Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch

Aojun Zhou*, Yukun Ma*, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, Hongsheng Li SenseTime Research, CUHK-Sensetime Joint Lab, CUHK, Northwestern University, NLPR of CASIA

* equal contributions

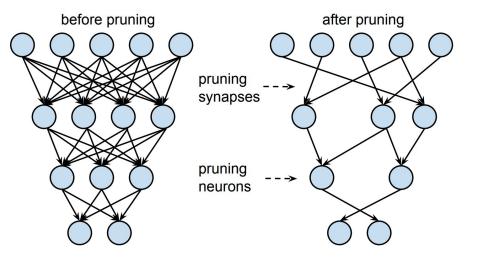
Background

Neural Networks have too many parameters!

Parameter counts of several recently released pretrained language models Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." *arXiv e-prints* (2019):

arXiv-1910.

Sparse Networks

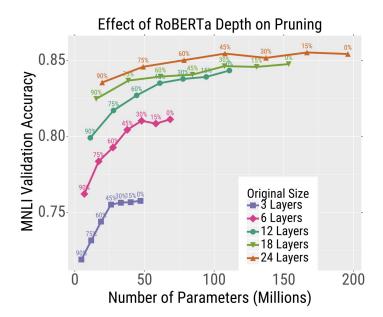


Synapses and neurons before and

after pruning. Han, Song, et al. "Learning both Weights and Connections for Efficient Neural Network." *NIPS*. 2015.

Better efficiency with comparable performance

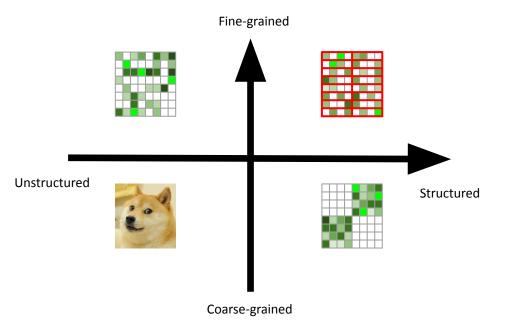
Better performance with the same # of parameters



RoBERTa's performance vs. number of parameters.

Li, Zhuohan, et al. "Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers." *International Conference on Machine Learning*. PMLR, 2020.

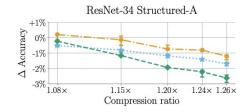
Sparsity Types



3 types of sparse networks with compression ratio 2 (half the parameters are zero)

Structured and Coarse-grained

low accuracy (the picture below) high speedup



The accuracy drops significantly as the compression ratio increases. Renda, Alex, Jonathan, Frankle, and Michael, Carbin. "Comparing Rewinding and Fine-tuning in Neural Network Pruning." . In International Conference on Learning Representations.2020.

Unstructured and Fine-grained

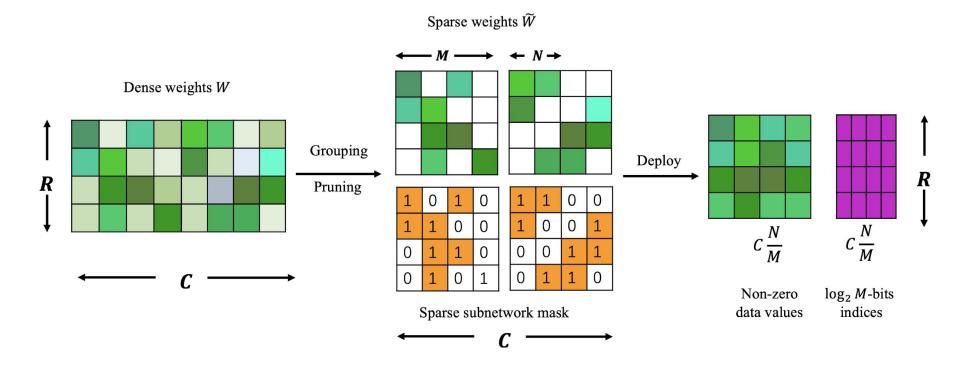
high accuracy

Iow speedup (Ma, Xiaolong, et al, "Non-Structured DNN Weight Pruning – Is It Beneficial in Any Platform?,"" IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020.)

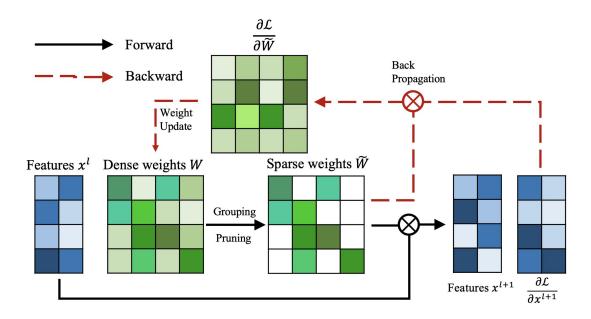
Structured and Fine-grained high accuracy and high speedup!

N:M Fine-grained Structured Sparse Network

Supported by NVIDIA Ampere GPU



Training an N:M Sparse Network From Scratch



Straight-Through Estimator forward as sparse network, backward as dense network Simple idea, but with poor performance 76.2 vs 77.3 STE dense

For pruned weights: zero in forward, non-zero in backward more roughly approximated gradients

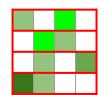
For unpruned weights: non-zero both in forward and backward **more accurate** gradients

Q1: How about lowering the impact of the inaccurate gradients when updating the network?

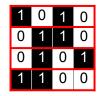
Proposed Methods

Sparse Architecture Divergence (SAD)

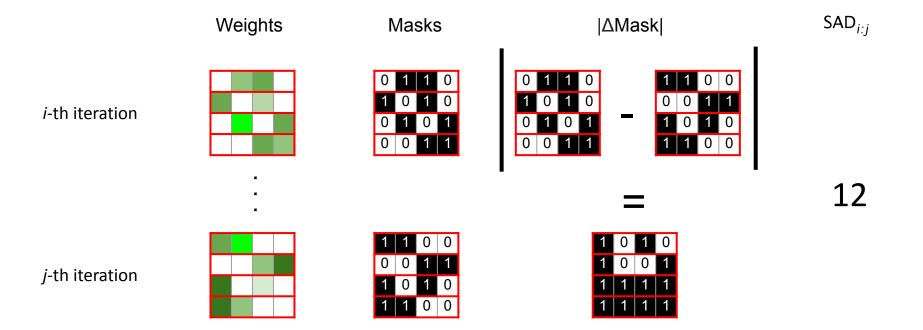
0-th iteration



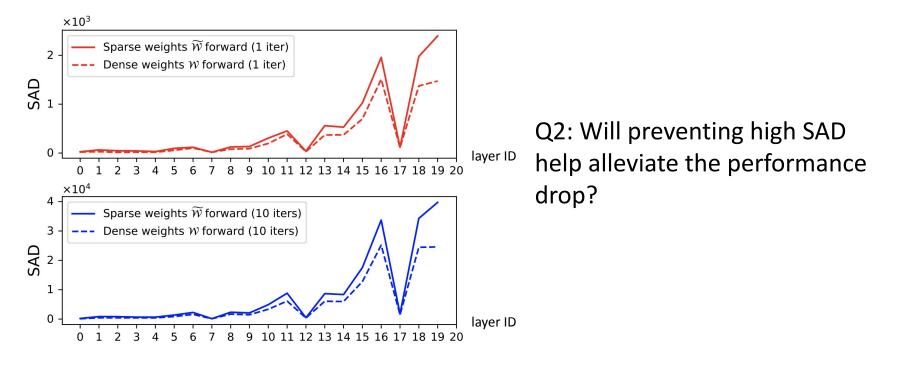
Masks



Sparse Architecture Divergence (SAD)



Further Investigations into STE



 $SAD_{0:i}$ for densely trained and STE-trained networks

Sparse-Refined Straight-Through Estimator (SR-STE)

SR-STE updating rule:

$$W_{t+1} = W_t - \gamma_t \left(g \left(\widetilde{W}_t \right) + \lambda_W \varepsilon_t \odot W_t \right)$$

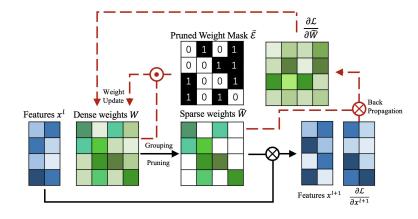
sparse-refined term

STE updating rule:

$$W_{t+1} = W_t - \gamma_t g\left(\tilde{W}_t\right)$$

 W_t : weights after t – th iteration \widetilde{W}_t : weights of the pruned version λ_w : weight of the sparse – refined term γ_t : step size ε_t : 0 – 1 pruning mask g: gradients 1. To reduce SGD step size for pruned parameters since their gradients are more roughly approximated

2. To prevent ineffective sparse architecture change



Experimental Results

Model	Method	Sparse Pattern	Top-1 Acc(%)	Params(M)	Flops(G)
ResNet50	-	Dense	77.3	25.6	4.09
ResNet50 ResNet50	SR-STE SR-STE	2:4 4:8	77.0 77.4	12.8 12.8	2.05 2.05
ResNet50 ResNet50	SR-STE SR-STE	1:4 2:8	75.9 76.4	6.4 6.4	1.02 1.02
ResNet50 x1.25	SR-STE	2:8	77.5	9.9	1.6

Table 1. ILSVRC validation accuracy with different sparse patterns

Experimental Results (Cont'd)

Model	Method	Sparse Pattern	Top-1 Acc	Epochs
ResNet18	ASP (Nvidia, 2020)	2:4	70.7	200
ResNet18	STE	2:4	69.9	120
ResNet18	SR-STE	2:4	71.2	120
ResNet50	ASP(Nvidia, 2020)	2:4	76.8	200
ResNet50	STE	2:4	76.4	120
ResNet50	SR-STE	2:4	77.0	120

Table 2. ILSVRC validation accuracy of 2:4 sparse models trainde with different methods.

Experimental Results (Cont'd)

Method	Top-1 Acc(%)	Sparsity(%)	Params(M)	Flops(G)	Structured	Uniform
ResNet50	77.3	0.0	25.6	4.09	-	-
DSR*	71.6	80	5.12	0.82	×	×
RigL	74.6	80	5.12	0.92	×	1
GMP	75.6	80	5.12	0.82	×	1
STR	76.1	81	5.22	0.71	×	×
STE	76.2	80	5.12	0.82	×	1
SR-STE	77.0	80	5.12	0.82	×	1
SR-STE	76.4	75(2:8)	6.40	1.02	1	1
RigL	67.5	95	1.28	0.32	×	1
GMP	70.6	95	1.28	0.20	×	1
STR	70.2	95	1.24	0.16	×	×
STE	68.4	95	1.28	0.20	×	1
SR-STE	72.4	95	1.28	0.20	×	1
SR-STE	72.2	94(1:16)	1.60	0.25	1	1

Table 3. ILSVRC validation accuracy of state-of-the-art sparse model training methods.

Thank you!

Please follow our work @

code: https://github.com/NM-sparsity/NM-sparsity

paper: https://openreview.net/pdf?id=K9bw7vqp_s

