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Video Synthesis: Background

* Video synthesis: Create unseen video clips from random noises

Random noise




Video Synthesis: Difticulties

* Lack of training data.
* Large Models, hard to train.
* High cost for data collection /

training.
StyleGAN2!": 1024 TGANv2(: 256 resolution
resolution
[1] Analyzing and Improving the Image Quality of StyleGAN, CVPR 2020 3

[2] Train Sparsely, Generate Densely: Memory-efficient Unsupervised Training of High-resolution Temporal GAN, IJCV 2020



Methods: Intuition

Reuse pre-trained image generator Gy in video synthesize training.

Given image G represent a video with a trajectory of random noises.
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Methods: Framework

Motion generator (find trajectory) + Image generator (pre-trained, fixed) + 2D
discriminator (content consistency) + 3D discriminator (motion)
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Methods: Motion Generator

* Motion generator: find the trajectory in the latent space of image generator
* LSTM encoder + LSTM decoder

* Estimate residual of previous frame = content/motion disentanglement
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Motion Generator: Improve Diversity

e Mutual information loss: Maximize mutual info between e and h

* e ~ Gaussian: motion randomness
* h:output of LSTM decoder
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Methods: Image Generator

* Train image generator with video frames: in-domain video synthesis

* Use off-the-shelf image generator: cross-domain video synthesis

* Cross-domain video synthesis:
content from image dataset, motion
from video dataset.

* Save lots of costs in data collection:
synthesis dog videos with dog images
& human videos.




Methods: Contrastive 2D Discriminator
Real video Fake video

In-domain
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Framework: Properties

High-resolution video synthesis

Motion/content disentanglement

Cross-domain video synthesis
Long sequence generation

Low computation cost

10



Properties: High-resolution

Pre-trained image generator: 1024xX1024
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Properties: Motion/content Disentanglement

Residual design in motion generator
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Properties: Cross-domain Video Synthesis

512 resolution, human face videos as training data
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Properties: Cross-domain Video Synthesis

256 resolution, time-lapse videos as training data
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Properties: Long Sequence Generation

(AFHQ, Vox): Interpolation

FaceForensics: LSTM unrolling




Properties: Low Computation Cost

* Pre-trained image generator:
o Small batch-size for video training (as low as 8)

o Fixed image generator: No gradient in video synthesis training

* Qur models are trained with GPU (DVDGANU: TPU only)
o Save computation cost by 15 ~ 40X

[1] Adversarial Video Generation on Complex Datasets, DeepMind 2019
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Experiments: In-Domain (UCF-101)

Method IS (1) FVD ()
VGAN 8.31 .09 -
TGAN 11.85 4+ .07 -
MoCoGAN 12.42 + .07 -
Progressive VGAN | 14.56 £+ .05 -
TGANV2 26.60 + .47 1209 + 28
DVD-GAN 27.38 £.53 -
Ours 3395 +.25 700 + 24
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Experiments: In-Domain (FaceForensics)

Method | FVD (]) ACD ()

GT | 9.02 0.2935
TGANv2 | 58.03 0.4914
Ours 53.26 0.3300

[1] ACD from: MoCoGAN: Decomposing Motion and Content for Video Generation, CVPR 2018
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Experiments: In-Domain (Sky Time-lapse)

Method | FVD({) PSNR (1) SSIM (1)
Up-B | - 25.367 0.781

MDGAN | 840.95 13.840 0.581
DTVNet | 451.14 21.953 0.531
Ours 71.77 22.286 0.688
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Ablation: Mutual Info Loss

w/o mutual info loss

w/ mutual info loss
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Ablation: Contrastive Loss

w/o contrastive discriminator w/ contrastive discriminator



Summary

Good image generator benetfits video generation
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LSTM motion generator + residual design
Pre-trained & fixed image generator
Contrastive 2D discriminator

Mutual information loss

Code will be released at: https://github.com/snap-research/MoCoGAN-HD
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Thanks!
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