IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6457.html
   My bibliography  Save this paper

Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle

Author

Listed:
  • Kai Carstensen
  • Markus Heinrich
  • Magnus Reif
  • Maik H. Wolters

Abstract

We estimate a Markow-switching dynamic factor model with three states based on six leading business cycle indicators for Germany preselected from a broader set using the Elastic Net soft-thresholding rule. The three states represent expansions, normal recessions and severe recessions. We show that a two-state model is not sensitive enough to reliably detect relatively mild recessions when the Great Recession of 2008/2009 is included in the sample. Adding a third state helps to clearly distinguish normal and severe recessions, so that the model identifies reliably all business cycle turning points in our sample. In a real-time exercise the model detects recessions timely. Combining the estimated factor and the recession probabilities with a simple GDP forecasting model yields an accurate nowcast for the steepest decline in GDP in 2009Q1 and a correct prediction of the timing of the Great Recession and its recovery one quarter in advance.

Suggested Citation

  • Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
  • Handle: RePEc:ces:ceswps:_6457
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6457.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klaus Abberger & Wolfgang Nierhaus, 2010. "Markov-Switching and the Ifo Business Climate: the Ifo Business Cycle Traffic Lights," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-13.
    2. Mike Artis & Hans-Martin Krolzig & Juan Toro, 2004. "The European business cycle," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 1-44, January.
    3. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    4. Ulrich Fritsche & Sabine Stephan, 2000. "Leading Indicators of German Business Cycles: An Assessment of Properties," Macroeconomics 0004005, University Library of Munich, Germany.
    5. Boldin Michael D., 1996. "A Check on the Robustness of Hamilton's Markov Switching Model Approach to the Economic Analysis of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-14, April.
    6. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    7. Allan Layton & Daniel Smith, 2000. "A further note on the three phases of the US business cycle," Applied Economics, Taylor & Francis Journals, vol. 32(9), pages 1133-1143.
    8. Camacho, Maximo & Martinez-Martin, Jaime, 2015. "Monitoring the world business cycle," Economic Modelling, Elsevier, vol. 51(C), pages 617-625.
    9. Pirschel, Inske & Wolters, Maik H., 2014. "Forecasting German key macroeconomic variables using large dataset methods," Kiel Working Papers 1925, Kiel Institute for the World Economy (IfW Kiel).
    10. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    11. Gebhard Flaig & Wolfgang Nierhaus & Oscar-Erich Kuntze & Andrea Gebauer & Steffen Henzel & Oliver Hülsewig & Anita Dehne & Erich Langmantel & Wolfgang Meister & Monika Ruschinski & Bodo Schimpfermann , 2005. "ifo Konjunkturprognose 2005/2006: Nur zögerliche Erholung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 58(12), pages 29-63, June.
    12. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    13. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics, Canadian Economics Association, vol. 47(1), pages 1-34, February.
    16. James H. Stock & Mark W. Watson, 2005. "Understanding Changes In International Business Cycle Dynamics," Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
    17. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    18. Wai-Yip Alex Ho & James Yetman, 2012. "Does US GDP stall?," BIS Working Papers 387, Bank for International Settlements.
    19. R. Lehmann & K. Wohlrabe, 2016. "Looking into the black box of boosting: the case of Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1229-1233, November.
    20. Sichel, Daniel E, 1994. "Inventories and the Three Phases of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 269-277, July.
    21. Camacho Maximo & Perez Quiros Gabriel, 2007. "Jump-and-Rest Effect of U.S. Business Cycles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(4), pages 1-39, December.
    22. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    23. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    24. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    25. Smith, Aaron & Naik, Prasad A. & Tsai, Chih-Ling, 2006. "Markov-switching model selection using Kullback-Leibler divergence," Journal of Econometrics, Elsevier, vol. 134(2), pages 553-577, October.
    26. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    27. Catherine Doz & Anna Petronevitch, 2016. "Dating Business Cycle Turning Points for the French Economy: An MS-DFM approach," PSE-Ecole d'économie de Paris (Postprint) hal-01300932, HAL.
    28. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    29. Catherine Doz & Anna Petronevitch, 2016. "Dating Business Cycle Turning Points for the French Economy: An MS-DFM approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01300932, HAL.
    30. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.
    31. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    32. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    33. Vanhaelen, J.J. & Dresse, L. & de Mulder, J., 2000. "The Belgian Industrial Confidence Indicator: Leading Indicator of Economic Activity in the Euro Area?," Papers 12, Warwick - Development Economics Research Centre.
    34. Peter McAdam, 2007. "USA, Japan and the Euro Area: Comparing Business-Cycle Features," International Review of Applied Economics, Taylor & Francis Journals, vol. 21(1), pages 135-156.
    35. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    36. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    37. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    38. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    39. Catherine Doz & Anna Petronevich, 2016. "Dating Business Cycle Turning Points for the French Economy: An MS-DFM approach," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 481-538, Emerald Group Publishing Limited.
    40. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    41. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    42. Jeremy J. Nalewaik, 2011. "Forecasting recessions using stall speeds," Finance and Economics Discussion Series 2011-24, Board of Governors of the Federal Reserve System (U.S.).
    43. Yunjong Eo & Chang-Jin Kim, 2016. "Markov-Switching Models with Evolving Regime-Specific Parameters: Are Postwar Booms or Recessions All Alike?," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 940-949, December.
    44. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
    45. Beate Schirwitz, 2009. "A comprehensive German business cycle chronology," Empirical Economics, Springer, vol. 37(2), pages 287-301, October.
    46. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    47. Dovern, Jonas, 2015. "A multivariate analysis of forecast disagreement: Confronting models of disagreement with survey data," European Economic Review, Elsevier, vol. 80(C), pages 16-35.
    48. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    49. Catherine Doz & Anna Petronevitch, 2016. "Dating Business Cycle Turning Points for the French Economy: An MS-DFM approach," Post-Print hal-01300932, HAL.
    50. Krolzig, H.-M. & Toro, J., 2001. "A New Approach To The Analysis Of Business Cycle Transitions In A Model Of Output And Employment," Economics Series Working Papers 9959, University of Oxford, Department of Economics.
    51. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    52. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    53. Fritsche Ulrich & Stephan Sabine, 2002. "Leading Indicators of German Business Cycles. An Assessment of Properties / Frühindikatoren der deutschen Konjunktur. Eine Beurteilung ihrer Eigenschaften," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(3), pages 289-315, June.
    54. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    55. Jean-Jacques Vanhaelen & Luc Dresse & Jan De Mulder, 2000. "The Belgian industrial confidence indicator: leading indicator of economic activity in the euro area ?," Working Paper Document 12, National Bank of Belgium.
    56. Jacques Anas & Monica Billio & Laurent Ferrara & Gian Luigi Mazzi, 2008. "A System For Dating And Detecting Turning Points In The Euro Area," Manchester School, University of Manchester, vol. 76(5), pages 549-577, September.
    57. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    58. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    59. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    60. Ferrara, Laurent, 2003. "A three-regime real-time indicator for the US economy," Economics Letters, Elsevier, vol. 81(3), pages 373-378, December.
    61. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.
    62. Chauvet, Marcelle, 2001. "A Monthly Indicator of Brazilian GDP," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(1), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    4. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
    5. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    6. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    7. Zhang, Wei & He, Jie & Ge, Chanyuan & Xue, Rui, 2022. "Real-time macroeconomic monitoring using mixed frequency data: Evidence from China," Economic Modelling, Elsevier, vol. 117(C).
    8. Gabriel Pérez-Quiros & Maximo Camacho & Pilar Poncela, 2010. "Green Shoots? Where, when and how?," Working Papers 2010-04, FEDEA.
    9. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    10. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    11. Maximo Camacho & Gabriel Perez-Quiros & Pilar Poncela, 2010. "Green shoots in the euro area. A real time measure," Working Papers 1026, Banco de España.
    12. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    13. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    14. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    15. Altug, Sumru & Bildirici, Melike, 2010. "Business Cycles around the Globe: A Regime-switching Approach," CEPR Discussion Papers 7968, C.E.P.R. Discussion Papers.
    16. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    17. Danilo Leiva-Leon & Gabriel Perez-Quiros & Eyno Rots, 2020. "Real-time weakness of the global economy: a first assessment of the coronavirus crisis," Working Papers 2015, Banco de España.
    18. Monica Billio & Laurent Ferrara & Dominique Guegan & Gian Luigi Mazzi, 2009. "Evaluation of Nonlinear time-series models for real-time business cycle analysis of the Euro," Documents de travail du Centre d'Economie de la Sorbonne 09053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    20. Proaño, Christian R. & Tarassow, Artur, 2018. "Evaluating the predicting power of ordered probit models for multiple business cycle phases in the U.S. and Japan," Journal of the Japanese and International Economies, Elsevier, vol. 50(C), pages 60-71.

    More about this item

    Keywords

    Markov-Switching Dynamic Factor Model; business cycles; Great Recession; leading indicators; turning points; GDP-nowcasting; GDP-forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.