IDEAS home Printed from https://ideas.repec.org/p/kse/dpaper/41.html
   My bibliography  Save this paper

A Bayesian Model of Sample Selection with a Discrete Outcome Variable: Detecting Depression in Older Adults

Author

Listed:
  • Maksym Obrizan

    (Kyiv School of Economics, Kyiv Economic Institute)

Abstract

Depression as a major mental illness among older adults has attracted a lot of research attention. However, the problem of sample selection, inevitable in most health surveys, has been largely ignored. To fill in this gap, this paper formally models selection into the sample jointly with a discrete outcome variable for depression. A Bayesian model of sample selection is developed from a multivariate probit by (i) allowing missing depression status for nonselected respondents, and (ii) using Cholesky factorization of the inverse variance matrix to avoid a Metropolis-Hastings step in the Gibbs sampler. Non-selected respondents are less likely to suffer from depression.

Suggested Citation

  • Maksym Obrizan, 2011. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable: Detecting Depression in Older Adults," Discussion Papers 41, Kyiv School of Economics.
  • Handle: RePEc:kse:dpaper:41
    Note: Journal of Applied Econometrics
    as

    Download full text from publisher

    File URL: https://repec.kse.org.ua/pdf/KSE_dp41.pdf
    File Function: July 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Chun-Lo & Schmidt, Peter, 1985. "On the Cost of Partial Observability in the Bivariate Probit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 71-85, February.
    2. John Geweke, 2004. "Getting It Right: Joint Distribution Tests of Posterior Simulators," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 799-804, January.
    3. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    4. Ho-Chuan Huang, 2001. "Bayesian analysis of the SUR Tobit model," Applied Economics Letters, Taylor & Francis Journals, vol. 8(9), pages 617-622.
    5. Munkin, Murat K. & Trivedi, Pravin K., 2003. "Bayesian analysis of a self-selection model with multiple outcomes using simulation-based estimation: an application to the demand for healthcare," Journal of Econometrics, Elsevier, vol. 114(2), pages 197-220, June.
    6. F. Thomas Juster & Richard Suzman, 1995. "An Overview of the Health and Retirement Study," Journal of Human Resources, University of Wisconsin Press, vol. 30, pages 7-56.
    7. Van de Ven, Wynand P. M. M. & Van Praag, Bernard M. S., 1981. "The demand for deductibles in private health insurance : A probit model with sample selection," Journal of Econometrics, Elsevier, vol. 17(2), pages 229-252, November.
    8. Donald S. Kenkel & Joseph V. Terza, 2001. "The effect of physician advice on alcohol consumption: count regression with an endogenous treatment effect," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 165-184.
    9. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    10. Chib, Siddhartha & Hamilton, Barton H., 2000. "Bayesian analysis of cross-section and clustered data treatment models," Journal of Econometrics, Elsevier, vol. 97(1), pages 25-50, July.
    11. William H. Greene, 1992. "A Statistical Model for Credit Scoring," Working Papers 92-29, New York University, Leonard N. Stern School of Business, Department of Economics.
    12. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    13. Madhu Mohanty, 2002. "A bivariate probit approach to the determination of employment: a study of teen employment differentials in Los Angeles County," Applied Economics, Taylor & Francis Journals, vol. 34(2), pages 143-156.
    14. Kai, Li, 1998. "Bayesian inference in a simultaneous equation model with limited dependent variables," Journal of Econometrics, Elsevier, vol. 85(2), pages 387-400, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    2. J Banasik & J Crook & L Thomas, 2003. "Sample selection bias in credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 822-832, August.
    3. Li, Mingliang & Tobias, Justin L., 2011. "Bayesian inference in a correlated random coefficients model: Modeling causal effect heterogeneity with an application to heterogeneous returns to schooling," Journal of Econometrics, Elsevier, vol. 162(2), pages 345-361, June.
    4. Schwiebert, Jörg, 2012. "Semiparametric Estimation of a Binary Choice Model with Sample Selection," Hannover Economic Papers (HEP) dp-505, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Joshua C. C. Chan & Justin L. Tobias, 2015. "Priors and Posterior Computation in Linear Endogenous Variable Models with Imperfect Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 650-674, June.
    6. Filiz Garip, 2012. "An Integrated Analysis of Migration and Remittances: Modeling Migration as a Mechanism for Selection," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 31(5), pages 637-663, October.
    7. González-Cabán, Armando & Loomis, John B. & Rodriguez, Andrea & Hesseln, Hayley, 2007. "A comparison of CVM survey response rates, protests and willingness-to-pay of Native Americans and general population for fuels reduction policies," Journal of Forest Economics, Elsevier, vol. 13(1), pages 49-71, May.
    8. Haan, Michael, 2005. "Summary Of: Are Immigrants Buying to Get In?: The Role of Ethnic Clustering on the Homeownership Propensities of 12 Toronto Immigrant Groups, 1996-2001," Analytical Studies Branch Research Paper Series 2005253e, Statistics Canada, Analytical Studies Branch.
    9. Rocholl, Jörg & Puri, Manju & Steffen, Sascha, 2011. "On the importance of prior relationships in bank loans to retail customers," Working Paper Series 1395, European Central Bank.
    10. William Greene, 2006. "A General Approach to Incorporating Selectivity in a Model," Working Papers 06-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    11. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    12. Céline Bignebat & Fabian Gouret, 2008. "Determinants and consequences of soft budget constraints. An empirical analysis using enterprise-level data in transition countries," Post-Print halshs-00308719, HAL.
    13. Creamer, Selmin F. & Blatner, Keith A. & Butler, Brett J., 2012. "Certification of family forests: What influences owners’ awareness and participation?," Journal of Forest Economics, Elsevier, vol. 18(2), pages 131-144.
    14. Stephen P. Jenkins & Lorenzo Cappellari & Peter Lynn & Annette Jäckle & Emanuela Sala, 2006. "Patterns of consent: evidence from a general household survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 701-722, October.
    15. Glenn W. Harrison & Morten I. Lau & Hong Il Yoo, 2020. "Risk Attitudes, Sample Selection, and Attrition in a Longitudinal Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 552-568, July.
    16. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    17. Elisa Ughetto & Andrea Vezzulli, 2011. "What role can mutual guarantee consortia play for financing innovation? A firm-level study for Italy," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 3(4), pages 294-319.
    18. James Alm & Mikhail I. Melnik, 2005. "Sales Taxes and the Decision to Purchase Online," Public Finance Review, , vol. 33(2), pages 184-212, March.
    19. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    20. Y Kim & S Y Sohn, 2007. "Technology scoring model considering rejected applicants and effect of reject inference," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1341-1347, October.

    More about this item

    Keywords

    Multivariate probit model; Sample selection; Bayesian methods; Gibbs sampler;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • I1 - Health, Education, and Welfare - - Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kse:dpaper:41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Sobetska (email available below). General contact details of provider: https://edirc.repec.org/data/ksecoua.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.