IDEAS home Printed from https://ideas.repec.org/p/zbw/rwirep/395.html
   My bibliography  Save this paper

Transportation Data as a Tool for Nowcasting Economic Activity – The German Road Pricing System as an Example

Author

Listed:
  • Döhrn, Roland

Abstract

There is a broad agreement that transportation activity is closely linked to the business cycle. Nevertheless, data from the transportation sector have not been part of the tool kit of business cycle analysts due to long publications lags. With the disseminations of electronic road pricing systems, up to date figures on transportation activity are available for an increasing number of countries. This paper analyses the performance of the German toll statistics for nowcasting industry production. It confirms that between January 2007, when the toll data were published first, and July 2012 the seasonally adjusted toll data show a closer correlation with industry production than business surveys like the ifo business climate or the PMI. Compared to this the forecasting power out of sample is disappointing. Though showing somewhat smaller forecast errors than the alternative models tested the advantage of the toll based models is not statistically significant as a rule. Given the small publication lead against industry production and the publication lag against business sentiment indicators one should not be overenthusiastic on the opportunities of the toll data as a nowcasting tool, though they surely mean an addition to the business cycle analysts' tool box.

Suggested Citation

  • Döhrn, Roland, 2013. "Transportation Data as a Tool for Nowcasting Economic Activity – The German Road Pricing System as an Example," Ruhr Economic Papers 395, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  • Handle: RePEc:zbw:rwirep:395
    DOI: 10.4419/86788450
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/68285/1/73464566X.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4419/86788450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Askitas, Nikos & Zimmermann, Klaus F., 2011. "The Toll Index: Innovation-based Economic Telemetry," IZA Policy Papers 31, Institute of Labor Economics (IZA).
    2. Gerhard Fenz & Martin Schneider, 2009. "A Leading Indicator of Austrian Exports Based on Truck Mileage," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 44-52.
    3. Harding, Don & Pagan, Adrian, 2006. "Synchronization of cycles," Journal of Econometrics, Elsevier, vol. 132(1), pages 59-79, May.
    4. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    5. Nikolaos Askitas & Klaus F. Zimmermann, 2013. "Nowcasting Business Cycles Using Toll Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 299-306, July.
    6. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:rwirep:0395 is not listed on IDEAS
    2. Roland Döhrn, 2013. "Transportation Data as a Tool for Nowcasting Economic Activity – The German Road Pricing System as an Example," Ruhr Economic Papers 0395, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    3. Prabheesh, K.P. & Anglingkusumo, Reza & Juhro, Solikin M., 2021. "The dynamics of global financial cycle and domestic economic cycles: Evidence from India and Indonesia," Economic Modelling, Elsevier, vol. 94(C), pages 831-842.
    4. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    5. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2013. "Discordant city employment cycles," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 367-384.
    6. Grigoraş, Veaceslav & Stanciu, Irina Eusignia, 2016. "New evidence on the (de)synchronisation of business cycles: Reshaping the European business cycle," International Economics, Elsevier, vol. 147(C), pages 27-52.
    7. Rachel Male, 2010. "Developing Country Business Cycles: Characterising the Cycle," Working Papers 663, Queen Mary University of London, School of Economics and Finance.
    8. Avouyi-Dovi, S. & Matheron, J., 2003. "Interactions between business cycles, stock market cycles and interest rates: the stylised facts," Financial Stability Review, Banque de France, issue 3, pages 80-99, November.
    9. Shruthi Jayaram, 2009. "Examining the Decoupling Hypothesis for India," Working Papers id:2119, eSocialSciences.
    10. German Forero-Laverde, 2016. "Are All Booms and Busts Created Equal? A New Methodology for Understanding Bull and Bear Stock Markets," UB School of Economics Working Papers 2016/339, University of Barcelona School of Economics.
    11. Penelope A. Smith & Peter M. Summers, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    12. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    13. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    14. Esser, Andreas, 2014. "A Wavelet Approach to Synchronization of Output Cycles," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100545, Verein für Socialpolitik / German Economic Association.
    15. Mercè Sala-Rios & Teresa Torres-Solé & Mariona Farré-Perdiguer, 2016. "Credit and business cycles’ relationship: evidence from Spain," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 15(3), pages 149-171, December.
    16. Petr Rozmahel & Ladislava Issever Grochová & Marek Litzman, 2014. "The Effect of Asymmetries in Fiscal Policy Conducts on Business Cycle Correlation in the EU. WWWforEurope Working Paper No. 62," WIFO Studies, WIFO, number 47249.
    17. Bordo, Michael D. & Haubrich, Joseph G., 2010. "Credit crises, money and contractions: An historical view," Journal of Monetary Economics, Elsevier, vol. 57(1), pages 1-18, January.
    18. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    19. Bertrand Candelon & Jan Piplack & Stefan Straetmans, 2009. "Multivariate Business Cycle Synchronization in Small Samples," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 715-737, October.
    20. Gammadigbé, Vigninou, 2012. "Les cycles économiques des pays de l'UEMOA: synchrones ou déconnectés? [Business cycles in the WAEMU countries: synchronous or disconnected?]," MPRA Paper 39400, University Library of Munich, Germany, revised Jun 2012.
    21. Di Shang & Chang Yu & Gang Diao, 2021. "Study on Impacts of COVID-19 Pandemic Recession Based on Monte Carlo Simulation," Prague Economic Papers, Prague University of Economics and Business, vol. 2021(6), pages 724-747.

    More about this item

    Keywords

    transportation data; nowcasting; forecasting performance;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwirep:395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.