
Security Review Report
NM-0069 Polygon Id

(Apr 18, 2023)



Contents
1 Executive Summary 2

2 Audited Files 3

3 Assumptions 3

4 Summary of Issues 4

5 System Overview 5
5.1 StateV2.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Smt.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Library BinarySearchSmtRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.4 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Analysis of the Probability of Collision for Identities 10
6.1 Approach: The birthday problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1.1 Asking the inverse question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.1.2 Usability concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.2 Approach: Study on the number of collisions expected according to the number of identities added to the tree . . . . . . . 11
6.3 Choosing an appropriate depth limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Formal Specification of Sparse Merkle trees 15
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Introduction to Hoare triples and separation logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Risk Rating Methodology 21

9 Issues & Points of Attention: Audit 1 22
9.1 [Low] Lack of a two-step process for transferring ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.2 [Low] Unnecessary space allocation in Proof.siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.3 [Info] Code and specification not matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.4 [Info] Nodes with incorrect depth are allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.5 [Info] Owner can change the verification logic after the contract’s deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.6 [Info] Privileged Roles and Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.7 [Info] Upgradability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.8 [Best Practices] Avoidable reversion in function getRootHistory(...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.9 [Best Practices] Functions that can have external visibility instead of public . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.10 [Best Practices] Memory variables should be initialized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.11 [Best Practices] Not checking the verifier contract for address(0x0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.12 [Best Practices] Redundant input arguments in function _pushLeaf(...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.13 [Best Practices] Special values able to be used as normal input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.14 [Best Practices] Unnecessary path specification in import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.15 [Best Practices] abicoder v2 pragma is not needed since version 0.8.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.16 [Best Practices] Variable can be uint256 instead of uint64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Issues & Points of Attention: Audit 2 31
10.1 [Info] Inconsistent behavior of getter function for zero root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.2 [Info] NatSpec comment missing in function calculateBounds(...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.3 [Best Pratices] Gaps with round numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.4 [Best Practices] Not testing implementation updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.5 [Best Practices] Uninitialized proxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 Complementary Validations Performed by Nethermind 34
11.1 White-box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.1.2 Statement and Branch Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.2 Black-box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.2.1 Boundary Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12 Documentation Evaluation 36

13 Test Suite Evaluation 37
13.1 Contracts Compilation Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13.2 Tests Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13.3 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.4 Slither . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 About Nethermind 43

1



NM-0069 Polygon Id - SECURITY REVIEW

1 Executive Summary
This document presents the security review performed by Nethermind in the Polygon Id Smart Contracts. The Polygon Id is a decentralized
and permissionless identity framework for web2 and web3 applications based on the principles of Self-Sovereign Identity (SSI) and
cryptography. With the help of zero-knowledge proofs, users can prove their identity without exposing their private information. The audit
focuses on Iden3 smart contracts. Iden3 is an open-source protocol that provides the foundations for Polygon Id. The protocol defines how
the parties communicate and interact. Polygon Id is an abstraction layer to enable developers to build applications leveraging the Iden3
protocol. The audited code consists of 687 lines of Solidity with code coverage of 94%. The Polygon team provided two documents
to assist the audit presenting an overview of the contracts and how to run the test suite. The audit was supported by the documentation
accessible from the Polygon ID wiki.

The audit was conducted using (a) manual analysis of the codebase, (b) automated analysis tools, (c) simulation of the smart contracts,
and (d) creation of test cases. The Nethermind Formal Verification and Cryptography Research teams also provided support for the audit.
The audit was supplemented with multiple testing techniques, such as black-box testing, white-box testing, and property testing. The
white-box tests were enhanced by dynamic analysis to uncover untested code branches.

In the first re-audit, we identified 16 points of attention, of which two were classified as Low severity, while the remaining 14 points of
attention were classified as either Informational or Best Practices. Following the re-audit, the Polygon team addressed 12 issues, while
four issues were acknowledged.

After the audit, the Polygon team decided to refactor the implementation to remove the restriction of only having one unique state per
contract, which could potentially limit the future evolution of the system. Our team reviewed these changes in re-audit 2. In the second re-
audit, we identified five points of attention, of which two were classified as Informational and three were classified as Best Practices.
The Polygon team addressed four issues, while one issue was acknowledged. The acknowledged issue pertains to our request for the
creation of a test case to evaluate the logic for updating implementations, which is a standard procedure that the Polygon team has
expertise in. Fig. 1 summarizes all the issues reported in re-audits 1 and 2.

This document is organized as follows. Section 2 presents the files in the scope of this audit. Section 3 presents the assumptions for
this audit. Section 4 summarizes the issues. Section 5 presents the system overview. Section 6 discusses the probability of collision when
the system receives more identities (users). Section 7 presents an abstract formal specification of the application. Section 8 discusses the
risk rating methodology adopted for this audit. Section 9 details the issues raised in audit 1. Section 10 details the issues raised in audit
2 (after the audit, the Polygon team decided to refactor the implementation. The refactoring is intended to remove the limitation of only
one unique state per contract). Section 11 presents the complementary validations performed by Nethermind for testing the application.
Section 12 discusses the documentation provided by the client for this audit. Section 13 presents the compilation, tests, coverage, and
automated tests. Section 14 concludes the document.

Low

Info
Best Practices
57.1%

Low
9.5%

Info
33.3%

                                           Severity

(a)

Acknowledged
23.8%

Fixed
76.2%

                                             Status

(b)

Fig. 1: Distribution of issues: Critical (0), High (0), Medium (0), Low (2), Undetermined (0), Informational (7), Best Practices (12).
Distribution of status: Fixed (16), Acknowledged (5), Mitigated (0), Unresolved (0)
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Summary of the Audit

Audit Type Security Review
Initial Report Jan. 31, 2023
Response from Client Feb. 15, 2023
Final Report Reaudit 1 Mar. 16, 2023
Final Report Reaudit 2 Apr. 18, 2023
Methods Manual Review, Automated Analysis
Repository Polygon ID
Commit Hash (Initial Audit) 9c8f5d6132b8918b2889ab4c8bda39d87d06e312
Commit Hashes (Reaudit) d9be60d7c92d331058135f4fa124969fb02fdcf3

80398a1b46c4108ee9dcccb710486e7a3bc5ec99
ebe466957f4d8af8e2c11ad5249e3ac219b9145d
c9c661ef00811b8f1eb9367519d4f230aa1b2842
347dd01048110f8da49069835a93a6fe0bd389c0
3245a7563ecc3f8876682b67c965437ce888ca62
a04690649188b71cceddc2ef81fcbec54926b7aa
278e292d1cd7f6063f5ebeb0ef855d00f51af528
6ac5bca7fcd2138f639bcf39722107c0b4e37b9a

Documentation README
Documentation Assessment High
Test Suite Assessment Medium

2 Audited Files

Contract LoC Comments Ratio Blank Total
1 contracts/lib/Smt.sol 427 127 29.7% 60 614
2 contracts/state/StateV2.sol 260 173 66.5% 44 477

Total 687 300 43.6% 104 1091

3 Assumptions
The prepared security review is based on the following assumptions:

− The off-chain code which interacts with the on-chain contracts is safe;

− The Poseidon hash library is implemented correctly;

− The circuits of the zero-knowledge proof are correct;

− The verifier of zero-knowledge proof is responsible for checking the validity of the genesis state for a given index;

− The verifier of the zero-knowledge proof is responsible for checking the validity of state transitions from the old state to the new
one for a given index;

− The sparse Merkle Tree implementation can hold up to 231 leaves.
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4 Summary of Issues
Audit 1

Finding Severity Update
1 Lack of a two-step process for transferring ownership Low Fixed
2 Unnecessary space allocation in Proof.siblings Low Fixed
3 Code and specification not matching Info Fixed
4 Nodes with incorrect depth are allowed Info Fixed
5 Owner can change the verification logic after the contract’s deployment Info Acknowledged
6 Privileged Roles and Ownership Info Acknowledged
7 Upgradability Info Acknowledged
8 Avoidable reversion in function getRootHistory(...) Best Practices Fixed
9 Functions that can have external visibility instead of public Best Practices Fixed
10 Memory variables should be initialized Best Practices Fixed
11 Not checking the verifier contract for address(0x0) Best Practices Acknowledged
12 Redundant input arguments in function _pushLeaf(...) Best Practices Fixed
13 Special values able to be used as normal input Best Practices Fixed
14 Unnecessary path specification in import Best Practices Fixed
15 abicoder v2 pragma is not needed since version 0.8.0 Best Practices Fixed
16 Variable can be uint256 instead of uint64 Best Practices Fixed

Audit 2

Finding Severity Update
1 Inconsistent behavior of getter function for zero root Info Fixed
2 NatSpec comment missing in function calculateBounds(...) Info Fixed
3 Gaps with round numbers Best Practices Fixed
4 Not testing implementation updates Best Practices Acknowledged
5 Uninitialized proxy implementation Best Practices Fixed

4
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5 System Overview
The Polygon ID, with the help of zero-knowledge proofs, lets users prove their identity without exposing their private information. This
section was written based on the codebase audited in audit 1, before the refactoring performed by the Polygon team. The audit is based
on two contracts: a) StateV2.sol ; and b) Smt.sol. The contract StateV2.sol stores meta information about identities. The contract is
OwnableUpgradeable, which means that it uses the EIP-1967 proxy pattern for holding the state information, where the proxy contract
store the address of the logic contract they delegate to, as well as other proxy-specific information. The contract Smt.sol implements a
Sparse Merkle Tree used by the StateV2.sol for managing its data. The contracts are described below in accordance with the structural
diagram presented in Fig.2.

StateV2

OwnableUpgradeable

Smt

initialize

setVerifier

transitState

🔍 getVerifier

🔍 getStateInfoById

🔍 getStateInfoHistoryLengthById

🔍 getStateInfoHistoryById

🔍 getStateInfoByState

🔍 getGISTProof

🔍 getGISTProofByRoot

🔍 getGISTProofByBlock

🔍 getGISTProofByTime

🔍 getGISTRoot

🔍 getGISTRootHistory

🔍 getGISTRootHistoryLength

🔍 getGISTRootInfo

🔍 getGISTRootInfoByBlock

🔍 getGISTRootInfoByTime

🔍 idExists

🔍 stateExists

initializer
onlyOwner

onlyExistingId
onlyExistingId

onlyExistingId

onlyExistingState

Smt

BinarySearchSmtRoots

add

🔍 getRootHistoryLength

🔍 getRootHistory

🔍 getNode

🔍 getProof

🔍 getProofByRoot

🔍 getProofByTime

🔍 getProofByBlock

🔍 getRoot

🔍 getRootInfoByTime

🔍 getRootInfoByBlock

🔍 getRootInfo

🔍 rootExists

onlyExistingRoot

onlyExistingRoot

Fig. 2: Structural Diagram of the Contract

5.1 StateV2.sol

The contract StateV2.sol uses three structs: StateData, StateEntry, and StateInfo. The struct StateEntry holds the metadata of each
identity state. The struct is reproduced below.

struct StateEntry {
uint256 id;
uint256 timestamp;
uint256 block;
uint256 replacedBy;

}

The struct StateData stores all the state data. In this struct, the field statesHistories holds the history per each identity, while the field
stateEntries stores data related to the state of the identity.

struct StateData {
mapping(uint256 => uint256[]) statesHistories;
mapping(uint256 => StateEntry) stateEntries;

}

The struct StateInfo is used for public interfaces to represent state information. This structure holds information about identity identifiers
when the state was committed to the Blockchain, the block number when the state was committed, and the state which replaced this state
for the identity. The struct is reproduced below.

5
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struct StateInfo {
uint256 id;
uint256 state;
uint256 replacedByState;
uint256 createdAtTimestamp;
uint256 replacedAtTimestamp;
uint256 createdAtBlock;
uint256 replacedAtBlock;

}

Thus, for each identity, the contract stores the identity state and its history. The contract also uses a sparse Merkle Tree to store the whole
tree (and history) on-chain. This contract has the following public functions.

− setVerifier()

− transitState()

− renounceOwnership()

− transferOwnership()

In addition to these functions, the contract provides several getters not described here. These getters allow to retrieve data such as the
state, root information, check the existence of ids, states, retrieve the verifier address, among others. Fig. 2 lists all the functions
implemented in the contract StateV2.sol.

5.2 Smt.sol

Smt is a library implementing a Sparse Merkle Tree (SMT). This implementation keeps the tree history as long as roots are never duplicated.
Each leaf of the tree consists of a tuple (index; value), where the index represents the identity (and also the location in the tree), while
value represents the value assigned to the given id. A Sparse Merkle Tree is an authenticated data structure based on a perfect Merkle tree
of intractable size. It contains a distinct leaf for every possible output from a cryptographic hash function and can be simulated efficiently
because the tree is sparse (i.e., most leaves are empty).

v1 v2 v3 v4 vn-3 vn-2 vn-1 vn

h1 h2 h3 h4 hn-3 hn-2 hn-1 hn

h(n-3)(n-2) h(n-1)(n)h(1)(2) h(3)(4)

h(1,2)(3,4) h((n-3),(n-2)),((n-1),(n))

Root = h((1,2)(3,4)…(n/2-1), (n/2)(n/2+1)…(n))

... ...

Fig. 3: Representation of a Sparse Merkle Tree

Given a set of values V = {v1; v2; v3; : : : ; vn}, the Merkle tree can be computed by generating the set of hashesH = {h1; h2; h3; : : : ; hn}
using a cryptographic function over each element of V , where hi = hash(vi) and 1 ≤ i ≤ n. After computing each h ∈ H, we must gen-
erate the second level of the tree (H′) by hashing siblings elements, where each element belongs to a single pair. So, h′

1
= hash(h1; h2),

h′
2
= hash(h3; h4), and so forth. By doing so, ∣H′∣ = ∣H ∣/2, i.e., we reduce the cardinality of the set H to its half. Then, we make H = H′.

We repeat the process until ∣H ∣ = 1, i.e., only one element is left in H. That element is called the root of the Merkle tree. Whenever we
have an odd number of elements in the set H, we repeat the last element to always have an even number of elements at any given level.

6
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When considering the implementation being audited, the value v is represented by the tuple (index; value). It is also important to mention
that the index indicates the item’s location in the tree. To locate the key-value pair, the index is read bit-by-bit from the right-most bit to
the left-most bit while traversing the tree from the root downwards. Bit zero means ”follow the edge going to the left”, while bit one means
”follow the edge going to the right”. The main goal of the SMT implementation is to provide inclusion and non-inclusion proofs of identities
states into the SMT root. The Smt library contract is used for the state contract (StateV2.sol). The Sparse Merkle Tree is defined to have
a maximum depth of 32 levels. Since the first depth is zero, the tree can hold up to 231 leaves.

uint256 public constant MAX_SMT_DEPTH = 32;

The implementation considers three node types. The type empty represents a new node that has not been filled with any data yet. The
type leaf represents a tree leaf, while the type middle represents non-leaf nodes. The definition of nodes is presented below.

enum NodeType {
EMPTY,
LEAF,
MIDDLE

}

The Sparse Merkle Tree data is represented in the struct smtData having the mapping of nodes (position in the Merkle tree and nodes data)
and the history of roots. The struct is reproduced below.

struct SmtData {
mapping(uint256 => Node) nodes;
uint256[] rootHistory;
mapping(uint256 => RootEntry) rootEntries;

}

The struct Node holds the type of the node (empty, leaf, middle), the left and right children, the index of the node (location in the tree),
and the value.

struct Node {
NodeType nodeType;
uint256 childLeft;
uint256 childRight;
uint256 index;
uint256 value;

}

The struct RootEntry stores data related to the root of the Sparse Merkle Tree. This struct is used internally, and it has the following fields:
replacedByRoot (indicates which root has replaced this one), createdAtTimestamp (indicates the creation time), and createdAtBlock
(indicates the creation block). The struct is reproduced below.

struct RootEntry {
uint256 replacedByRoot;
uint256 createdAtTimestamp;
uint256 createdAtBlock;

}

The code also has the struct RootInfo used as an interface to external calls. This struct is very similar to RootEntry, with the addition of the
following fields root (indicates the root of the tree), replacedAtTimestamp (indicates the time where the tree has changed), replacedAtBlock
(indicates the block where the root has changed). The struct is presented below.

struct RootInfo {
uint256 root;
uint256 replacedByRoot;
uint256 createdAtTimestamp;
uint256 replacedAtTimestamp;
uint256 createdAtBlock;
uint256 replacedAtBlock;

}

Finally, the contract also uses one struct to hold proof-related data. The struct has the root, existence (indicates if the index exists in the
tree), siblings (holds the siblings for the proof, index (index in the tree), value (value stored in the tree), auxExistence (indicates that the
searched node does not exist in the tree but the auxiliary node was found instead), auxIndex (contains the index of an auxiliary node),
auxValue (contains the value of an auxiliary node). The struct is also reproduced below.

7
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struct Proof {
uint256 root;
bool existence;
uint256[MAX_SMT_DEPTH] siblings;
uint256 index;
uint256 value;
bool auxExistence;
uint256 auxIndex;
uint256 auxValue;

}

5.3 Library BinarySearchSmtRoots

The code uses Binary Search to find roots of the stored Sparse Merkle Trees in O(logn
2
). The code can execute the search based on the

block.timestamp or the block.number. Thus, the library BinarySearchSmtRoots is applied to the SmtData.

using BinarySearchSmtRoots for SmtData;

function binarySearchUint256( Smt.SmtData storage self, uint256 value, SearchType searchType ) ... returns (uint256) {
if (self.rootHistory.length == 0) { return 0; }

uint256 min = 0;
uint256 max = self.rootHistory.length - 1;
uint256 mid;
uint256 midRoot;

while (min <= max) {
/////////////////////////////////////////////////////////////////////////
// @audit Compute the index in the middle of the array.
/////////////////////////////////////////////////////////////////////////
mid = (max + min) / 2;
midRoot = self.rootHistory[mid];

/////////////////////////////////////////////////////////////////////////
// @audit Define if searching for "block.timestamp" or "block.number".
/////////////////////////////////////////////////////////////////////////
uint256 midValue = fieldSelector( self.rootEntries[midRoot], searchType );
if (midValue == value) {

///////////////////////////////////////////////////////////////////////
// @audit If the elements have been found, start the linear search.
///////////////////////////////////////////////////////////////////////
while (mid < self.rootHistory.length - 1) {

uint256 nextRoot = self.rootHistory[mid + 1];
uint256 nextValue = fieldSelector( self.rootEntries[nextRoot], searchType );

if (nextValue == value) {
////////////////////////////////////////////////////////////////////////////
// @audit If the next element is equal to the actual element, move forward.
////////////////////////////////////////////////////////////////////////////
mid++;
midRoot = nextRoot;

}
else {

////////////////////////////////////////////////////////////////////////////
// @audit Next element is different. Finish the search.
////////////////////////////////////////////////////////////////////////////
return midRoot;

}
}
return midRoot;

}
else if (value > midValue) { min = mid + 1; }
else if (value < midValue && mid > 0) { max = mid - 1; }
else { return 0; }

}

In the contract Smt.sol, the Binary Search is called in functions getRootInfoByTime(...) and getRootInfoByBlock(...). The Binary
Search is implemented using an interactive approach (instead of a recursive one) followed by a Linear Search to find the last element
meeting the search criteria. In the extreme case when a large portion of the elements are added to the sparse Merkle Tree in the same
block.timestamp or block.number, the Binary Search can become linear, i.e., the order of complexity can degenerate from O(logn

2
) to

8
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O(n). However, this is very unlikely to happen, and most of the searches must be completed in O(logn
2
) +O(�), where � represents the

number of equal elements meeting the search criteria. The Binary Search with audit comments is shown above.

To reuse the same implementation, the type of the search is specified using the enum SearchType described below.

enum SearchType {
TIMESTAMP,
BLOCK

}

5.4 Roles
The STATEV2_OWNER is the address that deployed the contract StateV2. The role can:

− Set a new ZKP verifier contract address by calling the function setVerifier(address newVerifierAddr);

− Renounce ownership by calling the function renounceOwnership(). This leaves the contract without an owner;

− Transfer ownership of the contract to a new owner by calling the function transferOwnership().

9
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6 Analysis of the Probability of Collision for Identities
This section was prepared by Nethermind’s Research Team for discussing the identity’s collision probability. Since identities are stored in
a sparse Merkle Tree (SMT) having 32 levels, the sparse Merkle Tree can store up to 231 leaves. In this section, we approach this problem
using two complementary approaches. Initially, we use formal methods to derive the equation that relates the collision probability
to the number of elements stored in the sparse Merkle Tree considering the sparse Merkle Tree’s depth. This is achieved by mapping
the collision problem into the classical birthday problem. After that, we approach the collision problem by instantiating sparse Merkle
Trees, adding random elements, and measuring the number of collisions according to the number of elements added.

6.1 Approach: The birthday problem
We would like to include a note on the likelihood of seeing leaf “collisions” that impede an element being added to the Merkle tree in light
of the depth limit parameter of 32. With leaves indexed by 256-bit hashes, we have 2256 different elements to consider, but a maximum
of 231 elements that can fit in the last level of the tree. We, therefore, ask: what is the probability of two leaves, generated at random,
occupying the same space in the last level of the SMT? (We call this a collision). And how concerning is this probability in ordinary use?
Since the SMT allocates leaves in the tree according only to their least significant 31 bits, we can consider leaves `i to be 31-bit
sequences, without loss of generality—thus restricting the total options down to T = 231. Then we can phrase our question as follows:

Consider a set of n leaves {`1; `2; : : : `n} which have been chosen uniformly at random. Compute the probability Pcol = P (`i = `j ; i ≠ j)
as a function of n.

This is an instance of a well-known probability problem, the birthday problem. The solution (which can be found via combinatorics as in,
for example, https://mathworld.wolfram.com/BirthdayProblem.html), is:

Pcol = 1 −
T !

(T − n)!Tn
(1)

Since the factorials above complicate visualizing the equation, the following estimate is commonly used:

Pcol ≈ 1 − e−n(n−1)/2T (2)

Let us graph this estimate below.

Fig. 4: Estimate of the probability of collision Pcol as a function of log2 n. The highlighted points show that Pcol ≈ 63% when
n = 216 = 65536 and Pcol ≈ 98% when n = 217 = 131072.

10
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6.1.1 Asking the inverse question

For security purposes (and for grasping the meaning of the formula above), it might be more meaningful to frame the question inversely:

What is the value of N required in order for the probability Pcol to rise to an appreciable number?

Fig. 4 above answers our questions. For n = 216 leaves, seeing a collision is likely, at roughly 63% probability. For n = 217 leaves and
beyond, a collision is practically guaranteed. The fact that a collision is so likely at 217 leaves may seem counterintuitive, especially
since it represents only 0.006% of the maximum number of 231 entries in the SMT. This interesting phenomenon is known as the
birthday paradox .

6.1.2 Usability concerns

There is a concern about how the application employing the Sparse Merkle Tree will handle collisions. From the contracts, we can see
that a collision will cause the corresponding leaf operation to revert. It may depend on the dApp in question whether there is a way to
circumvent the collision at the application level. With collisions being a virtual certainty for applications that use over 250,000 users, we
believe these remarks are worth considering.

6.2 Approach: Study on the number of collisions expected according to the number
of identities added to the tree

In this section, we focus on simulating how the number of collisions in the sparse Merkle Tree will behave as we add new random identities.
To study the collision problem, we created software to simulate the collisions whose pseudo-code is explained below.

1 Input: output_csv_filename;
2 Output: csv_file;
3

4 #define MAX_SMT_DEPTH 32
5 function simulate( output_csv_filename )
6 begin
7 while (true)
8 begin
9 file f = open(output_csv_filename,"a");

10 for expoent in {0,1,2,3, ... ,31}
11 begin
12 number_leaves_to_be_added = 1 << exponent;
13 smt = create_empty_smt( MAX_SMT_DEPTH );
14 collisions[exponent] = add_random_leaves( smt, number_leaves_to_be_added);
15 end for
16 f.append_to_csv_file(collisions);
17 f.close();
18 end while
19 end function

number of identities inserted in the tree
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Fig. 5: Collisions expected in the SMT of 32 levels obtained by software simulation

The code receives the output_csv_filename. The simulator starts an infinite loop. Line 9 opens the csv file for appending data. Line 10 is
a for-loop over the variable exponent that will run from 0 to 31. Line 12 defines the number of leaves to be added to the SMT as 2exponent

or simply 1 << exponent. Line 13 creates a new SMT. Line 14 adds number_leaves_to_be_added random nodes to the SMT. After each
interaction, the function returns the number of collisions, which are then stored in the array collisions. After exponent looping over all the
range from 0 up to 31, line 16 appends the collision data to the csv file, and the file is closed to ensure that all data has been saved.
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Our team has executed 138 interactions for this report, and the most important results are presented now. Fig. 5 shows the probability
of collisions as we add identities to the SMT. Even having 231 leaves (2.147 billion leaves), when we try to add 500 million leaves, more
than 10% of the requests fail due to a hash clash. At this point, the SMT has less than 450 million identities and almost 1.7 billion empty
leaves. When we try to add 1 billion identities, more than 20% of the requests fail due to a hash clash. Thus, the SMT ends with less
than 800 million identities stored and more than 1.3 billion empty leaves. Finally, when we try to add 231 leaves, almost 37% of the
requests collide.

2^0 - 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21
Min Value 0.0000000% 0.0000000% 0.0000000% 0.0000000% 0.0000000% 0.0000000% 0.0000000% 0.0030518% 0.0089645% 0.0199318% 0.0448227%

Max Value 0.0000000% 0.0244141% 0.0000000% 0.0061035% 0.0061035% 0.0076294% 0.0083923% 0.0095367% 0.0156403% 0.0294685% 0.0518322%

Range 0.0000000% 0.0244141% 0.0000000% 0.0061035% 0.0061035% 0.0076294% 0.0083923% 0.0064850% 0.0066757% 0.0095367% 0.0070095%

Standard Deviation 0.0000000% 0.0029177% 0.0000000% 0.0016531% 0.0012088% 0.0014888% 0.0013844% 0.0013716% 0.0013646% 0.0015728% 0.0014185%

Confidence Interval (95%) 0.0000000% 0.0004868% 0.0000000% 0.0002758% 0.0002017% 0.0002484% 0.0002310% 0.0002288% 0.0002277% 0.0002624% 0.0002367%

2^22 2^23 2^24 2^25 2^26 2^27 2^28 2^29 2^30 2^31
Min Value 0.0941515% 0.1919389% 0.3855288% 0.7731050% 1.5419349% 3.0573435% 5.9935372% 11.5169361% 21.3030718% 36.7861910%

Max Value 0.1018763% 0.1992464% 0.3932714% 0.7800370% 1.5500665% 3.0636482% 6.0016654% 11.5230497% 21.3085684% 36.7893524%

Range 0.0077248% 0.0073075% 0.0077426% 0.0069320% 0.0081316% 0.0063047% 0.0081282% 0.0061136% 0.0054966% 0.0031614%

Standard Deviation 0.0015326% 0.0014611% 0.0015172% 0.0013932% 0.0015073% 0.0012331% 0.0013214% 0.0011778% 0.0010324% 0.0006518%

Confidence Interval (95%) 0.0002557% 0.0002438% 0.0002531% 0.0002324% 0.0002515% 0.0002057% 0.0002205% 0.0001965% 0.0001723% 0.0001088%

Fig. 6: Table summarizing the collisions according to the number of requests sent to the sparse Merkle Tree with depth=32

Fig. 6 characterizes the results in terms of minimum value, maximum value, range, standard deviation, and confidence interval of 95%.
The standard deviation is the degree of dispersion or the scatter of the data points relative to its mean. It tells how the values are spread
across the data sample, and it measures the variation of the data points from the mean. The confidence interval is the range of values
that you expect your estimate to fall between a certain percentage of the time if you run your experiment again or re-sample the population
similarly. The confidence level is the percentage of times you expect to reproduce an estimate between the upper and lower bounds of
the confidence interval and is set by the � value (in our case, 95%). This figure summarizes the probability of collisions according to
the number of requests for adding new identities (leaves). We notice that we have not detected collisions when adding from 20(1) up
to 211 (2:048) identities. Thus, this seems to be a safe interval, although our number of runs was not expressive (only 138 runs). So,
in order to confirm this behavior, we ran another 1 million simulations considering only the interval 20(1) up to 211 (2:048), which
corresponds to 12 million data points. Considering those 12 million data points, we notice only 4,487 collisions.

Figs. 7(a) to 7(n) shows the probability of collisions for different numbers of identities added to the sparse Merkle Tree. As we increase the
number of identities added, we also increase the probability of collisions.
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Fig. 7: Probability of collisions according to the number of identities inserted in the sparse Merkle Tree.
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6.3 Choosing an appropriate depth limit
The graphs and experiments above clearly show the risks behind setting a depth limit of 32 for the SMT. They also show how quickly we
may spot collisions in this scenario. In light of this, what would be an appropriate depth limit to balance security and performance? Let us
return to Eq. (2). Assume a protocol to handle n = 220 (i.e, roughly 1 million) identities. What is the probability of collision as a function of
the depth limit? The graph below illustrates this.

Fig. 8: Estimate the probability of collision Pcol as a function of the depth limit, assuming a total of n = 220 leaves pushed to the
tree. For a depth limit of 53, the highlighted point shows that the collision probability goes down to 0.0001 (0.01%). For a depth

limit of 64, the probability goes down even further to 0.000006%.

Fig. 8 suggests depth limits above 50 achieve much greater security regarding collision—if the SMT is expected to hold a million leaves.
There are many more permutations of this analysis, all of which can be treated with equation (2). For reference, we show an example
below.

Example: Suppose the protocol has grown to n = 220 million identities (roughly the total number of Ethereum unique addresses as of
January 2023). Compute the probability of collision for a depth limit of 64.

With the aforementioned depth limit, we have T = 263 different leaves. Substituting in (2), we get

Pcol ≈ 1 − e−220×10
6
×(220×10

6
−1)/2⋅2

63

≈ 0:0026 = 0:26%:

We notice that the depth limit of 64 still provides reasonable security for this greatly enhanced identity load.
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7 Formal Specification of Sparse Merkle trees
In this section, we introduce a formal specification of a sparse Merkle tree and its operations.

7.1 Preliminaries
First, we introduce some basic sets that we will use throughout the exposition of the specification:

− N, the set of natural numbers.

− UInt256, the set of unsigned, 256-bit, integers.

We can now define a basic binary tree data structure Node with two kinds of leaf nodes. We will use this data structure to abstractly model
the state of a sparse Merkle tree.

Node ∶= Empty

∣ Leaf(i ∶ N; v ∶ UInt256)
∣Middle(l ∶ Node; r ∶ Node)

Note here that child nodes are directly ’stored’ within the parent nodes, unlike in Merkle Tree implementations where parent nodes contain
as members only hashes of their children. This is done both for clarity and ease of reasoning and to better model the intended structure,
which Merkle Trees are but one way of implementing.

Next, we introduce several functions and predicates to assist in reasoning about these trees.

nodes ∶ Node→ P(Node)
nodes(Empty) = {Empty}
nodes(Leaf(i; v)) = {Leaf(i; v)}
nodes(Middle(l; r)) = {Middle(l; r)} ∪ nodes(l) ∪ nodes(r)

leaves ∶ Node− > P(Node)
leaves(n) = {Leaf(i; v)∣Leaf(i; v) ∈ nodes(n)}

nodes returns a set containing every node reachable from the one given, including itself. Importantly reachability is defined here in the
directed sense where children are reachable by parents, but not vice versa. leaves is then a filter on this that only returns reachable Leaf
nodes.

distance ∶ Node × Node⇀ N
distance(Empty();Empty()) = 0
distance(Leaf(i; v); Leaf(i; v)) = 0
distance(Middle(l; r); n)
∣ n ∈ nodes(l) = 1 + distance(l; n)
∣ n ∈ nodes(r) = 1 + distance(r; n)
∣ otherwise = undefined

distance is a partial function defined if-and-only-if the second node is reachable from the first. It counts the number of edges that must
be traversed to get from one to the other.

depth ∶ Node→ N
depth(Empty()) = 0
depth(Leaf(_;_)) = 0
depth(Middle(left; right)) = 1 +max(depth(left);depth(right))
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The depth function provides the distance between a root and its most distant leaf or empty child. A single node is defined as having a
depth of 0, and a such limit on depth also tells us how many bits of information from a node’s index can be utilized. It is important to note
that while this lines up with the use of the depth parameter in recursive functions, it is slightly misaligned with MAX_SMT_DEPTH. Due to
the condition in _pushLeaf, the maximum depth allowed by this definition of a tree is MAX_SMT_DEPTH − 1. The data structure described
by Node is, by itself, far too general; no link has yet been made between indices and location in the tree. To fill this gap, we introduce the
predicate pathMatchesIndex ⊆ Node ×Node ×N which has the following definition:

pathMatchesIndex(n;n;_) ⇐⇒ True

pathMatchesIndex(Middle(l; r); n;2x + 1) ⇐⇒ pathMatchesIndex(r; n; x)
pathMatchesIndex(Middle(l; r); n;2x) ⇐⇒ pathMatchesIndex(l; n; x)

Given a tree, a Leaf or Empty node, and an index, this predicate models whether the node is in the correct place given the asso-
ciated index. We can say that a Node represents a sparse Merkle tree if and only if every leaf, l, reachable from the root satisfies
pathMatchesIndex(root; l; l:index). Importantly no minimum suffix length of the index is defined here, only that by following it, you
will reach the intended node. However, this only works if you start at the root of the tree. Many functions used here recur through the tree,
and as such, we need to be able to reason about placement with regard to any arbitrary higher node. For this purpose, we define the
sparseMerkleSubtree ⊆ NodeN predicates parameterized by the depth at which it is attached to the full tree:

sparseMerkleSubtree(Empty;_) ⇐⇒ True

sparseMerkleSubtree(Leaf(_;_);_) ⇐⇒ True

sparseMerkleSubtree(Middle(l; r); attachmentDepth) ⇐⇒

sparseMerkleSubtree(left; attachmentDepth + 1) ∧
sparseMerkleSubtree(right; attachmentDepth + 1) ∧
(∀l ∈ leaves(left): l:index& 2attachmentDepth = 0) ∧
(∀l ∈ leaves(right): l:index& 2attachmentDepth ≠ 0)

An attachment depth of 0 means we are treating the given node as the root of the whole tree. Intuitively, the attachment depth determines
how long of a suffix of the index to ignore, meaning that we can now reason about proper leaf positioning with regard to any intermediate
parent node. In order to properly model the structures constructed by this code we need to assert that there are no extraneous nodes
added to the tree. We do this using the minimumSparseMerkleSubtree ⊆ Node ×N predicate:

minimumSparseMerkleSubtree(node; attachmentDepth) ⇐⇒ sparseMerkleSubtree(node; attachmentDepth) ∧
∀Middle(left; right) ∈ nodes(node): (left = Empty() Ô⇒ r ≠ Empty) ∧

∀x ∈ Node: sparseMerkleSubtree(x; attachmentDepth) ∧
leaves(x) = leaves(node) Ô⇒

∀l ∈ leaves(node): distance(node; l) ≤ distance(x; l)

Here assert that the tree contains only those Middle nodes required to distinguish its current leaves from each other. With this in place,
we can finally define a predicate, minimumSparseMerkleTree ⊆ Node, that asserts that a given binary tree describes a valid tree:

minimumSparseMerkleTree(x) ⇐⇒ minimumSparseMerkleSubtree(x;0)

Finally, to reason about the proofs of inclusion and non-inclusion produced by the various getProof::: functions, we define our hash
function H and two additional helpers: Hl and Hm are two separate hash functions of type UInt256 × UInt256 → UInt256, representing
PoseidonUint3L:poseidon with the constant 1 for the third parameter, and PoseidonUint2L:poseidon respectively.

H ∶ Node→ UInt256

H(Empty) = 0
H(Leaf(i; v)) =Hl(i; v)
H(Middle(l; r)) =Hm(H(l);H(r))

From these two base hash functions, we recursively construct H to produce hashes for our Node type, in line with how the code produces
hashes for its Node type. The aforementioned helpers are then defined as follows:
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hashChain ∶ Node × Node ×N⇀ [UInt256]
hashChain(l; l;

)
= []

hashChain(Middle(l; r); n;2x + 1) = H(l) ∶ hashChain(r; n; x)
hashChain(Middle(l; r); n;2x) = H(r) ∶ hashChain(l; n; x)

hashChain is used to construct the Merkle proofs of inclusion or non-inclusion. Given a start node, a target node, and an index, it
traverses the tree along the path defined by the index, recording the hashes of the paths not taken. As such by using the index to
determine the layout and starting with the hash of the target node, one can arrive at the hash of the root by repeated application of the
hash function.

pad ∶ [UInt256] ×N⇀ [UInt256]
pad(xs; len) = ys ⇐⇒ length(ys) = len ∧

∀i ∈ N: (i < length(xs) Ô⇒ xs[i] = ys[i]) ∧ (length(xs) ≤ i ∧ i < len Ô⇒ ys[i] = 0)

Since proofs in this implementation always return a list of length MAX_SMT_DEPTH, we also require the partial function pad to take a list and
pad it with zeroes if necessary.

7.2 Introduction to Hoare triples and separation logic
Now that we have introduced the abstraction of the state of the module we will use for our specification, we will give a short introduction to
the specification format we use. Our functional specification will be written using Hoare triples:

∀x ∈ X: ⊢ {P} C {Q}

Where P and Q are assertions on the machine state, in this case, the state of the EVM, and C is a solidity command, in our case,
since we are writing functional specifications for the module’s operations, these will always be individual function calls. Intuitively, this
specification means that, for an arbitrary assignment of the logical variable, x ∈ X, in any state satisfying the assertion P , the precondition,
if we execute the command C, any terminating, non-faulting execution terminates in a state satisfying Q, the postcondition. In Hoare
logic, these assertions are usually written in some flavor of first-order logic ranging over appropriate programs and logical variables. For
example:

y = 2x + 7 ∧ l = 1 Ô⇒ x = 3

This assertion is satisfied in any state where the relation y = 2x + 7 holds between the program variables x and y and, if the program
variable l has value 1, then x = 3, and consequently, y = 13. However, we will use classical separation logic, an extension of Hoare logic
for reasoning about shared, mutable resources. It introduces the separation conjunction, P ∗ Q, pronounced P sep Q. Intuitively, this
asserts the ownership of the disjoint resources asserted by P and Q. The separating conjunction has a unit, emp, for which the expected
axioms hold:

P ⇐⇒ P ∗ emp ⇐⇒ emp ∗ P

We then also introduce cell assertions, E1 ↦ E2, which, in our case, asserts that the cell at the address that E1 evaluates to in storage
memory has the value that E2 evaluates to. To enforce that a cell assertion represents ownership of the assertions, the following axiom
holds:

E1 ↦ _ ∗E2 ↦ _ ∧E1 = E2 Ô⇒ �

This axiom asserts that when E1 = E2, the assertion E1 ↦ _∗E2 ↦ _ is a contradiction, i.e., implies false, �, as the resources represented
by the two cell assertions are not disjoint, they predicate over the same cell in storage memory. Note that _ represents an arbitrary value.
Similarly to logical conjunction, ∧, the separating conjunction is also commutative and associative. This allows us to define an iterated
separated conjunction:

⊛
x∈X

P (x)

This assertion simply represents the separating conjunction of the resources asserted by P (x) for each x ∈ X. Finally, in contrast to
logical conjunction, where conjuncts can be eliminated, i.e. P ∧Q Ô⇒ P , this is not the case for separating conjunctions. This prevents
cell assertions recording updates to the storage memory to be "forgotten". Otherwise, if cell assertions were conjuncted together, using
the consequence rule of Hoare logic:

P Ô⇒ P ′ ⊢ {P ′} C {Q′} Q′ Ô⇒ Q

⊢ {P} C {Q}

we could simply forget updates to storage memory that the command C performed. This rules allows us to infer that if P Ô⇒ P ′, i.e.,
every state satisfying P satisfies P ′, and ⊢ {P ′} C {Q′}, and finally Q′ Ô⇒ Q, then any state satisfying P , since it satisfies P ′, must
be taken by a terminating, non-faulting execution of C to Q′, which in turn must satisfied Q, and therefore, we can infer that ⊢ {P} C {Q}
holds. However, since implication does not allow us to forget separated conjuncts, this is no longer a problem. The separation logic also
comes with a host of advantages, allowing local, modular, and abstract reasoning. However, an exposition of the details of these properties
is outside the scope of this introduction. However, we have now introduced enough of the basics to be able to explain our separation logic
specifications for the Sparse Merkle Tree in the following section.
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7.3 Specifications
We start with a simple spec for _addNode, where we assert that if a hash is currently associated with an Empty node, it can be overwritten
with a given node and that the return value is appropriate.

⊢ {self:nodes[H(node)]↦ Empty()} ret = _addNode(self;node) {self:nodes[H(node)]↦ node ∧ ret = H(node)}

With that done we can move onto a spec for _pushLeaf. From context within the codebase, we can add some assertions about the inputs:
namely that newLeaf and oldLeaf are distinct leaves and that pathNewLeaf and pathOldLeaf are their indices. With these properties
assumed we can assert that when _pushLeaf is run, the minimum sparse Merkle subtree with these two leaves and no others are created,
parameterized by depth as its attachment depth. Because we need to satisfy the precondition of _addNode in order to be able to add these
new nodes we need to assert in the precondition of _pushLeaf that all of the hashes to be written to currently associate with the Empty
node. We assign no specific value to MAX_SMT_DEPTH in these specs, but it can be no greater than 257 due to the 256-bit index length, and
no less than 2 owing to how the depth restriction in _pushLeaf is formed.

∀afterTree ∈ Node:
⊢
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

self:nodes[H(oldLeaf)]↦ oldLeaf ∗
⊛

n∈nodes(afterTree)∖oldLeaf
self:nodes[H(n)]↦ Empty() ∧

minimumSparseMerkleSubtree(afterTree;depth) ∧
leaves(afterTree) = {oldLeaf;newLeaf} ∧
oldLeaf ≠ newLeaf ∧
depth(afterTree) + depth < MAX_SMT_DEPTH ∧
∃v; v′:

oldLeaf = Leaf(pathOldLeaf; v) ∧
newLeaf = Leaf(pathNewLeaf; v′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ret = _pushLeaf(self;newLeaf;oldLeaf;depth;pathNewLeaf;pathOldLeaf)
⎧⎪⎪⎨⎪⎪⎩

⊛
n∈nodes(afterTree)

self:nodes[H(n)]↦ n ∧

ret =H(afterTree)

⎫⎪⎪⎬⎪⎪⎭

Next, we introduce the specification for the _addLeaf function. Where before we went from a single leaf to a minimum sparse Merkle
subtree with two leaves, we now go from one minimum sparse Merkle subtree to another attaching at the same depth. The block at the
end of the precondition states two cases: either the old tree has a leaf with the same index as the new one and it gets replaced, or it does
not and the new leaf can coexist alongside all the existing ones as long as doing so doesn’t violate the depth assertions:

∀beforeTree; afterTree ∈ Node:
⊢
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊛
n∈nodes(beforeTree)

self:nodes[H(n)]↦ n ∗

⊛
n∈nodes(afterTree)∖nodes(beforeTree)

self:nodes[H(n)]↦ Empty ∧

minimumSparseMerkleSubtree(beforeTree;depth) ∧
minimumSparseMerkleSubtree(afterTree;depth) ∧
depth(beforeTree) < MAX_SMT_DEPTH − depth ∧
depth(afterTree) < MAX_SMT_DEPTH − depth ∧
(∀n;m ∈ nodes(beforeTree) ∪ nodes(afterTree): n ≠m Ô⇒ H(n) ≠H(m)) ∧
⎛
⎜⎜⎜⎜
⎝

( ∃l ∈ leaves(beforeTree):
l:index = newLeaf:index ∧ leaves(afterTree) = {newLeaf} ∪ leaves(beforeTree) ∖ {l} ) ∨

( leaves(afterTree) = {newLeaf} ∪ leaves(beforeTree) ∧
∀l ∈ leaves(beforeTree): l:index ≠ newLeaf:index )

⎞
⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ret = _addLeaf(self;newLeaf;oldLeaf;nodeHash;depth)
⎧⎪⎪⎨⎪⎪⎩

⊛
n∈nodes(afterTree)∪nodes(beforeTree)

self:nodes[H(n)]↦ n ∧

ret =H(afterTree)

⎫⎪⎪⎬⎪⎪⎭

To finish this sequence, we specify the top-level function: add. Much of this will look familiar from _addLeaf with the difference that we’re now
working with minimum sparse Merkle trees, not subtrees. Additionally, we specify the change to the rootHistory list and rootEntries.
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∀beforeTree; afterTree ∈ Node; rootHistoryLength ∈ N; beforeTreeRootEntry ∈ RootEntry:
⊢
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

self:rootHistory:length↦ rootHistoryLength ∗

( (self:rootHistory[rootHistoryLength − 1]↦H(beforeTree) ∧ rootHistoryLength > 0) ∨
(emp ∧ rootHistoryLength = 0) ) ∗

self:rootEntries[H(beforeTree)]↦ beforeTreeRootEntry ∗
self:rootEntries[H(afterTree)]↦ _ ∗

⊛
n∈nodes(beforeTree)

self:nodes[H(n)]↦ n ∗

⊛
n∈nodes(afterTree)∖nodes(beforeTree)

self:nodes[H(n)]↦ Empty ∧

minimumSparseMerkleTree(beforeTree) ∧
minimumSparseMerkleTree(afterTree) ∧
depth(beforeTree) < MAX_SMT_DEPTH ∧
depth(afterTree) < MAX_SMT_DEPTH ∧
(∀n;m ∈ nodes(beforeTree) ∪ nodes(afterTree): n ≠m Ô⇒ H(n) ≠H(m)) ∧
⎛
⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜
⎝

∃l ∈ leaves(beforeTree):
l:index = i ∧
leaves(afterTree) = {Leaf(i;v)} ∪ leaves(beforeTree) ∖ {l}

⎞
⎟
⎠
∨

( leaves(afterTree) = {Leaf(i;v)} ∪ leaves(beforeTree) ∧
∀l ∈ leaves(beforeTree): l:index ≠ i )

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
add(self;i;v)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

self:rootHistory:length↦ rootHistoryLength + 1 ∗

( (self:rootHistory[rootHistoryLength − 1]↦H(beforeTree) ∧ rootHistoryLength > 0) ∨
(emp ∧ rootHistoryLength = 0) ) ∗

self:rootHistory[rootHistoryLength]↦H(afterTree) ∗

( (self:rootEntries[H(beforeTree)]↦ beforeTreeRootEntry ∧ beforeTree = Empty) ∨
(self:rootEntries[H(beforeTree)]↦ beforeTreeRootEntryreplacedByRoot =H(afterTree) ∧ beforeTree ≠ Empty) ) ∗

self:rootEntries[H(afterTree)]↦ RootEntry
⎛
⎜
⎝

replacedByRoot = 0;
createdAtT imestamp =#block_timestamp;

createdAtBlock =#block_number

⎞
⎟
⎠
∗

⊛
n∈nodes(afterTree)∪nodes(beforeTree)

self:nodes[H(n)]↦ n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Finally, we can move on to the proofs of inclusion and exclusion. Much of the actual work here is done in our definition of the hashChain
function, so all that is left is to reason about relevant storage variables and the cases for the return value. We outline each in turn,
separated by whether looking for the given index finds the Leaf in question, an Empty, or a different Leaf. With this done the rest of the
getProof functions become relatively easy to specify by using this one as a template and bolting on additional logic as to which root is
used.
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∀tree ∈ Node; rootIndex ∈ N:
⊢
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

self:rootHistory[rootIndex]↦ historicalRoot ∗
⊛

n∈nodes(tree)
self:nodes[H(n)]↦ n ∧

historicalRoot =H(tree) ∧
depth(tree) < MAX_SMT_DEPTH

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
proof = getProofByRoot(self;index;historicalRoot)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

self:rootHistory[rootIndex]↦ historicalRoot ∗
⊛

n∈nodes(tree)
self:nodes[H(n)]↦ n ∧

proof:root = historicalRoot ∧
proof:index = index ∧
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∃n ∈ leaves(tree):
n:index = index ∧ proof:existence = 1 ∧
proof:siblings = pad(hashChain(tree; n;index);MAX_SMT_DEPTH) ∧
proof:value = n:value ∧
proof:auxExistence = 0 ∧
proof:auxIndex = 0 ∧
proof:auxValue = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∨

⎛
⎜⎜⎜
⎝

(∀n ∈ leaves(tree): n:index ≠ index ∧ ¬pathMatchesIndex(tree; n;index)) ∧
proof:existence = 0 ∧
proof:siblings = pad(hashChain(tree;Empty();index);MAX_SMT_DEPTH) ∧
proof:auxExistence = 0

⎞
⎟⎟⎟
⎠
∨

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(∀m ∈ leaves(tree): m:index ≠ index) ∧
∃n ∈ leaves(tree):

pathMatchesIndex(tree; n;index) ∧
proof:existence = 0 ∧
proof:siblings = pad(hashChain(tree; n;index);MAX_SMT_DEPTH) ∧
proof:auxExistence = 1 ∧
proof:auxIndex = n:index ∧
proof:auxValue = n:value

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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8 Risk Rating Methodology
The risk rating methodology used by Nethermind follows the principles established by the OWASP Foundation. The severity of each finding
is determined by two factors: Likelihood and Impact.

Likelihood is a measure of how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following
values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding other factors are also considered. These can include but are not limited to: Motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if the finding were to be exploited by an attacker. This factor will be one of the
following values:

a) High: The issue can cause significant damage such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage such as bugs that are easily recoverable or cause unexpected interactions that cause
minor inconveniences.

When defining the impact of a finding other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk

Impact

High Medium High Critical
Medium Low Medium High
Low Info/Best Practices Low Medium
Undetermined Undetermined Undetermined Undetermined

Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind also uses three more finding severities: Informational, Best
Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to
formally pass to the client;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

c) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.
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9 Issues & Points of Attention: Audit 1

9.1 [Low] Lack of a two-step process for transferring ownership
File(s): contracts/StateV2.sol

Description: The StateV2 contract inherits from OpenZeppelin’s OwnableUpgradeable contract, which provides a one-step ownership
transfer. Transferring ownership in a single step is error-prone and can severely harm the protocol if a mistake happens.

Recommendation(s): We suggest implementing a two-step process for transferring ownership, such as the propose-accept scheme.
Check the Ownable2Step.sol contract from OpenZeppelin.

Status: Fixed.

Update from the client: We’ve inherited the StateV2 contract from Ownable2StepUpgradeable instead of OwnableUpgradeable. However,
it discovered a design flaw, which may cause issues in future upgrades. The reason is that StateV2 may change or use some new parent
contracts in the future, which introduce their state variables. In that way, it may shift down the storage layout. To mitigate that, we’ve
introduced a uint256[500] __gap; array as the first state variable in the StateV2 contract, which can be reduced or extended in length to
mitigate such cases. Please let us know if there is a better or standard solution for such a case.

Update from Nethermind: Fixed in commit hash d9be60d7c92d331058135f4fa124969fb02fdcf3. The private variable __gap is a good
solution for ensuring the security of the storage variables’ layout in case of future updates.

9.2 [Low] Unnecessary space allocation in Proof.siblings

File(s): contracts/lib/Smt.sol

Description: The member siblings in the structure Proof allocates MAX_SMT_DEPTH slots. However, since the maximum number of siblings
is MAX_SMT_DEPTH-1, the allocated space in Proof.siblings can be MAX_SMT_DEPTH-1. The current struct definition can be seen in the code
snippet below.

1 /**
2 * @dev Struct of the node proof in the SMT
3 */
4 struct Proof {
5 uint256 root;
6 bool existence;
7 /////////////////////////////////////////////////////////
8 // @audit A proof will have MAX_SMT_DEPTH - 1 maximum. //
9 /////////////////////////////////////////////////////////

10 uint256[MAX_SMT_DEPTH] siblings;
11 uint256 index;
12 uint256 value;
13 bool auxExistence;
14 uint256 auxIndex;
15 uint256 auxValue;
16 }
17

Below we present a test case written in Foundry that proves the issue.
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1 // SPDX-License-Identifier: UNLICENSED
2 pragma solidity ^0.8.13;
3 import "forge-std/Test.sol";
4 import "forge-std/console.sol";
5 import "../src/Smt.sol";
6 /////////////////////////////////////////////////////////////////////
7 // TESTING ISSUE: "Unnecessary space allocation in Proof.siblings" //
8 /////////////////////////////////////////////////////////////////////
9 contract SmtTest is Test {

10 Smt.SmtData internal smtData;
11 using Smt for Smt.SmtData;
12

13 function add(uint256 i, uint256 v) public {
14 smtData.add(i, v);
15 }
16

17 function getProof(uint256 id) public view returns (Smt.Proof memory) {
18 return Smt.getProof(smtData, id);
19 }
20

21 function testMAX_DEPTHProofSiblings() public {
22 // We add the leaves to the last level 31
23 // |-----------<31 bits>---------|
24 // in binary 1111111111111111111111111111111 (1 and 30 ones)
25 uint256 index = 2147483647;
26 // in binary 0111111111111111111111111111111 (0 and 30 ones)
27 uint256 index2 = 1073741823;
28 add(index, 1);
29 add(index2, 2);
30 Smt.Proof memory proof = getProof(index);
31 // this is the last possible sibling and is non-zero (the hash of leaf at index2)
32 assert(proof.siblings[30] == Smt.getNodeHash(Smt.Node(Smt.NodeType.LEAF, 0, 0, index2, 2)));
33 // the last slot is empty, no "Out of bounds array access", which means that this space was allocated but never

used↪

34 assert(proof.siblings[31] == 0);
35 }
36 function testFailMAX_DEPTH() public {
37 // JUST TO DEMONSTRATE THAT ERROR "Max depth reached" OCCURS CORRECTLY FOR LEVEL 32
38 // |-----------<32 bits>----------|
39 // in binary 11111111111111111111111111111111 (1 and 31 ones)
40 uint256 index = 4294967295;
41 // in binary 01111111111111111111111111111111 (0 and 31 ones)
42 uint256 index2 = 2147483647;
43 add(index, 1);
44 add(index2, 2);
45 }
46 }

Recommendation(s): Review the number of siblings required.

Status: Fixed.

Update from the client: The logic of the MAX_SMT_DEPTH constant was changed to coincide with the number of siblings. E.g., if the number
MAX_SMT_DEPTH = 32, then the number of siblings is 32 too. Note, the root tree level has zero depth number, the lowest possible level equal
to MAX_SMT_DEPTH.

Update from Nethermind: After the client update on the MAX_SMT_DEPTH logic, this issue is Fixed since the maximum depth of the tree is
MAX_SMT_DEPTH and not MAX_SMT_DEPTH - 1. Therefore the space allocated in Proof.siblings is necessary. The update includes changes
in the function _pushLeaf(...) and the loop in the function getProofByRoot(...). The changes are shown below.

function _pushLeaf(...) internal returns (uint256) {
- if (depth > MAX_SMT_DEPTH - 2) {
- revert("Max depth reached");
- }
+ if (depth >= MAX_SMT_DEPTH) {
+ revert("Max depth reached");
+ }

...
}
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function getProofByRoot(...)
public
view
onlyExistingRoot(self, historicalRoot)
returns (Proof memory)

{
...

- for (uint256 i = 0; i < MAX_SMT_DEPTH; i++) {...}
+ for (uint256 i = 0; i <= MAX_SMT_DEPTH; i++) {...}

...

Both changes allow adding 2ˆMAX_SMT_DEPTH leaves to the tree and proof creation from MAX_SMT_DEPTH nodes.

9.3 [Info] Code and specification not matching
File(s): contracts/StateV2.sol

Description: The comments for functions getGISTProofByTime(...), getGISTProofByBlock(...), getGISTRootInfoByBlock(...), and
getGISTRootInfoByTime(...) state that the fetched proof "existed at some block/timestamp or later", which indicates that the proof existed
for a root in block/timestamp equal or greater than the one provided. We reproduce one of these comments below.

1 /**
2 * @dev Retrieve GIST inclusion or non-inclusion proof for a given identity
3 * for GIST root existed in some block or later.
4 * @param id Identity
5 * @param blockNumber Blockchain block number
6 * @return The GIST inclusion or non-inclusion proof for the identity
7 */
8 function getGISTProofByBlock(uint256 id, uint256 blockNumber)

However, these functions use the binarySearchUint256(...) to select which root will be used. The function binarySearchUint256(...)
will return a block/timestamp not greater than the one provided. For instance, if we invoke the function binarySearchUint256(...) with the
input parameter 2000, and there are roots for the blocks/timestamps [1000, 1500, 1800, 2010], the function returns the information related
to the root at block/timestamp 1800. Below we present a fuzzy test written in Foundry, checking that the function binarySearchUint256(...)
returns roots created at a timestamp equal to or lower than the one provided.

1 function test_BinarySearchNeverReturnsAGreaterValue(uint256[] memory values, uint256 value) public {
2 // We don't want to test arrays with no values
3 vm.assume(values.length > 0);
4

5 // If all the roots are inserted after the time we are searching, the timestamp returned will be zero
6 vm.assume(value > values[0]);
7

8 // Adding nodes to the tree in different timestamps
9 for (uint256 i = 0; i < values.length; i++) {

10 // Increase timestamp before adding a root.
11 // Modulo operation is used for bounding the value
12 skip(values[i] % 10000000000);
13 // Add the node
14 smt.add(i, i*i);
15 }
16

17 // Avoid errNoFutureAllowed error
18 value = value % block.timestamp;
19

20 // If all the roots are inserted after the time we are searching, the timestamp returned will be zero
21 vm.assume(value > values[0] % 10000000000);
22

23 // Function to test
24 Smt.RootInfo memory root = smt.getRootInfoByTime(value);
25

26 // Ensure returned root has a timestamp lower or equal
27 assert(root.createdAtTimestamp <= value);
28 }

Recommendation(s): The development team should clarify this use case and update the comments related to the functions getGISTProofByTime(...),
getGISTProofByBlock(...), getGISTRootInfoByBlock(...), and getGISTRootInfoByTime(...). If those comments are correct, the team
should update the function binarySearchUint256(...) to return the values stated in those comments.

Status: Fixed.
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Update from the client: The comments were not correct.

Update from Nethermind: Fixed in commit hash 80398a1b46c4108ee9dcccb710486e7a3bc5ec99.

9.4 [Info] Nodes with incorrect depth are allowed
File(s): contracts/lib/Smt.sol

Description: The function _addLeaf(...) contains a check for ensuring that leaves with a depth greater than MAX_SMT_DEPTH are not
added.

1 function _addLeaf(...) internal returns (uint256) {
2 if (depth > MAX_SMT_DEPTH) {
3 revert("Max depth reached");
4 }
5 ...
6 }

The maximum amount of levels the tree may have is MAX_SMT_DEPTH, which means that the maximum depth of a node is MAX_SMT_DEPTH -
1. However, this check potentially allows nodes with a depth of MAX_SMT_DEPTH to be added. This finding is rated as Info because it is not
possible to add leaves at this depth. But it still can create false assumptions. Below we present a test case written in Foundry that proves
the issue.

1 // SPDX-License-Identifier: UNLICENSED
2 pragma solidity ^0.8.13;
3 import "forge-std/Test.sol";
4 import "forge-std/console.sol";
5 import "../src/Smt2.sol";
6 import "../src/Smt.sol";
7 ////////////////////////////////////////////////////////////
8 // TESTING ISSUE: Nodes with incorrect depth are allowed //
9 ////////////////////////////////////////////////////////////

10 contract SmtTest2 is Test {
11 Smt2.SmtData internal smtData;
12 using Smt2 for Smt2.SmtData;
13

14 ///////////////////////////////////////////////////////////////////////////////////
15 // NOTE: Smt2.sol is changed: _pushLeaf() has removed revert check to test this //
16 ///////////////////////////////////////////////////////////////////////////////////
17

18 function add(uint256 i, uint256 v) public {
19 smtData.add(i, v);
20 }
21

22 function testMAX_DEPTHSmt2() public {
23 // |-----------<32 bits>----------|
24 // in binary 11111111111111111111111111111111 (1 and 31 ones)
25 uint256 index = 4294967295;
26 // in binary 01111111111111111111111111111111 (0 and 31 ones)
27 uint256 index2 = 2147483647;
28

29 // Added with _addLeaf(): 1st level is reached
30 add(index, 1);
31 // Added with _pushLeaf(): 32 level reached, because index and index2 share 31 bits and 32nd is different
32 // _pushLeaf() doesn't revert because of the removed check
33 add(index2, 2);
34 ////////////////////////////////
35 // DEMONSTRATION OF THE ISSUE //
36 ////////////////////////////////
37 // Changed with _addLeaf: this node should not be accessible by _addLeaf(...), but it is
38 add(index2, 3);
39 }
40 }

Recommendation(s): This issue presents inconsistency. Consider changing the condition to be aligned with the rest of the code.

Status: Fixed.

Update from the client: The fix applied to the previous note also fixes this. We’ve changed the logic of the MAX_SMT_DEPTH constant, and
now it is possible to add leaves at the lowest level of the tree.
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Update from Nethermind: After the client update on the MAX_SMT_DEPTH logic, this issue is Fixed since the maximum depth of the tree is
MAX_SMT_DEPTH and not MAX_SMT_DEPTH - 1. Therefore the check in the function _addLeaf(...) is correct. The update includes changes in
the function _pushLeaf(...), and in the loop of the function getProofByRoot(...).

function _pushLeaf(...) internal returns (uint256) {
- if (depth > MAX_SMT_DEPTH - 2) {
- revert("Max depth reached");
- }
+ if (depth >= MAX_SMT_DEPTH) {
+ revert("Max depth reached");
+ }

...
}

function getProofByRoot(...)
public
view
onlyExistingRoot(self, historicalRoot)
returns (Proof memory)

{
...

- for (uint256 i = 0; i < MAX_SMT_DEPTH; i++) {...}
+ for (uint256 i = 0; i <= MAX_SMT_DEPTH; i++) {...}

...

Both changes allow adding 2ˆMAX_SMT_DEPTH leaves to the tree and proof creation from MAX_SMT_DEPTH nodes.

9.5 [Info] Owner can change the verification logic after the contract’s deployment
File(s): contracts/StateV2.sol

Description: The contract StateV2 contains an initialize(...) function called during deployment time, and it takes the verifier
address as an input parameter, as reproduced below.

1 function initialize(IVerifier verifierContractAddr) public initializer {
2 ///////////////////////////////////////////////////////////////
3 // @audit Setting the address of the verifier contract //
4 ///////////////////////////////////////////////////////////////
5 verifier = verifierContractAddr;
6 __Ownable_init();
7 }

The verifier contract contains the zero-knowledge verification logic. The owner can change this logic after the contract has been
deployed. In case the private key of the owner is compromised, an attacker will be able to alter the logic of verification of the smart contract
to add illegitimate states in the sparse Merkle Tree. The function setVerifier(...) is reproduced below.

1 function setVerifier(address newVerifierAddr) public onlyOwner {
2 verifier = IVerifier(newVerifierAddr);
3 }

Recommendation(s): No special action is required. This issue is just highlighting this behavior to users of the protocol.

Status: Acknowledged.

9.6 [Info] Privileged Roles and Ownership
File(s): contracts/StateV2.sol

Description: Smart contracts often have owner variables to designate the person with special privileges to modify the smart contract.

Recommendation(s): This centralization of power needs to be made clear to the users, especially depending on the level of privilege the
contract allows to the owner.

Status: Acknowledged.
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9.7 [Info] Upgradability
File(s): contracts/StateV2.sol

Description: Users should be aware that the contract can be upgraded at any given time.

Recommendation(s): Communicate to users the reasons for upgrades beforehand.

Status: Acknowledged

9.8 [Best Practices] Avoidable reversion in function getRootHistory(...)

File(s): contracts/lib/Smt.sol

Description: The function getRootHistory(...) is a view function responsible for returning the history of all the sparse Merkle tree roots
stored in the protocol. It receives the startIndex and the length to be returned. The endIndex is computed by adding length to the
startIndex. When the endIndex is greater than the array length, the function reverts. The reversion can be avoided by computing the
endIndex considering the smallest value between startIndex + length and self.rootHistory.length as presented below.

1 uint256 endIndex = min(startIndex + length, self.rootHistory.length);

By following this approach, this function will never revert due to input values leading to an Out of the bonds exception. The code snippet
with audit comments is presented below.

1 function getRootHistory(SmtData storage self, uint256 startIndex, uint256 length ) ... returns (RootInfo[] memory)
2 {
3 ...
4 /////////////////////////////////////////////////////////////////////
5 // @audit "endIndex" can be computed as:
6 // "min(startIndex + length, self.rootHistory.length)"
7 /////////////////////////////////////////////////////////////////////
8 uint256 endIndex = startIndex + length;
9 require(endIndex <= self.rootHistory.length, "Out of bounds of root history");

10

11 RootInfo[] memory result = new RootInfo[](length);
12 uint64 j = 0;
13 for (uint256 i = startIndex; i < endIndex; i++) {
14 uint256 root = self.rootHistory[i];
15 result[j] = getRootInfo(self, root);
16 j++;
17 }
18 return result;
19 }

Recommendation(s): Consider computing the endIndex so that the function does not have an Out of the bonds exception, increasing
the user experience. The proposed changes are presented below.

- uint256 endIndex = startIndex + length;
- require(endIndex <= self.rootHistory.length, "Out of bounds of root history");
+ uint256 endIndex = min(startIndex + length, self.rootHistory.length);

Status: Fixed.

Update from the client: Fixed for both StateV2.getStateInfoHistoryById() and Smt.getRootHistory().

Update from Nethermind: Fixed in commit hash ebe466957f4d8af8e2c11ad5249e3ac219b9145d.
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9.9 [Best Practices] Functions that can have external visibility instead of public
File(s): contracts/StateV2.sol

Description: The functions listed below can have external visibility since they are never called inside the contract. Besides setting the
proper visibility, external functions consume less gas than public ones. The functions are listed below.

1 StateV2.transitState(...)
2 StateV2.getStateInfoById(...)
3 StateV2.getStateInfoHistoryLengthById(...)
4 StateV2.getVerifier()
5 StateV2.setVerifier()

Recommendation(s): Make the functions above external instead of public.

Status: Fixed.

Update from Nethermind: Fixed in commit hash c9c661ef00811b8f1eb9367519d4f230aa1b2842.

9.10 [Best Practices] Memory variables should be initialized
File(s): contracts/lib/Smt.sol

Description: The code has some variables that have not been initialized because they are expected to be zero. However, Solidity does
not guarantee that memory variables are initialized as zero, as shown here.

Recommendation(s): Always initialize memory variables.

Status: Fixed.

Update from Nethermind: Fixed in commit hash 31926bd130ba6494316a57427ff994816e66fefa.

9.11 [Best Practices] Not checking the verifier contract for address(0x0)
File(s): contracts/StateV2.sol

Description: The function setVerifier(...) does not check the newVerifierAddr for address(0x0). The code is reproduced below.

1 function setVerifier(address newVerifierAddr) public onlyOwner {
2 ////////////////////////////////////////////////////////////
3 // @audit Not checking "newVerifierAddr" for address(0x0)
4 ////////////////////////////////////////////////////////////
5 verifier = IVerifier(newVerifierAddr);
6 }

Recommendation(s): Consider checking newVerifierAddr for address(0x0).

Status: Acknowledged.

Update from Nethermind: The issue was fixed in commit hash 5b1d9d14db5836fc6d6d1ce4db9ad9c77b2f9e3f by checking if newVerifierAddr
!= 0. However, the fix was reverted in commit hash 05af5b4414fcd871972992ddc839d62f4ff37a97 because it allows the owner to prevent
any new state change.
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9.12 [Best Practices] Redundant input arguments in function _pushLeaf(...)

File(s): contracts/lib/Smt.sol

Description: The index of a leaf is also the path to that leaf in the tree. The values for the arguments pathNewLeaf and pathOldLeaf in the
function _pushLeaf(...) will share the same values as newLeaf.index and oldLeaf.index. These arguments can be removed from the
function signature. The code snippet below shows how the same values are used for those arguments.

1 function _addLeaf(...) internal returns (uint256) {
2 ...
3 if (node.nodeType == NodeType.EMPTY) {
4 leafHash = _addNode(self, newLeaf);
5 } else if (node.nodeType == NodeType.LEAF) {
6 leafHash = node.index == newLeaf.index
7 ? _addNode(self, newLeaf)
8 ////////////////////////////////////////////////////////////////////////////
9 //@audit - The values "newLeaf.index" and "node.index" were already accessible

10 // from the "newLeaf" and the node arguments
11 ///////////////////////////////////////////////////////////////////////////
12

13 : _pushLeaf(
14 self,
15 newLeaf,
16 node,
17 depth,
18 newLeaf.index,
19 node.index
20 );
21 } ...
22

Recommendation(s): Remove redundant arguments from the function _pushLeaf(...).

Status: Fixed.

Update from Nethermind: Fixed in commit hash 347dd01048110f8da49069835a93a6fe0bd389c0.

9.13 [Best Practices] Special values able to be used as normal input
File(s): contracts/StateV2.sol

Description: The StateV2 contract considers some values *special* and contract behavior can change if these special values are en-
countered. In the function transitState(...) an user cannot submit a new identity state when it matches any other identity state that has
already been submitted. The check is reproduced below.

1 require(!stateExists(newState), "New state should not exist")

The function stateExists(...) checks whether a state exists by using the StateEntry.id value. If the id is not equal to zero, then the
state exists. This means an id of zero is treated as an exceptional value. For all practical purposes, it is impossible to have an identity id
of zero. However, the function transitState(...) does not prevent this. This issue also applies to the argument newState. When a state
is replaced, the struct member replacedBy will contain the newState, which could be zero. This could lead to the StateEntry incorrectly
indicating that the state has not been replaced. Again, for all practical purposes, it is impossible to have a newState of zero, but the function
transitState(...) does not prevent this.

Recommendation(s): It is considered a best practice to prevent normal inputs from being treated as special values. Therefore consider
sanitizing the input and checking if the newState and the id differ from 0.

Status: Fixed.

Update from Nethermind: The issue is partially fixed in commit hash 3245a7563ecc3f8876682b67c965437ce888ca62. The newState is
checked for 0 value, but the id is not.

Update from client: Fixed in commit hash ede2e6b3
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9.14 [Best Practices] Unnecessary path specification in import
File(s): contracts/lib/Smt.sol

Description: The Smt.sol contract imports Poseidon.sol as below, which is unnecessary considering that both files are in the same
folder.

Recommendation(s): Update the code as shown below.

- import "../lib/Poseidon.sol";
+ import "./Poseidon.sol";

Status: Fixed.

Update from Nethermind: Fixed in commit hash a04690649188b71cceddc2ef81fcbec54926b7aa.

9.15 [Best Practices] abicoder v2 pragma is not needed since version 0.8.0

File(s): contracts/*

Description: The abicoder v2 is the default version since Solidity 0.8.0, as shown in the solidity documentation.

Recommendation(s): Remove the abicoder v2 pragma.

Status: Fixed.

Update from Nethermind: Fixed in commit hash 278e292d1cd7f6063f5ebeb0ef855d00f51af528.

9.16 [Best Practices] Variable can be uint256 instead of uint64
File(s): contracts/lib/Smt.sol

Description: In the function getRootHistory(...) the variable j is of type uint64. Since the EVM word size is 32 bytes long (aligning
with uint256), working with smaller-sized integer types can incur extra operations when converting the value to the desired format.

1 function getRootHistory(...) public view returns (RootInfo[] memory) {
2 ...
3 /////////////////////////////////////////////////////////////////
4 // @audit "uint64" is more expensive than "uint256"
5 /////////////////////////////////////////////////////////////////
6 uint64 j = 0;
7 for (uint256 i = startIndex; i < endIndex; i++) {
8 uint256 root = self.rootHistory[i];
9 result[j] = getRootInfo(self, root);

10 j++;
11 }
12 return result;
13 }

Recommendation(s): As there appears to be no reason for j to be of type uint64, consider changing it to uint256.

Status: Fixed.

Update from the Nethermind: Fixed in commit hash 278e292d1cd7f6063f5ebeb0ef855d00f51af528.
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10 Issues & Points of Attention: Audit 2
We have conducted a re-audit on the updated implementation of the Polygon team, as they had to refactor the original implementation by
changing the data model and design of the StateV2. As a result, new issues have been identified, which are listed below. The commit
hash of the re-audit is b74788b3e7fb71c2b8c858f4aba0b52aa1d36eae.

10.1 [Info] Inconsistent behavior of getter function for zero root
File(s): contracts/lib/SmtLib.sol

Description: During the initialization of _gistData, the first root is assigned a value of 0. However, when retrieving the proof information,
we notice inconsistent behavior between the public functions. Some functions, such as getProof(...) and getProofByRoot(...), return
the proof for a root value of 0, while others, such as getProofByTime(...) and getProofByBlock(...), revert when the root value is 0.
Below, we introduce the function getProofByRoot(...), which returns a proof when encountering a root of 0:

1 function getProofByRoot(Data storage self, uint256 index, uint256 historicalRoot) public view onlyExistingRoot(self,
historicalRoot) returns (Proof memory) {↪

2 uint256[] memory siblings = new uint256[](self.maxDepth);
3 // Solidity does not guarantee that memory vars are zeroed out
4 for (uint256 i = 0; i < self.maxDepth; i++) {
5 siblings[i] = 0;
6 }
7 ///////////////////////////////////////////////////////////
8 // @audit The proof is returned even on root 0
9 ///////////////////////////////////////////////////////////

10 Proof memory proof = Proof({
11 root: historicalRoot,
12 existence: false,
13 siblings: siblings,
14 index: index,
15 value: 0,
16 auxExistence: false,
17 auxIndex: 0,
18 auxValue: 0
19 });
20

21 uint256 nextNodeHash = historicalRoot;
22 Node memory node;
23

24 for (uint256 i = 0; i <= self.maxDepth; i++) {
25 node = getNode(self, nextNodeHash);
26 if (node.nodeType == NodeType.EMPTY) {
27 break;
28 } else if (node.nodeType == NodeType.LEAF) {
29 if (node.index == proof.index) {
30 proof.existence = true;
31 proof.value = node.value;
32 break;
33 } else {
34 proof.auxExistence = true;
35 proof.auxIndex = node.index;
36 proof.auxValue = node.value;
37 proof.value = node.value;
38 break;
39 }
40 } else if (node.nodeType == NodeType.MIDDLE) {
41 if ((proof.index >> i) & 1 == 1) {
42 nextNodeHash = node.childRight;
43 proof.siblings[i] = node.childLeft;
44 } else {
45 nextNodeHash = node.childLeft;
46 proof.siblings[i] = node.childRight;
47 }
48 } else {
49 revert("Invalid node type");
50 }
51 }
52 return proof;
53 }
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Below we present an example of a function that reverts when encountering a root of zero.

1 function getProofByBlock(
2 Data storage self,
3 uint256 index,
4 uint256 blockNumber
5 ) external view returns (Proof memory) {
6 RootEntryInfo memory rootInfo = getRootInfoByBlock(self, blockNumber);
7 ///////////////////////////////////////////////////////////
8 // @audit Revert on root 0
9 ///////////////////////////////////////////////////////////

10 require(rootInfo.root != 0, "historical root not found");
11

12 return getProofByRoot(self, index, rootInfo.root);
13 }

Recommendation(s): Ensure consistent behavior among getter functions when providing proof for a root value of 0.

Status: Fixed

Update from the client: Fixed in commit 6ac5bca7fcd2138f639bcf39722107c0b4e37b9a.

10.2 [Info] NatSpec comment missing in function calculateBounds(...)

File(s): contracts/lib/ArrayUtils.sol

Description: In the library ArrayUtils, the function calculateBounds(...) is lacking NatSpec comments for the input parameter limit.
Below, we provide the NatSpec comment for the calculateBounds(...) function.

1 /**
2 * @dev Calculates bounds for the slice of the array.
3 * @param arrLength An array length.
4 * @param start A start index.
5 * @param length A length of the slice.
6 ///////////////////////////////////////////////////////////
7 // @audit Missing description of "limit"
8 ///////////////////////////////////////////////////////////
9 * @return The bounds for the slice of the array.

10 */
11 function calculateBounds(
12 uint256 arrLength,
13 uint256 start,
14 uint256 length,
15 uint256 limit
16 ) internal pure returns (uint256, uint256) {

Recommendation(s): Please add NatSpec comments for the parameter limit.

Status: Fixed

Update from the client: Fixed in commit 6ac5bca7fcd2138f639bcf39722107c0b4e37b9a.

10.3 [Best Pratices] Gaps with round numbers
File(s): contracts/lib/SmtLib.sol, contracts/lib/StateLib.sol

Description: The __gap field in the Data struct is used to reserve space for future upgrades. It is considered best practice to allocate a
round number of slots in the __gap field for ease of memory and reasoning during upgrades. An example of a place for improvement is
struct Data:

1 struct Data {
2 mapping(uint256 => Node) nodes;
3 RootEntry[] rootEntries;
4 mapping(uint256 => uint256[]) rootIndexes; // root => rootEntryIndex[]
5 uint256 maxDepth;
6 bool initialized;
7 ///////////////////////////////////////////////////////////
8 // @audit Slots in __gap should be 45 not 48
9 ///////////////////////////////////////////////////////////

10 uint256[48] __gap;
11 }
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In this case, it is recommended to allocate 45 slots in the __gap field so that the total number of slots used and reserved is a round number.
Another example is the struct Data in StateLib, which should have allocated 48 slots.

1 struct Data {
2 mapping(uint256 => Entry[]) stateEntries;
3 mapping(uint256 => mapping(uint256 => uint256[])) stateIndexes;
4 ///////////////////////////////////////////////////////////
5 // @audit Slots in __gap should be 48 not 50
6 ///////////////////////////////////////////////////////////
7 uint256[50] __gap;
8 }

Recommendation(s): Consider keeping the space allocated in __gap as a round number. Document this practice and the reasoning
behind the chosen number of slots in the __gap field to ensure clarity and consistency in future upgrades.

Status: Fixed

Update from the client: Fixed in commit 6ac5bca7fcd2138f639bcf39722107c0b4e37b9a.

10.4 [Best Practices] Not testing implementation updates
File(s): test/state/stateV2.test.ts

Description: The testing suite does not include a scenario where the implementation of the StateV2 is changed to a new one.

Recommendation(s): Consider improving the testing suite for StateV2.

Status: Acknowledged

10.5 [Best Practices] Uninitialized proxy implementation
File(s): contracts/state/StateV2.sol

Description: The implementation contract StateV2 serves as the logic code for the proxy contract. However, it is possible for any address
to directly initialize the implementation contract. To prevent this, it is advisable to include _disableInitializers(...) in the constructor,
as recommended by OpenZeppelin.

Recommendation(s): Consider including _disableInitializers(...) in the constructor.

Status: Fixed

Update from the client: Fixed in commit 6ac5bca7fcd2138f639bcf39722107c0b4e37b9a.
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11 Complementary Validations Performed by Nethermind
This section describes each part of the overall audit process. The audit team was divided into groups responsible for the following:

a) Line-by-line inspection of the source code;

b) Manual execution of the algorithm on pen and paper covering all possible code branches;

c) White box testing targeting particular logic;

d) Black box testing.

11.1 White-box tests
White box testing involves testing an application with detailed inside information about its source code, architecture, and configuration. It
can expose issues such as security vulnerabilities, broken paths, or data flow issues, which black box testing cannot test comprehensively.
The white-box tests were divided into specific goals:

a) Validate if every line of code is tested at least once to add a new leaf in the SMT;

b) Improve code auditing by scanning the following functions: add(...), getRoot(...), _addLeaf(...), _pushLeaf(...), _addNode(...),
and getNodeHash(...).

11.1.1 Methodology

Our methodology consists of two stages:

i) careful inspection of the code, line-by-line, annotating parts of the code that require deeper investigation;

ii) manual code inspection combined with dynamic code analysis during the auditing process. Dynamic analysis is a debugging
technique to test and evaluate a program while running, i.e., to apply behavioral analysis on the code for a given input. We extract test
case execution traces for monitoring the dynamic interaction. We generate trace files during the execution of the add(...) function and
their nested functions (_addLeaf(...), _pushLeaf(...), _addNode(...), getNodeHash(...), and getRoot(...)). These files present the
order of the code that is executed during the test cases, such as called functions, variables, and executed branches for a given input.
Then, for each test case, we reinspect the code following the captured traces.

11.1.2 Statement and Branch Coverage

We applied two White Box Test design techniques: i) statement coverage that is used to verify if every line of code has been executed at
least once; and, ii) branch coverage that is used to ensure that each decision condition from every branch has been tested at least once.

Branch Coverage: We executed 4 (four) test cases on the instrumented code to validate all branches when calling smt.add(...) function
and to avoid no branch leading to any unexpected behavior. For example, Fig. 5 describes the existent branches in _addLeaf and _pushLeaf
functions.

_addLeaf
if(depth > MAX_SMT_DEPTH)

revert()
if (node.nodeType == NodeType.EMPTY)

|--- _addNode(...)
else if (node.nodeType == NodeType.LEAF)

|--- if(node.index == newLeaf.index)
|--- _addNode(...)

|--- else
|--- _pushLeaf(...)

else if (node.nodeType == NodeType.MIDDLE)
|--- if ((newLeaf.index >> depth) & 1 == 1)

|--- _addLeaf(...)
|--- else

|--- _addLeaf(...)
return leafHash

_pushLeaf
if (depth > MAX_SMT_DEPTH - 2)

revert()
if ((pathNewLeaf >> depth) & 1 == (pathOldLeaf >> depth)

& 1)↪

|--- _pushLeaf(...)
|--- if ((pathNewLeaf >> depth) & 1 == 1)

newNodeMiddle
|--- else

newNodeMiddle
|--- return _addNode(newNodeMiddle)

if ((pathNewLeaf >> depth) & 1 == 1)
|--- newNodeMiddle

else
|--- newNodeMiddle

_addNode(newLeaf);
return _addNode(newNodeMiddle);

Fig. 5: Branches in _addLeaf and _pushLeaf functions.
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Table 2: Test Cases - Branch Coverage obtained by analyzing execution traces.

Index Binary Branch Coverage
25763 110010010100011

62%
9379 010010010100011

3235 110010100011

81%
1187 010010100011
25763 110010010100011
9379 010010010100011

Results: Every branch of the code to add a new leaf node was executed at least once, except one condition in _addLeaf function related to
MAX_SMT_DEPTH (see Fig. 5). The above table summarizes some information about the test cases. We defined different indexes to compute
statements and the branch coverage measures. Moreover, Table 2 shows the branch coverage for these test cases considering different
values of node. As we can see, the test case to insert four leaf nodes reached 81% of branch coverage. However, four branches are
not tested with these test cases: i) When a node already exists with the same index and value; ii) When a node already exists but with a
different value; iii) In _addLeaf function when depth > MAX_SMT_DEPTH (see Fig. 5); iv) In _pushLeaf function when depth > MAX_SMT_DEPTH
- 2 (see Fig. 5).

We performed the inputs described in Fig 6 to run the branches described in items (i) and (ii) mentioned above. These tests use the (index,
value) pairs to run at least once the branches when adding a new leaf node.

leavesToInsert: [
{ i: 9379, v: 100 },
{ i: 9379, v: 100 },

]

leavesToInsert: [
{ i: 9379, v: 100 },
{ i: 9379, v: 222 },

],

Fig. 6: Inputs to test the add function when values are the same and different.

Next, we apply tests that fail to test branches when adding a new leaf node process is reverted. We could not test the branch when
depth is greater than maximum depth in _addLeaf function. This branch is not reachable. Lastly, to test the branch in _pushLeaf function
when depth > MAX_SMT_DEPTH - 2, we performed the first scenario listed in Table 3 when labeled ”Test that fails”.

Statement Coverage: We execute the same 4 (four) test cases described in Table 2 and Fig 6 on the instrumented code to ensure that
there is no dead code, unused statements, or missing statements. Result: All lines of code were executed at least once.

In this work, we combine black-box testing with white-box testing. By combining black-box and white-box testing, testers can achieve
a comprehensive ”inside-out” inspection of software and increase the coverage of quality aspects and security issues. The black-box tests
are discussed in the following subsection.

11.2 Black-box tests
Black-box testing is a method of software testing that examines the functionality of an application without peering into its internal structures
or workings. Test cases are built around specifications and requirements, i.e., what the application is supposed to do. Test cases derive
from external software descriptions, including specifications, requirements, and design parameters. Although the tests are primarily
functional, non-functional tests may also be used. The test designer selects valid and invalid inputs and determines the correct output,
often with the help of a test oracle or a previous result known to be correct, without any knowledge of the test object’s internal structure.

11.2.1 Boundary Testing

We applied a Black Box Test design technique called Boundary Testing. This is a type of test in which tests are performed using
boundary values. The goal of this test is to evaluate the maximum depth the tree reaches.

The Maximum Depth. The constant MAX_SMT_DEPTH set to n allows the depth of the tree to reach n-1 levels, i.e., the insertion of a leaf in
the n-th level will fail. For this test, we run the add(...) function considering MAX_SMT_DEPTH=32 as defined in the code. Table 3 describes
two scenarios: i) Test that fails - Scenario with two indexes where the tree depth reaches 32; and ii) Test that passes - Scenario with two
indexes where the tree depth reaches 31.

Table 3: Test Cases for the boundary test

Scenario Index Binary

Test that fails
3459916963 11001110001110100010010010100011
1312433315 01001110001110100010010010100011

Test that passes
1312433315 1001110001110100010010010100011
238691491 0001110001110100010010010100011
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11.3 Final Remarks
Although the provided test suite achieves 96% and 85% coverage on the Branch and Statement measures, there are some caveats that
we should take into account. There is no silver bullet to define an absolute number for test coverage. This number depends on the
complexity of the requirements, how critical a given implementation is, etc. Typically, achieving 100% coverage is not necessary because
usually there are non-critical methods such as getters. Instead, it is recommended to carefully evaluate snippets not covered by the tests
to ensure they are not relevant or hard to test. During the audit, we observed that not all branches were tested by the existent unit
tests when inserting leaf nodes, even having coverage reaching 96% (Branch metric) and 85% (Statement metric). The main goal of
the tests applied in this section was to ensure that all the code responsible for adding nodes was executed at least once. Consequently,
avoiding undesirable behavior during its execution in the production environment. Result: During our code analysis, we observe that
the branch in the function _addLeaf(...) that tests if depth > MAX_SMT_DEPTH is not reachable.

12 Documentation Evaluation
Technical documentation is created to explain what the software product does. This way, developers and stakeholders can easily follow
the purpose and the underlying functionality of each file/function/line. Documentation can come not only in the form of a README.md
but also using code as documentation (to write clear code), diagrams, websites, research papers, videos, and external documentation.
Besides being a good programming practice, proper technical documentation improves the efficiency of audits. Less time can be spent
understanding the protocol and more time can be put towards auditing which improves the efficiency and overall output of the audit.

The Polygon Id team provided two documents to assist the audit process, describing (a) the contract StateV2 and the SMT library; (b) in-
structions for running the test suite. These documents covered the most common terms used in the source code, explanations for the
core business logic and functions flow and guides for running tests. Besides that, the audit team used the Polygon public documenta-
tion available at wiki.polygon.technology to gain deeper knowledge about the Polygon Id and understand the interaction between the
Polygon Id and the Iden3 protocol. By reading the whole documentation suite, we could get a proper understanding of how the contract
StateV2 should operate.

Along this investigation, we could notice that the implementation for leaf node hash calculations differs from the specification. According
to the sparse Merkle Tree specification designed by the iden3 team, a leaf node hash is calculated as follows:

///////////////////////////////////////////////////////////////////////////////////
// @audit Code snippet 1: how the hash is defined in the iden3 documentation
///////////////////////////////////////////////////////////////////////////////////
hash(leaf_bit, key, value)

However, the function getNodeHash(...) computes the hash as follows:

///////////////////////////////////////////////////////////////////////////////////
// @audit Code snippet 2: how Polygon is computing the hash
///////////////////////////////////////////////////////////////////////////////////
hash(key, value, leaf_bit)

After presenting this issue to the Polygon team, we were told that the documentation of the iden3 is not reflecting the implementation
and this is the reason they are adopting the code snippet 2 presented above. The Polygon Wiki is a complete source of resources for
developers and auditors, and we are satisfied with the documentation provided by the Polygon team. The codebase has sufficient inline
comments, helping the audit team to understand the functions flow and to detect some issues. The Polygon Id could benefit from clearly
stating each use case, allowing the audit team to ensure that all use cases are perfectly implemented.
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13 Test Suite Evaluation

13.1 Contracts Compilation Output
$ npx hardhat compile
contracts/lib/BabyJubJub.sol:10:5: Warning: Function state mutability can be restricted to pure

function modinv(uint256 a, uint256 q) internal view returns (uint256) {
^ (Relevant source part starts here and spans across multiple lines).

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/ICircuitValidator.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/IERC20zkp.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/IState.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/IVerifier.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/IZKPAirdrop.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use "SPDX-License-Identifier: UNLICENSED" for
non-open-source code. Please see https://spdx.org for more information.

↪

↪

--> contracts/interfaces/IZKPVerifier.sol

Generating typings for: 48 artifacts in dir: typechain for target: ethers-v5
Successfully generated 79 typings!
Compiled 36 Solidity files successfully
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13.2 Tests Output
$ npx hardhat test test/state/stateV2.test.ts test/smt/smt.test.ts
No need to generate any newer typings.

State transitions positive cases
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Initial state publishing (1461ms)
Subsequent state update (677ms)

State transition negative cases
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Old state does not match the latest state (636ms)
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Old state is genesis but identity already exists (630ms)
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

+++++++++++++++++
VM Exception while processing transaction: reverted with reason string 'Genesis state already exists'

Genesis state already exists (610ms)
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

New state should not exist (621ms)
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Old state is not genesis but identity does not yet exist
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Zero-knowledge proof of state transition is not valid (546ms)

State history
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

[
BigNumber {
_hex: '0x102f1530a708f08fe0cfc4dd2486fb8e93a2b6add1128bfcf2a13de66d1202',
_isBigNumber: true

},
BigNumber {
_hex: '0x05b972ee2ae0c56d75841a4558fefe63ca81c0d8ed9709d687443a610a4686d5',
_isBigNumber: true

},
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BigNumber { _hex: '0x00', _isBigNumber: true },
BigNumber { _hex: '0x63d1b987', _isBigNumber: true },
BigNumber { _hex: '0x00', _isBigNumber: true },
BigNumber { _hex: '0x47', _isBigNumber: true },
BigNumber { _hex: '0x00', _isBigNumber: true },
id: BigNumber {
_hex: '0x102f1530a708f08fe0cfc4dd2486fb8e93a2b6add1128bfcf2a13de66d1202',
_isBigNumber: true

},
state: BigNumber {
_hex: '0x05b972ee2ae0c56d75841a4558fefe63ca81c0d8ed9709d687443a610a4686d5',
_isBigNumber: true

},
replacedByState: BigNumber { _hex: '0x00', _isBigNumber: true },
createdAtTimestamp: BigNumber { _hex: '0x63d1b987', _isBigNumber: true },
replacedAtTimestamp: BigNumber { _hex: '0x00', _isBigNumber: true },
createdAtBlock: BigNumber { _hex: '0x47', _isBigNumber: true },
replacedAtBlock: BigNumber { _hex: '0x00', _isBigNumber: true }

]
[

{
oldState: '9584531312011582011704444045256800138910010074455127850455401738477735136235',
newState: '4230226035437556605271057347598268776203846570727174673764784938017108094097',
id: '28594506397337496830336230715217546167149332551945645328958226796777378306',
blockNumber: 70,
timestamp: 1674688902

},
{
oldState: '4230226035437556605271057347598268776203846570727174673764784938017108094097',
newState: '2589224169966755708133251659231662692672642124445598470228767014470528960213',
id: '28594506397337496830336230715217546167149332551945645328958226796777378306',
blockNumber: 71,
timestamp: 1674688903

}
]

should return state history (46ms)
should be reverted if length is zero
should be reverted if length limit exceeded
should be reverted if out of bounds

get StateInfo negative cases
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

getStateInfoByID: should be reverted if identity does not exist
getStateInfoHistoryById: should be reverted if identity does not exist
getStateInfoHistoryLengthById: should be reverted if identity does not exist
getStateInfoByState: should be reverted if state does not exist

GIST proofs
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

root history length: BigNumber { _hex: '0x02', _isBigNumber: true }
Should be correct historical proof by root and the latest root (1421ms)

Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

[
BigNumber {
_hex: '0x03196d5391d63ecca43a580627490a54c39751b935cd0f9b22b9f289c743216c',
_isBigNumber: true

},
BigNumber {
_hex: '0x07c073f867dc049a93195c8963568e6de7e22b6643d8acb87c7c725108e08988',
_isBigNumber: true

},
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BigNumber { _hex: '0x63d1b9a1', _isBigNumber: true },
BigNumber { _hex: '0x63d1b9a2', _isBigNumber: true },
BigNumber { _hex: '0x61', _isBigNumber: true },
BigNumber { _hex: '0x62', _isBigNumber: true },
root: BigNumber {
_hex: '0x03196d5391d63ecca43a580627490a54c39751b935cd0f9b22b9f289c743216c',
_isBigNumber: true

},
replacedByRoot: BigNumber {
_hex: '0x07c073f867dc049a93195c8963568e6de7e22b6643d8acb87c7c725108e08988',
_isBigNumber: true

},
createdAtTimestamp: BigNumber { _hex: '0x63d1b9a1', _isBigNumber: true },
replacedAtTimestamp: BigNumber { _hex: '0x63d1b9a2', _isBigNumber: true },
createdAtBlock: BigNumber { _hex: '0x61', _isBigNumber: true },
replacedAtBlock: BigNumber { _hex: '0x62', _isBigNumber: true }

]
[

BigNumber {
_hex: '0x07c073f867dc049a93195c8963568e6de7e22b6643d8acb87c7c725108e08988',
_isBigNumber: true

},
BigNumber { _hex: '0x00', _isBigNumber: true },
BigNumber { _hex: '0x63d1b9a2', _isBigNumber: true },
BigNumber { _hex: '0x00', _isBigNumber: true },
BigNumber { _hex: '0x62', _isBigNumber: true },
BigNumber { _hex: '0x00', _isBigNumber: true },
root: BigNumber {
_hex: '0x07c073f867dc049a93195c8963568e6de7e22b6643d8acb87c7c725108e08988',
_isBigNumber: true

},
replacedByRoot: BigNumber { _hex: '0x00', _isBigNumber: true },
createdAtTimestamp: BigNumber { _hex: '0x63d1b9a2', _isBigNumber: true },
replacedAtTimestamp: BigNumber { _hex: '0x00', _isBigNumber: true },
createdAtBlock: BigNumber { _hex: '0x62', _isBigNumber: true },
replacedAtBlock: BigNumber { _hex: '0x00', _isBigNumber: true }

]
Should be correct historical proof by time (1365ms)

Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Should be correct historical proof by block (1326ms)

GIST root history
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Should search by block and by time return same root (1340ms)
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

Should have correct GIST root transitions info (1267ms)

SMT tests
Merkle tree proofs of SMT

SMT existence proof
add 1 leaf and generate the proof for it (74ms)
add 2 leaves (depth = 2) and generate the proof of the second one (214ms)
add 2 leaves (depth = 2) update 2nd one and generate the proof of the first one (299ms)
add 2 leaves (depth = 2) update the 2nd leaf and generate the proof of the second one (284ms)
add 2 leaves (depth = 2) update the 2nd leaf and generate the proof of the first one for the previous root state

(290ms)↪

add 2 leaves (depth = 2) update the 2nd leaf and generate the proof of the second one for the previous root
state (291ms)↪
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SMT non existence proof
add 1 leaf and generate a proof on non-existing leaf (69ms)
add 2 leaves (depth = 2) and generate proof on non-existing leaf WITH aux node (214ms)
add 2 leaves (depth = 2) and generate proof on non-existing leaf WITHOUT aux node (202ms)
add 2 leaves (depth = 2), update the 2nd leaf and generate proof of non-existing leaf WITH aux node (which

existed before update) (296ms)↪

add 2 leaves (depth = 2), update the 2nd leaf and generate proof of non-existing leaf WITHOUT aux node (312ms)
add 2 leaves (depth = 2), add 3rd leaf and generate proof of non-existance for the 3rd leaf in the previous

root state (275ms)↪

SMT add leaf edge cases
Positive: add two leaves with maximum depth (882ms)
Negative: add two leaves with maximum depth + 1 (86ms)

Root history requests
Warning: Potentially unsafe deployment of StateV2

You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
Make sure you have manually checked that the linked libraries are upgrade safe.

should return the root history (46ms)
should revert if length is zero
should be reverted if length limit exceeded
should be reverted if out of bounds

Binary search in SMT root history
Empty history

Should return zero root for some search
One root in the root history

Should return the first root when equal
Should return zero when search for less than the first
Should return the last root when search for greater than the last

Two roots in the root history
Should return the first root when search for equal
Should return the second root when search for equal
Should return zero when search for less than the first
Should return the last root when search for greater than the last

Three roots in the root history
Should return the first root when equal (39ms)
Should return the second root when equal
Should return the third root when equal (44ms)
Should return zero root when search for less than the first (40ms)
Should return the last root when search for greater than the last (42ms)

Four roots in the root history
Should return the first root when equal (50ms)
Should return the fourth root when equal (47ms)
Should return zero when search for less than the first (49ms)
Should return the last root when search for greater than the last (51ms)

Search in between the values
Should return the first root when search in between the first and second (57ms)
Should return the fourth root when search in between the fourth and the fifth (58ms)

Search in array with duplicated values
Should return the last root among two equal values when search for the value (63ms)
Should return the last root among three equal values when search for the value (56ms)

Search in array with duplicated values and in between values
Should search in between the third (1st, 2nd, 3rd equal) and fourth values and return the third (89ms)
Should search in between the fifth (4th, 5th equal) and sixth values and return the fifth (79ms)

Edge cases with exceptions
getRootInfo() should throw when root does not exist (66ms)
getProofByRoot() should throw when root does not exist (80ms)
add() should throw when node already exist with the same index and value (119ms)

65 passing (28s)
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13.3 Code Coverage

npx hardhat coverage

The relevant output is presented below.

--------------------------------------------|----------|----------|----------|----------|----------------|
File | % Stmts | % Branch | % Funcs | % Lines |Uncovered Lines |
--------------------------------------------|----------|----------|----------|----------|----------------|
contracts/state/StateV2.sol | 91.84 | 96.15 | 82.61 | 92.31 |135,224,419,432 |
contracts/lib/Smt.sol | 96.43 | 84.85 | 95 | 96.38 |... 406,509,611 |
--------------------------------------------|----------|----------|----------|----------|----------------|
All files | 94.14 | 90.50 | 88.80 | 94.35 | |
--------------------------------------------|----------|----------|----------|----------|----------------|

13.4 Slither
All the relevant issues raised by Slither have been incorporated into the issues described in this report.
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14 About Nethermind
Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

− Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

− Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

− Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.
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Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

44

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Assumptions
	Summary of Issues
	System Overview
	StateV2.sol
	Smt.sol
	Library BinarySearchSmtRoots
	Roles

	Analysis of the Probability of Collision for Identities
	Approach: The birthday problem
	Asking the inverse question
	Usability concerns

	Approach: Study on the number of collisions expected according to the number of identities added to the tree
	Choosing an appropriate depth limit

	Formal Specification of Sparse Merkle trees
	Preliminaries
	Introduction to Hoare triples and separation logic
	Specifications

	Risk Rating Methodology
	Issues & Points of Attention: Audit 1
	[Low] Lack of a two-step process for transferring ownership
	[Low] Unnecessary space allocation in Proof.siblings
	[Info] Code and specification not matching
	[Info] Nodes with incorrect depth are allowed
	[Info] Owner can change the verification logic after the contract's deployment
	[Info] Privileged Roles and Ownership
	[Info] Upgradability
	[Best Practices] Avoidable reversion in function getRootHistory(...)
	[Best Practices] Functions that can have external visibility instead of public
	[Best Practices] Memory variables should be initialized
	[Best Practices] Not checking the verifier contract for address(0x0)
	[Best Practices] Redundant input arguments in function _pushLeaf(...)
	[Best Practices] Special values able to be used as normal input
	[Best Practices] Unnecessary path specification in import
	[Best Practices] abicoder v2 pragma is not needed since version 0.8.0
	[Best Practices] Variable can be uint256 instead of uint64

	Issues & Points of Attention: Audit 2
	[Info] Inconsistent behavior of getter function for zero root
	[Info] NatSpec comment missing in function calculateBounds(...)
	[Best Pratices] Gaps with round numbers
	[Best Practices] Not testing implementation updates
	[Best Practices] Uninitialized proxy implementation

	Complementary Validations Performed by Nethermind
	White-box tests
	Methodology
	Statement and Branch Coverage

	Black-box tests
	Boundary Testing

	Final Remarks

	Documentation Evaluation
	Test Suite Evaluation
	Contracts Compilation Output
	Tests Output
	Code Coverage
	Slither

	About Nethermind

