IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v23y2020i2p211-231..html
   My bibliography  Save this article

Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals

Author

Listed:
  • Yang He
  • Otávio Bartalotti

Abstract

SummaryThis paper develops a novel wild bootstrap procedure to construct robust bias-corrected valid confidence intervals for fuzzy regression discontinuity designs, providing an intuitive complement to existing robust bias-corrected methods. The confidence intervals generated by this procedure are valid under conditions similar to the procedures proposed by Calonico et al. (2014) and related literature. Simulations provide evidence that this new method is at least as accurate as the plug-in analytical corrections when applied to a variety of data-generating processes featuring endogeneity and clustering. Finally, we demonstrate its empirical relevance by revisiting Angrist and Lavy (1999) analysis of class size on student outcomes.

Suggested Citation

  • Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
  • Handle: RePEc:oup:emjrnl:v:23:y:2020:i:2:p:211-231.
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10.1093/ectj/utaa002
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    2. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    3. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    4. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    5. Timothy B. Armstrong & Michal Kolesár, 2020. "Simple and honest confidence intervals in nonparametric regression," Quantitative Economics, Econometric Society, vol. 11(1), pages 1-39, January.
    6. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    7. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    8. Marinho Bertanha & Guido W. Imbens, 2020. "External Validity in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 593-612, July.
    9. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    10. Naisyin Wang, 2003. "Marginal nonparametric kernel regression accounting for within-subject correlation," Biometrika, Biometrika Trust, vol. 90(1), pages 43-52, March.
    11. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 159-208.
    12. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    13. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
    14. Bartalotti Otávio, 2019. "Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-26, January.
    15. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    16. David Brownstone & Robert Valletta, 2001. "The Bootstrap and Multiple Imputations: Harnessing Increased Computing Power for Improved Statistical Tests," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 129-141, Fall.
    17. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    18. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    19. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    20. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    21. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    22. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    23. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    24. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Roc ́ıo Titiunik, 2017. "rdrobust: Software for regression-discontinuity designs," Stata Journal, StataCorp LP, vol. 17(2), pages 372-404, June.
    25. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "Coverage Error Optimal Confidence Intervals for Local Polynomial Regression," Papers 1808.01398, arXiv.org, revised Jul 2021.
    26. Michal Kolesár & Christoph Rothe, 2018. "Inference in Regression Discontinuity Designs with a Discrete Running Variable," American Economic Review, American Economic Association, vol. 108(8), pages 2277-2304, August.
    27. Otávio Bartalotti & Quentin Brummet & Steven Dieterle, 2021. "A Correction for Regression Discontinuity Designs With Group-Specific Mismeasurement of the Running Variable," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 833-848, July.
    28. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    29. Lee, David S. & Card, David, 2008. "Regression discontinuity inference with specification error," Journal of Econometrics, Elsevier, vol. 142(2), pages 655-674, February.
    30. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    31. Kani Chen & Zhezhen Jin, 2005. "Local polynomial regression analysis of clustered data," Biometrika, Biometrika Trust, vol. 92(1), pages 59-74, March.
    32. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    33. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    34. Matias Cattaneo & Sebastian Calonico & Rocio Titiunik, 2015. "Robust Inference in Regression-Discontinuity Designs," 2015 Stata Conference 16, Stata Users Group.
    35. Otávio Bartalotti & Gray Calhoun & Yang He, 2017. "Bootstrap Confidence Intervals for Sharp Regression Discontinuity Designs," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 421-453, Emerald Group Publishing Limited.
    36. Otávio Bartalotti & Quentin Brummet, 2017. "Regression Discontinuity Designs with Clustered Data," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 383-420, Emerald Group Publishing Limited.
    37. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Sefa Awaworyi Churchill & Nasir Iqbal & Saima Nawaz & Siew Ling Yew, 2024. "Do unconditional cash transfers increase fertility? Lessons from a large‐scale program," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 74-96, January.
    3. Richard Bluhm & Maxim Pinkovskiy, 2021. "The spread of COVID-19 and the BCG vaccine: A natural experiment in reunified Germany," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 353-376.
    4. Chen, Yen-Chien & Fan, Elliott & Ho, Yu-Hsin & Lee, Matthew Yi-Hsiu & Liu, Jin-Tan, 2023. "How Does Gender Quota Shape Gender Attitudes?," IZA Discussion Papers 16331, Institute of Labor Economics (IZA).
    5. Ellegård, Lina Maria & Kjellsson, Gustav & Mattisson, Linn, 2021. "An App Call a Day Keeps the Patient Away? Substitution of Online and In-Person Doctor Consultations Among Young Adults," Working Papers in Economics 808, University of Gothenburg, Department of Economics, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    3. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    4. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    5. Bartalotti Otávio, 2019. "Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-26, January.
    6. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    7. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    8. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Jun Ma & Zhengfei Yu, 2020. "Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs," Papers 2008.09263, arXiv.org, revised May 2024.
    10. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    11. Dean Eckles & Nikolaos Ignatiadis & Stefan Wager & Han Wu, 2020. "Noise-Induced Randomization in Regression Discontinuity Designs," Papers 2004.09458, arXiv.org, revised Nov 2023.
    12. Onda, Masayuki & Seyler, Edward, 2020. "English learners reclassification and academic achievement: Evidence from Minnesota," Economics of Education Review, Elsevier, vol. 79(C).
    13. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    14. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    15. Xiao Huang & Zhaoguo Zhan, 2022. "Local Composite Quantile Regression for Regression Discontinuity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1863-1875, October.
    16. Yoichi Arai & Taisuke Otsu & Myung Hwan Seo, 2021. "Regression Discontinuity Design with Potentially Many Covariates," Papers 2109.08351, arXiv.org, revised Feb 2024.
    17. Yingying Dong & Michal Kolesár, 2023. "When can we ignore measurement error in the running variable?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 735-750, August.
    18. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    19. Mohamed Ebeid & Umut Oguzoglu, 2023. "Short‐term effect of retirement on health: Evidence from nonparametric fuzzy regression discontinuity design," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1323-1343, June.
    20. Naven, Matthew & Whalen, Daniel, 2022. "The signaling value of university rankings: Evidence from top 14 law schools," Economics of Education Review, Elsevier, vol. 89(C).

    More about this item

    Keywords

    Fuzzy regression discontinuity; robust confidence intervals; wild bootstrap; average treatment effect;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:23:y:2020:i:2:p:211-231.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.