to build lists, we
need to tell Idris the type of the elements in the lists we are building – that
is, Nil and Cons are now polymorphic constructors. Observe the types of these
constructors:

λΠ> :t Nil
Prelude.List.Nil : List elem
λΠ> :t (௜௜)
Prelude.List.(௜௜) : elem ౏> List elem ౏> List elem

How to edit these 3 paragraphs? Implicits are defined later in this chapter,
and Idris doesn’t require type parameters to constructors

(Side note on notation: In .v files, the “forall” quantifier is spelled out in letters. In
the generated HTML files and in the way various IDEs show .v files (with certain
settings of their display controls), ∀ is usually typeset as the usual mathematical
“upside down A,” but you’ll still see the spelled-out “forall” in a few places. This
is just a quirk of typesetting: there is no difference in meaning.)

The “∀ X” in these types can be read as an additional argument to the constructors
that determines the expected types of the arguments that follow. When Nil and
Cons are used, these arguments are supplied in the same way as the others. For
example, the list containing 2 and 1 is written like this:

Check (cons nat 2 (cons nat 1 (nil nat))).

(We’ve written Nil and Cons explicitly here because we haven’t yet defined the []
and :: notations for the new version of lists. We’ll do that in a bit.)

We can now go back and make polymorphic versions of all the list-processing
functions that we wrote before. Here is repeat, for example:

1. POLYMORPHISM 53

repeat : (x_ty : Type) ౏> (x : x_ty) ౏> (count : Nat) ౏> List x_ty
repeat x_ty x Z = Nil
repeat x_ty x (S count') = x ௝௞ repeat x_ty x count'

As with Nil and Cons, we can use repeat by applying it first to a type and then to
its list argument:

test_repeat1 : repeat Nat 4 2 = 4 ௝௞ (4 ௝௞ Nil)
test_repeat1 = Refl

To use repeat to build other kinds of lists, we simply instantiate it with an appro-
priate type parameter:

test_repeat2 : repeat Bool False 1 = False ௝௞ Nil
test_repeat2 = Refl

1.1.1. Exercise: 2 stars (mumble_grumble).

Explain implicits and {x=foo} syntax first? Move after the ”Supplying Type
Arguments Explicitly” section?

namespace MumbleGrumble

Consider the following two inductively defined types.

data Mumble : Type where
A : Mumble
B : Mumble ౏> Nat ౏> Mumble
C : Mumble

data Grumble : (x : Type) ౏> Type where
D : Mumble ౏> Grumble x
E : x ౏> Grumble x

Which of the following are well-typed elements of Grumble x for some type x?

• D (B A 5)

• D (B A 5) {x=Mumble}

• D (B A 5) {x=Bool}

• E True {x=Bool}

• E (B C 0) {x=Mumble}

• E (B C 0) {x=Bool}

• C

-- FILL IN HERE

□
Merge 3 following sections into one about Idris implicits? Mention the lower-
case/uppercase distinction.

54 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

1.1.2. Type Annotation Inference. This has already happened earlier at repeat, delete most of this?

Let’s write the definition of repeat again, but this time we won’t specify the types
of any of the arguments. Will Idris still accept it?

Fixpoint repeat’ X x count : list X := match count with | 0 � nil X | S count’ �
cons X x (repeat’ X x count’) end.

Indeed it will. Let’s see what type Idris has assigned to repeat':

Check repeat’. (* ===> forall X : Type, X -> nat -> list X) Check repeat. (
===> forall X : Type, X -> nat -> list X *)

It has exactly the same type type as repeat. Idris was able to use type inference
to deduce what the types of X, x, and count must be, based on how they are used.
For example, since X is used as an argument to Cons, it must be a Type, since Cons
expects a Type as its first argument; matching count with Z and S means it must be
a Nat; and so on.

This powerful facility means we don’t always have to write explicit type anno-
tations everywhere, although explicit type annotations are still quite useful as
documentation and sanity checks, so we will continue to use them most of the
time. You should try to find a balance in your own code between too many type
annotations (which can clutter and distract) and too few (which forces readers to
perform type inference in their heads in order to understand your code).

1.1.3. Type Argument Synthesis. We should mention the _ parameters but it won’t work like this in Idris

To use a polymorphic function, we need to pass it one or more types in addition
to its other arguments. For example, the recursive call in the body of the repeat
function above must pass along the type x_ty. But since the second argument to
repeat is an element of x_ty, it seems entirely obvious that the first argument can
only be x_ty — why should we have to write it explicitly?

Fortunately, Idris permits us to avoid this kind of redundancy. In place of any
type argument we can write the “implicit argument” _, which can be read as
“Please try to figure out for yourself what belongs here.” More precisely, when
Idris encounters a _, it will attempt to unify all locally available information – the
type of the function being applied, the types of the other arguments, and the type
expected by the context in which the application appears – to determine what
concrete type should replace the _.

This may sound similar to type annotation inference – indeed, the two procedures
rely on the same underlying mechanisms. Instead of simply omitting the types of
some arguments to a function, like

repeat' X x count : list X ௜=

we can also replace the types with _

repeat' (X : _) (x : _) (count : _) : list X ௜=

1. POLYMORPHISM 55

to tell Idris to attempt to infer the missing information.

Using implicit arguments, the count function can be written like this:

Fixpoint repeat” X x count : list X := match count with | 0 � nil _ | S count’ �
cons _ x (repeat” _ x count’) end.

In this instance, we don’t save much by writing _ instead of x. But in many
cases the difference in both keystrokes and readability is nontrivial. For example,
suppose we want to write down a list containing the numbers 1, 2, and 3. Instead
of writing this…

Definition list123 := cons nat 1 (cons nat 2 (cons nat 3 (nil nat))).

…we can use argument synthesis to write this:

Definition list123’ := cons _ 1 (cons _ 2 (cons _ 3 (nil _))).

1.1.4. Implicit Arguments. We can go further and even avoid writing _’s in
most cases by telling Idris always to infer the type argument(s) of a given function.
The Arguments directive specifies the name of the function (or constructor) and
then lists its argument names, with curly braces around any arguments to be
treated as implicit. (If some arguments of a definition don’t have a name, as is
often the case for constructors, they can be marked with a wildcard pattern _.)

Arguments nil {X}. Arguments cons {X} _ _. Arguments repeat {X} x count.

Now, we don’t have to supply type arguments at all:

Definition list123” := cons 1 (cons 2 (cons 3 nil)).

Alternatively, we can declare an argument to be implicit when defining the function
itself, by surrounding it in curly braces instead of parens. For example:

repeat' : {x_ty : Type} ౏> (x : x_ty) ౏> (count : Nat) ౏> List x_ty
repeat' x Z = Nil
repeat' x (S count') = x ௝௞ repeat' x count'

(Note that we didn’t even have to provide a type argument to the recursive call to
repeat'; indeed, it would be invalid to provide one!)

We will use the latter style whenever possible, but we will continue to use explicit
declarations in data types. The reason for this is that marking the parameter of
an inductive type as implicit causes it to become implicit for the type itself, not
just for its constructors. For instance, consider the following alternative definition
of the List type:

data List' : {x : Type} ౏> Type where
Nil' : List'
Cons' : x ౏> List' ౏> List'

Because x is declared as implicit for the entire inductive definition including List'
itself, we now have to write just List' whether we are talking about lists of numbers
or booleans or anything else, rather than List' Nat or List' Bool or whatever; this
is a step too far.

56 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

Added the implicit inference explanation here

There’s another step towards conciseness that we can take in Idris – drop the
implicit argument completely in function definitions! Idris will automatically insert
them for us when it encounters unknown variables. Note that by convention this
will only happen for variables starting on a lowercase letter.

repeat'' : (x : x_ty) ౏> (count : Nat) ౏> List x_ty
repeat'' x Z = Nil
repeat'' x (S count') = x ௝௞ repeat'' x count'

Let’s finish by re-implementing a few other standard list functions on our new
polymorphic lists…

app : (l1, l2 : List x) ౏> List x
app Nil l2 = l2
app (h௝௞t) l2 = h ௝௞ app t l2

rev : (l : List x) ౏> List x
rev [] = []
rev (h௝௞t) = app (rev t) (h௝௞Nil)

length : (l : List x) ౏> Nat
length [] = Z
length (_௝௞l') = S (length l')

test_rev1 : rev (1௝௞2௝௞[]) = 2௝௞1௝௞[]
test_rev1 = Refl

test_rev2 : rev (True௝௞[]) = True௝௞[]
test_rev2 = Refl

test_length1 : length (1௝௞2௝௞3௝௞[]) = 3
test_length1 = Refl

1.1.5. Supplying Type Arguments Explicitly. One small problem with declaring
arguments implicit is that, occasionally, Idris does not have enough local informa-
tion to determine a type argument; in such cases, we need to tell Idris that we
want to give the argument explicitly just this time. For example, suppose we write
this:

λΠ> :let mynil = Nil
(input):Can't infer argument elem to []

Here, Idris gives us an error because it doesn’t know what type argument to supply
to Nil. We can help it by providing an explicit type declaration via the function
(so that Idris has more information available when it gets to the “application” of
Nil):

λΠ> :let mynil = the (List Nat) Nil

Alternatively, we can force the implicit arguments to be explicit by supplying them
as arguments in curly braces.

1. POLYMORPHISM 57

λΠ> :let mynil' = Nil {elem=Nat}

Describe here how to bring variables from the type into definition scope via
implicits?

Explain that Idris has built-in notation for lists instead?

Using argument synthesis and implicit arguments, we can define convenient no-
tation for lists, as before. Since we have made the constructor type arguments
implicit, Coq will know to automatically infer these when we use the notations.

Notation “x :: y” := (cons x y) (at level 60, right associativity). Notation “[]” :=
nil. Notation “[x ; .. ; y]” := (cons x .. (cons y []) ..). Notation “x ++ y” :=
(app x y) (at level 60, right associativity).

Now lists can be written just the way we’d hope:

list123''' : List Nat
list123''' = [1, 2, 3]

1.1.6. Exercise: 2 stars, optional (poly_exercises). Here are a few simple exer-
cises, just like ones in the Lists chapter, for practice with polymorphism. Complete
the proofs below.

app_nil_r : (l : List x) ౏> l ++ [] = l
app_nil_r l = ?app_nil_r_rhs

app_assoc : (l, m, n : List a) ౏> l ++ m ++ n = (l ++ m) ++ n
app_assoc l m n = ?app_assoc_rhs

app_length : (l1, l2 : List x) ౏> length (l1 ++ l2) = length l1 + length l2
app_length l1 l2 = ?app_length_rhs

□

1.1.7. Exercise: 2 stars, optional (more_poly_exercises). Here are some
slightly more interesting ones…

rev_app_distr : (l1, l2 : List x) ౏> rev (l1 ++ l2) = rev l2 ++ rev l1
rev_app_distr l1 l2 = ?rev_app_distr_rhs

rev_involutive : (l : List x) ౏> rev (rev l) = l
rev_involutive l = ?rev_involutive_rhs

□

1.2. Polymorphic Pairs. Following the same pattern, the type definition
we gave in the last chapter for pairs of numbers can be generalized to polymorphic
pairs, often called products:

data Prod : (x, y : Type) ౏> Type where
PPair : x ౏> y ౏> Prod x y

58 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

As with lists, we make the type arguments implicit and define the familiar concrete
notation.
T

his sugar cannot be marked as private and messes up things when imported, con-
sider changing the notation}

syntax ”(” [x] ”,” [y] ”)” = PPair x y

We can also use the syntax mechanism to define the standard notation for product
types:

syntax [x_ty] ”*” [y_ty] = Prod x_ty y_ty

(The annotation : type_scope tells Coq that this abbreviation should only be used
when parsing types. This avoids a clash with the multiplication symbol.)

It is easy at first to get (x,y) and x_ty*y_ty confused. Remember that (x,y) is a
value built from two other values, while x_ty*y_ty is a type built from two other
types. If x has type x_ty and y has type y_ty, then (x,y) has type x_ty*y_ty.

The first and second projection functions now look pretty much as they would in
any functional programming language.

fst : (p : x*y) ౏> x
fst (x,y) = x

snd : (p : x*y) ౏> y
snd (x,y) = y

Edit

The following function takes two lists and combines them into a list of pairs. In
functional languages, it is usually called zip (though the Coq’s standard library
calls it combine).

zip : (lx : List x) ౏> (ly : List y) ౏> List (x*y)
zip [] _ = []
zip _ [] = []
zip (x௝௞tx) (y௝௞ty) = (x,y) ௝௞ zip tx ty

1.2.1. Exercise: 1 star, optional (combine_checks). Try answering the follow-
ing questions on paper and checking your answers in Idris:

• What is the type of zip (i.e., what does :t zip print?)

• What does combine [1,2] [False,False,True,True] print?

□
1.2.2. Exercise: 2 stars, recommended (split). The function split is the right

inverse of zip: it takes a list of pairs and returns a pair of lists. In many functional
languages, it is called unzip.

Fill in the definition of split below. Make sure it passes the given unit test.

2. FUNCTIONS AS DATA 59

split : (l : List (x*y)) ౏> (List x) * (List y)
split l = ?split_rhs

test_split : split [(1,False),(2,False)] = ([1,2],[False,False])
test_split = ?test_split_rhs

□

1.2.3. Polymorphic Options. One last polymorphic type for now: polymorphic
options, which generalize NatOption from the previous chapter:

data Option : (x : Type) ౏> Type where
Some : x ౏> Option x
None : Option x

In Idris’ standard library this type is called Maybe, with constructors Just x and
Nothing.

We can now rewrite the nth_error function so that it works with any type of lists.

nth_error : (l : List x) ౏> (n : Nat) ౏> Option x
nth_error [] n = None
nth_error (a௝௞l') n = if n తథ 0

then Some a
else nth_error l' (pred n)

test_nth_error1 : nth_error [4,5,6,7] 0 = Some 4
test_nth_error1 = Refl

test_nth_error2 : nth_error [[1],[2]] 1 = Some [2]
test_nth_error2 = Refl

test_nth_error3 : nth_error [True] 2 = None
test_nth_error3 = Refl

1.2.4. Exercise: 1 star, optional (hd_error_poly). Complete the definition of
a polymorphic version of the hd_error function from the last chapter. Be sure that
it passes the unit tests below.

hd_error : (l : List x) ౏> Option x
hd_error l = ?hd_error_rhs

test_hd_error1 : hd_error [1,2] = Some 1
test_hd_error1 = ?test_hd_error1_rhs

test_hd_error2 : hd_error [[1],[2]] = Some [1]
test_hd_error2 = ?test_hd_error2_rhs

□

2. Functions as Data

Like many other modern programming languages – including all functional lan-
guages (ML, Haskell, Scheme, Scala, Clojure etc.) – Idris treats functions as

60 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

first-class citizens, allowing them to be passed as arguments to other functions,
returned as results, stored in data structures, etc.

2.1. Higher-Order Functions. Functions that manipulate other functions
are often called higher-order functions. Here’s a simple one:

doit3times : (f: x ౏> x) ౏> (n : x) ౏> x
doit3times f n = f (f (f n))

The argument f here is itself a function (from x to x); the body of doit3times applies
f three times to some value n.

λΠ> :t doit3times
-- doit3times : (x ౏> x) ౏> x ౏> x

Explain that the prefixes are needed to avoid the implicit scoping rule, seems
that this fires up more often when passing functions as parameters to other
functions

test_doit3times : doit3times Numbers.minusTwo 9 = 3
test_doit3times = Refl

test_doit3times' : doit3times Bool.not True = False
test_doit3times' = Refl

2.2. Filter. Here is a more useful higher-order function, taking a list of xs
and a predicate on x (a function from x to Bool) and “filtering” the list, returning
a new list containing just those elements for which the predicate returns True.

filter : (test : x ౏> Bool) ౏> (l: List x) ౏> List x
filter test [] = []
filter test (h௝௞t) = if test h

then h ௝௞ (filter test t)
else filter test t

(This is how it’s defined in Idris’s stdlib, too.)

For example, if we apply filter to the predicate evenb and a list of numbers l, it
returns a list containing just the even members of l.

test_filter1 : filter Numbers.evenb [1,2,3,4] = [2,4]
test_filter1 = Refl

length_is_1 : (l : List x) ౏> Bool
length_is_1 l = length l తథ 1

test_filter2 : filter Poly.length_is_1
[[1,2], [3], [4], [5,6,7], [], [8]]

= [[3], [4], [8]]
test_filter2 = Refl

We can use filter to give a concise version of the countoddmembers function from the
Lists chapter.

2. FUNCTIONS AS DATA 61

countoddmembers' : (l: List Nat) ౏> Nat
countoddmembers' l = length (filter Numbers.oddb l)

test_countoddmembers'1 : countoddmembers' [1,0,3,1,4,5] = 4
test_countoddmembers'1 = Refl

test_countoddmembers'2 : countoddmembers' [0,2,4] = 0
test_countoddmembers'2 = Refl

test_countoddmembers'3 : countoddmembers' Nil = 0
test_countoddmembers'3 = Refl

2.3. Anonymous Functions. It is arguably a little sad, in the example just
above, to be forced to define the function length_is_1 and give it a name just to be
able to pass it as an argument to filter, since we will probably never use it again.
Moreover, this is not an isolated example: when using higher-order functions, we
often want to pass as arguments “one-off” functions that we will never use again;
having to give each of these functions a name would be tedious.

Fortunately, there is a better way. We can construct a function “on the fly” without
declaring it at the top level or giving it a name.

Can’t use * here due to the interference from our tuple sugar

test_anon_fun' : doit3times (\n ౬> mult n n) 2 = 256
test_anon_fun' = Refl

The expression \n ౬> mult n n can be read as “the function that, given a number n,
yields n * n.”

Here is the filter example, rewritten to use an anonymous function.

test_filter2' : filter (\l ౬> length l తథ 1)
[[1,2], [3], [4], [5,6,7], [], [8]]

= [[3], [4], [8]]
test_filter2' = Refl

2.3.1. Exercise: 2 stars (filter_even_gt7). Use filter (instead of function defi-
nition) to write an Idris function filter_even_gt7 that takes a list of natural numbers
as input and returns a list of just those that are even and greater than 7.

filter_even_gt7 : (l : List Nat) ౏> List Nat
filter_even_gt7 l = ?filter_even_gt7_rhs

test_filter_even_gt7_1 : filter_even_gt7 [1,2,6,9,10,3,12,8] = [10,12,8]
test_filter_even_gt7_1 = ?test_filter_even_gt7_1_rhs

test_filter_even_gt7_2 : filter_even_gt7 [5,2,6,19,129] = []
test_filter_even_gt7_2 = ?test_filter_even_gt7_2_rhs

□

62 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

2.3.2. Exercise: 3 stars (partition). Use filter to write an Idris function
partition:

partition : (test : x ౏> Bool) ౏> (l : List x) ౏> (List x) * (List x)
partition f xs = ?partition_rhs

Given a set x, a test function of type x ౏> Bool and a List x, partition should return a
pair of lists. The first member of the pair is the sublist of the original list containing
the elements that satisfy the test, and the second is the sublist containing those
that fail the test. The order of elements in the two sublists should be the same as
their order in the original list.

test_partition1 : partition Numbers.oddb [1,2,3,4,5] = ([1,3,5], [2,4])
test_partition1 = ?test_partition1_rhs

test_partition2 : partition (\x ౬> False) [5,9,0] = (([], [5,9,0]))
test_partition2 = ?test_partition2_rhs

□

2.4. Map. Another handy higher-order function is called map.

map : (f : x ౏> y) ౏> (l : List x) ౏> List y
map f [] = []
map f (h௝௞t) = (f h) ௝௞ map f t

It takes a function f and a list l = [n1, n2, n3, ...] and returns the list
[f n1, f n2, f n3,...], where f has been applied to each element of l in turn. For
example:

test_map1 : map (\x ౬> plus 3 x) [2,0,2] = [5,3,5]
test_map1 = Refl

The element types of the input and output lists need not be the same, since map
takes two type arguments, x and y; it can thus be applied to a list of numbers and
a function from numbers to booleans to yield a list of booleans:

test_map2 : map Numbers.oddb [2,1,2,5] = [False,True,False,True]
test_map2 = Refl

It can even be applied to a list of numbers and a function from numbers to lists
of booleans to yield a list of lists of booleans:

test_map3 : map (\n ౬> [evenb n, oddb n]) [2,1,2,5]
= [[True,False],[False,True],[True,False],[False,True]]

test_map3 = Refl

2.4.1. Exercise: 3 stars (map_rev). Show that map and rev commute. You may
need to define an auxiliary lemma.

map_rev : (f : x ౏> y) ౏> (l : List x) ౏> map f (rev l) = rev (map f l)
map_rev f l = ?map_rev_rhs

□

2. FUNCTIONS AS DATA 63

2.4.2. Exercise: 2 stars, recommended (flat_map). The function map maps a
List x to a List y using a function of type x ౏> y. We can define a similar function,
flat_map, which maps a List x to a List y using a function f of type x ౏> List y. Your
definition should work by ‘flattening’ the results of f, like so:

flat_map (\n ౬> [n,n+1,n+2]) [1,5,10] = [1,2,3, 5,6,7, 10,11,12]

flat_map : (f : x ౏> List y) ౏> (l : List x) ౏> List y
flat_map f l = ?flat_map_rhs

test_flat_map1 : flat_map (\n ౬> [n,n,n]) [1,5,4] = [1,1,1, 5,5,5, 4,4,4]
test_flat_map1 = ?test_flat_map1_rhs

□

Lists are not the only inductive type that we can write a map function for. Here is
the definition of map for the Option type:

option_map : (f : x ౏> y) ౏> (xo : Option x) ౏> Option y
option_map f None = None
option_map f (Some x) = Some (f x)

2.4.3. Exercise: 2 stars, optional (implicit_args). The definitions and uses of
filter and map use implicit arguments in many places. Add explicit type parameters
where necessary and use Idris to check that you’ve done so correctly. (This exercise
is not to be turned in; it is probably easiest to do it on a copy of this file that you
can throw away afterwards.)

□

2.5. Fold. An even more powerful higher-order function is called fold. This
function is the inspiration for the ”reduce” operation that lies at the heart of
Google’s map/reduce distributed programming framework.

fold : (f : x ౏> y ౏> y) ౏> (l : List x) ౏> (b : y) ౏> y
fold f [] b = b
fold f (h௝௞t) b = f h (fold f t b)

Intuitively, the behavior of the fold operation is to insert a given binary operator
f between every pair of elements in a given list. For example, fold (+) [1,2,3,4]
intuitively means 1+2+3+4. To make this precise, we also need a “starting element”
that serves as the initial second input to f. So, for example,

fold (+) [1,2,3,4] 0

yields

1 + (2 + (3 + (4 + 0)))

Some more examples:

We go back to andb here because (&&)’s second parameter is lazy, with the left
fold the return type is inferred to be lazy too, leading to type mismatch.

64 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

λΠ> :t fold andb
fold andb : List Bool ౏> Bool ౏> Bool

fold_example1 : fold (*) [1,2,3,4] 1 = 24
fold_example1 = Refl

fold_example2 : fold Booleans.andb [True,True,False,True] True = False
fold_example2 = Refl

fold_example3 : fold (++) [[1],[],[2,3],[4]] [] = [1,2,3,4]
fold_example3 = Refl

2.5.1. Exercise: 1 star, advanced (fold_types_different). Observe that the
type of fold is parameterized by two type variables, x and y, and the parame-
ter f is a binary operator that takes an x and a y and returns a y. Can you think
of a situation where it would be useful for x and y to be different?

-- FILL IN HERE

□

2.6. Functions That Construct Functions. Most of the higher-order func-
tions we have talked about so far take functions as arguments. Let’s look at some
examples that involve returning functions as the results of other functions. To be-
gin, here is a function that takes a value x (drawn from some type x) and returns a
function from Nat to x that yields x whenever it is called, ignoring its Nat argument.

constfun : (x : x_ty) ౏> Nat ౏> x_ty
constfun x = \k ౬> x

ftrue : Nat ౏> Bool
ftrue = constfun True

constfun_example1 : ftrue 0 = True
constfun_example1 = Refl

constfun_example2 : (constfun 5) 99 = 5
constfun_example2 = Refl

In fact, the multiple-argument functions we have already seen are also examples
of passing functions as data. To see why, recall the type of plus.

λΠ> :t plus
Prelude.Nat.plus : Nat ౏> Nat ౏> Nat

Each ౏> in this expression is actually a binary operator on types. This operator is
right-associative, so the type of plus is really a shorthand for Nat ౏> (Nat ౏> Nat) –
i.e., it can be read as saying that “plus is a one-argument function that takes a Nat
and returns a one-argument function that takes another Nat and returns a Nat.” In
the examples above, we have always applied plus to both of its arguments at once,
but if we like we can supply just the first. This is called partial application.

plus3 : Nat ౏> Nat
plus3 = plus 3

3. ADDITIONAL EXERCISES 65

λΠ> :t plus3

test_plus3 : plus3 4 = 7
test_plus3 = Refl

test_plus3' : doit3times Poly.plus3 0 = 9
test_plus3' = Refl

test_plus3'' : doit3times (plus 3) 0 = 9
test_plus3'' = Refl

3. Additional Exercises

namespace Exercises

3.0.1. Exercise: 2 stars (fold_length). Many common functions on lists can
be implemented in terms of fold. For example, here is an alternative definition of
length:

fold_length : (l : List x) ౏> Nat
fold_length l = fold (_, n ౬> S n) l 0

test_fold_length1 : fold_length [4,7,0] = 3
test_fold_length1 = Refl

Prove the correctness of fold_length.

fold_length_correct : (l : List x) ౏> fold_length l = length l
fold_length_correct l = ?fold_length_correct_rhs

□
3.0.2. Exercise: 3 stars (fold_map). We can also define map in terms of fold.

Finish fold_map below.

fold_map : (f : x ౏> y) ౏> (l : List x) ౏> List y
fold_map f l = ?fold_map_rhs

Write down a theorem fold_map_correct in Idris stating that fold_map is correct, and
prove it.

fold_map_correct : ?fold_map_correct

□
3.0.3. Exercise: 2 stars, advanced (currying). In Idris, a function f: a ౏> b ౏> c

really has the type a ౏> (b ౏> c). That is, if you give f a value of type a, it will
give you function f' : b ౏> c. If you then give f' a value of type b, it will return a
value of type c. This allows for partial application, as in plus3. Processing a list of
arguments with functions that return functions is called currying, in honor of the
logician Haskell Curry.

Conversely, we can reinterpret the type a ౏> b ౏> c as (a * b) ౏> c. This is called
uncurrying. With an uncurried binary function, both arguments must be given at
once as a pair; there is no partial application.

66 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

We can define currying as follows:

prod_curry : (f : (x * y) ౏> z) ౏> (x_val : x) ౏> (y_val : y) ౏> z
prod_curry f x_val y_val = f (x_val, y_val)

As an exercise, define its inverse, prod_uncurry. Then prove the theorems below to
show that the two are inverses.

prod_uncurry : (f : x ౏> y ౏> z) ౏> (p : x * y) ౏> z
prod_uncurry f p = ?prod_uncurry_rhs

As a (trivial) example of the usefulness of currying, we can use it to shorten one
of the examples that we saw above:

Not sure what are they shortening here

test_map2' : map (\x ౬> plus 3 x) [2,0,2] = [5,3,5]
test_map2' = Refl

Didn’t we just write out these types explicitly?

Thought exercise: before running the following commands, can you calculate the
types of prod_curry and prod_uncurry?

λΠ> :t prod_curry
λΠ> :t prod_uncurry

uncurry_curry : (f : x ౏> y ౏> z) ౏> (x_val : x) ౏> (y_val : y) ౏>
prod_curry (prod_uncurry f) x_val y_val = f x_val y_val

uncurry_curry f x_val y_val = ?uncurry_curry_rhs

curry_uncurry : (f : (x * y) ౏> z) ౏> (p : x * y) ౏>
prod_uncurry (prod_curry f) p = f p

curry_uncurry f p = ?curry_uncurry_rhs

□

3.0.4. Exercise: 2 stars, advanced (nth_error_informal). Recall the definition
of the nth_error function:

nth_error : (l : List x) ౏> (n : Nat) ౏> Option x
nth_error [] n = None
nth_error (a௝௞l') n = if n తథ 0

then Some a
else nth_error l' (pred n)

Write an informal proof of the following theorem:

n ౏> l ౏> length l = n ౏> nth_error l n = None

-- FILL IN HERE

□

3. ADDITIONAL EXERCISES 67

3.0.5. Exercise: 4 stars, advanced (church_numerals). This exercise explores
an alternative way of defining natural numbers, using the so-called Church nu-
merals, named after mathematician Alonzo Church. We can represent a natural
number n as a function that takes a function f as a parameter and returns f iterated
n times.

namespace Church

Nat' : {x : Type} ౏> Type
Nat' {x} = (x ౏> x) ౏> x ౏> x

Let’s see how to write some numbers with this notation. Iterating a function once
should be the same as just applying it. Thus:

one : Nat'
one f x = f x

Similarly, two should apply f twice to its argument:

two : Nat'
two f x = f (f x)

Defining zero is somewhat trickier: how can we “apply a function zero times”? The
answer is actually simple: just return the argument untouched.

zero : Nat'
zero f x = x

More generally, a number n can be written as \f, x ౬> f (f ... (f x) ...), with n
occurrences of f. Notice in particular how the doit3times function we’ve defined
previously is actually just the Church representation of 3.

three : Nat'
three = doit3times

Complete the definitions of the following functions. Make sure that the correspond-
ing unit tests pass by proving them with Refl.

Successor of a natural number:

succ' : (n : Nat' {x}) ౏> Nat' {x}
succ' n = ?succ__rhs

Even if you add f x on both sides of =, these ”unit tests” don’t seem to work
neither with Refl nor with more advanced techniques currently

succ'_1 : succ' zero = one
succ'_1 = ?succ__1_rhs

succ'_2 : succ' one = two
succ'_2 = ?succ__2_rhs

succ'_3 : succ' two = three
succ'_3 = ?succ__3_rhs

68 5. POLY : POLYMORPHISM AND HIGHER-ORDER FUNCTIONS

Addition of two natural numbers:

plus' : (n, m : Nat' {x}) ౏> Nat' {x}
plus' n m = ?plus__rhs

plus'_1 : plus' zero one = one
plus'_1 = ?plus__1_rhs

plus'_2 : plus' two three = plus' three two
plus'_2 = ?plus__2_rhs

plus'_3 : plus' (plus' two two) three = plus' one (plus' three three)
plus'_3 = ?plus__3_rhs

Multiplication:

mult' : (n, m : Nat' {x}) ౏> Nat' {x}
mult' n m = ?mult__rhs

mult'_1 : mult' one one = one
mult'_1 = ?mult__1_rhs

mult'_2 : mult' zero (plus' three three) = zero
mult'_2 = ?mult__2_rhs

mult'_3 : mult' two three = plus' three three
mult'_3 = ?mult__3_rhs

Exponentiation:

Edit the hint. Can’t make it work with exp' : (n, m : Nat' {x}) ౏> Nat' {x}.

(Hint: Polymorphism plays a crucial role here. However, choosing the right type to
iterate over can be tricky. If you hit a “Universe inconsistency” error, try iterating
over a different type: Nat' itself is usually problematic.)

exp' : (n : Nat' {x}) ౏> (m : Nat' {x=x౏>x}) ౏> Nat' {x}
exp' n m = ?exp__rhs

This won’t typecheck under this signature of exp because of 2 instances of two

-- exp'_1 : exp' two two = plus' two two
-- exp'_1 = ?exp__1_rhs

exp'_2 : exp' three two = plus' (mult' two (mult' two two)) one
exp'_2 = ?exp__2_rhs

exp'_3 : exp' three zero = one
exp'_3 = ?exp__3_rhs

□

CHAPTER 6

Logic : Logic in Idris

module Logic

import Basics
import Induction
import Tactics

%hide Basics.Numbers.pred
%hide Basics.Playground2.plus

%access public export
%default total

In previous chapters, we have seen many examples of factual claims (propositions)
and ways of presenting evidence of their truth (proofs). In particular, we have
worked extensively with equality propositions of the form e1 = e2, with implications
(p ౏> q), and with quantified propositions (x ౏> P(x)). In this chapter, we will see
how Idris can be used to carry out other familiar forms of logical reasoning.

Before diving into details, let’s talk a bit about the status of mathematical state-
ments in Idris. Recall that Idris is a typed language, which means that every
sensible expression in its world has an associated type. Logical claims are no ex-
ception: any statement we might try to prove in Idris has a type, namely Type, the
type of propositions. We can see this with the :t command:

λΠ> :t 3 = 3
3 = 3 : Type

λΠ> :t (n, m : Nat) ౏> n + m = m + n
(n : Nat) ౏> (m : Nat) ౏> n + m = m + n : Type

Note that all syntactically well-formed propositions have type Type in Idris, regard-
less of whether they are true or not.

Simply being a proposition is one thing; being provable is something else!

λΠ> :t (n : Nat) ౏> n = 2
(n : Nat) ౏> n = 2 : Type

λΠ> :t 3 = 4
3 = 4 : Type

69

70 6. LOGIC : LOGIC IN IDRIS

Indeed, propositions don’t just have types: they are first-class objects that can be
manipulated in the same ways as the other entities in Idris’s world. So far, we’ve
seen one primary place that propositions can appear: in functions’ type signatures.

plus_2_2_is_4 : 2 + 2 = 4
plus_2_2_is_4 = Refl

But propositions can be used in many other ways. For example, we can give a name
to a proposition as a value on its own, just as we have given names to expressions
of other sorts (you’ll soon see why we start the name with a capital letter).

Plus_fact : Type
Plus_fact = 2+2=4

λΠ> :t Plus_fact
Plus_fact : Type

We can later use this name in any situation where a proposition is expected – for
example, in a function declaration.

plus_fact_is_true : Plus_fact
plus_fact_is_true = Refl

(Here’s the reason - recall that names starting with lowercase letters are considered
implicits in Idris, so plus_fact would be considered a free variable!)

We can also write parameterized propositions – that is, functions that take argu-
ments of some type and return a proposition. For instance, the following function
takes a number and returns a proposition asserting that this number is equal to
three:

is_three : Nat ౏> Type
is_three n = n=3

λΠ> :t is_three
is_three : Nat ౏> Type

In Idris, functions that return propositions are said to define properties of their
arguments.

For instance, here’s a (polymorphic) property defining the familiar notion of an
injective function.

Injective : (f : a ౏> b) ౏> Type
Injective {a} {b} f = (x, y : a) ౏> f x = f y ౏> x = y

succ_inj : Injective S
succ_inj x x Refl = Refl

The equality operator = is also a function that returns a Type.

The expression n = m is syntactic sugar for (=) n m, defined internally in Idris. Be-
cause = can be used with elements of any type, it is also polymorphic:

1. LOGICAL CONNECTIVES 71

λΠ> :t (=)
(=) : A ౏> B ౏> Type

1. Logical Connectives

1.1. Conjunction. The conjunction (or logical and) of propositions a and b
in Idris is the same as the pair of a and b, written (a, b), representing the claim
that both a and b are true.

and_example : (3 + 4 = 7, 2 * 2 = 4)

To prove a conjunction, we can use value-level pair syntax:

and_example = (Refl, Refl)

For any propositions a and b, if we assume that a is true and we assume that b is
true, we can trivially conclude that (a,b) is also true.

and_intro : a ౏> b ౏> (a, b)
and_intro = MkPair

1.1.1. Exercise: 2 stars (and_exercise).

and_exercise : (n, m : Nat) ౏> n + m = 0 ౏> (n = 0, m = 0)
and_exercise n m prf = ?and_exercise_rhs

□

So much for proving conjunctive statements. To go in the other direction – i.e.,
to use a conjunctive hypothesis to help prove something else – we employ pattern
matching.

If the proof context contains a hypothesis h of the form (a,b), case splitting will
replace it with a pair pattern (a,b).

and_example2 : (n, m : Nat) ౏> (n = 0, m = 0) ౏> n + m = 0
and_example2 Z Z (Refl,Refl) = Refl
and_example2 (S _) _ (Refl,_) impossible
and_example2 _ (S _) (_,Refl) impossible

You may wonder why we bothered packing the two hypotheses n = 0 and m = 0 into
a single conjunction, since we could have also stated the theorem with two separate
premises:

and_example2' : (n, m : Nat) ౏> n = 0 ౏> m = 0 ౏> n + m = 0
and_example2' Z Z Refl Refl = Refl
and_example2' (S _) _ Refl _ impossible
and_example2' _ (S _) _ Refl impossible

For this theorem, both formulations are fine. But it’s important to understand
how to work with conjunctive hypotheses because conjunctions often arise from
intermediate steps in proofs, especially in bigger developments. Here’s a simple
example:

72 6. LOGIC : LOGIC IN IDRIS

and_example3 : (n, m : Nat) ౏> n + m = 0 ౏> n * m = 0
and_example3 n m prf =
let (nz, _) = and_exercise n m prf in
rewrite nz in Refl

Remove lemma and exercise, use fst and snd directly?

Another common situation with conjunctions is that we know (a,b) but in some
context we need just a (or just b). The following lemmas are useful in such cases:

proj1 : (p, q) ౏> p
proj1 = fst

1.1.2. Exercise: 1 star, optional (proj2).

proj2 : (p, q) ౏> q
proj2 x = ?proj2_rhs

□

Finally, we sometimes need to rearrange the order of conjunctions and/or the
grouping of multi-way conjunctions. The following commutativity and associativ-
ity theorems are handy in such cases.

and_commut : (p, q) ౏> (q, p)
and_commut (p, q) = (q, p)

1.1.3. Exercise: 2 stars (and_assoc). Remove or demote to 1 star?

and_assoc : (p, (q, r)) ౏> ((p, q), r)
and_assoc x = ?and_assoc_rhs

□

1.2. Disjunction.
Hide Basics.Booleans analogues and make syntax synonyms (/\) and (\/) for (,)
and Either?

Another important connective is the disjunction, or logical or of two propositions:
a `Either` b is true when either a or b is. The first case has be tagged with Left,
and the second with Right.

To use a disjunctive hypothesis in a proof, we proceed by case analysis, which,
as for Nat or other data types, can be done with pattern matching. Here is an
example:

or_example : (n, m : Nat) ౏> ((n = 0) `Either` (m = 0)) ౏> n * m = 0
or_example Z _ (Left Refl) = Refl
or_example (S _) _ (Left Refl) impossible
or_example n Z (Right Refl) = multZeroRightZero n
or_example _ (S _) (Right Refl) impossible

1. LOGICAL CONNECTIVES 73

Conversely, to show that a disjunction holds, we need to show that one of its sides
does. This can be done via aforementioned Left and Right constructors. Here is a
trivial use…

or_intro : a ౏> a `Either` b
or_intro = Left

… and a slightly more interesting example requiring both Left and Right:

zero_or_succ : (n : Nat) ౏> ((n = 0) `Either` (n = S (pred n)))
zero_or_succ Z = Left Refl
zero_or_succ (S _) = Right Refl

1.2.1. Exercise: 1 star (mult_eq_0).

mult_eq_0 : n * m = 0 ౏> ((n = 0) `Either` (m = 0))
mult_eq_0 prf = ?mult_eq_0_rhs

□

1.2.2. Exercise: 1 star (or_commut).

or_commut : (p `Either` q) ౏> (q `Either` p)
or_commut x = ?or_commut_rhs

□

1.3. Falsehood and Negation. So far, we have mostly been concerned with
proving that certain things are true – addition is commutative, appending lists is
associative, etc. Of course, we may also be interested in negative results, showing
that certain propositions are not true. In Idris, such negative statements are
expressed with the negation typelevel function Not.

Add hyperlink

To see how negation works, recall the discussion of the principle of explosion
from the previous chapter; it asserts that, if we assume a contradiction, then any
other proposition can be derived. Following this intuition, we could define Not p
as q ౏> (p ౏> q). Idris actually makes a slightly different choice, defining Not p
as p ౏> Void, where Void is a particular contradictory proposition defined in the
standard library as a data type with no constructors.

data Void : Type where

Not : Type ౏> Type
Not a = a ౏> Void

Discuss difference between void and absurd

Since Void is a contradictory proposition, the principle of explosion also applies to
it. If we get Void into the proof context, we can call void or absurd on it to complete
any goal:

74 6. LOGIC : LOGIC IN IDRIS

ex_falso_quodlibet : Void ౏> p
ex_falso_quodlibet = void

The Latin ex falso quodlibet means, literally, “from falsehood follows whatever you
like”; this is another common name for the principle of explosion.

1.3.1. Exercise: 2 stars, optional (not_implies_our_not). Show that Idris’s
definition of negation implies the intuitive one mentioned above:

not_implies_our_not : Not p ౏> (q ౏> (p ౏> q))
not_implies_our_not notp q p = ?not_implies_our_not_rhs

□

This is how we use Not to state that 0 and 1 are different elements of Nat:

Explain Refl-lambda syntax and Uninhabited, keep in mind
https://github.com/idris-lang/Idris-dev/issues/3943

zero_not_one : Not (Z = S _)
zero_not_one = \Refl impossible

We could also rely on the Uninhabited instance in stdlib and write this as

zero_not_one = uninhabited

It takes a little practice to get used to working with negation in Idris. Even though
you can see perfectly well why a statement involving negation is true, it can be
a little tricky at first to get things into the right configuration so that Idris can
understand it! Here are proofs of a few familiar facts to get you warmed up.

not_False : Not Void
not_False = absurd

contradiction_implies_anything : (p, Not p) ౏> q
contradiction_implies_anything (p, notp) = absurd $ notp p

double_neg : p ౏> Not $ Not p
double_neg p notp = notp p

1.3.2. Exercise: 2 stars, advanced, recommended (double_neg_inf). Write an
informal proof of double_neg:

Theorem: p implies Not $ Not p, for any proposition p.

-- FILL IN HERE

□

1.3.3. Exercise: 2 stars, recommended (contrapositive).

contrapositive : (p ౏> q) ౏> (Not q ౏> Not p)
contrapositive pq = ?contrapositive_rhs

□

1. LOGICAL CONNECTIVES 75

1.3.4. Exercise: 1 star (not_both_true_and_false).

not_both_true_and_false : Not (p, Not p)
not_both_true_and_false = ?not_both_true_and_false_rhs

□

1.3.5. Exercise: 1 star, advanced (informal_not_PNP). Write an informal
proof (in English) of the proposition Not (p, Not p).

-- FILL IN HERE

□

Similarly, since inequality involves a negation, it requires a little practice to be
able to work with it fluently. Here is one useful trick. If you are trying to prove a
goal that is nonsensical (e.g., the goal state is False = True), apply absurd to change
the goal to Void. This makes it easier to use assumptions of the form Not p that
may be available in the context – in particular, assumptions of the form Not (x=y).

not_true_is_false : (b : Bool) ౏> Not (b = True) ౏> b = False
not_true_is_false False h = Refl
not_true_is_false True h = absurd $ h Refl

1.4. Truth. Besides Void, Idris’s standard library also defines Unit, a proposi-
tion that is trivially true. To prove it, we use the predefined constant ():

True_is_true : Unit
True_is_true = ()

Unlike Void, which is used extensively, Unit is used quite rarely in proofs, since it
is trivial (and therefore uninteresting) to prove as a goal, and it carries no useful
information as a hypothesis. But it can be quite useful when defining complex
proofs using conditionals or as a parameter to higher-order proofs. We will see
examples of such uses of Unit later on.

1.5. Logical Equivalence. The handy “if and only if” connective, which
asserts that two propositions have the same truth value, is just the conjunction of
two implications.

namespace MyIff

iff : {p,q : Type} ౏> Type
iff {p} {q} = (p ౏> q, q ౏> p)

Idris’s stdlib has a more general form of this, Iso, in Control.Isomorphism.

syntax [p] ”<౦>” [q] = iff {p} {q}

iff_sym : (p <౦> q) ౏> (q <౦> p)
iff_sym (pq, qp) = (qp, pq)

76 6. LOGIC : LOGIC IN IDRIS

not_true_iff_false : (Not (b = True)) <౦> (b = False)
not_true_iff_false {b} = (not_true_is_false b, not_true_and_false b)
where
not_true_and_false : (b : Bool) ౏> (b = False) ౏> Not (b = True)
not_true_and_false False _ Refl impossible
not_true_and_false True Refl _ impossible

1.5.1. Exercise: 1 star, optional (iff_properties). Using the above proof that
<౦> is symmetric (iff_sym) as a guide, prove that it is also reflexive and transitive.

iff_refl : p <౦> p
iff_refl = ?iff_refl_rhs

iff_trans : (p <౦> q) ౏> (q <౦> r) ౏> (p <౦> r)
iff_trans piq qir = ?iff_trans_rhs

□

1.5.2. Exercise: 3 stars (or_distributes_over_and).

or_distributes_over_and : (p `Either` (q,r)) <౦> (p `Either` q, p `Either` r)
or_distributes_over_and = ?or_distributes_over_and_rhs

□

Edit the rest of the section. What to do with Setoids? We could probably just
use profunctors here

Some of Idris’s tactics treat iff statements specially, avoiding the need for some
low-level proof-state manipulation. In particular, rewrite and reflexivity can be
used with iff statements, not just equalities. To enable this behavior, we need to
import a special Idris library that allows rewriting with other formulas besides
equality (setoids).

Here is a simple example demonstrating how these tactics work with iff. First,
let’s prove a couple of basic iff equivalences…

mult_0 : (n * m = Z) <౦> ((n = Z) `Either` (m = Z))
mult_0 {n} {m} = (to n m, or_example n m)
where
to : (n, m : Nat) ౏> (n * m = Z) ౏> (n = 0) `Either` (m = 0)
to Z _ Refl = Left Refl
to (S _) Z _ = Right Refl
to (S _) (S _) Refl impossible

or_assoc : (p `Either` (q `Either` r)) <౦> ((p `Either` q) `Either` r)
or_assoc = (to, fro)
where
to : Either p (Either q r) ౏> Either (Either p q) r
to (Left p) = Left $ Left p
to (Right (Left q)) = Left $ Right q
to (Right (Right r)) = Right r

1. LOGICAL CONNECTIVES 77

fro : Either (Either p q) r ౏> Either p (Either q r)
fro (Left (Left p)) = Left p
fro (Left (Right q)) = Right $ Left q
fro (Right r) = Right $ Right r

We can now use these facts with rewrite and Refl to give smooth proofs of statements
involving equivalences. Here is a ternary version of the previous mult_0 result:

mult_0_3 : (n * m * p = Z) <౦>
((n = Z) `Either` ((m = Z) `Either` (p = Z)))

mult_0_3 = (to, fro)
where
to : (n * m * p = Z) ౏> ((n = Z) `Either` ((m = Z) `Either` (p = Z)))
to {n} {m} {p} prf = let
(nm_p_to, _) = mult_0 {n=(n*m)} {m=p}
(n_m_to, _) = mult_0 {n} {m}
(_, or_a_fro) = or_assoc {p=(n=Z)} {q=(m=Z)} {r=(p=Z)}
in or_a_fro $ case nm_p_to prf of

Left prf ౬> Left $ n_m_to prf
Right prf ౬> Right prf

fro : ((n = Z) `Either` ((m = Z) `Either` (p = Z))) ౏> (n * m * p = Z)
fro (Left Refl) = Refl
fro {n} (Right (Left Refl)) = rewrite multZeroRightZero n in Refl
fro {n} {m} (Right (Right Refl)) = rewrite multZeroRightZero (n*m) in Refl

The apply tactic can also be used with <౦>. When given an equivalence as its
argument, apply tries to guess which side of the equivalence to use.

apply_iff_example : (n, m : Nat) ౏> n * m = Z ౏> ((n = Z) `Either` (m = Z))
apply_iff_example n m = fst $ mult_0 {n} {m}

1.6. Existential Quantification. Another important logical connective is
existential quantification. To say that there is some x of type t such that some
property p holds of x, we write (x : t ** p). The type annotation : t can be omitted
if Idris is able to infer from the context what the type of x should be.

To prove a statement of the form (x ** p), we must show that p holds for some
specific choice of value for x, known as the witness of the existential. This is done
in two steps: First, we explicitly tell Idris which witness t we have in mind by
writing it on the left side of **. Then we prove that p holds after all occurrences
of x are replaced by t.

four_is_even : (n : Nat ** 4 = n + n)
four_is_even = (2 ** Refl)

Conversely, if we have an existential hypothesis (x ** p) in the context, we can
pattern match on it to obtain a witness x and a hypothesis stating that p holds of
x.

exists_example_2 : (m : Nat ** n = 4 + m) ౏> (o : Nat ** n = 2 + o)
exists_example_2 (m ** pf) = (2 + m ** pf)

78 6. LOGIC : LOGIC IN IDRIS

1.6.1. Exercise: 1 star (dist_not_exists). Prove that “p holds for all x” implies
“there is no x for which p does not hold.”

dist_not_exists : {p : a ౏> Type} ౏> ((x : a) ౏> p x) ౏> Not (x ** Not $ p x)
dist_not_exists f = ?dist_not_exists_rhs

□

1.6.2. Exercise: 2 stars (dist_exists_or). Prove that existential quantification
distributes over disjunction.

dist_exists_or : {p, q : a ౏> Type} ౏> (x ** (p x `Either` q x)) <౦>
((x ** p x) `Either` (x ** q x))

dist_exists_or = ?dist_exists_or_rhs

□

2. Programming with Propositions

The logical connectives that we have seen provide a rich vocabulary for defining
complex propositions from simpler ones. To illustrate, let’s look at how to express
the claim that an element x occurs in a list l. Notice that this property has a
simple recursive structure:

• If l is the empty list, then x cannot occur on it, so the property “x appears
in l” is simply false.

• Otherwise, l has the form x' ௝௞ xs. In this case, x occurs in l if either it
is equal to x' or it occurs in xs.

We can translate this directly into a straightforward recursive function from taking
an element and a list and returning a proposition:

In : (x : a) ౏> (l : List a) ౏> Type
In x [] = Void
In x (x' ௝௞ xs) = (x' = x) `Either` In x xs

When In is applied to a concrete list, it expands into a concrete sequence of nested
disjunctions.

In_example_1 : In 4 [1, 2, 3, 4, 5]
In_example_1 = Right $ Right $ Right $ Left Refl

In_example_2 : In n [2, 4] ౏> (n' : Nat ** n = 2 * n')
In_example_2 (Left Refl) = (1 ** Refl)
In_example_2 (Right $ Left Refl) = (2 ** Refl)
In_example_2 (Right $ Right prf) = absurd prf

(Notice the use of absurd to discharge the last case.)

We can also prove more generic, higher-level lemmas about In.

Note, in the next, how In starts out applied to a variable and only gets expanded
when we do case analysis on this variable:

2. PROGRAMMING WITH PROPOSITIONS 79

In_map : (f : a ౏> b) ౏> (l : List a) ౏> (x : a) ౏> In x l ౏>
In (f x) (map f l)

In_map _ [] _ ixl = absurd ixl
In_map f (x' ௝௞ xs) x (Left prf) = rewrite prf in Left Refl
In_map f (x' ௝௞ xs) x (Right r) = Right $ In_map f xs x r

This way of defining propositions recursively, though convenient in some cases,
also has some drawbacks. In particular, it is subject to Idris’s usual restrictions
regarding the definition of recursive functions, e.g., the requirement that they be
“obviously terminating.” In the next chapter, we will see how to define propositions
inductively, a different technique with its own set of strengths and limitations.

2.0.1. Exercise: 2 stars (In_map_iff).

In_map_iff : (f : a ౏> b) ౏> (l : List a) ౏> (y : b) ౏>
(In y (map f l)) <౦> (x ** (f x = y, In x l))

In_map_iff f l y = ?In_map_iff_rhs

□

2.0.2. Exercise: 2 stars (in_app_iff).

in_app_iff : (In a (l++l')) <౦> (In a l `Either` In a l')
in_app_iff = ?in_app_iff_rhs

□

2.0.3. Exercise: 3 stars (All). Recall that functions returning propositions can
be seen as properties of their arguments. For instance, if p has type Nat ౏> Type,
then p n states that property p holds of n.

Drawing inspiration from In, write a recursive function All stating that some prop-
erty p holds of all elements of a list l. To make sure your definition is correct,
prove the All_In lemma below. (Of course, your definition should not just restate
the left-hand side of All_In.)

All : (p : t ౏> Type) ౏> (l : List t) ౏> Type
All p l = ?All_rhs

All_In : ((x:t) ౏> In x l ౏> p x) <౦> (All p l)
All_In = ?All_In_rhs

□

2.0.4. Exercise: 3 stars (combine_odd_even). Complete the definition of the
combine_odd_even function below. It takes as arguments two properties of numbers,
podd and peven, and it should return a property p such that p n is equivalent to
podd n when n is odd and equivalent to peven n otherwise.

combine_odd_even : (podd, peven : Nat ౏> Type) ౏> (Nat ౏> Type)
combine_odd_even podd peven = ?combine_odd_even_rhs

To test your definition, prove the following facts:

80 6. LOGIC : LOGIC IN IDRIS

combine_odd_even_intro : (n : Nat) ౏>
(oddb n = True ౏> podd n) ౏>
(oddb n = False ౏> peven n) ౏>
combine_odd_even podd peven n

combine_odd_even_intro n oddp evenp = ?combine_odd_even_intro_rhs

combine_odd_even_elim_odd : (n : Nat) ౏>
combine_odd_even podd peven n ౏>
oddb n = True ౏>
podd n

combine_odd_even_elim_odd n x prf = ?combine_odd_even_elim_odd_rhs

combine_odd_even_elim_even : (n : Nat) ౏>
combine_odd_even podd peven n ౏>
oddb n = False ౏>
peven n

combine_odd_even_elim_even n x prf = ?combine_odd_even_elim_even_rhs

□

3. Applying Theorems to Arguments

One feature of Idris that distinguishes it from many other proof assistants is that
it treats proofs as first-class objects.

‘nameref‘ the chapters when they’re done

There is a great deal to be said about this, but it is not necessary to understand
it in detail in order to use Idris. This section gives just a taste, while a deeper
exploration can be found in the optional chapters ProofObjects and IndPrinciples.

We have seen that we can use the :t command to ask Idris to print the type of an
expression. We can also use :t to ask what theorem a particular identifier refers
to.

λΠ> :t plusCommutative
plusCommutative : (left : Nat) ౏> (right : Nat) ౏> left + right = right + left

Idris prints the statement of the plusCommutative theorem in the same way that it
prints the type of any term that we ask it to check. Why?

The reason is that the identifier plusCommutative actually refers to a proof object – a
data structure that represents a logical derivation establishing of the truth of the
statement (n, m : Nat) ౏> n + m = m + n. The type of this object is the statement of
the theorem that it is a proof of.

Intuitively, this makes sense because the statement of a theorem tells us what we
can use that theorem for, just as the type of a computational object tells us what
we can do with that object – e.g., if we have a term of type Nat ౏> Nat ౏> Nat, we
can give it two Nats as arguments and get a Nat back. Similarly, if we have an

3. APPLYING THEOREMS TO ARGUMENTS 81

object of type n = m ౏> n + n = m + m and we provide it an “argument” of type n = m,
we can derive n + n = m + m.

Operationally, this analogy goes even further: by applying a theorem, as if it were
a function, to hypotheses with matching types, we can specialize its result without
having to resort to intermediate assertions. For example, suppose we wanted to
prove the following result:

plus_comm3 : (n, m, p : Nat) ౏> n + (m + p) = (p + m) + n

Edit, we have already done this in previous chapters (add a hyperlink?)

It appears at first sight that we ought to be able to prove this by rewriting with
plusCommutative twice to make the two sides match. The problem, however, is that
the second rewrite will undo the effect of the first.

Proof.
intros n m p.
rewrite plus_comm.
rewrite plus_comm.
(* We are back where we started... *)

Abort.

One simple way of fixing this problem, using only tools that we already know, is
to use assert to derive a specialized version of plus_comm that can be used to
rewrite exactly where we want.

Lemma plus_comm3_take2 :
∀n m p, n + (m + p) = (p + m) + n.

Proof.
intros n m p.
rewrite plus_comm.
assert (H : m + p = p + m).
{ rewrite plus_comm. reflexivity. }
rewrite H.
reflexivity.

Qed.

A more elegant alternative is to apply plusCommutative directly to the arguments
we want to instantiate it with, in much the same way as we apply a polymorphic
function to a type argument.

plus_comm3 n m p = rewrite plusCommutative n (m+p) in
rewrite plusCommutative m p in Refl

You can “use theorems as functions” in this way with almost all tactics that take a
theorem name as an argument. Note also that theorem application uses the same
inference mechanisms as function application; thus, it is possible, for example, to
supply wildcards as arguments to be inferred, or to declare some hypotheses to a
theorem as implicit by default. These features are illustrated in the proof below.

82 6. LOGIC : LOGIC IN IDRIS

lemma_application_ex : (n : Nat) ౏> (ns : List Nat) ౏>
In n (map (\m ౬> m * 0) ns) ౏> n = 0

lemma_application_ex _ [] prf = absurd prf
lemma_application_ex _ (y ௝௞ _) (Left prf) =
rewrite sym $ multZeroRightZero y in sym prf

lemma_application_ex n (_ ௝௞ xs) (Right prf) =
lemma_application_ex n xs prf

We will see many more examples of the idioms from this section in later chapters.

4. Idris vs. Set Theory

Edit, Idris’s core is likely some variant of MLTT

Coq’s logical core, the Calculus of Inductive Constructions, differs in some impor-
tant ways from other formal systems that are used by mathematicians for writing
down precise and rigorous proofs. For example, in the most popular foundation for
mainstream paper-and-pencil mathematics, Zermelo-Fraenkel Set Theory (ZFC),
a mathematical object can potentially be a member of many different sets; a term
in Idris’s logic, on the other hand, is a member of at most one type. This difference
often leads to slightly different ways of capturing informal mathematical concepts,
but these are, by and large, quite Natural and easy to work with. For example,
instead of saying that a natural number n belongs to the set of even numbers, we
would say in Idris that ev n holds, where ev : Nat ౏> Type is a property describing
even numbers.

However, there are some cases where translating standard mathematical reasoning
into Idris can be either cumbersome or sometimes even impossible, unless we enrich
the core logic with additional axioms. We conclude this chapter with a brief
discussion of some of the most significant differences between the two worlds.

4.1. Functional Extensionality. The equality assertions that we have seen
so far mostly have concerned elements of inductive types (Nat, Bool, etc.). But since
Idris’s equality operator is polymorphic, these are not the only possibilities – in
particular, we can write propositions claiming that two functions are equal to each
other:

function_equality_ex1 : plus 3 = plus (pred 4)
function_equality_ex1 = Refl

In common mathematical practice, two functions f and g are considered equal if
they produce the same outputs:

(∀𝑥, 𝑓(𝑥) = 𝑔(𝑥)) → 𝑓 = 𝑔

This is known as the principle of functional extensionality.

4. IDRIS VS. SET THEORY 83

Informally speaking, an “extensional property” is one that pertains to an object’s
observable behavior. Thus, functional extensionality simply means that a func-
tion’s identity is completely determined by what we can observe from it – i.e., in
Idris terms, the results we obtain after applying it.

Functional extensionality is not part of Idris’s basic axioms. This means that some
“reasonable” propositions are not provable.

function_equality_ex2 : (\x ౬> plus x 1) = (\x ౬> plus 1 x)
function_equality_ex2 = ?stuck

Explain believe_me vs really_believe_me?

However, we can add functional extensionality to Idris’s core logic using the
really_believe_me command.

functional_extensionality : ((x : a) ౏> f x = g x) ౏> f = g
functional_extensionality = really_believe_me

Using really_believe_me has the same effect as stating a theorem and skipping its
proof using a hole, but it alerts the reader (and type checker) that this isn’t just
something we’re going to come back and fill in later!

We can now invoke functional extensionality in proofs:

function_equality_ex2 : (\x ౬> plus x 1) = (\x ౬> plus 1 x)
function_equality_ex2 = functional_extensionality $ \x ౬> plusCommutative x 1

Naturally, we must be careful when adding new axioms into Idris’s logic, as they
may render it inconsistent – that is, they may make it possible to prove every
proposition, including Void!

Unfortunately, there is no simple way of telling whether an axiom is safe to add:
hard work is generally required to establish the consistency of any particular com-
bination of axioms.

However, it is known that adding functional extensionality, in particular, is con-
sistent.

Is there such a command in Idris?

To check whether a particular proof relies on any additional axioms, use the
Print Assumptions command.

Print Assumptions function_equality_ex2.
(* ౺಄౮>

Axioms:
functional_extensionality :

forall (X Y : Type) (f g : X ౏> Y),
(forall x : X, f x = g x) ౏> f = g *)

84 6. LOGIC : LOGIC IN IDRIS

4.1.1. Exercise: 4 stars (tr_rev). One problem with the definition of the list-
reversing function rev that we have is that it performs a call to ++ on each step;
running ++ takes time asymptotically linear in the size of the list, which means
that rev has quadratic running time.

We can improve this with the following definition:

rev_append : (l1, l2 : List x) ౏> List x
rev_append [] l2 = l2
rev_append (x ௝௞ xs) l2 = rev_append xs (x ௝௞ l2)

tr_rev : (l : List x) ౏> List x
tr_rev l = rev_append l []

(This is very similar to how reverse is defined in Prelude.List.)

This version is said to be tail-recursive, because the recursive call to the function
is the last operation that needs to be performed (i.e., we don’t have to execute ++
after the recursive call); a decent compiler will generate very efficient code in this
case. Prove that the two definitions are indeed equivalent.

tr_rev_correct : (x : List a) ౏> tr_rev x = rev x
tr_rev_correct = ?tr_rev_correct_rhs

□

4.2. Propositions and Booleans. We’ve seen two different ways of encod-
ing logical facts in Idris: with booleans (of type Bool), and with propositions (of
type Type).

For instance, to claim that a number n is even, we can say either

• (1) that evenb n returns True, or

• (2) that there exists some k such that n = double k. Indeed, these two
notions of evenness are equivalent, as can easily be shown with a
couple of auxiliary lemmas.

We often say that the boolean evenb n reflects the proposition (k ** n = double k).

evenb_double : evenb (double k) = True
evenb_double {k = Z} = Refl
evenb_double {k = (S k')} = evenb_double {k=k'}

4.2.1. Exercise: 3 stars (evenb_double_conv).

evenb_double_conv : (k ** n = if evenb n then double k else S (double k))

Hint: Use the evenb_S lemma from Induction.

evenb_double_conv = ?evenb_double_conv_rhs

□

4. IDRIS VS. SET THEORY 85

even_bool_prop : (evenb n = True) <౦> (k ** n = double k)
even_bool_prop = (to, fro)
where
to : evenb n = True ౏> (k ** n = double k)
to {n} prf =
let (k ** p) = evenb_double_conv {n}
in (k ** rewrite p in rewrite prf in Refl)

fro : (k ** n = double k) ౏> evenb n = True
fro {n} (k**prf) = rewrite prf in evenb_double {k}

Similarly, to state that two numbers n and m are equal, we can say either (1) that
n తథ m returns True or (2) that n = m. These two notions are equivalent.

beq_nat_true_iff : (n1, n2 : Nat) ౏> (n1 తథ n2 = True) <౦> (n1 = n2)
beq_nat_true_iff n1 n2 = (to, fro n1 n2)
where
to : (n1 తథ n2 = True) ౏> (n1 = n2)
to = beq_nat_true {n=n1} {m=n2}
fro : (n1, n2 : Nat) ౏> (n1 = n2) ౏> (n1 తథ n2 = True)
fro n1 n1 Refl = sym $ beq_nat_refl n1

However, while the boolean and propositional formulations of a claim are equiva-
lent from a purely logical perspective, they need not be equivalent operationally.
Equality provides an extreme example: knowing that n తథ m = True is generally of
little direct help in the middle of a proof involving n and m; however, if we convert
the statement to the equivalent form n = m, we can rewrite with it.

The case of even numbers is also interesting. Recall that, when proving the back-
wards direction of even_bool_prop (i.e., evenb_double, going from the propositional to
the boolean claim), we used a simple induction on k. On the other hand, the
converse (the evenb_double_conv exercise) required a clever generalization, since we
can’t directly prove (k ** n = double k) ౏> evenb n = True.

For these examples, the propositional claims are more useful than their boolean
counterparts, but this is not always the case. For instance, we cannot test whether
a general proposition is true or not in a function definition; as a consequence, the
following code fragment is rejected:

is_even_prime : Nat ౏> Bool
is_even_prime n = if n = 2 then True else False

Idris complains that n = 2 has type Type, while it expects an element of Bool (or
some other inductive type with two elements). The reason for this error message
has to do with the computational nature of Idris’s core language, which is designed
so that every function that it can express is computable and total. One reason for
this is to allow the extraction of executable programs from Idris developments. As
a consequence, Type in Idris does not have a universal case analysis operation telling
whether any given proposition is true or false, since such an operation would allow
us to write non-computable functions.

86 6. LOGIC : LOGIC IN IDRIS

Although general non-computable properties cannot be phrased as boolean com-
putations, it is worth noting that even many computable properties are easier to
express using Type than Bool, since recursive function definitions are subject to sig-
nificant restrictions in Idris. For instance, the next chapter shows how to define
the property that a regular expression matches a given string using Type. Doing
the same with Bool would amount to writing a regular expression matcher, which
would be more complicated, harder to understand, and harder to reason about.

Conversely, an important side benefit of stating facts using booleans is enabling
some proof automation through computation with Idris terms, a technique known
as proof by reflection. Consider the following statement:

even_1000 : (k ** 1000 = double k)

The most direct proof of this fact is to give the value of k explicitly.

even_1000 = (500 ** Refl)

On the other hand, the proof of the corresponding boolean statement is even
simpler:

even_1000' : evenb 1000 = True
even_1000' = Refl

What is interesting is that, since the two notions are equivalent, we can use the
boolean formulation to prove the other one without mentioning the value 500
explicitly:

even_1000'' : (k ** 1000 = double k)
even_1000'' = (fst $ even_bool_prop {n=1000}) Refl

Add http://www.ams.org/journals/notices/200811/tx081101382p.pdf as a link

Although we haven’t gained much in terms of proof size in this case, larger proofs
can often be made considerably simpler by the use of reflection. As an extreme
example, the Coq proof of the famous 4-color theorem uses reflection to reduce the
analysis of hundreds of different cases to a boolean computation. We won’t cover
reflection in great detail, but it serves as a good example showing the complemen-
tary strengths of booleans and general propositions.

4.2.2. Exercise: 2 stars (logical_connectives). The following lemmas relate
the propositional connectives studied in this chapter to the corresponding boolean
operations.

andb_true_iff : (b1, b2 : Bool) ౏> (b1 && b2 = True) <౦>
(b1 = True, b2 = True)

andb_true_iff b1 b2 = ?andb_true_iff_rhs

orb_true_iff : (b1, b2 : Bool) ౏> (b1 || b2 = True) <౦>
((b1 = True) `Either` (b2 = True))

orb_true_iff b1 b2 = ?orb_true_iff_rhs

□

4. IDRIS VS. SET THEORY 87

4.2.3. Exercise: 1 star (beq_nat_false_iff). The following theorem is an alter-
nate “negative” formulation of beq_nat_true_iff that is more convenient in certain
situations (we’ll see examples in later chapters).

beq_nat_false_iff : (x, y : Nat) ౏> (x తథ y = False) <౦> (Not (x = y))
beq_nat_false_iff x y = ?beq_nat_false_iff_rhs

□

4.2.4. Exercise: 3 stars (beq_list). Given a boolean operator beq for testing
equality of elements of some type a, we can define a function beq_list beq for test-
ing equality of lists with elements in a. Complete the definition of the beq_list
function below. To make sure that your definition is correct, prove the lemma
beq_list_true_iff.

beq_list : (beq : a ౏> a ౏> Bool) ౏> (l1, l2 : List a) ౏> Bool
beq_list beq l1 l2 = ?beq_list_rhs

beq_list_true_iff : (beq : a ౏> a ౏> Bool) ౏>
((a1, a2 : a) ౏> (beq a1 a2 = True) <౦> (a1 = a2)) ౏>

((l1, l2 : List a) ౏> (beq_list beq l1 l2 = True) <౦> (l1 = l2))
beq_list_true_iff beq f l1 l2 = ?beq_list_true_iff_rhs

□

4.2.5. Exercise: 2 stars, recommended (All_forallb). Recall the function
forallb, from the exercise forall_exists_challenge in chapter Tactics:

forallb : (test : x ౏> Bool) ౏> (l : List x) ౏> Bool
forallb _ [] = True
forallb test (x ௝௞ xs) = test x && forallb test xs

Prove the theorem below, which relates forallb to the All property of the above
exercise.

forallb_true_iff : (l : List x) ౏> (forallb test l = True) <౦>
(All (\x ౬> test x = True) l)

forallb_true_iff l = ?forallb_true_iff_rhs

Are there any important properties of the function forallb which are not captured
by this specification?

-- FILL IN HERE

□

4.3. Classical vs. Constructive Logic. We have seen that it is not possible
to test whether or not a proposition p holds while defining a Idris function. You
may be surprised to learn that a similar restriction applies to proofs! In other
words, the following intuitive reasoning principle is not derivable in Idris:

excluded_middle : p `Either` (Not p)

88 6. LOGIC : LOGIC IN IDRIS

To understand operationally why this is the case, recall that, to prove a statement
of the form p `Either` q, we use the Left and Right pattern matches, which effectively
require knowing which side of the disjunction holds. But the universally quantified
p in excluded_middle is an arbitrary proposition, which we know nothing about. We
don’t have enough information to choose which of Left or Right to apply, just as
Idris doesn’t have enough information to mechanically decide whether p holds or
not inside a function.

However, if we happen to know that p is reflected in some boolean term b, then
knowing whether it holds or not is trivial: we just have to check the value of b.

restricted_excluded_middle : (p <౦> b = True) ౏> p `Either` Not p
restricted_excluded_middle {b = True} (_, bp) = Left $ bp Refl
restricted_excluded_middle {b = False} (pb, _) = Right $ uninhabited . pb

In particular, the excluded middle is valid for equations n = m, between natural
numbers n and m.

Is there a simpler way to write this? Maybe with setoids?

restricted_excluded_middle_eq : (n, m : Nat) ౏> (n = m) `Either` Not (n = m)
restricted_excluded_middle_eq n m =
restricted_excluded_middle (to n m, fro n m)

where
to : (n, m : Nat) ౏> (n=m) ౏> (nతథm)=True
to Z Z prf = Refl
to Z (S _) Refl impossible
to (S _) Z Refl impossible
to (S k) (S j) prf = to k j (succInjective k j prf)
fro : (n, m : Nat) ౏> (nతథm)=True ౏> (n=m)
fro Z Z Refl = Refl
fro Z (S _) Refl impossible
fro (S _) Z Refl impossible
fro (S k) (S j) prf = rewrite fro k j prf in Refl

(Idris has a built-in version of this, called decEq.)

It may seem strange that the general excluded middle is not available by default in
Idris; after all, any given claim must be either true or false. Nonetheless, there is
an advantage in not assuming the excluded middle: statements in Idris can make
stronger claims than the analogous statements in standard mathematics. Notably,
if there is a Idris proof of (x ** p x), it is possible to explicitly exhibit a value of x
for which we can prove p x – in other words, every proof of existence is necessarily
constructive.

Logics like Idris’s, which do not assume the excluded middle, are referred to as
constructive logics.

More conventional logical systems such as ZFC, in which the excluded middle does
hold for arbitrary propositions, are referred to as classical.

4. IDRIS VS. SET THEORY 89

The following example illustrates why assuming the excluded middle may lead to
non-constructive proofs:

Use proper TeX?

Claim: There exist irrational numbers a and b such that a ^ b is rational.

Proof : It is not difficult to show that sqrt 2 is irrational. If sqrt 2 ^ sqrt 2 is ra-
tional, it suffices to take a = b = sqrt 2 and we are done. Otherwise, sqrt 2 ^ sqrt 2
is irrational. In this case, we can take a = sqrt 2 ^ sqrt 2 and b = sqrt 2, since
a ^ b = sqrt 2 ^ (sqrt 2 * sqrt 2) = sqrt 2 ^ 2 = 2‘. □

Do you see what happened here? We used the excluded middle to consider sep-
arately the cases where sqrt 2 ^ sqrt 2 is rational and where it is not, without
knowing which one actually holds! Because of that, we wind up knowing that such
a and b exist but we cannot determine what their actual values are (at least, using
this line of argument).

As useful as constructive logic is, it does have its limitations: There are many
statements that can easily be proven in classical logic but that have much more
complicated constructive proofs, and there are some that are known to have no
constructive proof at all! Fortunately, like functional extensionality, the excluded
middle is known to be compatible with Idris’s logic, allowing us to add it safely
as an axiom. However, we will not need to do so in this book: the results that we
cover can be developed entirely within constructive logic at negligible extra cost.

It takes some practice to understand which proof techniques must be avoided in
constructive reasoning, but arguments by contradiction, in particular, are infamous
for leading to non-constructive proofs. Here’s a typical example: suppose that we
want to show that there exists x with some property p, i.e., such that p x. We
start by assuming that our conclusion is false; that is, Not (x : a ** p x). From this
premise, it is not hard to derive (x : a) ౏> Not $ p x. If we manage to show that
this intermediate fact results in a contradiction, we arrive at an existence proof
without ever exhibiting a value of x for which p x holds!

The technical flaw here, from a constructive standpoint, is that we claimed to
prove (x ** p x) using a proof of Not $ Not (x ** p x). Allowing ourselves to remove
double negations from arbitrary statements is equivalent to assuming the excluded
middle, as shown in one of the exercises below. Thus, this line of reasoning cannot
be encoded in Idris without assuming additional axioms.

4.3.1. Exercise: 3 stars (excluded_middle_irrefutable). The consistency of
Idris with the general excluded middle axiom requires complicated reasoning that
cannot be carried out within Idris itself. However, the following theorem implies
that it is always safe to assume a decidability axiom (i.e., an instance of excluded
middle) for any particular type p. Why? Because we cannot prove the nega-
tion of such an axiom; if we could, we would have both Not (p `Either` Not p) and
Not $ Not (p `Either` Not p), a contradiction.

excluded_middle_irrefutable : Not $ Not (p `Either` Not p)
excluded_middle_irrefutable = ?excluded_middle_irrefutable_rhs

90 6. LOGIC : LOGIC IN IDRIS

□
4.3.2. Exercise: 3 stars, advanced (not_exists_dist). It is a theorem of classi-

cal logic that the following two assertions are equivalent:

Not (x : a ** Not p x)
(x : a) ౏> p x

Add a hyperlink

The dist_not_exists theorem above proves one side of this equivalence. Interestingly,
the other direction cannot be proved in constructive logic. Your job is to show
that it is implied by the excluded middle.

not_exists_dist : {p : a ౏> Type} ౏> Not (x ** Not $ p x) ౏> ((x : a) ౏> p x)
not_exists_dist prf x = ?not_exists_dist_rhs
where
excluded_middle : (a : Type) ౏> a `Either` (Not a)
excluded_middle p = really_believe_me p

□
4.3.3. Exercise: 5 stars, optional (classical_axioms). For those who like a

challenge, here is an exercise taken from the Coq’Art book by Bertot and Casteran
(p. 123). Each of the following four statements, together with excluded_middle, can
be considered as characterizing classical logic. We can’t prove any of them in Idris,
but we can consistently add any one of them as an axiom if we wish to work in
classical logic.

Prove that all five propositions (these four plus excluded_middle) are equivalent.

peirce : ((p ౏> q) ౏> p) ౏> p

double_negation_elimination : Not $ Not p ౏> p

de_morgan_not_and_not : Not (Not p, Not q) ౏> p `Either` q

implies_to_or : (p ౏> q) ౏> ((Not p) `Either` q)

-- FILL IN HERE

□

CHAPTER 7

IndProp : Inductively Defined Propositions

module IndProp

import Basics
import Induction
import Tactics
import Logic

%hide Basics.Numbers.pred

%access public export
%default total

1. Inductively Defined Propositions

In the Logic chapter, we looked at several ways of writing propositions, including
conjunction, disjunction, and quantifiers. In this chapter, we bring a new tool into
the mix: inductive definitions.

Recall that we have seen two ways of stating that a number n is even: We can say
(1) evenb n = True, or (2) (k ** n = double k). Yet another possibility is to say that n
is even if we can establish its evenness from the following rules:

• Rule ev_0: The number 0 is even.
• Rule ev_SS: If n is even, then S (S n) is even.

To illustrate how this definition of evenness works, let’s imagine using it to show
that 4 is even. By rule ev_SS, it suffices to show that 2 is even. This, in turn, is
again guaranteed by rule ev_SS, as long as we can show that 0 is even. But this last
fact follows directly from the ev_0 rule.

We will see many definitions like this one during the rest of the course. For purposes
of informal discussions, it is helpful to have a lightweight notation that makes them
easy to read and write. Inference rules are one such notation:

ev_0
ev 0

ev n ev_SS
ev (S (S n))

91

92 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

Each of the textual rules above is reformatted here as an inference rule; the in-
tended reading is that, if the premises above the line all hold, then the conclusion
below the line follows. For example, the rule ev_SS says that, if n satisfies ev, then
S (S n) also does. If a rule has no premises above the line, then its conclusion holds
unconditionally.

We can represent a proof using these rules by combining rule applications into a
proof tree. Here’s how we might transcribe the above proof that 4 is even:

ev_0
ev 0 ev_SS
ev 2 ev_SS
ev 4

Why call this a “tree” (rather than a “stack”, for example)? Because, in general,
inference rules can have multiple premises. We will see examples of this below.

Putting all of this together, we can translate the definition of evenness into a formal
Idris definition using an data declaration, where each constructor corresponds to
an inference rule:

data Ev : Nat ౏> Type where
Ev_0 : Ev Z
Ev_SS : {n : Nat} ౏> Ev n ౏> Ev (S (S n))

This definition is different in one crucial respect from previous uses of data: its
result is not a Type, but rather a function from Nat to Type – that is, a property
of numbers. Note that we’ve already seen other inductive definitions that result
in functions, such as List, whose type is Type ౏> Type. What is new here is that,
because the Nat argument of Ev appears unnamed, to the right of the colon, it is
allowed to take different values in the types of different constructors: Z in the type
of Ev_0 and S (S n) in the type of Ev_SS.

In contrast, the definition of List names the x parameter globally, forcing the result
of Nil and (௜௜) to be the same (List x). Had we tried to name Nat in defining Ev,
we would have seen an error:

data Wrong_ev : (n : Nat) ౏> Type where
Wrong_ev_0 : Wrong_ev Z
Wrong_ev_SS : n ౏> Wrong_ev n ౏> Wrong_ev (S (S n))

When checking type of IndType.Wrong_ev_SS:
When checking argument n to IndType.Wrong_ev:

Type mismatch between
Type (Type of n)

and
Nat (Expected type)

Edit the explanation, it works fine if you remove the first n ౏> in Wrong_ev_SS

2. USING EVIDENCE IN PROOFS 93

(“Parameter” here is Idris jargon for an argument on the left of the colon in an
Inductive definition; “index” is used to refer to arguments on the right of the
colon.)

We can think of the definition of Ev as defining a Idris property Ev : Nat ౏> Type,
together with theorems Ev_0 : Ev Z and Ev_SS : n ౏> Ev n ౏> Ev (S (S n)). Such “con-
structor theorems” have the same status as proven theorems. In particular, we can
apply rule names as functions to each other to prove Ev for particular numbers…

ev_4 : Ev 4
ev_4 = Ev_SS {n=2} $ Ev_SS {n=0} Ev_0

We can also prove theorems that have hypotheses involving Ev.

ev_plus4 : Ev n ౏> Ev (4 + n)
ev_plus4 x = Ev_SS $ Ev_SS x

More generally, we can show that any number multiplied by 2 is even:

1.0.1. Exercise: 1 star (ev_double).

ev_double : Ev (double n)
ev_double = ?ev_double_rhs

□

2. Using Evidence in Proofs

Besides constructing evidence that numbers are even, we can also reason about
such evidence.

Introducing Ev with a data declaration tells Idris not only that the constructors Ev_0
and Ev_SS are valid ways to build evidence that some number is even, but also that
these two constructors are the only ways to build evidence that numbers are even
(in the sense of Ev).

In other words, if someone gives us evidence e for the assertion Ev n, then we know
that e must have one of two shapes:

• e is Ev_0 (and n is Z), or

• e is Ev_SS {n=n'} e' (and n is S (S n'), where e' is evidence for Ev n').

This suggests that it should be possible to analyze a hypothesis of the form Ev n
much as we do inductively defined data structures; in particular, it should be
possible to argue by induction and case analysis on such evidence. Let’s look at a
few examples to see what this means in practice.

2.1. Pattern Matching on Evidence.

Edit the whole section to talk about dependent pattern matching

Suppose we are proving some fact involving a number n, and we are given Ev n
as a hypothesis. We already know how to perform case analysis on n using the

94 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

inversion tactic, generating separate subgoals for the case where n = Z and the case
where n = S n' for some n'. But for some proofs we may instead want to analyze
the evidence that Ev n directly.

By the definition of Ev, there are two cases to consider:

• If the evidence is of the form Ev_0, we know that n = Z.

• Otherwise, the evidence must have the form Ev_SS {n=n'} e', where
n = S (S n') and e' is evidence for Ev n'.

We can perform this kind of reasoning in Idris, again using pattern matching.
Besides allowing us to reason about equalities involving constructors, inversion
provides a case-analysis principle for inductively defined propositions. When used
in this way, its syntax is similar to destruct: We pass it a list of identifiers separated
by | characters to name the arguments to each of the possible constructors.

ev_minus2 : Ev n ౏> Ev (pred (pred n))
ev_minus2 Ev_0 = Ev_0
ev_minus2 (Ev_SS e') = e'

In words, here is how the pattern match reasoning works in this proof:

• If the evidence is of the form Ev_0, we know that n = Z. Therefore, it
suffices to show that Ev (pred (pred Z)) holds. By the definition of pred,
this is equivalent to showing that Ev Z holds, which directly follows from
Ev_0.

• Otherwise, the evidence must have the form Ev_SS {n=n'} e', where
n = S (S n') and e' is evidence for Ev n'. We must then show that
Ev (pred (pred (S (S n')))) holds, which, after simplification, follows
directly from e'.

Suppose that we wanted to prove the following variation of ev_minus2:

evSS_ev : Ev (S (S n)) ౏> Ev n

Intuitively, we know that evidence for the hypothesis cannot consist just of the
Ev_0 constructor, since Z and S are different constructors of the type Nat; hence,
Ev_SS is the only case that applies. Unfortunately, destruct is not smart enough to
realize this, and it still generates two subgoals. Even worse, in doing so, it keeps
the final goal unchanged, failing to provide any useful information for completing
the proof.

The inversion tactic, on the other hand, can detect (1) that the first case does not
apply, and (2) that the n' that appears on the Ev_SS case must be the same as n.
This allows us to complete the proof

evSS_ev (Ev_SS e') = e'

By using dependent pattern matching, we can also apply the principle of explo-
sion to “obviously contradictory” hypotheses involving inductive properties. For
example:

2. USING EVIDENCE IN PROOFS 95

one_not_even : Not (Ev 1)
one_not_even Ev_0 impossible
one_not_even (Ev_SS _) impossible

2.2. Exercise: 1 star (inversion_practice). Prove the following results
using pattern matching.

SSSSev__even : Ev (S (S (S (S n)))) ౏> Ev n
SSSSev__even e = ?SSSSev__even_rhs

even5_nonsense : Ev 5 ౏> 2 + 2 = 9
even5_nonsense e = ?even5_nonsense_rhs

□

Edit

The way we’ve used inversion here may seem a bit mysterious at first. Until
now, we’ve only used inversion on equality propositions, to utilize injectivity of
constructors or to discriminate between different constructors. But we see here
that inversion can also be applied to analyzing evidence for inductively defined
propositions.

Here’s how inversion works in general. Suppose the name I refers to an assumption
P in the current context, where P has been defined by an Inductive declaration.
Then, for each of the constructors of P, inversion I generates a subgoal in which I
has been replaced by the exact, specific conditions under which this constructor
could have been used to prove P. Some of these subgoals will be self-contradictory;
inversion throws these away. The ones that are left represent the cases that must
be proved to establish the original goal. For those, inversion adds all equations into
the proof context that must hold of the arguments given to P (e.g., S (S n') = n in
the proof of evSS_ev).

The ev_double exercise above shows that our new notion of evenness is implied by
the two earlier ones (since, by even_bool_prop in chapter Logic, we already know that
those are equivalent to each other). To show that all three coincide, we just need
the following lemma:

ev_even : Ev n ౏> (k ** n = double k)

We proceed by case analysis on Ev n. The first case can be solved trivially.

ev_even Ev_0 = (Z ** Refl)

Unfortunately, the second case is harder. We need to show (k ** S (S n') = double k,
but the only available assumption is e', which states that Ev n' holds. Since this
isn’t directly useful, it seems that we are stuck and that performing case analysis
on Ev n was a waste of time.

If we look more closely at our second goal, however, we can see that something
interesting happened: By performing case analysis on Ev n, we were able to reduce

96 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

the original result to an similar one that involves a different piece of evidence for
Ev n: e'. More formally, we can finish our proof by showing that

(k' ** n' = double k')

which is the same as the original statement, but with n' instead of n. Indeed, it is
not difficult to convince Idris that this intermediate result suffices.

ev_even (Ev_SS e') = I $ ev_even e'
where
I : (k' ** n' = double k') ౏> (k ** S (S n') = double k)
I (k' ** prf) = (S k' ** cong {f=S} $ cong {f=S} prf)

2.3. Induction on Evidence.

Edit, we’ve already just done an induction-style proof, the following is basi-
cally replacing ‘where‘ with ‘let‘

If this looks familiar, it is no coincidence: We’ve encountered similar problems
in the Induction chapter, when trying to use case analysis to prove results that
required induction. And once again the solution is… induction!

The behavior of induction on evidence is the same as its behavior on data: It
causes Idris to generate one subgoal for each constructor that could have used to
build that evidence, while providing an induction hypotheses for each recursive
occurrence of the property in question.

Let’s try our current lemma again:

ev_even' : Ev n ౏> (k ** n = double k)
ev_even' Ev_0 = (Z ** Refl)
ev_even' (Ev_SS e') =
let
(k**prf) = ev_even e'
cprf = cong {f=S} $ cong {f=S} prf

in
rewrite cprf in (S k ** Refl)

Here, we can see that Idris produced an IH that corresponds to E', the single
recursive occurrence of ev in its own definition. Since E’ mentions n’, the induction
hypothesis talks about n’, as opposed to n or some other number.

The equivalence between the second and third definitions of evenness now follows.

ev_even_iff : (Ev n) <౦> (k ** n = double k)
ev_even_iff = (ev_even, fro)
where
fro : (k ** n = double k) ౏> (Ev n)
fro (k ** prf) = rewrite prf in ev_double {n=k}

3. INDUCTIVE RELATIONS 97

As we will see in later chapters, induction on evidence is a recurring technique
across many areas, and in particular when formalizing the semantics of program-
ming languages, where many properties of interest are defined inductively.

The following exercises provide simple examples of this technique, to help you
familiarize yourself with it.

2.3.1. Exercise: 2 stars (ev_sum).

ev_sum : Ev n ౏> Ev m ౏> Ev (n + m)
ev_sum x y = ?ev_sum_rhs

□

2.4. Exercise: 4 stars, advanced, optional (ev_alternate). In general,
there may be multiple ways of defining a property inductively. For example, here’s
a (slightly contrived) alternative definition for Ev:

data Ev' : Nat ౏> Type where
Ev'_0 : Ev' Z
Ev'_2 : Ev' 2
Ev'_sum : Ev' n ౏> Ev' m ౏> Ev' (n + m)

Prove that this definition is logically equivalent to the old one. (You may want to
look at the previous theorem when you get to the induction step.)

ev'_ev : (Ev' n) <౦> Ev n
ev'_ev = ?ev__ev_rhs

□

2.5. Exercise: 3 stars, advanced, recommended (ev_ev__ev). Find-
ing the appropriate thing to do induction on is a bit tricky here:

ev_ev__ev : Ev (n+m) ౏> Ev n ౏> Ev m
ev_ev__ev x y = ?ev_ev__ev_rhs

□
2.5.1. Exercise: 3 stars, optional (ev_plus_plus). This exercise just requires

applying existing lemmas. No induction or even case analysis is needed, though
some of the rewriting may be tedious.

ev_plus_plus : Ev (n+m) ౏> Ev (n+p) ౏> Ev (m+p)
ev_plus_plus x y = ?ev_plus_plus_rhs

□

3. Inductive Relations

A proposition parameterized by a number (such as Ev) can be thought of as a
property – i.e., it defines a subset of Nat, namely those numbers for which the
proposition is provable. In the same way, a two-argument proposition can be

98 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

thought of as a relation – i.e., it defines a set of pairs for which the proposition is
provable.

One useful example is the “less than or equal to” relation on numbers.

The following definition should be fairly intuitive. It says that there are two ways
to give evidence that one number is less than or equal to another: either observe
that they are the same number, or give evidence that the first is less than or equal
to the predecessor of the second.

data Le : Nat ౏> Nat ౏> Type where
Le_n : Le n n
Le_S : Le n m ౏> Le n (S m)

syntax [m] ”యర'” [n] = Le m n

Proofs of facts about యర' using the constructors Le_n and Le_S follow the same
patterns as proofs about properties, like Ev above. We can apply the constructors
to prove యర' goals (e.g., to show that 3యర'3 or 3యర'6), and we can use pattern
matching to extract information from యర' hypotheses in the context (e.g., to prove
that (2యర'1) ౏> 2+2=5.)

Here are some sanity checks on the definition. (Notice that, although these are
the same kind of simple “unit tests” as we gave for the testing functions we wrote
in the first few lectures, we must construct their proofs explicitly – Refl doesn’t do
the job, because the proofs aren’t just a matter of simplifying computations.)

test_le1 : 3 యర' 3
test_le1 = Le_n

test_le2 : 3 యర' 6
test_le2 = Le_S $ Le_S $ Le_S Le_n

test_le3 : (2యర'1) ౏> 2+2=5
test_le3 (Le_S Le_n) impossible
test_le3 (Le_S (Le_S _)) impossible

The “strictly less than” relation n < m can now be defined in terms of Le.

Lt : (n, m : Nat) ౏> Type
Lt n m = Le (S n) m

syntax [m] ”<'” [n] = Lt m n

Here are a few more simple relations on numbers:

data Square_of : Nat ౏> Nat ౏> Type where
Sq : Square_of n (n * n)

data Next_nat : Nat ౏> Nat ౏> Type where
Nn : Next_nat n (S n)

3. INDUCTIVE RELATIONS 99

data Next_even : Nat ౏> Nat ౏> Type where
Ne_1 : Ev (S n) ౏> Next_even n (S n)
Ne_2 : Ev (S (S n)) ౏> Next_even n (S (S n))

3.0.1. Exercise: 2 stars, optional (total_relation). Define an inductive binary
relation Total_relation that holds between every pair of natural numbers.

-- FILL IN HERE

□

3.1. Exercise: 2 stars, optional (empty_relation). Define an inductive
binary relation Empty_relation (on numbers) that never holds.

--FILL IN HERE

□
3.1.1. Exercise: 3 stars, optional (le_exercises). Here are a number of facts

about the యర' and <' relations that we are going to need later in the course. The
proofs make good practice exercises.

le_trans : (m యర' n) ౏> (n యర' o) ౏> (m యర' o)
le_trans x y = ?le_trans_rhs

O_le_n : Z యర' n
O_le_n = ?O_le_n_rhs

n_le_m__Sn_le_Sm : (n యర' m) ౏> ((S n) యర' (S m))
n_le_m__Sn_le_Sm x = ?n_le_m__Sn_le_Sm_rhs

Sn_le_Sm__n_le_m : ((S n) యర' (S m)) ౏> (n యర' m)
Sn_le_Sm__n_le_m x = ?Sn_le_Sm__n_le_m_rhs

le_plus_l : a యర' (a + b)
le_plus_l = ?le_plus_l_rhs

plus_lt : ((n1 + n2) <' m) ౏> (n1 <' m, n2 <' m)
plus_lt x = ?plus_lt_rhs

lt_S : (n <' m) ౏> (n <' S m)
lt_S x = ?lt_S_rhs

lte_complete : lte n m = True ౏> (n యర' m)
lte_complete prf = ?lte_complete_rhs

Hint: The next one may be easiest to prove by induction on m.

lte_correct : (n యర' m) ౏> lte n m = True
lte_correct x = ?lte_correct_rhs

Hint: This theorem can easily be proved without using induction.

100 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

lte_true_trans : lte n m = True ౏> lte m o = True ౏> lte n o = True
lte_true_trans prf prf1 = ?lte_true_trans_rhs

3.1.2. Exercise: 2 stars, optional (lte_iff).

lte_iff : (lte n m = True) <౦> (n యర' m)
lte_iff = ?lte_iff_rhs

□

namespace R

3.1.3. Exercise: 3 stars, recommended (R_provability). We can define three-
place relations, four-place relations, etc., in just the same way as binary relations.
For example, consider the following three-place relation on numbers:

data R : Nat ౏> Nat ౏> Nat ౏> Type where
C1 : R 0 0 0
C2 : R m n o ౏> R (S m) n (S o)
C3 : R m n o ౏> R m (S n) (S o)
C4 : R (S m) (S n) (S (S o)) ౏> R m n o
C5 : R m n o ౏> R n m o

Which of the following propositions are provable?

• R 1 1 2

• R 2 2 6

• If we dropped constructor C5 from the definition of R, would the set of
provable propositions change? Briefly (1 sentence) explain your answer.

• If we dropped constructor C4 from the definition of R, would the set of
provable propositions change? Briefly (1 sentence) explain your answer.

-- FILL IN HERE

□

3.1.4. Exercise: 3 stars, optional (R_fact). The relation R above actually en-
codes a familiar function. Figure out which function; then state and prove this
equivalence in Idris?

fR : Nat ౏> Nat ౏> Nat
fR k j = ?fR_rhs

R_equiv_fR : (R m n o) <౦> (fR m n = o)
R_equiv_fR = ?R_equiv_fR_rhs

□

3.2. Exercise: 4 stars, advanced (subsequence). A list is a subsequence
of another list if all of the elements in the first list occur in the same order in the
second list, possibly with some extra elements in between. For example,

4. CASE STUDY: REGULAR EXPRESSIONS 101

[1,2,3]

is a subsequence of each of the lists

[1,2,3]
[1,1,1,2,2,3]
[1,2,7,3]
[5,6,1,9,9,2,7,3,8]

but it is not a subsequence of any of the lists

[1,2]
[1,3]
[5,6,2,1,7,3,8]

• Define an inductive type Subseq on List Nat that captures what it means
to be a subsequence. (Hint: You’ll need three cases.)

• Prove subseq_refl that subsequence is reflexive, that is, any list is a sub-
sequence of itself.

• Prove subseq_app that for any lists l1, l2, and l3, if l1 is a subsequence of
l2, then l1 is also a subsequence of l2 ++ l3.

• (Optional, harder) Prove subseq_trans that subsequence is transitive – that
is, if l1 is a subsequence of l2 and l2 is a subsequence of l3, then l1 is a
subsequence of l3. Hint: choose your induction carefully!

-- FILL IN HERE

□

3.2.1. Exercise: 2 stars, optional (R_provability2). Suppose we give Idris the
following definition:

data R' : Nat ౏> List Nat ౏> Type where
C1' : R' 0 []
C2' : R' n l ౏> R' (S n) (n ௝௞ l)
C3' : R' (S n) l ౏> R' n l

Which of the following propositions are provable?

• R' 2 [1,0]

• R' 1 [1,2,1,0]

• R' 6 [3,2,1,0]

□

4. Case Study: Regular Expressions

The Ev property provides a simple example for illustrating inductive definitions
and the basic techniques for reasoning about them, but it is not terribly exciting –
after all, it is equivalent to the two non-inductive of evenness that we had already

102 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

seen, and does not seem to offer any concrete benefit over them. To give a better
sense of the power of inductive definitions, we now show how to use them to model
a classic concept in computer science: regular expressions.

Regular expressions are a simple language for describing strings, defined as follows:

data Reg_exp : (t : Type) ౏> Type where
EmptySet : Reg_exp t
EmptyStr : Reg_exp t
Chr : t ౏> Reg_exp t
App : Reg_exp t ౏> Reg_exp t ౏> Reg_exp t
Union : Reg_exp t ౏> Reg_exp t ౏> Reg_exp t
Star : Reg_exp t ౏> Reg_exp t

Note that this definition is polymorphic: Regular expressions in Reg_exp t describe
strings with characters drawn fromt – that is, lists of elements of t.

(We depart slightly from standard practice in that we do not require the type t to
be finite. This results in a somewhat different theory of regular expressions, but
the difference is not significant for our purposes.)

We connect regular expressions and strings via the following rules, which define
when a regular expression matches some string:

• The expression EmptySet does not match any string.

• The expression EmptyStr matches the empty string [].

• The expression Chr x matches the one-character string [x].

• If re1 matches s1, and re2 matches s2, then App re1 re2 matches s1 ++ s2.

• If at least one of re1 and re2 matches s, then Union re1 re2 matches s.

• Finally, if we can write some string s as the concatenation of a sequence
of strings s = s_1 ++ ... ++ s_k, and the expression re matches each one of
the strings s_i, then Star re matches s.

As a special case, the sequence of strings may be empty, so Star re always
matches the empty string [] no matter what re is.

We can easily translate this informal definition into a data one as follows:

data Exp_match : List t ౏> Reg_exp t ౏> Type where
MEmpty : Exp_match [] EmptyStr
MChar : Exp_match [x] (Chr x)
MApp : Exp_match s1 re1 ౏> Exp_match s2 re2 ౏>

Exp_match (s1 ++ s2) (App re1 re2)
MUnionL : Exp_match s1 re1 ౏>

Exp_match s1 (Union re1 re2)
MUnionR : Exp_match s2 re2 ౏>

Exp_match s2 (Union re1 re2)
MStar0 : Exp_match [] (Star re)
MStarApp : Exp_match s1 re ౏>

4. CASE STUDY: REGULAR EXPRESSIONS 103

Exp_match s2 (Star re) ౏>
Exp_match (s1 ++ s2) (Star re)

Again, for readability, we can also display this definition using inference-rule no-
tation. At the same time, let’s introduce a more readable infix notation.

syntax [s] ”=௼” [re] = (Exp_match s re)

MEmpty
[] =௼ EmptyStr

MChar
[x] =௼ Chr x

s1 =௼ re1 s2 =௼ r2 MApp
s1 ++ s2 =௼ App re1 re2

s1 =௼ re1 MUnionL
s1 =௼ Union re1 re2

s2 =௼ re2 MUnionR
s2 =௼ Union re1 re2

MStar0
[] =௼ Star re

s1 =௼ re s2 =௼ Star re MStarApp
s1 ++ s2 =௼ Star re

Notice that these rules are not quite the same as the informal ones that we gave
at the beginning of the section. First, we don’t need to include a rule explicitly
stating that no string matches EmptySet; we just don’t happen to include any rule
that would have the effect of some string matching EmptySet. (Indeed, the syntax
of inductive definitions doesn’t even allow us to give such a “negative rule.”)

Second, the informal rules for Union and Star correspond to two constructors each:
MUnionL / MUnionR, and MStar0 / MStarApp. The result is logically equivalent to the
original rules but more convenient to use in Idris, since the recursive occurrences
of Exp_match are given as direct arguments to the constructors, making it easier to
perform induction on evidence. (The exp_match_ex1 and exp_match_ex2 exercises below
ask you to prove that the constructors given in the inductive declaration and the
ones that would arise from a more literal transcription of the informal rules are
indeed equivalent.)

Let’s illustrate these rules with a few examples.

reg_exp_ex1 : [1] =௼ (Chr 1)
reg_exp_ex1 = MChar

reg_exp_ex2 : [1,2] =௼ (App (Chr 1) (Chr 2))
reg_exp_ex2 = MApp {s1=[1]} {s2=[2]} MChar MChar

104 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

Notice how the last example applies MApp to the strings [1] and [2] directly. While
the goal mentions [1,2] instead of [1] ++ [2], Idris is able to figure out how to split
the string on its own, so we can drop the implicits:

reg_exp_ex2 : [1,2] =௼ (App (Chr 1) (Chr 2))
reg_exp_ex2 = MApp MChar MChar

Using pattern matching, we can also show that certain strings do not match a
regular expression:

reg_exp_ex3 : Not ([1,2] =௼ (Chr 1))
reg_exp_ex3 MEmpty impossible
reg_exp_ex3 MChar impossible
reg_exp_ex3 (MApp _ _) impossible
reg_exp_ex3 (MUnionL _) impossible
reg_exp_ex3 (MUnionR _) impossible
reg_exp_ex3 MStar0 impossible
reg_exp_ex3 (MStarApp _ _) impossible

We can define helper functions to help write down regular expressions. The
reg_exp_of_list function constructs a regular expression that matches exactly the
list that it receives as an argument:

reg_exp_of_list : List t ౏> Reg_exp t
reg_exp_of_list [] = EmptyStr
reg_exp_of_list (x ௝௞ xs) = App (Chr x) (reg_exp_of_list xs)

reg_exp_ex4 : [1,2,3] =௼ (reg_exp_of_list [1,2,3])
reg_exp_ex4 = MApp MChar $ MApp MChar $ MApp MChar MEmpty

We can also prove general facts about Exp_match. For instance, the following lemma
shows that every string s that matches re also matches Star re.

MStar1 : (s =௼ re) ౏> (s =௼ Star re)
MStar1 {s} h =
rewrite sym $ appendNilRightNeutral s in
MStarApp h MStar0

(Note the use of appendNilRightNeutral to change the goal of the theorem to exactly
the same shape expected by MStarApp.)

4.0.1. Exercise: 3 stars (exp_match_ex1). The following lemmas show that
the informal matching rules given at the beginning of the chapter can be obtained
from the formal inductive definition.

empty_is_empty : Not (s =௼ EmptySet)
empty_is_empty = ?empty_is_empty_rhs

MUnion' : (s =௼ re1, s =௼ re2) ౏> s =௼ Union re1 re2
MUnion' m = ?MUnion__rhs

4. CASE STUDY: REGULAR EXPRESSIONS 105

The next lemma is stated in terms of the fold function from the Poly chapter: If
ss : List (List t) represents a sequence of strings s1, ..., sn, then fold (++) ss []
is the result of concatenating them all together.

Copied from Poly, cannot import it due to tuple sugar issues

fold : (f : x ౏> y ౏> y) ౏> (l : List x) ౏> (b : y) ౏> y
fold f [] b = b
fold f (h௝௞t) b = f h (fold f t b)

MStar' : ((s : List t) ౏> (In s ss) ౏> (s =௼ re)) ౏>
(fold (++) ss []) =௼ Star re

MStar' f = ?MStar__rhs

□

4.0.2. Exercise: 4 stars (reg_exp_of_list). Prove that reg_exp_of_list satisfies
the following specification:

reg_exp_of_list_spec : (s1 =௼ reg_exp_of_list s2) <౦> (s1 = s2)
reg_exp_of_list_spec = ?reg_exp_of_list_spec_rhs

□

Since the definition of Exp_match has a recursive structure, we might expect that
proofs involving regular expressions will often require induction on evidence. For
example, suppose that we wanted to prove the following intuitive result: If a
regular expression re matches some string s, then all elements of s must occur
somewhere in re. To state this theorem, we first define a function re_chars that
lists all characters that occur in a regular expression:

re_chars : (re : Reg_exp t) ౏> List t
re_chars EmptySet = []
re_chars EmptyStr = []
re_chars (Chr x) = [x]
re_chars (App re1 re2) = re_chars re1 ++ re_chars re2
re_chars (Union re1 re2) = re_chars re1 ++ re_chars re2
re_chars (Star re) = re_chars re

re_star : re_chars (Star re) = re_chars re
re_star = Refl

We can then phrase our theorem as follows:

Some unfortunate implicit plumbing

destruct : In x (s1 ++ s2) ౏> (In x s1) `Either` (In x s2)
destruct {x} {s1} {s2} = fst $ in_app_iff {a=x} {l=s1} {l'=s2}

construct : (In x (re_chars re1)) `Either` (In x (re_chars re2)) ౏>
In x ((re_chars re1) ++ (re_chars re2))

106 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

construct {x} {re1} {re2} =
snd $ in_app_iff {a=x} {l=(re_chars re1)} {l'=(re_chars re2)}

in_re_match : (s =௼ re) ౏> In x s ౏> In x (re_chars re)
in_re_match MEmpty prf = prf
in_re_match MChar prf = prf
in_re_match (MApp m1 m2) prf = construct $ case destruct prf of

Left prf1 ౬> Left $ in_re_match m1 prf1
Right prf2 ౬> Right $ in_re_match m2 prf2

in_re_match (MUnionL ml) prf = construct $ Left $ in_re_match ml prf
in_re_match (MUnionR mr) prf = construct $ Right $ in_re_match mr prf
in_re_match MStar0 prf = absurd prf
in_re_match (MStarApp m ms) prf = case destruct prf of

Edit

Something interesting happens in the MStarApp case. We obtain two induction hy-
potheses: One that applies when x occurs in s1 (which matches re), and a second
one that applies when x occurs in s2 (which matches Star re). This is a good illus-
tration of why we need induction on evidence for Exp_match, as opposed to re: The
latter would only provide an induction hypothesis for strings that match re, which
would not allow us to reason about the case In x s2.

Left prf' ౬> in_re_match m prf'
Right prfs ౬> in_re_match ms prfs

4.0.3. Exercise: 4 stars (re_not_empty). Write a recursive function
re_not_empty that tests whether a regular expression matches some string. Prove
that your function is correct.

re_not_empty : (re : Reg_exp t) ౏> Bool
re_not_empty re = ?re_not_empty_rhs

re_not_empty_correct : (s ** s =௼ re) <౦> re_not_empty re = True
re_not_empty_correct = ?re_not_empty_correct_rhs

□

4.1. The remember Tactic.

Rewrite the section, dependent pattern matching figures all of this out

One potentially confusing feature of the induction tactic is that it happily lets you
try to set up an induction over a term that isn’t sufficiently general. The effect
of this is to lose information (much as destruct can do), and leave you unable to
complete the proof. Here’s an example:

star_app : (s1 =௼ Star re) ౏> (s2 =௼ Star re) ౏> (s1 ++ s2) =௼ Star re
star_app MStar0 m2 = m2
star_app {s2} (MStarApp {s1=s11} {s2=s21} m ms) m2 =

4. CASE STUDY: REGULAR EXPRESSIONS 107

rewrite sym $ appendAssociative s11 s21 s2 in
MStarApp m (star_app ms m2)

Just doing an inversion on H1 won’t get us very far in the recursive cases. (Try
it!). So we need induction. Here is a naive first attempt:

induction H1
as [|x'|s1 re1 s2' re2 Hmatch1 IH1 Hmatch2 IH2

|s1 re1 re2 Hmatch IH|re1 s2' re2 Hmatch IH
|re''|s1 s2' re'' Hmatch1 IH1 Hmatch2 IH2].

But now, although we get seven cases (as we would expect from the definition
of Exp_match), we have lost a very important bit of information from H1: the
fact that s1 matched something of the form Star re. This means that we have to
give proofs for all seven constructors of this definition, even though all but two of
them (MStar0 and MStarApp) are contradictory. We can still get the proof to go
through for a few constructors, such as MEmpty…

- (* MEmpty *)
simpl. intros H. apply H.

… but most cases get stuck. For MChar, for instance, we must show that

s2 =௼ Char x' ౏> x' ௝௞ s2 =௼ Char x',

which is clearly impossible.

- (* MChar. Stuck... *)
Abort.

The problem is that induction over a Type hypothesis only works properly with
hypotheses that are completely general, i.e., ones in which all the arguments are
variables, as opposed to more complex expressions, such as Star re.

(In this respect, induction on evidence behaves more like destruct than like inver-
sion.)

We can solve this problem by generalizing over the problematic expressions with
an explicit equality:

Lemma star_app: forall T (s1 s2 : list T) (re re' : Reg_exp T),
s1 =௼ re' ౏>
re' = Star re ౏>
s2 =௼ Star re ౏>
s1 ++ s2 =௼ Star re.

We can now proceed by performing induction over evidence directly, because the
argument to the first hypothesis is sufficiently general, which means that we can
discharge most cases by inverting the re’ = Star re equality in the context.

This idiom is so common that Idris provides a tactic to automatically generate
such equations for us, avoiding thus the need for changing the statements of our
theorems.

108 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

Invoking the tactic remember e as x causes Idris to (1) replace all occurrences of
the expression e by the variable x, and (2) add an equation x = e to the context.
Here’s how we can use it to show the above result:

Abort.

Lemma star_app: forall T (s1 s2 : list T) (re : Reg_exp T),
s1 =௼ Star re ౏>
s2 =௼ Star re ౏>
s1 ++ s2 =௼ Star re.

Proof.
intros T s1 s2 re H1.
remember (Star re) as re'.

We now have Heqre’ : re’ = Star re.

generalize dependent s2.
induction H1
as [|x'|s1 re1 s2' re2 Hmatch1 IH1 Hmatch2 IH2

|s1 re1 re2 Hmatch IH|re1 s2' re2 Hmatch IH
|re''|s1 s2' re'' Hmatch1 IH1 Hmatch2 IH2].

The Heqre’ is contradictory in most cases, which allows us to conclude immediately.

- (* MEmpty *) inversion Heqre'.
- (* MChar *) inversion Heqre'.
- (* MApp *) inversion Heqre'.
- (* MUnionL *) inversion Heqre'.
- (* MUnionR *) inversion Heqre'.

The interesting cases are those that correspond to Star. Note that the induction
hypothesis IH2 on the MStarApp case mentions an additional premise Star re” =
Star re’, which results from the equality generated by remember.

- (* MStar0 *)
inversion Heqre'. intros s H. apply H.

- (* MStarApp *)
inversion Heqre'. rewrite H0 in IH2, Hmatch1.
intros s2 H1. rewrite <౐ app_assoc.
apply MStarApp.
+ apply Hmatch1.
+ apply IH2.
* reflexivity.
* apply H1.

Qed.

4.1.1. Exercise: 4 stars (exp_match_ex2). The MStar'' lemma below (com-
bined with its converse, the MStar' exercise above), shows that our definition of
Exp_match for Star is equivalent to the informal one given previously.

4. CASE STUDY: REGULAR EXPRESSIONS 109

MStar'' : (s =௼ Star re) ౏>
(ss : List (List t) **

(s = fold (++) ss [], (s': List t) ౏> In s' ss ౏> s' =௼ re)
)

MStar'' m = ?MStar___rhs

□

4.1.2. Exercise: 5 stars, advanced (pumping). One of the first really interesting
theorems in the theory of regular expressions is the so-called pumping lemma, which
states, informally, that any sufficiently long string s matching a regular expression
re can be “pumped” by repeating some middle section of s an arbitrary number of
times to produce a new string also matching re.

To begin, we need to define “sufficiently long.” Since we are working in a construc-
tive logic, we actually need to be able to calculate, for each regular expression re,
the minimum length for strings s to guarantee “pumpability.”

namespace Pumping

pumping_constant : (re : Reg_exp t) ౏> Nat
pumping_constant EmptySet = 0
pumping_constant EmptyStr = 1
pumping_constant (Chr _) = 2
pumping_constant (App re1 re2) =
pumping_constant re1 + pumping_constant re2

pumping_constant (Union re1 re2) =
pumping_constant re1 + pumping_constant re2

pumping_constant (Star _) = 1

Next, it is useful to define an auxiliary function that repeats a string (appends it
to itself) some number of times.

napp : (n : Nat) ౏> (l : List t) ౏> List t
napp Z _ = []
napp (S k) l = l ++ napp k l

napp_plus: (n, m : Nat) ౏> (l : List t) ౏>
napp (n + m) l = napp n l ++ napp m l

napp_plus Z _ _ = Refl
napp_plus (S k) m l =
rewrite napp_plus k m l in
appendAssociative l (napp k l) (napp m l)

Now, the pumping lemma itself says that, if s =௼ re and if the length of s is at least
the pumping constant of re, then s can be split into three substrings s1 ++ s2 ++ s3
in such a way that s2 can be repeated any number of times and the result, when
combined with s1 and s3 will still match re. Since s2 is also guaranteed not to be
the empty string, this gives us a (constructive!) way to generate strings matching
re that are as long as we like.

110 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

pumping : (s =௼ re) ౏> ((pumping_constant re) యర' (length s)) ౏>
(s1 ** s2 ** s3 ** (s = s1 ++ s2 ++ s3

, Not (s2 = [])
, (m:Nat) ౏> (s1 ++ napp m s2 ++ s3) =௼ re
))

Edit hint

To streamline the proof (which you are to fill in), the omega tactic, which is enabled
by the following Require, is helpful in several places for automatically completing
tedious low-level arguments involving equalities or inequalities over natural num-
bers. We’ll return to omega in a later chapter, but feel free to experiment with it
now if you like. The first case of the induction gives an example of how it is used.

pumping m le = ?pumping_rhs

5. Case Study: Improving Reflection

We’ve seen in the Logic chapter that we often need to relate boolean computations
to statements in Type. But performing this conversion in the way we did it there
can result in tedious proof scripts. Consider the proof of the following theorem:

filter_not_empty_In : {n : Nat} ౏> Not (filter ((తథ) n) l = []) ౏> In n l
filter_not_empty_In {l=[]} contra = contra Refl
filter_not_empty_In {l=(x௝௞_)} {n} contra with (n తథ x) proof h

filter_not_empty_In contra | True =
Left $ sym $ beq_nat_true $ sym h

filter_not_empty_In contra | False =
Right $ filter_not_empty_In contra

In the second case we explicitly apply the beq_nat_true lemma to the equation gener-
ated by doing a dependent match on n తథ x, to convert the assumption n తథ x = True
into the assumption n = m.

We can streamline this by defining an inductive proposition that yields a bet-
ter case-analysis principle for n తథ m. Instead of generating an equation such as
n తథ m = True, which is generally not directly useful, this principle gives us right
away the assumption we really need: n = m.

We’ll actually define something a bit more general, which can be used with arbi-
trary properties (and not just equalities):

Update the text: seems that additional (b=...) constructor parameter is needed
for this to work in Idris.

data Reflect : Type ౏> Bool ౏> Type where
ReflectT : (p : Type) ౏> (b=True) ౏> Reflect p b
ReflectF : (p : Type) ౏> (Not p) ౏> (b=False) ౏> Reflect p b

5. CASE STUDY: IMPROVING REFLECTION 111

Before explaining this, let’s rearrange it a little: Since the types of both ReflectT
and ReflectF begin with (p : Type), we can make the definition a bit more readable
and easier to work with by making p a parameter of the whole data declaration.

data Reflect : (p : Type) ౏> (b : Bool) ౏> Type where
ReflectT : p ౏> (b=True) ౏> Reflect p b
ReflectF : (Not p) ౏> (b=False) ౏> Reflect p b

The reflect property takes two arguments: a proposition p and a boolean b. Intu-
itively, it states that the property p is reflected in (i.e., equivalent to) the boolean
b: p holds if and only if b = True. To see this, notice that, by definition, the only
way we can produce evidence that Reflect p True holds is by showing that p is true
and using the ReflectT constructor. If we invert this statement, this means that it
should be possible to extract evidence for p from a proof of Reflect p True. Con-
versely, the only way to show Reflect p False is by combining evidence for Not p
with the ReflectF constructor.

It is easy to formalize this intuition and show that the two statements are indeed
equivalent:

iff_reflect : (p <౦> (b = True)) ౏> Reflect p b
iff_reflect {b = False} (pb, _) = ReflectF (uninhabited . pb) Refl
iff_reflect {b = True} (_, bp) = ReflectT (bp Refl) Refl

5.0.1. Exercise: 2 stars, recommended (reflect_iff).

reflect_iff : Reflect p b ౏> (p <౦> (b = True))
reflect_iff x = ?reflect_iff_rhs

□
The advantage of Reflect over the normal “if and only if” connective is that, by
destructing a hypothesis or lemma of the form Reflect p b, we can perform case
analysis on b while at the same time generating appropriate hypothesis in the two
branches (p in the first subgoal and Not p in the second).

beq_natP : {n, m : Nat} ౏> Reflect (n = m) (n తథ m)
beq_natP {n} {m} = iff_reflect $ iff_sym $ beq_nat_true_iff n m

Edit - we basically trade the invocation of beq_nat_true in Left for an indirect
rewrite in Right

The new proof of filter_not_empty_In now goes as follows. Notice how the calls to
destruct and apply are combined into a single call to destruct.

(To see this clearly, look at the two proofs of filter_not_empty_In with Idris and
observe the differences in proof state at the beginning of the first case of the
destruct.)

filter_not_empty_In' : {n : Nat} ౏> Not (filter ((తథ) n) l = []) ౏> In n l
filter_not_empty_In' {l=[]} contra = contra Refl
filter_not_empty_In' {n} {l=(x௝௞xs)} contra with (beq_natP {n} {m=x})
filter_not_empty_In' _ | (ReflectT eq _) = Left $ sym eq

112 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

filter_not_empty_In' {n} {l=(x௝௞xs)} contra | (ReflectF _ notbeq) =
let

How to rewrite more neatly here?

contra' = replace notbeq contra
{P = \a ౬>

Not ((if a
then x ௝௞ filter ((తథ) n) xs
else filter ((తథ) n) xs) = [])}

in
Right $ filter_not_empty_In' contra'

5.0.2. Exercise: 3 stars, recommended (beq_natP_practice). Use beq_natP as
above to prove the following:

count : (n : Nat) ౏> (l : List Nat) ౏> Nat
count _ [] = 0
count n (x ௝௞ xs) = (if n తథ x then 1 else 0) + count n xs

beq_natP_practice : count n l = 0 ౏> Not (In n l)
beq_natP_practice prf = ?beq_natP_practice_rhs

□
This technique gives us only a small gain in convenience for the proofs we’ve seen
here, but using Reflect consistently often leads to noticeably shorter and clearer
scripts as proofs get larger. We’ll see many more examples in later chapters.

Add http://math-comp.github.io/math-comp/ as a link

The use of the reflect property was popularized by SSReflect, a Coq library that
has been used to formalize important results in mathematics, including as the
4-color theorem and the Feit-Thompson theorem. The name SSReflect stands for
small-scale reflection, i.e., the pervasive use of reflection to simplify small proof
steps with boolean computations.

6. Additional Exercises

6.0.1. Exercise: 3 stars, recommended (nostutter). Formulating inductive def-
initions of properties is an important skill you’ll need in this course. Try to solve
this exercise without any help at all.

We say that a list “stutters” if it repeats the same element consecutively. The
property “Nostutter mylist” means that mylist does not stutter. Formulate an in-
ductive definition for Nostutter. (This is different from the NoDup property in the
exercise below; the sequence [1,4,1] repeats but does not stutter.)

data Nostutter : List t ౏> Type where
-- FILL IN HERE
RemoveMe : Nostutter [] -- needed for typechecking, data shouldn't be empty

6. ADDITIONAL EXERCISES 113

Make sure each of these tests succeeds, but feel free to change the suggested proof
(in comments) if the given one doesn’t work for you. Your definition might be
different from ours and still be correct, in which case the examples might need a
different proof. (You’ll notice that the suggested proofs use a number of tactics
we haven’t talked about, to make them more robust to different possible ways of
defining Nostutter. You can probably just uncomment and use them as-is, but you
can also prove each example with more basic tactics.)

test_nostutter_1 : Nostutter [3,1,4,1,5,6]
test_nostutter_1 = ?test_nostutter_1_rhs

(*
Proof. repeat constructor; apply beq_nat_false_iff; auto.
Qed.

*)

test_nostutter_2 : Nostutter []
test_nostutter_2 = ?test_nostutter_2_rhs

(*
Proof. repeat constructor; apply beq_nat_false_iff; auto.
Qed.

*)

test_nostutter_3 : Nostutter [5]
test_nostutter_3 = ?test_nostutter_3_rhs

(*
Proof. repeat constructor; apply beq_nat_false; auto. Qed.

*)

test_nostutter_4 : Not (Nostutter [3,1,1,4])
test_nostutter_4 = ?test_nostutter_4_rhs

(*
Proof. intro.
repeat match goal with
h: nostutter _ |- _ ౬> inversion h; clear h; subst

end.
contradiction H1; auto. Qed.

*)

□

6.0.2. Exercise: 4 stars, advanced (filter_challenge). Let’s prove that our def-
inition of filter from the Poly chapter matches an abstract specification. Here is
the specification, written out informally in English:

A list l is an “in-order merge” of l1 and l2 if it contains all the same elements as
l1 and l2, in the same order as l1 and l2, but possibly interleaved. For example,

[1,4,6,2,3]

114 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

is an in-order merge of

[1,6,2]

and

[4,3]

Now, suppose we have a set t, a function test : t౏>Bool, and a list l of type List t.
Suppose further that l is an in-order merge of two lists, l1 and l2, such that every
item in l1 satisfies test and no item in l2 satisfies test. Then filter test l = l1.

Translate this specification into a Idris theorem and prove it. (You’ll need to begin
by defining what it means for one list to be a merge of two others. Do this with
an inductive data type, not a function.)

-- FILL IN HERE

□

6.0.3. Exercise: 5 stars, advanced, optional (filter_challenge_2). A different
way to characterize the behavior of filter goes like this: Among all subsequences
of l with the property that test evaluates to True on all their members, filter test l
is the longest. Formalize this claim and prove it.

-- FILL IN HERE

□

6.0.4. Exercise: 4 stars, optional (palindromes). A palindrome is a sequence
that reads the same backwards as forwards.

• Define an inductive proposition Pal on List t that captures what it means
to be a palindrome. (Hint: You’ll need three cases. Your definition should
be based on the structure of the list; just having a single constructor like

C : (l : List t) ౏> l = rev l ౏> Pal l

may seem obvious, but will not work very well.)

• Prove (pal_app_rev) that

(l : List t) ౏> Pal (l ++ rev l)

• Prove (pal_rev) that

(l : List t) ౏> Pal l ౏> l = rev l

-- FILL IN HERE

□

6.0.5. Exercise: 5 stars, optional (palindrome_converse). Again, the converse
direction is significantly more difficult, due to the lack of evidence. Using your
definition of Pal from the previous exercise, prove that

(l : List t) ౏> l = rev l ౏> Pal l

6. ADDITIONAL EXERCISES 115

-- FILL IN HERE

□

6.1. Exercise: 4 stars, advanced, optional (NoDup). Recall the defini-
tion of the In property from the Logic chapter, which asserts that a value x appears
at least once in a list l:

In : (x : t) ౏> (l : List t) ౏> Type
In x [] = Void
In x (x' ௝௞ xs) = (x' = x) `Either` In x xs

Your first task is to use In to define a proposition Disjoint {t} l1 l2, which should
be provable exactly when l1 and l2 are lists (with elements of type t) that have no
elements in common.

-- FILL IN HERE

Next, use In to define an inductive proposition NoDup {t} l, which should be provable
exactly when l is a list (with elements of type t) where every member is different
from every other. For example, NoDup {t=Nat} [1,2,3,4] and NoDup {t=Bool} [] should
be provable, while NoDup {t=Nat} [1,2,1] and NoDup {t=Bool} [True,True] should not be.

-- FILL IN HERE

Finally, state and prove one or more interesting theorems relating Disjoint, NoDup
and (++) (list append).

-- FILL IN HERE

□

6.1.1. Exercise: 4 stars, advanced, optional (pigeonhole principle). The pi-
geonhole principle states a basic fact about counting: if we distribute more than n
items into n pigeonholes, some pigeonhole must contain at least two items. As often
happens, this apparently trivial fact about numbers requires non-trivial machinery
to prove, but we now have enough…

First prove an easy useful lemma.

in_split : In x l ౏> (l1 ** l2 ** l = l1 ++ x ௝௞ l2)
in_split prf = ?in_split_rhs

Now define a property Repeats such that Repeats {t} l asserts that l contains at least
one repeated element (of type t).

data Repeats : List t ౏> Type where
-- FILL IN HERE
RemoveMe' : Repeats [] -- needed for typechecking, data shouldn't be empty

Now, here’s a way to formalize the pigeonhole principle. Suppose list l2 represents
a list of pigeonhole labels, and list l1 represents the labels assigned to a list of
items. If there are more items than labels, at least two items must have the same
label – i.e., list l1 must contain repeats.

116 7. INDPROP : INDUCTIVELY DEFINED PROPOSITIONS

This proof is much easier if you use the excluded_middle hypothesis to show that
In is decidable, i.e., (In x l) `Either` (Not (In x l)). However, it is also possible to
make the proof go through without assuming that In is decidable; if you manage
to do this, you will not need the excluded_middle hypothesis.

pigeonhole_principle : ((x : t) ౏> In x l1 ౏> In x l2) ౏>
((length l2) <' (length l1)) ౏>
Repeats l1

pigeonhole_principle f prf = ?pigeonhole_principle_rhs
where
excluded_middle : (p : Type) ౏> p `Either` (Not p)
excluded_middle p = really_believe_me p

□

CHAPTER 8

Maps: Total and Partial Maps

module Maps

import Logic
import IndProp

%access public export

Maps (or dictionaries) are ubiquitous data structures both generally and in the
theory of programming languages in particular; we’re going to need them in many
places in the coming chapters. They also make a nice case study using ideas we’ve
seen in previous chapters, including building data structures out of higher-order
functions (from Basics and Poly) and the use of reflection to streamline proofs (from
IndProp).

We’ll define two flavors of maps: total maps, which include a “default” element to
be returned when a key being looked up doesn’t exist, and partial maps, which
return a Maybe to indicate success or failure. The latter is defined in terms of the
former, using Nothing as the default element.

1. The Idris Standard Library

Edit

One small digression before we get to maps.

Unlike the chapters we have seen so far, this one does not Require Import the chapter
before it (and, transitively, all the earlier chapters). Instead, in this chapter and
from now, on we’re going to import the definitions and theorems we need directly
from Idris’s standard library stuff. You should not notice much difference, though,
because we’ve been careful to name our own definitions and theorems the same as
their counterparts in the standard library, wherever they overlap.

Require Import Idris.Arith.Arith.
Require Import Idris.Bool.Bool.
Require Import Idris.Strings.String.
Require Import Idris.Logic.FunctionalExtensionality.

Documentation for the standard library can be found at https://www.idris-lang.
org/docs/current/.

117

https://www.idris-lang.org/docs/current/
https://www.idris-lang.org/docs/current/

118 8. MAPS: TOTAL AND PARTIAL MAPS

The :search command is a good way to look for theorems involving objects of
specific types. Take a minute now to experiment with it.

2. Identifiers

First, we need a type for the keys that we use to index into our maps. For this
purpose, we again use the type Id from the Lists chapter. To make this chapter
self contained, we repeat its definition here, together with the equality comparison
function for Id and its fundamental property.

data Id : Type where
MkId : String ౏> Id

beq_id : (x1, x2 : Id) ౏> Bool
beq_id (MkId n1) (MkId n2) = decAsBool $ decEq n1 n2

Edit

(The function decEq comes from Idris’s string library. If you check its result type,
you’ll see that it does not actually return a Bool, but rather a type that looks
like Either (x = y) (Not (x = y)), called a {Dec}, which can be thought of as an
“evidence-carrying boolean.” Formally, an element of Dec (x=y) is either a proof
that two things are equal or a proof that they are unequal, together with a tag
indicating which. But for present purposes you can think of it as just a fancy Bool.)

beq_id_refl : (x : Id) ౏> True = beq_id x x
beq_id_refl (MkId n) with (decEq n n)
beq_id_refl _ | Yes _ = Refl
beq_id_refl _ | No contra = absurd $ contra Refl

The following useful property of beq_id follows from an analogous lemma about
strings:

beq_id_true_iff : (beq_id x y = True) <౦> x = y
beq_id_true_iff = (bto, bfro)
where
bto : (beq_id x y = True) ౏> x = y
bto {x=MkId n1} {y=MkId n2} prf with (decEq n1 n2)
bto Refl | Yes eq = cong {f=MkId} eq
bto Refl | No _ impossible

idInj : MkId x = MkId y ౏> x = y
idInj Refl = Refl

bfro : (x = y) ౏> beq_id x y = True
bfro {x=MkId n1} {y=MkId n2} prf with (decEq n1 n2)
bfro _ | Yes _ = Refl
bfro prf | No contra = absurd $ contra $ idInj prf

Similarly:

3. TOTAL MAPS 119

beq_id_false_iff : (beq_id x y = False) <౦> Not (x = y)
beq_id_false_iff = (to, fro)
where
to : (beq_id x y = False) ౏> Not (x = y)
to beqf = (snd not_true_iff_false) beqf . (snd beq_id_true_iff)

fro : (Not (x = y)) ౏> beq_id x y = False
fro noteq = (fst not_true_iff_false) $ noteq . (fst beq_id_true_iff)

3. Total Maps

Our main job in this chapter will be to build a definition of partial maps that
is similar in behavior to the one we saw in the Lists chapter, plus accompanying
lemmas about its behavior.

This time around, though, we’re going to use functions, rather than lists of key-
value pairs, to build maps. The advantage of this representation is that it offers
a more extensional view of maps, where two maps that respond to queries in the
same way will be represented as literally the same thing (the very same function),
rather than just “equivalent” data structures. This, in turn, simplifies proofs that
use maps.

We build partial maps in two steps. First, we define a type of total maps that
return a default value when we look up a key that is not present in the map.

TotalMap : Type ౏> Type
TotalMap a = Id ౏> a

Intuitively, a total map over an element type a is just a function that can be used
to look up Ids, yielding as.

The function t_empty yields an empty total map, given a default element; this map
always returns the default element when applied to any id.

t_empty : (v : a) ౏> TotalMap a
t_empty v = _ ౬> v

We can also write this as:

t_empty = const

More interesting is the update function, which (as before) takes a map m, a key x,
and a value v and returns a new map that takes x to v and takes every other key
to whatever m does.

t_update : (x : Id) ౏> (v : a) ౏> (m : TotalMap a) ౏> TotalMap a
t_update x v m = \x' ౬> if beq_id x x' then v else m x'

This definition is a nice example of higher-order programming: t_update takes a
function m and yields a new function \x' ౬> ... that behaves like the desired map.

For example, we can build a map taking Ids to Bools, where Id 3 is mapped to True
and every other key is mapped to False, like this:

120 8. MAPS: TOTAL AND PARTIAL MAPS

Seems like a wrong description in the book here

examplemap : TotalMap Bool
examplemap = t_update (MkId ”foo”) False $

t_update (MkId ”bar”) True $
t_empty False

This completes the definition of total maps. Note that we don’t need to define a
find operation because it is just function application!

update_example1 : examplemap (MkId ”baz”) = False
update_example1 = Refl

update_example2 : examplemap (MkId ”foo”) = False
update_example2 = Refl

update_example3 : examplemap (MkId ”quux”) = False
update_example3 = Refl

update_example4 : examplemap (MkId ”bar”) = True
update_example4 = Refl

To use maps in later chapters, we’ll need several fundamental facts about how
they behave. Even if you don’t work the following exercises, make sure you thor-
oughly understand the statements of the lemmas! (Some of the proofs require the
functional extensionality axiom, which is discussed in the Logic chapter.)

3.0.1. Exercise: 1 star, optional (t_apply_empty). First, the empty map re-
turns its default element for all keys:

t_apply_empty : t_empty v x = v
t_apply_empty = ?t_apply_empty_rhs

□

3.0.2. Exercise: 2 stars, optional (t_update_eq). Next, if we update a map m
at a key x with a new value v and then look up x in the map resulting from the
update, we get back v:

t_update_eq : (t_update x v m) x = v
t_update_eq = ?t_update_eq_rhs

□

3.0.3. Exercise: 2 stars, optional (t_update_neq). On the other hand, if we
update a map m at a key x1 and then look up a different key x2 in the resulting
map, we get the same result that m would have given:

t_update_neq : Not (x1 = x2) ౏> (t_update x1 v m) x2 = m x2
t_update_neq neq = ?t_update_neq_rhs

□

4. PARTIAL MAPS 121

3.0.4. Exercise: 2 stars, optional (t_update_shadow). If we update a map m
at a key x with a value v1 and then update again with the same key x and another
value v2, the resulting map behaves the same (gives the same result when applied
to any key) as the simpler map obtained by performing just the second update on
m:

t_update_shadow : t_update x v2 $ t_update x v1 m = t_update x v2 m
t_update_shadow = ?t_update_shadow_rhs

□

For the final two lemmas about total maps, it’s convenient to use the reflection
idioms introduced in chapter IndProp. We begin by proving a fundamental reflection
lemma relating the equality proposition on Ids with the boolean function beq_id.

3.0.5. Exercise: 2 stars, optional (beq_idP). Use the proof of beq_natP in chap-
ter IndProp as a template to prove the following:

beq_idP : {x, y : Id} ౏> Reflect (x = y) (beq_id x y)
beq_idP = ?beq_idP_rhs

□

Now, given Ids x1 and x2, we can use with (beq_idP x1 x2) to simultaneously per-
form case analysis on the result of beq_id x1 x2 and generate hypotheses about the
equality (in the sense of =) of x1 and x2.

3.0.6. Exercise: 2 stars (t_update_same). With the example in chapter
IndProp as a template, use beq_idP to prove the following theorem, which states
that if we update a map to assign key x the same value as it already has in m, then
the result is equal to m:

t_update_same : t_update x (m x) m = m
t_update_same = ?t_update_same_rhs

□

3.0.7. Exercise: 3 stars, recommended (t_update_permute). Use beq_idP to
prove one final property of the update function: If we update a map m at two
distinct keys, it doesn’t matter in which order we do the updates.

t_update_permute : Not (x2 = x1) ౏> t_update x1 v1 $ t_update x2 v2 m
= t_update x2 v2 $ t_update x1 v1 m

t_update_permute neq = ?t_update_permute_rhs

□

4. Partial maps

Finally, we define partial maps on top of total maps. A partial map with elements
of type a is simply a total map with elements of type Maybe a and default element
Nothing.

122 8. MAPS: TOTAL AND PARTIAL MAPS

PartialMap : Type ౏> Type
PartialMap a = TotalMap (Maybe a)

empty : PartialMap a
empty = t_empty Nothing

update : (x : Id) ౏> (v : a) ౏> (m : PartialMap a) ౏> PartialMap a
update x v m = t_update x (Just v) m

We now straightforwardly lift all of the basic lemmas about total maps to partial
maps.

apply_empty : empty {a} x = Nothing {a}
apply_empty = Refl

update_eq : (update x v m) x = Just v
update_eq {v} = t_update_eq {v=Just v}

update_neq : Not (x2 = x1) ౏> (update x2 v m) x1 = m x1
update_neq {x1} {x2} {v} = t_update_neq {x1=x2} {x2=x1} {v=Just v}

update_shadow : update x v2 $ update x v1 m = update x v2 m
update_shadow {v1} {v2} = t_update_shadow {v1=Just v1} {v2=Just v2}

update_same : m x = Just v ౏> update x v m = m
update_same prf = rewrite sym prf in t_update_same

update_permute : Not (x2 = x1) ౏> update x1 v1 $ update x2 v2 m
= update x2 v2 $ update x1 v1 m

update_permute {v1} {v2} = t_update_permute {v1=Just v1} {v2=Just v2}

CHAPTER 9

ProofObjects : The Curry-Howard
Correspondence

module ProofObjects

“Algorithms are the computational content of proofs.”

– Robert Harper

import Logic
import IndProp

We have seen that Idris has mechanisms both for programming, using inductive
data types like Nat or List and functions over these types, and for proving properties
of these programs, using inductive propositions (like Ev), implication, universal
quantification, and the like. So far, we have mostly treated these mechanisms as
if they were quite separate, and for many purposes this is a good way to think.
But we have also seen hints that Idris’s programming and proving facilities are
closely related. For example, the keyword data is used to declare both data types
and propositions, and ౏> is used both to describe the type of functions on data and
logical implication. This is not just a syntactic accident! In fact, programs and
proofs in Idris are almost the same thing. In this chapter we will study how this
works.

We have already seen the fundamental idea: provability in Idris is represented by
concrete evidence. When we construct the proof of a basic proposition, we are
actually building a tree of evidence, which can be thought of as a data structure.

If the proposition is an implication like A ౏> B, then its proof will be an evidence
transformer: a recipe for converting evidence for A into evidence for B. So at a
fundamental level, proofs are simply programs that manipulate evidence.

Question: If evidence is data, what are propositions themselves?

Answer: They are types!

Look again at the formal definition of the Ev property.

data Ev : Nat ౏> Type where
Ev_0 : Ev Z
Ev_SS : {n : Nat} ౏> Ev n ౏> Ev (S (S n))

Suppose we introduce an alternative pronunciation of “:”. Instead of “has type,”
we can say “is a proof of.” For example, the second line in the definition of Ev

123

124 9. PROOFOBJECTS : THE CURRY-HOWARD CORRESPONDENCE

declares that Ev_0 : Ev 0. Instead of “Ev_0 has type Ev 0,” we can say that “Ev_0 is
a proof of Ev 0.”

This pun between types and propositions — between : as “has type” and : as “is
a proof of” or “is evidence for” — is called the Curry-Howard correspondence. It
proposes a deep connection between the world of logic and the world of computa-
tion:

propositions ~ types
proofs ~ data values

Add http://dl.acm.org/citation.cfm?id=2699407 as a link

See [Wadler 2015] for a brief history and an up-to-date exposition.

Many useful insights follow from this connection. To begin with, it gives us a
natural interpretation of the type of the Ev_SS constructor:

λΠ> :t Ev_SS
Ev_SS : Ev n ౏> Ev (S (S n))

This can be read “Ev_SS is a constructor that takes two arguments — a number n
and evidence for the proposition Ev n — and yields evidence for the proposition
Ev (S (S n)).”

Now let’s look again at a previous proof involving Ev.

ev_4 : Ev 4
ev_4 = Ev_SS {n=2} $ Ev_SS {n=0} Ev_0

As with ordinary data values and functions, we can use the :printdef command to
see the proof object that results from this proof script.

λΠ> :printdef ev_4
ev_4 : Ev 4
ev_4 = Ev_SS (Ev_SS Ev_0)

As a matter of fact, we can also write down this proof object directly, without the
need for a separate proof script:

λΠ> Ev_SS $ Ev_SS Ev_0
Ev_SS (Ev_SS Ev_0) : Ev 4

The expression Ev_SS {n=2} $ Ev_SS {n=0} Ev_0 can be thought of as instantiating the
parameterized constructor Ev_SS with the specific arguments 2 and 0 plus the corre-
sponding proof objects for its premises Ev 2 and Ev 0. Alternatively, we can think
of Ev_SS as a primitive “evidence constructor” that, when applied to a particular
number, wants to be further applied to evidence that that number is even; its
type,

{n : Nat} ౏> Ev n ౏> Ev (S (S n))

1. PROOF SCRIPTS 125

expresses this functionality, in the same way that the polymorphic type
{x : Type} ౏> List x expresses the fact that the constructor Nil can be thought of
as a function from types to empty lists with elements of that type.

Edit or remove

We saw in the Logic chapter that we can use function application syntax to instan-
tiate universally quantified variables in lemmas, as well as to supply evidence for
assumptions that these lemmas impose. For instance:

Theorem ev_4': ev 4.
Proof.
apply (ev_SS 2 (ev_SS 0 ev_0)).

Qed.

We can now see that this feature is a trivial consequence of the status the Idris
grants to proofs and propositions: Lemmas and hypotheses can be combined in
expressions (i.e., proof objects) according to the same basic rules used for programs
in the language.

1. Proof Scripts

Rewrite, keep explanation about holes? Seems a bit late for that

The proof objects we’ve been discussing lie at the core of how Idris operates. When
Idris is following a proof script, what is happening internally is that it is gradually
constructing a proof object — a term whose type is the proposition being proved.
The expression on the right hand side of = tell it how to build up a term of the
required type. To see this process in action, let’s use the Show Proof command to
display the current state of the proof tree at various points in the following tactic
proof.

Theorem ev_4'' : ev 4.
Proof.
Show Proof.
apply ev_SS.
Show Proof.
apply ev_SS.
Show Proof.
apply ev_0.
Show Proof.

Qed.

At any given moment, Idris has constructed a term with a “hole” (indicated by
?Goal here, and so on), and it knows what type of evidence is needed to fill this
hole.

126 9. PROOFOBJECTS : THE CURRY-HOWARD CORRESPONDENCE

Each hole corresponds to a subgoal, and the proof is finished when there are no
more subgoals. At this point, the evidence we’ve built stored in the global context
under the name given in the type definition.

Tactic proofs are useful and convenient, but they are not essential: in principle,
we can always construct the required evidence by hand, as shown above. Then we
can use Definition (rather than Theorem) to give a global name directly to a piece of
evidence.

Definition ev_4''' : ev 4 ௜=
ev_SS 2 (ev_SS 0 ev_0).

All these different ways of building the proof lead to exactly the same evidence
being saved in the global environment.

Print ev_4.
(* ౺಄౮> ev_4 = ev_SS 2 (ev_SS 0 ev_0) : ev 4 *)
Print ev_4'.
(* ౺಄౮> ev_4' = ev_SS 2 (ev_SS 0 ev_0) : ev 4 *)
Print ev_4''.
(* ౺಄౮> ev_4'' = ev_SS 2 (ev_SS 0 ev_0) : ev 4 *)
Print ev_4'''.
(* ౺಄౮> ev_4''' = ev_SS 2 (ev_SS 0 ev_0) : ev 4 *)

1.0.1. Exercise: 1 star (eight_is_even).

Remove?

Give a tactic proof and a proof object showing that Ev 8.

ev_8 : Ev 8
ev_8 = ?ev_8_rhs

□

1.0.2. Quantifiers, Implications, Functions.

Edit the section

In Idris’s computational universe (where data structures and programs live), there
are two sorts of values with arrows in their types: constructors introduced by data
definitions, and functions.

Similarly, in Idris’s logical universe (where we carry out proofs), there are two
ways of giving evidence for an implication: constructors introduced by data-defined
propositions, and… functions!

For example, consider this statement:

ev_plus4 : Ev n ౏> Ev (4 + n)
ev_plus4 x = Ev_SS $ Ev_SS x

What is the proof object corresponding to ev_plus4?

2. PROGRAMMING WITH TACTICS 127

We’re looking for an expression whose type is {n: Nat} ౏> Ev n ౏> Ev (4 + n) — that
is, a function that takes two arguments (one number and a piece of evidence) and
returns a piece of evidence! Here it is:

Definition ev_plus4' : forall n, ev n ౏> ev (4 + n) ௜=
fun (n : Nat) ౬> fun (H : ev n) ౬>
ev_SS (S (S n)) (ev_SS n H).

Recall that \n ౬> blah means “the function that, given n, yields blah,” and that Idris
treats 4 + n and S (S (S (S n))) as synonyms. Another equivalent way to write this
definition is:

Definition ev_plus4'' (n : Nat) (H : ev n) : ev (4 + n) ௜=
ev_SS (S (S n)) (ev_SS n H).

Check ev_plus4''.
(* ౺಄౮> ev_plus4'' : forall n : Nat, ev n ౏> ev (4 + n) *)

When we view the proposition being proved by ev_plus4 as a function type, one
aspect of it may seem a little unusual. The second argument’s type, Ev n, mentions
the value of the first argument, n. While such dependent types are not found in con-
ventional programming languages, they can be useful in programming too, as the
recent flurry of activity in the functional programming community demonstrates.

Reword?

Notice that both implication (౏>) and quantification ((x : t) ౏> f x) correspond to
functions on evidence. In fact, they are really the same thing: ౏> is just a shorthand
for a degenerate use of quantification where there is no dependency, i.e., no need
to give a name to the type on the left-hand side of the arrow.

For example, consider this proposition:

ev_plus2 : Type
ev_plus2 = (n : Nat) ౏> (e : Ev n) ౏> Ev (n + 2)

A proof term inhabiting this proposition would be a function with two arguments:
a number n and some evidence e that n is even. But the name e for this evidence is
not used in the rest of the statement of ev_plus2, so it’s a bit silly to bother making
up a name for it. We could write it like this instead:

ev_plus2' : Type
ev_plus2' = (n : Nat) ౏> Ev n ౏> Ev (n + 2)

In general, “p ౏> q” is just syntactic sugar for “(_ : p) ౏> q”.

2. Programming with Tactics

Edit and move to an appendix about ElabReflection/Pruviloj?

128 9. PROOFOBJECTS : THE CURRY-HOWARD CORRESPONDENCE

If we can build proofs by giving explicit terms rather than executing tactic scripts,
you may be wondering whether we can build programs using tactics rather than
explicit terms. Naturally, the answer is yes!

Definition add1 : Nat ౏> Nat.
intro n.
Show Proof.
apply S.
Show Proof.
apply n. Defined.

Print add1.
(* ౺౮>

add1 = fun n : Nat ౬> S n
: Nat ౏> Nat

*)

Compute add1 2.
(* ౺౮> 3 : Nat *)

Notice that we terminate the Definition with a . rather than with ௜= followed by
a term. This tells Idris to enter proof scripting mode to build an object of type
Nat ౏> Nat. Also, we terminate the proof with Defined rather than Qed; this makes the
definition transparent so that it can be used in computation like a normally-defined
function. (Qed-defined objects are opaque during computation.)

This feature is mainly useful for writing functions with dependent types, which we
won’t explore much further in this book. But it does illustrate the uniformity and
orthogonality of the basic ideas in Idris.

3. Logical Connectives as Inductive Types

Inductive definitions are powerful enough to express most of the connectives and
quantifiers we have seen so far. Indeed, only universal quantification (and thus
implication) is built into Idris; all the others are defined inductively. We’ll see
these definitions in this section.

3.1. Conjunction.

Edit

To prove that (p,q) holds, we must present evidence for both p and q. Thus, it
makes sense to define a proof object for (p,q) as consisting of a pair of two proofs:
one for p and another one for q. This leads to the following definition.

data And : (p, q : Type) ౏> Type where
Conj : p ౏> q ౏> And p q

3. LOGICAL CONNECTIVES AS INDUCTIVE TYPES 129

Notice the similarity with the definition of the Prod type, given in chapter Poly;
the only difference is that Prod takes Type arguments, whereas and takes Prop
arguments.

data Prod : (x, y : Type) ౏> Type where
PPair : x ౏> y ౏> Prod x y

This should clarify why pattern matching can be used on a conjunctive hypothesis.
Case analysis allows us to consider all possible ways in which (p,q) was proved —
here just one (the Conj constructor). Similarly, the split tactic actually works for
any inductively defined proposition with only one constructor. In particular, it
works for And:

and_comm : (And p q) <౦> (And q p)
and_comm = (\(Conj x y) ౬> Conj y x,

\(Conj y x) ౬> Conj x y)

This shows why the inductive definition of and can be manipulated by tactics
as we’ve been doing. We can also use it to build proofs directly, using pattern-
matching. For instance:

and_comm'_aux : And p q ౏> And q p
and_comm'_aux (Conj x y) = Conj y x

and_comm' : (And p q) <౦> (And q p)
and_comm' {p} {q} = (and_comm'_aux {p} {q}, and_comm'_aux {p=q} {q=p})

3.1.1. Exercise: 2 stars, optional (conj_fact). Construct a proof object demon-
strating the following proposition.

conj_fact : And p q ౏> And q r ౏> And p r
conj_fact pq qr = ?conj_fact_rhs

□

3.2. Disjunction. The inductive definition of disjunction uses two construc-
tors, one for each side of the disjunct:

data Or : (p, q : Type) ౏> Type where
IntroL : p ౏> Or p q
IntroR : q ౏> Or p q

This declaration explains the behavior of pattern matching on a disjunctive hy-
pothesis, since the generated subgoals match the shape of the IntroL and IntroR
constructors.

Once again, we can also directly write proof objects for theorems involving Or,
without resorting to tactics.

3.2.1. Exercise: 2 stars, optional (or_comm).

Edit

130 9. PROOFOBJECTS : THE CURRY-HOWARD CORRESPONDENCE

Try to write down an explicit proof object for or_comm (without using Print to peek
at the ones we already defined!).

or_comm : Or p q ౏> Or q p
or_comm pq = ?or_comm_rhs

□

3.3. Existential Quantification. To give evidence for an existential quan-
tifier, we package a witness x together with a proof that x satisfies the property
p:

data Ex : (p : a ౏> Type) ౏> Type where
ExIntro : (x : a) ౏> p x ౏> Ex p

This may benefit from a little unpacking. The core definition is for a type former Ex
that can be used to build propositions of the form Ex p, where p itself is a function
from witness values in the type a to propositions. The ExIntro constructor then
offers a way of constructing evidence for Ex p, given a witness x and a proof of p x.

The more familiar form (x ** p x) desugars to an expression involving Ex:

Edit

Check ex (fun n ౬> ev n).
(* ౺಄౮> exists n : Nat, ev n

: Prop *)

Here’s how to define an explicit proof object involving Ex:

some_nat_is_even : Ex (\n ౬> Ev n)
some_nat_is_even = ExIntro 4 (Ev_SS $ Ev_SS Ev_0)

3.3.1. Exercise: 2 stars, optional (ex_ev_Sn). Complete the definition of the
following proof object:

ex_ev_Sn : Ex (\n ౬> Ev (S n))
ex_ev_Sn = ?ex_ev_Sn_rhs

□

3.4. Unit and Void. The inductive definition of the Unit proposition is simple:

data Unit : Type where
() : Unit

It has one constructor (so every proof of Unit is the same, so being given a proof
ofUnit is not informative.)

Void is equally simple — indeed, so simple it may look syntactically wrong at first
glance!

Edit, this actually is wrong, stdlib uses runElab to define it

4. EQUALITY 131

data Void : Type where

That is, Void is an inductive type with no constructors — i.e., no way to build
evidence for it.

4. Equality

Edit, it actually is built in

Even Idris’s equality relation is not built in. It has the following inductive defi-
nition. (Actually, the definition in the standard library is a small variant of this,
which gives an induction principle that is slightly easier to use.)

data PropEq : {t : Type} ౏> t ౏> t ౏> Type where
EqRefl : PropEq x x

syntax [x] ”='” [y] = PropEq x y

The way to think about this definition is that, given a set t, it defines a family of
propositions “x is equal to y,” indexed by pairs of values (x and y) from t. There
is just one way of constructing evidence for each member of this family: applying
the constructor EqRefl to a type t and a value x : t yields evidence that x is equal
to x.

Edit

We can use EqRefl to construct evidence that, for example, 2 = 2. Can we also use it
to construct evidence that 1 + 1 = 2? Yes, we can. Indeed, it is the very same piece
of evidence! The reason is that Idris treats as “the same” any two terms that are
convertible according to a simple set of computation rules. These rules, which are
similar to those used by Compute, include evaluation of function application, inlining
of definitions, and simplification of matches.

four : (2 + 2) =' (1 + 3)
four = EqRefl

The Refl that we have used to prove equalities up to now is essentially just an
application of an equality constructor.

Edit

In tactic-based proofs of equality, the conversion rules are normally hidden in uses
of simpl (either explicit or implicit in other tactics such as reflexivity). But you
can see them directly at work in the following explicit proof objects:

Definition four' : 2 + 2 = 1 + 3 ௜=
eq_refl 4.

singleton : ([]++[x]) =' (x௝௞[])
singleton = EqRefl

132 9. PROOFOBJECTS : THE CURRY-HOWARD CORRESPONDENCE

quiz6 : Ex (\x ౬> (x + 3) =' 4)
quiz6 = ExIntro 1 EqRefl

4.0.1. Exercise: 2 stars (equality__leibniz_equality). The inductive definition
of equality corresponds to Leibniz equality: what we mean when we say “x and y
are equal” is that every property p that is true of x is also true of y.

equality__leibniz_equality : (x =' y) ౏> ((p : t ౏> Type) ౏> p x ౏> p y)
equality__leibniz_equality eq p px = ?equality__leibniz_equality_rhs

□

4.0.2. Exercise: 5 stars, optional (leibniz_equality__equality). Show that, in
fact, the inductive definition of equality is equivalent to Leibniz equality:

leibniz_equality__equality : ((p : t ౏> Type) ౏> p x ౏> p y) ౏> (x =' y)
leibniz_equality__equality pxy = ?leibniz_equality__equality_rhs

□

4.1. Inversion, Again.

Edit/remove

We’ve seen inversion used with both equality hypotheses and hypotheses about
inductively defined propositions. Now that we’ve seen that these are actually the
same thing, we’re in a position to take a closer look at how inversion behaves.

In general, the inversion tactic…

• takes a hypothesis H whose type P is inductively defined, and

• for each constructor C in P’s definition,

– generates a new subgoal in which we assume H was built with C,

– adds the arguments (premises) of C to the context of the subgoal as
extra hypotheses,

– matches the conclusion (result type) of C against the current goal
and calculates a set of equalities that must hold in order for C to be
applicable,

– adds these equalities to the context (and, for convenience, rewrites
them in the goal), and

– if the equalities are not satisfiable (e.g., they involve things like
S n = Z), immediately solves the subgoal.

Example: If we invert a hypothesis built with Or, there are two constructors, so two
subgoals get generated. The conclusion (result type) of the constructor (Or p q)
doesn’t place any restrictions on the form of p or q, so we don’t get any extra
equalities in the context of the subgoal.

4. EQUALITY 133

Example: If we invert a hypothesis built with And, there is only one constructor,
so only one subgoal gets generated. Again, the conclusion (result type) of the
constructor (And p q) doesn’t place any restrictions on the form of p or q, so we
don’t get any extra equalities in the context of the subgoal. The constructor does
have two arguments, though, and these can be seen in the context in the subgoal.

Example: If we invert a hypothesis built with PropEq, there is again only one con-
structor, so only one subgoal gets generated. Now, though, the form of the EqRefl
constructor does give us some extra information: it tells us that the two arguments
to PropEq must be the same! The inversion tactic adds this fact to the context.

CHAPTER 10

Rel : Properties of Relations

module Rel

Add hyperlinks

This short (and optional) chapter develops some basic definitions and a few theo-
rems about binary relations in Idris. The key definitions are repeated where they
are actually used (in the Smallstep chapter), so readers who are already comfort-
able with these ideas can safely skim or skip this chapter. However, relations are
also a good source of exercises for developing facility with Idris’s basic reasoning
facilities, so it may be useful to look at this material just after the IndProp chapter.

import Logic
import IndProp

A binary relation on a set t is a family of propositions parameterized by two
elements of t — i.e., a proposition about pairs of elements of t.

Relation : Type ౏> Type
Relation t = t ౏> t ౏> Type

Edit, there’s n-relation Data.Rel in contrib, but no Relation

Confusingly, the Idris standard library hijacks the generic term “relation” for this
specific instance of the idea. To maintain consistency with the library, we will do
the same. So, henceforth the Idris identifier relation will always refer to a binary
relation between some set and itself, whereas the English word “relation” can refer
either to the specific Idris concept or the more general concept of a relation between
any number of possibly different sets. The context of the discussion should always
make clear which is meant.

There’s a similar concept called LTE in Prelude.Nat, but it’s defined by induction
from zero

An example relation on Nat is Le, the less-than-or-equal-to relation, which we usually
write n1 యర n2.

λΠ> the (Relation Nat) Le
Le : Nat ౏> Nat ౏> Type

Edit to show it (probably) doesn’t matter in Idris

135

136 10. REL : PROPERTIES OF RELATIONS

(Why did we write it this way instead of starting with data Le : Relation Nat ...?
Because we wanted to put the first Nat to the left of the :, which makes Idris
generate a somewhat nicer induction principle for reasoning about యర'.)

1. Basic Properties

As anyone knows who has taken an undergraduate discrete math course, there is a
lot to be said about relations in general, including ways of classifying relations (as
reflexive, transitive, etc.), theorems that can be proved generically about certain
sorts of relations, constructions that build one relation from another, etc. For
example…

1.1. Partial Functions. A relation r on a set t is a partial function if, for
every x, there is at most one y such that r x y — i.e., r x y1 and r x y2 together
imply y1 = y2.

Partial_function : (r : Relation t) ౏> Type
Partial_function {t} r = (x, y1, y2 : t) ౏> r x y1 ౏> r x y2 ౏> y1 = y2

”Earlier” = in IndProp, add hyperlink?

For example, the Next_nat relation defined earlier is a partial function.

λΠ> the (Relation Nat) Next_nat
Next_nat : Nat ౏> Nat ౏> Type

next_nat_partial_function : Partial_function Next_nat
next_nat_partial_function x (S x) (S x) Nn Nn = Refl

However, the యర' relation on numbers is not a partial function. (Assume, for a
contradiction, that యర' is a partial function. But then, since 0 యర' 0 and 0 యర' 1, it
follows that 0 = 1. This is nonsense, so our assumption was contradictory.)

le_not_a_partial_function : Not (Partial_function Le)
le_not_a_partial_function f = absurd $ f 0 0 1 Le_n (Le_S Le_n)

1.1.1. Exercise: 2 stars, optional.

Again, ”earlier” = IndProp

Show that the Total_relation defined in earlier is not a partial function.

-- FILL IN HERE

□

1.1.2. Exercise: 2 stars, optional. Show that the Empty_relation that we defined
earlier is a partial function.

--FILL IN HERE

□

1. BASIC PROPERTIES 137

1.2. Reflexive Relations. A reflexive relation on a set t is one for which
every element of t is related to itself.

Reflexive : (r : Relation t) ౏> Type
Reflexive {t} r = (a : t) ౏> r a a

le_reflexive : Reflexive Le
le_reflexive n = Le_n {n}

1.3. Transitive Relations. A relation r is transitive if r a c holds whenever
r a b and r b c do.

Transitive : (r : Relation t) ౏> Type
Transitive {t} r = (a, b, c : t) ౏> r a b ౏> r b c ౏> r a c

le_trans : Transitive Le
le_trans _ _ _ lab Le_n = lab
le_trans a b (S c) lab (Le_S lbc) = Le_S $ le_trans a b c lab lbc

lt_trans : Transitive Lt
lt_trans a b c lab lbc = le_trans (S a) (S b) c (Le_S lab) lbc

1.3.1. Exercise: 2 stars, optional. We can also prove lt_trans more laboriously
by induction, without using le_trans. Do this.

lt_trans' : Transitive Lt
-- Prove this by induction on evidence that a is less than c.
lt_trans' a b c lab lbc = ?lt_trans__rhs

□

1.3.2. Exercise: 2 stars, optional.

Not sure how is this different from lt_trans'?

Prove the same thing again by induction on c.

lt_trans'' : Transitive Lt
lt_trans'' a b c lab lbc = ?lt_trans___rhs

□

The transitivity of Le, in turn, can be used to prove some facts that will be useful
later (e.g., for the proof of antisymmetry below)…

le_Sn_le : ((S n) యర' m) ౏> (n యర' m)
le_Sn_le {n} {m} = le_trans n (S n) m (Le_S Le_n)

1.3.3. Exercise: 1 star, optional.

le_S_n : ((S n) యర' (S m)) ౏> (n యర' m)
le_S_n less = ?le_S_n_rhs

□

138 10. REL : PROPERTIES OF RELATIONS

1.3.4. Exercise: 2 stars, optional (le_Sn_n_inf). Provide an informal proof
of the following theorem:

Theorem: For every n, Not ((S n) యర' n)

A formal proof of this is an optional exercise below, but try writing an informal
proof without doing the formal proof first.

Proof:

-- FILL IN HERE

□

1.3.5. Exercise: 1 star, optional.

le_Sn_n : Not ((S n) యర' n)
le_Sn_n = ?le_Sn_n_rhs

□

Reflexivity and transitivity are the main concepts we’ll need for later chapters,
but, for a bit of additional practice working with relations in Idris, let’s look at a
few other common ones…

1.4. Symmetric and Antisymmetric Relations. A relation r is symmet-
ric if r a b implies r b a.

Symmetric : (r : Relation t) ౏> Type
Symmetric {t} r = (a, b : t) ౏> r a b ౏> r b a

1.4.1. Exercise: 2 stars, optional.

le_not_symmetric : Not (Symmetric Le)
le_not_symmetric = ?le_not_symmetric_rhs

□

A relation r is antisymmetric if r a b and r b a together imply a = b — that is, if
the only “cycles” in r are trivial ones.

Antisymmetric : (r : Relation t) ౏> Type
Antisymmetric {t} r = (a, b : t) ౏> r a b ౏> r b a ౏> a = b

1.4.2. Exercise: 2 stars, optional.

le_antisymmetric : Antisymmetric Le
le_antisymmetric = ?le_antisymmetric_rhs

□

1.4.3. Exercise: 2 stars, optional.

le_step : (n <' m) ౏> (m యర' (S p)) ౏> (n యర' p)
le_step ltnm lemsp = ?le_step_rhs

□

2. REFLEXIVE, TRANSITIVE CLOSURE 139

1.5. Equivalence Relations. A relation is an equivalence if it’s reflexive,
symmetric, and transitive.

Equivalence : (r : Relation t) ౏> Type
Equivalence r = (Reflexive r, Symmetric r, Transitive r)

1.6. Partial Orders and Preorders.

Edit

A relation is a partial order when it’s reflexive, anti-symmetric, and transitive. In
the Idris standard library it’s called just “order” for short.

Order : (r : Relation t) ౏> Type
Order r = (Reflexive r, Antisymmetric r, Transitive r)

A preorder is almost like a partial order, but doesn’t have to be antisymmetric.

Preorder : (r : Relation t) ౏> Type
Preorder r = (Reflexive r, Transitive r)

le_order : Order Le
le_order = (le_reflexive, le_antisymmetric, le_trans)

2. Reflexive, Transitive Closure

Edit

The reflexive, transitive closure of a relation r is the smallest relation that contains
r and that is both reflexive and transitive. Formally, it is defined like this in the
Relations module of the Idris standard library:

data Clos_refl_trans : (r : Relation t) ౏> Relation t where
Rt_step : r x y ౏> Clos_refl_trans r x y
Rt_refl : Clos_refl_trans r x x
Rt_trans : Clos_refl_trans r x y ౏> Clos_refl_trans r y z ౏>

Clos_refl_trans r x z

For example, the reflexive and transitive closure of the Next_nat relation coincides
with the Le relation.

next_nat_closure_is_le : (n యర' m) <౦> (Clos_refl_trans Next_nat n m)
next_nat_closure_is_le = (to, fro)
where
to : Le n m ౏> Clos_refl_trans Next_nat n m
to Le_n = Rt_refl
to (Le_S {m} le) = Rt_trans {y=m} (to le) (Rt_step Nn)
fro : Clos_refl_trans Next_nat n m ౏> Le n m
fro (Rt_step Nn) = Le_S Le_n
fro Rt_refl = Le_n

140 10. REL : PROPERTIES OF RELATIONS

fro (Rt_trans {x=n} {y} {z=m} ny ym) =
le_trans n y m (fro ny) (fro ym)

The above definition of reflexive, transitive closure is natural: it says, explicitly,
that the reflexive and transitive closure of r is the least relation that includes r
and that is closed under rules of reflexivity and transitivity. But it turns out that
this definition is not very convenient for doing proofs, since the “nondeterminism”
of the Rt_trans rule can sometimes lead to tricky inductions. Here is a more useful
definition:

data Clos_refl_trans_1n : (r : Relation t) ౏> (x : t) ౏> t ౏> Type where
Rt1n_refl : Clos_refl_trans_1n r x x
Rt1n_trans : r x y ౏> Clos_refl_trans_1n r y z ౏> Clos_refl_trans_1n r x z

Edit

Our new definition of reflexive, transitive closure “bundles” the Rt_step and Rt_trans
rules into the single rule step. The left-hand premise of this step is a single use of
r, leading to a much simpler induction principle.

Before we go on, we should check that the two definitions do indeed define the
same relation…

First, we prove two lemmas showing that Clos_refl_trans_1n mimics the behavior of
the two “missing” Clos_refl_trans constructors.

rsc_R : r x y ౏> Clos_refl_trans_1n r x y
rsc_R rxy = Rt1n_trans rxy Rt1n_refl

2.0.1. Exercise: 2 stars, optional (rsc_trans).

rsc_trans : Clos_refl_trans_1n r x y ౏> Clos_refl_trans_1n r y z ౏>
Clos_refl_trans_1n r x z

rsc_trans crxy cryz = ?rsc_trans_rhs

□
Then we use these facts to prove that the two definitions of reflexive, transitive
closure do indeed define the same relation.

2.0.2. Exercise: 3 stars, optional (rtc_rsc_coincide).

rtc_rsc_coincide : (Clos_refl_trans r x y) <౦> (Clos_refl_trans_1n r x y)
rtc_rsc_coincide = ?rtc_rsc_coincide_rhs

□

CHAPTER 11

Imp : Simple Imperative Programs

module Imp

import Logic

In this chapter, we begin a new direction that will continue for the rest of the
course. Up to now most of our attention has been focused on various aspects of
Idris itself, while from now on we’ll mostly be using Idris to formalize other things.
(We’ll continue to pause from time to time to introduce a few additional aspects
of Idris.)

Our first case study is a simple imperative programming language called Imp, em-
bodying a tiny core fragment of conventional mainstream languages such as C and
Java. Here is a familiar mathematical function written in Imp.

Z ௜௜= X;;
Y ௜௜= 1;;
WHILE not (Z తథ 0) DO

Y ௜௜= Y * Z;;
Z ௜௜= Z - 1

END

This chapter looks at how to define the syntax and semantics of Imp; the chapters
that follow develop a theory of program equivalence and introduce Hoare Logic, a
widely used logic for reasoning about imperative programs.

import Maps

%hide (\\)

%default total
%access public export

1. Arithmetic and Boolean Expressions

We’ll present Imp in three parts: first a core language of arithmetic and boolean
expressions, then an extension of these expressions with variables, and finally a
language of commands including assignment, conditions, sequencing, and loops.

1.1. Syntax. These two definitions specify the abstract syntax of arithmetic
and boolean expressions.

141

142 11. IMP : SIMPLE IMPERATIVE PROGRAMS

data AExp0 : Type where
ANum0 : Nat ౏> AExp0
APlus0 : AExp0 ౏> AExp0 ౏> AExp0
AMinus0 : AExp0 ౏> AExp0 ౏> AExp0
AMult0 : AExp0 ౏> AExp0 ౏> AExp0

data BExp0 : Type where
BTrue0 : BExp0
BFalse0 : BExp0
BEq0 : AExp0 ౏> AExp0 ౏> BExp0
BLe0 : AExp0 ౏> AExp0 ౏> BExp0
BNot0 : BExp0 ౏> BExp0
BAnd0 : BExp0 ౏> BExp0 ౏> BExp0

In this chapter, we’ll elide the translation from the concrete syntax that a pro-
grammer would actually write to these abstract syntax trees — the process that,
for example, would translate the string ”1+2*3” to the AST

APlus0 (ANum0 1) (AMult0 (ANum0 2) (ANum0 3))

The optional chapter ImpParser develops a simple implementation of a lexical ana-
lyzer and parser that can perform this translation. You do not need to understand
that chapter to understand this one, but if you haven’t taken a course where these
techniques are covered (e.g., a compilers course) you may want to skim it.

For comparison, here’s a conventional BNF (Backus-Naur Form) grammar defining
the same abstract syntax:

a ௜௜= Nat
| a + a
| a - a
| a * a

b ௜௜= True
| False
| a = a
| a ≤ a
| not b
| b and b

Compared to the Idris version above…

• The BNF is more informal — for example, it gives some suggestions about
the surface syntax of expressions (like the fact that the addition operation
is written + and is an infix symbol) while leaving other aspects of lexical
analysis and parsing (like the relative precedence of +, -, and *, the use
of parens to explicitly group subexpressions, etc.) unspecified. Some ad-
ditional information (and human intelligence) would be required to turn
this description into a formal definition, for example when implementing
a compiler.

1. ARITHMETIC AND BOOLEAN EXPRESSIONS 143

The Idris version consistently omits all this information and concentrates
on the abstract syntax only.

• On the other hand, the BNF version is lighter and easier to read. Its
informality makes it flexible, a big advantage in situations like discussions
at the blackboard, where conveying general ideas is more important than
getting every detail nailed down precisely.

Indeed, there are dozens of BNF-like notations and people switch freely
among them, usually without bothering to say which form of BNF they’re
using because there is no need to: a rough-and-ready informal under-
standing is all that’s important.

It’s good to be comfortable with both sorts of notations: informal ones for commu-
nicating between humans and formal ones for carrying out implementations and
proofs.

1.2. Evaluation. Evaluating an arithmetic expression produces a number.

aeval0 : (a : AExp0) ౏> Nat
aeval0 (ANum0 n) = n
aeval0 (APlus0 a1 a2) = (aeval0 a1) + (aeval0 a2)
aeval0 (AMinus0 a1 a2) = (aeval0 a1) `minus` (aeval0 a2)
aeval0 (AMult0 a1 a2) = (aeval0 a1) * (aeval0 a2)

test_aeval1 : aeval0 (APlus0 (ANum0 2) (ANum0 2)) = 4
test_aeval1 = Refl

Similarly, evaluating a boolean expression yields a boolean.

beval0 : (b : BExp0) ౏> Bool
beval0 BTrue0 = True
beval0 BFalse0 = False
beval0 (BEq0 a1 a2) = (aeval0 a1) తథ (aeval0 a2)
beval0 (BLe0 a1 a2) = lte (aeval0 a1) (aeval0 a2)
beval0 (BNot0 b1) = not (beval0 b1)
beval0 (BAnd0 b1 b2) = (beval0 b1) && (beval0 b2)

1.3. Optimization. We haven’t defined very much yet, but we can already
get some mileage out of the definitions. Suppose we define a function that takes
an arithmetic expression and slightly simplifies it, changing every occurrence of
0+e (i.e., (APlus0 (ANum0 0) e) into just e.

optimize_0plus : (a : AExp0) ౏> AExp0
optimize_0plus (ANum0 n) = ANum0 n
optimize_0plus (APlus0 (ANum0 Z) e2) =
optimize_0plus e2

optimize_0plus (APlus0 e1 e2) =
APlus0 (optimize_0plus e1) (optimize_0plus e2)

optimize_0plus (AMinus0 e1 e2) =
AMinus0 (optimize_0plus e1) (optimize_0plus e2)

144 11. IMP : SIMPLE IMPERATIVE PROGRAMS

optimize_0plus (AMult0 e1 e2) =
AMult0 (optimize_0plus e1) (optimize_0plus e2)

To make sure our optimization is doing the right thing we can test it on some
examples and see if the output looks OK.

test_optimize_0plus :
optimize_0plus (APlus0 (ANum0 2)

(APlus0 (ANum0 0)
(APlus0 (ANum0 0) (ANum0 1))))

= APlus0 (ANum0 2) (ANum0 1)

But if we want to be sure the optimization is correct — i.e., that evaluating an
optimized expression gives the same result as the original — we should prove it.

optimize_0plus_sound : aeval0 (optimize_0plus a) = aeval0 a
optimize_0plus_sound {a=ANum0 _} = Refl
optimize_0plus_sound {a=APlus0 (ANum0 Z) y} =
optimize_0plus_sound {a=y}

optimize_0plus_sound {a=APlus0 (ANum0 (S k)) y} =
cong {f=\x౬>S(k+x)} $ optimize_0plus_sound {a=y}

optimize_0plus_sound {a=APlus0 (APlus0 x z) y} =
rewrite optimize_0plus_sound {a=APlus0 x z} in
rewrite optimize_0plus_sound {a=y} in
Refl

optimize_0plus_sound {a=APlus0 (AMinus0 x z) y} =
rewrite optimize_0plus_sound {a=x} in
rewrite optimize_0plus_sound {a=y} in
rewrite optimize_0plus_sound {a=z} in
Refl

optimize_0plus_sound {a=APlus0 (AMult0 x z) y} =
rewrite optimize_0plus_sound {a=x} in
rewrite optimize_0plus_sound {a=y} in
rewrite optimize_0plus_sound {a=z} in
Refl

optimize_0plus_sound {a=AMinus0 x y} =
rewrite optimize_0plus_sound {a=x} in
rewrite optimize_0plus_sound {a=y} in
Refl

optimize_0plus_sound {a=AMult0 x y} =
rewrite optimize_0plus_sound {a=x} in
rewrite optimize_0plus_sound {a=y} in
Refl

2. Coq Automation

Move the whole subsection to Pruviloj chapter?

2. COQ AUTOMATION 145

The amount of repetition in this last proof is a little annoying. And if either the
language of arithmetic expressions or the optimization being proved sound were
significantly more complex, it would start to be a real problem.

So far, we’ve been doing all our proofs using just a small handful of Coq’s tactics
and completely ignoring its powerful facilities for constructing parts of proofs au-
tomatically. This section introduces some of these facilities, and we will see more
over the next several chapters. Getting used to them will take some energy —
Coq’s automation is a power tool — but it will allow us to scale up our efforts
to more complex definitions and more interesting properties without becoming
overwhelmed by boring, repetitive, low-level details.

2.1. Tacticals. Tacticals is Coq’s term for tactics that take other tactics as
arguments — “higher-order tactics,” if you will.

2.1.1. The try Tactical.

Exists in Pruviloj

If T is a tactic, then try T is a tactic that is just like T except that, if T fails, try T
successfully does nothing at all (instead of failing).

Theorem silly1 : forall ae, aeval ae = aeval ae.
Proof. try Refl. (* this just does Refl *) Qed.

Theorem silly2 : forall (P : Type), P ౏> P.
Proof.
intros P HP.
try Refl. (* just Refl would have failed *)
apply HP. (* we can still finish the proof in some other way *)

Qed.

There is no real reason to use try in completely manual proofs like these, but it is
very useful for doing automated proofs in conjunction with the ; tactical, which
we show next.

2.1.2. The ; Tactical (Simple Form).

Approximated by andThen in Pruviloj

In its most common form, the ; tactical takes two tactics as arguments. The com-
pound tactic T;T' first performs T and then performs T' on each subgoal generated
by T.

For example, consider the following trivial lemma:

Lemma foo : forall n, lte 0 n = True.
Proof.
intros.
destruct n.
(* Leaves two subgoals, which are discharged identically... *)

146 11. IMP : SIMPLE IMPERATIVE PROGRAMS

- (* n=0 *) simpl. Refl.
- (* n=Sn' *) simpl. Refl.

Qed.

We can simplify this proof using the ; tactical:

Lemma foo' : forall n, lte 0 n = True.
Proof.
intros.
(* destruct the current goal *)
destruct n;
(* then simpl each resulting subgoal *)
simpl;
(* and do Refl on each resulting subgoal *)
Refl.

Qed.

Using try and ; together, we can get rid of the repetition in the proof that was
bothering us a little while ago.

Mention Alternatives ?

Theorem optimize_0plus_sound': forall a,
aeval (optimize_0plus a) = aeval a.

Proof.
intros a.
induction a;
(* Most cases follow directly by the IH... *)
try (simpl; rewrite IHa1; rewrite IHa2; Refl).
(* ... but the remaining cases -- ANum and APlus --

are different: *)
- (* ANum *) Refl.
- (* APlus *)
destruct a1;
(* Again, most cases follow directly by the IH: *)
try (simpl; simpl in IHa1; rewrite IHa1;

rewrite IHa2; Refl).
(* The interesting case, on which the try...

does nothing, is when e1 = ANum n. In this
case, we have to destruct n (to see whether
the optimization applies) and rewrite with the
induction hypothesis. *)

+ (* a1 = ANum n *) destruct n;
simpl; rewrite IHa2; Refl. Qed.

Coq experts often use this “...; try...” idiom after a tactic like induction to take
care of many similar cases all at once. Naturally, this practice has an analog

http://docs.idris-lang.org/en/latest/reference/misc.html#alternatives

2. COQ AUTOMATION 147

in informal proofs. For example, here is an informal proof of the optimization
theorem that matches the structure of the formal one:

Theorem: For all arithmetic expressions a,

aeval (optimize_0plus a) = aeval a.

Proof : By induction on a. Most cases follow directly from the IH. The remaining
cases are as follows:

• Suppose a = ANum n for some n. We must show

aeval (optimize_0plus (ANum n)) = aeval (ANum n).

This is immediate from the definition of `optimize_0plus`.

• Suppose a = APlus a1 a2 for some a1 and a2. We must show

aeval (optimize_0plus (APlus a1 a2)) = aeval (APlus a1 a2).

Consider the possible forms of `a1`. For most of them, `optimize_0plus`
simply calls itself recursively for the subexpressions and rebuilds a new
expression of the same form as `a1`; in these cases, the result follows
directly from the `IH`. The interesting case is when `a1 = ANum n` for some
`n`. If `n = ANum 0`, then

optimize_0plus (APlus a1 a2) = optimize_0plus a2

and the `IH` for `a2` is exactly what we need. On the other hand, if `n = S
n'` for some `n'`, then again `optimize_0plus` simply calls itself
recursively, and the result follows from the `IH`. \square

However, this proof can still be improved: the first case (for a = ANum n) is very
trivial — even more trivial than the cases that we said simply followed from the
IH — yet we have chosen to write it out in full. It would be better and clearer to
drop it and just say, at the top, “Most cases are either immediate or direct from
the IH. The only interesting case is the one for APlus...” We can make the same
improvement in our formal proof too. Here’s how it looks:

Theorem optimize_0plus_sound'': forall a,
aeval (optimize_0plus a) = aeval a.

Proof.
intros a.
induction a;
(* Most cases follow directly by the IH *)
try (simpl; rewrite IHa1; rewrite IHa2; Refl);
(* ... or are immediate by definition *)
try Refl.

(* The interesting case is when a = APlus a1 a2. *)
- (* APlus *)
destruct a1; try (simpl; simpl in IHa1; rewrite IHa1;

rewrite IHa2; Refl).

148 11. IMP : SIMPLE IMPERATIVE PROGRAMS

+ (* a1 = ANum n *) destruct n;
simpl; rewrite IHa2; Refl. Qed.

2.1.3. The ; Tactical (General Form). The ; tactical also has a more general
form than the simple T;T' we’ve seen above. If T, T1, ..., Tn are tactics, then

T; [T1 | T2 | ... | Tn]

is a tactic that first performs T and then performs T1 on the first subgoal generated
by T, performs T2 on the second subgoal, etc.

So T;T' is just special notation for the case when all of the Ti‘s are the same tactic;
i.e.,T;T’ is shorthand for:

T; [T' | T' | ... | T']

2.1.4. The repeat Tactical.

Approximated by repeatUntilFail in Pruviloj

The repeat tactical takes another tactic and keeps applying this tactic until it fails.
Here is an example showing that 10 is in a long list using repeat.

Theorem In10 : In 10 [1;2;3;4;5;6;7;8;9;10].
Proof.
repeat (try (left; Refl); right).

Qed.

The tactic repeat T never fails: if the tactic T doesn’t apply to the original goal,
then repeat still succeeds without changing the original goal (i.e., it repeats zero
times).

Theorem In10' : In 10 [1;2;3;4;5;6;7;8;9;10].
Proof.
repeat (left; Refl).
repeat (right; try (left; Refl)).

Qed.

The tactic repeat T also does not have any upper bound on the number of times
it applies T. If T is a tactic that always succeeds, then repeat T will loop forever
(e.g., repeat simpl loops forever, since simpl always succeeds). While evaluation in
Coq’s term language, Gallina, is guaranteed to terminate, tactic evaluation is not!
This does not affect Coq’s logical consistency, however, since the job of repeat and
other tactics is to guide Coq in constructing proofs; if the construction process
diverges, this simply means that we have failed to construct a proof, not that we
have constructed a wrong one.

2.1.5. Exercise: 3 stars (optimize_0plus_b). Since the optimize_0plus transfor-
mation doesn’t change the value of AExps, we should be able to apply it to all
the AExps that appear in a BExp without changing the BExp’s value. Write a func-
tion which performs that transformation on BExps, and prove it is sound. Use the
tacticals we’ve just seen to make the proof as elegant as possible.

2. COQ AUTOMATION 149

optimize_0plus_b : (b : BExp0) ౏> BExp0
optimize_0plus_b b = ?optimize_0plus_b_rhs

optimize_0plus_b_sound : beval0 (optimize_0plus_b b) = beval0 b
optimize_0plus_b_sound = ?optimize_0plus_b_sound_rhs

□

2.1.6. Exercise: 4 stars, optional (optimizer). Design exercise: The optimiza-
tion implemented by our optimize_0plus function is only one of many possible op-
timizations on arithmetic and boolean expressions. Write a more sophisticated
optimizer and prove it correct. (You will probably find it easiest to start small
— add just a single, simple optimization and prove it correct — and build up to
something more interesting incrementially.)

--FILL IN HERE

□

2.2. Defining New Tactic Notations. Coq also provides several ways of
“programming” tactic scripts.

• The Tactic Notation idiom illustrated below gives a handy way to define
“shorthand tactics” that bundle several tactics into a single command.

• For more sophisticated programming, Coq offers a built-in programming
language called Ltac with primitives that can examine and modify the
proof state. The details are a bit too complicated to get into here (and
it is generally agreed that Ltac is not the most beautiful part of Coq’s
design!), but they can be found in the reference manual and other books
on Coq, and there are many examples of Ltac definitions in the Coq
standard library that you can use as examples.

• There is also an OCaml API, which can be used to build tactics that
access Coq’s internal structures at a lower level, but this is seldom worth
the trouble for ordinary Coq users.

The Tactic Notation mechanism is the easiest to come to grips with, and it offers
plenty of power for many purposes. Here’s an example.

Tactic Notation ”simpl_and_try” tactic(c) ௜=
simpl;
try c.

This defines a new tactical called simpl_and_try that takes one tactic c as an ar-
gument and is defined to be equivalent to the tactic simpl; try c. Now writing
“simpl_and_try Refl.” in a proof will be the same as writing “simpl; try Refl.”

2.3. The omega Tactic.

Related to https://github.com/forestbelton/cooper

150 11. IMP : SIMPLE IMPERATIVE PROGRAMS

The omega tactic implements a decision procedure for a subset of first-order logic
called Presburger arithmetic. It is based on the Omega algorithm invented in 1991
by William Pugh [Pugh 1991].

If the goal is a universally quantified formula made out of

• numeric constants, addition (+ and S), subtraction (- and pred), and mul-
tiplication by constants (this is what makes it Presburger arithmetic),

• equality (= and /=) and inequality (యర), and

• the logical connectives /\, \/, Not, and ౏>,

then invoking omega will either solve the goal or tell you that it is actually false.

Example silly_presburger_example : forall m n o p,
m + n యర n + o /\ o + 3 = p + 3 ౏>
m యర p.

Proof.
intros. omega.

Qed.

2.4. A Few More Handy Tactics. Finally, here are some miscellaneous
tactics that you may find convenient.

• clear H: Delete hypothesis H from the context.

• subst x: Find an assumption x = e or e = x in the context, replace x with
e throughout the context and current goal, and clear the assumption.

• subst: Substitute away all assumptions of the form x = e or e = x.

• rename... into...: Change the name of a hypothesis in the proof con-
text. For example, if the context includes a variable named x, then
rename x into y will change all occurrences of x to y.

• assumption: Try to find a hypothesis H in the context that exactly matches
the goal; if one is found, behave like apply H.

• contradiction: Try to find a hypothesis H in the current context that is
logically equivalent to Void. If one is found, solve the goal.

• constructor: Try to find a constructor c (from some Inductive definition in
the current environment) that can be applied to solve the current goal.
If one is found, behave like apply c.

We’ll see examples below.

3. Evaluation as a Relation

We have presented aeval and beval as functions. Another way to think about eval-
uation — one that we will see is often more flexible — is as a relation between
expressions and their values. This leads naturally to data definitions like the fol-
lowing one for arithmetic expressions…

3. EVALUATION AS A RELATION 151

data AEvalR : AExp0 ౏> Nat ౏> Type where
E_ANum : (n: Nat) ౏> AEvalR (ANum n) n
E_APlus : (e1, e2 : AExp0) ౏> (n1, n2 : Nat) ౏>
AEvalR e1 n1 ౏>
AEvalR e2 n2 ౏>
AEvalR (APlus e1 e2) (n1 + n2)

E_AMinus : (e1, e2 : AExp0) ౏> (n1, n2 : Nat) ౏>
AEvalR e1 n1 ౏>
AEvalR e2 n2 ౏>
AEvalR (AMinus0 e1 e2) (n1 `minus` n2)

E_AMult : (e1, e2: AExp0) ౏> (n1, n2 : Nat) ౏>
AEvalR e1 n1 ౏>
AEvalR e2 n2 ౏>
AEvalR (AMult0 e1 e2) (n1 * n2)

Edit

It will be convenient to have an infix notation for AEvalR. We’ll write e \\ n to mean
that arithmetic expression e evaluates to value n.

In fact, Idris provides a way to use this notation in the definition of AevalR itself.
This reduces confusion by avoiding situations where we’re working on a proof
involving statements in the form e \\ n but we have to refer back to a definition
written using the form AEvalR e n.

We do this by first “reserving” the notation, then giving the definition together
with a declaration of what the notation means.

data (\\) : AExp0 ౏> (n : Nat) ౏> Type where
E_ANum : (ANum0 n) \\ n
E_APlus : e1 \\ n1 ౏> e2 \\ n2 ౏> n = n1 + n2 ౏>

(APlus0 e1 e2) \\ n

We don’t use - since it requires a proof of LTE n1 n2

E_AMinus : e1 \\ n1 ౏> e2 \\ n2 ౏> n = n1 `minus` n2 ౏>
(AMinus0 e1 e2) \\ n

E_AMult : e1 \\ n1 ౏> e2 \\ n2 ౏> n = n1 * n2 ౏>
(AMult0 e1 e2) \\ n

AEvalR : AExp0 ౏> Nat ౏> Type
AEvalR = (\\)

3.1. Inference Rule Notation.

Add hyperlink

In informal discussions, it is convenient to write the rules for AEvalR and similar
relations in the more readable graphical form of inference rules, where the premises

152 11. IMP : SIMPLE IMPERATIVE PROGRAMS

above the line justify the conclusion below the line (we have already seen them in
the IndProp chapter).

For example, the constructor E_APlus…

E_APlus : (e1 \\ n1) ౏> (e2 \\ n2) ౏> (n = n1 + n2) ౏>
(APlus0 e1 e2) \\ n

…would be written like this as an inference rule:

e1 \\ n1 e2 \\ n2 E_APlus
APlus e1 e2 \\ n1+n2

Formally, there is nothing deep about inference rules: they are just implications.
You can read the rule name on the right as the name of the constructor and read
each of the linebreaks between the premises above the line (as well as the line itself)
as ౏>. All the variables mentioned in the rule (e1, n1, etc.) are implicitly bound by
universal quantifiers at the beginning. (Such variables are often called metavari-
ables to distinguish them from the variables of the language we are defining. At
the moment, our arithmetic expressions don’t include variables, but we’ll soon be
adding them.) The whole collection of rules is understood as being wrapped in an
function declaration. In informal prose, this is either elided or else indicated by
saying something like “Let AEvalR be the smallest relation closed under the following
rules…”.

For example, \\ is the smallest relation closed under these rules:

E_ANum
ANum n \\ n

e1 \\ n1 e2 \\ n2 E_APlus
APlus e1 e2 \\ n1+n2

e1 \\ n1 e2 \\ n2 E_AMinus
AMinus e1 e2 \\ n1-n2

e1 \\ n1 e2 \\ n2 E_AMult
AMult e1 e2 \\ n1*n2

3.2. Equivalence of the Definitions. It is straightforward to prove that
the relational and functional definitions of evaluation agree:

aeval_iff_aevalR : (a \\ n) <౦> aeval0 a = n
aeval_iff_aevalR = (to, fro)
where
to : (a \\ n) ౏> aeval0 a = n
to E_ANum = Refl
to (E_APlus x y xy) =
rewrite xy in
rewrite to x in

3. EVALUATION AS A RELATION 153

rewrite to y in Refl
to (E_AMinus x y xy) =
rewrite xy in
rewrite to x in
rewrite to y in Refl

to (E_AMult x y xy) =
rewrite xy in
rewrite to x in
rewrite to y in Refl

fro : (aeval0 a = n) ౏> (a \\ n)
fro {a=ANum0 n} Refl = E_ANum
fro {a=APlus0 x y} prf =
E_APlus (fro Refl) (fro Refl) (sym prf)

fro {a=AMinus0 x y} prf =
E_AMinus (fro Refl) (fro Refl) (sym prf)

fro {a=AMult0 x y} prf =
E_AMult (fro Refl) (fro Refl) (sym prf)

We can make the proof quite a bit shorter by making more use of tacticals.

Theorem aeval_iff_aevalR' : forall a n,
(a \\ n) <౦> aeval a = n.

Proof.
(* WORKED IN CLASS *)
split.
- (* ౏> *)
intros H; induction H; subst; Refl.

- (* <౐ *)
generalize dependent n.
induction a; simpl; intros; subst; constructor;

try apply IHa1; try apply IHa2; Refl.
Qed.

3.2.1. Exercise: 3 stars (bevalR). Write a relation BEvalR in the same style as
AEvalR, and prove that it is equivalent to beval0.

-- data BEvalR : BExp0 ౏> (b : Bool) ౏> Type where
-- FILL IN HERE

-- beval_iff_bevalR : (BEvalR b bv) <౦> beval0 b = bv

□

3.3. Computational vs. Relational Definitions. For the definitions of
evaluation for arithmetic and boolean expressions, the choice of whether to use
functional or relational definitions is mainly a matter of taste: either way works.

However, there are circumstances where relational definitions of evaluation work
much better than functional ones.

154 11. IMP : SIMPLE IMPERATIVE PROGRAMS

For example, suppose that we wanted to extend the arithmetic operations by
considering also a division operation:

namespace AEvalRDiv

data AExpD : Type where
ANumD : Nat ౏> AExpD
APlusD : AExpD ౏> AExpD ౏> AExpD
AMinusD : AExpD ౏> AExpD ౏> AExpD
AMultD : AExpD ౏> AExpD ౏> AExpD
ADivD : AExpD ౏> AExpD ౏> AExpD -- <౒౧౜ new

Extending the definition of aeval to handle this new operation would not be straight-
forward (what should we return as the result of ADiv (ANum 5) (ANum 0)?). But ex-
tending AEvalR is straightforward.

infix 5 \\\

data (\\\) : AExpD ౏> (n : Nat) ౏> Type where
E_ANumD : (ANumD n) \\\ n
E_APlusD : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 + n2 ౏>
(APlusD e1 e2) \\\ n

E_AMinusD : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 `minus` n2 ౏>
(AMinusD e1 e2) \\\ n

E_AMultD : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 * n2 ౏>
(AMultD e1 e2) \\\ n

E_ADivD : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n2 `GT` 0 ౏> n1 = n2*n3 ౏>
(ADivD e1 e2) \\\ n3

AEvalRD : AExpD ౏> Nat ౏> Type
AEvalRD = (\\\)

Suppose, instead, that we want to extend the arithmetic operations by a nondeter-
ministic number generator any that, when evaluated, may yield any number. (Note
that this is not the same as making a probabilistic choice among all possible num-
bers — we’re not specifying any particular distribution of results, but just saying
what results are possible.)

namespace AEvalRAny

data AExpA : Type where
AAnyA : AExpA -- <౒౧౜ new
ANumA : Nat ౏> AExpA
APlusA : AExpA ౏> AExpA ౏> AExpA
AMinusA : AExpA ౏> AExpA ౏> AExpA
AMultA : AExpA ౏> AExpA ౏> AExpA

Again, extending aeval would be tricky, since now evaluation is not a deterministic
function from expressions to numbers, but extending AEvalR is no problem:

infix 5 \\\

4. EXPRESSIONS WITH VARIABLES 155

data (\\\) : AExpA ౏> (n : Nat) ౏> Type where
E_AnyA : AAnyA \\\ n
E_ANumA : (ANumA n) \\\ n
E_APlusA : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 + n2 ౏>
(APlusA e1 e2) \\\ n

E_AMinusA : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 `minus` n2 ౏>
(AMinusA e1 e2) \\\ n

E_AMultA : e1 \\\ n1 ౏> e2 \\\ n2 ౏> n = n1 * n2 ౏>
(AMultA e1 e2) \\\ n

AEvalRA : AExpA ౏> Nat ౏> Type
AEvalRA = (\\\)

At this point you maybe wondering: which style should I use by default? The
examples above show that relational definitions are fundamentally more powerful
than functional ones. For situations like these, where the thing being defined is
not easy to express as a function, or indeed where it is not a function, there is no
choice. But what about when both styles are workable?

Edit

One point in favor of relational definitions is that some people feel they are more
elegant and easier to understand. Another is that Idris automatically generates
nice inversion and induction principles from function definitions.

On the other hand, functional definitions can often be more convenient:

• Functions are by definition deterministic and defined on all arguments;
for a relation we have to show these properties explicitly if we need them.

• With functions we can also take advantage of Idris’s computation mech-
anism to simplify expressions during proofs.

Furthermore, functions can be directly “extracted” to executable code in C or
JavaScript.

Ultimately, the choice often comes down to either the specifics of a particular
situation or simply a question of taste. Indeed, in large Idris developments it is
common to see a definition given in both functional and relational styles, plus a
lemma stating that the two coincide, allowing further proofs to switch from one
point of view to the other at will.

4. Expressions With Variables

Let’s turn our attention back to defining Imp. The next thing we need to do is
to enrich our arithmetic and Boolean expressions with variables. To keep things
simple, we’ll assume that all variables are global and that they only hold numbers.

156 11. IMP : SIMPLE IMPERATIVE PROGRAMS

4.1. States. Since we’ll want to look variables up to find out their current
values, we’ll reuse the type Id from the Maps chapter for the type of variables in
Imp.

A machine state (or just state) represents the current values of all variables at
some point in the execution of a program.

For simplicity, we assume that the state is defined for all variables, even though
any given program is only going to mention a finite number of them. The state
captures all of the information stored in memory. For Imp programs, because each
variable stores a natural number, we can represent the state as a mapping from
identifiers to Nat. For more complex programming languages, the state might have
more structure.

State : Type
State = TotalMap Nat

empty_state : State
empty_state = t_empty 0

4.2. Syntax. We can add variables to the arithmetic expressions we had be-
fore by simply adding one more constructor:

data AExp : Type where
ANum : Nat ౏> AExp
AId : Id ౏> AExp -- <౒౧౜౨౨ NEW
APlus : AExp ౏> AExp ౏> AExp
AMinus : AExp ౏> AExp ౏> AExp
AMult : AExp ౏> AExp ౏> AExp

Defining a few variable names as notational shorthands will make examples easier
to read:

W : Id
W = MkId ”W”
X : Id
X = MkId ”X”
Y : Id
Y = MkId ”Y”
Z : Id
Z = MkId ”Z”

Edit

(This convention for naming program variables (X, Y, Z) clashes a bit with our earlier
use of uppercase letters for types. Since we’re not using polymorphism heavily in
the chapters devoped to Imp, this overloading should not cause confusion.)

The definition of BExps is unchanged (except for using the new AExps):

data BExp : Type where
BTrue : BExp

5. COMMANDS 157

BFalse : BExp
BEq : AExp ౏> AExp ౏> BExp
BLe : AExp ౏> AExp ౏> BExp
BNot : BExp ౏> BExp
BAnd : BExp ౏> BExp ౏> BExp

4.3. Evaluation. The arith and boolean evaluators are extended to handle
variables in the obvious way, taking a state as an extra argument:

aeval : (st : State) ౏> (a : AExp) ౏> Nat
aeval _ (ANum n) = n
aeval st (AId i) = st i
aeval st (APlus a1 a2) = (aeval st a1) + (aeval st a2)
aeval st (AMinus a1 a2) = (aeval st a1) `minus` (aeval st a2)
aeval st (AMult a1 a2) = (aeval st a1) * (aeval st a2)

beval : (st : State) ౏> (b : BExp) ౏> Bool
beval _ BTrue = True
beval _ BFalse = False
beval st (BEq a1 a2) = (aeval st a1) తథ (aeval st a2)
beval st (BLe a1 a2) = lte (aeval st a1) (aeval st a2)
beval st (BNot b1) = not (beval st b1)
beval st (BAnd b1 b2) = (beval st b1) && (beval st b2)

aexp1 : aeval (t_update X 5 Imp.empty_state)
(APlus (ANum 3) (AMult (AId X) (ANum 2)))

= 13
aexp1 = Refl

bexp1 : beval (t_update X 5 Imp.empty_state)
(BAnd BTrue (BNot (BLe (AId X) (ANum 4))))

= True
bexp1 = Refl

5. Commands

Now we are ready define the syntax and behavior of Imp commands (sometimes
called statements).

5.1. Syntax. Informally, commands c are described by the following BNF
grammar. (We choose this slightly awkward concrete syntax for the sake of being
able to define Imp syntax using Idris’s syntax mechanism. In particular, we use IFB
to avoid conflicting with the if notation from the standard library.)

c ௜௜= SKIP | x ௜௜= a | c ;; c | IFB b THEN c ELSE c FI
| WHILE b DO c END

For example, here’s factorial in Imp:

158 11. IMP : SIMPLE IMPERATIVE PROGRAMS

Z ௜௜= X;;
Y ௜௜= 1;;
WHILE not (Z = 0) DO

Y ௜௜= Y * Z;;
Z ௜௜= Z - 1

END

When this command terminates, the variable Y will contain the factorial of the
initial value of X.

Here is the formal definition of the abstract syntax of commands:

data Com : Type where
CSkip : Com
CAss : Id ౏> AExp ౏> Com
CSeq : Com ౏> Com ౏> Com
CIf : BExp ౏> Com ౏> Com ౏> Com
CWhile : BExp ౏> Com ౏> Com

As usual, we can use a few Notation declarations to make things more readable. To
avoid conflicts with Idris’s built-in notations, we keep this light — in particular,
we don’t introduce any notations for AExps and BExps to avoid confusion with the
numeric and boolean operators we’ve already defined.

Explain do-notation

infix 5 ௜௜=

SKIP : Com
SKIP = CSkip

(௜௜=) : Id ౏> AExp ౏> Com
(௜௜=) = CAss

(఻ీ=) : Com ౏> (() ౏> Com) ౏> Com
(఻ీ=) c f = CSeq c (f ())

WHILE : BExp ౏> Com ౏> Com
WHILE = CWhile

syntax IFB [c1] THEN [c2] ELSE [c3] FI = CIf c1 c2 c3

For example, here is the factorial function again, written as a formal definition to
Idris:

fact_in_idris : Com
fact_in_idris = do
Z ௜௜= AId X
Y ௜௜= ANum 1
WHILE (BNot (BEq (AId Z) (ANum 0))) $ do

6. EVALUATING COMMANDS 159

Y ௜௜= AMult (AId Y) (AId Z)
Z ௜௜= AMinus (AId Z) (ANum 1)

5.2. More Examples.

5.2.1. Assignment:

plus2 : Com
plus2 =
X ௜௜= APlus (AId X) (ANum 2)

XtimesYinZ : Com
XtimesYinZ =
Z ௜௜= AMult (AId X) (AId Y)

subtract_slowly_body : Com
subtract_slowly_body = do
Z ௜௜= AMinus (AId Z) (ANum 1)
X ௜௜= AMinus (AId X) (ANum 1)

5.2.2. Loops.

subtract_slowly : Com
subtract_slowly =
WHILE (BNot (BEq (AId X) (ANum 0))) $ do
subtract_slowly_body

subtract_3_from_5_slowly : Com
subtract_3_from_5_slowly = do
X ௜௜= ANum 3
Z ௜௜= ANum 5
subtract_slowly

5.2.3. An infinite loop:

loop : Com
loop = WHILE BTrue SKIP

6. Evaluating Commands

Next we need to define what it means to evaluate an Imp command. The fact
that WHILE loops don’t necessarily terminate makes defining an evaluation function
tricky…

6.1. Evaluation as a Function (Failed Attempt). Here’s an attempt at
defining an evaluation function for commands, omitting the WHILE case.

ceval_fun_no_while : (st : State) ౏> (c : Com) ౏> State
ceval_fun_no_while st CSkip = st
ceval_fun_no_while st (CAss x a) = t_update x (aeval st a) st
ceval_fun_no_while st (CSeq c1 c2) =
let st' = ceval_fun_no_while st c1

160 11. IMP : SIMPLE IMPERATIVE PROGRAMS

in ceval_fun_no_while st' c2
ceval_fun_no_while st (CIf b c1 c2) =
if beval st b
then ceval_fun_no_while st c1
else ceval_fun_no_while st c2

ceval_fun_no_while st (CWhile b c) = st -- bogus

In a traditional functional programming language like OCaml or Haskell we could
add the WHILE case as follows:

...
ceval_fun st (CWhile b c) =
if (beval st b)
then ceval_fun st (CSeq c $ CWhile b c)
else st

Idris doesn’t accept such a definition (“Imp.ceval_fun is possibly not total due
to recursive path Imp.ceval_fun –> Imp.ceval_fun –> Imp.ceval_fun”) because
the function we want to define is not guaranteed to terminate. Indeed, it doesn’t
always terminate: for example, the full version of the ceval_fun function applied to
the loop program above would never terminate. Since Idris is not just a functional
programming language but also a consistent logic, any potentially non-terminating
function needs to be rejected. Here is an (invalid!) program showing what would
go wrong if Idris allowed non-terminating recursive functions:

Edit, discuss partial

loop_false : (n : Nat) ౏> Void
loop_false n = loop_false n

That is, propositions like Void would become provable (loop_false 0 would be a proof
of Void), which would be a disaster for Idris’s logical consistency.

Thus, because it doesn’t terminate on all inputs, ceval_fun cannot be written in Idris
— at least not without additional tricks and workarounds (see chapter ImpCEvalFun
if you’re curious about what those might be).

6.2. Evaluation as a Relation. Here’s a better way: define CEval as a rela-
tion rather than a function — i.e., define it with data, as we did for AEvalR above.

This is an important change. Besides freeing us from awkward workarounds, it
gives us a lot more flexibility in the definition. For example, if we add nonde-
terministic features like any to the language, we want the definition of evaluation
to be nondeterministic — i.e., not only will it not be total, it will not even be a
function!

We’ll use the notation c / st \\ st' for the CEval relation: c / st \\ st' means that
executing program c in a starting state st results in an ending state st'. This can
be pronounced “c takes state st to st'”.

6. EVALUATING COMMANDS 161

6.2.1. Operational Semantics. Here is an informal definition of evaluation, pre-
sented as inference rules for readability:

E_Skip
SKIP / st \\ st

aeval st a1 = n E_Ass
x ௜= a1 / st \\ (t_update st x n)

c1 / st \\ st' c2 / st' \\ st'' E_Seq
c1;;c2 / st \\ st''

beval st b1 = True c1 / st \\ st' E_IfTrue
IF b1 THEN c1 ELSE c2 FI / st \\ st'

beval st b1 = False c2 / st \\ st' E_IfFalse
IF b1 THEN c1 ELSE c2 FI / st \\ st'

beval st b = False E_WhileEnd
WHILE b DO c END / st \\ st

beval st b = True c / st \\ st' WHILE b DO c END / st' \\ st'' E_WhileLoop
WHILE b DO c END / st \\ st''

Here is the formal definition. Make sure you understand how it corresponds to the
inference rules.

data CEval : Com ౏> State ౏> State ౏> Type where
E_Skip : CEval CSkip st st
E_Ass : aeval st a1 = n ౏> CEval (CAss x a1) st (t_update x n st)
E_Seq : CEval c1 st st' ౏> CEval c2 st' st'' ౏>
CEval (CSeq c1 c2) st st''

E_IfTrue : beval st b = True ౏> CEval c1 st st' ౏>
CEval (CIf b c1 c2) st st'

E_IfFalse : beval st b = False ౏> CEval c2 st st' ౏>
CEval (CIf b c1 c2) st st'

E_WhileEnd : beval st b = False ౏>
CEval (CWhile b c) st st

E_WhileLoop : beval st b = True ౏>
CEval c st st' ౏> CEval (CWhile b c) st' st'' ౏>
CEval (CWhile b c) st st''

syntax [c1] ”/” [st] ”\\\\” [st'] = CEval c1 st st'

The cost of defining evaluation as a relation instead of a function is that we now
need to construct proofs that some program evaluates to some result state, rather
than just letting Idris’s computation mechanism do it for us.

162 11. IMP : SIMPLE IMPERATIVE PROGRAMS

test : Com test = do X ::= ANum 2 IFB BLe (AId X) (ANum 1) THEN (Y ::=
ANum 3) ELSE (Z ::= ANum 4) FI

ceval_example1 : (do
X ௜௜= ANum 2
IFB BLe (AId X) (ANum 1)
THEN (Y ௜௜= ANum 3)
ELSE (Z ௜௜= ANum 4)

FI)
/ Imp.empty_state

\\ (t_update Z 4 $ t_update X 2 $ Imp.empty_state)
ceval_example1 =
E_Seq
(E_Ass Refl)
(E_IfFalse Refl

(E_Ass Refl))

6.2.2. Exercise: 2 stars (ceval_example2).

ceval_example2 : (do
X ௜௜= ANum 0
Y ௜௜= ANum 1
Z ௜௜= ANum 2)
/ Imp.empty_state
\\ (t_update Z 2 $ t_update Y 1 $ t_update X 0 $ Imp.empty_state)

ceval_example2 = ?ceval_example2_rhs

□

6.2.3. Exercise: 3 stars, advanced (pup_to_n). Write an Imp program that
sums the numbers from 1 to X (inclusive: 1 + 2 + ... + X) in the variable Y. Prove
that this program executes as intended for X = 2 (this is trickier than you might
expect).

pup_to_n : Com
pup_to_n = ?pup_to_n_rhs

pup_to_2_ceval :
Imp.pup_to_n / (t_update X 2 Imp.empty_state) \\
(t_update X 0 $
t_update Y 3 $
t_update X 1 $
t_update Y 2 $
t_update Y 0 $
t_update X 2 $
Imp.empty_state)

pup_to_2_ceval = ?pup_to_2_ceval_rhs

□

7. REASONING ABOUT IMP PROGRAMS 163

6.3. Determinism of Evaluation. Changing from a computational to a
relational definition of evaluation is a good move because it frees us from the
artificial requirement that evaluation should be a total function. But it also raises
a question: Is the second definition of evaluation really a partial function? Or is it
possible that, beginning from the same state st, we could evaluate some command
c in different ways to reach two different output states st' and st''?

In fact, this cannot happen: CEval is a partial function:

ceval_deterministic : (c / st \\ st1) ౏> (c / st \\ st2) ౏> st1 = st2
ceval_deterministic E_Skip E_Skip = Refl
ceval_deterministic (E_Ass aev1) (E_Ass aev2) =
rewrite sym aev1 in
rewrite sym aev2 in Refl

ceval_deterministic {st2} (E_Seq cev11 cev12)
(E_Seq {c2} cev21 cev22) =

let ih = ceval_deterministic cev11 cev21
cev22' = replace (sym ih) cev22 {P=\x౬>CEval c2 x st2}

in ceval_deterministic cev12 cev22'
ceval_deterministic (E_IfTrue _ cev1) (E_IfTrue _ cev2) =
ceval_deterministic cev1 cev2

ceval_deterministic (E_IfTrue prf1 _) (E_IfFalse prf2 _) =
absurd $ replace prf1 prf2 {P=\x౬>x=False}

ceval_deterministic (E_IfFalse prf1 _) (E_IfTrue prf2 _) =
absurd $ replace prf2 prf1 {P=\x౬>x=False}

ceval_deterministic (E_IfFalse _ cev1) (E_IfFalse _ cev2) =
ceval_deterministic cev1 cev2

ceval_deterministic (E_WhileEnd _) (E_WhileEnd _) = Refl
ceval_deterministic (E_WhileEnd prf1) (E_WhileLoop prf2 _ _) =
absurd $ replace prf2 prf1 {P=\x౬>x=False}

ceval_deterministic (E_WhileLoop prf1 _ _) (E_WhileEnd prf2) =
absurd $ replace prf1 prf2 {P=\x౬>x=False}

ceval_deterministic {st2} (E_WhileLoop _ cev11 cev12)
(E_WhileLoop {b} {c} _ cev21 cev22) =

let ih = ceval_deterministic cev11 cev21
cev22' = replace (sym ih) cev22 {P=\x౬>CEval (CWhile b c) x st2}

in ceval_deterministic cev12 cev22'

7. Reasoning About Imp Programs

We’ll get deeper into systematic techniques for reasoning about Imp programs
in the following chapters, but we can do quite a bit just working with the bare
definitions. This section explores some examples.

plus2_spec : st X = n ౏> (Imp.plus2 / st \\ st') ౏> st' X = n + 2

Edit

164 11. IMP : SIMPLE IMPERATIVE PROGRAMS

Inverting Heval essentially forces Idris to expand one step of the CEval computation
— in this case revealing that st' must be st extended with the new value of X, since
plus2 is an assignment

plus2_spec Refl (E_Ass Refl) = Refl

7.0.1. Exercise: 3 stars, recommendedM (XtimesYinZ_spec). State and prove
a specification of XtimesYinZ.

-- FILL IN HERE

□

7.0.2. Exercise: 3 stars, recommended (loop_never_stops).

loop_never_stops : Not (Imp.loop / st \\ st')
loop_never_stops contra = ?loop_never_stops_rhs

Edit the hint

Proof.
intros st st' contra. unfold loop in contra.
remember (WHILE BTrue DO SKIP END) as loopdef

eqn:Heqloopdef.

Proceed by induction on the assumed derivation showing that loopdef terminates.
Most of the cases are immediately contradictory (and so can be solved in one step
with inversion).

(* FILL IN HERE *) Admitted.

□

7.0.3. Exercise: 3 stars (no_whilesR). Consider the following function:

no_whiles : (c : Com) ౏> Bool
no_whiles CSkip = True
no_whiles (CAss _ _) = True
no_whiles (CSeq c1 c2) = (no_whiles c1) && (no_whiles c2)
no_whiles (CIf _ ct cf) = (no_whiles ct) && (no_whiles cf)
no_whiles (CWhile _ _) = False

This predicate yields True just on programs that have no while loops. Using data,
write a property No_whilesR such that No_whilesR c is provable exactly when c is a
program with no while loops. Then prove its equivalence with no_whiles.

data No_whilesR : Com ౏> Type where
Remove_Me_No_whilesR : No_whilesR CSkip

no_whiles_eqv : (no_whiles c = True) <౦> (No_whilesR c)
no_whiles_eqv = ?no_whiles_eqv_rhs

□

8. ADDITIONAL EXERCISES 165

7.0.4. Exercise: 4 starsM (no_whiles_terminating). Imp programs that
don’t involve while loops always terminate. State and prove a theorem
no_whiles_terminating that says this. Use either no_whiles or No_whilesR, as you prefer.

-- FILL IN HERE

□

8. Additional Exercises

8.0.1. Exercise: 3 stars (stack_compiler). HP Calculators, programming lan-
guages like Forth and Postscript and abstract machines like the Java Virtual Ma-
chine all evaluate arithmetic expressions using a stack. For instance, the expression

(2*3)+(3*(4-2))

would be entered as

2 3 * 3 4 2 - * +

and evaluated like this (where we show the program being evaluated on the right
and the contents of the stack on the left):

[] | 2 3 * 3 4 2 - * +
[2] | 3 * 3 4 2 - * +
[3, 2] | * 3 4 2 - * +
[6] | 3 4 2 - * +
[3, 6] | 4 2 - * +
[4, 3, 6] | 2 - * +
[2, 4, 3, 6] | - * +
[2, 3, 6] | * +
[6, 6] | +
[12] |

The task of this exercise is to write a small compiler that translates AExps into stack
machine instructions.

The instruction set for our stack language will consist of the following instructions:

• SPush n: Push the number n on the stack.

• SLoad x: Load the identifier x from the store and push it on the stack

• SPlus: Pop the two top numbers from the stack, add them, and push the
result onto the stack.

• SMinus: Similar, but subtract.

• SMult: Similar, but multiply.

data SInstr : Type where
SPush : Nat ౏> SInstr
SLoad : Id ౏> SInstr
SPlus : SInstr

166 11. IMP : SIMPLE IMPERATIVE PROGRAMS

SMinus : SInstr
SMult : SInstr

Write a function to evaluate programs in the stack language. It should take as
input a state, a stack represented as a list of numbers (top stack item is the head
of the list), and a program represented as a list of instructions, and it should return
the stack after executing the program. Test your function on the examples below.

Note that the specification leaves unspecified what to do when encountering an
SPlus, SMinus, or SMult instruction if the stack contains less than two elements. In
a sense, it is immaterial what we do, since our compiler will never emit such a
malformed program.

s_execute : (st : State) ౏> (stack : List Nat) ౏> (prog : List SInstr) ౏>
List Nat

s_execute st stack prog = ?s_execute_rhs

s_execute1 : s_execute Imp.empty_state [] [SPush 5, SPush 3, SPush 1, SMinus]
= [2,5]

s_execute1 = ?s_execute1_rhs

s_execute2 : s_execute (t_update X 3 Imp.empty_state) [3,4]
[SPush 4, SLoad X, SMult, SPlus]

= [15,4]
s_execute2 = ?s_execute2_rhs

Next, write a function that compiles an AExp into a stack machine program. The
effect of running the program should be the same as pushing the value of the
expression on the stack.

s_compile : (e : AExp) ౏> List SInstr
s_compile e = ?s_compile_rhs

After you’ve defined s_compile, prove the following to test that it works.

s_compile1 : s_compile (AMinus (AId X) (AMult (ANum 2) (AId Y)))
= [SLoad X, SPush 2, SLoad Y, SMult, SMinus]

s_compile1 = ?s_compile1_rhs

□

8.0.2. Exercise: 4 stars, advanced (stack_compiler_correct). Now we’ll prove
the correctness of the compiler implemented in the previous exercise. Remember
that the specification left unspecified what to do when encountering an SPlus, SMinus,
or SMult instruction if the stack contains less than two elements. (In order to make
your correctness proof easier you might find it helpful to go back and change your
implementation!)

Prove the following theorem. You will need to start by stating a more general
lemma to get a usable induction hypothesis; the main theorem will then be a
simple corollary of this lemma.

8. ADDITIONAL EXERCISES 167

Tip: make parameters explicit in general lemma, or Idris will get lost

s_compile_correct : (st : State) ౏> (e : AExp) ౏> s_execute st [] (s_compile e) = [aeval st e]
s_compile_correct st e = ?s_compile_correct_rhs

□

8.0.3. Exercise: 3 stars, optional (short_circuit).

This already happens since Idris’s && short-circuits

Most modern programming languages use a “short-circuit” evaluation rule for
boolean and: to evaluate BAnd b1 b2, first evaluate b1. If it evaluates to False, then
the entire BAnd expression evaluates to False immediately, without evaluating b2.
Otherwise, b2 is evaluated to determine the result of the BAnd expression.

Write an alternate version of beval that performs short-circuit evaluation of BAnd in
this manner, and prove that it is equivalent to beval.

-- FILL IN HERE

□

8.0.4. Exercise: 4 stars, advanced (break_imp). Imperative languages like C
and Java often include a break or similar statement for interrupting the execution
of loops. In this exercise we consider how to add break to Imp. First, we need to
enrich the language of commands with an additional case.

namespace ComBreak

data ComB : Type where
CSkipB : ComB
CBreakB : ComB -- <౒౜ new
CAssB : Id ౏> AExp ౏> ComB
CSeqB : ComB ౏> ComB ౏> ComB
CIfB : BExp ౏> ComB ౏> ComB ౏> ComB
CWhileB : BExp ౏> ComB ౏> ComB

infix 5 ௜௜=

SKIP : ComB
SKIP = CSkipB

BREAK : ComB
BREAK = CBreakB

(௜௜=) : Id ౏> AExp ౏> ComB
(௜௜=) = CAssB

(఻ీ=) : ComB ౏> (() ౏> ComB) ౏> ComB
(఻ీ=) c f = CSeqB c (f ())

WHILE : BExp ౏> ComB ౏> ComB
WHILE = CWhileB

168 11. IMP : SIMPLE IMPERATIVE PROGRAMS

syntax IFB [c1] THEN [c2] ELSE [c3] FI = CIfB c1 c2 c3

Next, we need to define the behavior of BREAK. Informally, whenever BREAK is ex-
ecuted in a sequence of commands, it stops the execution of that sequence and
signals that the innermost enclosing loop should terminate. (If there aren’t any
enclosing loops, then the whole program simply terminates.) The final state should
be the same as the one in which the BREAK statement was executed.

One important point is what to do when there are multiple loops enclosing a given
BREAK. In those cases, BREAK should only terminate the innermost loop. Thus, after
executing the following…

X ௜௜= 0;;
Y ௜௜= 1;;
WHILE not (0 తథ Y) DO
WHILE TRUE DO

BREAK
END;;
X ௜௜= 1;;
Y ௜௜= Y - 1

END

… the value of X should be 1, and not 0.

One way of expressing this behavior is to add another parameter to the evaluation
relation that specifies whether evaluation of a command executes a BREAK statement:

data Result : Type where
SContinue : Result
SBreak : Result

Intuitively, c // st \\ s / st' means that, if c is started in state st, then it ter-
minates in state st' and either signals that the innermost surrounding loop (or
the whole program) should exit immediately (s = SBreak) or that execution should
continue normally (s = SContinue).

The definition of the “c // st \\ s / st'” relation is very similar to the one we gave
above for the regular evaluation relation (c / st \\ st') — we just need to handle
the termination signals appropriately:

• If the command is SKIP, then the state doesn’t change and execution of
any enclosing loop can continue normally.

• If the command is BREAK, the state stays unchanged but we signal a SBreak.

• If the command is an assignment, then we update the binding for that
variable in the state accordingly and signal that execution can continue
normally.

• If the command is of the form IFB b THEN c1 ELSE c2 FI, then the state is
updated as in the original semantics of Imp, except that we also propagate
the signal from the execution of whichever branch was taken.

8. ADDITIONAL EXERCISES 169

• If the command is a sequence c1 ;; c2, we first execute c1. If this yields a
SBreak, we skip the execution of c2 and propagate the SBreak signal to the
surrounding context; the resulting state is the same as the one obtained
by executing c1 alone. Otherwise, we execute c2 on the state obtained
after executing c1, and propagate the signal generated there.

• Finally, for a loop of the form WHILE b DO c END, the semantics is almost
the same as before. The only difference is that, when b evaluates to True,
we execute c and check the signal that it raises. If that signal is SContinue,
then the execution proceeds as in the original semantics. Otherwise, we
stop the execution of the loop, and the resulting state is the same as the
one resulting from the execution of the current iteration. In either case,
since BREAK only terminates the innermost loop, WHILE signals SContinue.

Based on the above description, complete the definition of the CEvalB relation.

data CEvalB : ComB ౏> State ౏> Result ౏> State ౏> Type where
E_SkipB : CEvalB CSkipB st SContinue st
-- FILL IN HERE

syntax [c1] ”//” [st] ”\\\\” [s] ”/” [st'] = CEvalB c1 st s st'

Now prove the following properties of your definition of CEvalB:

break_ignore : ((do BREAK; c) // st \\ s / st') ౏> st = st'
break_ignore x = ?break_ignore_rhs

while_continue : ((WHILE b c) // st \\ s / st') ౏> s = SContinue
while_continue x = ?while_continue_rhs

while_stops_on_break : beval st b = True ౏>
(c // st \\ SBreak / st') ౏>
((WHILE b c) // st \\ SContinue / st')

while_stops_on_break prf x = ?while_stops_on_break_rhs

□
8.0.5. Exercise: 3 stars, advanced, optional (while_break_true).

while_break_true : ((WHILE b c) // st \\ SContinue / st') ౏>
beval st' b = True ౏>
(st'' ** c // st'' \\ SBreak / st')

while_break_true x prf = ?while_break_true_rhs

□
8.0.6. Exercise: 4 stars, advanced, optional (cevalB_deterministic). These

will come in handy in the following exercise:

Uninhabited (SBreak = SContinue) where
uninhabited Refl impossible

Uninhabited (SContinue = SBreak) where
uninhabited Refl impossible

170 11. IMP : SIMPLE IMPERATIVE PROGRAMS

cevalB_deterministic : (c // st \\ s1 / st1) ౏>
(c // st \\ s2 / st2) ౏>
(st1 = st2, s1 = s2)

cevalB_deterministic x y = ?cevalB_deterministic_rhs

□
8.0.7. Exercise: 4 stars, optional (add_for_loop). Add C-style for loops to

the language of commands, update the CEval definition to define the semantics of
for loops, and add cases for for loops as needed so that all the proofs in this file
are accepted by Idris.

A for loop should be parameterized by (a) a statement executed initially, (b) a
test that is run on each iteration of the loop to determine whether the loop should
continue, (c) a statement executed at the end of each loop iteration, and (d) a
statement that makes up the body of the loop. (You don’t need to worry about
making up a concrete notation for for loops, but feel free to play with this too if
you like.)

-- FILL IN HERE

□

CHAPTER 12

ImpParser: Lexing and Parsing in Idris

module ImpParser

The development of the Imp language in Imp.lidr completely ignores issues of con-
crete syntax – how an ASCII string that a programmer might write gets translated
into abstract syntax trees defined by the datatypes AExp, BExp, and Com. In this chap-
ter, we illustrate how the rest of the story can be filled in by building a simple
lexical analyzer and parser using Idris’s functional programming facilities.

It is not important to understand all the details here (and accordingly, the ex-
planations are fairly terse and there are no exercises). The main point is simply
to demonstrate that it can be done. You are invited to look through the code
– most of it is not very complicated, though the parser relies on some “monadic”
programming idioms that may require a little work to make out – but most readers
will probably want to just skim down to the Examples section at the very end to get
the punchline.

import Maps
import Imp

1. Internals

1.1. Lexical Analysis.

data Chartype = White | Alpha | Digit | Other

classifyChar : (c : Char) ౏> Chartype
classifyChar c =
if isSpace c then
White

else if isAlpha c then
Alpha

else if isDigit c then
Digit

else
Other

Token : Type
Token = String

171

172 12. IMPPARSER: LEXING AND PARSING IN IDRIS

tokenizeHelper : (cls : Chartype) ౏> (acc, xs : List Char) ౏> List (List Char)
tokenizeHelper cls acc xs =
case xs of
[] ౬> tk
(x௝௞xs') ౬>
case (cls, classifyChar x, x) of
(_, _, '(') ౬>
tk ++ ['('] ௝௞ (tokenizeHelper Other [] xs')

(_, _, ')') ౬>
tk ++ [')'] ௝௞ (tokenizeHelper Other [] xs')

(_, White, _) ౬>
tk ++ (tokenizeHelper White [] xs')

(Alpha, Alpha, x) ౬>
tokenizeHelper Alpha (x௝௞acc) xs'

(Digit, Digit, x) ౬>
tokenizeHelper Digit (x௝௞acc) xs'

(Other, Other, x) ౬>
tokenizeHelper Other (x௝௞acc) xs'

(_, tp, x) ౬>
tk ++ (tokenizeHelper tp [x] xs')

where
tk : List (List Char)
tk = case acc of

[] ౬> []
(_௝௞_) ౬> [reverse acc]

tokenize : (s : String) ౏> List String
tokenize s = map pack (tokenizeHelper White [] (unpack s))

tokenizeEx1 : tokenize ”abc12తథ3 223*(3+(a+c))” = [”abc”,”12”,”తథ”,”3”,”223”,”*”,”(”,”3”,”+”,”(”,”a”,”+”,”c”,”)”,”)”]
tokenizeEx1 = Refl

1.2. Parsing.

1.2.1. Options With Errors. An Option type with error messages:

data OptionE : (x : Type) ౏> Type where
SomeE : x ౏> OptionE x
NoneE : String ౏> OptionE x

Some interface instances to make writing nested match-expressions on OptionE more
convenient.

Explain these/link to Haskell etc?

Functor OptionE where
map f (SomeE x) = SomeE (f x)
map _ (NoneE err) = NoneE err

1. INTERNALS 173

Applicative OptionE where
pure = SomeE
(SomeE f) <௨> (SomeE x) = SomeE (f x)
(SomeE _) <௨> (NoneE e) = NoneE e
(NoneE e) <௨> _ = NoneE e

Alternative OptionE where
empty = NoneE ””
(SomeE x) పఫబ _ = SomeE x
(NoneE _) పఫబ v = v

Monad OptionE where
(NoneE e) ఻ీ= _ = NoneE e
(SomeE x) ఻ీ= k = k x

1.2.2. Generic Combinators for Building Parsers.

Parser : (t : Type) ౏> Type
Parser t = List Token ౏> OptionE (t, List Token)

manyHelper : (p : Parser t) ౏> (acc : List t) ౏> (steps : Nat) ౏> Parser (List t)
manyHelper p acc Z _ = NoneE ”Too many recursive calls”
manyHelper p acc (S steps') xs with (p xs)
| NoneE _ = SomeE (reverse acc, xs)
| SomeE (t', xs') = manyHelper p (t'௝௞acc) steps' xs'

A (step-indexed) parser that expects zero or more ps:

many : (p : Parser t) ౏> (steps : Nat) ౏> Parser (List t)
many p steps = manyHelper p [] steps

A parser that expects a given token, followed by p:

firstExpect : (a : Token) ౏> (p : Parser t) ౏> Parser t
firstExpect a p (x௝௞xs) = if x తథ a then p xs else NoneE (”Expected '” ++ a ++ ”'”)
firstExpect a _ [] = NoneE (”Expected '” ++ a ++ ”'”)

A parser that expects a particular token:

expect : (t : Token) ౏> Parser ()
expect t = firstExpect t (\xs ౬> SomeE ((), xs))

1.2.3. A Recursive-Descent Parser for Imp. Identifiers:

parseIdentifier : Parser Id
parseIdentifier [] = NoneE ”Expected identifier”
parseIdentifier (x௝௞xs) =
if all isLower (unpack x)
then SomeE (MkId x, xs)
else NoneE (”Illegal identifier:'” ++ x ++ ”'”)

Numbers:

174 12. IMPPARSER: LEXING AND PARSING IN IDRIS

parseNumber : Parser Nat
parseNumber [] = NoneE ”Expected number”
parseNumber (x௝௞xs) =
if all isDigit (unpack x)
then SomeE (foldl (\n, d ౬> 10 * n + (cast (ord d - ord '0'))) 0 (unpack x), xs)
else NoneE ”Expected number”

Parse arithmetic expressions

mutual
parsePrimaryExp : (steps : Nat) ౏> Parser AExp
parsePrimaryExp Z _ = NoneE ”Too many recursive calls”
parsePrimaryExp (S steps') xs =
(do (i, rest) <౐ parseIdentifier xs

pure (AId i, rest))
పఫబ
(do (n, rest) <౐ parseNumber xs

pure (ANum n, rest))
పఫబ
(do (e, rest) <౐ firstExpect ”(” (parseSumExp steps') xs

(u, rest') <౐ expect ”)” rest
pure (e, rest'))

parseProductExp : (steps : Nat) ౏> Parser AExp
parseProductExp Z _ = NoneE ”Too many recursive calls”
parseProductExp (S steps') xs =
do (e, rest) <౐ parsePrimaryExp steps' xs

(es, rest') <౐ many (firstExpect ”*” (parsePrimaryExp steps')) steps' rest
pure (foldl AMult e es, rest')

parseSumExp : (steps : Nat) ౏> Parser AExp
parseSumExp Z _ = NoneE ”Too many recursive calls”
parseSumExp (S steps') xs =
do (e, rest) <౐ parseProductExp steps' xs

(es, rest') <౐ many psum steps' rest
pure (foldl (\e0, term ౬>

case term of
(True, e) ౬> APlus e0 e
(False, e) ౬> AMinus e0 e

) e es, rest')
where
psum : Parser (Bool, AExp)
psum xs =
let p = parseProductExp steps' in
(do (e, r) <౐ firstExpect ”+” p xs

pure ((True, e), r))
పఫబ
(do (e, r) <౐ firstExpect ”-” p xs

1. INTERNALS 175

pure ((False, e), r))

parseAExp : (steps : Nat) ౏> Parser AExp
parseAExp = parseSumExp

Parsing boolean expressions:

mutual
parseAtomicExp : (steps : Nat) ౏> Parser BExp
parseAtomicExp Z _ = NoneE ”Too many recursive calls”
parseAtomicExp (S steps') xs =
(do (_, rest) <౐ expect ”true” xs

pure (BTrue, rest))
పఫబ
(do (_, rest) <౐ expect ”false” xs

pure (BFalse, rest))
పఫబ
(do (e, rest) <౐ firstExpect ”not” (parseAtomicExp steps') xs

pure (BNot e, rest))
పఫబ
(do (e, rest) <౐ firstExpect ”(” (parseConjunctionExp steps') xs

(_, rest') <౐ expect ”)” rest
pure (e, rest'))

పఫబ
(do (e, rest) <౐ parseProductExp steps' xs

((do (e', rest') <౐ firstExpect ”తథ” (parseAExp steps') rest
pure (BEq e e', rest'))

పఫబ
(do (e', rest') <౐ firstExpect ”యర” (parseAExp steps') rest

pure (BLe e e', rest'))
పఫబ
(NoneE ”Expected 'తథ' or 'యర' after arithmetic expression”)))

parseConjunctionExp : (steps : Nat) ౏> Parser BExp
parseConjunctionExp Z _ = NoneE ”Too many recursive calls”
parseConjunctionExp (S steps') xs =
do (e, rest) <౐ parseAtomicExp steps' xs

(es, rest') <౐ many (firstExpect ”&&” (parseAtomicExp steps')) steps' rest
pure (foldl BAnd e es, rest')

parseBExp : (steps : Nat) ౏> Parser BExp
parseBExp = parseConjunctionExp

testParsing : (p : Nat ౏> Parser t) ౏> (s : String) ౏> OptionE (t, List Token)
testParsing p s = p 100 (tokenize s)

The second one seems designed to fail

176 12. IMPPARSER: LEXING AND PARSING IN IDRIS

λΠ> testParsing parseProductExp ”x*y*(x*x)*x”

λΠ> testParsing parseConjunctionExp ”not((xతథx||x*xయర(x*x)*x)&&xతథx”

Parsing commands:

mutual
parseSimpleCommand : (steps : Nat) ౏> Parser Com
parseSimpleCommand Z _ = NoneE ”Too many recursive calls”
parseSimpleCommand (S steps') xs =
(do (_, rest) <౐ expect ”SKIP” xs

pure (SKIP, rest))
పఫబ
(do (e, rest) <౐ firstExpect ”IF” (parseBExp steps') xs

(c, rest') <౐ firstExpect ”THEN” (parseSequencedCommand steps') rest
(c', rest'') <౐ firstExpect ”ELSE” (parseSequencedCommand steps') rest'
(_, rest''') <౐ expect ”END” rest''
pure (IFB e THEN c ELSE c' FI, rest'''))

పఫబ
(do (e, rest) <౐ firstExpect ”WHILE” (parseBExp steps') xs

(c, rest') <౐ firstExpect ”DO” (parseSequencedCommand steps') rest
(_, rest'') <౐ expect ”END” rest'
pure (WHILE e c, rest''))

పఫబ
(do (i, rest) <౐ parseIdentifier xs;

(e, rest') <౐ firstExpect ”௜=” (parseAExp steps') rest
pure (i ௜௜= e, rest'))

parseSequencedCommand : (steps : Nat) ౏> Parser Com
parseSequencedCommand Z _ = NoneE ”Too many recursive calls”
parseSequencedCommand (S steps') xs =
do (c, rest) <౐ parseSimpleCommand steps' xs

((do (c', rest') <౐ firstExpect ”;;” (parseSequencedCommand steps') rest
pure ((do c; c'), rest'))

పఫబ
(pure (c, rest)))

bignumber : Nat
bignumber = 1000

parse : (str : String) ౏> OptionE (Com, List Token)
parse str = parseSequencedCommand bignumber (tokenize str)

2. Examples

λΠ> parse ”IF x తథ y + 1 + 2 - y * 6 + 3 THEN x ௜= x * 1;; y ௜= 0 ELSE SKIP END”
SomeE (CIf (BEq (AId (MkId ”x”)) (APlus (AMinus (APlus (APlus (AId (MkId ”y”)) (ANum 1)) (ANum 2)) (AMult (AId (MkId ”y”)) (ANum 6))) (ANum 3)))

(CSeq (CAss (MkId ”x”) (AMult (AId (MkId ”x”)) (ANum 1))) (CAss (MkId ”y”) (ANum 0)))

2. EXAMPLES 177

CSkip,
[]) : OptionE (Com, List String)

λΠ> parse ”SKIP;; z௜=x*y*(x*x);; WHILE xతథx DO IF z యర z*z && not x తథ 2 THEN x ௜= z;; y ௜= z ELSE SKIP END;; SKIP END;; x௜=z”

This one is repeated twice in the book for some reason

λΠ> parse ”SKIP;; z௜=x*y*(x*x);; WHILE xతథx DO IF z యర z*z && not x తథ 2 THEN x ௜= z;; y ௜= z ELSE SKIP END;; SKIP END;; x௜=z”
SomeE (CSeq CSkip

(CSeq (CAss (MkId ”z”) (AMult (AMult (AId (MkId ”x”)) (AId (MkId ”y”))) (AMult (AId (MkId ”x”)) (AId (MkId ”x”)))))
(CSeq (CWhile (BEq (AId (MkId ”x”)) (AId (MkId ”x”)))

(CSeq (CIf (BAnd (BLe (AId (MkId ”z”)) (AMult (AId (MkId ”z”)) (AId (MkId ”z”)))) (BNot (BEq (AId (MkId ”x”)) (ANum 2))))
(CSeq (CAss (MkId ”x”) (AId (MkId ”z”))) (CAss (MkId ”y”) (AId (MkId ”z”))))
CSkip)

CSkip))
(CAss (MkId ”x”) (AId (MkId ”z”))))),

[]) : OptionE (Com, List String)

CHAPTER 13

ImpCEvalFun : Evaluation Function for Imp

module ImpCEvalFun

We saw in the Imp chapter how a naive approach to defining a function representing
evaluation for Imp runs into difficulties. There, we adopted the solution of changing
from a functional to a relational definition of evaluation. In this optional chapter,
we consider strategies for getting the functional approach to work.

import Logic
import Maps
import Imp

%access public export
%default total

1. A Broken Evaluator

Here was our first try at an evaluation function for commands, omitting WHILE.

ceval_step1 : (st : State) ౏> (c : Com) ౏> State
ceval_step1 st CSkip = st
ceval_step1 st (CAss l a1) = t_update l (aeval st a1) st
ceval_step1 st (CSeq c1 c2) =
let st' = ceval_step1 st c1
in ceval_step1 st' c2

ceval_step1 st (CIf b c1 c2) =
if beval st b
then ceval_step1 st c1
else ceval_step1 st c2

ceval_step1 st (CWhile b c) = st -- bogus

As we remarked in chapter Imp, in a traditional functional programming language
like ML or Haskell we could write the WHILE case as follows:

...
ceval_step1 st (CWhile b c) =
if (beval st b)
then ceval_step1 st (CSeq c $ CWhile b c)
else st

179

180 13. IMPCEVALFUN : EVALUATION FUNCTION FOR IMP

Idris doesn’t accept such a definition (ImpCEvalFun.ceval_step1 is possibly not total due to recursive path ImpCEvalFun.ceval_step1 ౝ౑> ImpCEvalFun.ceval_step1 ౝ౑> ImpCEvalFun.ceval_step1)
because the function we want to define is not guaranteed to terminate. Indeed,
the changed ceval_step1 function applied to the loop program from Imp.lidr would
never terminate. Since Idris is not just a functional programming language, but
also a consistent logic, any potentially non-terminating function needs to be
rejected. Here is an invalid(!) Idris program showing what would go wrong if
Idris allowed non-terminating recursive functions:

loop_false : (n : Nat) ౏> Void
loop_false n = loop_false n

That is, propositions like Void would become provable (e.g., loop_false 0 would be
a proof of Void), which would be a disaster for Idris’s logical consistency.

Thus, because it doesn’t terminate on all inputs, the full version of ceval_step1
cannot be written in Idris – at least not without one additional trick…

2. A Step-Indexed Evaluator

The trick we need is to pass an additional parameter to the evaluation function
that tells it how long to run. Informally, we start the evaluator with a certain
amount of “gas” in its tank, and we allow it to run until either it terminates in
the usual way or it runs out of gas, at which point we simply stop evaluating and
say that the final result is the empty memory. (We could also say that the result
is the current state at the point where the evaluator runs out fo gas – it doesn’t
really matter because the result is going to be wrong in either case!)

ceval_step2 : (st : State) ౏> (c : Com) ౏> (i : Nat) ౏> State
ceval_step2 _ _ Z = empty_state
ceval_step2 st CSkip (S i') = st
ceval_step2 st (CAss l a1) (S i') = t_update l (aeval st a1) st
ceval_step2 st (CSeq c1 c2) (S i') =
let st' = ceval_step2 st c1 i'
in ceval_step2 st' c2 i'

ceval_step2 st (CIf b c1 c2) (S i') =
if beval st b
then ceval_step2 st c1 i'
else ceval_step2 st c2 i'

ceval_step2 st c@(CWhile b1 c1) (S i') =
if (beval st b1)
then let st' = ceval_step2 st c1 i' in

ceval_step2 st' c i'
else st

Note: It is tempting to think that the index i here is counting the “number of
steps of evaluation.” But if you look closely you’ll see that this is not the case: for
example, in the rule for sequencing, the same i is passed to both recursive calls.
Understanding the exact way that i is treated will be important in the proof of
ceval__ceval_step, which is given as an exercise below.

2. A STEP-INDEXED EVALUATOR 181

One thing that is not so nice about this evaluator is that we can’t tell, from its
result, whether it stopped because the program terminated normally or because it
ran out of gas. Our next version returns an Maybe State instead of just a State, so
that we can distinguish between normal and abnormal termination.

ceval_step3 : (st : State) ౏> (c : Com) ౏> (i : Nat) ౏> Maybe State
ceval_step3 _ _ Z = Nothing
ceval_step3 st CSkip (S i') = Just st
ceval_step3 st (CAss l a1) (S i') = Just $ t_update l (aeval st a1) st
ceval_step3 st (CSeq c1 c2) (S i') =
case ceval_step3 st c1 i' of
Just st' ౬> ceval_step3 st' c2 i'
Nothing ౬> Nothing

ceval_step3 st (CIf b c1 c2) (S i') =
if beval st b
then ceval_step3 st c1 i'
else ceval_step3 st c2 i'

ceval_step3 st c@(CWhile b1 c1) (S i') =
if (beval st b1)
then case ceval_step3 st c1 i' of

Just st' ౬> ceval_step3 st' c i'
Nothing ౬> Nothing

else Just st

We can improve the readability of this version by using the fact that /idr{Maybe}
forms a monad to hide the plumbing involved in repeatedly matching against
optional states.

Monad Maybe where
Nothing ఻ీ= k = Nothing
(Just x) ఻ీ= k = k x

ceval_step : (st : State) ౏> (c : Com) ౏> (i : Nat) ౏> Maybe State
ceval_step _ _ Z = Nothing
ceval_step st CSkip (S i') = Just st
ceval_step st (CAss l a1) (S i') = Just $ t_update l (aeval st a1) st
ceval_step st (CSeq c1 c2) (S i') =
do st' <౐ ceval_step st c1 i'

ceval_step st' c2 i'
ceval_step st (CIf b c1 c2) (S i') =
if beval st b
then ceval_step st c1 i'
else ceval_step st c2 i'

ceval_step st c@(CWhile b1 c1) (S i') =
if (beval st b1)
then do st' <౐ ceval_step st c1 i'

ceval_step st' c i'
else Just st

182 13. IMPCEVALFUN : EVALUATION FUNCTION FOR IMP

test_ceval : (st : State) ౏> (c : Com) ౏> Maybe (Nat, Nat, Nat)
test_ceval st c = case ceval_step st c 500 of
Nothing ౬> Nothing
Just st ౬> Just (st X, st Y, st Z)

Syntax sugar for IF breaks down here

λΠ> test_ceval Imp.empty_state (CSeq (X ௜௜= ANum 2) (CIf (BLe (AId X) (ANum 1)) (Y ௜௜= ANum 3) (Z ௜௜= ANum 4)))
Just (2, 0, 4) : Maybe (Nat, Nat, Nat)

2.0.1. Exercise: 2 stars, recommended (pup_to_n). Write an Imp program
that sums the numbers from 1 to X (inclusive: 1 + 2 + ... + X) in the variable Y.
Make sure your solution satisfies the test that follows.

pup_to_n : Com
pup_to_n = ?pup_to_n_rhs

pup_to_n_1 : test_ceval (t_update X 5 $ Imp.empty_state) ImpCEvalFun.pup_to_n = Just (0, 15, 0)
pup_to_n_1 = ?pup_to_n_1 -- replace with Refl when done

□

2.0.2. Exercise: 2 stars, optional (peven). Write a While program that sets Z
to 0 if X is even and sets Z to 1 otherwise. Use test_ceval to test your program.

-- FILL IN HERE

□

3. Relational vs. Step-Indexed Evaluation

As for arithmetic and boolean expressions, we’d hope that the two alternative
definitions of evaluation would actually amount to the same thing in the end.
This section shows that this is the case.

ceval_step__ceval : (c : Com) ౏> (st, st' : State) ౏> (i ** ceval_step st c i = Just st') ౏> c / st \\ st'
ceval_step__ceval c st st' (Z ** prf) = absurd prf
ceval_step__ceval CSkip st st (S i ** Refl) = E_Skip
ceval_step__ceval (CAss l a) st st' (S i ** prf) =
rewrite sym $ justInjective prf in
E_Ass {n=aeval st a} Refl

ceval_step__ceval (CSeq c1 c2) st st' (S i ** prf) with (ceval_step st c1 i) proof c1prf
ceval_step__ceval (CSeq c1 c2) st st' (S i ** prf) | Just st1 =
E_Seq (ceval_step__ceval c1 st st1 (i**sym c1prf))

(ceval_step__ceval c2 st1 st' (i**prf))
ceval_step__ceval (CSeq c1 c2) st st' (S i ** prf) | Nothing = absurd prf

ceval_step__ceval (CIf b c1 c2) st st' (S i ** prf) with (beval st b) proof bprf
ceval_step__ceval (CIf b c1 c2) st st' (S i ** prf) | True =
E_IfTrue (sym bprf) (ceval_step__ceval c1 st st' (i**prf))

ceval_step__ceval (CIf b c1 c2) st st' (S i ** prf) | False =
E_IfFalse (sym bprf) (ceval_step__ceval c2 st st' (i**prf))

3. RELATIONAL VS. STEP-INDEXED EVALUATION 183

ceval_step__ceval (CWhile b c) st st' (S i ** prf) with (beval st b) proof bprf
ceval_step__ceval (CWhile b c) st st' (S i ** prf) | True with (ceval_step st c i) proof cprf
ceval_step__ceval (CWhile b c) st st' (S i ** prf) | True | Just st1 =
E_WhileLoop (sym bprf) (ceval_step__ceval c st st1 (i**sym cprf))

Idris can’t see sigma is decreasing, use WellFounded here?

(assert_total $ ceval_step__ceval (CWhile b c) st1 st' (i**prf))
ceval_step__ceval (CWhile b c) st st' (S i ** prf) | True | Nothing = absurd prf

ceval_step__ceval (CWhile b c) st st (S i ** Refl) | False = E_WhileEnd (sym bprf)

3.0.1. Exercise: 4 stars (ceval_step__ceval_inf). Write an informal proof of
ceval_step__ceval, following the usual template. (The template for case analysis on
an inductively defined value should look the same as for induction, except that
there is no induction hypothesis.) Make your proof communicate the main ideas
to a human reader; do not simply transcribe the steps of the formal proof.

-- FILL IN HERE

□

ceval_step_more : (i1, i2 : Nat) ౏> (st, st' : State) ౏> (c : Com) ౏> LTE i1 i2 ౏> ceval_step st c i1 = Just st'
౏> ceval_step st c i2 = Just st'

ceval_step_more Z i2 st st' c lte prf = absurd prf
ceval_step_more (S i1) Z st st' c lte prf = absurd lte
ceval_step_more (S i1) (S i2) st st' CSkip lte prf = prf
ceval_step_more (S i1) (S i2) st st' (CAss l a) lte prf = prf
ceval_step_more (S i1) (S i2) st st' (CSeq c1 c2) lte prf with (ceval_step st c1 i1) proof cprf
ceval_step_more (S i1) (S i2) st st' (CSeq c1 c2) lte prf | Just st1 =
rewrite ceval_step_more i1 i2 st st1 c1 (fromLteSucc lte) (sym cprf) in
ceval_step_more i1 i2 st1 st' c2 (fromLteSucc lte) prf

ceval_step_more (S i1) (S i2) st st' (CSeq c1 c2) lte prf | Nothing = absurd prf
ceval_step_more (S i1) (S i2) st st' (CIf b c1 c2) lte prf with (beval st b) proof bprf
ceval_step_more (S i1) (S i2) st st' (CIf b c1 c2) lte prf | True =
ceval_step_more i1 i2 st st' c1 (fromLteSucc lte) prf

ceval_step_more (S i1) (S i2) st st' (CIf b c1 c2) lte prf | False =
ceval_step_more i1 i2 st st' c2 (fromLteSucc lte) prf

ceval_step_more (S i1) (S i2) st st' (CWhile b c) lte prf with (beval st b)
ceval_step_more (S i1) (S i2) st st' (CWhile b c) lte prf | True with (ceval_step st c i1) proof cprf
ceval_step_more (S i1) (S i2) st st' (CWhile b c) lte prf | True | Just st1 =
rewrite ceval_step_more i1 i2 st st1 c (fromLteSucc lte) (sym cprf) in
ceval_step_more i1 i2 st1 st' (CWhile b c) (fromLteSucc lte) prf

ceval_step_more (S i1) (S i2) st st' (CWhile b c) lte prf | True | Nothing = absurd prf
ceval_step_more (S i1) (S i2) st st' (CWhile b c) lte prf | False = prf

3.0.2. Exercise: 3 stars, recommended (ceval__ceval_step). Finish the follow-
ing proof. You’ll need ceval_step_more in a few places, as well as some basic facts
about LTE and S.

184 13. IMPCEVALFUN : EVALUATION FUNCTION FOR IMP

ceval__ceval_step : (c : Com) ౏> (st, st' : State) ౏> (c / st \\ st') ౏> (i ** ceval_step st c i = Just st')
ceval__ceval_step c st st' prf = ?ceval__ceval_step_rhs

□
ceval_and_ceval_step_coincide : (c : Com) ౏> (st, st' : State) ౏> (c / st \\ st') <౦> (i ** ceval_step st c i = Just st')
ceval_and_ceval_step_coincide c st st' = (ceval__ceval_step c st st', ceval_step__ceval c st st')

4. Determinism of Evaluation Again

Using the fact that the relational and step-indexed definition of evaluation are the
same, we can give a slicker proof that the evaluation relation is deterministic.

ceval_deterministic' : (c : Com) ౏> (st, st1, st2 : State) ౏> (c / st \\ st1) ౏> (c / st \\ st2) ౏> st1 = st2
ceval_deterministic' c st st1 st2 prf1 prf2 =
let
(i1**e1) = ceval__ceval_step c st st1 prf1
(i2**e2) = ceval__ceval_step c st st2 prf2
plus1 = ceval_step_more i1 (i1+i2) st st1 c (lteAddRight i1) e1
plus2 = ceval_step_more i2 (i1+i2) st st2 c (rewrite plusCommutative i1 i2 in lteAddRight i2) e2
in

justInjective $ trans (sym plus1) plus2

Glossary

algebraic data type: . 9 define

computation rule: . 16 define

expression: . 16 define

first-class: . 9 define

fully certified: . 12 define
function type: . 15 define

idris-add-clause: (idris-add-clause PROOF)

Add clauses to the declaration at point. 11, 12

idris-case-split: (idris-case-split)

Case split the pattern variable at point. 11

idris-load-file: (idris-load-file &optional SET-LINE)

Pass the current buffer’s file to the inferior Idris process.

A prefix argument restricts loading to the current line. 11

idris-proof-search: (idris-proof-search &optional ARG)

Invoke the proof search. A plain prefix argument causes the command to
prompt for hints and recursion depth, while a numeric prefix argument
sets the recursion depth directly. 12

induction: . 21 define

inductive rule: . 15 define

module system: . 15 define

pattern matching: . 9 define

polymorphic type system: . 9 define

185

186 Glossary

structural recursion: . 24define
syntax: . 18define

tactic: . 10define
type: . 10define

wildcard pattern: . 18define

	Chapter 1. Preface
	1. Welcome
	2. Overview
	2.1. Logic
	2.2. Proof Assistants
	2.3. Functional Programming
	2.4. Program Verification
	2.5. Type Systems
	2.6. Further Reading

	3. Practicalities
	3.1. Chapter Dependencies
	3.2. System Requirements
	3.3. Exercises
	3.4. Downloading the Coq Files

	4. Translations

	Chapter 2. Basics
	1. Introduction
	2. Enumerated Types
	2.1. Days of the Week

	3. Booleans
	4. Function Types
	5. Modules
	6. Numbers
	7. Proof by Simplification
	8. Proof by Rewriting
	9. Proof by Case Analysis
	10. Structural Recursion (Optional)
	11. More Exercises

	Chapter 3. Induction : Proof by Induction
	1. Proof by Induction
	2. Proofs Within Proofs
	3. More Exercises

	Chapter 4. Lists : Working with Structured Data
	1. Pairs of Numbers
	1.1. Exercise: 1 star (snd_fst_is_swap)
	1.2. Exercise: 1 star, optional (fst_swap_is_snd)

	2. Lists of Numbers
	2.1. Repeat
	2.2. Length
	2.3. Append
	2.4. Head (with default) and Tail
	2.5. Exercises
	2.6. Bags via Lists

	3. Reasoning About Lists
	3.1. Induction on Lists
	3.2. Search
	3.3. List Exercises, Part 1
	3.4. List Exercises, Part 2

	4. Options
	5. Partial Maps

	Chapter 5. Poly : Polymorphism and Higher-Order Functions
	1. Polymorphism
	1.1. Polymorphic Lists
	1.2. Polymorphic Pairs

	2. Functions as Data
	2.1. Higher-Order Functions
	2.2. Filter
	2.3. Anonymous Functions
	2.4. Map
	2.5. Fold
	2.6. Functions That Construct Functions

	3. Additional Exercises

	Chapter 6. Logic : Logic in Idris
	1. Logical Connectives
	1.1. Conjunction
	1.2. Disjunction
	1.3. Falsehood and Negation
	1.4. Truth
	1.5. Logical Equivalence
	1.6. Existential Quantification

	2. Programming with Propositions
	3. Applying Theorems to Arguments
	4. Idris vs. Set Theory
	4.1. Functional Extensionality
	4.2. Propositions and Booleans
	4.3. Classical vs. Constructive Logic

	Chapter 7. IndProp : Inductively Defined Propositions
	1. Inductively Defined Propositions
	2. Using Evidence in Proofs
	2.1. Pattern Matching on Evidence
	2.2. Exercise: 1 star (inversion_practice)
	2.3. Induction on Evidence
	2.4. Exercise: 4 stars, advanced, optional (ev_alternate)
	2.5. Exercise: 3 stars, advanced, recommended (ev_ev__ev)

	3. Inductive Relations
	3.1. Exercise: 2 stars, optional (empty_relation)
	3.2. Exercise: 4 stars, advanced (subsequence)

	4. Case Study: Regular Expressions
	4.1. The remember Tactic

	5. Case Study: Improving Reflection
	6. Additional Exercises
	6.1. Exercise: 4 stars, advanced, optional (NoDup)

	Chapter 8. Maps: Total and Partial Maps
	1. The Idris Standard Library
	2. Identifiers
	3. Total Maps
	4. Partial maps

	Chapter 9. ProofObjects : The Curry-Howard Correspondence
	1. Proof Scripts
	2. Programming with Tactics
	3. Logical Connectives as Inductive Types
	3.1. Conjunction
	3.2. Disjunction
	3.3. Existential Quantification
	3.4. Unit and Void

	4. Equality
	4.1. Inversion, Again

	Chapter 10. Rel : Properties of Relations
	1. Basic Properties
	1.1. Partial Functions
	1.2. Reflexive Relations
	1.3. Transitive Relations
	1.4. Symmetric and Antisymmetric Relations
	1.5. Equivalence Relations
	1.6. Partial Orders and Preorders

	2. Reflexive, Transitive Closure

	Chapter 11. Imp : Simple Imperative Programs
	1. Arithmetic and Boolean Expressions
	1.1. Syntax
	1.2. Evaluation
	1.3. Optimization

	2. Coq Automation
	2.1. Tacticals
	2.2. Defining New Tactic Notations
	2.3. The Tactic
	2.4. A Few More Handy Tactics

	3. Evaluation as a Relation
	3.1. Inference Rule Notation
	3.2. Equivalence of the Definitions
	3.3. Computational vs. Relational Definitions

	4. Expressions With Variables
	4.1. States
	4.2. Syntax
	4.3. Evaluation

	5. Commands
	5.1. Syntax
	5.2. More Examples

	6. Evaluating Commands
	6.1. Evaluation as a Function (Failed Attempt)
	6.2. Evaluation as a Relation
	6.3. Determinism of Evaluation

	7. Reasoning About Imp Programs
	8. Additional Exercises

	Chapter 12. ImpParser: Lexing and Parsing in Idris
	1. Internals
	1.1. Lexical Analysis
	1.2. Parsing

	2. Examples

	Chapter 13. ImpCEvalFun : Evaluation Function for Imp
	1. A Broken Evaluator
	2. A Step-Indexed Evaluator
	3. Relational vs. Step-Indexed Evaluation
	4. Determinism of Evaluation Again

	Glossary

