IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v106y2016i1d10.1007_s11192-015-1786-0.html
   My bibliography  Save this article

Patent citation indicators: One size fits all?

Author

Listed:
  • Jurriën Bakker

    (KU Leuven)

  • Dennis Verhoeven

    (KU Leuven)

  • Lin Zhang

    (KU Leuven
    North China University of Water Conservancy and Electric Power)

  • Bart Van Looy

    (KU Leuven)

Abstract

The number of citations that a patent receives is considered an important indicator of the quality and impact of the patent. However, a variety of methods and data sources can be used to calculate this measure. This paper evaluates similarities between citation indicators that differ in terms of (a) the patent office where the focal patent application is filed; (b) whether citations from offices other than that of the application office are considered; and (c) whether the presence of patent families is taken into account. We analyze the correlations between these different indicators and the overlap between patents identified as highly cited by the various measures. Our findings reveal that the citation indicators obtained differ substantially. Favoring one way of calculating a citation indicator over another has non-trivial consequences and, hence, should be given explicit consideration. Correcting for patent families, especially when using a broader definition (INPADOC), provides the most uniform results.

Suggested Citation

  • Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
  • Handle: RePEc:spr:scient:v:106:y:2016:i:1:d:10.1007_s11192-015-1786-0
    DOI: 10.1007/s11192-015-1786-0
    as

    Download full text from publisher

    File URL: https://link.springer.com/10.1007/s11192-015-1786-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1786-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Bruno van Pottelsberghe de la Potterie & Didier François, 2009. "The Cost Factor in Patent Systems," Journal of Industry, Competition and Trade, Springer, vol. 9(4), pages 329-355, December.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    6. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    7. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    8. Joaquín M. Azagra‐Caro & Pauline Mattsson & François Perruchas, 2011. "Smoothing the lies: The distinctive effects of patent characteristics on examiner and applicant citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1727-1740, September.
    9. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    10. Megan MacGarvie, 2006. "Do Firms Learn from International Trade?," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 46-60, February.
    11. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    12. Raffaele Paci & Stefano Usai, 2009. "Knowledge flows across European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(3), pages 669-690, September.
    13. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    14. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    15. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    16. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    17. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    18. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    19. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    20. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    21. Lingua, Davide G., 2005. "INPADOC: 30 years of endeavours yet unmapped territories remain!," World Patent Information, Elsevier, vol. 27(2), pages 105-111, June.
    22. Graham, Stuart J.H. & Harhoff, Dietmar, 2006. "Can Post-Grant Reviews Improve Patent System Design? A Twin Study of US and European Patents," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 38, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    23. Neuhäusler, Peter & Frietsch, Rainer & Schubert, Torben & Blind, Knut, 2011. "Patents and the financial performance of firms - An analysis based on stock market data," Discussion Papers "Innovation Systems and Policy Analysis" 28, Fraunhofer Institute for Systems and Innovation Research (ISI).
    24. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    25. Hiroko Nakamura & Shinji Suzuki & Yuya Kajikawa & Masataka Osawa, 2015. "The effect of patent family information in patent citation network analysis: a comparative case study in the drivetrain domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 437-452, August.
    26. Harhoff, Dietmar & Reitzig, Markus, 2004. "Determinants of opposition against EPO patent grants--the case of biotechnology and pharmaceuticals," International Journal of Industrial Organization, Elsevier, vol. 22(4), pages 443-480, April.
    27. Colin Webb & Hélène Dernis & Dietmar Harhoff & Karin Hoisl, 2005. "Analysing European and International Patent Citations: A Set of EPO Patent Database Building Blocks," OECD Science, Technology and Industry Working Papers 2005/9, OECD Publishing.
    28. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    29. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    30. William J. Baumol, 2004. "Education for Innovation: Entrepreneurial Breakthroughs vs. Corporate Incremental Improvements," NBER Working Papers 10578, National Bureau of Economic Research, Inc.
    31. Albrecht, Miguel A. & Bosma, Rex & van Dinter, Trudy & Ernst, Jean-Luc & van Ginkel, Koen & Versloot-Spoelstra, Fenny, 2010. "Quality assurance in the EPO Patent Information Resource," World Patent Information, Elsevier, vol. 32(4), pages 279-286, December.
    32. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    33. Chester Harris & Henry Kaiser, 1964. "Oblique factor analytic solutions by orthogonal transformations," Psychometrika, Springer;The Psychometric Society, vol. 29(4), pages 347-362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurriën Bakker, 2017. "The log-linear relation between patent citations and patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 879-892, February.
    2. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    3. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    4. Zhao Qu & Shanshan Zhang & Chunbo Zhang, 2017. "Patent research in the field of library and information science: Less useful or difficult to explore?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 205-217, April.
    5. Plantec, Quentin & Cabanes, Benjamin & le Masson, Pascal & Weil, Benoit, 2023. "Early-career academic engagement in university–industry collaborative PhDs: Research orientation and project performance," Research Policy, Elsevier, vol. 52(9).
    6. Zwick, Thomas & Frosch, Katharina & Hoisl, Karin & Harhoff, Dietmar, 2017. "The power of individual-level drivers of inventive performance," Research Policy, Elsevier, vol. 46(1), pages 121-137.
    7. Xun Zhang & Biao Xu, 2019. "R&D Internationalization and Green Innovation? Evidence from Chinese Resource Enterprises and Environmental Enterprises," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    8. Francesca Michelino & Antonello Cammarano & Andrea Celone & Mauro Caputo, 2019. "The Linkage between Sustainability and Innovation Performance in IT Hardware Sector," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    9. Mafini Dosso & Didier Lebert, 2019. "A geography of corporate knowledge flows across world regions: evidence from patent citations of top R&D-investing firms," JRC Working Papers on Corporate R&D and Innovation 2019-03, Joint Research Centre.
    10. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
    11. Zhao Qu & Shanshan Zhang, 2020. "References to literature from the business sector in patent documents: a case study of charging technologies for electric vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 867-886, August.
    12. Cammarano, Antonello & Michelino, Francesca & Lamberti, Emilia & Caputo, Mauro, 2017. "Accumulated stock of knowledge and current search practices: The impact on patent quality," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 204-222.
    13. Isabel Cavalli & Charlie Joyez, 2021. "The Dynamics of French Universities in Patent Collaboration Networks," GREDEG Working Papers 2021-38, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    14. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    15. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    16. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2020. "Ties that matter: The impact of alliance partner knowledge recombination novelty on knowledge utilization in R&D alliances," Research Policy, Elsevier, vol. 49(7).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    2. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    3. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    4. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    5. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
    6. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    7. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    8. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    9. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    10. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    11. Buchmann, Tobias & Wolf, Patrick, 2024. "Breakthrough inventions in solar PV and wind technologies: The role of scientific discoveries," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    12. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    13. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2009. "Why Challenge the Ivory Tower? New Evidence on the Basicness of Academic Patents," Kyklos, Wiley Blackwell, vol. 62(4), pages 488-499, November.
    14. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(5), pages 1403-1437, October.
    15. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    16. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    17. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    18. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    19. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    20. Nicolas Carayol & Valerio Sterzi, 2021. "The transfer and value of academic inventions when the TTO is one option," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 30(2), pages 338-367, May.

    More about this item

    Keywords

    Patent citations; EPO; USPTO; PCT; Patent family; Multivariate analysis;
    All these keywords.

    JEL classification:

    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:106:y:2016:i:1:d:10.1007_s11192-015-1786-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.