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Background



Neural Networks have too many parameters!
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Parameter counts of several recently released pretrained language models
Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv e-prints (2019):
arXiv-1910.



Sparse Networks
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S pa rs Ity Types Structured and Coarse-grained

low accuracy (the picture below)
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The accuracy drops significantly as the compression

ratio increases. Renda, Alex, Jonathan, Frankle, and Michael,
Carbin. "Comparing Rewinding and Fine-tuning in Neural Network
Pruning." . In International Conference on Learning
Representations.2020.
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Pruning — Is It Beneficial in Any Platform?,"" IEEE Transactions on
Neural Networks and Learning Systems (TNNLS), 2020.)

Structured and Fine-grained
Coarse-grained and I

3 types of sparse networks with compression ratio 2 (half the
parameters are zero)



N:M Fine-grained Structured Sparse Network

Supported by NVIDIA Ampere GPU
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Training an N:M Sparse Network From Scratch
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Straight-Through Estimator
forward as sparse network, backward as dense network
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Simple idea, but with poor performance
76.2vs 77.3

STE dense

For pruned weights:
zero in forward, non-zero in backward
more roughly approximated gradients

For unpruned weights:
non-zero both in forward and backward
more accurate gradients

Q1: How about lowering the impact of
the inaccurate gradients when updating
the network?



Proposed Methods



Sparse Architecture Divergence (SAD)
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Sparse Architecture Divergence (SAD)
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Further Investigations into STE
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SAD,.; for densely trained and STE-trained networks

Q2: Will preventing high SAD
help alleviate the performance
drop?



Sparse-Refined Straight-Through Estimator (SR-STE)

1. To reduce SGD step size for pruned
parameters since their gradients are

SR-STE updating rule: more roughly approximated

W, =W - }/t( g( Wt) +4,€,0 Wt) 2. To prevent ineffective sparse
architecture change

sparse-refined term

STE updating rule: - T o
Wt+ 1=Wt_ }/zg( Wt)
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Experimental Results

Model Method Sparse Pattern ~ Top-1 Acc(%) Params(M) Flops(G)
ResNet50 - Dense 717.3 25.6 4.09
ResNet50 SR-STE 2:4 77.0 12.8 2.05
ResNet50 SR-STE 4:8 77.4 12.8 2.05
ResNet50 SR-STE 1:4 75.9 6.4 1.02
ResNet50 SR-STE 2:8 76.4 6.4 1.02
ResNet50 x1.25 SR-STE 2:8 71.5 9.9 1.6

Table 1. ILSVRC validation accuracy with different sparse patterns



Experimental Results (Cont’d)

Model Method Sparse Pattern ~ Top-1 Acc  Epochs
ResNetl8  ASP (Nvidia, 2020) 2:4 70.7 200
ResNet18 STE 2:4 69.9 120
ResNet18 SR-STE 2:4 71.2 120
ResNet50  ASP(Nvidia, 2020) 2:4 76.8 200
ResNet50 STE 2:4 76.4 120
ResNet50 SR-STE 2:4 77.0 120

Table 2. ILSVRC validation accuracy of 2:4 sparse models trainde with different methods.



Experimental Results (Cont’d)

Method Top-1 Acc(%) Sparsity(%) Params(M) Flops(G) Structured  Uniform

ResNet50 71.3 0.0 25.6 4.09 - -
DSR* 71.6 80 5.12 0.82 X X
RigL 74.6 80 5.12 0.92 X v
GMP 75.6 80 5.12 0.82 X v
STR 76.1 81 5.22 0.71 X X
STE 76.2 80 5.12 0.82 X v
SR-STE 77.0 80 5.12 0.82 X 4
SR-STE 76.4 75(2:8) 6.40 1.02 v v
RigL 67.5 95 1.28 0.32 X v
GMP 70.6 95 1.28 0.20 X 4
STR 70.2 95 1.24 0.16 X X
STE 68.4 95 1.28 0.20 X v
SR-STE 724 95 1.28 0.20 X v
SR-STE 72.2 94(1:16) 1.60 0.25 4 v

Table 3. ILSVRC validation accuracy of state-of-the-art sparse model training methods.



Thank you!

Please follow our work @

code: https://github.com/NM-sparsity/NM-sparsity

paper: https://openreview.net/pdf?id=K9bw7vgp s
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