
DMG-06-4216-001-B
Released 12/03/1999

PROGRAMMING MANUAL
Version 1.1

“Confidential”

This document contains confidential and proprietary information of
Nintendo and is also protected under the copyright laws of the United
States and foreign countries. No part of this document may be released,
distributed, transmitted or reproduced in any form or by any electronic
or mechanical means, including information storage and retrieval
systems, without permission in writing from Nintendo.

 1999, 2000 Nintendo of America Inc.

TM and  are trademarks of Nintendo

Introduction

3

INTRODUCTION

This manual is a combination and reorganization of the information presented in the Game Boy Development
Manual, revision G, and the Game Boy Color User's Guide, version 1.3. In addition, it incorporates all information
related to Game Boy programming, including programming for Super Game Boy and the Game Boy Pocket
Printer.

The abbreviations used in this manual represent the following:

DMG: Game Boy (monochrome), introduced on April 21, 1989
MGB: Game Boy Pocket (monochrome), introduced on July 21, 1996
MGL: Game Boy Light (monochrome), introduced on April 14, 1998
CGB: Game Boy Color (color), introduced on October 21, 1998

Note: Where it is not necessary to distinguish between the different monochrome
models, DMG is used to refer to both monochrome models, and CGB is used to
denote the Color Game Boy. Only where it is necessary to distinguish between
the monochrome models is MGB used to denote Game Boy and MGL used to
denote Game Boy Light.

SGB: Super Game Boy, introduced on June 14, 1994
SGB2: Super Game Boy 2, introduced on January 30, 1998

Note: SGB is used to denote both SGB and SGB2 when no distinction is necessary.
SGB2 is used only in cases where distinction is necessary.

Game Boy Programming Manual

4

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Preface: To Publishers

5

PREFACE: TO PUBLISHERS

NINTENDO GAME BOY COLOR SOFTWARE PRE-APPROVAL
REQUIREMENTS

Prior to submitting your CGB software to Lot Check for approval, it is required that you submit it to the Licensee
Product Support Group for pre-approval. To assist us with the evaluation of your CGB software and/or product
proposal(s), please refer to the following requirements when submitting materials* for approval.

* Please do not send original artwork or materials, as they will not be returned.

CGB software and/or product proposals are evaluated based on the following criteria:

• Use of Color
To ensure that the expectations of the Game Boy Color consumer are met, Mario Club will evaluate the use
of color in all CGB games (dual or dedicated) using the following criteria:

◊ Differentiation - If a game is to be considered CGB-compatible, then it must appear significantly more
colorful than a monochrome Game Boy game when “colorized” by the CGB hardware. The principal
measure of this is the number of colors in the background (BG) and the number of colors in the objects
(OBJ).

◊ Simultaneous Colors - Because CGB hardware automatically “colorizes” monochrome games with up
to four colors in the BG palette and up to six colors for two OBJ palettes (three colors per palette), a
game typically must display more colors than this automatic “colorization” to be considered a CGB
game.

◊ Appropriate use of Color - Objects in the game that are based on reality (trees, rocks, animals, and
so on) should be a color that we would normally associate with them. For fictional objects, colors
should be chosen to show appropriate detail and, when needed, to differentiate unlike objects.

◊ Variety of Colors - The CGB is capable of producing a wide range of colors (32,768 to be exact --
albeit not all at the same time). A CGB game should use this capability of the hardware to yield
distinctly different colors for objects, characters, areas, and so on.

◊ Contrast & Saturation - Two of the elements that make a game look colorful are high contrast and
“saturated” or vibrant colors. Pastel colors on a white background will not seem nearly as colorful as
the same colors on a dark background. Not every game can use a dark background, but the intensity
of the colors should still be maximized as much as possible.

Please detail or demonstrate how your game will utilize color capabilities of the CGB. Use whatever means
will best allow you to do so, such as artists renderings, programmed demos, ROM images, written
descriptions, and so on.

Game Boy Programming Manual

6

• Game Concept Content
We do not require an explanation of, or evaluate game concept content for original CGB titles. However, if
you are planning to “colorize” a previously released monochrome game we require that it include game-play
enhancements (beyond simply adding color) to differentiate it from its monochrome counterpart. Such
game-play enhancements may include, but are not limited to: additional stages, levels, or areas; new
characters; additional items; game-play based on color; and so on. These enhancements must be readily
apparent to players familiar with the original monochrome game.

Please submit a written proposal of the enhancements to us for pre-approval. Use whatever additional
means that will best allow you to communicate the game-play enhancements, such as storyboards,
treatments, videotapes, programmed demos, and so on.

• Interim ROM Submissions
We require at least one interim ROM submission to Mario Club (at approximately 50% completion) for
preliminary review of the use of color in every CGB game. By reviewing the interim ROM and providing you
with feedback in the early stages, we also help ensure that your projects stay on schedule. Final pre-
approval is based on Mario Club’s evaluation of a ROM near completion of game development.

If you wish to arrange electronic transfer of the ROM image, please contact Terral Dunn in our Testing
and Engineering department at (425) 861-2670 or by e-mail at “Terraldu@noa.nintendo.com”. Please notify
him when you have made an electronic submission for our review.

• Proposed Developer
Please supply us with the name, address and phone number of the proposed developer. If the developer is
not an Authorized Nintendo CGB Developer, please contact Melody Morgan at “melomo01@noa.nintendo.com” or
425-861-2618, and she will provide you with the application information.

• Schedule Information
Please provide us with an estimated product schedule, including interim ROM submission(s), final Mario
Club submission, submission of the master ROM to Lot Check, and the release date.

• Game Pak Configuration & Game Type
Please provide us with the estimated Game Pak size in Megabits (Mb) and the RAM size if internal memory
is to be used to save game information. Also state whether the game will be compatible with the
monochrome Game Boy hardware or if it is dedicated to CGB hardware. For the current Game Pak prices
and configurations available, please contact Nintendo’s Licensing Department.

You will be contacted with the evaluation results when the Licensee Product Support Group has completed its
evaluation of your ROM or concept submission.

Table of Contents

7

Table of Contents
Page Number

Introduction .. 3
Preface: To Publishers... 5
Chapter 1 System... 9
Chapter 2 Display Functions ... 47
Chapter 3 Sound Functions... 77
Chapter 4 CPU Instruction Set .. 93
Chapter 5 Miscellaneous General Information............................... 125
Chapter 6 The Super Game Boy System .. 137
Chapter 7 Super Game Boy Sound ... 187
Chapter 8 Game Boy Memory Controllers(MBC) 215
Chapter 9 Pocket Printer.. 235
Appendix 1 Programming Cautions.. 253
Appendix 2 Register and Instruction Set Summaries.................... 267
Appendix 3 Software Submission Requirements 285

Game Boy Programming Manual

8

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 1: System

9

CHAPTER 1: SYSTEM ..11

Revision History…………………………………………………………….10
1. GENERAL SYSTEM .. 11

1.1 System Overview ... 11
1.2 Game Boy Block Diagram ...13
1.3 Memory Configuration...14
1.4 Memory Map...15
1.5 Feature Comparison ..16
1.6 Register Comparison...17

2. CPU..18
2.1 Overview of CPU Features ..18
2.2 CPU Block Diagram ...20
2.3 Description of CPU Functions ..22
2.4 CPU Functions (Common to DMG/CGB➀➀➀➀) ...24
2.5 CPU Functions (Common to DMG/CBG➁➁➁➁) ...28
2.6 CPU Functions (CGB only)..34

Game Boy Programming Manual

10

Revision History
Date Section Description

12/3/99 2.6.3 Revision of description for Infrared Communication

Chapter 1: System

11

CHAPTER 1: SYSTEM
1. GENERAL SYSTEM INFORMATION

1.1 System Overview

Structure
At the heart of the DMG/CGB system is a CPU with a built-in LCD controller designed for
DMG/CGB use.

System

Features common to DMG/CGB
! 32-pin connector (for ROM cartridge connection)

! 6-pin subconnector (for external serial communication)

! DC-DC converter for power source

! Sound amp

! Keys for operation

! Speaker

! Stereo headphone connector

! Input connector for external power source

Types of Game Pak Supported
1 Game Boy Game Pak

(Software that uses only the Game Boy functions. When used with Game Boy Color, 4-
10 colors are displayed.)

2 Game Boy Color Game Pak

! Game Pak supported by CGB (for use with both CGB and DMG)
! Game Pak for CGB only (software that runs only on CGB)

[DMG]
! Dot-matrix LCD unit capable of

grayscale display
! 64 Kbit – SRAM (for LCD display)
! 64 Kbit – SRAM (working memory)

[CGB]
! Color dot-matrix LCD unit capable of

RGB with 32 grayscale shades
! 128 Kbit – SRAM (for LCD display)
! 256 Kbit – SRAM (working memory)
! Infrared communication link (photo

transistor, photo LED)

Game Boy Programming Manual

12

Operating Modes (the following modes apply only to CGB)
1 DMG Mode (when using software for DMG)

The new registers, expanded memory area, and new features for CGB are not used.
Color applications previously associated with palette data BGP, OBP0, and OBP1 are
performed by the system.

2 CGB Mode (when using software supported or used exclusively by CGB)
 The new registers, expanded memory area, and new features of CGB are available.

Note: To operate in CGB mode, specific code must first be placed in the ROM
data area of the user program. For more information, see Chapter 5,
Section 2, Recognition Data for CGB(CGB only) in ROM-Registered Data.

Power Source
! Battery/AC adapter/Battery charger

Accessories (as of April 1999)
DMG Accessories

! Communication Cable

! Battery Charger Adapter

MGB/CGB Accessories

! Communication Cable

! AC Adapter

! Battery Pack Charger Set

The 6-pin serial communication subconnector and the AC adapter input connector of the
DMG hardware that preceded MGB are shaped differently than those of MGB and CGB.
Thus, two types of accessories are available — those exclusively for DMG and those
exclusively for MGB/CGB. In addition, a conversion connector is necessary for
communication between DMG and MGB/CGB.

Chapter 1: System

13

1.2 GAME Boy Block Diagram

LCD Panel

LCD Driver

8-bit
Microprocessor

Display RAM
DMG: 64 Kbit
CGB: 128 Kbit

Amp
Speaker

6-pin
Subconnector

Work RAM
DMG: 64 Kbit
CGB: 256 Kbit

Operating
Keys

Infrared
Communication

(CGB only)

Headphone
Terminal Volume

Battery External Power Source
Terminal

Power Switch

DC-DC
Converter

Mask ROM
Program

SRAM
(Backup)

Game Boy
Hardware Unit

Game Pak

Power to
System

Game Boy Programming Manual

14

1.3 Memory Configuration

In DMG and CGB, the 32 KB from 0h to 7FFFh is available as program area.

000h-0FFh: Allocated as the destination address for RST instructions and the starting address for
interrupts.

100h-14Fh: Allocated as the ROM area for storing data such as the name of the game.
150h: Allocated as the starting address of the user program.

The 8 KB from 8000h to 9FFFh is used as RAM for the LCD display. In CGB, the amount of RAM
allocated for this purpose is 16 KB (8 KB x 2), twice the amount allocated for the LCD display in DMG,
and this RAM can be used in 8 KB units using bank switching. The 8 KB RAM areas are divided into
the following 2 areas.

1 An area for character data
2 An area for BG (background) display data (Character code and attribute)

The 8 KB from A000h to BFFFh is the area allocated for external expansion RAM.
The 8 KB from C000h to DFFFh is the work RAM area.
In DMG, the 8 KB of working RAM is implemented without change. In CGB, bank switching is used to
provide 32 KB of working RAM. This 32 KB area is divided into 8 areas of 4 KB each.

1 The 4 KB from C000h to CFFFh is fixed as Bank 0.
2 The 4 KB from D000h to DFFFh can be switched between banks 1 though 7.

Note: Use of the area from E000h to FDFFh is prohibited.

FE00h to FFFFh is allocated for CPU internal RAM.

FE00h-FE9Fh: OAM-RAM (Holds display data for 40 objects)
FF00h-FF7Fh & FFFFh: Specified for purposes such as instruction registers and system

controller flags.
FF80h-FFFEh: Can be used as CPU work RAM and/or stack RAM.

Chapter 1: System

15

1.4 Memory Map

 Note: In DMG, there is no bank switching at 8000h-9FFFh and C000h-DFFFh.

Interrupt Address
RST Address

ROM Data
Area

User Program Area
32 KB

Bank 0
Character Data

Bank 1
Character Data

(CGB only)

BG Display Data 1 (CGB only)
Character Codes Attributes

BG Display Data 2 (CGB only)
Character Codes Attributes

External Expansion
Working RAM

8 KB

OAM (40 OBJs)
(40 x 32 bits)

Unit Working RAM
8 KB

Port/Mode Registers
Control Register
Sound Register

Working & Stack RAM
127 bytes

000h

100h

150h

8000h

9800h

9C00h

A000h

C000h

E000h

FE00h

FF00h

FFFEh
FFFFh

Bank 0 (Fixed)

Banks 1-7 (Switchable)
D000h

Lower Dot Data
Upper Dot Data

 8000h
8001h

Use of area 0xE000 - 0xFDFF prohibited

Program Start Address

FF80h

FEA0h
FE00h

(OBJ 0)

FE9Fh
(OBJ 39)

Character Code

Character Code

Y0

X0

Y39

X39

Palette (DMG)
Left/Right

Up/Down
Priority

Color Palette (CGB)
Character Bank (CGB)

7 6 5 4 3 2 1 0

 (DMG)

(CGB Only)

Game Boy Programming Manual

16

1.5 Feature Comparison

Item DMG CPU CGB CPU
CPU Speed
(system operating frequency)

1.05 MHz 1.05 MHz (normal mode)
2.10 MHz (double-speed mode)

Game Boy RAM
Work and Stack RAM
 Work RAM
 OAM
 For LCD display

127 x 8 bits
8,192 bytes
40 x 28 bits
8,192 bytes

←←←←
32,768 bytes
40 x 32 bits
16,384 bytes

Game Pak Memory Space
 ROM (without MBC)
 RAM (without MBC)

32,768 bytes
8,192 bytes

←←←←
←←←←

LCD Controller
 Display Capacity
 Block Structure
 BG, window
 Object
 Number of Usable Characters
 BG
 OBJ 8 x 8
 8 x 16
 Grayscale: BG, window

 Grayscale: Object

 Object priority
 Different x coordinates

 Same x coordinates

160 x 144 dots

8 x 8 dots
8 x 8 dots or 8 x 16 dots

256
256
128
4 shades, 1 palette

3 shades, 2 palettes

Object with smallest x coord .

Object with lowest OBJ number

160 x 144 x RGB dots

←←←←
←←←←

512
512
256
4 colors, 8 palettes
(DMG mode: 4 colors, 1 palette)
3 colors, 8 palettes
(DMG mode: 3 colors, 2 palettes)

Object with lowest OBJ number
(DMG mode: Object with lowest x
coord.)
←←←←

Timer & Divider Stages 8-bit timer x 1
16 stages x 1

←←←←
←←←←

Serial Input/Output
 Baud Rate

8 bits x 1
8 K

←←←←
8K/256K (16K/512K in high-speed mode

DMA Controller
 Existing DMA
 Horizontal blank DMA
 General-purpose DMA

8000h~DFFFh→OAM

0h~DFFFh→OAM
Game Pak & Work RAM→VRAM
Game Pak & Work RAM→VRAM

Interrupt features
 Internal Interrupts
 External Interrupts

4 types (maskable)
1 type (maskable)

←←←←
←←←←

Input/Output Ports
 Serial Input/Output Ports
 Infrared Communication Port

SIN, SCK, SOUT

←←←←
R0, R1, R2, R3

Sound Output Circuit 4 sounds ←←←←
Monaural (VIN) External Sound
Mixable Input

←←←←: Same as in column at left

Chapter 1: System

17

1.6 Register Comparison

DMG CPU CGB CPU
Use Register Address Register Address
Port/Mode
Registers

P1
SB
SC
DIV
TIMA
TMA
TAC

FF00
FF01
FF02
FF04
FF05
FF06
FF07

 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
KEY1
RP

 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
FF4D
FF56

Bank Control
Registers

VBK
SVBK

FF4F
FF70

Interrupt
Flags

IF
IE
IME

FF0F
FFFF

 ←←←←
 ←←←←
 ←←←←

 ←←←←
 ←←←←

LCD Display
Registers

LCDC
STAT
SCY
SCX
LY
LYC
DMA
BGP
OBP0
OBP1
WY
WX

OAM

FF40
FF41
FF42
FF43
FF44
FF45
FF46
FF47
FF48
FF49
FF4A
FF4B

FE00~FE9F

 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
HDMA1
HDMA2
HDMA3
HDMA4
HDMA5
BCPS
BCPD
OCPS
OCPD

 ←←←←

 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
 ←←←←
FF51
FF52
FF53
FF54
FF55
FF68
FF69
FF6A
FF6B

 ←←←←
Sound Registers NR x x

Waveform RAM
FF10~FF26
FF30~FF3F

 ←←←←
 ←←←←

 ←←←←
 ←←←←

←←←←: Same as in column at left

Game Boy Programming Manual

18

2. CPU

2.1 Overview of CPU Features
The CPUs of DMG and CGB are ICs customized for DMG/CGB use, and have the following features.

CPU Features
Central to the 8-bit CPU are the following features, including an I/O port and timer.

! 127 x 8 bits of built-in RAM (working and stack)

! RAM for LCD Display: <DMG> 8 KB/<CGB>16 KB ()

! Working RAM: <DMG> 8KB/<CGB> 32 KB

! Built-in 16-stage Frequency Divider

! Built-in 8-bit Timer

! 4 types of Internal Interrupts (maskable)

! 1 type of External Interrupt (maskable)

! Built-in DMA Controller

! Input Ports P10 ~ P13

! Output Ports P14 and P15

! Serial I/O Ports SIN, SCK, SOUT

! Infrared I/O Port <CGB only>

LCD Controller Functions
Game Boy is equipped with functions that provide control of the images displayed
on the LCD. Character data used for display is held in system RAM.

! DMG: 4 shades of gray; CGB: 32 shades of gray for each RGB color

! 160 x 144-dot liquid crystal display

! 8 x 8-dot composition of background and window characters

! 8 x 8 or 8 x 16-dot composition of OBJ characters

! Up to 40 objects displayable in 1 screen

! Up to 10 objects displayable on 1 horizontal line

! 40 x 32 bits of built-in RAM (OBJ-RAM for LCD)

! Control of 256 x 256-dot background

! Vertically and horizontally scrollable background

! Window-like functions

Chapter 1: System

19

Sound Functions
Each system is equipped with 4 types of sound synthesis circuitry.

! Sound 1: Quadrangular waveform, sweep and envelope functions

! Sound 2: Quadrangular waveform, envelope functions

! Sound 3: Arbitrary waveform, generated

! Sound 4: White noise, generated

! 2 output channels (output can be allocated to a channel)

! Synthesized output with external sound input <CGB only>

Miscellaneous
! An internal monitor program is built into DMG/CGB CPUs. When power is

turned on or the Game Boy is reset, the internal monitor program first
initializes components such as the ports, then passes control to the user
program.

! Instruction cycles
<DMG> 0.954 µs (source oscillation: 4.1943 MHz)
<CGB> 0.954 µs/0.477 µs, switchable (source oscillation: 8.3886 MHz)

Game Boy Programming Manual

20

2.2 CPU Block Diagram

Game Boy (DMG/MGB) CPU

SOUT

S
FR
CPL
ST
CP
CPG
LD0
LD1

VIN

A15
A14

P10
P11
P12
P13

P14
P15

/RD
/WR
/CS

Timing
Control Data Buffer

DMA
 Controller

CPU Core

@ @ @ @ @ @ @ @ @
@ @

ROM

RAM
127 bytes

Port
P1

Divider
DIV

Timer
TIMA TMA TAC

Sound 1
NR10-NR14

Sound 2
NR20-NR23

Sound 3
NR30-NR33

Sound 4
NR40-NR42

Waveform
RAM
32 x 4

Sound
Control

NR50-NR52

OAM RAM
40 x 28 bit

LCD Display RAM Interface

SIO

SB
SC

CG

PC

H

D

B

A

SP

F

L

E

C

LCD
Drive
Signal
Buffer

LCD Controller

LCDC STAT SCY SCX LY LYC WX WY
OBP0 OBP1 BGP

Address
Buffer

A0

A1
.
.
.
.
.
.
.
.
.

/RESET D0~D7 VDD GND TEST1,2

SO1

SO2

MD0~MD7 /MCS /MWR /MRD

SIN

SCK

CK1

CK2

Ø

....

Interrupt Controller

Sy
nt

he
si

ze
r

C
irc

ui
t

MA0~MA12

Chapter 1: System

21

Game Boy Color CPU

MA0-MA12

RA0,RA1

SO

VIN

/MRD
/MWR
/CS1

/RD/WR/CS MD0-MD7 D0-D7 P00-P03 P10-P13

SO1
SO2

MD8-MD15 TEST0-TEST2 /MCS0,/MCS1

SI

SCK

CK1

CK2

PHI

VDD3
VDD5

GND

R0-R4

PSMO1 PSMO0

M1

/RESET

DCK
SPL
LP
PS
SPS
CLS
MOD
REVC

/NMI

LDR0-LDR5
LDG0-LDG5
LDB0-LDB5

A0-A15
CPU Core

ROM
2 Kbytes

RAM
127 bytes

Divider
DIV

Timer
TIMA TMA TAC

Sound
Control

NR50-NR52

OAM RAM
40x28 bit

LCD Display RAM Interface

C. G

PC

H

D

B

A

SP

F

L

E

C

Ad
dr

es
s

Bu
ffe

r

....

Palette RAM

SIO LCD Controller
(DMA Controller)

Keyport

LC
D

 D
riv

e
Si

gn
al

 B
uf

fe
r

Interrupt
Controller

Sy
nt

he
si

ze
r C

irc
ui

t

Sound 1
NR10-NR14

Sound 2
NR20-NR23

Sound 3
NR30-NR33

Sound 4
NR40-NR42

Data BufferTiming
Control

Waveform

32x4
RAM

Infrared
Comm Port/

General
Purpose

Port

Game Boy Programming Manual

22

2.3 Description of CPU Functions

Interrupts
There are five types of interrupts available, including 4 types of maskable internal interrupts
and 1 type of maskable external interrupt. The IE flag is used to control interrupts. The IF
flag indicates which type of interrupt is set.

! LCD Display Vertical Blanking

! Status Interrupts from LCDC (4 modes)

! Timer Overflow Interrupt

! Serial Transfer Completion Interrupt

! End of Input Signal for ports P10-P13

DMA Transfers
DMA transfers are controlled by the DMA registers.

<DMG>
DMG allows 40 x 32-bit DMA transfers from 8000h-DFFFh to OAM (FE00h-FE9Fh).
The transfer start address can be specified in increments of 100h for 8000h-DFFFh.
<CGB>
In addition to the DMA transfers method for DMG (from 0000h-DFFFh in CGB), CGB
enables two new types of DMA transfer — horizontal blanking and general-purpose DMA
transfers.

Note, however, that when performing a DMG-type DMA transfer on CGB, some
consideration must be given to specifying the destination RAM area.
For more information, see the DMA Functions section in Chapter 2.

1 Horizontal Blanking DMA Transfer
Sixteen bytes of data are automatically transferred for each horizontal blanking period
during a DMA transfer from the user program area (0000h-7FFFh) or external and
hardware working RAM area (A000h-DFFFh) to the LCD display RAM area
(8000h-9FFFh).

2 General-Purpose DMA Transfer
Between 16 and 2048 bytes of data (specified in 16-byte increments) are transferred
from the user program area (0000h-7FFFh) or external and hardware working RAM
area (A000h-DFFFh) to the LCD display RAM area (8000h-9FFFh), during the
Vertical Blanking Period.

Timer
The timer is composed of the following:

! TIMA (timer counter)

! TMA (timer modulo register)

! TAC (timer control register)

Controller Connections
! P10-P13: Input ports

! P14-P15: The key matrix structure is composed of the output ports.

At user program startup, the status of the CPU port registers and mode registers are as
follows.

Chapter 1: System

23

Register Status
P1 0
SC 0
TIMA 0
TAC 0
IE 0
LCDC $83 BG/OBJ ON, LCDC OPERATION
SCY 0
SCX 0
LYC 0
WY 0
W 0

Interrupt Enable (IE) DI
 Stack: FFFEh

Standby Modes
The standby functions are HALT mode, which halts the system clock, and STOP mode,
which halts oscillation (source oscillation).

HALT Mode
Game Boy switches to HALT mode when a HALT instruction is executed.
The system clock and CPU operation halt in this mode. However, operation of source
oscillation circuitry between terminals CK1 and CK2 continues. Thus, the functions that do
not require the system clock (e.g,, DIV, SIO, timer, LCD controller, and sound circuit)
continue to operate in this mode.
HALT mode is canceled by the following events, which have the starting addresses
indicated.

1) A LOW signal to the /RESET terminal
Starting address: 0000h

2) The interrupt-enable flag and its corresponding interrupt request flag are set
IME = 0 (Interrupt Master Enable flag disabled)
Starting address: address following that of the HALT instruction
IME = 1 (Interrupt Master Enable flag enabled)
Starting address: each interrupt starting address

STOP Mode
Game Boy switches to STOP mode when a STOP instruction is executed.
The system clock and oscillation circuitry between the CK1 and CK2 terminals are halted in
this mode. Thus, all operation is halted except that of the SI0 external clock. STOP mode is
canceled by the following events, and started from the starting address.

3) A LOW signal to the /RESET terminal
Starting address: 0000h

4) A LOW signal to terminal P10, P11, P12, or P13
Starting address: address following that of STOP instruction

When STOP mode is canceled, the system clock is restored after 217 times the oscillation
clock (DMG: 4 MHz, CGB: 4 MHz/8 MHz), and the CPU resumes operation.
When STOP mode is entered, the STOP instruction should be executed after all interrupt-
enable flags are reset, and meanwhile, terminals P10-P13 are all in a HIGH period.

Game Boy Programming Manual

24

2.4 CPU Functions (Common to DMG/CGB➀➀➀➀)
The CPU functions described here are those that are identical in DMG and CGB. CPU functions that
are enhanced in CGB are described in Section 2.5, CPU Functions (Common to DMG/CGB➁). CPU
functions that cannot be used for DMG are described in Section 2.6, CPU Function (CGB only).

2.4.1 Controller Data

The P1 ports are connected with a matrix for reading key operations.

7 6 5 4 3 2 1 0Name Address Bit

P1 FF00 R/W Ports P10-P15
P10
P11
P12
P13
P14
P15

Input Ports

Output Ports

When key input is read, a brief interval is interposed between P14 and P15 output and reading of the
input, as shown below.

Example: KEY LD A, $20 ; Read U, D, L, R keys
LD ($FF00), A ; Port P14 ← LOW output
LD A, ($FF00) ; A Register ← Port P10-P13
LD A, ($FF00) ; Perform this operation twice
 .
 .
LD A, ($10) ; Reads keys A, B, SE, ST
LD ($FF00), A ; Port P15 ← LOW output

LD A, ($FF00) ; A Register ← Ports P10-P13
LD A, ($FF00) ; Perform this operation 6 times
LD A, ($FF00) ;
 . ;
 . ;
LD A, $30 ; Port reset
LD ($FF00), A
 .
RET

Res. x4

VDD P14 P15

ARIGHT
P10

BLEFT
P11

SELECTUP
P12

STARTDOWN
P13

All inputs are
pulled High

 Chapter 1: System

25

The interrupt request flag (IF: 4) is set by negative edge input at one of the P13-
P10 terminals. Negative edge input requires a LOW period of 24 times source
oscillation (DMG = 4 MHz, CGB = 4 MHz/8 MHz).

The interrupt request flag (IF: 4) also is set when a reset signal is input to the
/RESET terminal with a P13~P10 terminal in the LOW state.

2.4.2 Divider Registers

The upper 8 bits of the 16-bit counter that counts the basic clock frequency (f) can be referenced.
If an LD instruction is executed, these bits are cleared to 0 regardless of the value being written. f
= (4.194304 MHz).

7 6 5 4 3 2 1 0Name Address Bit

TIMA FF05 R/W Timer Counter

2.4.3 Timer Registers

The main timer unit. Generates an interrupt when it overflows.

The value of TMA is loaded when TIMA overflows.

7 6 5 4 3 2 1 0Name Address Bit
DIV FF04 R/W Divider Read/Reset

f/29 (8192 Hz)
f/210 (4096 Hz)
f/211 (2048 Hz)
f/212 (1024 Hz)
f/213 (512 Hz)
f/214 (256 Hz)
f/215 (128 Hz)
f/216 (64 Hz)

7 6 5 4 3 2 1 0Name Address Bit
TMA FF06 R/W Timer Modulo

7 6 5 4 3 2 1 0Name Address Bit
TAC FF07 R/W Timer Controller

Input Clock Select

00: f/210 (4.096 KHz)
01: f/24 (262.144 KHz)
10: f/26 (65.536 KHz)
11: f/28 (16.384 KHz)

Timer Stop
0: Stop Timer
1: Start Timer

Game Boy Programming Manual

26

The timer consists of TIMA, TMA, and TAC.
The timer input clock is selected by TAC.
TIMA is the timer itself and operates using the clock selected by TAC.
TMA is the modulo register of TIMA. When TIMA overflows, the TMA data is loaded into TIMA.
Writing 1 to the 2nd bit of TAC starts the timer.
The timer should be started (the TAC start flag set) after the count up pulse is selected. Starting
the timer before or at the same time as the count up pulse is selected may result in excessive
count up operation.

Example:

L D A, 3 ;Select a count pulse of f/28

L D (07), A ;TAC ← 3 set
L D A, 7 ;Start timer
L D (07), A ;

If a TMA write is executed with the same timing as that with which the contents of the modulo
register TMA are transferred to TIMA as the result of a timer overflow, the same data is transferred
to TIMA.

2.4.4 Interrupt Flags

Bit reset enabled

Bit reset enabled

Interrupts are controlled by the IE (interrupt enable) flag.
The IF (interrupt request) flag can be used to determine which interrupt was requested.

7 6 5 4 3 2 1 0Name Address Bit
IF FF0F R/W Interrupt Request

Vertical Blanking
LCDC (STAT Referenced)

P10-P13 Terminal Negative Edge

Timer Overflow
Serial I/O Transfer Completion

0: Disabled
1: Enabled

7 6 5 4 3 2 1 0Name Address Bit
IE FFFF R/W Interrupt Enable

Vertical Blanking
LCDC (STAT Referenced)

P10-P13 Terminal Negative Edge

Timer Overflow
Serial I/O Transfer Completion

0: Disabled
1: Enabled

Name
IME Interrupt Master Enable

0: Reset by DI instruction, prohibits all interrupts
1: Set by EI instruction, the interrupts set by the IE registers are enabled

Chapter 1: System

27

The 5 types of interrupts are as follows:

Cause of Interrupt Priority Interrupt starting
address

The LCDC interrupt
mode can be selected
(see STAT register).

Vertical blanking 1 0040h

LCDC status interrupt 2 0048h

Timer overflow 3 0050h

Serial transfer completion 4 0058h

P10-P13 input signal goes low 5 0060h

Mode 00
Mode 01
Mode 10
LYC=LY
consist

When multiple interrupts occur simultaneously, the IE flag of each is set, but only that with the
highest priority is started. Those with lower priorities are suspended.

When using an interrupt, set the IF register to 0 before setting the IE register.

The interrupt process is as follows:

1 When an interrupt is processed, the corresponding IF flag is set.
2 Interrupt enabled.

If the IME flag (Interrupt Master Enable) and the corresponding IE flag are set, the
interrupt is performed by the following steps.

3 The IME flag is reset, and all interrupts are prohibited.
4 The contents of the PC (program counter) are pushed onto the stack RAM.
5 Control jumps to the interrupt starting address of the interrupt.

The resetting of the IF register that initiates the interrupt is a hardware reset.

The interrupt processing routine should push the registers during interrupt processing.

When an interrupt begins, all other interrupts are prohibited, but processing of the highest level
interrupt is enabled by controlling the IME and IE flags with instructions.

Return from the interrupt routine is performed by the RET1 and RET instructions.

If the RETI instruction is used for the return, the IME flag is automatically set even if a DI
instruction is executed in the interrupt processing routine.

IF the RET instruction is used for the return, the IME flag remains reset unless an EI instruction is
executed in the interrupt routine.

Each interrupt request flag of the IF register can be individually tested using instructions.

Interrupts are accepted during the op code fetch cycle of each instruction.

Game Boy Programming Manual

28

2.5 CPU Functions (Common to DMG/CGB➁➁➁➁)

This section describes the CPU functions that have been enhanced in CGB. Functions that are
identical in DMG and CGB are described in Section 2.4, CPU Functions (Common to DMG/CGB➀).
CPU functions not available in DMG are described in Section 2.6, CPU Functions (CGB only).

2.5.1 Serial Cable Communication

Note: In DMG mode, bit 1 of the SC register is set to 1 and cannot be changed,
but the transfer speed is fixed at 8 KHz.

Serial I/O (SIO) is controlled by the SB and SC registers.
The lowest bit (SC0) of the SC register can be used to select shift clock to be either the external
clock from the SCK terminal or the internal shift clock.
Sending and receiving occur simultaneously with a serial transfer.
If the data to be sent is set in the SB register and the serial transfer is then started, the received
data is set in the SB register when the transfer is finished.

Serial transfer procedure:

1 The data is set in the SB register.
2 Setting the highest SC register bit (SC 7) to 1 starts the transfer.
3 The 3-bit counter is reset and after 8 counts of the shift clock, the transfer is performed

until overflow occurs.
4 SC7 is reset.
5 If the serial transfer completion interrupt is enabled, the CPU is interrupted.

When the shift clock goes low, the contents of the SB register are shifted leftward and the data is
output from the highest bit. When the shift clock goes high, input data from the SIN terminal are
output to the lowest bit of the SB register.

Chapter 1: System

29

When the shift clock goes low, the contents of the SB register are shifted leftward and the data is
output from the highest bit. When the shift clock goes high, input data from the SIN terminal are
output to the lowest bit of the SB register.

When the SCK terminal is in external-clock mode, it is pulled up to VDD.

If the highest bit of the SC register (SC7) is set, reading and writing to the SB register is prohibited.

An SIO serial transfer should be started (highest SC bit set) after the external or internal shift clock
is selected. Excessive shifting may result if the transfer is started before or at the same time as
the shift clock is selected.

If a transfer is performed using the external clock, the data is first set in the SB register, then the
SC register start flag is set and input from the external clock is awaited. The transfer start flag
must be set each time data is transferred.

The maximum setting for an external clock is 500 KHz.

Serial communication (SIO) specifications are essentially the same for DMG and CGB. In CGB,
however, the operating speed of the internal shift clock can be set to high by specifying a speed
in bit 1.

SIO Timing Chart

1 8765432

SCK

SOUT

SIN

SB7 SB0SB1SB2SB3SB4SB5SB6

Read Timing
Output Timing

7 6 5 4 3 2 1 0

SB

Game Boy Programming Manual

30

SIO Block Diagram

8-bit Shift Register

SC0 SC7

Serial Control (SC)

3-Bit Counter

OR
Gate3-State Buffer

Inverter

Switch

Resistance

External/Internal Clock Selection

Internal Shift Clock (8 KHz/256 KHz)

Transfer Start

SCK

SOUT

SIN

VDD

CTRL

OUT

IN1 IN2

OUT

IN1

IN2

CTRL

7 6 5 4 3 2 1 0

1 2 3 4 5 6

Chapter 1: System

31

2.5.2 Serial Cable Communication: Reference flowchart

Flow until start of game

Transfer

RET

SIO Interrupt

RETI

Start

(SB) Slave Code

RD Clear

(SC) $80

2P Start?

Transfer

RD = Master Code?

RD = Slave Code?

V_BLANK?

(SB) Slave Code

(SC) $81

(SB) TD

(SC) $80

1ms WAIT

RD (SB)

RD = Slave Code?

N

Y

Y

N

Y

N

N

Y

Slave Start

Master Start

-Select code other than $00 and $FF. (For both slave and
master code).

-Clear the receive data buffer (RD).

-Both sides wait in receive-wait status.

-Game on which Start key pressed first becomes master by
sending master code to other game.

-Game first notified that it is slave by master code
sent from master. Subsequently moves to game flow.

-Data sent when this side becomes master is the slave
code. Game subsequently moves to game flow.

TD: Transfer
Data Buffer

Timing of
receive
synchronized
with Power Up.

Game Boy Programming Manual

32

Flow after game start

Data subsequently sent by the master is placed in (SB) and then sent to the slave at the same time
as the (SC) is set to $81. At exactly that same time, the master receives the slave data. An SIO
interrupt is then set in the slave and, as the flowchart indicates, the slave sets the data to be sent to
the master (current data).

Because the data sent from the slave are those loaded at the time of the previous interrupt, the
data sent to the master are one step (one pass through the main program) behind the current slave
data. Exactly the converse is true when this process is viewed from the perspective of the slave.
An SIO interrupt is set in the master, and the master sets the data to be sent to the slave (current
data). In this case, because the data sent from the master are those loaded at the time of the
previous interrupt, the data sent to slave are one step (one pass through main program) behind the
current master data. (*The data of the master and slave can be synchronized by setting the data
for each back 1 pass.)

SIO Interrupt

RETI

SIO Interrupt

Master Game

TD (Transfer Data)

V_BLANK

Transfer

RD (SB)

(SB) TD
(SB) TD

Set SIO Completion Flag

(SC) $80

RD (SB)

N

Y

Slave waits for
finish of SIO to
synchronize with
master. (This is an
example; not
necessary to
implement this
way.)

Key Input

Game Processing

If Master

Slave Game

TD (Transfer Data)

SIO Finished?
N

Y

Key Input

Game Processing

If Slave

RETI

Transfer

RET

(SC) $81

Chapter 1: System

33

In the example, 1 byte is sent per frame. (This is not required.) If several bytes are sent
continuously, a transmission interval longer than the processing time of other interrupts (e.g.
V_BLANK) should be used (usually around 1 mS). The reason is that if an attempt is made to
communicate with the slave during another interrupt, the slave cannot receive the data until after
the interrupt is finished. If the next data is transmitted before the other interrupt is finished, the
slave will be unable to receive the initial data of the transmission.

Game Boy Programming Manual

34

2.6 CPU Functions (CGB only)

This section describes CPU functions that can be used only with CGB. Functions that are identical in
DMG and CGB are described in Section 2.4, CPU Functions (Common to DMG/CGB➀). For
information on CPU functions enhanced in CGB, see Section 2.5, CPU Functions (Common to
DMG/CGB➁).

2.6.1 Bank Register for Game Boy Working RAM

The 32 KB of Game Boy working RAM is divided into 8 banks of 4 KB each. The CPU memory
space C000h-CFFFh is set to Bank 0, and the space D000h-DFFFh is switched between
banks 1-7. Switching is performed using the lowest 3 bits of the bank register, SVBK. (If 0 is
specified, Bank 1 is selected.)

Note: This register cannot be written to in DMG mode.

2.6.2 CPU Operating Speed

The speed of the CGB CPU can be changed to suit different purposes. In normal mode, each
block operates at the same speed as with the DMG CPU. In double-speed mode, all blocks
except the liquid crystal control circuit and the sound circuit operate at twice normal speed.

Normal mode: 1.05 MHz (CPU system clock)
Double-speed mode: 2.10 MHz (CPU system clock)

Switching the CPU Operating Speed
Immediately after the CGB CPU is reset (immediately after reset cancellation), it operates in
normal mode. The CPU mode is switched by executing a STOP instruction with bit 0 of
register Key 1 set to a value of 1. If this is done in normal mode, the CPU is switched to
double-speed mode; otherwise it is switched to normal mode. Bit 0 of register Key 1 is
automatically reset after the operating speed is switched. In addition, bit 7 of register Key 1
serves as the CPU speed flag, indicating the current CPU speed.

FF70SVBK R/W
ADDRESSNAME BIT 7 6 5 4 3 2 1 0

Bank Specification
0,1: Specify Bank 1
2-7: Specify Banks 2-7

Chapter 1: System

35

Note: When bit 0 of register Key 1 is set to 1, the standby function cannot be
used. When using the standby function, always confirm that bit 0 of
register Key 1 is set to 0. When switching the CPU speed, all interrupt-
enable flags should be reset and a STOP instruction executed with bits 4
and 5 of the P1 port register set to 1, as with the standby function (STOP
mode). When the CPU speed is switched, a return from STOP mode is
automatic, so it is not necessary to generate a STOP mode cancellation.
However, until the CPU speed has been changed and the system clock
returns, bits 4 and 5 of the P1 port register should be made to hold the
value 1.

Approximately 16 ms is required to switch from normal to double-speed mode, and
approximately 32 ms is needed to switch from double-speed to normal mode. In double-speed
mode, the DIV register (FF04h) and the TIMA register (FF05h) both operate at double
speed. Battery life is shorter in double-speed mode than in normal mode. The use of double-
speed mode requires the corresponding mask ROM and MBC.

Game Boy Programming Manual

36

Flow of Switching (when switching to double-speed mode)

In case the CPU operating speed needed to be switched, the current speed should always
be checked first using the speed flag (bit 7 of the KEY 1 register). This ensures that the
speed will be switched to the intended speed.

Switching Routine (example)

LD HL, KEY1

BIT 7, (HL)

JR NZ, _NEXT

SET 0, (HL)

XOR A

LD (IF), A

LD (IE), A

LD A, $30

LD (P1), A

STOP

_NEXT

Read the speed flag
(Bit 7 of register Key 1)

Enable speed switching
(Set bit 0 of register Key 1)

Set bits 4 and 5 of the P1 port register to 1

Execute STOP instruction

Reset interrupt-request register IF

Reset interrupt-enable register IE

Speed flag = 0?

Switching unnecessary

Yes

No

Chapter 1: System

37

2.6.3 Infrared Communication

2.6.3.1 Port Register

The CGB system is equipped with an infrared communication function. An infrared signal
can be output by writing data to bit 0 of RP register. A received infrared signal is latched
internally in the CPU by positive edge of the system clock. (System clock goes to HIGH
from LOW.) The latched data can be read beginning from bit 1 of RP register by setting
bits 6 and 7 to 1.

Note: When data is not sent or received, always set the values of RP register to
00h. This register cannot be written to in DMG mode.

2.6.3.2 Controlling Infrared Communication

Sender:
Setting bit 0 of the RP register to 1 causes the LED to emit light; setting it to 0 turns off the
LED.

Receiver:
If the photo transistor detects infrared light, bit 1 of the RP register is set to 0; if no infrared
light is detected, this bit is set to 1.

2.6.3.3 Basic Format

When the receiver recognizes the unmodified signal from the sender as a logical value of
1 or 0, the receiver actually cannot distinguish between the continuous transmission of 1s
and the absence of received infrared light. The status of the receiver is identical under
these conditions. Consequently, to ensure proper data transmission from sender to
receiver in Game Boy Color infrared communication, signals are distinguished by the size
of the interval between the rising edge of the pulse of one received signal to the rising
edge of the subsequent received signal.

Game Boy Programming Manual

38

The following illustrates signals from a sender.

Double-speed 25 55 (units: µs)
 Normal speed

“0” signal sent 25 76

Double-speed 36 70
Normal speed
 “1” signal sent 40 93

Double speed 50 65
Normal speed
Synchronous pulses 99 132

Double-speed 60 100 60
 Normal speed

Connected pulses 120 200 120

 1

 0

Scatter in the source oscillation of Game Boy Color produces slight individual
differences.

2.6.3.4 Preparing for Data Transmission and Reception

To use infrared communication, data reception must be enabled by setting bits 6 and 7 of
Game Boy Color RP register to 1. However, even with both of these bits set to 1, data
cannot immediately be received. After setting bits 6 and 7 to 1, at least 50 ms should be
allowed to pass before using the infrared port.

1
RP register bit 0

0

1
0

1
0

Chapter 1: System

39

2.6.3.5 Transmitted Data

When data is transmitted and received, it is transmitted in packets. Each packet
comprises the 4 parts shown below, and each part is sandwiched between synchronous
pulses. For more information, see Section 2.6.3.7, Details of Data Transmission and
Reception.

The data that comprises a packet is transmitted 1 bit at a time beginning from the MSB.

Transmission Packet

Connector Header Data Checksum

Connector:
Signal that implements an infrared communication connection between two Game Boy
Color machines. This is always required in the initial packet. When the receiver receives
the connector and recognizes it as a connecting pulse, the receiver returns the same pulse
to the sender. The sender then determines whether this signal is a normal connecting
pulse. If it is not recognized as a normal pulse, transmission is interrupted at this stage.

Header:
Data indicating the type of data being sent and the total number of bytes.

Byte 1: Communication command
5Ah: transmission of raw data
At present, any value other than 5Ah causes an error.
 (To be used for by other devices in future)

Byte 2: Total number of data in data portion of the packet
01h-FFh: Number of data
00h: Indicates completion of communication to receiver.

Data:
The transmitted data itself. Maximum of 255 bytes.
There are no data if completion of communication is indicated to the receiver.
(The data portion of the packet consists only of a synchronous pulse.)

Checksum:
2 bytes of data consisting of the sum of the header and all data in the data portion of the
packet. Following this, the communication status is returned from receiver to sender.

2.6.3.6 Flow of Data Transmission and Reception

When data is transmitted and received, both Game Boy Color units are first placed in
receive status. The one with the send indicator is then designated as the sender, and the
other one is designated as the receiver. The flow of data transmission is shown below.

 Connector Header Data Checksum Header
Sender

Game Boy Programming Manual

40

 Connector Communication status
Receiver

1 Sender transmits connecting pulse.
2 The receiver calculates the width of the received connecting pulse. If the value is

correct, the receiver returns the same connecting pulse to the sender.
3 The sender calculates the width of the connecting pulse returned by the receiver. If the

value is correct, the sender determines that a connection has been properly
established.

4 The header is transmitted.
5 The data is transmitted.
6 The checksum is transmitted.
7 The receiver returns the communication status to the sender.
8 When communication is complete, the header of the subsequently transmitted packet is

set to 00h + 00h.

2.6.3.7 Details of Data Transmission and Reception

Connector (Indicates reading of the RP register)

Light emission
Sender

Light detection

Light emission
Receiver

Light detection

The two Game Boy Color machines perform initial data reception, then the one designated
as the sender (e.g., by operations such as pressing button A) begins transmission.

Chapter 1: System

41

The following illustrates the flow for implementing a connection.

Header
 Synchronous pulse OOH Number of data transmitted Synchronous pulse

 Light emission by sender

 Light detection by receiver

One byte indicating the data type and 1 byte indicating the number of transmitted data
are sandwiched between synchronous pulses.

Data
 Synchronous pulse Transmitted data Synchronous pulse

Light emission by sender

Light detection by receiver

Between 1 and 255 bytes of transmitted data are sandwiched between synchronous
pulses.

Start of infrared
communication

Read bit 1 of RP
Register

Value read=0?

Pulse-width measurement
(software measurement of

High and Low periods)

Received signal a
proper connecting

pulse?

Connection established
(receiver)

N

Y

Y

N

Transmission
Signal received?

N

Y

Transmission of
connecting pulse

Send connecting pulse

Start of reception,
measurement of width of
received pulse

Is the received signal
the correct connecting
pulse?

Y

Connection established
(sender)

Communication Error

N

Game Boy Programming Manual

42

Checksum
 Light Emission Synchronous Pulse Check Sum Synchronous Pulse

Sender

 Light Detection

 Light Emission Synchronous Pulse Status Synchronous Pulse

 Receiver

 Light Detection

A 2-byte checksum consisting of the sum of the header and transmitted data is
sandwiched between synchronous pulses. The receiver uses the checksum to determine
whether the transmission was performed properly and notifies the sender of the results of
communication status.

The following section describes the details of communication status determination.

2.6.3.8 Communication Status

8Bh : Communication OK
04h : Checksum error

The results of the checksum calculated by the receiver do not agree with the checksum
sent by the sender.

In the following cases, the communication status cannot be returned to the sender even if
an error is generated during communication (no response from receiver).

! The wrong communication protocol is used.

! Data is transmitted using the wrong pulse width.

! One of the Game Boy Color units is operating in double-speed mode and
the other is operating in normal mode.

! Communication is affected by sunlight or obstruction of the signal light.

Chapter 1: System

43

2.6.3.9 Communication Error Processing

If an error described above in Communication Status is generated, the following error
codes are returned by subroutine.

Error Code Error Description

04h
Checksum error (same for sender and receiver):
The results of the checksum calculated by the receiver
and the checksum sent by the sender do not agree.

10h

Pulse width error:
Generated by the receiver when the width of the pulse of
the signal sent by the sender is too wide or narrow.
Generated by the sender when the width of the pulse of
the signal sent by the receiver is too wide or narrow.

20h

Communication error:
Communication prevented by other causes.
The subroutine provided by Nintendo treats as an error
the case when the data value of the second byte of the
received header exceeds the number of data items to be
received, as determined beforehand by the receiver.
The routine also generates an error if the communication
command value of byte 1 of the header is not 5A.

Game Boy Programming Manual

44

2.6.3.10 Usage Notes

When programming use of the infrared port, please note the following.

! When transmitting more than 256 bytes of data, ensure that the receiver
keeps track of which packet number is being received. When a
communication error (status not returned even though data was received)
is generated, the sender will re-send the data, and the receiver may lose
track of the packet number (see note 1 of previous section).

! The sender is prone to entering an endless loop when the packet
signifying transmission completion is received. Therefore, the receiver
should remain in receive status for approximately 300 µs after returning
the status (see note 2 of previous section).

! Depending on the power reserve of the battery, infrared communication
may cause a sudden drop in battery voltage and a complete loss of
power.

! Ensure that the speed of the two communicating Game Boy Color
machines is the same (both double-speed or both normal speed during
communication).

! Noise can be heard from the speaker and headphones during
communication, but this does not indicate a problem with the hardware.

! Be careful that malfunctions/lock-ups do not occur when infrared
communication signals are input from other game software and devices.
Use particular care when using the same subroutine to communicate
between various types of games because malfunctions/lock-ups are
especially likely to occur in such cases. (Before performing data
communication, confirm that the other hardware involved in the
transmission is using the same game. This can be accomplished by
means such as exchanging a unique key code.)

! Though very rare, it is possible that at the final communication stage, one
Game Boy will terminate normally and the other abnormally due to an
unexpected external disturbance.

The following are items to note when using an infrared communication subroutine other
than that provided by Nintendo.

! Ensure that error-handling is implemented to prevent the program from
entering an endless loop when communication is interrupted by sunlight or
obstruction of the signal light.

! To reduce power consumption, use a maximum infrared LED emission
pulse duration of 150 µs and a duty ratio of approximately 1/2.

! Do not leave the infrared LED or photo transistor(Amplifier and Read
Enable) ON when not using infrared communication.

Chapter 1: System

45

2.6.3.11 Specifications

1) Communication Speed
Normal-speed mode: approximately 7.5 Kbps
Double-speed mode: approximately 9.5 Kbps

2) Communication distances: Minimum, 10 cm, Typical, 15 cm
3) Recommended directional angle: approximately ± 15º

Game Boy Programming Manual

46

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 2: Display Functions

47

CHAPTER 2: DISPLAY FUNCTIONS..................................... 48

1. GENERAL DISPLAY FUNCTIONS ... 48

1.1 Character Composition.. 48
1.2 LCD Display RAM... 49
1.3 Character RAM ... 50
1.4 BG Display .. 54
1.5 LCD Screen... 56
1.6 LCD Display Registers... 57
1.7 OAM Registers.. 62
1.8 DMA Registers.. 64
1.9 OBJ Display Priority... 70

2. LCD COLOR DISPLAY (CGB ONLY) ... 72

2.1 Color Palettes ... 72
2.2 Color Palette Composition .. 73
2.3 Writing Data to a Color Palette.. 73
2.4 Overlapping OBJ and BG .. 75
2.5 Display Using Earlier DMG Software (DMG mode).................................... 76

Game Boy Programming Manual

48

CHAPTER 2: DISPLAY FUNCTIONS

1. GENERAL DISPLAY FUNCTIONS

1.1 Character Composition
! The basic character size is an 8 x 8-dot composition.

! With characters of the basic size:

• 128 OBJ-only characters are available (256 with CGB)

• 128 BG-only characters are available (256 with CGB)

• 128 characters can be registered both as OBJ and BG characters (256 with
CGB)

! On DMG, characters can be represented using 4 shades of gray (including
transparent).　On CGB, characters can be represented using 32 shades for each
color of RGB.

! The basic character size can be switched to an 8 x 16-dot composition for OBJ
characters only. In this case, however, only even-numbered character codes can
be specified. Even if an odd-numbered character code is specified, the display will
be the same as that seen with an even-numbered code.

! Up to 40 OBJ characters can be displayed in a single screen, and up to 10
characters can be displayed on each horizontal line.

! The display data for OBJ characters are as follows:

• y-axis coordinate

• x-axis coordinate

• Character code

• Attribute data

! Data are written to OAM from working RAM by DMA transfer.

! OBJ characters are automatically displayed to the screen using the data written to
OAM.

! Data specification ranges for OBJ characters:

• 00 ≤ character code ≤ FFh

• 00 ≤ X ≤ FFh

• 00 ≤ Y ≤ FFh

Chapter 2: Display Functions

49

1.2 LCD Display RAM
The DMG CPU has 8 KB (64 Kbits) of built-in LCD display RAM.

In CGB, 16 KB of memory can be joined in the 8 MB (64-Mbit) memory area (8000h-9FFFh) by
bank switching using the register VBK (FF4Fh). Bank switching is used exclusively in CGB and
cannot be used in DMG mode.

! Mapping of LCD Display RAM

The 16 MB of memory in CGB is partitioned into 2 x 8 KB by register VBK.

Character Data Character Data

BG Display Data 1

BG Display Data 2

Bank 0 Bank 1
8000h

9800h

9C00h
9FFFh

! Bank Register (CGB) for LCD Display RAM

Address

FF4Fh

Register

VBK R/W

Bank 0: Specify Bank 0
 1: Specify Bank 1

Bit 7 6 5 4 3 2 1 0

Bank 0 is selected immediately after cancellation of a reset signal.

This function is available only in CGB. In DMG mode, bit 0 is forcibly set 0, and its value cannot
be changed to 1.

Game Boy Programming Manual

50

1.3 Character RAM
! Character data can be written to the 6144 bytes from 8000h to 97FFh.

! The area from 8000h to 8FFFh is allocated for OBJ character data storage.

! The register LCDC can be used to select either 8000h-8FFFh or 8800h-97FFh as
the area for storing BG and window character data.

! If the BG character data are allocated to 8000h-8FFFh, these data share an area
with OBJ data, and the character dot data that correspond to the CHR codes also
are the same.

! By means of bank switching, CGB can store twice the amount of character data in
LCD display RAM that DMG can store. In this case, both Bank 1 and Bank 0 have
the same mapping as the area in DMG.

Chapter 2: Display Functions

51

Character Code Mapping

8000h

Address Bank 0 Bank １(CGB only)

800Fh
8010h

801Fh

8800h

880Fh
8810h

881Fh

8FE0h

8FEFh
8FF0h

8FFFh
9000h

900Fh

97F0h

97FFh

CHR Code

OBJ Code
"000"
Dot Data

OBJ Code
"001"
Dot Data

OBJ Code & BG Code
"080" Dot Data

OBJ Code & BG Code
"081" Dot Data

OBJ Code & BG Code
"0FE" Dot Data

 OBJ Code & BG
Code "0FF" Dot Data

BG Code "000"
Dot Data

BG Code "07F"
Dot Data

OBJ Code
"100"
Dot Data

OBJ Code
"101"
Dot Data

OBJ Code & BG Code
"180" Dot Data

OBJ Code & BG Code
"181" Dot Data

OBJ Code & BG Code
"1FE" Dot Data

OBJ Code & BG Code
"1FF" Dot Data

BG Code "100" Dot
Data

BG Code "17F"
Dot Data

X00

X01

X80

X81

XFE

XFF

X00

X7F

Area Shared by
OBJ and BG

Data for 1 dot
Shade Lower
Shade Upper

０１２３４５６７

With BG character data allocated to 8800h-97FFh:

! The case of 8 x 8 dots/block for both BG and OBJ:

CHR Codes:

<DMG> <CGB>
OBJ: 256 x 1 OBJ: 256 x 2
BG: 256 x 1 BG: 256 x 2

Note: Because bank switching is not available in DMG mode, Bank 1 on the right side
of the figure is not available in this mode.

Game Boy Programming Manual

52

8 x 16 dots/block (OBJ) and 8 x 8 dots/block (BG):

CHR Codes:
<DMG> <CGB>
OBJ: 128 x 1 OBJ: 128 x 2
BG: 256 x 1 BG: 256 x 2

If BG character data are allocated to 8000h-8FFFh, these data share an area with OBJ data, and

801Fh

X00

CHR Code

X01

X80

X81

XFE

XFF

X00

X7F

X02

X03

8000h

Address
Bank 0 Bank 1 (CGB only)

800Fh
8010h

8800h

880Fh
8810h

881Fh

8FE0h

8FEFh
8FF0h

8FFFh
9000h

900Fh

97F0h

97FFh

8020h

802Fh
8030h

803Fh

OBJ Code
"000" Dot Data

OBJ Code "002"
Dot Data

OBJ Code "080" &
BG Code "080" Dot
Data

OBJ Code "080" &
BG Code "081" Dot
Data

OBJ Code "0FE" & BG
Code "0FE" Dot Data

BJ Code "0FE" & BG
Code "0FF" Dot Data

BG Code "000"
Dot Data

BGB Code
"07F" Dot Data

OBJ Code
"100" Dot Data

OBJ Code
"102" Dot Data

BJ Code "180" &
BG Code "180" Dot
Data

OBJ Code "180" &
BG Code "181" Dot
Data

OBJ Code "1FE" &
BG Code "1FE" Dot
Data

OBJ Code "1FE" &
BG Code "1FF" Dot
Data

BG Code "100" Dot
Data

BGB Code
"17F" Dot Data

Area Shared by OBJ
and BG

Chapter 2: Display Functions

53

the dot data that correspond to the CHR codes also are the same.

Note: Because bank switching is not available in DMG mode, Bank 1 on the right side
of the figure is not present in this mode.

Game Boy Programming Manual

54

1.4 BG Display

Two screens of BG display can be held, Data 1 or Data 2.

Whether the BG display data are allocated to 9800h-9BFFh or to 9C00h-9FFFh is determined by
bit 3 of the LCDC register (FF40h).

Because bank switching is not available in DMG mode, Bank 1 on the right side of the figure is
not present in this mode.

Data for 32 x 32 character codes (256 x 256 dots) can be specified from 9800h or 9C00h as BG
display data. Of these, data for 20 x 18 character codes (160 x 144 dots) are displayed to the
LCD screen.

The screen can be scrolled vertically or horizontally one dot at a time by changing the values of
scroll registers SCX and SCY.

R/WCHR Code (8 bits)

Bank 0
Bank 1 (CGB only)

Left/Right Flip Flag
0: Normal
1: Flip left/right

Specifies the character
bank

Specifies the color
palette

Address
9800h

9FFFh

～

Unused (unusable) bit; same meaning in following pages*

７ ６ ５ ４ ３ ２ １ ０

Display Priority Flag
0: Display according to OBJ display priority flag
1: Highest priority to BG

Up/Down Flip Flag
0: Normal
1: Flip up/down

BG Display Data 1

BG Display Data 2

Bank 0
9800h

9C00h
9FFFh

Bank 1 (CGB only)

Chapter 2: Display Functions

55

1) With BG display data allocated to 9800h-9BFFh:

10231022994993992

608 609 610

578

546

577

545

576

544 563

115 116 126 127

9594

62 63

3130

84

52

20

83

51

19

96

64

32

0

97

65

33 34

66

98

21

256 dots
(32 blocks)

160 dots
(20 blocks)

256 dots
32 blocks

144 dots
(18 blocks)

Portion displayed to LCD
when (SCX, SCY) = (0,0)
Portion displayed to LCD when
(SCX, SCY) = (152, 8)

9800h

9801h

9802h

9BFDh

9BFEh

9BFFh

RAM Address Block No.

1023
1022
1021

 0
 1
 2

ATRB: Attrubute

Note: Attributes specified only with CGB

CHR Code & ATRB
CHR Code & ATRB
CHR Code & ATRB

CHR Code & ATRB
CHR Code & ATRB
CHR Code & ATRB

2) With BG display data allocated to 9C00h-9FFFh:

CHR Code & ATRB
CHR Code & ATRB
CHR Code & ATRB

CHR Code & ATRB
CHR Code & ATRB
CHR Code & ATRB

9C00h

0C01h

9C02h

9FFDh

9FFEh

9FFFh

RAM Address Block No.

1023
1022
1021

 0

 1

 2

Correspondence between LCD screen and block
numbers as shown in preceding figure.

ATRB: Attribute

Note: Attributes specified only with CGB.

Game Boy Programming Manual

56

1.5 LCD Screen
! Window Display

Specifying a position on the LCD screen using registers WX and WY causes the window to open
downward and rightward beginning from that position.

Window display data also can be specified as character codes, beginning from 9800h or 9C00h
in external SRAM.

OBJ character data are displayed in the window in the same way as the BG screen.

Window Display Area

0
0

WY

WX
159

143

LCD Screen Area

! Screen Timing

LCD Display Screen

160 Segments

Vertical Blanking Period

108.7µs/1Line

15.66ms
144 Lines

10 Lines 1.09ms

Frame Frequency: 59.7 Hz

Chapter 2: Display Functions

57

1.6 LCD Display Registers

ADDRESS

FF40hLCDC

NAME

CGB Mode: BG display always on
DMG Mode: 0: BG display off
 1: BG display on

LCD Control RegisterR/W

OBJ On Flag
0: Off
1: On

OBJ Block Composition Selection Flag
0: 8 x 8 dots
1: 8 x 16 dots

BG Code Area Selection Flag
0: 9800h-9BFFh
1: 9C00h-9FFFh

BG Character Data Selection Flag
0: 8800h-97FFh
1: 8000h-8FFFh

Windowing On Flag
0: Off
1: On

Window Code Area Selection Flag
0: 9800h-9BFFh
1: 9C00h-9FFFh

LCD Controller Operation Stop Flag
0: LCDC Off
1: LCDC On

7 6 5 4 3 2 1 0BIT

* In CGB, the liquid crystal protection circuit functions when
the LCDC is turned on. Consequently, a white screen is
displayed for up to 2 frames. In DMG, the LCDC should be
off during vertical blanking periods.

Game Boy Programming Manual

58

Mode Flag
00: Enable CPU Access to all Display RAM
01: In vertical blanking period
10: Searching OAM RAM
11: Transferring data to LCD Driver

Interrupt Selection According to LCD
Status
Mode 00 Selection
Mode 01 Selection, 0: not selected
Mode 10 Selection, 1: selected
LYC = LY matching selection

Match Flag
0: LYC = LCDC LY
1: LYC = LCDC LY

ADDRESS

FF41hSTAT

NAME

LCD Status FlagR/W

7 6 5 4 3 2 1 0BIT

STAT indicates the current status of the LCD controller.

Mode 00: A flag value of 1 represents a horizontal blanking period and means that the CPU has
access to display RAM (8000h-9FFFh).

When the value of the flag is 0, display RAM is in use by the LCD controller.

Mode 01: A flag value of 1 indicates a vertical blanking period and means that the CPU has
access (approximately 1 ms) to display RAM (8000h-9FFFh).

Mode 10: A flag value of 1 means that OAM (FE00h-FE90h) is being used by the LCD
controller and is inaccessible by the CPU.

Mode 11: A flag value of 1 means that the LCD controller is using 0AM (FE00h-FE90h) and
display RAM (8000h-9FFFh). The CPU cannot access either of these areas.

In addition, the register allows selection of 1 of the 4 types of interrupts from the LCD controller.
Executing a write instruction for the match flag resets that flag but does not change the mode
flag.

ADDRESS

FF43hSCX

NAME

Scroll X
00~FFR/W

7 6 5 4 3 2 1 0BIT

ADDRESS

FF42hSCY

NAME

Scroll Y
00~FFR/W

7 6 5 4 3 2 1 0BIT

Chapter 2: Display Functions

59

Changing the values of SCY and SCX scrolls the BG screen vertically and horizontally one bit at
a time.

ADDRESS

FF44hLY

NAME

LCDC y-coordinateR

７ ６ ５ ４ ３ ２ １ ０BIT

LY indicates which line of data is currently being transferred to the LCD driver. LY takes a value
of 0-153, with 144-153 representing the vertical blanking period.

When the value of bit 7 of the LCDC register is 1, writing 1 to this again does not change the
value of register LY.

Writing a value of 0 to bit 7 of the LCDC register when its value is 1 stops the LCD controller, and
the value of register LY immediately becomes 0. (Note: Values should not be written to the
register during screen display.)

ADDRESS

FF45hLYC

NAME

LY CompareR/W

7 6 5 4 3 2 1 0BIT

Register LYC is compared with register LY. If they match, the Matchflag of the STAT register is
set.

Note: The following 3 registers (BGP, OBP0, and OBP1) are valid in DMG and CGB
modes. For information of CGB color palette settings, see section 2, LCD Color
Display.

Game Boy Programming Manual

60

Data for dot data 00
Data for dot data 01
Data for dot data 10
Data for dot data 11

ADDRESS

FF47hBGP

NAME

BG Palette DataW

7 6 5 4 3 2 1 0BIT

Data for dot data 00
Data for dot data 01
Data for dot data 10
Data for dot data 11

ADDRESS

FF48hOBP0

NAME

OBJ Palette Data 0W

7 6 5 4 3 2 1 0BIT

When value of OAM palette selection flag is
0

Data for dot data 00
Data for dot data 01
Data for dot data 10
Data for dot data 11

ADDRESS

FF49hOBP1

NAME

OBJ Palette Data 1W

7 6 5 4 3 2 1 0BIT

When value of OAM palette selection flag is
1

The grayscales (2 bit) for the character dot data are converted by the palette data (BG: register
BGP; OBJ: OBP0 or OBP1) and output to the LCD driver as data representing 4 shades
(including transparent).

ADDRESS

FF4AhWY

NAME

Window y-coordinateR/W

7 6 5 4 3 2 1 0BIT

0 ≤ WY ≤ 143
With WY = 0, the window is displayed from the top edge of the LCD screen.

ADDRESS

FF4BhWX

NAME

Window x-coordinateR/W

7 6 5 4 3 2 1 0BIT

7 ≤ WX ≤ 166
With WX = 7, the window is displayed from the left edge of the LCD screen.

Values of 0-6 should not be specified for WX.

Chapter 2: Display Functions

61

Window Display Area

0
0

WY

WX
159

143

LCD Screen Area

OBJ characters are displayed in the same manner in the window as on BG.

Game Boy Programming Manual

62

1.7 OAM Registers

OBJ (Object)

! Data for 40 objects (OBJ) can be loaded into internal OAM RAM in the CPU
(FE00h-FE9Fh), and 40 objects can be displayed to the LCD. Up to 10 objects
can be displayed on the same Y line.

! Each object consists of a y-coordinate (8 bits), x-coordinate (8 bits), and CHR code
(8 bits) and specifications for BG and OBJ display priority (1 bit), vertical flip (1bit),
horizontal flip (1 bit), DMG-mode palette, (1 bit), character bank (1bit), and color
palette (3 bits), for a total of 32 bits.

! An 8 x 8- or 8 x 16-bit block composition can be specified for an OBJ using bit 2 of
the LCDC register. With an 8 x 16-bit composition, the CHR code is specifed as
an even number, as in DMG.

Chapter 2: Display Functions

63

OAM Register

ADDRESS
FE00OBJ0 R/W

FE01 R/W

With y = 10, object displayed from top edge of LCD screen.

LCD y-coordinate
00h-FFh

LCD x-coordinate
00h-FFh

FE02 R/W CHR code
00h-FFh

With x = 8, object displayed from left edge of LCD screen.

FE03 R/W Attribute flag

Specifies color palette (CGB only)

Horizontal flip flag
0: Normal
1: Flip horizontally

Vertical flip flag
0: Normal
1: Flip vertically

Display priority flag
0: Priority to OBJ
1: Priority to BG

Specifies character bank (CGB only)

Specifies palette for DMG and DMG
mode (valid only in DMG mode)

NAME BIT 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

OBJ1-OBJ30 have the same composition as OBJ0.

Note: In DMG mode, the lower 4 bits of the attribute flag are invalid; only the flags in
the upper 4 bits starting from the palette flag are valid.

Game Boy Programming Manual

64

1.8 DMA Registers

1.8.1 DMA Transfers in DMG

DMA transfers of 40 x 32 bits of data can be performed from the RAM area (8000h-DFFFh) to
OAM (FE00h-FE9Fh). The transfer time is 160 µs.

Note that in DMG, data cannot be transferred by DMA from RAM area 0000h-7FFFh.

The starting address of a DMA transfer can be specified as 8000h-DFFFh in increments of 100h.

Note that the method used for transfers from 8000h-9FFFh (display RAM) is different from that
used for transfers from other addresses.

Example 1

The following example shows how to perform a DMA transfer of 40 x 32 bits from the expansion
RAM area (C000h-C09Fh) to OAM (FE00h-FE9Fh).

During DMA, the CPU is run using the internal RAM area (FF80h-FFFEh) to prevent external bus
conflicts.

1. The program writes the following instructions to internal RAM (FF80h-FFFEh):

 Address Machine Code Label Instruction Comment

 FF80 3E C0 LD A, 0C0H

E0 46 LD (DMA), A ;C000-C09F→OAM

3E 28 LD A, 40 ;160-cycle wait

3D L1: DEC A

20 FD JR NZ, L1

C9 RET

Chapter 2: Display Functions

65

2. Example of program that writes the above instructions to internal RAM starting from 0xFF80:

Label Instruction

LD C, 80H

LD B, 10

LD HL, DMADATA

 L2: LD A, (HLI)

LD (C), A

INC C

DEC B

JR NZ, L2

•

•

•

 DMADATA DB 3EH, 0C0H, 0E0H, 46H, 3EH

DB 28H, 3DH, 20H, 0FDH, 0C9H

Game Boy Programming Manual

66

3) When the DMA transfer is performed, the subroutine written to internal RAM shown in 1)
above is executed:

.
CALL 0FF80h ;DMA transfer

.

Note: The preceding program is used for DMA transfers performed within routines for
processing interrupts implemented by vertical blanking. In all other cases,
however, the program written to internal RAM should be as shown below to
prevent interrupts during a transfer.

Address Command Label Instruction Comment
 FF80 F3 DI ;Interrupt disabled

3E C0 LD A, 0C0H

E0 46 LD (DMA), A ;C000-C09F.OAM

3E 28 LD A, 40 ;160-cycle wait

3D L1: DEC A

20 FD JR NZ, L1

FB EI ;Interrupt enabled

C9 RET

Example 2

The example below shows a DMA transfer of 40 x 32 bits of data from the display RAM area
(9F00h-9F9Fh) to OAM (FE00-FE9Hh).

 Machine Code Label Instruction Comment
3E 9F LD A, 9FH

E0 46 LD (DMA), A ;9F00-9F9F.OAM

Data can be transferred by DMA from 8000h-9F9Fh to OAM either by the method shown in
Example 1 or by using only the above instructions.

Chapter 2: Display Functions

67

1.8.2 DMA Transfers in CGB

Using the Earlier DMA Transfer Method

This DMA method transfers only 40 x 32 bits of data from 0-DFFFh to OAM (FE00h-FE9Fh).
The transfer starting address can be specified as 0-DFFFh in increments of 100h. The transfer
method is the same as that used in DMG, but when data are transferred from 8000h-9FFFh
(LCD display RAM area), the data transferred are those in the bank specified by bit 0 of register
VBK. When transferring data from D000h-DFFFh (unit working RAM area), the data transferred
are those in the bank specified by the lower 3 bits of register SVBK.

Note: When the CPU is operating at double-speed, the transfer rate is also doubled.

Using the New DMA Transfer Method

The DMA transfer method provided for DMG has been augmented in CGB with the following
DMA transfer functions.

1. Horizontal Blanking DMA Transfer

Sixteen bytes of data are automatically transferred from the user program area (0-7FFFh) and
external and unit working RAM area (A000h-DFFFh) to the LCD display RAM area (8000h-
9FFFh) during each horizontal blanking period. The number of lines transferred by DMA in a
horizontal blanking period can be specified as 1-128 by setting register HDMA5. CPU
processing is halted during a DMA transfer period.

2. General-Purpose DMA Transfers

Between 16 and 2048 bytes (specified in 16-byte increments) are transferred from the user
program area (0-7FFFh) and external and unit working RAM area (A000h-DFFFh) to the LCD
display RAM area (8000h-9FFFh). As with horizontal blanking DMA transfers, CPU operation is
halted during the DMA transfer period.

The unit working RAM area (D000h-DFFFh) selected as the transfer source is the bank specified
by register SVBK.

The LCD display RAM area (8000h-9FFFh) selected as the transfer destination is the bank
specified by register VBK.

Game Boy Programming Manual

68

Special Notes

! The number of bytes transferred by the new DMA method must be specified in 16-
byte increments; byte counts that are not a multiple of 16 cannot be transferred.

! With the new DMA transfer method, transfers are performed at a fixed rate
regardless of whether the CPU is set to operate at normal or double-speed.

! Horizontal blanking DMAs should always be started with the LCDC on and the
STAT mode set to a value other than 00.

! General-purpose DMAs should be performed with the LCDC off or during a vertical
blanking period.

! When the new DMA transfer method is used to transfer data from the user program
area (0-7FFFh), mask ROM and MBC for double-speed mode are required.

1.8.3 DMA Control Register: DMG and CGB

ADDRESS

FF46hDMA

NAME

DMA Transfer and Starting
AddressW

BIT 7 6 5 4 3 2 1 0

Chapter 2: Display Functions

69

1.8.4 New DMA Control Registers: CGB only

ADDRESS

FF51HDMA1 W

FF52 W
0Xh-FXh

NAME

00h-7Fh(program ROM)
A0h-DFh (external and unit working RAM)

HDMA2

FF53HDMA3 W

FF54 WHDMA4

Combined with HDMA1, specifies the upper 12 bits of the transfer source area
(0x000X-0x7FFX or 0xA00X-0xDFFX)

Combined with HDMA3, specifies the upper 12 bits of the transfer destination area
(800Xh-9FFXh)

FF55HDMA5 R/W

Horizontal Blanking DMA
No. of lines to transfer = (n + 1)
Total no. of bytes to transfer = 16 x (n+1)
(Max = 2,048 bytes)

General-purpose DMA
Total no. of bytes transfer = 16 x (n +1)
(Max = 2,048)

(n)

Value of 1 written:
After 1 is written, horizontal blanking DMA transfer is started from the
first horizontal blanking period.
(DMA should always be started with LCDC on and value other than 00
for STAT mode.)

* When a value of 0 has been subsequently written, DMA transfer
stops beginning with the next horizontal blanking period.

Specifies higher-order transfer source
address

Specifies lower-order transfer source
address

Specifies higher-order transfer
destination
address
00h-1Fh

Specifies lower-order transfer
destination
address
0Xh-FXh

Horizontal blanking
DMA

General-purpose DMA

Transfer start and number of bytes to
transfer

BIT

Value of 0 written (the following applies only when the bit is already 0):
General-purpose DMA starts
(DMA should be started with LCDC off or during a horizontal blanking
period. Ensure that the transfer period does not overlap with STATE mode
settings of 10 or 11.)

* Only input of a reset signal can halt a general-purpose DMA transfer in
progress.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Note: These registers cannot be written to in DMG mode.

Game Boy Programming Manual

70

1.9 OBJ Display Priority
As a rule, when objects overlap, the one with the lower OBJ number is given priority. In DMG or
CGB in DMG mode, among overlapping objects with different x-coordinates, priority is given to
the object with the smallest x-coordinate.

1. Same x-coordinate: For both DMG and CGB

�����
�����
�����
�����
�����
�����
���
���
���
���
���
���
���
���

A

B

C

a = No. of OBJ A
b = No. of OBJ B
c = No. of OBJ C

When a < b < c, objects are displayed as indicated in the
figure at left.

2. Different x-coordinates: CGB Only

a = No. of OBJ A
b = No. of OBJ B�D
c = No. of OBJ C

When a < b < c, objects are
is displayed as indicated in
the figures below.

�����
�����
�����
�����
���

��
��
��
��
��
��
��
��

������
������
������
������
������

���
���
���
���
���
���
���
���
��� �����

�����
�����
�����
�����

��
��
��
��
��
��
��
��

A
A

A

B

B

B

C C
C

Chapter 2: Display Functions

71

3. Different x-coordinates: DMG/CGB in DMG Mode

 In DMG mode and with objects with different x-coordinates, the object with the smallest x-
coordinate is given priority.

�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

A

��
��
��
��
��
��
��
��

B

A

������
������
������
������
������

B

When a < b, objects are
displayed as indicated in the
figure at left.

a = No. of OBJ A
b = No. of OBJ B

Game Boy Programming Manual

72

2 LCD COLOR DISPLAY (CGB ONLY)

The LCD unit of the CGB system can display 32 shades each for RGB, for a total 32,768 colors.
A single color palette consists of 4 colors selected from among these 32,768. One of 8 palettes
can be selected for each BG and OBJ character. However, because each OBJ includes
transparent data, each OBJ color palette consists of 3 colors. The color palettes for BG and
OBJ are independent of one another.

2.1 Color Palettes
! Eight palettes each are provided for BG and OBJ.

! Each palette consists of 4 colors and is specified by the display dot data (2 bits)
 (palette data nos. 0-3).

! The color palettes represent each color with 2 bytes, with 5 bits of data for each
color of RGB (32,768 displayable colors).

Color Palette H Color Palette L

RED Data
GREEN Data
BLUE Data

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Chapter 2: Display Functions

73

2.2 Color Palette Composition

1. BG Color Palettes

Color palette H00

Color palette H02

Color palette H01

Color palette H03

Color palette L00

Color palette L01

Color palette L02

Color palette L03

Color palette 0

Color palettes 1-7

Palette Data No.

0

1

2

3

Color Palette No.

　　　2. OBJ Color Palettes

OBJ color palettes have the same composition as shown in the previous figure.

2.3 Writing Data to a Color Palette
Data are written to color palettes using the write-specification and write-data registers. The
lower 6 bits of the write-specification register specifies the write address. Data are written to the
write-data register, at the address specified by the write-specification register. If the most
significant bit of the write-specification register is set to 1, the write address is then automatically
incremented to specify the next address. (The next address is read from the lower 6 bits of the
write-specification register.)

The write-specification and write-data registers also are used to read data from color palettes.
Data are read from the write-data register, and the read data are those at the address specified
by the write-specification register. When data are read, the specified address is not
incremented even if the most-significant bit of the write-specification register is set to 1.

Game Boy Programming Manual

74

ADDRESS

FF68BCPS R/W

FF69 R/W

Specifies a BG write

Specifies the BG write
data

NAME

Specifies H/L (H: 1, L: 0)

Specifies the palette data no.

Specifies the palette no.
1: With each write, specifies the next
 palette
0: Values of bits 0-5 fixed

BCPD

FF6AOCPS R/W Specifies the OBJ write data

Specifies H/l (H: 1; L: 0)

Specifies the palette data no.

Specifies the palette no.
1: With each write, specifies the next
 palette
0: Values of bits 0-5 fixed

FF6B R/W OBJ write dataOCPD

BIT

Note: These registers cannot be written to in DMG mode.

Chapter 2: Display Functions

75

2.4 Overlapping OBJ and BG
When objects are displayed, overlapping objects and background are displayed according to the
display priority flags for OBJ and BG, as indicated below. The BG display priority flag can be
used to assign BG display priority to individual characters.

Display Priority Flag Dot Data Screen Display
BG OBJ OBJ BG Palette Data

0:

Priority to

OBJ

00

00

obj

obj

00

bg

00

bg

BG

BG

OBJ

OBJ

00

bg

obj

obj

0:

Use OBJ

Priority 1:

Priority to

BG

00

00

obj

obj

00

bg

00

bg

BG

BG

OBJ

BG

00

bg

obj

bg

1:

Highest

Priority to BG

(by character)

0

1

00

00

obj

obj

00

bg

00

bg

BG

BG

OBJ

BG

00

bg

obj

bg

Note: obj and bg represent dot data (01, 10, 11) for OBJ and BG, respectively.

Game Boy Programming Manual

76

2.5 Display Using Earlier DMG Software (DMG mode)
When earlier DMG software is used, coloring is performed automatically by the system using
registers BGP, 0BP0, and 0BP1. However, the display uses 3 palettes, 1 for BG, with 4 colors,
and 2 for OBJ, each with 3 colors (excluding transparent; maximum of 10 colors in 1 screen).

1. BG Display

Colors specified in BG color palette No. 0 are displayed by the dot data (2 bits) whose grayscales
are specified by register BGP.

2. OBJ Display

Colors specified in OBJ color palettes No. 0 and No. 1 are displayed by the dot data (2 bits)
whose grayscales are specified by registers OBP0 and OBP1.

The CGB hardware automatically selects the display color according to the color palette pre-
registered in the CGB (cannot be changed by a program). However, when turning on power to
the CGB, the player can select from a combination of the 12 colors registered in the unit. This
function is available only in DMB mode.

Chapter 3: Sound Functions

77

CHAPTER 3: SOUND FUNCTIONS...79
Revision History……………………………………………………………. 76

1. OVERVIEW OF SOUND FUNCTIONS...79

2. SOUND CONTROL REGISTERS..81

2.1 Sound 1 Mode Registers ..81
2.2 Sound 2 Mode Registers ..84
2.3 Sound 3 Mode Registers ..85
2.4 Sound 4 Mode Registers ..87
2.5 Sound Control Registers ..90

3. VIN TERMINAL USAGE NOTES...91

Game Boy Programming Manual

78

Revision History
Date Section Description

12/3/99 1 Addition of “Usage Notes”
12/3/99 2.1

2.2
2.4

Revision and addition of Notes in Mode Registers for Sound 1, 2, 4

Chapter 3: Sound Functions

79

CHAPTER 3: SOUND FUNCTIONS

 1. OVERVIEW OF SOUND FUNCTIONS
The sound circuitry consists of circuits that generate 4 types of sounds (Sounds 1-4). It can also
synthesize external audio input waveforms and output sounds. (External audio input is a function
available only in CGB).

Sound 1: Generates a rectangle waveform with sweep and envelope functions.
Sound 2: Generates a rectangle waveform with an envelope function.
Sound 3: Outputs any waveform from waveform RAM.
Sound 4: Generates white noise with an envelope function.

Each sound has two modes, ON and OFF.

♦ ♦ ♦ ♦ ON Mode
 Sounds are output according to data in the mode register for each sound.

 The mode register data can be specified as needed while outputting sound.

 ♦ ♦ ♦ ♦ Initialization Flag
 When the default envelope values are set and the length counter is restarted,
 the initialization flag is set to 1 and the data is initialized.

 ♦ ♦ ♦ ♦ Mute
 In the following instances, the synthesizer will enter mute status. No sound
 will be output regardless of the ON flag setting.

 Sounds 1, 2, and 4:
 -When the output level is 0 with the default envelope value set to a value
 other than 0000 and in DOWN mode
 -When the step is 0 with the default envelope value set to a value of 0000
 and in UP mode (NR12, NR22, and NR42 set to 0x08 and the initialization
 flag set)

 Sound 3:
 With the output level set to mute

 (bits 5 and 6 of NR32 set to 0)

♦ ♦ ♦ ♦ Stop Status
 In the following cases, the ON flag is reset and sound output is halted.
 -Sound output is halted by the length counter.
 -With Sound 1, during a sweep operation, an overflow occurs in addition mode.

Game Boy Programming Manual

80

♦ ♦ ♦ ♦ OFF Mode
 Stops operation of the frequency counter and D/A converter and halts sound output.

♦ ♦ ♦ ♦ Sounds 1, 2, and 4:
 -When the default level is set to 0000 with the envelope in DOWN mode
 (initialization not required)

♦ ♦ ♦ ♦ Sound 3:
 -When the Sound OFF flag (bit 7 of NR30) is set to 0.
 Setting the Sound OFF flag to 1 cancels OFF mode.
 Sound 3 is started by re-initialization.

♦ ♦ ♦ ♦ All Sounds OFF mode
 -Setting the All Sounds ON/OFF flag (bit 7 of NR52) to 0 resets all of the
 mode registers (for sounds 1, 2, 3, and 4) and halts sound output. Setting
 the All Sounds ON/OFF flag to 1 cancels All Sounds OFF mode.

Note: The sound mode registers should always be set after All Sound OFF mode is
 cancelled. The sound mode registers cannot be set in All Sound OFF mode.

♦ ♦ ♦ ♦ Sound Usage Notes
 Use one of the following methods to halt sounds 1, 2, or 4.

 1) Use NR51.
 2) Set NR12, NR22, and NR42 to 0x08.

 3) Set NR14, NR24, and NR44 to 0x80.

Switch to OFF mode during the scene you stop the BGM. Unless you switch to OFF mode, a faint
whining noise can be heard due to the sound circuit structure.

Chapter 3: Sound Functions

81

2. SOUND CONTROL REGISTERS

 2.1 Sound 1 Mode Registers

Sound 1 is a circuit that generates a rectangle waveform with sweep and envelope functions.
It is set by registers NR10, NR11, NR12, NR13, and NR14.

 ♦ ♦ ♦ ♦ Sweep Shift Number

7 6 5 4 3 2 1 0Name Address Bit

NR10 FF10 R/W(Only the shaded portion
)(can be read.)

Sweep Shift Number n(n=0 to 7)

Sweep Increase/Decrease
0: Addition(frequency increases)
1: Subraction(frequency decreases)

Sweep Time, ts

 ♦ ♦ ♦ ♦ Sweep Shift Number
 The frequency with one shift (NR13 and NR14) is determined by the following formula.
 X (t) = X (t - 1) + X (t - 1) / 2 n = 0 to 7
 X (0) = default data X (t-1) is the previous output frequency

If the result of this formula is a value consisting of more than 11 bits, sound output is stopped
and the Sound 1 ON flag of NR52 (bit 0) is reset.
In a subtraction operation, if the subtrahend is less than 0, the result is the pre-calculation
value X (t) = X (t -1). However, if n = 0, shifting does not occur and the frequency is
unchanged.

 ♦ ♦ ♦ ♦ Sweep time (ts)
Frequency varies with each value of ts.
000: Sweep OFF
001: ts=1/f128 (7.8ms)
010: ts=2/f128 (15.6ms)
011: ts=3/f128 (23.4ms)
100: ts=4/f128 (31.3ms)
101: ts=5/f128 (39.1ms)
110: ts=6/f128 (46.9ms)
111: ts=7/f128 (54.7ms) f128=128Hz

Game Boy Programming Manual

82

Example: When NR10 = 79h and the default frequency = 400h, the sweep waveform appears as follows.

7.8ms

54.7ms 54.7ms 54.7ms

11.7ms 13.6ms

Note: When the sweep function is not used, the increase/decrease flag should be set
 to 1 (subtraction mode).

7 6 5 4 3 2 1 0Name Address Bit

NR11 FF11 R/W(Only the shaded portion
)(can be read.)

Sound Length, t1(0 to 63)

Waveform Duty Cycle

 Sound length = (64 - t1) x (1/256) sec

 Waveform Duty Cycles

 00 : 12.5%

 01 : 25%

 10 : 50%

 11 : 75%

7 6 5 4 3 2 1 0Name Address Bit

NR12 FF12 R/W

Envelope Up/Down
0: Attenuate(decrease)
1: Amplify(increase)

Default Envelope Value

Length of Envelope Steps n(n=0 to 7)

Length of Envelope Steps:
Sets the length of each step of envelope amplification or attenuation.
Length of 1 step = N x (1/64) sec
When N = 0, the envelope function is stopped.

Default Envelope Value (0000 to 1111B):
16 step levels can be specified using the 4-bit D/A circuit.
Maximum is 1111B, and 0000 is the mute setting.

Chapter 3: Sound Functions

83

Example: When NR12 = 94h, the Amp Gain is as follows.�

 Amp. Gain

4/64 sec.

Note: By Setting the envelope register only nothing will be reflected in the output. Always set
 the initial flag.

7 6 5 4 3 2 1 0Name Address Bit

NR13 FF13 R/W(Low-order Frequency Data

7 6 5 4 3 2 1 0Name Address Bit

NR14 FF14 R/W(Only the shaded portion
)(can be read.)

High-order Frequency Data(3 bits)

Counter Continuous Selection

Initialize

Counter/Continuous Selection
0: Outputs continuous sound regardless of length data in register NR11.
1: Outputs sound for the duration specified by the length data in register NR11.

 When sound output is finished, bit 0 of register NR52, the Sound 1 ON flag,
 is reset.

Initialize
Setting this bit to 1 restarts Sound 1.
With the 11-bit frequency data specified in NR13 and NR14 represented by x, the
frequency, f, is determined by the following formula.
f = 4194304 / (4 x 2 x (2048 - X)) Hz
Thus, the minimum frequency is 64 Hz and the maximum is 131.1 KHz.

Game Boy Programming Manual

84

 ♦ ♦ ♦ ♦ Sound 1 Usage Notes

-When no sweep function is used with Sound 1, the sweep time should be set to 0
 (sweep OFF). In addition, either the sweep increase/decrease flag should be set to 1
 or the sweep shift number set to 0 (set to 08h-0Fh or 00h in NR10).

-Sound may not be produced if the sweep increase/decrease flag of NR10 is set to 0
(addition mode), the sweep shift number set to a value other than 0, and the mode set
to sweep OFF (e.g. NR10 = 01h)

-When a value is written in the envelope register, the sound output becomes unstable
 till the initial flag is set. Therefore, set the initial flag immediately after writing a value in
 the envelope register.

2.2 Sound 2 Mode Registers
Sound 2 is a circuit that generates a rectangle waveform with an envelope function. It is set by registers
NR21, NR22, NR23, and NR24.

7 6 5 4 3 2 1 0Name Address Bit

NR21 FF16 R/W(Only the shaded portion
)(can be read.)

Sound Length Data, t1(0 to 63)

Waveform Duty(00-11 Binary)

7 6 5 4 3 2 1 0Name Address Bit

NR22 FF17 R/W

Envelope Up/Down
0: Decrease
1: Increase

Default Envelope Value

Length of Envelope Steps n(n=0 to 7)

Note: By Setting the envelope register only nothing will be reflected in the output. Always set
 the initial flag.

Chapter 3: Sound Functions

85

7 6 5 4 3 2 1 0Name Address Bit

NR23 FF18 W Lower Frequency Data

7 6 5 4 3 2 1 0Name Address Bit

NR24 FF19 R/W(Only the shaded portion
)(can be read.)

High-order Frequency Data(3 bits)

Counter/Continuous Selection

Initialize

Counter/Continous Selection
0: Outputs continuous sound regardless of length data in register NR21.
1: Outputs sound for the duration specified by the length data in register

NR21. When sound output is finished, bit 1 of register NR52, the Sound 2
ON flag, is reset.

Initialize
Setting this bit to 1 restarts Sound 2.

♦ ♦ ♦ ♦ Sound 2 Usage Notes

When a value is written in the envelope register, the sound output becomes unstable until the initial flag
is set. Hence, set the initial flag immediately after writing a value in the envelope register.

2.3 Sound 3 Mode Registers
Sound 3 is a circuit that generates user-defined waveforms. It automatically reads a waveform pattern (1
cycle)written to waveform RAM at FF30h-FF3Fh, and it can output a sound while changing its length,
frequency, and level by registers NR30, NR31, NR32, NR33, and NR34.

The settings of the sound length and frequency functions and data are the same as for the Sound 1 circuit.

7 6 5 4 3 2 1 0Name Address Bit

NR30 FF1A R/W(Only the shaded portion
)(can be read.)

Sound Off
0:Stop Sound 3 Output
1:Enable Sound 3 Output

7 6 5 4 3 2 1 0Name Address Bit

NR31 FF1B R/W Selects the Sound Length

Sound Length Data, t1(0 to 255)

 Sound Length = (256-t1) x (1/256) sec

Game Boy Programming Manual

86

7 6 5 4 3 2 1 0Name Address Bit

NR32 FF1C R/W(Only the shaded portion
)(can be read.)

Output Level Selection

Output Level:
00: Mute
01: Output waveform RAM data (4-bit length) unmodified.
10: Output waveform RAM data (4-bit length) shifted 1 bit to the right (1/2).
11: Output waveform RAM data (4-bit length) shifted 2 bits to the right (1/4).

7 6 5 4 3 2 1 0Name Address Bit

NR33 FF1D W

Low-Order Frequency Data

7 6 5 4 3 2 1 0Name Address Bit

NR34 FF1E R/W(Only the shaded portion
)(can be read.)

Output Level Selection

Initialization Flag
Counter/Continuous Selection

Counter/Continous Selection
0: Outputs continuous sound regardless of length data in register NR31.
1: Outputs sound for the duration specified by the length data in register NR31.
 When sound output is finished, bit 2 of register NR52, the Sound 3 ON flag,
 is reset.

Initialization Flag
When the Sound OFF flag (bit 7, NR30) is set to 1, setting this bit to 1 restarts
Sound 3.

Chapter 3: Sound Functions

87

♦ ♦ ♦ ♦ Sound 3 Usage Notes
• • • • The initialization flag should not be set when the frequency is changed during Sound
 3 output.
• • • • Setting the initialization flag during Sound 3 operation (Sound 3 ON flag = 1) may
 destroy the contents of waveform RAM.
• • • • Setting the initialization flags for Sound 1, Sound 2, or Sound 4 does not cause a problem.

♦ ♦ ♦ ♦ Waveform RAM Composition
 Waveform RAM consists of waveform patterns of 4 bits x 32 steps.

 Address D7 D6 D5 D4 D3 D2 D1 D0

 Step 0 Step 1 FF30

 Step 2 Step 3 FF31

 Step 4 Step 5 FF32

 Step 30 Step 31 FF3F

Example: Triangular Wave

1FHOH

OH

FH

Data

FF30H -- 01H, 23H, 45H, 67H
 89H, ABH, CDH, EFH,
 EDH, CBH, A9H, 87H

 65H, 43H, 21H, 00H

2.4 Sound 4 Mode Registers
Sound 4 is a white-noise generating circuit. It can output sound while switching the number of steps of the
polynomial counter for random number generation and changing the frequency dividing ratio and
envelope data by registers NR41, NR42, NR43, and NR44.

7 6 5 4 3 2 1 0Name Address Bit

NR41 FF20 R/W

Sound Length,t1(0 to 63)

Game Boy Programming Manual

88

7 6 5 4 3 2 1 0Name Address Bit

NR42 FF21 R/W

Envelope Up/Down
0: Decrease
1: Increase

Default Envelope Value

Length of Envelope Steps n(n=0 to 7)

Note: By only setting the envelope register nothing will be reflected in the output. Always set
 the initial flag.

7 6 5 4 3 2 1 0Name Address Bit

NR43 FF22 R/W

Selects Number of Polynomial
Counter Steps

Selects Shift Clock Frequency of

Selects Division Ratio of Frequency

Polynomial Counter

Selecting the dividing ratio of the frequency:
Selects a 14-step prescalar input clock to produce the shift clock for the polynomial
counter.
000 : fx1/23x2
001 : fx1/23x1
010 : fx1/23x1/2
011 : fx1/23x1/3
100 : fx1/23x1/4
101 : fx1/23x1/5
110 : fx1/23x1/6
111 : fx1/23x1/7 f=4/19430MHz

Selecting the number of steps for the polynomial counter:
0: 15 steps
1: 7 steps

Selecting the shift clock frequency of the polynomial counter:
0000: Dividing ratio frequency x 1/2
0001: Dividing ratio frequency x 1/22

0010: Dividing ratio frequency x 1/23

0011: Dividing ratio frequency x 1/24

: :
: :

1101: Dividing ratio frequency x 1/24

1110: Prohibited code
1111: Prohibited code

Chapter 3: Sound Functions

89

7 6 5 4 3 2 1 0Name Address Bit

NR44 FF23 R/W(Only the shaded portion
)(can be read.)

Counter/Continous Selection

Initialize

Counter/Continuous Selection:
0: Outputs continuous sound regardless of length data in register NR41.
1: Outputs sound for the duration specified by the length data in register

NR41. When sound output is finished, bit 3 of register NR52, the Sound 4
ON flag, is reset.

Initialize:
Setting this bit to 1 restarts Sound 4.

♦ ♦ ♦ ♦ Sound 4 Usage Notes
When a value is written in the envelope register, the sound output becomes unstable until the initial flag is
set. Hence, set the initial flag immediately after writing a value in the envelope register.

Game Boy Programming Manual

90

2.5 Sound Control Registers

7 6 5 4 3 2 1 0Name Address Bit

NR50 FF24 R/W

Vin

SO1 Output Level(0-7)

S01 On/Off

SO2 Output Level(0-7)

Vin S02 On/Off

Output Level:
 000: Minimum level (Maximum level 8)

 :
 :
111: Maximum level

V i n!SO1 ON/OFF (V i nSO2!ON/OFF)
Synthesizes audio input from Vin terminal with sounds 1-4 and ouputs the result.
0: No output
1: Output

7 6 5 4 3 2 1 0Name Address Bit

NR51 FF25 R/W Selects a Sound Output Terminal

Output Sound 1 to Terminal SO1
Output Sound 2 to Terminal SO1
Output Sound 3 to Terminal SO1
Output Sound 4 to Terminal SO1
Output Sound 1 to Terminal SO2
Output Sound 2 to Terminal SO2
Output Sound 3 to Terminal SO2
Output Sound 4 to Terminal SO20: No Output

1: Output

7 6 5 4 3 2 1 0Name Address Bit

NR52 FF26 R/W(Only the shaded portion
)(can be read.)

Sound 1 On Flag
Sound 2 On Flag
Sound 3 On Flag
Sound 4 On Flag
Each flag is set during each sound output
in Counter Mode. The flag is reset after
the interval specified by the Length Data.

All Sound On/Off
0: Disable All Sound Circuits
1: Enable All Sound Circuits

Chapter 3: Sound Functions

91

3. VIN TERMINAL USAGE NOTES
• • • • The VIN terminal can be used normally only in CGB. (Since the signal from the VIN terminal is
 too low to be used, the VIN terminal cannot be used in DMG.)

• • • • The maximum amplitude of the synthesized output is 3V.

• • • • The design prevents the maximum amplitude from exceeding 3V when only sounds 1-4 are
 used, even when the output level for each sound is set to the maximum.

When the output level is set to 0Fh, each sound is output at 0.75V.
0.75V x 4 = 3V

• • • • The maximum amplitude of the synthesized sound output also must be limited to 3V or less
 when the VIN terminal is used to input external sound.

Example: Using Sounds 1-4 and the VIN terminal
Use software to adjust the output levels of sounds 1-4 so that they do not exceed 0.6V
(3V ÷).Also limit the output level of the VIN terminal to 0.6V or less (input range of 1.9 - 2.5V).

+1.5V

+1.5V

2.2V

+0.3

-0.3

• • • • The input voltage from the VIN terminal also can be increased if the levels of the internal
 sounds are low or if not all 4 sounds are used (total output level of 3V or less).

Game Boy Programming Manual

92

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 4: CPU Instruction Set

93

CHAPTER 4: CPU INSTRUCTION SET....................................94

1. GENERAL PURPOSE REGISTERS...94

2. DESCRIPTION OF INSTRUCTIONS..95
2.1 8-Bit Transfer and Input/Output Instructions..95
2.2 16-Bit Transfer Instructions ...100
2.3 8-Bit Arithmetic and Logical Operation Instructions102
2.4 16-Bit Arithmetic Operation Instructions ..107
2.5 Rotate Shift Instructions ..109
2.6 Bit Operations ... 114
2.7 Jump Instructions ... 116
2.8 Call and Return Instructions .. 118
2.9 General-Purpose Arithmetic Operations/CPU Control Instructions.... 122

Game Boy Programming Manual

94

CHAPTER 4: CPU INSTRUCTION SET

1. GENERAL PURPOSE REGISTERS

 7 0 7 0

A F
B C
D E
H L

 15 0

PC
SP

• Accumulator: A
An 8-bit register for storing data and the results of arithmetic and logical operations.

• Auxiliary registers: B, C, D, E, F, H, and L
These serve as auxiliary registers to the accumulator. As register pairs (BC, DE, HL), they are 8-bit
registers that function as data pointers.

• Program counter: PC
A 16-bit register that holds the address data of the program to be executed next.
Usually incremented automatically according to the byte count of the fetched instructions. When an
instruction with branching is executed, however, immediate data and register contents are loaded.

• Stack pointer: SP
A 16-bit register that holds the starting address of the stack area of memory.
The contents of the stack pointer are decremented when a subroutine CALL instruction or PUSH
instruction is executed or when an interrupt occurs and incremented when a return instruction or pop
instruction is executed.

SP-2
(After instruction executed) qqL

SP
(Before instruction executed) qqL

qqH qqH
SP

(Before instruction executed)
SP-2

(After instruction executed)

 PUSH qq POP qq

Chapter 4: CPU Instruction Set

95

• Flag Register: F
Consists of 4 flags that are set and reset according to the results of instruction execution.
Flags CY and Z are tested by various conditional branch instructions.

Z: Set to 1 when the result of an operation is 0; otherwise reset.
N: Set to 1 following execution of the substruction instruction, regardless of the result.
H: Set to 1 when an operation results in carrying from or borrowing to bit 3.
CY: Set to 1 when an operation results in carrying from or borrowing to bit 7.

2. DESCRIPTION OF INSTRUCTIONS
2.1 8-Bit Transfer and Input/Output Instructions

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD r, r' r ← r' -- -- -- -- 1 0 1 r r'

Loads the contents of register r' into register r.

Codes for registers r and r'

Register r, r'

A 111

B 000

C 001

D 101

E 011

H 100

L 101

Examples: LD A, B ; A ← B
LD B, D ; B ← D

Game Boy Programming Manual

96

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD r, n r ← n -- -- -- -- 2 00 r 110

 n

Loads 8-bit immediate data n into register r.

Example: L D B, 24h ; B ← 24h

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD r, (HL) r ← (HL) -- -- -- -- 2 01 r 110

Loads the contents of memory (8 bits) specified by register pair HL into register r.

Example: When (HL) = 5Ch,
LD H, (HL) ; H ← 5Ch

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (HL), r (HL) ← r -- -- -- -- 2 01 110 r

Stores the contents of register r in memory specified by register pair HL.

Example: When A = 3Ch, HL = 8AC5h
LD (HL), A ; (8AC5h) ← 3Ch

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD (HL), n (HL) ← n -- -- -- -- 3 00 110 110

 n

Loads 8-bit immediate data n into memory specified by register pair HL.

Example: When HL = 8AC5h,
 LD (HL), 0 ; 8AC5h ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD A, (BC) A ← (BC) -- -- -- -- 2 00 001 010

Loads the contents specified by the contents of register pair BC into register A.

Example: When (BC) = 2Fh,
 LD A, (BC) ; A ← 2Fh

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD A, (DE) A ← (DE) -- -- -- -- 2 00 011 010

Loads the contents specified by the contents of register pair DE into register A.

Example: When (DE) = 5Fh,
 LD A, (DE) ; A ← 5Fh

Chapter 4: CPU Instruction Set

97

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD A, (C) A ← (FF00H+C) -- -- -- -- 2 11 110 010

Loads into register A the contents of the internal RAM, port register, or mode register at the address in
the range FF00h-FFFFh specified by register C.

Example: When C = 95h,
 LD A, (C) ; A ← contents of (FF95h)

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD (C), A (FF00H+C) ← A -- -- -- -- 2 11 100 010

Loads the contents of register A in the internal RAM, port register, or mode register at the address in the
range FF00h-FFFFh specified by register C.

Example: When C = 9Fh,
 LD (C), A ; (FF9Fh) ← A

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD A, (n) A ← (n) -- -- -- -- 3 11 110 000

 n

Loads into register A the contents of the internal RAM, port register, or mode register at the address in
the range FF00h-FFFFh specified by the 8-bit immediate operand n.

Note, however, that a 16-bit address should be specified for the mnemonic portion of n, because only the
lower-order 8 bits are automatically reflected in the machine language.

Example: To load data at FF34h into register A, type the following.
 LD A, (FF34)

Typing only LD A, (34) would cause the address to be incorrectly interpreted as 0034, resulting in the
instruction LD A, (0034) .

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (n), A (n) ← A -- -- -- -- 3 11 100 000

 n

Loads the contents of register A to the internal RAM, port register, or mode register at the address in the
range FF00h-FFFFh specified by the 8-bit immediate operand n.

Note, however, that a 16-bit address should be specified for the mnemonic portion of n, because only the
lower-order 8 bits are automatically reflected in the machine language.

Example: To load the contents of register A in 0xFF34, type the following.
 LD (FF34), A

Typing only LD (34), A would cause the address to be incorrectly interpreted as 0034, resulting in the
instruction LD (0034), A .

Game Boy Programming Manual

98

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD A, (nn) A ← (nn) -- -- -- -- 4 11 111 010

 n

 n

Loads into register A the contents of the internal RAM or register specified by 16-bit immediate operand
nn.

Example: LD A, (FF44h) ; A ← (LY)
 LD A, (8000h) ; A ← (8000h)

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (nn), A (nn) ← A -- -- -- -- 4 11 101 010

 n

 n

Loads the contents of register A to the internal RAM or register specified by 16-bit immediate operand nn.

Example: LD (FF44h), A ; (LY) ← A
 LD (8000h), A ; (8000h) ← A

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD A, (HLI) A ← (HL)
 HL ← HL+1

 -- -- -- -- 2 00 101 010

Loads in register A the contents of memory specified by the contents of register pair HL and
simultaneously increments the contents of HL.

Example: When HL = 1FFh and (1FFh) = 56h,
 LD A, (HLI) ; A ← 56h, HL ← 200h

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD A, (HLD) A ← (HL)
 HL ← HL-1

 -- -- -- -- 2 00 111 010

Loads in register A the contents of memory specified by the contents of register pair HL and
simultaneously decrements the contents of HL.

Example: When HL = 8A5Ch and (8A5Ch) = 3Ch,
 LD A, (HLD) ; A ← 3Ch, HL ← 8A5Bh

Chapter 4: CPU Instruction Set

99

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (BC), A (BC) ← A -- -- -- -- 2 00 000 010

Stores the contents of register A in the memory specified by register pair BC.

Example: When BC = 205Fh and A = 3Fh,
 LD (BC) , A ; (205Fh) ← 3Fh

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (DE), A (DE) ← A -- -- -- -- 2 00 010 010

Stores the contents of register A in the memory specified by register pair DE.

Example: When DE = 205Ch and A = 00h,
 LD (DE) , A ; (205Ch) ← 00h

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (HLI), A (HL) ← A
 HL ← HL+1

 -- -- -- -- 2 00 100 010

Stores the contents of register A in the memory specified by register pair HL and simultaneously
increments the contents of HL.

Example: When HL = FFFFh and A = 56h,
 LD (HLI), A ; (0xFFFF) ← 56h, HL = 0000h

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD (HLD), A (HL) ← A
 HL ← HL-1

 -- -- -- -- 2 00 110 010

Stores the contents of register A in the memory specified by register pair HL and simultaneously
decrements the contents of HL.

Example: HL = 4000h and A = 5h,
 LD (HLD), A ; (4000h) ← 5h, HL = 3FFFh

Game Boy Programming Manual

100

2.2 16-Bit Transfer Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD dd, nn dd ← nn -- -- -- -- 3 00 dd0 001

 L-ADRS n

 H-ADRS
 n

Loads 2 bytes of immediate data to register pair dd.

dd codes are as follows:

Register Pair dd

 BC 00

 DD 01

 HL 10

 SP 11

Example: LD HL, 3A5Bh ; H ← 3Ah, L ← 5Bh

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LD SP, HL SP ← HL -- -- -- -- 2 11 111 001

Loads the contents of register pair HL in stack pointer SP.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

PUSH qq (SP - 1) ← qqH
 (SP - 2) ← qqL

 -- -- -- -- 4 11 qq0 101

 SP ← SP-2

Pushes the contents of register pair qq onto the memory stack. First 1 is subtracted from SP and the
contents of the higher portion of qq are placed on the stack. The contents of the lower portion of qq are
then placed on the stack. The contents of SP are automatically decremented by 2.

qq codes are as follows:

Register Pair qq

 BC 00

 DE 01

 HL 10

 AF 11

Example: When SP = FFFEh,
 PUSH BC ; (FFFCh), (FFFCh) ← B, SP ← FFFCh

Chapter 4: CPU Instruction Set

101

 CY H N Z CYCL 7 6 5 4 3 2 1 0

POP qq qqL ← (SP)
 qqH ← (SP+1)
 SP ← SP+2

 -- -- -- -- 3 11 qq0 001

Pops contents from the memory stack and into register pair qq.
First the contents of memory specified by the contents of SP are loaded in the lower portion of qq. Next,
the contents of SP are incremented by 1 and the contents of the memory they specify are loaded in the
upper portion of qq. The contents of SP are automatically incremented by 2.

Example: When SP = FFFCh, (FFFCh) = 5Fh, and (FFFDh) = 3Ch,
 POP BC ; B ← 3Ch, C ← 5Fh, SP ← FFFEh

 CY H N Z CYCL 7 6 5 4 3 2 1 0

LDHL SP, e HL ← SP+e * * 0 0 3 11 111 000

 * Varies with instruction results e

 e = -128 to +127
The 8-bit operand e is added to SP and the result is stored in HL.

Flag Z: Reset
H: Set if there is a carry from bit 11; otherwise reset.
N: Reset
CY: Set if there is a carry from bit 15; otherwise reset.

Example: When SP = 0xFFF8,
 LDHL SP, 2 ; HL ← 0xFFFA, CY ← 0, H ← 0, N ← 0, Z ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 LD (nn), SP (nn) ← SPL -- -- -- -- 5 00 001 000

 (nnH) ← SPH
 L-ADRS n

 H-ADRS n

Stores the lower byte of SP at address nn specified by the 16-bit immediate operand nn and the upper
byte of SP at address nn + 1.

Example: When SP = FFF8h,
 LD (C100h) , SP ; C100h ← F8h
 C101h← FFh

Game Boy Programming Manual

102

2.3 8-Bit Arithmetic and Logical Operation Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADD A, r A ← A + r * * 0 * 1 10 000 r

Adds the contents of register r to those of register A and stores the results in register A.

Flag Z: Set if the result is 0; otherwise reset.
H: Set if there is a carry from bit 3; otherwise reset.
N: Reset
CY: Set if there is a carry from bit 7; otherwise reset.

Example: When A = 0x3A and B = 0xC6,
 ADD A, B ; A ← 0, Z ← 1, H ← 1, N ← 0, CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADD A, n A ← A + n * * 0 * 2 11 000 110

 n

Adds 8-bit immediate operand n to the contents of register A and stores the results in register A..

Example: When A = 3Ch,
 ADD A. FFh ; A ← 3Bh, Z ← 0, H ← 1, N ← 0, CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADD A, (HL) A ← A + (HL) * * 0 * 2 10 000 110

Adds the contents of memory specified by the contents of register pair HL to the contents of register A
and stores the results in register A..

Example: When A = 3Ch and (HL) = 12h,
 ADD A, (HL) ; A ← 4Eh, Z ← 0, H ← 0, N ← 0, CY ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADC A, s A ← A+s+CY * * 0 * -- -- -- --

Adds the contents of operand s and CY to the contents of register A and stores the results in register A..
r, n, and (HL) are used for operand s.

Chapter 4: CPU Instruction Set

103

 CYCL 7 6 5 4 3 2 1 0

 ADC A, r 1 10 001 r

 ADC A, n 2 11 001 110

 n

 ADC A, (HL) 2 10 001 110

Examples: When A = E1h, E = 0Fh, (HL) = 1Eh, and CY = 1,
 ADC A, E ; A ← F1h, Z ← 0, H ← 1, CY ← 0
 ADC A, 3Bh ; A ← 1Dh, Z ← 0, H ← 0, CY ← -1
 ADC A, (HL) ; A ← 00h, Z ← 1, H ← 1, CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

SUB s A ← A-s * * 1 * -- -- -- --

Subtracts the contents of operand s from the contents of register A and stores the results in register A.
r, n, and (HL) are used for operand s.

 CYCL 7 6 5 4 3 2 1 0

 SUB r 1 10 010 r

 SUB n 2 11 010 110

 n

 SUB (HL) 2 10 010 110

Flag Z: Set if result is 0; otherwise reset.
H: Set if there is a borrow from bit 4; otherwise reset.
N: Set
CY: Set if there is a borrow; otherwise reset.

Examples: When A = 3Eh, E = 3Eh, and (HL) = 40h,
 SUB E ; A ← 00h, Z ← 1, H ← 0, N ← 1 CY ← 0
 SUB 0Fh ; A ← 2Fh, Z ← 0, H ← 1, N ← 1 CY← 0
 SUB (HL) ; A ← FEh, Z ← 0, H ← 0, N ← 1 CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SBC A, s A ← A-s-CY * * 1 * -- -- -- --

Subtracts the contents of operand s and CY from the contents of register A and stores the results in
register A.
r, n, and (HL) are used for operand s.

Game Boy Programming Manual

104

 CYCL 7 6 5 4 3 2 1 0

 SBC A, r 1 10 011 r

 SBC A, n 2 11 011 110

 n

SBC A. (HL) 2 10 011 110

Examples: When A = 3Bh, (HL) = 4Fh, H = 2Ah, and CY = 1,
 SBC A, H ; A ← 10h, Z ← 0, H ← 0, N ← 1 CY ← 0
 SBC A, 3Ah ; A ← 00h, Z ← 1, H ← 0, N ← 1 CY ← 0
 SBC A, (HL) ; A ← EBh, Z ← 0, H ← 1, N ← 1 CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

AND s A ← A ∧ s 0 1 0 * -- -- -- --

Takes the logical-AND for each bit of the contents of operand s and register A, and stores the results in
register A.
r, n, and (HL) are used for operand s.

 CYCL 7 6 5 4 3 2 1 0

 AND r 1 10 100 r

 AND n 2 11 100 110

 n

 AND (HL) 2 10 100 110

Examples: When A = 5Ah, L = 3Fh and (HL) = 0h,
 AND L ; A ← 1Ah, Z ← 0, H ← 1, N ← 0 CY ← 0
 AND 38h ; A ← 18h, Z ← 0, H ← 1, N ← 0 CY ← 0
 AND (HL) ; A ← 00h, Z ← 1, H ← 1, N ← 0 CY ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

OR s AVs 0 0 0 * -- -- -- --

Takes the logical-OR for each bit of the contents of operand s and register A and stores the results in
register A. r, n, and (HL) are used for operand s.

Chapter 4: CPU Instruction Set

105

 CYCL 7 6 5 4 3 2 1 0

 OR r 1 10 110 r

 OR n 2 11 110 110

 n

 OR (HL) 2 10 110 110

Examples: When A = 5Ah, (HL) = 0Fh,
 OR A ; A ← 5Ah, Z ← 0
 OR 3 ; A ← 5Bh, Z ← 0
 OR (HL) ; A ← 5Fh, Z ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 XOR s A ⊕ s 0 0 0 * -- -- -- --

Takes the logical exclusive-OR for each bit of the contents of operand s and register A. and stores the
results in register A. r, n, and (HL) are used for operand s.

 CYCL 7 6 5 4 3 2 1 0

 XOR r 1 10 101 r

 XOR n 2 11 101 110

 n

 XOR (HL) 2 10 101 110

Examples: When A = FFh and (HL) = 8Ah,
 XOR A ; A ← 00h, Z ← 1
 XOR 0x0F ; A ← F0h, Z ← 0
 XOR (HL) ; A ← 75h, Z ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

CP s A  s * * 1 * -- -- -- --

Compares the contents of operand s and register A and sets the flag if they are equal.
r, n, and (HL) are used for operand s.

Game Boy Programming Manual

106

 CYCL 7 6 5 4 3 2 1 0

 CP r 1 10 111 r

 CP n
 2

 11 111 110

 n

 CP (HL) 2 10 111 110

Examples: When A = 3Ch, B = 2Fh, and (HL) = 40h,
 CP B ; Z ← 0, H ← 1, N ← 1, CY ← 0
 CP 3Ch ; Z ← 1, H ← 0, N ← 1, CY ← 0
 CP (HL) ; Z ← 0, H ← 0, N ← 1, CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 INC r r ← r + 1 -- * 0 * 1 00 r 100

Increments the contents of register r by 1.

Example: When A = FFh,
 INC A ; A ← 0, Z ← 1, H ← 1, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

INC (HL) (HL) ← (HL) + 1 -- * 0 * 3 00 110 100

Increments by 1 the contents of memory specified by register pair HL.

Example: When (HL) = 0x50,
 INC (HL) ; (HL) ← 0x51, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

DEC r r ← r - 1 -- * 1 * 1 00 r 101

Subtract 1 from the contents of register r by 1.

Example: When L = 01h,
 DEC L ; L ← 0, Z ← 1, H ← 0, N ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

DEC (HL) (HL) ← (HL) - 1 -- * 1 * 3 00 110 101

Decrements by 1 the contents of memory specified by register pair HL.

Example: When (HL) = 00h,
 DEC (HL) ; (HL) ← FFh, Z ← 0, H ← 1, N ← 1

Chapter 4: CPU Instruction Set

107

2.4 16-Bit Arithmetic Operation Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADD HL, ss HL ← HL + ss * * 0 -- 2 00 ss1 001

Adds the contents of register pair ss to the contents of register pair HL and stores the results in HL.
ss codes are as follows:

 Register Pair ss

 BC 00

 DE 01

 HL 10

 SP 11

Flag Z: No change
H: Set if there is a carry from bit 11; otherwise reset.
N: Rest
CY: Set if there is a carry from bit 15; otherwise reset.

Example: When HL = 8A23h, BC = 0605h,
 ADD HL, BC ; HL ← 9028h, H ← 1, N ← 0, CY ← 0
 ADD HL, HL ; HL ← 1446h, H ← 1, N ← 0, CY ← 1

 CY H N Z CYCL 7 6 5 4 3 2 1 0

ADD SP, e SP ← SP + e * * 0 0 4 11 101 000

 e

Adds the contents of the 8-bit immediate operand e and SP and stores the results in SP.

Example: SP = FFF8h
 ADD SP, 2 ; SP ← 0xFFFA, CY ← 0, H ← 0, N ← 0, Z ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

INC ss ss ← ss + 1 -- -- -- -- 2 00 ss0 011

Increments the contents of register pair ss by 1.

Example: When DE = 235Fh,
 INC DE ; DE ← 2360h

Game Boy Programming Manual

108

 CY H N Z CYCL 7 6 5 4 3 2 1 0

DEC ss ss ← ss - 1 -- -- -- -- 2 00 ss1 011

Decrements the contents of register pair ss by 1.

Example: When DE = 235Fh,
 DEC DE ; DE ← 235Eh

Chapter 4: CPU Instruction Set

109

2.5 Rotate Shift Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RLCA A7 0 0 0 1 00 000 111

 7 A 0
 CY

Rotates the contents of register A to the left.
That is, the contents of bit 0 are copied to bit 1 and the previous contents of bit 1 (the contents before the
copy operation) are copied to bit 2. The same operation is repeated in sequence for the rest of the
register. The contents of bit 7 are placed in both CY and bit 0 of register A..

Example: When A = 85h and CY = 0,
 RLCA ; A ← 0Ah, CY ← 1, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RLA A7 0 0 0 1 00 010 111

 7 A 0
 CY

Rotates the contents of register A to the left.

Example: When A = 95h and CY = 1,
 RLA ; A ← 2Bh, C ← 1, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RRCA A0 0 0 0 1 00 001 111

 7 A 0 CY

Rotates the contents of register A to the right.

Example: When A = 3Bh and CY = 0,
 RRCA ; A ← 9Dh, CY ← 1, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RRA A0 0 0 0 1 00 011 111

 7 A 0 CY

Rotates the contents of register A to the right.

Example: When A = 81h and CY = 0,
 RRA ; A ← 40h, CY ← 1, Z ← 0, H ← 0, N ← 0

Game Boy Programming Manual

110

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RLC m m7 0 0 * -- -- -- --

 7 m 0
 CY

Rotates the contents of operand m to the left.
r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 RLC r 2 11 001 011

 00 000 r

 RLC (HL) 4 11 001 011

 00 000 110

Examples: When B = 85h, (HL) = 0, and CY = 0,
 RLC B ; B ← 0Bh, CY ← 1, Z ← 0, H ← 0, N ← 0
 RLC (HL) ; (HL) ← 00h, CY ← 0, Z ← 1, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RL m m7 0 0 * -- -- -- --

 7 m 0
 CY

Rotates the contents of operand m to the left.
r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 RL r 2 11 001 011

 00 010 r

 RL (HL) 4 11 001 011

 00 010 110

Examples: When L = 80h, (HL) = 11h, and CY = 0,
 RL L ; L ← 00h, CY ← 1, Z ← 1, H ← 0, N ← 0
 RL (HL) ; (HL) ← 22h, CY ← 0, Z ← 0, H ← 0, N ← 0

Chapter 4: CPU Instruction Set

111

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RRC m m0 0 0 * -- -- -- --

 7 m 0 CY

Rotates the contents of operand m to the right.
r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 RRC r 2 11 001 011

 00 001 r

 RRC (HL) 4 11 001 011

 00 001 110

Examples: When C = 1h, (HL) = 0h, CY = 0,
 RRC C ; C ← 80h, CY ← 1, Z ← 0, H ← 0, N ← 0
 RRC (HL) ; (HL) ← 00h, CY ← 0, Z ← 1, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RR m m0 0 0 * -- -- -- --

 7 m 0 CY

Rotates the contents of operand m to the right.
r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 RR r 2 11 001 011

 00 011 r

 RR (HL)
 4

 11 011 011

 00 011 110

Examples: When A = 1h, (HL) = 8Ah, CY = 0,
 RR A ; A ← 00h, CY ← 1, Z ← 1, H ← 0, N ← 0
 RR (HL) ; (HL) ← 45h, CY ← 0, Z ← 0, H ← 0, N ← 0

Game Boy Programming Manual

112

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SLA m

 m7 0 0 * -- -- -- --

 CY
 7 m 0 0

Shifts the contents of operand m to the left. That is, the contents of bit 0 are copied to bit 1 and the
previous contents of bit 1 (the contents before the copy operation) are copied to bit 2. The same
operation is repeated in sequence for the rest of the operand. The content of bit 7 is copied to CY, and
bit 0 is reset.

r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 SLA r 2 11 001 011

 00 100 r

 SLA (HL) 4 11 011 011

 00 100 110

Examples: When D = 80h, (HL) = FFh, and CY = 0,
 SLA D ; D ← 00h, CY ← 1, Z ← 1, H ← 0, N ← 0
 SLA (HL) ; (HL) ← FEh, CY ← 1, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SRA m m0 0 0 * -- -- -- --

 7 m 0 CY

Shifts the contents of operand m to the right. That is, the contents of bit 7 are copied to bit 6 and the
previous contents of bit 6 (the contents before the copy operation) are copied to bit 5. The same
operation is repeated in sequence for the rest of the operand . The contents of bit 0 are copied to CY,
and the content of bit 7 is unchanged.

r and (HL) are used for operand m.

 CYCL 7 6 5 4 3 2 1 0

 SRA r 2 11 001 011

 00 101 r

 SRA (HL) 4 11 001 011

 00 101 110

Example: When A = 8Ah, (HL) = 01h, and CY = 0,
 SRA D ; A ← C5h, CY ← 0, Z ← 0, H ← 0, N ← 0
 SRA (HL) ; (HL) ← 00h, CY ← 1, Z ← 1, H ← 0, N ← 0

Chapter 4: CPU Instruction Set

113

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SRL m m0 0 0 * -- -- -- --

 0 7 m 0 CY

Shifts the contents of operand m to the right. That is, the contents of bit 7 are copied to bit 6 and the
previous contents of bit 6 (the contents before the copy operation) are copied to bit 5. The same
operation is repeated in sequence for the rest of the operand . The contents of bit 0 are copied to CY,
and bit 7 is reset.

r and (HL) are used for operand m.

 CYCL 7 6 　5 4 3 　2 1 0

 SRL r 2 11 001 011

 00 111 r

 SRL (HL) 4 11 001 011

 00 111 110

Examples: When A = 01h, (HL) = FFh, CY + 0,
 SRL A ; A ← 00h, CY ← 1, Z ← 1, H ← 0, N ← 0
 SRL (HL) ; (HL) ← 7Fh, CY ← 1, Z ← 0, H ← 0, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SWAP m 0 0 0 * -- -- -- --

 7 4 3 0

Shifts the contents of the lower-order 4 bits (0-3) of operand m unmodified to the higher-order 4 bits (4-7)
of that operand and shifts the contents of the higher-order 4 bits to the lower-order 4 bits.
r and (HL) are used for operand m.

 CYCL 7 6 　5 4 3 　2 1 0

 SWAP r 2 11 001 011

 00 110 r

 SWAP (HL) 4 11 001 011

 00 110 110

Examples: When A = 00h and (HL) = F0h,
 SWAP A ; A ← 00h, Z ← 1, H ← 0, N ← 0, CY ← 0
 SWAP (HL) ; (HL) ← 0Fh, Z ← 0, H ← 0, N ← 0, CY ← 0

Game Boy Programming Manual

114

2.6 Bit Operations
 CY H N Z CYCL 7 6 5 4 3 2 1 0

 BIT b, r Z ← rb -- 1 0 rb 2 11 001 011

 01 b r

Copies the complement of the contents of the specified bit in register r to the Z flag of the program status
word (PSW).

The codes for b and r are as follows.

 Bit b Register r

 0 000 A 111

 1 001 B 000

 2 010 C 001

 3 011 D 010

 4 100 E 011

 5 101 H 100

 6 110 L 101

 7 111

Examples: When A = 80h and L = EFh
 BIT 7, A ; Z ← 0, H ← 1, N ← 0
 BIT 4, L ; Z ← 1, H ← 1, N ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 BIT b, (HL) Z ← (HL)b -- 1 0 (HL)b 3 11 001 011

 01 b 110

Copies the complement of the contents of the specified bit in memory specified by the contents of
register pair HL to the Z flag of the program status word (PSW).

Examples: When (HL) = FEh,
 BIT 0, (HL) ; Z ← 1, H ← 1, N ← 0
 BIT 1, (HL) ; Z ← 0, H ← 1, N ← 0

Chapter 4: CPU Instruction Set

115

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SET b, r rb ← 1 -- -- -- -- 2 11 001 011

 11 b r

Sets to 1 the specified bit in specified register r.

Example: When A = 80h and L = 3Bh,
 SET 3, A ; A ← 0x84
 SET 7, L ; L ← 0xBB

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SET b, (HL) (HL)b ← 1 -- -- -- -- 4 11 001 011

 11 b 110

Sets to 1 the specified bit in the memory contents specified by registers H and L.

Example: When 00h is the memory contents specified by H and L,
 SET 3, (HL) ; (HL) ← 04H

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RES b, r rb ← 0 -- -- -- -- 2 11 001 011

 10 b r

Resets to 0 the specified bit in the specified register r.

Example: When A = 80h and L = 3Bh,
 RES 7, A ; A ← 00h
 RES 1, L ; L ← 39h

 CY H N Z CYCL 7 6 5 4 3 2 1 0

RES b, (HL) (HL)b ← 0 -- -- -- -- 4 11 001 011

 10 b 110

Resets to 0 the specified bit in the memory contents specified by registers H and L.

Example: When 0xFF is the memory contents specified by H and L,
 RES 3, (HL) ; (HL) ← F7h

Game Boy Programming Manual

116

2.7 Jump Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

 JP nn PC ← nn -- -- -- -- 4 11 000 011

 L - ADRS n
 H - ADRS

 n

Loads the operand nn to the program counter (PC).
nn specifies the address of the subsequently executed instruction.
The lower-order byte is placed in byte 2 of the object code and the higher-order byte is placed in byte 3.

Example: JP 8000h ; Jump to 8000h.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 JP cc, nn If cc true, PC ← nn -- -- -- -- 4/3 11 Occ 010

 L - ADRS n

 H - ADRS n

 *Cycle no. is 3 when cc does not match

Loads operand nn in the PC if condition cc and the flag status match.
The subsequent instruction starts at address nn.
If condition cc and the flag status do not match, the contents of the PC are incremented, and the
instruction following the current JP instruction is executed.

The relation between conditions and cc codes are as follows.

 Cc Condition Flag

 00 NZ Z = 0

 01 Z Z = 1

 10 NC CY = 0

 11 C CY = 1

Example: When Z = 1 and C = 0,
 JP NZ, 8000h ; Moves to next instruction after 3 cycles.
 JP Z, 8000h ; Jumps to address 8000h.
 JP C, 8000h ; Moves to next instruction after 3 cycles.
 JP NC, 8000h ; Jumps to address 8000h.

Chapter 4: CPU Instruction Set

117

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 JR e PC ← PC + e -- -- -- -- 3 00 011 000

 e - 2

 e = -127 to +129

Jumps -127 to +129 steps from the current address.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 JR cc, e If cc true, PC ← PC + e -- -- -- -- 3/2 00 1cc 000

 e - 2

e = -127 to +129

If condition cc and the flag status match, jumps -127 to +129 steps from the current address. If cc and
the flag status do not match, the instruction following the current JP instruction is executed.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 JP (HL) PC ← HL -- -- -- -- 1 11 101 001

Loads the contents of register pair HL in program counter PC.
The next instruction is fetched from the location specified by the new value of PC.

Example: When HL = 8000h,
 JP (HL) ; Jumps to 8000h.

Game Boy Programming Manual

118

2.8 Call and Return Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

 CALL nn -- -- -- -- 6 11 001 101

 n

 (SP - 1) ← PCH

 (SP - 2) ← PCL

 PC ← nn
 SP ← SP-2

 L - ADRS

 H - ADRS n

In memory, pushes the PC value corresponding to the instruction at the address following that of the
CALL instruction to the 2 bytes following the byte specified by the current SP. Operand nn is then loaded
in the PC.

The subroutine is placed after the location specified by the new PC value.
When the subroutine finishes, control is returned to the source program using a return instruction and by
popping the starting address of next instruction, which was just pushed, and moving it to the PC.

With the push, the current value of the SP is decremented by 1, and the higher-order byte of the PC is
loaded in the memory address specified by the new SP value. The value of the SP is then again
decremented by 1, and the lower-order byte of the PC is loaded in the memory address specified by that
value of the SP.

The lower-order byte of the address is placed in byte 2 of the object code, and the higher-order byte is
placed in byte 3.

Examples: When PC = 8000h and SP = FFFEh,
Address
8000h CALL 1234H ; Jumps to address 1234h, and
8003h (FFFDH) ← 80H
 (FFFCH) ← 03H
 SP ← FFFCH

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 CALL cc, nn -- -- -- -- 6/3 11 Occ 100

 n

If cc true,
(SP - 1) ← PCH

(SP - 2) ← PCL

PC ← nn
SP ← SP – 2

 L-ADRS

 H-ADRS n

If condition cc matches the flag, the PC value corresponding to the instruction following the CALL
instruction in memory is pushed to the 2 bytes following the memory byte specified by the SP. Operand
nn is then loaded in the PC.

Examples: When Z = 1,
Address
7FFCh CALL NZ, 1234h ; Moves to next instruction after 3 cycles.
8000h CALL Z, 1234h ; Pushes 8003h to the stack,
8003h and jumps to 1234h.

Chapter 4: CPU Instruction Set

119

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RET -- -- -- -- 4 11 001 001 PCL ← (SP)
 PCH ← (SP + 1)
 SP ← SP + 2

Pops from the memory stack the PC value pushed when the subroutine was called, returning control to
the source program.

In this case, the contents of the address specified by the SP are loaded in the lower-order byte of the PC,
and the content of the SP is incremented by 1. The contents of the address specified by the new SP
value are then loaded in the higher-order byte of the PC, and the SP is again incremented by 1. (The
value of SP is 2 larger than before instruction execution.)

The next instruction is fetched from the address specified by the content of PC.
Examples: Address

8000H CALL 9000H
8003H
9000H

RET ; Returns to address 0x8003

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RETI -- -- -- -- 4 11 011 001 PCL ← (SP)
 PCH ← (SP + 1)
 SP ← SP + 2

Used when an interrupt-service routine finishes.
The execution of this return is as follows.

The address for the return from the interrupt is loaded in program counter PC.
The master interrupt enable flag is returned to its pre-interrupt status.

Examples: 0040h
RETI ; Pops the stack and returns to address 8001h.

8000H INC L :An external interrupt occurs here.
8001H

Game Boy Programming Manual

120

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RET -- -- -- -- 5/2 11 Occ 000 If cc true,
 PCL ← (SP)
 PCH ← (SP+1)
 SP ← SP + 2

If condition cc and the flag match, control is returned to the source program by popping from the memory
stack the PC value pushed to the stack when the subroutine was called.

Example: Address
8000h CALL 9000h
8003h

9000h CP 0
RET Z ; Returns to address 8003h if Z = 1.

Moves to next instruction after 2 cycles if Z = 0.

Chapter 4: CPU Instruction Set

121

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 RST t -- -- -- -- 4 11 t 111 (SP - 1) ← PCH

 (SP - 2) ← PCL

 SP ← SP - 2
 PCH ← 0 PCL ← P

Pushes the current value of the PC to the memory stack and loads to the PC the page 0 memory
addresses provided by operand t.
Then next instruction is fetched from the address specified by the new content of PC.

With the push, the content of the SP is decremented by 1, and the higher-order byte of the PC is loaded
in the memory address specified by the new SP value. The value of the SP is then again decremented
by 1, and the lower-order byte of the PC is loaded in the memory address specified by that value of the
SP.

The RST instruction can be used to jump to 1 of 8 addresses.

Because all of the addresses are held in page 0 memory, 0x00 is loaded in the higher-order byte of the
PC, and the value of P is loaded in the lower-order byte.

The relation between the t codes and P are as follows.

 Operand t (PCH) P (PCL)

 0 000 00h 00h

 1 001 00h 08h

 2 010 00h 10h

 3 011 00h 18h

 4 100 00h 20h

 5 101 00h 28h

 6 110 00h 30h

 7 111 00h 38h

Example: Address
8000h RST 1 ; Pushes 8001h to the stack ,
8001h and jumps to 0008h.

Game Boy Programming Manual

122

2.9 General-Purpose Arithmetic Operations and CPU Control Instructions
 CY H N Z CYCL 7 6 5 4 3 2 1 0

 DAA * 0 -- * 1 00 100 111 Decimal
 adjust acc

When performing addition and subtraction, binary coded decimal representation is used to set the
contents of register A to a binary coded decimal number (BCD).
The following table shows the processing that accompanies execution of the DAA instruction immediately
following execution of addition (ADD and ADC)and substraction (SUB and SBC) instructions.

Instruction
Before
Execution

CY Contents
before
Execution

 Bits 4-7
 Register A

H Contents
before
Execution

 Bits 0-3
 Register A

 Number Added
 to Register A

 CY Contents
 after
 Execution

 ADD
 ADC

 (N = 0)

 0
 0
 0
 0
 0
 0
 1
 1
 1

 0h- 9h
 0h- 8h
 0h- 9h
 Ah-Fh
 9h-Fh
 Ah-Fh
 0h- 2h
 0h- 2h
 0h- 3h

 0
 0
 1
 0
 0
 1
 0
 0
 1

 0h- 9h
 Ah-Fh
 0h- 3h
 0h- 9h
 Ah-Fh
 0h- 3h
 0h- 9h
 Ah-Fh
 0h- 3h

 00h
 06h
 06h
 60h
 66h
 66h
 60h
 66h
 66h

 0
 0
 0
 1
 1
 1
 1
 1
 1

 SUB
 SBC

 (N = 1)

 0
 0
 1
 1

 0h-9h
 0h-8h
 7h-Fh
 6h-Fh

 0
 1
 0
 1

 0h- 9h
 6h- Fh
 0h- 9h
 6h- Fh

 00h
 FAh
 A0h
 9Ah

 0
 0
 1
 1

Examples: When A = 45h and B = 38h,
 ADD A, B ; A ← 7Dh, N ← 0
 DAA ; A ←7Dh + 06h (83h), CY ← 0
 SUB A, B ; A ← 83h – 38h (4Bh), N ← 1
 DAA ; A ← 4Bh + FAh (45h)

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 CPL A ← A -- 1 1 -- 1 00 101 111

Takes the one’s complement of the contents of register A.

Example: When A = 35h,
 CPL ; A ← CAh

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 NOP No operation -- -- -- -- 1 00 000 000

Only advances the program counter by 1; performs no other operations that have an effect.

Chapter 4: CPU Instruction Set

123

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 CCF CY ← (CY) (CY) 0 0 -- 1 00 111 111

Flips the carry flag CY.

Example: When CY = 1,
 CCF ; CY ← 0

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 SCF CY ← 1 1 0 0 -- 1 00 110 111

Sets the carry flag CY.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 DI IME ← 0 -- -- -- -- 1 11 110 011

Resets the interrupt master enable flag and prohibits maskable interrupts.

Note: Even if a DI instruction is executed in an interrupt routine, the IME flag is
set if a return is performed with a RETI instruction.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

EI IME ← 1 -- -- -- -- 1 11 111 011

Sets the interrupt master enable flag and enables maskable interrupts.
This instruction can be used in an interrupt routine to enable higher-order interrupts.

Note: The IME flag is reset immediately after an interrupt occurs. The IME flag
reset remains in effect if control is returned from the interrupt routine by
a RET instruction. However, if an EI instruction is executed in the
interrupt routine, control is returned with IME = 1.

Game Boy Programming Manual

124

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 HALT Halt -- -- -- -- 1 01 110 110

After a HALT instruction is executed, the system clock is stopped and HALT mode is entered. Although
the system clock is stopped in this status, the oscillator circuit and LCD controller continue to operate.

In addition, the status of the internal RAM register ports remains unchanged.

HALT mode is canceled by an interrupt or reset signal.

The program counter is halted at the step after the HALT instruction. If both the interrupt request flag and
the corresponding interrupt enable flag are set, HALT mode is exited, even if the interrupt master enable
flag is not set.

Once HALT mode is canceled, the program starts from the address indicated by the program counter.

If the master enable flag is set, the contents of the program counter are pushed to the stack and control
jumps to the starting address of the interrupt.

If the RESET terminal goes LOW in HALT mode, the mode becomes that of a normal reset.

 CY H N Z CYCL 7 6 5 4 3 2 1 0

 STOP Stop -- -- -- -- 1 00 010 000

 00 000 000

Execution of a STOP instruction stops both the system clock and oscillator circuit. STOP mode is
entered, and the LCD controller also stops.

However, the status of the internal RAM registers ports remains unchanged.

STOP mode can be canceled by a reset signal.

If the RESET terminal goes LOW in STOP mode, it becomes that of a normal reset status.

The following conditions should be met before a STOP instruction is executed and STOP mode is
entered.

• All interrupt-enable (IE) flags are reset.
• Input to P10 — P13 is LOW for all.

Chapter 5: Miscellaneous General Information

125

CHAPTER 5: MISCELLANEOUS GENERAL INFORMATION
...126

1. MONITOR ROM ...126

2. RECOGNITION DATA FOR CGB ONLY IN ROM-REGISTERED
DATA...127

3. POWER-SAVING ROUTINES FOR THE MAIN PROGRAM

..128

4. SOFTWARE CREATED EXCLUSIVELY FOR CGB.............130

5. SOFTWARE CREATED TO OPERATE ON CGB131

6. SOFTWARE CREATED TO OPERATE ON CGE: EXAMPLE

..132
6.1 Program Specifications ... 132
6.2 CGB Recognition Method.. 133
6.3 Flowcharts .. 134

Game Boy Programming Manual

126

CHAPTER 5: MISCELLANEOUS GENERAL INFORMATION

1. MONITOR ROM
The DMG and CGB CPU includes internal monitor ROM.

When power on the hardware is turned on, the monitor ROM checks for errors in the
‘Nintendo’ logo character data within the game software.

If the data is correct, the Nintendo logo is displayed and the program is then started. If there is
an error in the data, the screen flashes repeatedly.

For information on registering the Nintendo logo character data, refer to Appendix 3 of this
manual, Submission Requirements.

The conditions required for starting the user program are as follows.

Starting Address 150h (default value) The starting address can be freely set
by writing a jump destination address
at 102h and 103h.

LCDC value 91h
Stack value FFFEh

Chapter 5: Miscellaneous General Information

127

2. RECOGNITION DATA FOR CGB (CGB ONLY) IN ROM-
 REGISTERED DATA

As with software created for DMG, software for CGB (including software only for CGB) must place
data concerning items such as the name of the game and Game Pak specifications in the 80
bytes of the program area between 100h and 14Fh. In the system, a code indicating whether
the software is for CGB should be set at address 143h.

Note: For an overall description of the ROM area shown below, please
refer to Appendix 3, Submission Requirements.

Setting a value of 80h or C0h at this address causes the system to recognize the software as
being for CGB.

If 00h or any value less than 7Fh (existing DMG software) is set at this address, the software is
recognized as non-CGB software and CGB functions (registers) are not available.

Game
Code

Game Code
(13Fh-142h)

0100h

0110h

0120h

0130h

0140h

+1+0 +2 +3 +4 +5 +6 +7 +8 +9 +E +F

00 C3 Lo Hi

'Nintendo' Character Data (0x104 - 0x133)

Game Title (0x134 - 0x13E)

33

Maker Code
SGB Support Code

Cassette Type

ROM Size RAM Size

Destination
Code

Mask ROM Version

Complement
Check

Checksum

Starting
Address

+A +B +C +D

��
��

CGB Support Code
00: DMG Exclusive
80: DMG/CGB
 Compatible
C0: CGB Exclusive

CGB/CGB Only: When operating on CGB, up to 56 colors can be displayed on a single screen.
Non-CGB: When operating on CGB, up to 10 colors can be displayed on a single screen.

Note: Regardless of the type of game, the following fixed values should
be stored at the following addresses.

! Address 100h=00h
! Address 101h=C3h
! Address 14Bh=33h
! Addresses 104h – 133h=‘Nintendo’ character data

Game Boy Programming Manual

128

3. POWER-SAVING ROUTINES FOR THE MAIN PROGRAM
To minimize battery power consumption and extend battery life, inclusion of programs such as
those shown below is recommended.

During waiting for vertical blanking, halt the CPU system clock to reduce power consumption
by the CPU and ROM.

;****** ******
;****** Main Routine ******
;****** ******

MAIN
CALL CONT : Keypad input.
CALL GAME : Game or other processing.

VBLK_WT
HALT : Halt the system clock.

: Return from HALT mode if an interrupt is
generated.

: Wait for a vertical blanking interrupt.
NOP : Used to avoid bugs in the rare case that the

instruction. after the HALT instruction is not
executed.

LD A, (VBLK_F)
AND A : Generate a V-blank interrupt?
JR Z, VBLK_WT : Jump if a non-V-blank interrupt.
XOR A
LD (VBLK_F), A
JR MAIN

;****** ******
;****** Vertical Blanking Routine ******
;****** ******

VBLK
PUSH AF
PUSH BC
PUSH DE
PUSH HL

CALL DMA

LD A, 1 : Set the V-blank completion flag.
LD (VBLK_F), A

POP HL
POP DE
POP BC
POP AF
RETI

Chapter 5: Miscellaneous General Information

129

HALT instructions should not be executed while CGB horizontal blanking DMA is executed. (See
Appendix 1, Programming Cautions.)

Game Boy Programming Manual

130

4. SOFTWARE CREATED EXCLUSIVELY FOR CGB

Because the shape of the Game Pak for CGB-only software is the same as that for DMG, CGB-
only Game Paks also can be inserted in DMG. Therefore, a program that displays a message
such as that shown below when a CGB-only Game Pak is mistakenly inserted in DMG should
always be included in the software. The upper part of the message screen should display the
official title of the game.

If the title is similar to that of other software (e.g., series software), a subtitle should also be
displayed to distinguish the programs from one another.

For information on software methods of distinguishing game units, see Section 6 of this chapter,
Software Created for CGB: Example.

Sample Message Display

[Game Title]

This software is intended only
for use with Game Boy Color.

 Please use it with Game Boy Color.

Chapter 5: Miscellaneous General Information

131

5. SOFTWARE CREATED TO OPERATE ON CGB

As is shown below, CGB and DMG differ slightly in their specifications and operation. When
creating software to operate on CGB, please give appropriate consideration to these differences.

CGB DMG

When objects with different x-
coordinates overlap, the object with
the lowest OBJ NO. is given display
priority.

When objects with different x-
coordinates overlap, the object with the
smallest x-coordinate is given display
priority.

In CGB mode, BG display CANNOT
be turned off using bit 0 of the LCDC
register (address FF40h).

BG display CAN be turned on and off
using bit 0 of the LCDC register
(address FF40h).

When the value of register WX
(address FF4Bh) is 166, the window is
partially displayed.

When an instruction that register pair
increment is used, if the value of the
register pair is an address that specifies
OAM (FE00h-FE9Fh), OAM may be
destroyed.

Game Boy Programming Manual

132

6. SOFTWARE CREATED TO OPERATE ON CGB: EXAMPLE

When creating software for CGB, a CGB support code is set in the ROM data area, and
processing branches according to the hardware used internally by the program. For more
information, see the flowchart in Part 1 of Section 6.3 of this chapter. Limiting the functions used,
as shown below, allows the same processing to be used for different units without branching. For
more information, see the flowchart in Part 2 of Section 6.3 of this chapter.

The following example describes how to create a program that operates on both CGB and DMG
and allows display of 56 colors when running on CGB . Such means can be used to maintain
compatibility with earlier hardware (DMG) while using CGB functions.

6.1 Program Specifications

! Only bank 0 is used as the character data area.
! Only the bits that specify the color palette (bits 0-2 of bank 1) are used for BG attributes.

Character Data Character Data

Bank 0 Bank 1
8000h

9800h

9C00h
9FFFh

BG CHR Code

BG CHR Code

BG attribute

BG attribute

Specify Color Palette

0 0 0 0

Fixed at 0

7 6 5 4 3 2 1 0

! Both the color palette and DMG-mode palette are set as attribute flags in the OAM
register.

OAM Register

Color Palette

DMG-Mode Palette

Attributes0
1234567 0

! None of the other expanded CGB functions are used.

Chapter 5: Miscellaneous General Information

133

6.2 CGB Recognition Method

Immediately after program startup, the initial value of the accumulator (register A) is read to
determine whether the hardware on which the program is operating is a DMG (SGB),
MGB/MGL (SGB2), or CGB.

01h → DMG (SGB)
FFh → MGB/MGL (SGB2)
11h → CGB

Game Boy Programming Manual

134

6.3 Flowcharts

1) Branched Processing for CGB and DMG/MGB/MGL

CGB support code (0x80) written to ROM
data area (address 0x143)

Start

Unit Discrimination:
Value of register A is

read

Initialization

CGB flag

OAM Transfer

BG CHR Code Transfer

CGB?
CGB Flag Check

LCD display RAM switched to bank 1,
BG attributes transferred.

Color Palette Transfer (rewrite)

LCDC ON
Color display in CGB

Monochrome display in DMG/MGB/MGL

LCDC OFF
or blanking

Supplemental processing
for CGB support

0x11 CGB

01h (DMG)
FFh (MGB/MGL)

= 1 (CGB)

=0
(DMG/MGB/MGL)

(LCD Display RAM Bank 0)

1

Chapter 5: Miscellaneous General Information

135

2) Uniform processing for CGB and DMG/MGB/MGL

Start

Initialization

OAM Transfer

BG Attribute Transfer

Color Palette Transfer
(rewrite)

LCDC ON
Color display in CGB

Monochrome display in
DMG/MGB/MGL

LCDC OFF
or blanking

Supplemental processing for
CGB support

(LCD Display RAM Bank 1)

BG CHR Code Transfer (LCD Display RAM Bank 0)

CGB support code (80h)
written to ROM data area

(address 143h)

Note: The BG attributes should always be transferred before the BG
character code.

Even if only the BG attributes are changed, always transfer the
character code from that same address.

Game Boy Programming Manual

136

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 6: The Super Game Boy System

137

CHAPTER 6: THE SUPER GAME BOY SYSTEM.................................138
1. OVERVIEW..138

1.1 What is Super Game Boy?...138
1.2 Block Diagram ..139
1.3 Functions ..139
1.4 System Program...140

2. SENDING COMMANDS AND DATA TO SUPER NES.................141
2.1 System Commands ..141
2.2 Data Transfer Using an Image Signal ...144

3. SYSTEM COMMANDS..145
3.1 System Command Summary ...145
3.2 System Command Details ...146
3.3 Cautions Regarding Sending Commands..174
3.4 Sound Flag Summary...174

4. MISCELLANEOUS...181
4.1 Reading Input from Multiple Controllers ..181
4.2 Recognizing SGB ...181
4.3 SGB Register Summary ...183
4.4 Flowchart of Initial Settings Routine ..185

5. PROGRAMMING CAUTIONS...186
5.1 ROM Registration Data ..186
5.2 Initial Data ...186
5.3 SOU_TRN default data ...186

Game Boy Programming Manual

138

CHAPTER 6: THE SUPER GAME BOY SYSTEM

1. OVERVIEW
1.1 What is Super Game Boy?

SGB is a device that enables Game Boy software to be enjoyed on a TV screen. Game Boy
software can be plugged into the SGB, which operates on the Super Nintendo Entertainment
System (Super NES).

SGB consists of the basic Game Boy circuitry, and components such as an Intercommunication
Device (ICD, with built-in SGB RAM), the system program, and a CIC.

Basic SGB operation involves conversion by the ICD of 2-bit, 4 grayscale image signals generated
by the SGB CPU to Super NES character data and storage of these data in SGB RAM. The system
program subsequently transfers this data by DMA to Super NES W-RAM and then to V-RAM. The
above operations are performed repeatedly to display the Game Boy screen on a TV screen.

Unmodified sound output from the SGB CPU is linked to the Super NES sound mixing circuit and is
output from the speaker on the TV.

These operations are controlled by the SGB system program and therefore require no special
consideration when programming for Game Boy.

Game Boy software not specifically created for SGB provides 4 colors in 4 grayscales. These
colors are selected from several color patterns provided in the system program. Programming using
the system commands described later allows a game to be represented using 4 palettes of 4 colors
each per screen and Super NES functions such as Super NES sound.

Super Game Boy comes in 2 models: the 1994 model, which has no communication connector, and
the 1998 model, which is equipped with a communication connector.

This manual uses the term SGB2 when discussing points that concern only the 1998 model.
Descriptions that use the term Super Game Boy or SGB refer to both Super Game Boy models.
SGB2 allows game representations that use Super NES functions for communication play. (SGB2
has not been released in the U.S. market.)

Chapter 6: The Super Game Boy System

139

1.2 Block Diagram

1.3 Functions
The types of representations indicated below can be implemented using Super NES functions
invoked by sending system commands.

For more information, please see Section 3 in this chapter, System Commands.

Image Functions
Up to 4 palettes of 4 colors each can be represented on a single screen.

Multiple areas can be specified for each screen, and separate color palette attributes can be
specified for each area.

Color palette attributes can be specified separately for each character (8 x 8 bits).

System
Program

ROM

CIC

W-RAM
64Kbit

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

Address

��
��
��

���
���
���
���
���
���
���
���

Data

�
�
�

VISUAL DATA

KEY DATA

���������������������
���������������������
���������������������
���������������������

Address

���
���
���

Data

��������
��������
��������
��������

��
��
��

���������
���������
���������
���������

V-RAM
64Kbit

SOUND L, R

SYS CLK

32P Card Connector
SUPER NES 62P Card EdgeDMG Game

Pak

SGB-CPU

6-Pin Subconnector (SGB2 only)

SGBRA
M

Register
file

ICD

Game Boy Programming Manual

140

Sound Functions
The rich variety of sound effects included in the system program can be generated by the Super
NES audio processing unit (APU).

The sound generator included in the system program can be used by transferring music data.

Controller Functions
Data from multiple Super NES controllers data can be read, providing for multiplayer games that
can accommodate between 2 to 4 players.

Miscellaneous
Super NES program data can be transferred.

1.4 System Program
The system program can provide the following features.

On the T.V. screen, the system program displays the space outside the game screen (picture frame).

The picture frame has the following features.
! The frame can be selected from among 9 pre-loaded frames.
! A mode in which an image created by the game producer is transferred and displayed as the

frame.
! A drawing mode that allows the user to create the frame.

Features of the color palette selection screen are as follows.
! Palettes can be selected from among 32 pre-loaded palettes.
! A mode that allows colors to be set from DMG in DMG games.

A mode is available that allows the user to arrange the colors on a palette.

A screen is provided for changing the key configuration of the controller.

If the commands described in Section 3.2 in this chapter, System Command Details, are sent to the
register file, Super NES functions, such as those described in Section 1.3, Functions, can be used
by having the system program read these commands.

Chapter 6: The Super Game Boy System

141

2. SENDING COMMANDS AND DATA TO SUPER NES

The following 2 methods can be used to send data from a DMG program to Super NES.

Send data to the register file using P14 and P15. The size of the register file is 128 bits; this is referred
to as 1 packet.

Send data to SGB RAM using an image signal.

Note: Data transfers from the register file and SGB RAM to Super NES are
performed by the system program.

2.1 System Commands

Using the register file to transmit system commands allows the various Super NES functions
described below to be used in games.

The system program receives the commands and performs the specified processing.

Data Format of System Commands
1) Data Transmission Methods

Using 2 bits in SGB (P14 and P15 of SGB CPU), data is sent to the register file by serial
transmission.

The system program reads the contents written to the register file.

1. Start write

 H
A LOW pulse is output to both P14 and P15.

P14

 L This is required for transmission of each packet (128 bits) .
 HP15

 L

2. Write 0

 H
 P15 is fixed at HIGH, and a

P14

 L LOW pulse is output to P14.
P15 H

L

Game Boy Programming Manual

142

Write 1

P14 H
P14 is fixed at HIGH, and

L a LOW pulse is output to P15.
 HP15

 L

2) Pulse Width

 Pulse Width

P14
or P15

P15 a, c, e 5 µ s (min)

b, d 15 µ s (min)
or P14

a b c d e

3) Write Example

d0 d1 d2 d3 d4 d5 d6 …
 P14 …

 P15 …

Start 1 1 0 0 1 0 1

4) Format of Data Transmitted to Register File

Direction of data transmission
 d7 d6 d5 d4 d3 d2 d1 d0

00h

System Command No. of Packets Transmitted

 No. of packets transmitted: 1h-7h
 Indicates the total, including the first packet.

 System command code: 0h-1Fh

Chapter 6: The Super Game Boy System

143

d7 d6 d5 d4 d3 d2 d1 d0

01h

02h

 : : : :
 Transmitted Data

0Fh

 0 0 transmitted in bit 129

If 2 or more packets are used for one system command, bits 00h-Fh of the second packet
onward are used for data.

Transmission Procedure

1. Start of write

2. Data transmission (example)

 Transmitted Data
d0, d1, d2, d3, d4, d5, d6, d7

 00h: 0 1 0 1 0 0 0 0

No. of packets: 2h Command code: 1h

01h: data
02h: data
 : :
 : :
Fh: data

3. Transmission of 0 in bit 129

Bit 129: 0

4. Start of write

5. Data transmission: second packet

00h: data
01h: data
 : :
 : :
Fh: data

Game Boy Programming Manual

144

6. Transmission of 0 in bit 129

Bit 129: 0

5) Transmission Interval
The interval between completion of transmission of one packet (128 bits + 1 bit) and
transmission of the next packet is set at approximately 60 msec (4 frames).

Transmission ends Transmission starts Transmission ends Transmission starts

 • • •

 4 frames 1 packet 4 frames

6) Transmission Bit 129
The data in bit 129 marks the end of one packet, so it should always be transmitted.

2.2 Data Transfer Using an Image Signal

Data and programs stored in a cartridge can be transferred using the image signal transmission path
(LD0, LD1).

Character data stored in DMG VRAM and displayed are then stored in SGB RAM. The system
program usually transfers these data to Super NES VRAM as character data. However, when a
specific command is received, the data is handled as data for command processing.

The displayed image signal is handled directly as data, so be careful to ensure that the OBJ display
and window are set to OFF, the correct values are set for the DMB color palette, and the BG to be
displayed is correctly transferred.

When data is transferred they are displayed to the screen, so the system command MASK_EN must
be used to mask the screen.

For more information, see Section 3.2 in this chapter, System Command Details.

Note: Commands that transfer data using image signals are indicated by the
heading, Data Transfer Using VRAM.

Chapter 6: The Super Game Boy System

145

3. SYSTEM COMMANDS

3.1 System Command Summary

 Command Command Code Command Command Code

 DATA_TRN

 MLT_REQ

 JUMP

 CHR_TRN

 PCT_TRN

 ATTR_TRN

 ATTR_SET

 MASK_EN

 PAL_PRI

 10

 11

 12

 13

 14

 15

 16

 17

 19

 PAL01

 PAL23

 PAL03

 PAL12

 ATTR_BLK

 ATTR_LIN

 ATTR_DIV

 ATTR_CHR

 SOUND

 SOU_TRN

 PAL_SET

 PAL_TRN

 ATRC_EN

 ICON_EN

 DATA_SND

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 0A

 0B

 0C

 0E

 0F

 Use prohibited

 Use prohibited

 0D

 18

Game Boy Programming Manual

146

3.2 System Command Details

Please refer to the following map in the discussion of coordinate settings and color palette area
specifications in the description of the system command functions.

H 160 dots [20 Characters]

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

DMG Window

144 dots
[18
characters]

V

Chapter 6: The Super Game Boy System

147

Setting the Color Palettes and Attributes

DMG Window

SGB Color Palette 00 01 10 11

 SGB Color Palette0

 SGB Color Palette1

 SGB Color Palette2

Indirect setting of
attributes by file number
(Command ATTR-SET)

 SGB Color Palette3

Direct setting of
attributes
 (Command ATTR-BLK)

 (Command ATTR-LIN)

 (Command ATTR-DIV)

 (Command ATTR-CHR)Indirect setting of SGB color
(Command PAL-SET)

 System Color
Palette

 00 01 10 11

 Attribute Files

ATFO-ATF44

 DMG window attribute
files
(45 files) System Color

Palette0
 System Color
Palette1

Direct setting of
SGB color palettes
 (Command PAL01)

 (Command PAL23)

 (Command PAL03)

 (Command PAL12)

 .

System Color
Palette510

Command PAL-

SET/Option

System Color
Palette511

Color data setting of

system color palette

(Command PAL-TRN)

A t t r i b u t e f i l e

t r a ns f e r

(Command ATTR-TRN)

SGB
Game Pak

Note: Bit 00 of SGB color palettes 0 – 3 have the same color. The color setting
in effect for this bit is the most recent setting.

Game Boy Programming Manual

148

DMG Color Palettes and SGB Color Palettes
With DMG screen data representations, colors in SGB are converted from the grayscale data
registered in the DMG color palettes, rather than being converted from the bit data for the character.

00 01 10 11 (m,n) Bit n layer

 00 01 10 11DMG palette * 00-11 in the palette are
grayscale data

light 00> 01> 10> 11 dark
Table 1

00 01 10 11

Red Green Gray Black Bit m layerSGB palette

Table 2

Example: When the grayscale data
shown in Table 1 are specified for the
DMG palette, the character represented
on the DMG LCD is as shown in the DMG
character image figure below and to the
right.

Accordingly, when the color data
shown in Table 2 are specified for
the SGB palette, the character
image represented on Super NES
is as shown in the SGB character
image figure below and to the right. ..

DMG Character Image

 10 00

 00 01

 00 11

However, if bit 11 of the DMG palette is
set to grayscale 00, the portion of
the DMG character image is displayed
with a 00 grayscale, and the
portion of the SGB character image is
displayed as red rather than black.

 00-11: grayscale data

SGB Character Image

Gray Red

Red Green

Red Black

Thus, in this case, when character
data display using all of the colors on
the SGB palette is desired, a separate
grayscale palette (DMG palette) for
SGB must be provided, DMG and SGB
must be distinguished, and the
program must be made to branch
accordingly.
(See Section 4.2, Recognizing SGB.)

Chapter 6: The Super Game Boy System

149

When representing DMG grayscale on SGB, the image can be faithfully represented if 00 of the
SGB palette is set to a light color and 11 to a dark color.

Command: PAL01 (Code: 00h)
Function: Sets the color data of SGB color palettes 0 and 1.

d7 d0

0 0 0 0 0 0 0 100h

 Number of packets: 1 h(fixed)

 Command code: 00h

d7 d0 d7 d0

 Palette0 Color00 Data LOW 8bit Palette0 Color00 Data HIGH 7bit --

 Palette0 Color01 Data LOW 8bit Palette0 Color01 Data HIGH 7bit --

 Palette0 Color10 Data LOW 8bit Palette0 Color10 Data HIGH 7bit --

 Palette0 Color11 Data LOW 8bit Palette0 Color11 Data HIGH 7bit

01h

03h

05h

07h

02h

04h

06h

08h --

d7 d0 d7 d0

 Palette1 Color01 Data LOW 8bit -- Palette1 Color01 Data HIGH 7bit

 Palette1 Color10 Data LOW 8bit Palette1 Color10 Data HIGH 7bit --

 Palette1 Color11 Data LOW 8bit Palette1 Color11 Data HIGH 7bit

09h

0Bh

0Dh

0Ah

0Ch

0Eh --

0Fh 0 0 0 0 0 0 0 0

Command: PAL23 (Code: 01h)
Function: Sets the color data for SGB color palettes 2 and 3.

d7 d0

0 0 0 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 01h

Game Boy Programming Manual

150

d7 d0 d7 d0

 Palette2 Color00 Data LOW 8bit Palette2 Color00 Data HIGH 7bit --

 Palette2 Color01 Data LOW 8bit Palette2 Color01 Data HIGH 7bit --

 Palette2 Color10 Data LOW 8bit Palette2 Color10 Data HIGH 7bit --

 Palette2 Color11 Data LOW 8bit Palette2 Color11 Data HIGH 7bit

01h

03h

05h

07h

02h

04h

06h

08h --

d7 d0 d7 d0

 Palette3 Color01 Data LOW 8bit Palette3 Color01 Data HIGH 7bit --

 Palette3 Color10 Data LOW 8bit Palette3 Color10 Data HIGH 7bit --

 Palette3 Color11 Data LOW 8bit Palette3 Color11 Data HIGH 7bit

09h

0Bh

0Dh

 0Ah

 0Ch

 0Eh --

0Fh 0 0 0 0 0 0 0 0

Command: PAL03 (Code: 02h)
Function: Sets the color data for SGB color palettes 0 and 3.

d7 d0

0 0 0 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 02h

d7 d0 d7 d0

 Palette0 Color00 Data LOW 8bit Palette0 Color00 Data HIGH 7bit --

 Palette0 Color01 Data LOW 8bit Palette0 Color01 Data HIGH 7bit --

 Palette0 Color10 Data LOW 8bit Palette0 Color10 Data HIGH 7bit --

 Palette0 Color11 Data LOW 8bit Palette0 Color11 Data HIGH 7bit

01h

03h

05h

07h

02h

04h

06h

08h --

Chapter 6: The Super Game Boy System

151

d7 d0 d7 d0

 Palette3 Color01 Data LOW 8bit Palette3 Color01 Data HIGH 7bit --

 Palette3 Color10 Data LOW 8bit Palette3 Color10 Data HIGH 7bit --

 Palette3 Color11 Data LOW 8bit Palette3 Color11 Data HIGH 7bit

09h

0Bh

0Dh

 0Ah

 0Ch

 0Eh --

0Fh 0 0 0 0 0 0 0 0

Command: PAL12 Code: 03h
Function: Sets the color data for SGB color palettes 1 and 2.

d7 d0

0 0 0 1 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 03h

d7 d0 d7 d0

 Palette1 Color00 Data LOW 8bit Palette1 Color00 Data HIGH 7bit --

 Palette1 Color01 Data LOW 8bit Palette1 Color01 Data HIGH 7bit --

 Palette1 Color10 Data LOW 8bit Palette1 Color10 Data HIGH 7bit --

 Palette1 Color11 Data LOW 8bit Palette1 Color11 Data HIGH 7bit

01h

03h

05h

07h

02h

04h

06h

08h --

d7 d0 d7 d0

 Palette2 Color01 Data LOW 8bit Palette2 Color01 Data HIGH 7bit --

 Palette2 Color10 Data LOW 8bit Palette2 Color10 Data HIGH 7bit --

 Palette2 Color11 Data LOW 8bit Palette2 Color11 Data HIGH 7bit

09h

0Bh

0Dh

0Ah

0Ch

0Eh --

0Fh 0 0 0 0 0 0 0 0

Game Boy Programming Manual

152

Command Code: ATTR_BLK (Code: 04h)
Function: Applies the specified color palette attributes to areas inside and outside the square.

d7 d0

0 0 1 0 000h

 Number of packets: 1h – 7h

 Command code: 04h

d7 d0

01h -- -- --

 Number of data groups: 1h- 12h (max)
(A single group consists of a control code,
color palette specification, and coordinates.)

d7 d0

 -- -- -- -- --02h Control Code
 Controls the attribute area according to the data in 03h.

Control Codes

000 No control occurs.

001 Applies the attributes specified by d1 and d0 of 03h only to the area within the
square (including the CHR border).

010
Applies the color palette attributes specified by d3 and d2 of 03h only on the
square CHR border.

011
Applies the color palette attributes specified by d1 and d0 of 03h only to the area
within the square, and applies the color palette attributes specified by d3 and d2
of 03h only to the border of the square.

100 Applies the attributes specified by d5 and d4 of 03h only to the area outside the
square (including the CHR border).

101
Applies the color palette attributes specified by d1 and d0 of 03h to the area
within the square, and applies the color palette attributes specified by d5 and d4
of 03h to the area outside of the CHR border. (CHR border is unchanged.)

110
Applies the color palette attributes specified by d5 and d4 of 03h only to the area
outside of the square, and applies the color palette attributes specified by d3
and d2 of 03h to the CHR border .

111 Applies the specified color palette attributes to the area inside the square, to the
CHR border line, and to the area outside the CHR border .

The color palette attributes of areas not specified are not changed.

Chapter 6: The Super Game Boy System

153

d7 d0

03h -- -- Specifies the color palette

Color palette number for the area inside the square.
Color palette number for character area on the square

 Color palette number for area outside the square.

d7 d0

 Starting point H1 -- -- -- Starting (upper left) and ending (lower right) points
of the square.

 Starting point V1 -- -- --
Coordinate data

 Ending point h1 -- -- -- (H1,V1)
H

 Ending point v1 -- -- --

04h

05h

06h

07h

V
 (h1,v1)

d7 d0

 -- -- -- -- --

 -- --

Control Code

Specifies the color palette

 Starting point H2 -- -- --

 Starting point V2 -- -- --

 Ending point h2 -- -- --

Ending point v2

08h

09h

0Ah

0Bh

0Ch

0Dh -- -- --

 Coordinate data

 0 0 0 0 0 0 0 00Eh

0Fh 0 0 0 0 0 0 0 0

Note: If the number of packets is 1, 00h is written to 0Eh and 0Fh. If the
number of packets exceeds 1, the control code and color palette
specification code of the next data item are written to 0Eh and 0Fh,
respectively.

Game Boy Programming Manual

154

When the number of packets exceeds 1:

 d7 d0

 -- -- -- -- --

 -- --

 Control Code

 Color palette specification ↑Remainder of previous/first packet

↓Second packetStarting point H3 -- -- --

 Starting point V3 -- -- --

 Ending point h3 -- -- --

Ending point v3

0Eh

0Fh

00h

01h

02h

03h
 -- -- --

 Coordinate data

d7 d0

 -- -- -- -- --

 -- --

 Control code

 Color palette specification

 Starting point H4 -- -- --

 Starting point V4 -- -- --

 Ending point h4 -- -- --

 Ending point v4

04h

05h

06h

07h

08h

0x09 -- -- --

 Coordinate data

d7 d0

 -- -- -- -- --

 -- --

 Control code

 Color palette specification

 Starting point H5 -- -- --

 Starting point V5 -- -- --

 Ending point h5 -- -- --

 Ending point v5

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh -- -- --

 Coordinate data

 -- -- -- -- --
 -- --

00h

01h

02h *
 *

 Control code
 Color palette specification

* The empty area of the packet is filled with 00h.

Chapter 6: The Super Game Boy System

155

Note: When there is no area inside the square border (e.g., h1 = H1 + 1), a
control code such as one that sets the color attribute for the area inside
the border cannot be used.

Please note that when ATTR_BLK, ATTR_LIN, ATTR_DIV, or ATTR_CHR are used, the data that is
sent are valid even if MASK_EN (freezes screen immediately before masking) is selected.

When using MASK_EN before these commands, use 10h or 11h as the argument. If 01h is used as
the MASK_EN argument, ATTR_TRN and ATTR_SET should be used.

Command: ATTR_LIN (Code: 05h)
Function: Applies the specified color palette attribute to a coordinate line.

d7 d0

0 0 1 0 100h

 Number of packets: 1h – 7h

 Command code: 05h

d7 d0

01h

 Data group: 1h- 6Eh (max)

d7 d0

 Line Number02h First data item

 Palette number
 H/V mode bit
0: Specifies the H coordinate character line number (vertical line)
1: Specifies the V coordinate character line number (horizontal line)

Game Boy Programming Manual

156

d7 d0

 Character Line

 Character Line

03h

04h

 2nd data item

 3rd data item
: : : :

 Character Line

 Character Line

0Dh

0Fh

 13th data item

 14th data item

nth Packet
 Character Line

 Character Line

00h

01h

 : : : :

 Character Line0Fh

* See the note on ATTR_BLK.

Chapter 6: The Super Game Boy System

157

Example:

d7 d0

0 0 1 0 1 0 0 100h

 Number of packets transmitted: 1

 Command code: 05h

d7 d0

01h 0 0 0 0 0 0 1 0 Number of data groups: 2

02h 1 0 1 0 1 1 1 1

 Character line number: 0Fh
 Palette number: 1
 Coordinate setting: V

03h 0 0 0 0 0 0 1 0

Character line number: 02h
Palette number: 0
Coordinate setting: H

Applies the Palette 0 attribute to this line.
→H 02

↓
V

0F Applies the Palette 1 attribute to this line.

* The color of intersection of the two lines is decided by the last line color.

Game Boy Programming Manual

158

Command: ATTR_DIV (Code: 06h)

Function: Divides the color palette attributes of the screen by the specified coordinates.

d7 d0

0 0 1 1 0 0 0 100h

 Number of packets: 1h

 Command code: 06h

d7 d0

01h --

 Number of the color palette of the bottom or right division.

 Number of the color palette of the top or left division.

 Color palette number of the character line on the dividing line.

 0: Divide by the H coordinate character line number
(vertical line)

1: Divide by the V coordinate character line number
(horizontal line)

d7 d0

 Coordinate data02h -- -- --

* 03h - 0Fh should be filled with 00h.

* See note on ATTR_BLK.

Example:
d7 d0

0 0 1 1 0 0 0 100h

 Number of packets transmitted: 1

 Command code: 06h

Chapter 6: The Super Game Boy System

159

d7 d0

01h -- 0 1 0 0 1 1 1

 Palette: 3
 Palette: 1
 Palette: 2

 Coordinate setting: H

02h -- -- -- 0 0 1 1 0

Character line number: 06h

Sets this character line to the Palette 2 attribute.
↓

→H 06
↓
V

 Palette 1 Palette 3

Command: ATTRIBUTE_CHR (Code: 07h)
Function: Specifies a color palette for each character.

d7 d0

0 0 1 1 100h

 Number of packets: 1h – 6h

 Command code: 07h

d7 d0

01h -- -- --

 H coordinate of start of write

Game Boy Programming Manual

160

d7 d0

02h -- -- --

 V coordinate of start of write

d7 d0

03h

Number of data items to send
Each data item (2 bits) specifies a color palette.

d7 d0

04h -- -- -- -- -- -- --

Most significant bit of number of data items sent, specified in 03h

(The maximum number of data items required is 360.)

d7 d0

05h -- -- -- -- -- -- --

 Write horizontally: 0; Write vertically

 START
Horizontal write (H direction)

Pal.
N

Pal.
N

Pal.
N

Pal.
N

Pal.
N

Pal.
N

Pal.
N

Pal.
N

 06h

 07h

 : : : :

START

Vertical write (V direction)
: : : :
START

: : : :

 Sending color palette data for entire screen:

: : : :

Chapter 6: The Super Game Boy System

161

6th Packet

Pal. No. Pal. No. Pal. No. Pal. No.

Pal. No. Pal. No. Pal. No. Pal. No. Data items nos. 357, 358, 359, and 360.

 0Eh

 0Fh

* See note on ATTR_BLK.

Command: SOUND (Code: 08h)
Function: Generates and halts internal sound effects and sounds that use internal tone data.

d7 d0

0 1 0 0 0 0 0 100h

 Number of packets: 1h (fixed)
 Command code: 08h

d7 d0

01h Sound Effect A (PORT1): decay

 Sound code

02h Sound Effect B (PORT2): sustain

 Sound code

03h

 Sound Effect A attributes
 Scale: 00<01<10<11

Low High

 Volume: 00: high; 01: medium; 10: low
11: enable mute (fade out)

Sound Effect B attributes
 Scale: 00<01<10<11

Low High

 Volume: 00: high; 01: medium; 10: low

Game Boy Programming Manual

162

d7 d0

04h

 BGM code
When not used, 00h always written.

* For more information, see Section 3.4, Sound Flag Lists.

Command: SOU_TRN (Code: 09h)
(Data transfer using VRAM)

Function: Sends a sound program and sound data to the APU.

d7 d0

0 1 0 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 09h

* The 4 Kbytes of SGB RAM data immediately following the command is sent to APU RAM.

The data to be transferred must be prepared prior to the frame preceding issuance of the command.

The transfer ends 6 frames after the command is issued (not counting the frame in which the
command is issued).

The beginning of the data for transfer contains a 16-bit representation of the number of data items
and the transfer destination address, and the end contains an ending code and the starting address
of the program. For more information, see Chapter 7: Super Game Boy Sound.

APU RAM program area: 0400h – 2AFFh/9.75 Kbytes
APU RAM music data area: 2B00h – 4AFFh/8 Kbytes
APU RAM sampling data area: 4DB0h-EEFFh/40.25 Kbytes

Note: When SOU_TRN is used, 5 packets of SOU_TRN initialization should be
sent to the register file. For more information, see Section 5.3,
SOU_TRN Initialization Data.

Chapter 6: The Super Game Boy System

163

Command: PAL_SET (Code: 0Ah)
Function: Applies system color palettes to SGB color palettes.

d7 d0

0 1 0 1 0 0 0 100h

 Number of packets: 1h (fixed)
 Command code: 0Ah

d7 d0

01h

 Number of the system color palette to apply to SGB color
(LOW)

d7 d0

02h -- -- -- -- -- -- --

 Number of the system color palette to apply to SGB color
(HIGH)
* The system color palettes selected are

palettes 000-511.

Number of the system color palette applied to
SGB color palette 1.

d7 d0

03h

04h -- -- -- -- -- -- --

 LOW

 HIGH

Number of the system color palette applied to
SGB color palette 2.

d7 d0

05h

06h -- -- -- -- -- -- --

 LOW

 HIGH

Number of the system color palette applied to
SGB color palette 3.

Game Boy Programming Manual

164

d7 d0

07h

08h -- -- -- -- -- -- --

 LOW

 HIGH

d7 d0

09h

 Specifies the attribute file (ATF) number
 (00h – 2Ch)

 0: No change
1: Cancels masking after the data is set.

 0: Not specified.
1: The specified attribute file number.

* 0Ah - 0Fh should be filled with 00h.

Command: PAL_TRN (Code: 0Bh)
(Data Transfer using VRAM)

Function: Transfers color data to the system color palette.

d7 d0

0 1 0 1 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 0Bh

* The 4 Kbytes of SGB RAM data immediate following the command is handled as system color
palette data and stored in Super NES W-RAM as data for system color palettes 000 – 511.

The format of data storage in SGB RAM is as follows.

Chapter 6: The Super Game Boy System

165

d7 d0

 System Color Palette 000 bit 00 color

System Color Palette 000 bit 00 color code --

 System Color Palette 000 bit 01 color code

System Color Palette 000 bit 01 color code --

Byte 1 LOW

HIGH

LOW

HIGH

 : : : :

 System Color Palette 511 bit 10 color code

 System Color Palette 511 bit 10 color code --

 System Color Palette 511 bit 10 color code

 System Color Palette 511 bit 10 color code

Byte 4096

 --

LOW

HIGH

LOW

HIGH

The storage addresses are 3000h - 3FFFh.

Command: ATRC_EN (Code: 0Ch)
Function: Enables and disables attraction mode.

Enables and disables attraction on the picture frame.
The default setting is enabled (00h).
If the command is issued during attraction, attraction is stopped.

d7 d0

0 1 1 0 0 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 0Ch

d7 d0

01h -- -- -- -- -- -- --

 0: Enables attraction
1: Disables attraction

Example: Attraction start duration for a model (type without communication connector).

The time required for attraction to start for each picture frame is as follows. (Times shown in
parentheses are times required to start attraction a second time.)

Game Boy Programming Manual

166

Mario 7 min. (5 min.)

Cork 3 min. (5 min.)

Landscape 1 min. (1 min.)

Cinema 3 mins.

Cats 3 mins.

Pencils 3 mins. (5 mins.)

Escher art 7 mins. (5 mins.)

Command: ICON_EN (Code: 0Eh)
Function: Enables and disables the icon function.

d7 d0

0 1 1 1 0 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 0Eh

d7 d0

01h -- -- -- -- --

 Color palette

0: Enables use of color palettes internal to the
 SBG system program.
1: Disables use of color palettes internal to SBG
 system program.

 Control settings screen

0: Enable settings
1: Disable settings

 SGB register file transfer
0: Receive
1: Do not receive

* The default value is 00h.

Chapter 6: The Super Game Boy System

167

Command: DATA_SND (Code: 0Fh)
Function: Transfers data to Super NES W-RAM using the register file.

d7 d0

0 1 1 1 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 0Fh

d7 d0

01h

 Transfer destination address (LOW)

d7 d0

02h

 Transfer destination address (HIGH)

d7 d0

03h

 Bank number

d7 d0

04h

 Number of data items: 1h – Bh (max)

Game Boy Programming Manual

168

d7 d0

05h

06h

 : : : :

0Eh

0Fh

 * Free Addresses

 Bank 00h
 1800h - 1FFFh
 Data
 Bank 7Eh
 B000h – BFFFh

 Bank 7Fh
 0000h – FFFFh

Command: DATA_TRN (Code: 10h)
(Data Transfer using VRAM)

Function: Transfers data in SGB RAM to Super NES W-RAM.

d7 d0

1 0 0 0 0 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 10H

d7 d0

 01h

 Data transfer address (HIGH)

d7 d0

 02h

 Data transfer address (HIGH)

d7 d0

 03h

 Bank number

Chapter 6: The Super Game Boy System

169

* Free Addresses

Bank 00h 1800h – 1FFFh
Bank 7Eh B000h – BFFFh

 Bank 7Fh 0000h – FFFFh

Note: When an Super NES program is tranferred to W-RAM and executed, 00h
should be written to 1700h of bank 00. This can be written either by
using DATA_SND or DATA_TRN or by using the transferred program.

Command: MLT_REQ (Code: 11h)
Function: Requests multiplayer mode.

d7 d0

1 0 0 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 11h

d7 d0

01h -- -- -- -- -- --

 0: No request

1: Request
 The game program can use a connector for 2

controllers (e.g., standard Controllers and
Multiplayer 5).

 0: 2 players
 1: 4 players
 (Multiplayer 5 required)

* The default value is 00h.

Game Boy Programming Manual

170

Command: JUMP (Code: 12h)

Function: Sets the Super NES program counter to the specified address.

d7 d0

1 0 0 1 0 0 0 100h

 Number of packets: 1h (fixed)
 Command code: 12h

d7 d0

01h

 Address (LOW)

d7 d0

02h

 Address (HIGH)

d7 d0

03h

 Bank number

 d7 d0

04h

 New NMI vector address (LOW)

d7 d0

05h

 New NMI vector address (HIGH)

d7 d0

06h

 Bank number

Chapter 6: The Super Game Boy System

171

Note: If all addresses from 04h to 06h are set to 0, the NMI jumps to the
original vector. NMI is disabled in the system program, so it must be
enabled to be used.

Command: CHR_TRN (Code: 13h)
(Data Transfer using VRAM)　Function: Transfers Super NES character format data.

d7 d0

1 0 0 1 1 0 0 100h

 Number of packets: 1h (fixed)
 Command code: 13h

01h -- -- -- -- -- -- 0

 0: Data for characters 00h – 7Fh
(BG)
1: Data for characters 80h – FFh
(BG)

The characters are in 16-color (4-bit) mode.

Note: The 4 Kbytes of SGB RAM data immediately following this command is
handled as Super NES character data and transferred to Super NES
VRAM.

The format of the tranferred data is based on the Super NES character
data format.

The BG character names are allocated to 00h – FFh.

When character data is used for the picture frame, characters with a
character name setting of 0x00 should consist of null bits, and all dots
of characters with a name setting of 0x01 should be represented by non-
null bits.

Command: PCT_TRN (Code: 14h)
(Data Transfer using VRAM)

Function: Transfers screen data and color data for picture frames created by the software
developer.

Game Boy Programming Manual

172

d7 d0

1 0 1 0 0 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 14h

* The 4 Kbytes of SGB RAM immediately following this command are handled as screen data and
transferred to Super NES VRAM.

START

DMG Window

Picture Frame
 (Number of characters: 1,024)

There should be 1,024 uncompressed characters of screen data.
The inside of the DMG window should be filled with null characters.
Three color palettes, 4-6, are transferred.
The initial data consists of 2,048 bytes of screen data. This is followed by by 3 palettes of color data
(2 bytes x 16 x 3).

The format of the transferred data is based on that of Super NES screen and color data. However,
the BG priority bit is set to 0, the color palettes to palette numbers 4-6, the higher-order 2 bits of the
character name to 00b, and the characters to 8 x 8-bit mode.

Command: ATTR_TRN (Code: 15h)
(Data Transfer using VRAM)　Function: Transfers attribute files.

d7 d0

1 0 1 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 15h

Chapter 6: The Super Game Boy System

173

* The 4 Kbytes of SGB RAM immediately following this command are transferred to W-RAM as
attribute files. (The capacity of each attribute file is 2 x 20 x 18/8 = 90 bytes. Thus, 45 attribute files
occupy 4,050 bytes, ATF0h-ATF44h.

The ATF data format (90 bytes total) — written horizontally from the left edge of the DMG window.

Byte 1 Byte 2
 d7,d6 d5,d4 d3,d2 d1,d0 d7,d6 d5,d4 d3,d2 d1,d0

Byte 6 Byte 7
 d7,d6 d5,d4 d3,d2 d1,d0 d7,d6 d5,d4 d3,d2 d1,d0

. .

. .

. .

. .

. .

. .

. .
 : : : : : : : :

Byte 81 Byte 82
 d7,d6 d5,d4 d3,d2 d1,d0 d7,d6 d5,d4 d3,d2 d1,d0

Byte 86 Byte 87
 d7,d6 d5,d4 d3,d2 d1,d0 d7,d6 d5,d4 d3,d2 d1,d0

. .

. .

. .

. .

. .

. .

. .

(The figure depicts a DMG window with 20 x 18 characters.)

Command: ATTR_SET (Code: 16h)
Function: Applies the specified attribute file to the DMG window.

d7 d0

1 0 1 1 0 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 16h

d7 d0

01h --

 Specifies the attribute file number.
 (00h – 2Ch)

 0: Not changed
1: Cancel masking after attribute file transfer

* 02h - 0Fh filled with 00h.

Game Boy Programming Manual

174

Command: MASK_EN (Code: 17h)
Function: Masks the DMG window.

d7 d0

1 0 1 1 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 17h

d7 d0

01h -- -- -- -- -- --

00: Cancels masking
01: Freezes the screen immediately before

masking. (No transfers to Super NES
VRAM are performed from after the
command is issued until masking is
canceled.)

10: Masks by setting all SGB color palette
color codes to black.

11: Masks by setting all SGB color palette
color codes to the same color (color of bit
00).

* 2h- Fh filled with 00h.

Note: When masking is performed at the start of the game, it should be
performed after the DMG reset is canceled and around the time that the
DMG screen is displayed on SGB. (The timing of the command should
be adjusted so that it is issued after a wait of several frames.) Without
this timing, the screen may be momentarily be displayed in
monochrome.

Note: Masking with an argument (01h) of 10h or 11h is prohibited during a
game.

Command: PAL_PRI (Code: 19h)
Function: Specifies the priority of the color palette for the application and the color palette selected
by the player.

Chapter 6: The Super Game Boy System

175

 d7 d0

1 1 0 0 1 0 0 100h

 Number of packets: 1h (fixed)

 Command code: 19h

d7 d0

 -- -- -- -- -- -- -- 01h

0: Priority to the player-selected color palette
1: Priority to the application color palette

* Default is 0.

Priority to Player-Selected Color Palette
When a screen that uses a player-selected color palette is displayed, any color or attribute settings
commands that were sent have no effect on the DMG window.

Priority to Application Color Palette
When a screen that uses a player-selected color palette is displayed and a color or attribute setting
command was sent, the sent colors are displayed in the DMG window. The corresponding
commands are as follows.

00, 01, 02, 03, 04, 05, 06, 07, 0A, 16 (Code value)

3.3 Cautions Regarding Sending Commands

! After each packet (128 bits) is sent, 0 must always be sent in bit 129.

! If a data sequence covers more than 1 packet, byte 1 of each packet after the first is a
continuation of the data of the previous packet.

! 00h is written to the unused areas in each packet.

! Note that there are two modes of data transfer: register-file mode and a mode in which 4 Kbytes
are tranferred using SGB RAM.

! Controller key input should not be read while a command is being sent.

Game Boy Programming Manual

176

3.4 Sound Flag Summary

! Pre-loaded sound effects A and B can be played simultaneously using system commands.

! The A sound effects are formants, primarily action sounds, and the B sound effects are looping
sounds, primarily ambient sounds.

! The interval (frequency) for these sound effects can be set to 4 levels.

! Changing the interval A allows a completely different sound effect to be obtained with the same
sound source. In addition, the volume can be set to 3 levels.

Chapter 6: The Super Game Boy System

177

3.4.1 Sound Effect A Flags

SOUND Command

 01h d7-d0 [bit] 03j d1-d0 [bit]

 Code Flag Meaning Recommended
Interval Value Voices Used

 00h Dummy flag for retriggering • • 6 • 7

 80h Sound effect A stop (mute) • • 6 • 7

 01h Nintendo d1 = 1 • d0 = 1 • • • 7

 02h Game over sound d1 = 1 • d0 = 1 • • 6 • 7

 03h Falling sound d1 = 1 • d0 = 1 • • • 7

 04h Predetermined sound • • • A d1 = 1 • d0 = 1 • • 6 • 7

 05h Predetermined sound • • • B d1 = 1 • d0 = 1 • • 6 • 7

 06h Selected sound • • • A d1 = 1 • d0 = 1 • • 6 • 7

 07h Selected sound • • • B d1 = 1 • d0 = 1 • • • 7

 08h Selected sound • • • C d1 = 1 • d0 = 0 • • 6 • 7

 09h Error sound • • • buzzer d1 = 1 • d0 = 0 • • • 7

 0Ah Item-catch sound d1 = 1 • d0 = 0 • • 6 • 7

 0Bh One knock on door d1 = 1 • d0 = 0 • • 6 • 7

 0Ch Explosion • • • small d1 = 1 • d0 = 1 • • 6 • 7

 0Dh Explosion • • • medium d1 = 1 • d0 = 1 • • 6 • 7

 0Eh Explosion • • • large d1 = 1 • d0 = 1 • • 6 • 7

 0Fh Defeat sound • • • A d1 = 1 • d0 = 1 • • • 7

 10h Defeat sound • • • B d1 = 1 • d0 = 1 • • 6 • 7

 11h Striking sound (attack) • • • A d1 = 1 • d0 = 0 • • 6 • 7

 12h Striking sound (attack) • • • B d1 = 1 • d0 = 0 • • 6 • 7

 13h Air-sucking sound d1 = 1 • d0 = 0 • • 6 • 7

 14h Rocket launcher • • • A d1 = 1 • d0 = 1 • • 6 • 7

 15h Rocket launcher • • • B d1 = 1 • d0 = 1 • • 6 • 7

 16h Bubbling sound (in water) d1 = 1 • d0 = 0 • • • 7

Game Boy Programming Manual

178

SOUND Command

 01h d7-d0 [bit] 03h d1-d0 [bit]

 Code Flag Meaning Recommended
Interval Value Voices Used

 17h Jump d1 = 1 • d0 = 1 • • • 7

 18h Fast jump d1 = 1 • d0 = 1 • • • 7

 19h Jet (rocket) firing d1 = 1 • d0 = 0 • • • 7

 1Ah Jet (rocket) landing d1 = 1 • d0 = 0 • • • 7

 1Bh Cup breaking d1 = 1 • d0 = 0 • • 6 • 7

 1Ch Glass breaking d1 = 1 • d0 = 1 • • 6 • 7

 1Dh Level up d1 = 1 • d0 = 0 • • 6 • 7

 1Eh Air injection d1 = 1 • d0 = 1 • • • 7

 1Fh Sword wielding d1 = 1 • d0 = 1 • • • 7

 20h Falling in water d1 = 1 • d0 = 0 • • • 7

 21h Fire d1 = 1 • d0 = 1 • • • 7

 22h Breaking wall d1 = 1 • d0 = 1 • • 6 • 7

 23h Cancellation sound d1 = 1 • d0 = 0 • • 6 • 7

 24h Stepping d1 = 1 • d0 = 1 • • 6 • 7

 25h Block-hitting sound d1 = 1 • d0 = 1 • • 6 • 7

 26h Sound of picture floating into view d1 = 1 • d0 = 1 • • 6 • 7

 27h Screen fade-in d1 = 1 • d0 = 0 • • 6 • 7

 28h Screen fade-out d1 = 1 • d0 = 0 • • 6 • 7

 29h Window opening d1 = 1 • d0 = 1 • • 6 • 7

 2Ah Window closing d1 = 1 • d0 = 0 • • 6 • 7

 2Bh Large laser sound d1 = 1 • d0 = 1 • • 6 • 7

 2Ch Sound of stone door closing (opening) d1 = 1 • d0 = 0 • • 6 • 7

 2Dh Teleportation d1 = 1 • d0 = 1 • • • 7

 2Eh Thunder d1 = 1 • d0 = 0 • • 6 • 7

 2Fh Earthquake d1 = 1 • d0 = 0 • • 6 • 7

 30h Small laser sound d1 = 1 • d0 = 0 • • 6 • 7

Chapter 6: The Super Game Boy System

179

3.4.2 Sound Effect B Flags

SOUND Command

 02h d7-d0 [bit] 03h d5-d4 [bit]

 Code Flag Meaning Recommended
Interval Value Voices Used

 00h Dummy flag for retriggering 0 • 1 • 4 • 5

 80h Sound Effects B stop (mute) 0 • 1 • 4 • 5

 01h Applause • • • small crowd d5 = 1 • d4 = 0 • • • 5

 02h Applause • • • medium crowd d5 = 1 • d4 = 0 • • 4 • 5

 03h Applause • • • large crowd d5 = 1 • d4 = 0 0 • 1 • 4 • 5

 04h Wind d5 = 0 • d4 = 1 • • 4 • 5

 05h Rain d5 = 0 • d4 = 1 • • • 5

 06h Storm d5 = 0 • d4 = 1 • 1 • 4 • 5

 07h Hurricane d5 = 1 • d4 = 0 0 • 1 • 4 • 5

 08h Thunder d5 = 0 • d4 = 0 • • 4 • 5

 09h Earthquake d5 = 0 • d4 = 0 • • 4 • 5

 0Ah Lava flow d5 = 0 • d4 = 0 • • 4 • 5

 0Bh Wave d5 = 0 • d4 = 0 • • • 5

 0Ch River d5 = 1 • d4 = 1 • • 4 • 5

 0Dh Waterfall d5 = 1 • d4 = 0 • • 4 • 5

 0Eh Small character running d5 = 1 • d4 = 1 • • • 5

 0Fh Horse galloping d5 = 1 • d4 = 1 • • • 5

 10h Warning sound d5 = 0 • d4 = 1 • • • 5

 11h Futuristic car running d5 = 0 • d4 = 0 • • • 5

 12h Jet flying d5 = 0 • d4 = 1 • • • 5

 13h UFO flying d5 = 1 • d4 = 0 • • • 5

 14h Electromagnetic waves d5 = 0 • d4 = 0 • • • 5

 15h Sound of score being raised d5 = 1 • d4 = 1 • • • 5

Game Boy Programming Manual

180

SOUND Command

 02h d7-d0 [bit] 03h d5-d4 [bit]

 Code Flag Meaning Recommended
Interval Value Voices Used

 16h Fire d5 = 1 • d4 = 0 • • • 5

 17h Camera shutter (formant) d5 = 0 • d4 = 0 0 • 1 • 4 • 5

 18h Writing (formant) d5 = 0 • d4 = 0 • • • 5

 19h Erasing (formant) d5 = 0 • d4 = 0 • • • 5

 81h Use prohibited (used by system)

 82h Use prohibited (used by system)

Chapter 6: The Super Game Boy System

181

3.4.3 Attributes of A and B Sound Effects

SOUND Command

03h

 d7 d6 d5 d4 D3 d2 d1 d0

 x x 0 0 Interval (short)

 x x 0 1 Interval (med-short)

 x x 1 0 Interval (med-long)

 x x 1 1 Interval (long)

 0 0 X x Volume (high)

 0 1 x x Volume (med)

 A
Sound

Effects

 1 0 x x Volume (low)

 x x 0 0 Interval (short)

 x x 0 1 Interval (med-short)

 x x 1 0 Interval (med-long)

 x x 1 1 Interval (long)

 0 0 x x Volume (high)

 0 1 x x Volume (med)

 B
Sound

Effects

 1 0 x x Volume (low)

 1 1 Mute ON

! Mute takes effect only when both bits d2 and d3 are set to 1. If the volume is set for either the A
or B sound effect, mute is turned off.

! Fade-out and fade-in take effect with mute-on and mute-off, respectively. Mute-on and mute-off
are implemented for BGM played by A and B sound effects and by the APU.

! There is no independent mute-off flag.

! When the mute flag is set, the volume and interval data for the A (Port 1) and B (Port 2) sound
effects also should be set.

Game Boy Programming Manual

182

4. MISCELLANEOUS

4.1 Reading Input from Multiple Controllers

After a multiplayer request (Command MLT_REQ) is sent, data from Controllers 1, 2, 3, and 4
automatically become readable.

In 2-player mode, data from Controller 1 is read first, followed by data from Controller 2, then data
from Controller 1 again, and so on. In 4-player mode, the order is Controller 1, Controller 2, Controller
3, Controller 4, Controller 1 again, and so on.

In these cases, the next Controller for which data is to be read must be determined beforehand by
reading P10-P13 with P14 and P15 high.

P10 - P13 Next Controller to Read

Fh Controller 1

Eh Controller 2

Dh Controller 3

Ch Controller 4

Note: Controller data cannot be read if Multiplayer 5 and Super NES Mouse are
connected at the same time.

4.2 Recognizing SGB

4.2.1 Distinguishing between Game Boy types (DMG, MGB/MGL, SGB, and SGB2)

The program uses the following methods to determine which of the 4 types is operating.

! Checks the initial value of the internal accumulator of the CPU. (distinguishes between
previous/new versions of CPU).

01 → DMG or SGB
FF → MGB/MGL or SGB2

! Sends a muliplayer request (Command MLT_REQ) and determines whether there is a
switch to multiplayer mode.

No switch → DMG or MGB/MGL
Switch → SGB or SGB2

* The following table summarizes these methods.

Chapter 6: The Super Game Boy System

183

Initial Value of CPU Internal
Accumulator

Switch/No Switch to
Multiplayer Mode

Game Boy Type

No switch DMG
01

Switch SGB
No switch MGB/MGL

FF
Switch SGB2

4.2.2 Usage Example: Distinguishing Between the 4 Game Boy Types

* A sample program for distinguishing between GB types is provided.

START

Distinguish Between the 4 GB Types
(See 4.2.1)

DMG
MGB/MGL SGB SGB2

DMG Communication Mode O
SGB Competition Mode x

DMG Communication Mode O
SGB Competition Mode x

DMG Communication Mode O
SGB Competition Mode O

* Allowing selection by the user is
desirable.

Main Routine

Game Boy Programming Manual

184

4.3 SGB Register Summary

The following registers can be used to perform functions such as resetting the SGB CPU from a
program transferred to Super NES W-RAM and receiving and passing data to a DMG program.

Register File Status Reads the status of the register file
[RFS] 6002h (RD)

1:Ready

0: mid-transfer or read
finished

DMG Reset Register Resets the SGB CPU
[DRR] 6003h (WR)

-- 0 0 -- -- 0 1

0: Reset
1: Cancel

Controller Register1 Writes data from Controller 1
[CR1] 6004h (WR)

ST SE B A D U L R

Data read at P15 Data read at P14

Register File Register file for communication
[RF0 - RFF] 7000h - 700Fh (RD)

* The RFS flag (6002h) is cleared to 0 by the
reading of 7000h.

The SGB CPU can be reset using DRR.

Using RF0 - RFF and RFS allows data sent to the register file by the DMG program to be received by
the Super NES program.

CR1 is a register used by the original SGB system program for writing keypad data from controller 1.
The Super NES program can use the controller-reading routine of the DMG program to receive data
written to this register.

Chapter 6: The Super Game Boy System

185

4.4 Flowchart of Initial Settings Routine

Start

Reset Processing

Wait about 1 sec. ;Wait for completion of initial SGB settings

Operating on DMG or MGB/MGL
Distinguish Between GB Types

Operating on SGB or SGB2

Mask with MASK_EN Initial settings for
GB operation

Send initial data

Send SOU_TRN default data ;Sent only when SOU_TRN used

Command issued to send ;Other commands also
data that use VRAM issued as appropriate

Initial Screen Display

Wait 1 Frame ;Wait until initial screen
completely displayed

Cancel MASK_EN masking

Main Routine

Game Boy Programming Manual

186

5. PROGRAMMING CAUTIONS

5.1 ROM Registration Data

To use SGB functions (system commands), the following values must be stored at the ROM
addresses indicated.

146h 03h and 14Bh 33h

5.2 Initial Data

When writing programs that use the system commands of SGB and SGB2, use the initialization
routine of the game program to send the following 8 packets of default data to the register file.

INIT1 DEFB $79,$5D,$08,$00,$0B,$8C,$D0,$F4,$60,$00,$00,$00,$00,$00,$00,$00
INIT2 DEFB $79,$52,$08,$00,$0B,$A9,$E7,$9F,$01,$C0,$7E,$E8,$E8,$E8,$E8,$E0
INIT3 DEFB $79,$47,$08,$00,$0B,$C4,$D0,$16,$A5,$CB,$C9,$05,$D0,$10,$A2,$28
INIT4 DEFB $79,$3C,$08,$00,$0B,$F0,$12,$A5,$C9,$C9,$C8,$D0,$1C,$A5,$CA,$C9
INIT5 DEFB $79,$31,$08,$00,$0B,$0C,$A5,$CA,$C9,$7E,$D0,$06,$A5,$CB,$C9,$7E
INIT6 DEFB $79,$26,$08,$00,$0B,$39,$CD,$48,$0C,$D0,$34,$A5,$C9,$C9,$80,$D0
INIT7 DEFB $79,$1B,$08,$00,$0B,$EA,$EA,$EA,$EA,$EA,$A9,$01,$CD,$4F,$0C,$D0
INIT8 DEFB $79,$10,$08,$00,$0B,$4C,$20,$08,$EA,$EA,$EA,$EA,$EA,$60,$EA,$EA

5.3 SOU_TRN initial data

When using the SOU_TRN system command, send the following 5 packets of SOU_TRN default data to
the register file before SOU_TRN is used.

STI
DB $79, $00, $09, $00, $0B
DB $AD, $C2, $02, $C9, $09, $D0, $1A, $A9, $01, $8D, $00

ST2
DB $79, $0B, $09, $00, $0B
DB $42, $AF, $DB, $FF, $00, $F0, $05, $20, $73, $C5, $80

ST3
DB $79, $16, $09, $00, $0B
DB $03, $20, $76, $C5, $A9, $31, $8D, $00, $42, $68, $68

ST4
DB $79, $21, $09, $00, $01
DB $60, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00

ST5
DB $79, $00, $08, $00, $03
DB $4C, $00, $09, $00, $00, $00, $00, $00, $00, $00, $00

Chapter 7: Super Game Boy Sound

187

CHAPTER 7: SUPER GAME BOY SOUND..188
1. SGB SOUND PROGRAM OVERVIEW..188
2. MEMORY MAPPING (SUPER NES APU)...................................189
3. CREATING AND TRANSFERRING SCORE DATA....................190

3.1 Transferring Score Data ..190
3.2 Summary of BGM Flags ..190
3.3 Overview of Creating Score Data ...191
3.4 Setting the NEWS System Working Environment...............................191
3.5 Setting the Working Environment When Using IS-SOUND193
3.6 Score Data Format When Using Original Tools195
3.7 Cautions Regarding Production of Musical Pieces205
3.8 Format of Transferred Data...206

4. SGB SOUND PROGRAM SOURCE LIST.....................................209
5. TRANSFERRING AUDIO DATA TO THE SCORE AREA............212

5.1 Required Data and Procedure for Audio Output.................................212
5.2 Transfer File Example..213

Game Boy Programming Manual

188

CHAPTER 7: SUPER GAME BOY SOUND

1. SGB SOUND PROGRAM OVERVIEW
The SGB sound program is a special SGB program built into the SGB system program. The sound
program is automatically transferred to the Super NES APU at system startup.

Using the SGB system commands, pre-loaded sound effects in the sound program can be used in
Game Boy application programs that support SGB (SGB software).

These commands can be used to set each of the 73 types of pre-loaded sound effects to 4 intervals
(playback frequencies) and 3 volume levels.

Also preloaded are music data for BGM (instruments sound sampling data). This easily allows play of
score data created with Kankichi-kun, the tool for creating Super NES scores, and score data for
KAN.ASM, the standard driver that is a software tool for IS-SOUND.

In addition, information on the SGB score data format has been made openly available, allowing those
using tools other than the NEWS system or IS-SOUND to create score data in this format.

Chapter 7: Super Game Boy Sound

189

2. MEMORY MAPPING (SUPER NES APU)
[APU Addresses]

Game Boy Programming Manual

190

3. CREATING AND TRANSFERRING SCORE DATA
3.1 Transferring Score Data

BGM can be played with the APU by using the SOU_TRN command to transfer original score data to
the prescribed area of APU RAM. The user area is the 8 Kbytes from 2B00h to 4AFFh.

3.2 Summary of BGM Flags

SOUND Command

 04h d7-d0 [bit]

Code Flag Description

 00h Dummy flag for retriggering

 10h

 Fh

 80h BGM stop flag

 FEh Use prohibited (used by system)

 FFh Use prohibited (used by system)

Note: If 01h-0Fh are set without score data being transferred, the BGM built
into the system is played.

 This BGM is exclusively for use by the system, so 01h-0Fh should not be
written as a BGM flag without original score data being transferred.

 Even if original score data is transferred, there is risk that the sound
program will run uncontrolled if a non-designated code is written.

Muting is in effect when the system is initialized, so the BGM playback
settings must be made after muting is canceled.

Chapter 7: Super Game Boy Sound

191

3.3 Overview of Creating Score Data

Original BGM can be played with the SGB sound program by transferring score data to the APU using
system commands.

Fifty-seven sounds can be used in BGM, and the score data can be up to just under 8 Kbytes in size.

The method used to create a musical piece is nearly identical to that of the standard Super NES.

When the NEWS system is used, score data is created using Kankichi-kun. When IS-SOUND is used,
score data created by an external sequencer are processed through MIDI and converted to create score
data supported by the standard sound driver KAN.ASM.

In addition the SGB score data format has been made openly available, allowing those using original
tools to create score data in this format.

In creating musical pieces, please refer to Section 4, SGB Sound Program Source List, when selecting
sounds. Please do not change the order of these source data.

3.4 Setting the NEWS System Working Environment

Working Environment Settings for the NEWS System

1. Rename the current sobox directory.

% mv sobox xxxxx

2. Create a new sobox directory.

% mkdir sobox

* SGB can use only specific sound objects. Thus, special SGB source data must be installed. A
sobox directory for SGB use must be created to prevent loss of previously installed source data
files with the same names as the data files to be installed.

3. Move to the sobox directory.

4. From the installation disk, install soread in this directory.

% tar xvf /dev/rfh0a soread

5. Next install the sampling data files (xxx.so . . .) in this directory.

% soread

Executing the above command causes the sampling data to be automatically installed.

6. Create a new SGB working directory at any location.

% mkdir #####

7. Move to the SGB working directory.

8. From the installation disk, install the following files in the working directory: sgbt.asm,
sample.kan, check.kan, kankichib.hex, and kan.equ.

Game Boy Programming Manual

192

% tar xvf /dev/rfh0a sgbt.asm sample.kan check.kan kankichib.hex kan.equ

* The organization and address settings in kankichib.hex are as shown below.

* Use the installed kankichib.hex file when starting up mapu.

Item Setting

Kan.equ 4c30h

Kan.tan 04c10h

Program start address 00400h

DIR address 04b00h

Echo end address 0ff00h

Sound score start
address

02b00h

9. Make the following changes in the file .cshrc in the home directory.

--- Following are the Sound Generation Environments Settings ---

Before Change After Change

StartOfKan 800h 400h

StartOfDirectory 3c00h 4b00h

EndOfDirectory 3cffh 4c0fh

StartOfAttribute 3e00h 4c30h

StartOfTan 3f00h 4c10h

StartOfWave 4000h 4db0h

EndOfWave Cfffh Eeffh

StartOfFumen d000h 2b00h

10. In the home directory, execute the following command: source .cshrc.

Chapter 7: Super Game Boy Sound

193

Cautions When Using Kankichi-kun

1. Copy sample.kan to a newly created score data file, [score_name].kan.

% cp sample.kan xxx.kan

* This avoids the task of creating a source list in source-list order when using mapu.

2. Start mapu.

% mapu -k

* When starting mapu for the first time, press the NICE reset button.

3. The usable sounds (sources) can be checked with mapu. Selecting check.kan allows the
sounds to be checked in source-list order.

* If data in files such as check.kan are changed, the sounds cannot be checked.

4. To actually create a tune, select xxx.kan.

* Source data (sampling data) that SGB can use have been set in xxx.kan. The source list is
shown in Section 4, SGB Sound Program Source List. Note that changing the order of the
source list will result in sounds different from the intended sounds when BGM is played.

5. When producing a musical piece, see Section 3.7, Cautions Regarding Production of Musical
Pieces. Refer to the Kankichi-kun Manual.

6. Finally, convert to the file format described in Section 3.8, Format for Transferred Files.

3.5 Setting the Working Environment Using IS-SOUND

Environment Required

! Hardware: IS-SOUND connected to a host computer

! Software: IS-SOUND software tools (installed)

Revisions

1. Portions of the IS-SOUND software tool KAN.EQU were revised as indicated below (older
versions only).

 Before Revisions

 After Revisions

 cut: equ 122+ 80h
 fft: equ 123+ 80h
 ply: equ 124+ 80h
 wav: equ 125+ 80h
 sel: equ 126+ 80h

 wav: equ 122+ 80h
 sel: equ 123+ 80h
 cut: equ 124+ 80h
 fft: equ 125+ 80h
 ply: equ 126+ 80h

2. Set Gate Table data to 050 · 101 · 127 · 152 · 178 · 203 · 229 · 252.

Game Boy Programming Manual

194

3. Set Velocity Table data to 025 · 050 · 076 · 101 · 114 · 127 · 140 · 152 · 165 · 178

· 191 · 203 · 216· 229 · 242 · 252.

Note: Sound data (sampling data) are required to check music data using IS-
SOUND. Consequently, a program equivalent to the sound program built
into the SGB hardware (including sound-effect data) and sampling data
(sound data) have been provided in a hex file for MS-DOS. The following
briefly describes how to set up this program and data.

Setting the Working Environment

1. Create an SGB working directory at any location, and move to that directory.

2. Copy sgbsound.hex from the disk to the working directory.

3. Start the debugger shvc.

4. Also start the sound debugger ssnd.

5. Execute r sgbsound.hex to load sgbsound.hex.

6. Execute g400 to run the sound program.

7. Press the HOME button to switch to shvc mode.

8. Execute s2140 to write 01 (from the main program, writes 01 to 0 of the sound port).

With this procedure, the pre-loaded source data (sampling data) are played in the order shown in
Section 4 of this chapter, SGB Sound Program Source List.

After the data is transferred once, only the score data needs to be transferred to allow music to be
checked again.

Cautions

1. Score data is the data defined in KAN.ASM Version 1.21 as being located from GFT onward. For
information on all items related to converting data from other sequencers to score data, formats,
and tool usage, see the IS-SOUND manual.

2. Set the source data number according to the source list.

3. Set the starting address of the score data to 2B00h.

4. When producing a musical piece, do so in accordance with Section 3.7, Cautions Regarding

Production of Musical Pieces.

5. Convert to the file format described in Section 3.8, Format for Transferred Files.

Chapter 7: Super Game Boy Sound

195

3.6 Score Data Format When Using Original Tools

The score data format has been made openly available for the benefit of those using original
development tools.

Data that is not in this format will not operate on SGB.

Note that in some cases, program control may be lost.

Score Data

Glossary of Terms

 Gft Location of tune table definitions (collection of tune label
definitions). Up to 15 tunes can be defined. The order
defined here corresponds to the flag set for port 0 (01h-
0Fh).

 Tune label A label name applied to each tune.

 Block A unit several bars long that each tune is divided into.

 Parts The channels that make up each block (maximum of 8
parts).

 Performance data The aggregate of the score data played by the parts. The
parts in the channels must all be the same length
(number of steps) in a given block.

Game Boy Programming Manual

196

Overall Format of Score Data

Example 1: (Area inside frame = Data table for 1 tune)

org 02b00h ; (a) Starting address of score data
gft: ; (b) Tune table

 dw bgm1,bgm2, ··· ; Indicate the tune labels

bgm1: ; (c) Tune label 1
dw bgm1_block1 ; (d) Block 01

bgm1 0:
dw bgm1_block2 ; (d) Block 02
dw bgm1_block3 ; (d) Block 03
dw 255 ; (e) Repetition code (endless)
dw bgm1_0 ; (e) Repetition starting address
dw 000 ; (f) Tune label end code

;
 bgm1_block1: ; (g) Block 01

 dw bgm1_block1_0 ; (g) Starting address of Part 0
 dw bgm1_block1_1 ; (g) Starting address of Part 1
 dw bgm1_block1_2 ; (g) Starting address of Part 2
 dw bgm1_block1_3 ; (g) Starting address of Part 3
 dw 00 ; (g) Part 4 unused
 dw 00 ; (g) Part 5 unused
 dw 00 ; (g) Part 6 unused
 dw 00 ; (g) Part 7 unused

bgm1 block2:
 · · ; (g) Same in Block 2
 · ·

bgm1 block3:
 · · ; (g) Same in Block 3
 · ·

bgm1 block1_0: ; Block 01 (h) Part 0 performance data
 db tp1,049,mv1,200,sno,$1a,pv1,180,pan,010
 db ecv,255,040,040,edl,002,090,002,tun,050
 db 012,P99+V99,c30,d30,e30,f30,024,g30,kyu
 db 00 ; (h) Part end code

 bgm1 block1_1: ; (h) Part 1 performance data
 db sno,$1b,pv1,140,pan,008,tun,030
 db 096,P99+V99,g20

bgm1 block1_2: ; (h) Part 2 performance data
 db sno,$1b,pv1,140,pan,008,tun,030
 db 096,P99+V99,e20

bgm1 block1_3: ; (h) Part 3 performance data
 db sno,$1b,pv1,140,pan,008,tun,030
 db 096,P99+V99,c20

bgm1 block2_0: Block 02 (h) Part 0 performance data
 db sno,$1a,pv1,200,pan,012,tun,050
 db • • • • • • • • • • • • • • • • • •
 db 00
 •

Continued on next page

Chapter 7: Super Game Boy Sound

197

bgm1_block3_0: Block03 (h) Part 0 performance data
db sno,$1a,pv1,200,pan,012,tun,050
db • • • • • • • • • • • • • • • • • •

 db 00
 •

Description of Example 1

(a) The score data map to memory addresses 2B00h-4AFFh in the APU.
If this area is exceeded, a portion of the sound program will be destroyed.

(b) gft: is the starting address of the entire tune table.
dw, bgm1, and bgm2... are the tune labels and the starting addresses of the score data items.

(c) The tune label.
The order in which the blocks are played is defined following the tune label.
The dotted frame encloses the data for one tune, bgm1.

(d) Data for each block.

(e) 01h-7Fh (01-127) is the number of loops (repetitions); 82h-FFh (130-255) is an endless loop.
If repetition is not needed, set the end code (0x00) instead of a loop code.

(f) Block definition end code.

(g) Location where the parts of each block are indicated and the part labels are defined.

Defines the part labels for parts 0, 1, 2, . . . 7 in ascending order from top to bottom. 0x00 should be
written for unused parts. Even if some parts are unused, always define 8 parts.

(h) The performance data for each part.

Play Data Overview

Parameters such as temp, volume, pan, source number, echo, velocity, interval, and sound length are
set here.

For specific descriptions, see Section 3.6.4, Code Summaries.

First set are the effects parameters – such as main volume, ramp, and echo – for Part 0 of the first
block. Once these are set, they need not be set again (for other blocks or parts) as long as they are not
changed.

Next the parameters such as part volume, pan, source number, and tuning are set for each part.

Then the sound length, velocity + gate time, and interval are set in that order. Be careful to ensure that
sound length is always set first, followed by velocity + gate item, then the interval.

If the next sound is the same as the previous sound, the sound length, velocity, and gate time need not
be set again.

Finally, a data end code of 00 is set for Part 0 of each block.

Settings for parts 1-7 are not required.

Game Boy Programming Manual

198

The lower parts and blocks are set in the same manner.

Code Summaries

a) Length Data (step time)
This is the length (step time) to the subsequent sound; it corresponds to the length of the sound
envelope. The code corresponding to each sound envelope is shown in the following table.
Please use the appropriate code in the settings.

Note Length Code Note Length Code Note Length
Code

Sixteenth
note

 6 Dotted eighth
note

 18 Half note 48

Dotted
sixteenth note

 9 Quarter note 24 Dotted half note 72

Eighth note 12 Dotted quarter
note

 36 Whole note 96

Note: For triplets and thirty-second notes, convert using the above values.

b) Velocity (volume) + gate time
Velocity expresses the volume as a percentage. Here it can be set to 16 levels using the lower-
order 4 bits (d0 – d3).
Gate time expresses as a percentage the length that the sound is actually emitted. It can be set
to 8 levels using the higher-order 3 bits (d4 – d6).
Changing these values provides legato and staccato effects.
The following table lists the values defined by the SGB sound driver.
The settings are designated using the codes for the listed velocities (VELOCITY) and gate times
(GATE_TIME).

Chapter 7: Super Game Boy Sound

199

Symbol Code d7 d6 d5 d4 d3 d2 d1 d0 Rate

 V10
 V20
 V30
 V40
 V45
 V50
 V55
 V60
 V65
 V70
 V75
 V80
 V85
 V90
 V95
 V99

 0x00
 0x01
 0x02
 0x03
 0x04
 0x05
 0x06
 0x07
 0x08
 0x09
 0x0A
 0x0B
 0x0C
 0x0D
 0x0E
 0x0F

x x x x 0 0 0 0
x x x x 0 0 0 1
x x x x 0 0 1 0
x x x x 0 0 1 1
x x x x 0 1 0 0
x x x x 0 1 0 1
x x x x 0 1 1 0
x x x x 0 1 1 1
x x x x 1 0 0 0
x x x x 1 0 0 1
x x x x 1 0 1 0
x x x x 1 0 1 1
x x x x 1 1 0 0
x x x x 1 1 0 1
x x x x 1 1 1 0
x x x x 1 1 1 1

 VELOCITY=010%
 VELOCITY=020%
 VELOCITY=030%
 VELOCITY=040%
 VELOCITY=045%
 VELOCITY=050%
 VELOCITY=055%
 VELOCITY=060%
 VELOCITY=065%
 VELOCITY=070%
 VELOCITY=075%
 VELOCITY=080%
 VELOCITY=085%
 VELOCITY=090%
 VELOCITY=095%
 VELOCITY=099%

 P20
 P40
 P50
 P60
 P70
 P80
 P90
 P99

 0x00
 0x10
 0x20
 0x30
 0x40
 0x50
 0x60
 0x70

x 0 0 0 x x x x
x 0 0 1 x x x x
x 0 1 0 x x x x
x 0 1 1 x x x x
x 1 0 0 x x x x
x 1 0 1 x x x x
x 1 1 0 x x x x
x 1 1 1 x x x x

GATE_TIME=020%
GATE_TIME=040%
GATE_TIME=050%
GATE_TIME=060%
GATE_TIME=070%
GATE_TIME=080%
GATE_TIME=090%
GATE_TIME=099%

 Symbol input example: P99+V99 Code input example: 70h+ 0Fh

*When setting score data using symbols, assemble after defining the equal statement according
to the table above.

Game Boy Programming Manual

200

c) Interval Data
Intervals for 6 octaves can be set here.
Depending on the sound, however, high sounds may not be heard.
The following table shows the correspondence between code settings and intervals. Please refer
to this table when setting an interval.

*Interval symbols: 01h- B50h
 Codes: 81h-C7h (tie = C8h · rest = C9h)

*When score data is set using symbols, assemble after defining the equals statement.

Octave 0 Octave 1 Octave 2 Octave 3

 Interval Code Interval Code Interval Code Interval Code

 C10 8Ch C20 98h C30 A4h

 C01 81h C11 8Dh C21 99h C31 A5h

 D00 82h D10 8Eh D20 9Ah D30 A6h

 D01 83h D11 8Fh D21 9Bh D31 A7h

 E00 84h E10 90h E20 9Ch E30 A8h

 F00 85h F10 91h F20 9Dh F30 A9h

 F01 86h F11 92h F21 9Eh F31 AAh

 G00 87h G10 93h G20 9Fh G30 ABh

 G01 88h G11 94h G21 A0h G31 ACh

 A00 89h A10 95h A20 A1h A30 ADh

 A01 8Ah A11 96h A21 A2h A31 AEh

 B00 8Bh B10 97h B20 A3h B30 AFh

Chapter 7: Super Game Boy Sound

201

Octave 4 Octave 5 Misc.

 Interval Code Interval Code Tie TIE C8h

 C40 B0h C50 BCh Rest KYU C9h

 C41 B1h C51 BDh

 D40 B2h D50 BEh

 D41 B3h D51 BFh

 E40 B4h E50 C0h

 F40 B5h F50 C1h

 F41 B6h F51 C2h

 G40 B7h G50 C3h

 G41 B8h G51 C4h

 A40 B9h A50 C5h

 A41 BAh A51 C6h

 B40 BBh B50 C7h

Note 1: A value of 1 in the right-most position of the interval symbol indicates a Τ.
A Ι is represented as the Τ of one interval lower.
Example: C01=CΤ for interval 0.

Note 2: When specifying a tie, first set the step time (length) and velocity + gate time. (This can be
skipped if unchanged from the previous sound.)

A tie cannot be used at the start of a block.

Note 3: When specifying KYU (a rest), first set the step time (length). (This can be skipped if
unchanged from the previous sound.)

Settings Example:

Length Gt & Vel Interval Code
db 024, P99+V99, C30 ;(0A4h) for specifying an interval

Length Gt & Vel Tie Code
db 048, P90+V95, TIE ;(0C8h) for specifying a tie

Length Rest Code
db 096 KYU ;(0C9h) for specifying a rest

Game Boy Programming Manual

202

d) Special Symbols
The special symbols represent special data for implementing a variety of special effects. These
include sound change, crescendo, panpot change, vibrato, tremolo, and echo. Each symbol has
its own parameters.

The following table lists these special symbols, their parameters, and the valid values
for these parameters.

✩ Special Symbols Summary No. 1

 Symbol
 Code

First Argument
(range)

Second
Argument (range)

Third Argument
(range)

Function

 sno
 ($E0)

SOURCE NAME
0 ≤ X ≤ 127

 Sound change

 pan
 ($E1)

Pan value
0 ≤ X ≤ 20

 Panpot (0=L/20=R/10=C)
 (10 = default)

 pam
 ($E2)

No. of steps
1 ≤ X ≤ 255

 Pan value
 0 ≤ Y ≤ 20

Move panpot
 (Y takes effect after X steps)

 vib
 ($E3)

No. of hold steps
0 ≤ X ≤ 255

 Rate
 1 ≤ Y ≤ 255

 Depth
 1 ≤ Z ≤ 255

Vibrato (no. of hold steps is the time
till vibrato takes effect)

 vof
 ($E4)

 Vibrato off

 mv1
 ($E5)

Volume
0 ≤ X ≤ 255

 Main volume
 (192 = Default value)

 mv2
 ($E6)

No. of Steps
 1 ≤ X ≤ 255

 Volume
 0 ≤ Y ≤ 255

 Move main volume
 (used for crescendo/decrescendo)
 (Y takes effect after X steps)

 tp1
 ($E7)

Rate
1 ≤ X ≤ 82

 Tempo
 See Note 1.

 tp2
 ($E8)

No. of steps
1 ≤ X ≤ 255

 Rate
 1 ≤ Y ≤ 82

 Move tempo
 (Used for retardando/accelerando)
 (Y takes effect after X steps)

 ktp
 ($E9)

Transposition level
$E8≤F≤$FF(–value)
$00≤X≤$18

 Main key transpose
 (1= semitone up/-1= semitone down)
 – is the two’s complement

 ptp
 ($EA)

Transposition level
$E8≤X≤$FF(–value)
 $00≤X≤$18

 Part key transpose
 (1= semitone up/-1= semitone down)
 – is the two’s complement

Chapter 7: Super Game Boy Sound

203

✩ Special Symbols Summary No. 2

Symbol
Code

First Argument
(range)

Second Argument
(range)

Third Argument
(range)

Function

 tre
 ($EB)

No. of hold steps
0 ≤ X ≤ 255

 Rate
 1 ≤ Y ≤ 255

Depth
1 ≤ Z ≤ 255

 Tremelo (no. of hold steps is the
 time till tremelo takes effect)

 tof
 ($EC)

 Tremelo off

 pv1
 ($ED)

Volume
0 ≤ X ≤ 255

 Part volume
 (192=Default value)

 pv2
 ($EE)

No. of steps
1 ≤ X ≤ 255

Volume
0 ≤ Y ≤ 255

 Move part volume
 (Used for crescendo/decrescendo)
 (Y takes effect after X steps.)

 pat
 ($EF)

PAT ADRS(L)
$00 ≤ X ≤ $FF

PAT ADRS(H)
$00 ≤ Y ≤ $FF

REPEAT PAT
1 ≤ Z ≤ 255

 Pattern data subroutine
 Seen Note 2.

 vch
 ($F0)

No. of steps
1 ≤ X ≤ 255

 Vibrato deepens gradually over X
 number of steps

 swk
 ($F1)

No. of hold steps
0 ≤ X ≤ 255

No. of steps
1 ≤ Y ≤ 255

Amount of
change
$DC ≤ Z ≤
$FF(– value)
$00 ≤ Z ≤ $24

 Start sweep from next sound
 – is the two’s complement

 sws
 ($F2)

No. of hold steps
0 ≤ X ≤ 255

No. of steps
1 ≤ Y ≤ 255

 Amount of
change
$DC ≤ Z ≤
$FF(– value)
$00 ≤ Z ≤ $24

 Start sweep heading into next
sound
 – is the two’s complement

 sof
 ($F3)

 Sweep off

 tun
 ($F4)

Amount of
change
0 ≤ X ≤ 255

 Tune
 (Semitone up with 255)

 ecv
 ($F5)

ECHO CHANNEL
0 ≤ X ≤ 255

ECHO-VOL(L)
0 ≤ Y ≤ 255

 ECHO-VOL(R)
 0 ≤ Z ≤ 255

 Echo volume
 Seen Note 3.

 eof
 ($F6)

 Echo off

 edl
 ($F7)

ECHO TIME
1 ≤ X ≤ 15

FEED BACK
$9D ≤ Y ≤ $FF (–
value)
$00 ≤ Y ≤ $7F

 FILTER No.
 0 ≤ Z ≤ 10

 Echo delay
 See Note 4.
 – is the two’s complement

Game Boy Programming Manual

204

Symbol
Code

First Argument
(range)

Second Argument
(range)

Third Argument
(range)

Function

 ev2
 ($F8)

No. of steps
1≤X≤255

 ECHO-VOL(L)
 0≤Y≤255

 ECHO-VOL(R)
 0 ≤ Z ≤ 255

 Move echo volume
(YZ values take effect after X
steps)

 swp
 ($F9)

No. of hold steps
 0 ≤ X ≤ 255

 No. of steps
 1 ≤ Y ≤ 255

 SWEEP value
 interval

Sweep (once)
The interval takes effect after the
specified
number of hold steps.

Note 1: The tempo values set by the program data and the actual (musical piece) tempos that
correspond to those values are as follows.

Please refer to this table to make the conversions.

Music Tempo Driver Tempo Music Tempo Driver Tempo

Quarter note = 400 82 Quarter note = 25

 Quarter note = 30 62 Quarter note = 60 12

 Quarter note = 24 49 Quarter note= 30 6

Note 2: Used when the same performance data is repeated (for data compression). Following the
pat code, the L and H addresses and the repetition frequency for the performance data is set. The
performance data at the addresses specified by pat are then read. The data is played the number of
times specified by the repetition frequency. The performance data at the locations specified by pat
require an end code of 00h.

Note 3: When applying echo, ecv and edl are required. The value entered for the echo channel is
1 for echo used in Part 0, 2 for Part 1, 4 for Part 2, 8 for Part 3, 16 for Part 4, 32 for Part 5, 64 for
Part 6, and 128 for Part 7. When echo is used for multiple parts, enter the sum of the channel
number values.

Examples:

When echo is used for parts 0 and 1, the value entered is 3.
When echo is used for all parts, the value entered is 255.

Note 4: Echo time is the delay duration. It uses RAM area equal to twice the echo time value,
expressed in Kbytes. The echo area in SGB is 4 Kbytes, so a value of 2 or less should be entered.
Feedback indicates the amount of delay returned. Filter No. indicates the type of filter applied to the
delayed sound.

0 = no filter; 1 = high-pass filter; 2 = low-pass filter; 3 = band-pass filter

*The symbols marked with a ✩ in the Special Symbols table are applied to all parts. These should
be set in the first part.

Chapter 7: Super Game Boy Sound

205

*When using a symbol to set a special symbol for score data, assemble after defining the equals
statement according to the Special Symbols table.

*The special symbols and the arguments that follow should be set in the order shown in the tables.

*If using IS-SOUND, load sgbsound.hex according to the steps in Section 3.5, Setting the Working
Environment for IS-SOUND. Transferring the subsequently created score data allows the tunes and
sounds to be checked.

Cautions

1. The starting address for score data should be set to 2B00h.

2. Source numbers should be set according to the source list.

3. Musical pieces should be produced according to the instructions in Section 3.7, Cautions
Regarding Production of Musical Pieces.

4. Convert to the file format described in Section 3.8, Format for Transferred Files.

Summary of Play Data Codes

 00h Part end code

 10h-7Fh Note/rest length data & VELOCITY (volume) + GATE_TIME

 80h-C7h Interval (sound length) data (C00-B50) * C01-B50 in SGB

 C8h Tie (TIE)

 C9h Rest (KYU)

 CAh-DFh Use prohibited

 E0h-F9h Special symbols

 FAh-FFh Use prohibited

3.7 Cautions Regarding Production of Musical Pieces

The echo parameters set in BGM are applied in the same manner for the A and B sound effects. This is
because echo is applied equally to all 8 channels. The parameters have been tuned so that they can
also be used with BGM, so please note this when resetting the parameters.

Game Boy Programming Manual

206

Score Data Settings

Special
Symbol

Echo Channel Echo Volume L Echo Volume R

ecv ΟΟΟ (Note 1) 40 40

Special
Symbol

Echo Time Feed Back Filter No.

edl 2 (Note 2) 90 2

Note 1: If echo is not used, specify eof (special symbol) instead of ecv.

Note 2: If a value greater than 2 is specified for Echo Time, the sampling data will be destroyed. Up to
 15 tunes can be registered (01h-0Fh). Channels 2 and 3 are allocated for BGM, so these channels
 should be used for regular playback of BGM parts.

Microtuning of source data used for notes should be specified using the tun code with the score data.
For tuning values, refer to the recommended tunings in Section 4 of this chapter, SGB Sound Program
Source List (except for percussion instruments).

The recommended tuning values for this source list are based on an interval of C30 (See Section 3.6.4,
Interval Data).

Also indicated for each source data item is the score data setting (interval code) for producing sounds
with a C30 interval. Please refer to these settings in inputting score data.

In high and low areas, the tuning of some source data may be somewhat off. Whenever this occurs, the
tuning value must be modified.

For SGB, all tunings are set 50 cents higher than the standard value (A = 440 Hz).

3.8 Format of Transferred Data

When Using NEWS

1. Copy sgbt.asm to a new transfer file, filename.asm.

% cp sgbt.asm yyy.asm

* When making transfer files, create them based on sgbt.asm.

2. Open yyy.asm and modify it as follows.

Chapter 7: Super Game Boy Sound

207

 Line No. Before Changed After Changed

 113

 115

 gft : 02b00h
 ;
 ; include xxx.dat

 gft : yyy$, · · · · · · · ·
 ;
 include yyy.dat
 · · · · · · · · · · ·

* When adding multiple tunes, add them beginning from line 113. Also increase
 the number of ‘include ΟΟΟ.dat’ statements after line 115 by the number of tunes.

3. Execute the following command: asm700 yyy.asm.

The above completes creation of the yyy.hex transfer file.

4. Convert the yyy.hex file completed in Step 3 to the format used by the Super NES sound
generator.

Converting to binary data:

 % cat h2b -start 400 -b > yyy.bin

Converting to hexadecimal data:

 % cat h2b -start 400 > ΟΟΟ.asm

When Using IS-SOUND or Original Tools

The score data file to be transferred is converted to the format used by the sound boot program.

Example:
dw $0030 ; Number of data items to transfer
dw $2b00 ; Transfer destination address
db $00,$01,$02,$03,$04,$05,$06,$07 ; Score data
db $08,$09,$0a,$0b,$0c,$0d,$0e,$0f ; Score data
db $00,$01,$02,$03,$04,$05,$06,$07 ; Score data
db $08,$09,$0a,$0b,$0c,$0d,$0e,$0f ; Score data
db $00,$01,$02,$03,$04,$05,$06,$07 ; Score data
db $00,$01,$02,$03,$04,$05,$06,$07 ; Score data
dw $0000 ; Transfer end code
dw $0400 ; Program start address

The number of data items to transfer (2 bytes) and the transfer destination address (2 bytes) are
placed at the starting address of the score data. (Be careful to ensure that the data in this order.)
Finally, the transfer end code (2 bytes) and the program starting address are added. (Be careful to
ensure that the data is in this order.) The transfer end code is $0000.

Cautions Regarding Data Transfer

In SGB, the transfer destination address is $2b00, and the program starting address is $0400.
Please be sure to use the correct addresses, or program control will be lost.

The area used for the transferred score data is approximately 8 Kbytes. A data overflow will destroy
the directory.

Game Boy Programming Manual

208

If the data exceed 4 Kbytes, divide them into 2 files.

Transfer of score data is completely executed using system commands.

Chapter 7: Super Game Boy Sound

209

4. SGB SOUND PROGRAM SOURCE LIST

 so No.
Kankichi-kun
so No. so Name Sound Family

Envelope Type
/Specific Sound

Recommended
Tuning Interval

 000h sn0 +d0.so Normal envelope

 001h sn1 +Dch.so Envelope with extremely short decay

 002h sn2 +d1.so Electric keyboard envelope

 003h sn3 +d2.so Brass envelope

 004h sn4 +d3.so Pedal organ envelope

 005h sn5 +d5.so Banjo envelope

 006h sn6 +d9.so ’Soft’ envelope

 007h sn7 sin.so

Sine Family

 Normal sine wave

 008h sn8 +d5.so Banjo envelope t u n, 0 1 3

 009h sn9 +d6.so Bass envelope t u n, 0 1 3

 00ah s10 +d8.so Fretless bass envelope t u n, 0 1 3

 00bh s11 B1.so

Bass Family 1

 Bass 1 t u n, 0 1 3

 00ch s12 +d5.so Banjo envelope t u n, 0 2 0

 00dh s13 +d6.so Bass envelope t u n, 0 2 0

 00eh s14 +d9.so ‘Soft’ envelope t u n, 0 2 0

 00fh s15 B2.so

Bass Family 2

 Bass 2 t u n, 0 2 0

 010h s16 +d3.so Pedal organ envelope t u n, 0 4 0

 011h s17 +d5.so Banjo envelope t u n, 0 4 0

 012h s18 +Dch.so Envelope with extremely short decay t u n, 0 4 0

 013h s19 acg.so

Guitar Family

 Guitar t u n, 0 4 0

 014h s20 +d1.so Electric keyboard envelope

 015h s21 +d3.so Pedal organ envelope

 016h s22 ep.so Electric keyboard 1

 017h s23 ep2.so

Electric
Keyboard
Family 1

 Electric keyboard 1 t u n, 0 0 3 C 2 0

Game Boy Programming Manual

210

 so No.
Kankichi-kun
so No. so Name Sound Family

 Envelope Type/
 Specific Sound

Recommended
Tuning Interval

 18h s24 +d1.so Electric keyboard envelope

 019h s25 +d3.so Pedal organ envelope

 01ah s26 epf.so

Electric
Keyboard
Family 2

 Electric keyboard, soft type

 01bh s27 pipe.so Organ Family Pipe organ

 01ch s28 +d8.so Fretless bass envelope t u n, 0 8 0 C 2 0

 01dh s29 +d4.so Strings envelope t u n, 0 8 0 C 2 0

 01eh s30 S1.so

Strings Family

 Strings t u n, 0 8 0 C 2 0

 01fh s31 +d9.so ‘Soft’ envelope t u n, 1 7 0 B 0 0

 020h s32 cho1.so
Chorus Family

1 Chorus 1 t u n, 1 7 0 B 0 0

 021h s33 +d3.so Pedal organ envelope t u n, 1 6 5 B 1 0

 022h s34 cho2.so
Chorus Family

2 Chorus 2 t u n, 1 6 5 B 1 0

 023h s35 +Dch.so Xylophone t u n, 0 5 5

 024h s36 +d1.so Electric keyboard envelope t u n, 0 5 5

 025h s37 +d9.so ‘Soft’ envelope t u n, 0 5 5

 026h s38 Dxlp.so

Xylophone
Family

 Xylophone + looping sound t u n, 0 5 5

 027h s39 +d1.so Electric keyboard envelope

 028h s40 brs.so
Brass Family 1

 Brass 1

 029h s41 brs8.so Brass Family 2 Brass 2 t u n, 0 2 0 C 2 0

 02ah s42 +Dch.so Envelope with extremely short decay t u n, 0 4 0 C 2 0

 02bh s43 +d5.so Banjo envelope t u n, 0 4 0 C 2 0

 02ch s44 +d9.so ‘Soft’ envelope t u n, 0 4 0 C 2 0

 02dh s45 tp3.so

Trumpet
Family

 Trumpet t u n, 0 4 0 C 2 0

 02eh s46 +d4.so Strings envelope

 02fh s47 fg.so
Bassoon
Family Bassoon

 030h s48 fl.so Flute Family Flute t u n, 0 5 3 C 2 0

Chapter 7: Super Game Boy Sound

211

 so No.
 Kankichi-kun
so No. so Name Sound Family

 Envelope Type
 Specific Sounds

Recommended
Tuning Interval

 031h s49 Db.so Bass drum

 032h s50 +Dch.so Closed high-hat

 033h s51 Doh.so Open high-hat

 034h s52 sdr3.so

Percussion
Instrument

Family

 Snare 1

 035h s53 Ds.so Snare 2

 036h s54 Dt.so
Percussion

Family Tom (for stepping down) t u n, 0 1 0

 037h s55 clp.so SE Family Hand clap

 038h s56 jet2.so SE Family Jet

* The following (39h-3Eh) can be used with Kankichi-kun.

 039 jet1.so Jet

 03a noiz.so Noise

 03b glas.so Glass breaking

 03c shot.so Shot

 03d river.so River flowing

 03e wind.so Wind blowing

Settings for source data numbers 39h-3Eh cannot be specified on Kankichi-kun. These source data can
be used only with sound effects. However, they can be set using tools other than Kankichi-kun.

The shaded portions are the basic source data. The other source data items are the basic source data
with modified envelopes.

The contents of the source list are also listed in the README file located in the sobox directory installed
for NEWS.

The recommended tuning values in the source list are based on an interval of C30. (See Section 3.6.4,
Interval Data.) With high- and low-pass filtering, the tuning of some source data may be somewhat off.
Whenever this occurs, the tuning value must be modified.

The interval value is the score data setting (interval code) for producing sounds with a C30 interval. For
SGB, all tunings are set 50 cents higher than the standard value (A = 440 Hz). The source data items in
the empty areas do not require tuning. (In addition, they can be used without changing the interval).

Game Boy Programming Manual

212

5. TRANSFERRING AUDIO DATA TO THE SCORE AREA
In general, the score area (8 K) is provided for transferring only score data. However, audio data also
can be transferred for output. Audio data can be transferred only if the following conditions are met.

! The data must not exceed the score area (8 K).
! The data is not transferred to areas other than the score area (except for the Directory and sod

data).

If the data is transferred to other areas, the sound effects used by the system may no longer play or may
be altered (strange sounds). Transferring data to other areas may also lead to a loss of program control.
Therefore, please be certain to ensure that the above two conditions are met.

5.1 Required Data and Procedure for Audio Output

1. Sampling data (multiple data items permitted)

2. Score data (score used to play sampling data)

* 1 and 2 combined must occupy less than 8 Kbytes.

* The sound numbers (so No.) corresponding to the sampling data should be from
among one of the following.

 002H,003H,004H & 00CH,00DH,00EH & 02AH,02BH,02CH (hex No.)

Note: All numbers other than the above are used for system sound effects or
music. Therefore, be careful to use only the above numbers.

3. Directory and sod data corresponding to the sampling data:

* Directory and sod data are provided for each sound (so No.).

 Start Address Data Structure No. of
 Bytes

 Directory 4B00h Source start address (L)/(H) · Source loop(end)address(L)/(H) 4 bytes

 sod 4C30h so No./ adsr(1)/adsr(2)/gain/blk No.(2byte) 6 bytes

When the sound number is 000h, the directory data comprise 4 bytes beginning at 4B00h, and the sod
data comprise 6 bytes beginning at 4C30h (000h cannot be used).

Please substitute the directory data and sod data values corresponding to the given sound number.

Note: For the sound number, however, be careful not to use any number other
those shown in 2. Use of an incorrect number will cause a loss of
program control.

Transferring all of these data and issuing a BGB request will result in audio playback.

Chapter 7: Super Game Boy Sound

213

5.2 Transfer File Example

With sampling data consisting of a single sound with a sound number of 002h, the Directory data
would be the 4 bytes beginning at 4B08h, and the sod data would occupy the 6 bytes beginning at
4C3Ch. In this case, ensure that the score data begin at 2B00h. Starting these data at any location
other than 2B00h would cause a loss of program control. The sampling data (audio data) should be
transferred to the area between 2B00h and 3AFFh.

dw $0004 ; No. of data items to transfer for Directory
dw $4B08 ; Directory transfer destination address
db $00,$30,$3F,$30 ; Directory data (4 bytes)
;
dw $0006 ; No. of data items to transfer for sod
dw $4C3C ; Sod transfer destination address
db $02,$FF,$E0,$B8,$02,$B0 ; Sod data (6 bytes)
;
dw $0020 ; No. of score data items to transfer
dw $2B00 ; Score data transfer destination address
db $00,$01,$02,$03,$04,$05,&06,$07 ; Score data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Score data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Score data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Score data
;
dw $0040 ; No. of sampling data items to transfer
dw $3000 ; Sampling data transfer destination address
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
db $00,$01,$02,$03,$04,$05,&06,$07 ; Sampling data
;
dw $0000 ; Transfer end code
dw $0400 ; Program start address

When using multiple sampling data items, also transfer the Directory and sod data specified for each
item in Step 2.

Note: Be careful not to rewrite the Directory and sod data used by the system.

Game Boy Programming Manual

214

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 8: Game Boy Memory Controllers (MBC)

215

CHAPTER 8: GAME BOY MEMORY CONTROLLERS (MBC) . .216
1. MBC1 .. 216

1.1 Overview ..216
1.2 Description of Registers ...216
1.3 Memory Map ..218

2. MBC2 .. 219
2.1 Overview ..219
2.2 Description of Registers ...219
2.3 Memory Map ..219
2.4 Backup RAM ..219

3. MBC3 .. 220
3.1 Overview ..220
3.2 Description of Registers ...220
3.3 Accessing the Clock Counters...221
3.4 Memory Map ..221
3.5 Programming Items to Note..222

4. MBC5 .. 224
4.1 Overview ..224
4.2 Registers ..224
4.3 Memory Map ..224
4.4 Description of Registers ...225
4.5 Programming Cautions...226
4.6 Examples of MBC5 programs on DMG and CGB............................227

5. MBC5 (WITH RUMBLE FEATURE)....................................... 228
5.1 Overview ..228
5.2 Registers ..228
5.3 Memory Map ..229
5.4 Description of Registers ...229
5.5 Motor Control...230
5.6 Programming Cautions...231
5.7 Physical Effects of Vibration on the Body.......................................233

Game Boy Programming Manual

216

CHAPTER 8: GAME BOY MEMORY CONTROLLERS (MBC)

1. MBC1

1.1 Overview
MBC1 is a memory controller that enables the use of 512 Kbits (64 Kbytes) or more of ROM and 256
Kbits (32 Kbytes) of RAM. It can be used as follows.

! To control up to 4 Mbits of ROM
When used to control up to 4 Mbits (512 Kbytes) of ROM, MBC1 can control up to 256 Kbits (32
Kbytes) of RAM.

! To control 8 Mbits or more of ROM
When MBC1 is used to control up to 8 MBits (1 MB) or 16 MBits (2 MB) of ROM, the following
conditions apply

• When used to control 8 MBits of ROM
MCB cannot use ROM addresses 080000h-083FFFh (Bank 20h)

• When used to control 16 MBits of ROM
8000h-083FFFh (Bank 20h)

MBC1 cannot use ROM Addresses 100000h-103FFFh (Bank 40h)
180000h-183FFFh (Bank 60h)

RAM use by MBC1 is restricted to 64 Kbits (8 Kbytes).

1.2 Description of Registers

! Register 0: RAMCS gate data (serves as write-protection for RAM)
Write addresses: 0000h-1FFFh Write data: 0Ah
Writing 0Ah to 0h-1FFFh causes the CS to be output, allowing access to RAM.

! Register 1: ROM bank code
Write addresses: 2000h-3FFFh Write data: 01h-1Fh
The ROM bank can be selected.

! Register 2: Upper ROM bank code when using 8 Mbits or more of ROM (and register 3
is 0)
Write addresses: 4000h-5FFFh Write data: 0-3
The upper ROM banks can be selected in 512-Kbyte increments.

Write value of 0 selects banks 01h-1Fh
Write value of 1 selects banks 21h-3Fh
Write value of 2 selects banks 41h-5Fh
Write value of 3 selects banks 61h-7Fh

: RAM bank code when using 256 Kbits of RAM (and register 3 is 1)

Write addresses: 4000h-5FFFh Write data: 0-3
The RAM bank can be selected in 8-Kbyte increments.

Chapter 8: Game Boy Memory Controllers (MBC)

217

! Register 3: ROM/RAM change
Write addresses: 6000h-7FFFh Write Data: 0-1
Writing 0 causes the register 2 output to control switching of the higher ROM
bank.
Writing 1 causes the register 2 output to control switching of the RAM bank.

Game Boy Programming Manual

218

1.3 Memory Map

! When Used to Control up to 4 Mbits of ROM

! When Used to Control up to 8 Mbits of ROM

Bank 3

Bank 0

Bank 1

Bank 2

Internal
Working

RAM

Display
RAM

Program
Switching

Area

External
Expansion
Working

RAM

Program
Residence

Area

Bank 1Fh

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 1Eh

CPU Address ROM Address
7FFFh

6000h

4000h

2000h

0000h

DFFFH

 C000H

A000H

8000H

4000H

0000

7FFFFH

18000h

14000h

10000h

0C000h

08000h

04000h

00000h

RAM Address

: :
: :
: :

Internal
Working

RAM

Display
RAM

Program
Switching

Area

External
Expansion
Working

RAM

Program
Residence

Area

Bank 7Fh

Bank 20h
Bank 21h

Bank 40h
Bank 41h

Bank 60h
Bank 61h

Bank 7Eh

CPU Address ROM Address

DFFFh

C000h

A000h

8000h

4000h

0000

1FFFFFh

183FFFh

180000h

008000h
004000h
000000

Bank 2
Bank 1
Bank 0

103FFFh

100000h

083FFFh

080000h

(If accessed, the Bank 0x61 image appears)
Unusable

(If accessed, the Bank 0x41 image appears)
Unusable

(If accessed, the Bank 0x21 image appears)
Unusable

: :

: :

: :

: :

Chapter 8: Game Boy Memory Controllers (MBC)

219

2. MBC2

2.1 Overview

Controller for up to 2 Mbits (256 Kbytes) of ROM with built-in backup RAM (512 x 4 bits).

2.2 Description of Registers

! Register 0: RAMCS gate data (serves as write-protection for RAM)
Write addresses: 000h-0FFFh Write data: 0Ah
Writing 0Ah to 000-0FFFh causes the CS to be output, allowing access to RAM.

! Register 1: ROM bank code
Write addresses: 2100h-21FFh Write data: 01h-0Fh
The ROM bank can be selected.

2.3 Memory Map

2.4 Backup RAM

Allocated to the D0-D3 areas of CPU addresses A000h-A1FFh
Backup RAM is write-protected by a power-on reset.
To protect backup data, avoid removing write protection unless necessary.

Backup RAM

Internal
Working

RAM

Display

Program
Switching

Area

External
Expansion

RAM

Program
Residence

Area

Bank 0F

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 0E

CPU Address ROM Address
DFFFh

C000h

A000h

8000h

4000h

0000

3FFFFh

18000h

14000h

10000h

0C000h

08000h

04000h

00000

A1FFh(512x4Bit)

: :
: :

Game Boy Programming Manual

220

3. MBC3

3.1 Overview

MBC3 is the memory bank controller that allows use of between 512 Kbits (64 Kbytes) and 16 Mbits
(2 MB) of ROM and 256 Kbits (32 Kbytes) of RAM.
Built into the controller are clock counters that operate by means of an external crystal oscillator
(32.768 KHz). The clock counters are accessed by RAM bank switching.
RAM and clock counter data can be backed up by an external lithium battery.

3.2 Description of Registers

Settings for control registers 0-3 are specified by writing data to the ROM area.

! Register 0: Write protects RAM and the clock counters (default: 0)
Write addresses: 0000h-1FFFh Write data: 0Ah
Allows access to RAM and the clock counter registers.

! Register 1: ROM bank code (default: 0, selects ROM bank 1)
Write addresses: 2000h-3FFFh Write data: 01h-7Fh
Allows the ROM bank to be selected in 16-Kbyte increments.

! Register 2: RAM bank code (default: 0, selects RAM bank 0)
Write addresses: 4000h-5FFFh Write data: 0-3
Allows the RAM bank to be selected in 8-Kbyte increments.

Write addresses: 4000h-5FFFh Write data: 08h-0Ch
Allows a clock counter to be selected.

Data Register Range of Values Function
08h RTC_S 0-59 (0-3Bh) Seconds counter (6 bits)
09h RTC_M 0-59 (0-3Bh) Minutes counter (6 bits)
0Ah RTC_H 0-23 (0-17h) Hours counter (5 bits)

0Bh RTC_DL 0-255 (0-FFh) Lower-order 8 bits of days
counter

 bit7 bit0
 0 0 0 0 0

0Ch RTC_DH Bit 0: Most significant bit of days counter
Bit 6: HALT
Bit 7: Carry bit of days counter

Higher-order bit and carry
bit of days counter.

HALT starts and stops the
clock counters.

* The days counter consists of a 9-bit counter + a carry bit. Thus, it can count from 0 to 511
(000h-1FFh).

* Once the carry bit is set to 1, it remains 1 until 0 is written.
* The counters operate when HALT is 0 and stop when HALT is 1.
* Values outside the given counter ranges will not be correctly written.

! Register 3: Latches the data for all clock counters (default: 0)

Chapter 8: Game Boy Memory Controllers (MBC)

221

Write addresses: 6000h-7FFFh Write Data: 0 → 1
Writing 0 → 1 causes all counter data to be latched. The latched contents are
retained until 0 → 1 is written again.

3.3 Accessing the Clock Counters

The clock counter registers are assigned to the external expansion RAM area of the CPU address
space. To access the clock counters, RAM bank switching must first be performed.

External expansion RAM Area (A000h-BFFFh) Bank Map
Bank Device Notes
00h RAM BANK 0
01h RAM BANK 1
02h RAM BANK 2
03h RAM BANK 3

Not used
08h Seconds counter
09h Minutes counter
0Ah Hours counter
0Bh Days counter (L)
0Ch Days counter (H)
 :::: Not used

The following are examples of accessing the clock counters.

 3.3.1 Reading

The clock counters are accessed by first writing 0x0A to register 0. This opens the gate used to
access the counters. To read clock counter values, write 1 to register 3 to latch the values of all
the registers. If the value of register 3 is already 1, first set it to 0 and then to 1. While this register
is set to 1, the clock counters will operate but the latched values of all of the clock counters will not
change. This allows the clock counters to be read.

For example, the seconds counter register can be accessed and read by first setting the RAM
bank to 8, then reading from any CPU address between A000h and BFFFh.

3.3.2 Writing

Writing 0Ah to register 0 opens the access gate, allowing each clock counter register to be written
to.

3.4 Memory Map

! ROM bank 0 is assigned to the program residence area (0000h-3FFFh) of the CPU memory
space (unchangeable).

! One bank from among ROM banks 01h-7Fh can be assigned to the program switching area
(4000h-7FFFh) of the CPU memory space.

Game Boy Programming Manual

222

! One bank from among RAM banks 0-3 and the clock counter registers (RAM banks 08h-0Ch)
can be assigned to the external expansion working RAM area (A000h-BFFFh) of the CPU
memory space.

3.5 Programming Cautions

3.5.1 Accessing the Clock Counters

Although counting up of the clock counters themselves and accessing the clock counters from the
CPU are performed asynchronously, clock counter failure may result if both operations are
performed at the same time. To prevent this, MBC3 provides an interface circuit for WR signals
from the CPU. Use of this circuit necessitates a delay when accessing control register 3 and the
clock counter registers (RTC_S, RTC_M, RTC_H, RTC_DL, and RTC_DH). Thus, whenever
accessing these registers consecutively, interpose a delay of 4 cycles between accesses.

When reading clock counter data:

• Latch all clock counter data using control register 3.

4-cycle delay required

• Read the data in the clock counter registers.

Bank 0Ch

Bank 09h

Bank 0Ah

Bank 0Bh

Internal
Working

RAM

Display
RAM

Program
Switching

Area

External
Expansion
Working

RAM

Program
Residence

Area

Bank 7Fh

Bank 00h

Bank 01h

Bank 02h

Bank IFh

Bank 3Fh

CPU Address ROM Address

7FFFh

6000h

4000h

2000h

0000

DFFFh

C000h

A000h

8000h

4000h

0000

1FFFFFh

0BFFFh

08000h

04000h

00000

RAM Address

Bank 08h

Bank 03h

Bank 02h

Bank 01h

Bank 00h

 Days(H)counter

 Days(L)counter

Hours counter

Minutes counter

Seconds
Counter

07C000h

07FFFFh

0FC000h

0FFFFFh

1FC000h

: :

: :

: :

: :
: :
: :

Chapter 8: Game Boy Memory Controllers (MBC)

223

When writing values to the clock counters:

• Set data in clock counter register RTC_S.

4-cycle delay required

• Set data in clock counter register RTC_M.

4-cycle delay required

• Set data in clock counter register RTC_H.

4-cycle delay required

• Set data in clock counter register RTC_DL.

4-cycle delay required

• Set data in clock counter register RTC_DH.

3.5.2 Condensation

MBC3 uses a crystal oscillator for its clock counter operation, and condensation on the oscillator
may halt its oscillation, preventing the clocks from counting up. Once the condensation disappears,
the clocks will resume counting up from where they stopped. However, please ensure that the
counter stoppage does not result in a loss of program control.

3.5.3 Control Register Initialization

Although control registers 0-3 are initialized (see Section 3.2, Description of Registers) when Game
Boy power is turned on, they are not initialized by a hard reset of SNES when Super Game Boy is
used. Therefore, please be sure to implement a software reset of these registers.

3.5.4 Clock Counter Registers

When commercial Game Boy software that uses MBC3 is shipped from the factory, the values of
the clock counter registers are undefined. Therefore, please ensure that these registers are
initialized.

Game Boy Programming Manual

224

4. MBC5

4.1 Overview
Supports CGB double-speed mode.

MBC5 can use up to 64 Mbits of ROM (512 banks of 128 bits each) and
1 Mbit of RAM (16 banks of 64 Kbits each).

Upwardly compatible with MBC1.

4.2 Registers

Name Addresses (hex)
RAMG 0000-1FFF

ROMB 0 2000-2FFF
ROMB 1 3000-3FFF
RAMB 4000-5FFF

4.3 Memory Map

Highest bank,
0Fh

Bank 00h

Bank 01h

Internal
Working

RAM

Display
RAM

External
Expansion

Working RAM

Highest bank,
1FFh

Bank 0

Bank 1

CPU Address

ROM

E000h

C000h

A000h

8000h

4000h

 0000h

RAM

Maximum of 1
Mbit

Set by RAMB register.
Accessible only
when RAMG register
is 0Ah.

Empty
(no image)

RAMB

Bank Switching
Area

Bank 0x00 - Bank
0x1FF

(Default bank 0x01)

Program Residence
Area

Fixed at
Bank 0x00

ROMB1

ROMB0

RAMG

Unit
Registers

FFFFh

6000h

3000h

2000h

 Writing Reading

During a write, data is written to the bank control registers at
CPU addresses 0000h-7FFFh. During a read, the contents of
ROM are read from these addresses.

Up to 64 Mbits
Set by the
ROMB0,
ROMB1
registers

5000h

: :
: :

: :

: :

: :

: :

: :

: :

Chapter 8: Game Boy Memory Controllers (MBC)

225

4.4 Description of Registers

! Register for Specifying External Expansion Memory (RAMG)
Specifies whether external expansion RAM is accessible. Access to this RAM is enabled by
writing 0Ah to the RAMG register space, 0000h-1FFFh. Writing any other value to this register
disables reading to and writing from RAM.

! Lower ROM Bank Register (ROMB0)
Specifies the lower-order 8 bits of a 9-bit ROM bank.
The ROM bank can be changed by writing the desired ROM bank number to the ROMB0
register area, 2000h-2FFFh.

! Upper ROM Bank Register (ROMB1)

Specifies the higher-order 1 bit of a 9-bit ROM bank.
The ROM bank can be changed by writing the desired ROM bank number to the ROMB1
register area, 3000h-3FFFh.

! RAM Bank Register (RAMB)

Specifies the RAM bank
The RAM bank can be changed by writing the desired RAM bank number to the RAMB register
area, 4000h-5FFFh.

Note Although the bits marked with are ignored by MBC5, they
should be used after being set to 0. The default values are set
automatically when power is turned on.

Game Boy Programming Manual

226

 4.5 Programming Cautions

4.5.1 When Migrating from MBC1 to MBC5

! Use of Register 1
 If an MBC1 program uses register 1 (ROM bank control register) addresses 3000h-
3FFFh, the bank intended for selection by ROMB1 in MBC5 will not be selected.
 Addresses 2000h-2FFFh of register 1 should be used by programs that use MBC1.

! Use of Register 2

 Note that in MBC1, programs that use 8 Mbits or more use register 2 (ROM or RAM bank
control register) for the high ROM bank. Consequently, in MBC5 the RAM bank is different
while the ROM bank is unchanged.

! ROM Banks 20h, 40h, and 60h
 ROM banks 20h, 40h, and 60h cannot be used in MBC1, but they can be used in MBC5.

! MBC1 Register 3 (ROM/RAM change)

 Because the addresses of ROM and RAM are independent of each other in MBC5,
ROM/RAM switching is unnecessary.
 Any write instructions to register3 left in a program that uses MBC1 are ignored by MBC5
and have no effect.

4.5.2 General Notes

! Memory Image
 If a memory device is used that uses less than the maximum amount of memory available
(ROM: 64 Mbits; RAM: 1 Mbit) , a memory image is generated for the empty bank area.
Therefore, please do not develop software that uses an image, because it may cause
failures.

! RAM Data Protection
 To protect RAM data, it is recommended that RAM access be disabled when RAM is not
being accessed (RAMG ← 00h) .

! Specifying External Sound Input (VIN)
 Always use the sound control register (NR50) with bits 7 and 3 (VIN function OFF) set to
0. Because the VIN terminal is used in development flash ROM cartridges, using the
register with VIN set to ON will produce sound abnormalities.

Chapter 8: Game Boy Memory Controllers (MBC)

227

4.6 Examples of MBC5 programs on DMG and CGB

! Set the bank switching area (4000h-7FFFh) to 1FFh.

LD A,$FF
LD ($2000),A ;ROMB0 setting
LD A,$01
LD ($3000),A ;ROMB1 setting
|
|
|

! Set the external expansion memory area (A000h-BFFFh) to 0Fh.

LD A,$0F
LD ($4000),A ; RAMB setting
LD A,$0A
LD ($0000),A ; Enable access to RAM
|
|
|
LD A,$00
LD ($0000), A ; Disable access to RAM

RAM Access Processing

Game Boy Programming Manual

228

5. MBC5 (WITH RUMBLE FEATURE)

5.1 Overview

This cartridge is the same as the previous MBC5 cartridge but also includes a rumble motor and size
AAA battery to power the motor. The motor is controlled by the program using the MBC5 RAM bank
register (RAMB, bit 3).

MBC5 supports CGB normal- and double-speed modes.

Up to 64 Mbits (512 banks of 128 Kbits each) of ROM and 256 Kbits of RAM (4 banks of 64 Kbits
each) can be used.

5.2 Registers

Name Addresses (hex) Notes
RAMG 0000-1FFF

ROMB 0 2000-2FFF
ROMB 1 3000-3FFF
RAMB 4000-5FFF

Each register executes its control
using any one of the address spaces
at left.

Chapter 8: Game Boy Memory Controllers (MBC)

229

5.3 Memory Map

5.4 Description of Registers

! Register for Specifying External Expansion Memory (RAMG)
Specifies whether external expansion RAM is accessible. Access to this RAM is enabled by
writing 0Ah to the RAMG register (any single address in 0000h-1FFFh). Writing any other
value to this register disables reading to and writing from RAM.

! Lower ROM Bank Register (ROMB0)
Specifies the lower-order 8 bits of a 9-bit ROM bank.
The ROM bank can be changed by writing the desired ROM bank number to the ROMB0
register (any single address in 2000h-2FFFh).

Bank 3

Bank 0

Bank 1

Bank 2
Internal
Working

RAM

Display
RAM

External
Expansion

Working RAM

Highest bank, 0x1FF

Bank 0

Bank 1

CPU Address

ROM

E000h

C000h

A000h

8000h

4000h

0000h

RAM

Maximum of 256
Kbits (Banks 0-3)

Set by register RAMB
Accessible only when
RAMG is 0Ah

Empty
(no image)

RAMB

Bank Switching
Area

Bank 00h - Bank
1FFh

(Default bank 0x01)

Program Residence
Area

Fixed at Bank 0

ROMB1

ROMB0

RAMG

Unit
Registers

FFFFh

6000h

3000h

2000h

Write Read

* During a write, data is written to the bank control registers at
CPU addresses 0000h-7FFFh. During a read, the contents of
ROM are read from these addresses.

Maximum 64
Mbits
Set by registers
ROMB0 and
ROMB1

5000h

: :

: :

: :

: :

: :

Game Boy Programming Manual

230

! Upper ROM Bank Register (ROMB1)

Specifies the higher-order 1 bit of a 9-bit ROM bank.
The ROM bank can be changed by writing the desired ROM bank number to the ROMB1
register (any single address in 3000h-3FFFh).

! RAM Bank Register (RAMB)

Specifies the RAM bank.
The RAM bank can be changed by writing the desired RAM bank number to the RAMB
register (any single address in 4000h-5FFFh).

 Bits 0-1: Register for RAM bank setting
Bit 3: Motor control register (1: motor ON; 0: motor OFF)

Note: Be sure to set the bits marked with to 0 before using them.
The default values are set automatically when power is turned on.

5.5 Motor Control

5.5.1 Vibration Level

Control of the rumble motor consists of setting it to ON or OFF.
The vibration level can be controlled by sending pulses of combined ON/OFF instructions in short
cycles. Please comply with the following points when implementing vibration control.

(1) Set the frame rate to 1 frame per 1/60 second and control vibration frame by frame.

(2) At the start of vibration control, send a startup pulse (at least 2 ON frames).
 A startup pulse also should be sent if the width of an OFF pulse is 3 or more consecutive
frames. This is necessary because startup from a complete stop requires a certain
amount of time. (see Ex. 5)

Chapter 8: Game Boy Memory Controllers (MBC)

231

5.5.2 Vibration Pulse Examples

5.6 Programming Cautions

IMPORTANT

5.6.1 Memory Image

If a memory device is used that uses less than the maximum amount of memory available
(ROM: 64 Mbits; RAM: 256 Kbits) , an empty bank area (memory image) results. Please do not
access this empty bank area. Doing so may result in faulty operation.

5.6.2 RAM Data Protection

To protect RAM data, it is recommended that RAM access be disabled (RAMG 00h) when
RAM is not being accessed.

Example 1:
Strong

RAMB
Bit 3

OFF

ON

Startup
Pulse

2Frames 1

OFF

ON

Startup
Pulse

2Frames 1

OFF

ON

1

Startup
Pulse

2Frames 2

OFF

ON

1

Startup
Pulse

2Frames 3

OFF

ON

2

Startup
Pulse

Example 2:
Slightly strong

Example 3:
Slightly weak

Example 4:
Strong

Example 5:
3 consecutive OFF

frames

2

Game Boy Programming Manual

232

5.6.3 Specifying External Sound Input (VIN)

Always use the sound control register (NR50) with bits 7 and 3 set to 0 (VIN function OFF).
Because the VIN terminal is used in development flash ROM cartridges, using the register with
VIN set to ON will produce sound abnormalities.

5.6.4 Disabling Vibration Using the SGB, SGB2, or 64GB Pak

When MBC5 is used by SGB, SGB2, or the 64GB Pak, vibration should be turned off by the
program to prevent failures caused by a faulty connection. For methods of recognizing SGB
and SGB2, see the description of the MLT_REQ command in Chapter 6, Section 3.2, System
Command Details. With the 64GB Pak, vibration is controlled by the N64 software. Therefore,
N64 software programs that support MBC5 should not write data to bit 3 of the RAM bank
register.

5.6.5 Limiting the Period of Continuous Vibration

To prevent physical effects in the user such as numbness as a result of continuous vibration,
limit the duration of continuous vibration as indicated below, regardless of the vibration strength
(see Section 6.5.2, Vibration Pulse Examples).

! The duration of continuous vibration should generally be limited to a maximum of 1 minute.

! The period of no vibration between the finish of one period of vibration and the start of the
next period generally must be at least as long as the vibration time.

The above points are guidelines that should be followed in most cases. However, if adhering to
these guidelines is made difficult by factors such as the game content, take appropriate
measures while keeping in mind the points noted in Section 6.7, Effects of Vibration on the
Body.

5.6.6 Disabling Vibration for Resets and Pauses

Vibration should be halted during resets and pauses.

When power is turned on, the unit should not be vibrated until some input is received from the
controller.

5.6.7 Rumble Feature Selection

The user should be allowed to set the rumble feature to ON or OFF or to select strong, mild, or
OFF by means such as an initial-settings screen at the start of the game. In addition, the
program should allow the user to easily change these settings even during a game if, for
example, they are uncomfortable with the vibration. Such changes also should be allowed a
pause.

5.6.8 Changes in Vibration Level with Battery Use

If the battery that powers the motor (Size AAA alkaline battery) wears out, the perceived
vibration level will be reduced even if the requested vibration level remains the same.

Chapter 8: Game Boy Memory Controllers (MBC)

233

Therefore, rumble operation should be checked both when the battery is new (1.6 V) and when
it is at the end of its life (1.1 V).

5.7 Physical Effects of Vibration on the Body

Users have occasionally experienced numbness for some time after continuous vibration lasting
several tens of seconds to several minutes. This may occur regardless of the strength of the
vibration (see Section 6.5.2, Vibration Pulse Examples).

Unfortunately, the effects of continuous vibration on the body are not yet clear. Thus, the guidelines
presented in Section 6.6.5, Limiting the Period of Continuous Vibration, are intended to give priority
to user safety. However, software development requires free thinking and original ideas, and there
may well be cases in which the use of continuous vibration in a game is desirable.

Because each game is different, the limitations presented in Section 6.6.5 are by their nature not
restrictions that should be enforced digitally. It is instead preferable for the developer to adequately
consider user safety when determining the game’s content.

For example, even supposing that continuous vibration does last for more than 1 minute, it may not
pose a safety problem if it is used infrequently, such as only when special events occur.
Conversely, if vibrations lasting several seconds to several tens of seconds are repeated at short
intervals, the effects on the user may be the same as with continuous, long-term vibration.

Thus, the guidelines presented in Section 6.6.5 are not absolute restrictions. However, even if a
program varies from these guidelines, the following points should be considered minimum
requirements and strictly observed.

! Continuous vibration should not exceed 3 minutes for any reason.

! Because the effects of continous vibration vary from person to person, the strength of these
effects on the user should not be determined independently by the developer. Rather, this
determination should be arrived at after considering the opinions of many others during
debugging and other phases of development.

Game Boy Programming Manual

234

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Chapter 9: Pocket Printer

235

CHAPTER 9: POCKET PRINTER ...237
1. OVERVIEW..237
2. COMMUNICATION SPECIFICATION ..237

2.1 Bidirectional Communication ...237
2.2 Transfer Interval for Each Byte...237
2.3 Packets and the Transfer Interval ..237
2.4 Synchronism Check when Connecting..237

3. COMMUNICATION DATA DEFINITIONS.....................................238
3.1 Transferring to the Printer ..238
3.2 Receiving from the Printer ..239
3.3 Handling Errors..239

4. PACKET DETAILS...241
4.1 The Initialization and Connection Packet ..241
4.2 Print Instruction Packet...241
4.3 Data Packet ..242
4.4 Data-End Packet ..243
4.5 Break Packet ..243
4.6 NUL Packet...243
4.7 Packet Error ...244
4.8 Other Packets...244

5. PRINTER STATUS AND PACKETS...245
6. PRINTER PRINT SEQUENCE...246
7. PROCESSING CONNECTION EVAL./PREAMBLE DETECTION
FAILURE...247

7.1 Connection Evaluation (includes cable disconnection).....................247
7.2 Preamble Detection Failure...247

8. PRINT DATA ..249
9. COMPRESSION ALGORITHM..250
10. HARDWARE SPECIFICATIONS..251

10.1 General Specifications ..251

Game Boy Programming Manual

236

11. MISCELLANEOUS...251
11.1 Cautions when Debugging..251
11.2 Sample Programs Provided by Nintendo (subroutines)...................251

Chapter 9: Pocket Printer

237

CHAPTER 9: POCKET PRINTER

1. OVERVIEW

These specifications define the serial protocol used to send print and control data from Game Boy to the
Pocket Printer (abbreviated to printer). Game Boy sends data to the printer in packets, and the printer
responds by returning 2 bytes of status information.

2. COMMUNICATION SPECIFICATIONS

2.1 Bidirectional Communication

Serial transfers between Game Boy and the printer are performed in the Game Boy specification
communication format (bidirectional).

The shift clock is furnished by the Game Boy. Both Game Boy and the printer start transmission from
the most significant bit (MSB).

For more information , see Chapter 1, Section 2.5.1, Serial Cable Communication.

 Game Boy Printer

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2.2 Transfer Interval For Each Byte

An interval of 270 µs to 5 ms must be interposed between each byte sent. Thus, care should be
exercised regarding factors like interrupts when programming.

2.3 Packets and the Transfer Interval

Each type of data sent by the Game Boy is sent in a packet. An interval of 270 µs to 117 ms must be
allowed between the transfer of each packet. Thus, care should be exercised regarding factors like
interrupts when programming.

2.4 Synchronism Check when Connecting

After the connection between the Game Boy and printer is confirmed, the Game Boy sends a NUL
packet every 100 msec for a synchronism check of the connection. If the Game Boy determines that
a connection is unnecessary and does not send a NUL packet in the prescribed time, the printer will
determine that the connection is abnormal and will wait in an initialized state for a signal from the
Game Boy.

Game Boy Programming Manual

238

3. COMMUNICATION DATA DEFINITIONS

This section defines the following data items (packet types and data) by function.

3.1 Transferring to the Printer

The packet types are as follows.

Packet Type Code
Initialization and connection
packet

01

 Print instruction packet 02
 Data packet 04
 Data end packet 04
 Break packet 08
 NUL packet 0F

Each of the above packet types is in the following format.

Preamble Header Data Checksum Dummy

Preamble: 2 bytes of data: 88h x 1 + 33h x 1. Abbreviated PA below.
Header: 4 bytes of contiguous data that represent the following.

Byte 1: Packet type
01: Initialization and connection packet
02: Print instruction packet
04: Data packet
08: Break packet
0F: NUL packet

Byte 2: In the case of a data packet, indicates compression/no
compression.
If another type of packet, fixed at 00h.

Bytes 3 and 4: Data volume (2 bytes), number of bytes of data
Data: Data in Game Boy character data format. Print instruction data.
Checksum: 2 bytes of data representing the sum of the header + all data in the data portion of the

packet.
Dummy: 2 bytes of dummy data used to obtain status information from the printer.

In the data received from the printer in place of the dummy data, byte 1 holds the
peripheral device number and byte 2 holds the printer status.

Chapter 9: Pocket Printer

239

3.2 Receiving from the Printer

The printer returns 2 bytes of status data.

Byte 1: Device number
1 0 0 0 0 0 0 1

The value of the MSB is always 1. The lower-order 7 bits represent the device number.
The Pocket Printer is device number 1.

Byte 2: Status
LowBat ER2 ER1 ER0 Untran Full Busy Sum

LowBat: 1 = Low-battery error bit
0 = Battery OK

ER2: 1 = Other error
ER1: 1 = Paper jam (abnormal motor operation)
ER0: 1 = Packet error
Untran: 1 = Unprocessed data present

0 = No unprocessed data present
Full: 1 = Image data full

0 = Image data not full
Busy: 1 = Printer busy

0 = Printer ready
Sum: 1 = Checksum error

0 = Data OK

Status information is sent in reply to each 2 bytes of dummy data sent by the Game Boy.

* The status returned by the printer is FF FF when the printer is not connected to the Game Boy or
not powered on.

3.3 Handling Errors

Either an error number listed below or the error number plus a description of the error would be sent
to the display screen in response to an error flag in byte 2. (This information is also presented in the
user’s manual of the Pocket Printer. That information must be used together with the information
given here.)

Status: Byte 2 Error No.
 low Bat = 1 01
 FF FF 02
 ER1 = 1 03
 ER2 = 1 04

* Error No. 02 is represented using both status bytes.

ER0 = 1 likely indicates program failure.

Game Boy Programming Manual

240

When an error is generated, always sever communication with the printer and inform the user of the
type of error.

A value other than 81h for the first status byte means that a device other than the Pocket Printer is
connected. This should be conveyed to the user as an error message.

Chapter 9: Pocket Printer

241

4. PACKET DETAILS

4.1 The Initialization and Connection Packet

This packet is used to initialize the printer and check the connection. If the Game Boy sends a packet
for checking the printer connection and a printer is connected, it returns a 2-byte status code and
initializes for the start of print processing. This packet must always be sent when the Game Boy starts
to access the printer. It allows transferred data to be invalidated (reset).

Actual Data

88 33 01 00 00 00 01 00 00 00

 PA Header Checksum Dummy
 This packet has no data section.

Normal status: 81h and 00h (For more information, see Section 3, Communication Data
Definitions.)

Not connected: FFh and FFh.

4.2 Print Instruction Packet

Used for print instructions for single-sheet mode and copy mode (for specifying the number of sheets).

Example:

88 33 02 00 04 00 01 13 E4 40 3D 01 00 00

 PA Header Data Checksum Dummy

Data: Byte 1 specifies the number of sheets. 0-255 (1 in the example). 0 means line feed only.
Data: Byte 2 indicates the number of line feeds. Higher-order 4 bits represents the number of feeds

before printing.
Lower-order 4 bits represents the number after
printing. Each value is 00h-0Fh.

* 1 feed = 2.64 mm
Data: Byte 3 holds the palette values. Default is 00. Palettes are defined by every 2 bits

beginning from high bit. (See Chapter 2, Section
2.3, Character RAM.)

Data: Byte 4 is the print density adjustment. 00h-7Fh. Default values are 40h and 80h or
greater.
00 < 40h < 7Fh
-25% 0% +25%

When printing continuous images from multiple screens, setting the number of line feeds to 0 after
one screen’s worth of data is printed (9 data packets and a data-end packet) enables printing to be
continued from one image to the next without a break.

Game Boy Programming Manual

242

Cautions Regarding Print Instructions (Caution Required)

! Although applications can print 2-255 pages continuously, this may take a long time. Thus, the
user should be provided with a means of halting a print job in progress. (See Section 4.5, Break
Packet.)

! Whenever possible, the print density data should be backed up to avoid the inconvenience of
adjusting the density at each startup.

! If a print instruction packet is set within 100 msec of when the motor is stopped, the position
where printing resumes may be incorrect. Always send print instruction packets at least 100
msec after the motor has been stopped.

! Always set the number of line feeds before printing to 1 or greater and the number after printing to
3 or greater, except in the case of the previously mentioned continuous printing , when both
values are 0. Other values for these parameters may in result in faulty operation, such as double
printing on the same line or failure of the last printed line to reach the paper cutter.

4.3 Data Packet

Sends print data that are in character data format. The print data is sent in 1-byte increments for the
specified number of bytes.

Example:

88 33 04 00 80 02 Data0 ~ DataN-1 C1 C2 00 00

PA Header Data Checksum Dummy

Notification of compression/no compression: Maximum number of data bytes is 0x280
(NoError through 0x3FF): (16 (bytes/color) x 20 (colors) x 2 (colors)).

Nine of these packets represent 1 printed sheet. (160 dots x 144 dots)

Byte 2 of the header is the compression/no compression notification byte.
* 1: Compression (* upper 4 bits have no effect)
* 0: No compression

Transmission of compressed data is accomplished by compressing one line at a time— each line
consisting of 20 characters horizontally and 2 characters vertically— and sending the number of
compressed bytes in order, beginning from the first line.

If the compressed lines exceed 0x280 bytes, the non-compressed data is sent as is (mixture of
compressed and non-compressed packets). If the extended data do not fill an entire line when the
packets are processed, the printer returns a packet error.

If an instruction to stop printing is received while print data is being sent, an initialization packet can be
sent instead of the next data packet.

Chapter 9: Pocket Printer

243

One Game Boy screen of data is represented by 9 data packets. However, a data-end packet can be
sent even if the number of data packets sent is less than 9. In this case, the printer will print only the
number of lines received. Line feeds can be performed by sending a data-end packet with no data
packet and issuing a print instruction. The printer will then feed the number of lines indicated by the
instruction.

Sending the following print instruction packet with a data-end packet but no data packet would specify
that 5 sheets be printed, with 1 line feed before printing and 3 line feeds after printing, and that the
pre-printing line feeds be ignored. The number of line feeds performed would therefore equal the
product of number of sheets to be printed and the number of post-printing line feeds specified. Thus,
in this example, the number of line feeds would be 15.

Example:

88 33 02 00 04 00 05 13 E4 40 42 01 00 00

4.4 Data-End Packet

 Actual Data

88 33 04 00 00 00 04 00 00 00

 PA Header Checksum Dummy
 This packet has no data section.

A data length of 0 for the data packet header represents the end of the print data. This must always
be sent to end print data transmission.

4.5 Break Packet

Used to discontinue printing. The break packet is sent by means of the user’s instructions and forcibly
stops printing. (Printing is halted after 1 line is printed.)

Actual Data

88 33 08 00 00 00 08 00 00 00

 PA Header Checksum Dummy
 This packet has no data section.

4.6 NUL Packet

A functionless packet for requesting the current status of the printer. The printer may occasionally be
halted unintentionally while printing (e.g., paper jam, low battery), so a NUL packet should always first
be sent to check the printer’s status.

Game Boy Programming Manual

244

 Actual Data

88 33 0F 00 00 00 0F 00 00 00

 PA Header Checksum Dummy
 This packet has no data section.

4.7 Packet Error

Except in the case of a checksum error, if a packet of one of these types is sent but does not match
the specification described, the printer will return a packet error.

4.8 Other Packets

Packets other than the types mentioned above are ignored by the printer.

Chapter 9: Pocket Printer

245

5. PRINTER STATUS AND PACKETS

The following table shows the packets that can and cannot be sent from the Game Boy to the printer
while the printer is in various states.

Disconnected Immediately
after
Connected

Print Buffer
Full

While
Printing

While
Feeding

Connection/initialization packet Ο Ο Ο ▲ ▲

Print instruction packet ? x Ο ▲ ▲

Data packet ? Ο x ▲ ▲

Data-end packet ? Ο x ▲ ▲

Break packet ? ▲ ▲ Ο ▲

NUL packet ? Ο Ο Ο Ο

 Ο = OK; ▲ = ignored; x = packet error; ? = undefined

* The user could push the feed button while data is being transferred. In this case, the entire data
packet would be ignored, so the same packet would need to be re-sent.

Game Boy Programming Manual

246

6. PRINTER PRINT SEQUENCE

The print sequence used in the Game Boy.

 Status evaluation
 No Printer connected?

 Yes
Send init/connection

packet
Print instruction?

 Resend Packet Yes
if SumError

 No

 Printer connected? Transferred data present?
Yes No FULL bit=1

No Yes

 The printer is
not connected

 Errors?
 Yes

 No

 Printer abnormality Printer busy?
 (Feeding?)

Yes

 No

 Transfer data packet
 (Transfer data-end packet)

 SumError
Yes

 No

 Transfer print instruction
 packet

This is the basic sequence
used when sending
packets.

Printer busy?
Yes

 No

 End Printing

Chapter 9: Pocket Printer

247

7. PROCESSING OF CONNECTION EVALUATION AND PREAMBLE DETECTION
FAILURE

7.1 Connection Evaluation (includes cable disconnection)

To check whether a printer is connected to the Game Boy, it sends a NUL packet. If nothing is
connected, the value 0xFF is received; if there is a connection, 0x00 is received.

Game Boy Printer
Not Connected

 NUL packet sent No data reception detected
↓ ↓

 0xFF received
↓ No data for 120 ms

 Evaluates as not connected
↓

Evaluates as not connected;
print data cleared

Cable connected here
 NUL packet sent NUL packet detected

↓ ↓
0x00 received Status of 0x00 sent

↓ ↓
 Evaluates as connected Evaluates as connected

↓ ↓
Connection-check packet
sent after 100 msec delay Connection confirmed, ACK returned

. .

. .

. .

. .
The printer prepares to print data again; it is not cleared while data is received.

7.2 Preamble Detection Failure

If preamble detection fails during data reception, the flow of the Game Boy and printer sequences are
as shown below in parallel.

Game Boy Programming Manual

248

Game Boy Printer

Printer normal
Printer status normal ↓

↓ Wait to receive data
Start communication ↓

↓ Data reception
Cable disconnects during data transfer ↓

↓ Preamble detection failure
Printer status = FFh ↓

↓ Set status to FFh
Confirm reset of printer connection ↓

↓ 80 msec delay
Check connection after 100 msec ↓

Printer initialization

Chapter 9: Pocket Printer

249

8. PRINT DATA

The print data transferred in data packets is in character data format.

 Printing Example

Line1

Line2

Line3

Line4

Line5

Line6

Line7

Line8

Line9

 X00 X01 X02 X03 X09 X0A X0B X0C X13

 Y0
 Y1

Transfer Order
Y0.X00 --> Y0.X01 --> Y0.X02 --> ··· Y0.X13: 2 x 8 x 20 = 0x140 bytes

 Y1.X00 (2 x 8) --> Y1.X01 --> ··· Y1.X13: 2 x 8 x 20 = 0x140 bytes
Total 0x280 bytes

1 CHAR =
2 bytes (higher grayscale, then lower grayscale) x
8 dots vertically

Game Boy Programming Manual

250

9. COMPRESSION ALGORITHM

Compressed data essentially consist of control codes specifying the data type and length and the actual
data.

➀ Control code 1 + raw data
➁ Control code 2 + loop data

Control Code Control Code Control Code Control Code Control Code

7Fh ... 7Eh ... FFh ... 80h ... FEh

RAW Data RAW Data Loop Data Loop Data Loop Data

➀ Control code 1 + Raw data
 7Fh: Next 80h bytes are raw data
 0h-7Eh (N): Next < N + 1 data items (01h-7Fh) are raw data

➁ Control code 2 + Loop data
 FFh: Repeat the next < 1 byte of data for 81h bytes
 80h-FEh: Repeat the next < 1 byte of data for 2 (80) – 80h (FE) items

Example:

09h A0h A1h A2h A3h ... AAh 7Fh 80h 81h 82h ... FFh FFh 55h 80h AAh

 10h bytes of raw data 80h bytes of raw data 81h items of 55h, 02h items of
AAh

Chapter 9: Pocket Printer

251

10. HARDWARE SPECIFICATIONS

10.1 General Specifications

! Printing method: Thermal serial dot
! Print direction: Left to right (facing direction of paper feed)
! Total dot count: 16 x 160 (H x W/line)
! Dot pitch: 0.165 mm x 0.167 mm (H x W)
! Dot dimensions: 0.14 mm x 0.164 mm (H x W)
! Paper feed pitch: 2.64 mm
! Print width: Approximately 6.6 mm
! Printing speed: Approximately 1.1 lines/sec

10.2 Dimensions and Weight

! Dimensions: 72.2 mm x 139.5 mm x 56.0 mm (W x D x H)
! Weight: Approximately 190 g (not including battery)

11. MISCELLANEOUS

11.1 Cautions when Debugging

The printer comes in two types, each made a different manufacturer (Seiko Systems and Hosiden).
During final game debugging, the game should be checked with at least 1 printer of each type. The
manufacturer can be determined from the serial number on the back of the unit (Printers with PS
serial numbers are made by Seiko; those with PH serial numbers are made by Hosiden.) Many of
the Seiko printers obtained on the market are the normal Pocket Printer, while many of the printers
made by Hosiden are manufactured according to the special Pocket Printer Pikachu Yellow
specification. However, depending on the needs of the manufacturers, there is no guarantee that this
distinction will hold true in the future. If obtaining a printer proves difficult, please contact Nintendo
for a special consultation.

11.2 Sample Programs Provided by Nintendo (subroutines)

Modifying a program to suit the intended use is permitted. However, in creating the original program,
values for timing and other parameters were calculated to allow normal operation. These
parameters must therefore be carefully considered when modifying a program.

Game Boy Programming Manual

252

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Appendix 1: Programming Cautions

253

APPENDIX 1: PROGRAMMING CAUTIONS ...254
1. USING THIS APPENDIX..254
2. PROGRAMMING CAUTIONS REGARDING GAME BOY...........255

2.1 LCDC/VRAM ...255
Reference Notes: ..256
2.2 Communication..256
2.3 Sound..256
2.4 Miscellaneous Notes ...257

3. PROGRAMMING CAUTIONS REGARDING MBCs260
3.1 All MBCs ...260
3.2 MBC3...260
3.3 MBC5...261

4. SGB PROGRAMMING CAUTIONS ...263
4.1 ROM Data (Required)...263
4.2 Default Data (Required) ...263
4.3 SOU_TRN Default Data (Required) ...263

5. PROGRAMMING CAUTION REGARDING POCKET PRINTER..264
5.1 Transfer Time Intervals (Required)...264
5.2 Printing Multiple Sheets Continuously (Recommended)264
5.3 Print Density (Recommended)..264
5.4 Operation After the Motor is Stopped (Required)264
5.5 Feeds (Required)..264
5.6 Point of Caution During Debugging (Recommended)264
5.7 Sample Program Provided by Nintendo (Recommended)264

6. PROGRAMMING CAUTIONS FOR U.S. PROGRAMMERS.........265

Game Boy Programming Manual

254

APPENDIX 1: PROGRAMMING CAUTIONS
1. USING THIS APPENDIX

Purpose and Scope

These programming notes provide information on how to avoid easily made mistakes during
program development, information on unique Game Boy programming issues that require special
attention, and special issues regarding peripheral devices.

Items Covered in this Manual

Many of the topics covered in this appendix also are covered elsewhere in different chapters of
this manual. This appendix consolidates the discussion of these topics. Topics that would be more
easily comprehensible to the reader when presented separately will also be discussed in another
chapter, even though this may duplicate the discussion in this appendix.

Note: Although these notes were created to make every effort to eliminate potential sources of
trouble once on the market, they do not represent a guarantee that various potential problems can
be completely avoided.

Appendix 1: Programming Cautions

255

2. PROGRAMMING CAUTIONS REGARDING GAME BOY
Covers:
DMG: DMG, MGB, and MGL
SGB: SGB and SGB2
CGB: CGB

2.1 LCDC/VRAM

2.1.1 Setting the LCDC to OFF (Recommended)

Covers: DMG and CGB
In early DMGs, a black horizontal line appears on the screen if the LCDC is stopped (LCDC
register bit 7 ← 0) at any time other than during vertical blanking. Therefore, the LCDC should be
set to OFF during V-blanking. If the occurrence of V-blanking cannot be confirmed, the LCDC
should be set to OFF when the value of the LY register is 145 (91h) or greater. These restrictions
do not apply in CGB. Thus, when creating software for use on CGB only, the timing of setting the
LCDC to OFF need not be considered.

2.1.2 Window x-coordinate Register (Required)

Covers: DMG, SGB, and CGB
When the window is displayed, the window x-coordinate register (register WX, address FF4Bh)
must be set in the range 7-165. A setting of 0-6 or 166 is prohibited. Specifying a value of 167 or
greater causes the window not to be displayed.

2.1.3 Displaying Multiple Windows (Required)

Covers: CGB
Multiple windows that divide the screen horizontally into upper and lower areas can be displayed
by setting the window x-coordinate register (WX) to a value of 167 or greater during a horizontal
blanking period. Attempting to display multiple windows by switching the window ON and OFF
during H-blanking may result in the lower window not being displayed.

Display Data WX Value
Window

��
��
��

WX=7

BG (Background) 167<WX<255

Window

��
��
�� WX=7

LCD Display Screen

Display Data Window
Window

��
��
�� ON

BG (Background) OFF

Window

��
��
��

ON

LCD Display Screen

Game Boy Programming Manual

256

 Reference Notes:

1. Accessing VRAM Outside of a V-blanking period
In early DMGs, accessing VRAM outside of a V-blanking period would corrupt the screen.

2. Length of H-blanking
The length of the H-blanking period changes depending on the conditions of OBJ use, so
caution is recommended when using H-blanking.

2.2 Communication

2.2.1 Communication Rate (Required)

Covers: DMG, SGB2, and CGB
Data may be corrupted if the data transfer rate is too high.
The maximum external clock setting should be 512KHz between CGBs.
It should be 500KHz for others including DMG and SGB2.
Also, it should be 256KHz for communication between CGB and DMG.

2.2.2 Communication Errors (Recommended)

Covers: DMG, SGB2, and CGB
When using the communication function (infrared), the communicating data may be corrupted by
noise and such. Therefore, the program should not go out of control by such data corruption on
both the sending and receiving side.
When using the communication function (serial), depending on how the program is made, it is
confirmed that communication errors happen rarely.
SIO interrupt processing may be delayed by factors such as the processing of other interrupts.
This type of error should be avoided by establishing a proper communication interval that allows a
problem-free exchange of data.

2.2.3 Effects of Other Infrared Devices (Recommended)

Covers: CGB
Adequate care should be taken to ensure against faulty operation and loss of program control
even when infrared communication signal input is received from other game software and devices.
Note that such problems may particularly occur in communication between multiple games that
use the same subroutines. (Before performing data communication, use means such exchanging
a unique key code to check whether the same game is on the other hardware.)

2.3 Sound

2.3.1 Using Sounds 1, 2 , and 3 (Required)

Covers: CGB
With continuous operation mode selected (bit 6 of NR*4 set to 0) for sounds 1, 2, and 3, if the
higher-order frequency data (lower-order 3 bits of NR*4) are changed, the sound length (bits 0-5 of
NR*1) must to set to 0 after the frequency data is set. If the sound length is not set to 0, the
sound may stop during playback.

2.3.2 Using Sound 3 (Required)

Covers: DMG, SGB, and CGB

Appendix 1: Programming Cautions

257

When sound 3 is used, data should always first be specified for addresses FF30h-FF3Fh of
waveform RAM. If the initial flag is set during sound 3 operation (sound 3 ON flag = 1), the
contents of waveform RAM will be destroyed.

2.4 Miscellaneous Notes

2.4.1 Using Interrupts (Required)

Covers: DMG, SGB, and CGB
When interrupts are used, the IF register should be cleared before the IE register is set. If the IF
register is not first cleared, an interrupt may be generated immediately after interrupts are enabled.

2.4.2 Reading Keys (Required)

Covers: DMG
An interval of approximately 18 cycles should be used between output from P14 and P15 and
reading of input. Without this interval, normal key input cannot be read.

2.4.3 Using the Timer (Required)

Covers: DMG, SGB, and CGB
The timer should be started (TAC start flag set) after the count-up pulse is selected. Starting the
timer before or at the same time as the pulse is selected may result in an extra count-up operation
at the time of pulse selection.

Example:

LD A,3 ;Selects f/256 as the count-up pulse.
LD (07),A ;Sets TAC ← 3
LD A,7 ;Starts the timer
LD (07),A

If a write instruction is executed for the modulo register TMA with the same timing as the contents
of that register are transferred to TIMA as a result of a timer overflow, the same write data also will
be transferred to TIMA..

2.4.4 Using STOP Mode (Required)

Covers: DMG, SGB, and CGB
When STOP mode is used, all interrupt-enable (IE) flags should be reset before execution of a
STOP instruction. Otherwise, if an interrupt is generated during the period of oscillation
stabilization (HALT mode) following STOP mode cancellation, HALT mode will immediately be
canceled, preventing a stable system clock from being provided.

2.4.5 Using Paired Registers (Required)

Covers: DMG, SGB, and CGB
With instructions that use paired registers BC, DE, and HL, such as the following, there is some
chance that OAM RAM may be destroyed. Therefore, ensure that these paired registers are not
set to a value in the range FE00h-FE9Eh.

INC ss ; ss : BC, DE, HL
DEC ss
LD A,(HLI)

Game Boy Programming Manual

258

LD A,(HLD)
LD (HLI),A
LD (HLD),A

2.4.6 Using the HALT Instruction (Required)

Covers: DMG, SGB, and CGB
When using a HALT instruction, always add an NOP instruction immediately after the HALT
instruction. Not adding the NOP instruction may in rare cases cause the instruction after the HALT
instruction not to be executed.

2.4.7 Switching the CPU Operating Speed (Recommended)

Covers: CGB
When switching the CPU operating speed, first confirm the current speed by checking the speed
flag (bit 7 of register KEY1). In double-speed mode, both the divider (DIV) and timer (TIMA)
registers will also be set for double-speed operation.

2.4.8 Using Horizontal Blanking DMA (Required)

Horizontal blanking DMA should always be started (bit 7 of HDMA5 set to 1) when the STAT mode
is not set to 00. If horizontal blanking DMA is started when STAT mode is 00, depending on the
timing, the data in LCD display RAM may be destroyed. In addition, execution of a HALT
instruction during horizontal blanking DMA may prevent normal cancellation of the HALT mode or
DMA. Therefore, HALT instructions should not be used while horizontal blanking DMA is being
started.

2.4.9 Using General-Purpose DMA (Required)

General-purpose DMA should be started (bit 7 of HDMA5 set to 0) with the LCDC off or during V-
blanking. However, when transferring data during V-blanking, ensure that the transfer period does
not overlap with STAT modes 10 or 11.

2.4.10 DMA Transfers to OAM (Required)

In DMG and in CGB in DMG mode, when transferring data to OAM by DMA, the user program
area (00h-7FFFh) should not be used as the starting address of the transfer. In some cases,
data cannot be transferred from the user program area normally. CGB mode, however, does
enable DMA transfers from the user program area.

2.4.11 Status Interrupts (Required)

Covers: DMG, SGB, and CGB
When using a status interrupt in DMG or in CGB in DMG mode, register IF should be set to 0 after
the value of the STAT register is set. (In DMG, setting the STAT register value changes the value
of the IF register, and an interrupt is generated at the same time as interrupts are enabled.)

Appendix 1: Programming Cautions

259

2.4.12 Chattering (Recommended)

Covers: DMG, SGB, and CGB
To prevent buttons from inadvertently being pressed twice, an interval should be provided between
key reads. (Although this varies with the software, keys are normally read approximately once per
frame.)

Game Boy Programming Manual

260

3. PROGRAMMING CAUTIONS REGARDING MBCS
3.1 All MBCs

3.1.1 Protecting RAM Data (Recommended)

To protect RAM data, access to RAM should be disabled (RAMG←00h) when it is not being
accessed.

3.2 MBC3

3.2.1 Accessing the Clock Counters (Required)

If the clock counters themselves are counted up, accessing of the clock counters by the CPU is
performed asynchronously. However, if these operations are performed simultaneously, the clock
counters may fail. To prevent this, MBC3 provides an interface circuit for WR signals from the
CPR. Use of this circuit necessitates a delay when accessing control register 3 and the clock
counter registers (RTC_S, RTC_M, RTC_H, RTC_DL, and RTC_DH). Thus, whenever accessing
these registers consecutively, interpose a delay of 4 cycles between accesses.

When reading clock counter data:

• Latch all clock counter data using control register 3.

4-cycle delay required

• Read the data in the clock counter registers.

When writing values to the clock counters:

• Set data in clock counter register RTC_S.

4-cycle delay required

• Set data in clock counter register RTC_M.

4-cycle delay required

• Set data in clock counter register RTC_H.

4-cycle delay required

• Set data in clock counter register RTC_DL.

4-cycle delay required

• Set data in clock counter register RTC_DH.

Appendix 1: Programming Cautions

261

3.2.2 Condensation (Required)

MBC3 uses a crystal oscillator for its clock counter operation, and condensation on the oscillator
may halt its oscillation, preventing the clocks from counting up. Once the condensation
disappears, the clocks will resume counting up from where they stopped. However, please ensure
that the counter stoppage does not result in a loss of program control.

3.2.3 Control Register Initialization (Required)

Although control registers 0-3 are initialized (see Section 3.2, Description of Registers) when the
Game Boy power is turned on, they are not initialized by a hard reset of Super NES when Super
Game Boy is used. Therefore, please be sure to implement a software reset of these registers.

3.2.4 Clock Counter Registers (Required)

When commercial GB software that use MBC3 are shipped from the factory, the values of the
clock counter registers are undefined. Therefore, please ensure that these registers are initialized.

3.3 MBC5

3.3.1 Memory Image (Required)

If a memory device is used that uses less than the maximum amount of memory available (ROM:
64 Mbits; RAM: 1 Mbit) , a memory image is generated for the empty bank area. Therefore,
please do not develop software that uses an image, because it may cause failures.

3.3.2 Specifying External Sound Input (VIN) (Required)

Always use the sound control register (NR50) with bits 7 and 3 (VIN function OFF) set to 0.
Because the VIN terminal is used in development flash ROM cartridges, using the register with
VIN set to ON will produce sound abnormalities.

3.3.3 Disabling Vibration Using the SGB, SGB2, or 64GB Pak (Recommended)

When MBC5 with rumble feature is used by SGB, SGB2, or the 64GB Pak, vibration should be
turned off by the program to prevent failures caused by a faulty connection. For methods of
recognizing SGB and SGB2, see Chapter 6, section 4.2, Recognizing SGB. With the 64GB Pak,
vibration is controlled by the N64 software. Therefore, N64 software programs that support MBC5
should not write data to bit 3 of the RAM bank register.

3.3.4 Disabling Vibrations for Resets and Pauses (Recommended)

Vibration should be halted during resets and pauses.
When power is turned on, the hardware should not be vibrated until some input is received from
the controller.

Game Boy Programming Manual

262

3.3.5 Limiting the Period of Continuous Vibration (Recommended)

To prevent physical effects in the user such as numbness as a result of continuous vibration, limit
the duration of continuous vibration as indicated below, regardless of the vibration strength.

! Limit the duration of continuous vibration to 1 minute.

! If the nature of the game makes longer periods of continuous vibration unavoidable, limit
these periods to 3 minutes.

3.3.6 Rumble Feature Selection (Recommended)

The user should be allowed to set the rumble feature to ON or OFF or to select strong, mild, or
OFF by means such as an initial-settings screen at the start of the game. In addition, the program
should allow the user to easily change these settings even during a game if, for example, they are
uncomfortable with the vibration. Such changes also should be allowed a pause.

3.3.7 Changes in Vibration Level with Battery Use (Recommended)

If the battery that powers the motor (size AAA alkaline battery) wears out, the perceived vibration
level will be reduced even if the requested vibration level remains the same. Therefore, rumble
operation should be checked both when the battery is new (1.6 V) and when it is at the end of its
life (1.1 V).

Appendix 1: Programming Cautions

263

4. SGB PROGRAMMING CAUTIONS
4.1 ROM Data (Required)

To use the functions of SGB (system commands), the following values must be stored in ROM at the
locations indicated.
146h ← 03h, 14Bh ← 33h

4.2 Default Data (Required)

When writing programs that use the functions of SGB, use the initialization routine of the game
program to send default data (see Chapter 6) to the register file.

4.3 SOU_TRN Default Data (Required)

When using the SOU_TRN system command, send the SOU_TRN default data (see Chapter 6) to the
register file before SOU_TRN is used.

Game Boy Programming Manual

264

5. PROGRAMMING CAUTIONS REGARDING POCKET PRINTER
5.1 Transfer Time Intervals (Required)

Transfer time intervals vary depending on the manufacturer. The timings indicated in Chapter 9
should be used to avoid faulty operation with a printer from a particular manufacturer.

5.2 Printing Multiple Sheets Continuously (Recommended)

Between 2 and 255 sheets can be printed continuously by an application. However, because this
may take a long time, the user should be given a means of halting a print job in progress.

5.3 Print Density (Recommended)

Because it is very inconvenient to adjust the density each time the program is started, the print
density data should be backed up whenever possible.

5.4 Operation After the Motor is Stopped (Required)

If a print instruction packet is sent within 100 msec of when the motor is stopped, the print starting
position may be incorrect. Therefore, print instruction packets should always be sent at least 100
msec after the motor is stopped.

5.5 Feeds (Required)

In setting the number of line feeds to be inserted before and after printing (byte 2 of the data portion
of the print instruction packet), always specify a value of 1 or greater for the number of feeds before
printing and 3 or greater for the number after printing. Otherwise, problems can arise, such as
double printing twice on a single line or failure of the last line of print to reach the paper cutter.

5.6 Point of Caution During Debugging (Recommended)

There are two types printers, each made by a different manufacturer (Seiko Instruments and
Hosiden). As part of final debugging, the program should be checked with at least one printer of
each type.

5.7 Sample Program Provided by Nintendo (Recommended)

Modifying the program to suit the intended use is permitted. However, in creating the original
program, values for timing and other parameters were calculated to allow normal operation. These
parameters must therefore be carefully considered when modifying the program.

Appendix 1: Programming Cautions

265

6. PROGRAMMING CAUTIONS FOR U.S. PROGRAMMERS
If you are unable to verify that the system is a Super Game Boy, and the Accumulator returns the
same value if the game is inserted in the Super Game Boy or original Game Boy hardware, follow the
instructions below.

If your game is Super Game Boy (SGB) enhanced, then you just need to use the MLT_REQ function.
Otherwise, you must use the SGB libraries to verify if the game is in an SGB. (These libraries are
located in the CGB files section of Wario World under SGBlib.zip.) You will need to call the SGBCHK
function from these libraries right after the Soft Reset label. To use this function, you must set the ROM
Registration area for SGB ($146h) to $03, which allows access to the SGB REgisters. (Don't forget to
readjust the Complement Check.)

Also, on the Software Submission sheet, make sure you note that the game has a $03 in address
$146, but in the remarks section, explain that the game doesn't use any of the SGB features.

Game Boy Programming Manual

266

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Appendix 2. Register and Instruction Set Summaries

267

APPENDIX 2: REGISTER AND INSTRUCTION SET SUMMARIES.. 268

1. CONTROL REGISTER SUMMARY.. 268
2. SOUND REGISTER SUMMARY... 273
3. CPU INSTRUCTION SET SUMMARY... 277

Game Boy Programming Manual

268

 APPENDIX 2: REGISTER AND INSTRUCTION SET SUMMARIES

1. CONTROL REGISTER SUMMARY
Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
P1

Port P15-
P10

 FF00 P15 P14 P13 P12 P11 P10 R/W
Control of
transfer
data by P14,
P15

SB

Serial
transfer
register

 FF01 R/W

Transfer data

SC

Serial
control

 FF02 Transfer
start
0: No
start
1: Start

Clock
speed
0: 8 KHz

1: 256

KHz

Shift
clock
0:
External
1:
Internal

R/W
In double-
speed mode
clock speed
also doubled

DIV

Divider

 FF04 f/216

64Hz

f/215

128Hz

f/214

256Hz

f/213

512Hz

f/212

1024Hz

f/211

2048Hz

f/210

4096Hz

f/29

8192Hz

R/W
With clear
normal by LD
instruction:
f=4194304
Double speed:
f=8388608

TIMA

Timer

 FF05 R/W
Timer unit.
Operates at
double-speed
in double-
speed mode

TMA

Timer
modulo

 FF06 R/W
Preset register
for timer

TAC

Timer
control

 FF07 Timer stop
0: Stop
1: Operate

Frequency
selection bit
00: f/210 10: f/26

01: f/24 11: f/28

R/W
Normal-speed:
f=4194304
Double-speed:
f=8388608

IF

Interrupt
request flag

 FF0F Terminals
P10-P13
HIGH

End of serial
transfer

Timer
overflow

LCDC
Controller
STAT

V-blank R/W
Bit reset valid

IE

Interrupt
enable flag

 FFFF Terminals
P10-P13
 LOW

End of
serial
transfer

Timer
overflow

LCDC
Controller
STAT

V-blank R/W
0: Disabled
1: Enabled

Appendix 2. Register and Instruction Set Summaries

269

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
IME
Interrupt
master
enable

Reset with DI;
set with EI
0: Disable
interrupts
1: Enable
interrupts

LCDC

LCDC
Control

 FF40 Controller
0: Stop
1:
Operate

WIN Area
0: 9800-
1: 9C00-

Window
0: OFF
1: ON

BG
Characters
0: 8800-
1: 8000-

BG Area
0: 9800-
1: 9C00-

OBJ
Block
0: 8x8
1: 8x16

OBJ
Display
0: OFF
1: ON

BG
Displa
y
0: OFF
1: ON

R/W
Bit 0 fixed to
display BG ON
in CGB mode
only

LCDC status interrupt selection flagsSTAT

LCDC
status
information

 FF41
Agreement
flag
selection

Mode 10
selection

Mode 01
selection

Mode 00
selection

LYC
agreement
0:
1: LYC=LY

Mode
00: RAM access
10: OBJ search
01: V-blank
11: LCD transfer

R/W Bits 3-6
Interrupt
0: Not
selected
1: Selected

SCY

Scroll Y
register

 FF42 R/W
00h – FFh

SCX

Scroll X
register

 FF43 R/W
00h – FFh

LY

LCDC y-
coordinate

 FF44 R
y-coordinate
during display

LYC

LY compare
register

 FF45 R/W
Agreement
flag set with
LYC=LY

DMA

DMA
Transfer

 FF46 W 00h –
DFh
Transfer starts
at the same
time as
address set

Game Boy Programming Manual

270

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
BGP

BG Palette
Data

FF47 Palette data for
character dot data
11 in DMG mode.

Palette data for
character dot data
10 in DMG mode.

Palette data for
character dot
data 01 in DMG
mode.

Palette data for
character dot data
00 in DMG mode.

W

OBP0

OBJ palette
data 0

FF48 Palette data for
character dot data
11 in DMG mode.

Palette data for
character dot data
10 in DMG mode.

Palette data for
character dot
data 01 in DMG
mode.

Palette data for
character dot data
00 in DMG mode.

W
When attribute
bit 4 is 0.

OBP1

OBJ palette
data 1

FF49 Palette data for
character dot data
11 in DMG mode.

Palette data for
character dot data
10 in DMG mode.

Palette data for
character dot
data 01 in DMG
mode.

Palette data for
character dot data
00 in DMG mode.

W
When attribute
bit 4 is 1.

WY

Window y-
coordinate

FF4A R/W
0 – 143
Top edge when
WY=0

WY

Window x-
coordinate

FF4B R/W
7 – 165
Left edge when
WY=7

KEY1

CPU speed
switching

FF4D Current
speed:
0:
Normal 1:
Double-
speed

Enable
speed
switching

R/W Switch by
setting bit 0 to 1
and issuing a
STOP
instruction

VBK

VRAM bank
specification

FF4F Bank
0: Bank 0
1: Bank 1

R/W
Bank 0 selected
immediately
after a reset
signal.

HDMA1
Higher-order
address of
HDMA transfer
source

FF51 W
00h – 7Fh (ROM)
A0h – DFh
(WRAM)

HDMA2
Lower-order
address of
HDMA transfer
source

FF52 W
0Xh – FXh

HDMA3
Higher-order
address of
HDMA transfer
destination

FF53 W
00h – 1Fh

Appendix 2. Register and Instruction Set Summaries

271

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment

HDMA4
Lower-order
address of
HDMA transfer
destination

FF54 W
0Xh – FXh

HDMA5
 H-blank and
general-
purpose DMA
control

FF55 DMA
selection
0:
General
purpose
1: H-
blank

0 ≤ n ≤ 127
Total number of transferred bytes: 16 x (n+1)

W
H-blanking
stopped by
setting bit 7 to 0;
General-
purpose
stopped by
resetting

RP

Infrared
communicatio
n port

FF56 Data read-enable
flag
00: Disable
11: Enable

Read data
0:LED-ON
1:LED-OFF

Write data
0:LED-OFF
1:LED-ON

R/W

BCPS
Color palette
BG write
specification

FF68 Increment
0: OFF
1: ON

Palette No.
0 - 7

Palette No.
0 - 3

H/L
specification
0: L
1: H

R/W
Not incremented
automatically
with a read

BCPD
Color palette
BG write data

FF69 R/W

OCPS
Color palette
OBJ write
specification

FF6A Increment
0: OFF
1: ON

Palette No.
0 - 7

Palette No.
0 - 3

H/L
specification
0: L
1: H

R/W
Not incremented
automatically
with a read

OCPD
Color palette
OBJ write
data

FF6B R/W

Game Boy Programming Manual

272

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment

SVBK

WRAM Bank
specification

FF70 Banks specification
 0,1: Specifies bank 1
2-7: Specifies banks 2-7

R/W

OBJ0*1

LCD y-
coordinate

FE0
0

R/W
00h – FFh
Top edge
when Y= 10h

LCD x-
coordinate

FE0
1

R/W
00h – FFh
Left edge
when X=08h

Character
code

FE0
2

R/W
00h – FFh

Attribute flag

FE0
3

Display
priority
0: OBJ
1: BG

Vertical
flip
0:
Normal
1: Flip

Horizontal
flip
0: Normal
1: Flip

Palette
specification
for DMG
mode

VRAM
bank
0: bank 0
1: bank 1

Color Palette No.
0 - 7

R/W

*1
OBJ1 -
OBJ39 same
as
OBJ0

 The dark frame indicates a flag or register unique to CGB.

Appendix 2. Register and Instruction Set Summaries

273

2. SOUND REGISTER SUMMARY
All values shown in the following table apply to normal mode. The values for double-speed mode should be

calculated by doubling the system clock frequency.

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
NR10 FF10 Sweep time: 010:15.6ms

101:39.1ms
000:OFF 011:23.4ms
110:46.9ms
001:7.8ms 100:31.3ms
111:54.7ms

Sweep
increase
/decrease
0: + f hi
1: - f low

Number of sweep shifts: 0 - 7
R/W
f128=128Hz

NR11
Duty
cycle/sound
length

FF11 Waveform duty cycle

00: 12.5% 10: 50%

01: 25% 11: 75%

Sound length data t1 : 0 - 63
Sound length = (64-t1) * (1/256) sec

R/W

NR12

Envelope

FF12 Initial envelope value: 0x00 – 0x0F
Mute when 0x00
Maximum when 0x0F

Envelope
U/D
0: Attenuate
1: Amplify

Number of envelope steps N = 0 - 7
Length of 1 step = N*(1/64) sec

Envelope function stopped when N=0

R/W
Initial value of
00 sets to OFF
when in DOWN
mode

NR13

Lower-order
frequency
data

FF13
Lower-order 8 bits of frequency data

W

S
O
U
N
D

1

NR14

Higher-order
frequency
data/
other

FF14 Restart
when

initialize
flag

set to 1

Length
selection
0:
Consecutive
1: NR11

Higher order 3 bits of frequency
data
With x =11-bit frequency data,
f = 4194304 / (4*23(2048-x)) Hz

R/W
f = 64Hz -
131KHz

Game Boy Programming Manual

274

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
NR21
Duty
cycle/sound
length

FF16 Waveform duty
cycle
00: 12.5% 10:
50%
01: 25% 11: 75%

Sound length t1: 0 - 63
Sound length = (64-t1) * (1/256) sec

R/W

NR22

Envelope

FF17 Initial envelope value 0x00 – 0x0F
Mute when 0x00
Maximum when 0x0F

Envelope
U/D
0:
Attenuate
1: Amplify

Number of envelope steps N = 0-7
Length of 1 step = N*(1/64) sec
Envelope function stops when N=0

R/W
Initial value of
00 sets to OFF
when in DOWN
mode

NR23

Lower-order
frequency
data

FF18
Lower-order 8 bits of frequency data,

W

S
O
U
N
D

2

NR24

Higher-
order /other
frequency
data

FF19 Restart
when
initialize
flag set
to 1

Length
selection
0:
Consecutive
1: NR21

Higher order 3 bits of frequency
data
With x =11-bit frequency data,
f = 4194304 / (4*23(2048-x)) Hz

R/W
f = 64Hz -
131KHz

NR30

Sound OFF

FF1A Sound
OFF
0: OFF
1: ON

R/W

NR31

Sound
length data

FF1B Sound length data t1 : 0 - 255
Sound length = (256-t1) * (1/256) sec

R/W

NR32

Output level

FF1C Output level
00: Mute 10: 1/2
01: Max 11: 1/4

R/W

NR33

Lower-order
frequency
data

FF1D
Lower-order 8 bits of frequency data

W

S
O
U
N
D

3

NR34

Higher-
order
frequency
data/other

FF1E Restart
when
initialize
flag set
to 1

Length
selection
0:
Consecutive
1: NR31

Higher-order 3 bits of frequency
data
With x =11-bit frequency data,
f = 4194304 / (4*23(2048-x)) Hz

R/W
f = 64Hz -
131KHz

Appendix 2. Register and Instruction Set Summaries

275

Register Address D7 D6 D5 D4 D3 D2 D1 D0 Comment
NR41

Sound
length data

FF20 Sound length data t1 : 0 - 63
Sound length = (64-t1) * (1/256) sec

R/W

NR42

Envelope

FF21 Initial envelope value 0x00 –
0x0F
Mute when 0x00
Max when 0x0F

Envelope
U/D
0:
Attenuate
1: Amplify

Number of envelope steps N = 0-7
Length of 1 step = N*(1/64) sec
Envelope function stops when N=0

R/W
Initial value of
00 sets to OFF
when in DOWN
mode

NR43

Polynomial
counter

FF22 Polynomial counter clock
frequency selection
Prohibited codes
0000: fb * 1/2 1100: fb * 1/213 1110
0001: fb * 1/22 1101: fb * 1/214 1111

Step no.
selection
0: 15
steps
1: 7
steps

Selection of frequency dividing
ratio fb
000: f*1/23*2 110: f*1/23*1/6
001: f*1/23*1/1 to 000:
f*1/23*1/7

W
f =
4.194304MHz

S
O
U
N
D

4

NR44

Initialize/length

FF23 Restart
when
initialize
flag set
to 1

Length
selection
0:
Consecutive
1: NR41

R/W

NR50

SO1 / SO2
level

FF24 VIN
input
0:SO2
OFF
1:SO2
output

SO2 output level control
000 (min) – 111 (max)

VIN input
0:SO1
OFF
1:SO1
output

SO1 output level control
000 (min) – 111 (max)

R/W

NR51

Distribution
to
SO1/SO2

FF25 Sound
4 to
SO2

Sound
3 to
SO2

Sound
2 to
SO2

Sound
1 to
SO2

Sound
4 to
SO1

Sound
3 to
SO1

Sound
2 to
SO1

Soun
d 1 to
SO1

R/W
0: No output
1: Output

C
O
N
T
R
O
L NR52

Sound-end
flag

FF26 All
sounds
0:
Stop
1:
Play

Sound
4
ON flag

Sound
3
ON flag

Sound 2
ON flag

Sound
1
ON flag

R/W

Game Boy Programming Manual

276

Waveform RAM

Waveform RAM is made up of waveform patterns consisting of 4 bits x 32 steps.

Address D7 D6 D5 D4 D3 D2 D1 D0

FF30 Step 0 Step 1

FF31 Step 2 Step 3

FF32 Step 4 Step 5

FF3F Step 30 Step 31

Appendix 2. Register and Instruction Set Summaries

277

3. CPU INSTRUCTION SET SUMMARY

FLAGS
MNEMONIC

SYMBOLIC
OPERATION CY H N Z CYCL

OP-CODE
76 543 210 COMMENT

LD r,r’ r←r’ -- -- -
-

-- 1 01 r r’

-- -- -
-

-- 2 00 r 110LD r,n r←n

 n
LD
r,(HL)

r← (HL) -- -- -
-

-- 2 01 r 110 Register r,r’

LD
(HL),r

(HL) ←r -- -- -
-

-- 2 01 110 r A 111

-- -- -
-

-- 3 00 110 110 B 000LD
(HL),n

(HL) ←n

 n C 001
LD
A,(BC)

A← (BC) -- -- -
-

-- 2 00 001 010 D 010

LD
A,(DE)

A← (DE) -- -- -
-

-- 2 00 011 010 E 011

LD
A,(C)

A←(FF00
H+C)

-- -- -
-

-- 2 11 110 010 H 100

LD
(C),A

(FF00H+
C) ←A

-- -- -
-

-- 2 11 100 010 L 101

-- -- -
-

-- 3 11 110 000LD
A,(n)

A←(n)

 n
-- -- -

-
-- 3 11 100 000LD

(n),A
(n) ←A

 n
-- -- -

-
-- 4 11 111 010

 n

LD
A,(nn)

A←(nn)

 n
-- -- -

-
-- 4 11 101 010

 n

LD
(nn),A

(nn) ←A

 n
-- -- -

-
-- 2 00 101 010LD

A,(HLI)
A←(HL)
HL←HL+
1

-- -- -
-

-- 2 00 111 010LD
A,(HLD)

A←(HL)
HL←HL-
1

 8-Bit Transfer/Input-O
utput Instructions

LD
(BC),A

(BC) ←A -- -- -
-

-- 2 00 000 010

Game Boy Programming Manual

278

FLAGSMNEMONIC SYMBOLIC
OPERATION CY H N Z

CYCL OP-CODE
76 543 210

LD
(DE),A

(DE) ←A -- -- -- -- 2 00 010 010

-- -- -- -- 2 00 100 010 Register Pair ddLD
(HLI),A

(HL) ←A
HL←HL+
1

BC 00

-- -- -- -- 2 00 110 010LD
(HLD),A

(HL) ←A
HL←HL-
1

Register Pair dd

-- -- -- -- 3 00 dd0 001 DE 01

L-ADRS n

LD
dd,nn

dd←nn

H-ADRS n

HL 10

SP 11LD
SP,HL

SP←HL -- -- -- -- 2
11 111 001

Register Pair qq
-- -- -- -- 4 11 qq0 101PUSH

qq
(SP-1)
←qqH
(SP-2)
←qqL
SP←SP-2

BC 00

-- -- -- -- 3 11 qq0 001 DE 01
HL 10

POP
qq

qqL←(SP)
qqH←(SP+1)
SP←SP+2 AF 11

* * 0 0 3 11 111 000LDHL
SP,e

HL←SP+e

 e

-- -- -
-

-- 5 00 001 000

L-ADRS

 n

LD
(nn),SP

(nn) ←SPL
(nn+1)
←SPH

H-ADRS

 n

16-Bit Transfer Instructions
e=-128~+127

Appendix 2. Register and Instruction Set Summaries

279

FLAGS
MNEMONIC

SYMBOLIC
OPERATION CY H N Z CYCL

OP-CODE
76 543 210

COMMENT

ADD A,r A←A+r * * 0 * 1 10 000 r
* * 0 * 2 11 000 110ADD A,n A←A+n

 n
ADD
A,(HL)

A←A+(H
L)

* * 0 * 2 10 000 110

ADC A,s A←A+s+
CY

* * 0 * 1,2 -- --- ---

SUB s A←A-s * * 1 * 1,2 -- --- ---
SBC A,s A←A-s-

CY
* * 1 * 1,2 -- --- ---

AND s A←AΛs 0 1 0 * 1,2 -- --- ---
OR s AVs 0 0 0 * 1,2 -- --- ---
XOR s A⊕ s 0 0 0 8 1,2 -- --- ---
CP s A-s * * 1 * 1,2 -- --- ---

s is any of r,n,(HL)

CYCL 1: s is r
 2: s is n or (HL)

INC r r←r+1 -- * 0 * 1 00 r 100
INC (HL) (HL)

←(HL)+1
-- * 0 * 3 00 110 100 Register

Pair
ss

DEC r r←r-1 -- * 1 * 1 00 r 101 BC 00

 8-Bit Arithm
etic and Logical O

peration Instructions

DEC (HL) (HL)
←(HL)-1

-- * 1 * 3 00 110 101 DE 01

ADD
HL,ss

HL←HL+
ss

* * 0 -- 2 00 ss1 001 HL 10

* * 0 0 4 11 101 000 SP 11ADD SP,e SP←SP+
e e

INC ss ss←ss+1 -- -- -- -- 2 00 ss0 011

16-Bit Arithm
etical Operation

Instructions

DEC ss ss←ss-1 -- -- -- -- 2 00 ss1 011 e=-128~+127

The flag is affected according Z: Zero flag. z=1 if the result of the operation is 0

 to the result of the operation. C: Carry/link flag. C=1 if the operation produced a carry

from the MSB of the operand or result

H: Half-carry flag.

N: Add/Subject flag.

Game Boy Programming Manual

280

FLAGS
MNEMONIC

SYMBOLIC
OPERATION CY H N Z CYCL

OP-CODE
76 543 210

COMMENT

RLCA A7 0 0 0 1 00 000 111

CY 7 ← A - 0 Register r

A 111
RLA A7 0 0 0 1 00 010 111 B 000

CY 7 ←A - 0 C 001
D 010

RRCA A0 0 0 0 1 00 001 111 E 011
7 → A - 0 CY H 100

L 101
RRA A0 0 0 0 1 00 011 111

7 → A - 0 CY
m is any

of r, (HL)

CYCL

RLC m m7 0 0 * -- -- --- --- RLC
r

2

CY 7 ← m - 0 RLC
(HL)

4

RL m m7 0 0 * -- -- --- --- RL
r

2

CY 7 ← m - 0 RL
(HL)

4

RRC m m 0 0 0 * -- -- --- --- RRC
r

2

7→ m - 0 CY RRC
(HL)

4

RR m m 0 0 0 * -- -- --- --- RR
r

2

7 - m → 0 CY RR
(HL)

4

SLA m m7 0 0 * -- -- --- --- SLA
r

2

CY 7 ←m - 0
0

SLA
(HL)

4

SRA m m 0 0 0 * -- -- --- --- SRA
r

2

7 - m → 0 CY SRA
(HL)

4

R
otate Shift Instructions

Appendix 2. Register and Instruction Set Summaries

281

FLAGSMNEMONIC SYMBOLIC
OPERATION CY H N Z CYCL

OP-CODE
76 543 210

COMMENT

SRL m m 0 0 0 * -- -- --- --- SRL
r

2

0 7 - m → 0 CY SRL
(HL)

4

SWAP m 0 0 0 * -- -- --- --- SWAP
r

2

7

4

3

0

SWAP
(HL)

4

Game Boy Programming Manual

282

FLAGS
MNEMONIC

SYMBOLIC
OPERATION CY H N Z CYCL

OP-CODE
76 543 210 COMMENT

-- 1 0 rb 2 11 001 011BIT b,r Z←rb

01 b r Bit b Register r

-- 1 0 (HL)b 3 11 001 011 0 000 A 111BIT
b,(HL)

Z←HL)b

01 b 110 1 001 B 000

-- -
-

-- -- 2 11 001 011 2 010 C 001SET
b,r

rb←1

11 b r 3 011 D 010

-- -
-

-- -- 4 11 001 011 4 100 E 011SET
b,(HL)

(HL)b←1

11 b 110 5 101 H 100

-- -
-

-- -- 2 11 001 011 6 110 L 101RES
b,r

rb←0

10 b r 7 111

-- -
-

-- -- 4 11 001 011

 Bit O
perations

RES
b,(HL)

(HL)b←0

10 b 110
-- -

-
-- -- 4 11 000 011

 n

JP nn PC←nn

L-ADRS

H-ADRS

 n

-- -
-

-- -- 4/3 11 0cc 010

 * No. of cycles is 3 when
no cc agreement

 n
CC Condition Flag

JP cc,nn If cc true,
PC←nn

L-ADRS

H-ADRS

 n 00 NZ Z=0

-- -
-

-- -- 3 00 011 000 01 Z Z=1JR e PC←PC+e

 e-2 10 NC CY=0
-- -

-
-- -- 3/2 00 1cc 000 11 C CY=1JR

cc,e
If cc true,
PC←PC+e

 e-2

 Jum
p Instructions

JP
(HL)

PC←HL -- -
-

-- -- 1 11 101 001

 e=-127~+129

Appendix 2. Register and Instruction Set Summaries

283

FLAGSMNEMONIC SYMBOLIC
OPERATION CY H N Z

CYCL OP-CODE
76 543 210

COMMENT

-- -
-

-- -- 6 11 001 101

 n

CALL nn (SP-1) ←PCH

(SP-2) ←PCL

PC←nn
SP←SP-2

L-ADRS

H-ADRS

 n

-- -
-

-- -- 6/3 11 0cc 100

 n

CALL
cc,nn

If cc true,
(SP-1) ←PCH

(SP-2) ←PCL

PC←nn
SP←SP-2

L-ADRS

H-ADRS n

-
-

-- -- -- 4 11 001 001RET PCL←(SP)
PCH←(SP+1)
SP←SP+2

-
-

-- -- -- 4 11 011 001 Operand t (PCH) (PCL)

0 000 00h 00h

RETI PCL←(SP)
PCH←(SP+1)
SP←SP+2

1 001 00h 08h

-
-

-- -- -- 5/2 11 0cc 000 2 010 00h 10h

3 011 00h 18h

4 100 00h 20h

RET cc If cc true,
PCL←(SP)
PCH←(SP+1)
SP←SP+2

5 101 00h 28h
-
-

-- -- -- 4 11 t 111 6 110 00h 30h

7 111 00h 38h

 C
all/R

eturn Instructions

RST t (SP-1) ←PCH

(SP-2) ←PCL

SP←SP-2
PCH←0 PCL←P

* 0 -- * 1 00 100 111DAA Decimal
Adjust acc

CPL A ← A -
-

1 1 -- 1 00 101 111

NOP No operation -
-

-- -- -- 1 00 000 000

CCF CY← CY CY 0 0 -- 1 00 111 111

SCF CY←1 1 0 0 -- 1 00 110 111

DI IME←0 - -- -- -- 1 11 110 011

EI IME←1 -
-

-- -- -- 1 11 111 011

HALT Halt -- -- -- 1 01 110 110

- -- -- -- 1 00 010 000

 Gen.-Purpose Arithm
etic/CPU Control Instructions

STOP Stop

00 000 000

Game Boy Programming Manual

284

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Appendix 3: Software Submission Requirements

285

APPENDIX 3: SOFTWARE SUBMISSION REQUIREMENTS.286
1. SOFTWARE SUBMISSION PROCESS286
2. ITEMS REQUIRED FOR SUBMISSIONS286

2.1 Specification Sheet and Check List..286
2.2 ROM Data286
2.3 Game Play Videotape/Rating Certificate286
2.4 Screen Text287
2.5 Instruction Manual..........287

3. SOFTWARE VERIFICATION287
4. LICENSEE GAME PLAY VIDEO PASS/FAIL GUIDELINES..... ...288
5. LICENSING SCREEN INFORMATION PASS/FAIL GUIDELINES.288
6. COMMON PROBLEMS288
7. A NOTE ON OBJECTIONABLE MATERIAL290
8. INSTRUCTIONS FOR SOFTWARE SPECIFICATION SHEET290
9. CHARACTER CODE LIST FOR GAME TITLE REGISTRATION .294
10. ROM REGISTRATION DATA SPECIFICATION...................... ...295

10.1 Description of ROM Registration Data296

11. STORING DATA TO THE FLOPPY DISK300
12. PRODUCTION SOFTWARE SELECTION.............................. ...301
13. DEVELOPMENT SOFTWARE SELECTION........................... ...302
14. GAME CONTENT GUIDELINES... ...304
15. GAME BOY PRICE QUOTE REQUEST FORM...................... ...304

Game Boy Programming Manual

286

APPENDIX 3: SOFTWARE SUBMISSION REQUIREMENTS

1. THE SOFTWARE SUBMISSION PROCESS
All software submissions to Nintendo of America Inc. must be forwarded to the attention of NOA Product
Testing Supervisor. Otherwise, the submission’s placement into the testing queue may be delayed. To
help reduce a submission’s turn-around time, it is suggested that licensees assign a primary contact
person for each software submission. All communications with NOA concerning a submission’s testing
status should be forwarded through this individual. The contact person should also be responsible for
notifying any other interested parties.

When a submission is approved, your company's primary contact will be notified immediately in writing.

When a submission is not approved, NOA may send a videotaped copy of the programming problem(s)
which prevent(s) the submission from being approved. This is intended to assist the licensee in analyzing
the cause of the software problem. It is the licensee’s responsibility to send a copy of this tape to any
developer(s) of the software. NOA strongly encourages that copies be sent to the software developer(s)
as quickly as possible.

Software submissions should be sent to the following address:

Nintendo of America Inc.
Attn: Engineering, Product Testing Supervisor
4820 150th Avenue NE
Redmond, WA 98052
Phone: (425) 861-2674
Fax: (425) 882-3585

2. ITEMS REQUIRED FOR SUBMISSIONS
The following items must be submitted with each Game Boy software submission.

2.1 Specification Sheet and Check List
The appropriate Software Specification Sheet and the Software Submission Checklist must be filled out
completely and must be correct for the particular program version.

2.2 ROM Data
A copy of the ROM data must be submitted in binary format on MS-DOS® 3.5 inch disk(s). The size of
the file must be equal to the size of the EP-ROM (i.e., one 4 Meg EP- ROM = one 4 Meg file). Please
label each disk and include a description of its contents. (See “Storing Data to the Floppy Disk” below.)

Note: For software that supports communications, when communications are
delayed for more than one hour after the game starts, in addition to the
above items, you must submit one set of boards with EP-ROM (or a flash
board) in which the game has been advanced to the point where
communication can take place.

2.3 Game Play Videotape/Rating Certificate
A video tape containing complete game play is required unless the product has been rated by the
Entertainment Software Ratings Board (ESRB). If the product has been rated by the ESRB, then a copy
of the rating certificate must accompany the submission and no video tape is needed.

Appendix 3: Software Submission Requirements

287

2.4 Screen Text
A printed copy of the complete screen text must be submitted.

2.5 Instruction Manual
One copy of the instruction manual must be included with your game submission. If, at the time of
submission the manual is not complete, (submitted as an intermediate version) then you must submit a
list of known bugs.

Note: If any of these items are not satisfied, the program will be rejected and will
not be submitted into the approval process until all criteria are met.

3. SOFTWARE VERIFICATION
The following verification process will significantly improve the probability of approval of your software.

1. The licensing screen on all submissions should state “LICENSED BY NINTENDO”.

2. Confirm the Licensing Screen information is correct.

3. Check the spelling on the Licensing Screen and Title Screen, as well as the spelling and
grammar on the screen text.

4. Confirm the use of a TM (™), circle R (), or circle C () where applicable.
5. Run a “Bypass” Test to assure that when the game is powered up, the Licensing Screen is

visible for at least one second, even if any combination of controller buttons are pressed
repeatedly. Also “Power-up” the software repeatedly to assure it does so without
programming failures.

6. Game characters should be moved in all possible directions or positions, regardless of
whether it is required to play the game properly. For instance, if the game does not require
going to a particular area to complete the game, go there anyway to assure there are no
programming problems in going to that location.

7. The software should be paused many times during the test, as this often causes
programming problems to surface.

8. All testing should be recorded onto a videotape, making it easier to review programming
problems.

9. The entire attract mode (demo) should be viewed to assure there are no programming
problems.

10. Routines designed to assist the programmer or developer in “debugging” the software
should be removed from the game prior to submission. This includes routines to determine
hardware type.

11. A Game Boy Color dedicated game must include a hardware check upon power-up, which
will display the following message when it is connected to a device other than Game Boy
Color. The official game title must also be displayed in the upper portion of the display
screen.

--<Game Title>--

"This game can only be played on Game Boy Color"

Game Boy Programming Manual

288

4. LICENSEE GAME PLAY VIDEOTAPE PASS/FAIL GUIDELINES
1. The licensee game play videotape (if included) must be recorded on a VHS tape, Standard

Play speed (SP) for clarity.

2. No editing of the tape is allowed.

3. If more than one tape is needed to show the entire piece of software, then when a second
tape begins it must show that the player is in the exact same place as where the first tape
left off.

4. No codes or “built-up” characters are allowed.

5. All levels or areas must be completed, in succession.

6. Screen text must have correct grammar and spelling.

7. No deviations from NOA Software Standards Policy may be present.

8. The entire ending credits (if any) must be shown.

9. If the product has been rated by the ESRB, then a copy of the rating certificate must
accompany the submission and no videotape is needed.

5. LICENSING SCREEN INFORMATION PASS/FAIL GUIDELINES
The following Licensing information should be included for all software. This can be displayed on one (1)
or two (2) screens.

1. Licensee’s software title.

2. Licensee’s trademark and copyright notice
(_ 19__ Licensee’s name or copyright owner)

3. LICENSED BY NINTENDO

Example
Tom’s Golf or 

 1992 ABC Corporation

LICENSED BY NINTENDO

If a blank screen appears for more than two seconds when powered up, Nintendo suggests placing a
message or graphic on the screen so that consumers do not think their game is inoperable (e.g., --
“Please Wait”--). If a blank screen appears for more than five seconds during game play, a message or
graphic should also be placed on the screen.

6. COMMON PROBLEMS
Some possible problems that may prevent approval of your software include, but are not limited to the
following:

1. Software locks up.

2. Scrambled blocks or characters appear on the screen.

3. The software won’t pause.

4. Your character can get stuck somewhere with no possible way to get out.

Appendix 3: Software Submission Requirements

289

5. Scrambled graphics at the edges of the screen when the screen scrolls in any direction.

6. Vowels in the passwords or password entry-system.

7. Colored lines at the top or bottom of the screen.

8. Shifting of the screen in any direction.

9. Inconsistent scoring methods.

10. Flashes on screen.

11. Small flickering lines on the screen.

12. Hit or be hit by an enemy but no damage is incurred.

13. Three (3) or four (4) player game can be started without using a four player adapter.

14. Incorrect Licensing Screen; “Licensed by Nintendo” should appear for all formats.

15. Violation of any Programming Cautions in the product programming manual.

16. Communication problems on two-player linkable DMG games.

17. Horizontal or vertical black lines when switching between screens on DMG games.

18. Use of the Nintendo logo or representations of Nintendo products in software without license
agreement.

19. The use of the term Super Nintendo or Nintendo when the Super Nintendo Entertainment
System or Nintendo Entertainment System is the intended reference, respectively. Use of
any term other than Nintendo 64 or N64 when the Nintendo 64 Entertainment System is the
intended reference.

20. Character actions are inconsistent (for instance, a character that cannot fly, being able to
walk off the edge of a platform and stand in midair).

21. Referring to the Nintendo Control Pad or Control Stick by an unacceptable term, such as;
“joypad”, “directional control”, etc.

22. Referring to the Nintendo Controller by an unacceptable term, such as; “joystick”, etc.

23. Referring to the Nintendo Game Pak by an unacceptable term, such as; “Game Cassette”,
etc.

24. Referring to the Game Boy Game Link by an unacceptable term, such as; “Video Link”, etc.

Note: If Licensor approval is required, please assure that this has been finalized
before the software submission has been made.

Game Boy Programming Manual

290

7. A NOTE ON OBJECTIONABLE MATERIAL
A copy of the Nintendo “Game Content Guidelines” is included at the end of this document. If you are
unsure of whether an item of text or element of a game is within Nintendo Software Standards, you may
contact our Engineering Department early in the development process and they will discuss questionable
items over the phone. In cases concerning an extensive amount of text, please send it to the attention of
NOA Product Testing Supervisor, at the address listed in below, with the questionable items highlighted.
The material will be evaluated and you will be contacted within a week to ten days.

Nintendo of America Inc.
Attn: Engineering, Product Testing Supervisor
4820 150th Avenue NE
Redmond, WA 98052
Phone:(425) 861-2674
Fax: (425) 882-3585

8. INSTRUCTIONS FOR SOFTWARE SPECIFICATION SHEET
1. Game Title

Print the planned name for the game. You may use up to 11 characters.

2. Game Code
Print the product code designated by Nintendo. Use “CGB-P-” for CGB-dedicated soft-
ware (software that will not operate on a conventional Game Boy). Otherwise, use
“DMG-P-”.

3. Language
Indicate the primary language used for messages, etc. in the game.

4. DMG Communication Mode
Indicate whether the software has a function which uses an external expansion connector
for Game Boy (or Super Game Boy), like a Game Boy communication cable.

5. Software Type
Indicate whether the game being submitted is DMG exclusive, DMG/CGB compatible, or
CGB exclusive.

6. CGB-related Functions
Check the following items, as appropriate, if you selected "DMG/CGB compatible" or
"CGB exclusive" in item 5.

a. Serial Transfer Speed (check all that apply)
Check all corresponding communication speeds.

b. High Speed ROM Required?
A high speed ROM is required if CPU double-speed mode (Key 1),
horizontal blanking DMA, or general DMA is used.

Note: These 3 functions cannot be used in MBC-1, 2, and 3.

c. IR Communications
If the software has CGB infrared communications capabilities, please
indicate whether the function involves communications with the same game
or with a different game. If you select “different game,” include the game
title in the parentheses.

Appendix 3: Software Submission Requirements

291

7. Overseas Version
If the game has been, or will be, sold in another country; indicate the product title and
product code.

8. Contact
Provide the company name, department, address, phone number, fax number, and the
name of a representative that Nintendo should contact with all questions or comments
about the product.

9. Submission Date
Provide the submission date and select the method used for submission.

10. Scheduled Release Date
Provide the scheduled release date for the game.

11. ROM Registration Data
Provide the contents registered in the indicated addresses of the master ROM. Refer to
“ROM Registration Data Specification” for details. Enter the ASCII code for the characters
in areas marked with parenthesis “()”.

12. Game Title Registration
Enter the game title registered in the master ROM using ASCII characters and their ASCII
codes. Also enter the Game Code assigned by Nintendo. Refer to “Character Code List
for Game Title Registration” for these entries.

13. Memory Controller
Indicate the type of memory controller used for this game. If no Memory Controller is
used, mark None.

14. Memory Configuration
Indicate the memory configuration of the game, as follows.
♦ ROM: Indicate the ROM size.
♦ RAM: Indicate whether or not work RAM is installed in the Game

Pak. If work RAM is installed, indicate whether it is used
as an expansion device or contained inside an MBC. If it
is used as an expansion device, indicate the size of the
RAM in the location provided. Also indicate if work RAM
requires data back-up (battery). When the MBC-3 Clock
Counter function is used, check "Yes" for "Data Back-up",
regardless of which box is checked for "RAM".

15. ROM Version
Mask ROM Version
♦ Indicate “0” if submitting the first version of the game.
♦ Indicate the next higher number for each revised version after starting

production.
Submission ROM
♦ Indicate “0” for the first submission
♦ Indicate the next higher number each time the game contents change

without updating the Mask ROM version.

Game Boy Programming Manual

292

Example

Version First Second Third

Mask ROM
Version

EEPROM
Version

Version on Title
Label of EEPROM

Change after
first production

Fourth Fifth

0 0 0

0

0.0

01

1 1

1

1.0

2

0.1 0.2 1.1

First Production

Sixth Seventh

0

2 2

1

2.0 2.1

Change after
second
production

Second Production Third Production

16. File Name and Check Sums
Print the file name on each disk using the following format: *** **-*.GB
Example:

Note: The first disk will be numbered “0.”

If the Initial code is 3 digits (prior to 1994), include an under bar (“_”) after the Initial code to bring it to 4
digits. The file name would appear as follows: “AAJ_10-0.GB”

Enter the check sum of each ROM submitted. To calculate the check sum, add each byte in the ROM
data. The lower 2 bytes of the resulting value is the check sum. Enter the check sum for each ROM
submitted for the master program and the total of their individual check sums. The total is calculated by
adding the individual check sums. This method of calculation is different from the check sum on the ROM
Registration Specification.

Appendix 3: Software Submission Requirements

293

Programming Features
Indicate if special programming is implemented for a specific purpose, such as copy pro-
tection. If special programming is implemented, it must be explained in writing.
If the software is N64 GB Pak compatible, indicate the name of the N64 game and its
product code. (N64 GB Pak is a peripheral device that allows the N64 system to read data
from and write to a standard Game Boy Game Pak. This device is not marketed in the
U.S. For more information, please contact Nintendo Technical Support.)

17. SGB Support
If the software is designed to use Super Game Boy (SGB) functions, check “Yes.” If the
software is not specifically designed to use Super Game Boy functions, but will run on
SGB, indicate ‘No.”
If you checked "Yes" for SGB Support, the SGB Function Code (address 0146H) should
contain "03H". If you checked "No", the data contained in address 0146H should read
"00H".
Also, if you checked "Yes" for CGB Support, complete the following 3 items. Do not make
any marks in these boxes if you checked "No".

a. SGB Support Marking
Check "Yes", if the SGB compatability marking needs to be displayed on
product packaging. Otherwise, check "No".

b. SGB Competition Mode
Indicate whether the game contains a multi-player function for SGB, by
checking the appropriate box.

c. Program Transfer to Super NES
Indicate whether or not the program is transferred to the S-CPU for
execution as a unique program on the Super NES.

Game Boy Programming Manual

294

9. CHARACTER CODE LIST FOR GAME TITLE REGISTRATION

Appendix 3: Software Submission Requirements

295

10. ROM REGISTRATION DATA SPECIFICATION
Enter information regarding the game title and Game Boy software specifications at the
indicated addresses in ROM.

The ROM registration data address is 80 bytes of CPU memory (0100H ~ 014FH).

ROM registration data is stored using the following format.

00 C3 Lo Hi

"Nintendo" character data (Address 0104H~0133H)

Game Title
(Max: 11-byte 0134H ~ 013EH)

Game Code
13FH~142H

33

0 1 FEDCBA9875 6432

Start Address

0100H

0110H

0120H

0130H

0140H

CGB Support Code
Maker Code
SGB Support Code
Game Pak Type
ROM Size
RAM Size
Destination Code
Mask ROM Version
Complement Check
Checksum

Note: The following data will be stored in Game Boy Memory for all Game Boy
software.

0100H = 00H
0101H = C3H
014BH = 33H
0104H~0133H = “Nintendo” character data

Game Boy Programming Manual

296

10.1 Description of ROM Registration Data
1. Start Address (0102H, 0103H)

The Game Boy (Super Game Boy) program starts after Initial Program Load (IPL) is run
on the CPU. The low byte of the starting address is stored first, then the high byte.

2. “Nintendo” Character Data (0104H~0133H)
Register the character pattern of “Nintendo” to be displayed when the Game Boy is turned
on. The following hexadecimal data must be store since IPL verifies it when the program
begins.

3. Game Title (0134H~013EH)
Store the game title (up to 11 characters) using ASCII code. The table “Character Code
List for Game Title Registration” is provided for your convenience. Use code 20H for a
space and code 00H for all unused areas in the game title. Please use only those
characters listed in the provided table when registering a game title. The game title
registered should be close to the title under which the game will be marketed. Please do
not register a tentative name which is used for development.

4. Game Code (013FH~0142H)
Store the 4 character game code, assigned by Nintendo, using ASCII code from the table
used in item 3. Please use only "upper case" letters, listed in the provided table, when
registering a game code.

Example:
When the Game Code is "APCJ", the following codes would be
stored.
41H('A') → Address 013FH
50H('P') → Address 0140H
43H('C') → Address 0141H
4AH('J') → Address 0142H

This requirement only applies to new titles. If the program is changed and a master ROM
resubmitted for a game title which has already been marketed, it is not necessary to insert
a game code for this submission. (If the Game Code is added to an existing game, please
be aware of potential problems with software verification routines in serial communication
protocols or GB Pak routines. For example, the Game Titles for the old version and the
new version MAY be different, causing the new version to be unrecognized by the
software verification routine.)

Appendix 3: Software Submission Requirements

297

5. CGB Support Code (0143H)
Store the code which distinguishes between games that are CGB (Game Boy Color)
compatible, and those that are not.

Address 143H Denotation

00H CGB Incompatible

80H CGB Compatible

C0H CGB Exclusive

CGB Incompatible: A program which does not use CGB functions, but operates
with both CGB and DMG (Monochrome).

CGB Compatible: A program which uses CGB functions, and operates with
both CGB and DMG.

CGB Exclusive: A program which uses CGB functions, but will only operate
on a Game Boy Color unit (not on DMG/MGB). If a user
attempts to play this software on Game Boy, a screen must
be displayed telling the user that the game must be played
on Game Boy Color.

6. Maker Code (0144H, 0145H)
Enter the 2-digit ASCII code assigned by Nintendo. Contact Product Testing, if in doubt.
All letters must be in upper case. For example;

If Maker Code is 01, the ASCII code for 0 (30H) is stored at 0144H and the
ASCII code for 1 (31H) is stored at 0145H.
If Maker Code is FF, the ASCII code for F (46H) is stored at 0144H and
0145H.

7. SGB Support Code (0146H)
Store the Function Code for the game program. Use the table below.

0146H Super Game Boy Function

00H Game Boy (will also run on Super Game Boy)

03H Uses Super Game Boy Functions

Note: In order to use Super Game Boy functions, the following data must be
registered.

0146H = 03H and 014BH = 33H

Game Boy Programming Manual

298

8. Software Type (0147H)
Store the appropriate code for the type of software (Game Pak parts configuration) being
used.

Parts Configuration

MBC-3 MBC5Address
0147H ROM MBC-1 MBC-2

W/
RTC

No
RTC

No
Rumble

W/
Rumble

SRAM

Backup
Battery

00H X

01H X X

02H X X X

03H X X X X

04H

05H X X

06H X X X

07H

08H X X

09H X X X

0FH X X X

10H X X X X

11H X X

12H X X X

13H X X X X

19H X X

1AH X X X

1BH X X X X

19H X X

1AH X X X

1BH X X X X

Appendix 3: Software Submission Requirements

299

9. ROM Size (0148H)
Store the code for the program ROM size from the table below.

0148H ROM Size

00H 256 KBit

01H 512 KBit

02H 1 MBit

03H 2 MBit

04H 4 MBit

05H 8 MBit

06H 16 MBit

07H 32 Mbit

08H 64 Mbit

10. External RAM Size (0149H)
Store the code for the size of external RAM installed in the Game Pak.

Address 149 RAM Size

00H No RAM or MBC2

01H -------

02H 64 KBit

03H 256 KBit

04H 1 Mbit

11. Destination Code (014AH)
Store the code from the table below which indicates where the product will be marketed.

Address 147 Destination

00H Japan

01H All Others

12. Mask ROM Version N0. (014CH)
The mask ROM version number starts from 00 and increases by 1 for each revised
version sent after starting production.

Game Boy Programming Manual

300

13. Complement Check (014DH)
After all the registration data has been entered (0134H~014CH), add 19H to the sum of
the data stored at addresses 0134H through 014CH and store the complement value of
the resulting sum.

(0134H) + (0135H) +...+ (014CH) + 19H + (014DH) = 00H

14. Check Sum Hi and Lo
The check sum, excluding the value of 014EH and 014FH, is stored here.
Check sum Hi and Lo will be different from the Total Check Sum.

014EH = Upper
014FH = Lower

11. STORING DATA TO THE FLOPPY DISK
1. Use MS-DOS® 3.5 inch, 2HD disk(s).

2. The data must be submitted in binary (ROM) format. Do not compress the data. The
maximum amount of data stored on each floppy should be 8Mbit.

3. The file name should be formatted as described in item #16 of "Instructions for Game Boy
Software Specification Sheet - File Name and Check Sums.”

4. Place a label describing the content of each disk as shown below.

Company name: Nintendo Co., Ltd.

Product name: Mario’s Pikurosu

Product code: DMG-P-APCJ (JPN)

File name: APCJ00-0.GB

Check sum: ABCD

Date: 1998/8/1

Appendix 3: Software Submission Requirements

301

12. PRODUCTION SOFTWARE SELECTION

 ROM SIZE

MBC SRAM SIZE

256K 512K 1M 2M 4M 8M 16
M

32
M

64M Comments

NoneNone
64K With or without backup battery

None
 *1 *1

64K
 *1 *1

With or without backup battery

MBC-1

256K With or without backup battery

MBC-2 None With backup battery only
None With backup battery only
64K With backup battery only

MBC-3

W/RTC
256K With backup battery only
None ()*2 ()*2 ()

64K ()*2 ()*2 () With or without backup battery
256K ()*2 ()*2 ()*2 () With or without backup battery

MBC-5

1M ()*2 ()*2 ()*2 () With or without backup battery
None ()*2 ()*2 ()*2 ()

64K ()*2 ()*2 ()*2 () With or without backup battery

MBC-5/
Rumble

256K ()*2 ()*2 ()*2 () With or without backup battery

: Board Available
 If a price quote is necessary, please submit a "Game Boy Price Quote Request Form" to NOA Licensing Dept.
: Board Not Available
 If required, please submit a "Game Boy Price Quote Request Form" to NOA Licensing Dept., approximately 5 months
 before scheduled software submission.

() : At the present time, a mask ROM cannot be prepared. If necessary, please contact NOA Licensing Dept. at (425)861-2091.

[Notes] MBC-1, 2, and 3 do not support Game Boy Color double-speed mode (including H-DMA and General Purpose DMA. Please refer to your Programming Manual.
 *1 There are some restrictions in memory mapping when MBC-1 ROM Size is 8M or larger. Please refer to "Memory Controllers" in your Programming Manual.
 *2 For MBC-5 with ROM of 1M or less, a mask ROM supporting CGB double-speed mode can not be prepared. Double-speed mode is supported by ROM of 2M or larger.

Game Boy Programming Manual

302

13. DEVELOPMENT SOFTWARE SELECTION
 ROM SIZE

MBC SRAM SIZE

256K 512K 1M 2M 4M 8M 16M 32M Comments

None None 1

None 2 3
 4

64K/None 5 6

• Built-in 64K SRAM
 With or without backup battery

MBC-1

256K/64K/None 7 • Built-in 256K SRAM
 With or without backup battery

MBC-2 None 8

MBC-3 256K/64K/None
 9

• RTC Function
• Built-in 256K SRAM
 With or without backup battery

1M/256K/64K/None
 10

• Built-in 32M Flash ROM
• Built-in 1M SRAM
 With or without backup batteryMBC-5

256K/64K/None
 11

• Built-in 32M Flash ROM
• Rumble Function
• Built-in 256K SRAM
 With or without backup battery

Appendix 3: Software Submission Requirements

303

Product Names (*1)
Board Name Product Code

Memory Specifications (*2) Comments

 1 DMG-256K-EPROM E200225 EPROM : 27C256

 2 MBC1-512K-EPROM E200241 EPROM : 27C512

 3 MBC1-1M to 2M-EPROM E200233 EPROM : 27C101/27C2001 (Can use 301 type) (*3)

 4 MBC1-1M to 2M-EPROM+64K E200530 EPROM : 27C101/27C2001/27C4001

 5 MBC1-Multichecker E200191 EPROM : 27C256/27C512/27C101/27C301

 6 MBC1-4M to 16M-EPROM+64K E200654 EPROM : 27C4001

 7 MBC1-1M to 4M-EPROM+256K E200605 EPROM : 27C101/27C2001/27C4001

 8 MBC2-1M to 2M-EPROM E200258 EPROM : 27C101/27C2001 (Can use 301 type) (*3)

 9 MBC3-4M-ROM2-256K E201025 EPROM : 27C101/27C2001/27C4001/27C8001

EPROM not included

Product Names (*1)
Board Name Product Code

Memory Specifications (*2) Comments

 10 DMG-MBC5-32M-FLASH E201264 Built-in 32M Flash Memory + 1MRAM

 11 DMG-MBC5-32M-R-FLASH E201272 Built-in 32M Flash Memory (with Rumble Pak) +256KRAM

Requires DMG Falsh ROM
Gang Writer or CGB
Emulator

[Notes] MBC-1, 2, and 3 do not support Game Boy Color double-speed mode (including H-DMA and General Purpose DMA. Please refer to your Programming Manual.
 There are some restrictions in memory mapping when MBC-1 ROM size is 1M or larger. Please refer to "Memory Controllers" in your Programming Manual.
 *1 : When ordering, please indicate both the board name and product code to NOA Licensing Dept. at (425)861-2091.
 *2 : For the EPROM specification, please use the described specification, above, or something with the same pin configuration.
 *3 : Can support both types for land switching on the board.

Game Boy Programming Manual

304

14. GAME CONTENT GUIDELINES
The following Game Content Guidelines are presented for assistance in the development of authorized
game paks (i.e., both Nintendo and licensee game paks) by defining the types of themes inconsistent
with Nintendo’s corporate philosophy. Exceptions may be made when an objectional item is necessary
to maintain the integrity of the product or the games’ theme. Nintendo will only approve products (i.e.,
audio-visual work, packaging and instruction manuals) which do not:

• contain sexually explicit content including but not limited to nudity, rape, sexual intercourse and
sexual touching; for instance, Nintendo does not allow bare-breasted women in its games, however,
mild displays of affection such as kissing or hugging are acceptable.

• contain language or depictions which specifically denigrate members of any race, gender, ethnicity,
religion or political group.

• depict gratuitous or excessive blood or violence. Nintendo does not permit depictions of animal
cruelty or torture.

• depict verbal or physical spousal or child abuse.

• permit racial, gender, ethnic, religious or political stereotypes; for example religious symbols such as
crosses will be acceptable when fitting into the theme of the game and not promoting a specific
religious denomination.

• use profanity, obscenity or incorporate language or gestures that are offensive by prevailing public
standards and tastes.

• promote the use of illegal drugs, smoking materials, tobacco and/or alcohol; for example Nintendo
does not allow an unnecessary beer or cigarette advertisement anywhere in a product, however
Sherlock Holmes smoking a pipe would be acceptable as it fits the theme of the game.

15. GAME BOY PRICE QUOTE REQUEST FORM
A Game Boy Price Quote Request Form is included on your Game Boy Software Development Kit
(SDK) CD in PDF format. Please FAX this form to Nintendo of America Inc., Attn.: Juana Tingdale,
Licensing Department, (206) 861-2173, when requesting a Software Type which is not listed in the
previous tables.

	Introduction
	Preface
	Table of Contents
	Chapter 1: System
	1. General System
	1.1 System Overview
	1.2 Game Boy Block Diagram
	1.3 Memory Configuration
	1.4 Memory Map
	1.5 Feature Comparison
	1.6 Register Comparison

	2. CPU
	2.1 Overview of CPU Features
	2.2 CPU Block Diagram
	2.3 Description of CPU Functions
	2.4 CPU Funtions (Common to DMG/CGB (1))
	2.4.1 Controller Data
	2.4.2 Divider Registers
	2.4.3 Timer Registers
	2.4.4 Interrupt Flags

	2.5 CPU Functions (Common to DMG/CGB (2))
	2.5.1 Serial Cable Communication
	2.5.2 Serial Cable Communication: Reference flowchart

	2.6 CPU Functions (CGB Only)
	2.6.1 Bank Register for Game Boy Working RAM
	2.6.2 CPU Operating Speed
	2.6.3 Infrared Communication
	2.6.3.1 Port Register
	2.6.3.2 Controlling Infrared Communication
	2.6.3.3 Basic Format
	2.6.3.4 Preparing for Data Transmission and Reception
	2.6.3.5 Transmitted Data
	2.6.3.6 Flow of Data Transmission and Reception
	2.6.3.7 Details of Data Transmission and Reception
	2.6.3.8 Communication Status
	2.6.3.9 Communication Error Processing
	2.6.3.10 Usage Notes
	2.6.3.11 Specifications

	Chapter 2: Display Functions
	1. General Display Functions
	1.1 Character Composition
	1.2 LCD Display RAM
	1.3 Character RAM
	1.4 BG Display
	1.5 LCD Screen
	1.6 LCD Display Registers
	1.7 OAM Registers
	1.8 DMA Registers
	1.8.1 DMA Transfers in DMG
	1.8.2 DMA Transfers in CGB
	1.8.3 DMA Control Register: DMG and CGB
	1.8.4 New DMA Control Registers: CGB Only

	1.9 OBJ Display Priority

	2. LCD Color Display (CGB Only)
	2.1 Color Palettes
	2.2 Color Palette Composition
	2.3 Wrting Data to a Color Palette
	2.4 Overlapping OBJ and BG
	2.5 Display Using Earlier DMG Software (DMG mode)

	Chapter 3: Sound Functions
	1. Overview of Sound Functions
	2. Sound Control Registers
	2.1 Sound 1 Mode Registers
	2.2 Sound 2 Mode Registers
	2.3 Sound 3 Mode Registers
	2.4 Sound 4 Mode Registers
	2.5 Sound Control Registers

	3. VIN Terminal Usage Notes

	Chapter 4: CPU Instruction Set
	1. General Purpose Registers
	2. Description of Instructions
	2.1 8-Bit Transfer and Input/Output Instructions
	2.2 16-Bit Transfer Instructions
	2.3 8-Bit Arithmetic and Logical Operation Instructions
	2.4 16-Bit Arithmetic Operation Instructions
	2.5 Rotate Shift Instructions
	2.6 Bit Operations
	2.7 Jump Instructions
	2.8 Call and Return Instructions
	2.9 General-Purpose Arithmetic Operations and CPU Control Instructions

	Chapter 5: Miscellaneous General Information
	1. Monitor ROM
	2. Recognition Data for CGB (CGB Only) in ROM-Registered Data
	3. Power-Saving Routines for the Main Program
	4. Software Created Exclusively for CGB
	5. Software Created to Operate on CGB
	6. Software Created to Operate on CGB: Example
	6.1 Program Specifications
	6.2 CGB Recognition Method
	6.3 Flowcharts

	Chapter 6: The Super Game Boy System
	1. Overview
	1.1 What is Super Game Boy?
	1.2 Block Diagram
	1.3 Functions
	1.4 System Program

	2. Sending Commands and Data to SNES
	2.1 System Commands
	2.2 Data Transfer Using an Image Signal

	3. System Commands
	3.1 System Command Summary
	3.2 System Command Details
	3.3 Cautions Regarding Sending Commands
	3.4 Sound Flag Summary
	3.4.1 Sound Effect A Flags
	3.4.2 Sound Effect B Flags
	3.4.3 Attributes of A and B Sound Effects

	4. Miscellaneous
	4.1 Reading Input from Multiple Controllers
	4.2 Recognizing SGB
	4.2.1 Distinguishing between Game Boy types (DMG, MGB/MGL, SGB, and SGB2)
	4.2.2 Usage Example: Distinguishing between the 4 Game Boy Types

	4.3 SGB Register Summary
	4.4 Flowchart of Initial Settings Routine

	5. Programming Cautions
	5.1 ROM Registration Data
	5.2 Initial Data
	5.3 SOU_TRN Initial data

	Chapter 7: Super Game Boy Sound
	1. SGB Sound Program Overview
	2. Memory Mapping (Super NES APU)
	3. Creating and Transferring Score Data
	3.1 Transferring Score Data
	3.2 Summary of BGM Flags
	3.3 Overview of Creating Score Data
	3.4 Setting NEWS System Working Environment
	3.5 Setting the Working Environment Using IS-SOUND
	3.6 Score Data Format When Using Original Tools
	3.7 Cautions Regarding Production of Musical Pieces
	3.8 Format of Transferred Data

	4. SGB Sound Program Source List
	5. Transferring Audio Data to the Score Area
	5.1 Required Data and Procedure for Audio Output
	5.2 Transfer File Example

	Chapter 8: Game Boy Memory Controllers (MBC)
	1. MBC1
	1.1 Overview
	1.2 Description of Registers
	1.3 Memory Map

	2. MBC2
	2.1 Overview
	2.2 Description of Registers
	2.3 Memory Map
	2.4 Backup RAM

	3. MBC3
	3.1 Overview
	3.2 Description of Registers
	3.3 Accessing the Clock Counters
	3.3.1 Reading
	3.3.2 Writing

	3.4 Memory Map
	3.5 Programming Cautions
	3.5.1 Accessing the Clock Counters
	3.5.2 Condensation
	3.5.3 Control Register Initialization
	3.5.4 Clock Counter Registers

	4. MBC5
	4.1 Overview
	4.2 Registers
	4.3 Memory Map
	4.4 Description of Registers
	4.5 Programming Cautions
	4.5.1 When Migrating from MBC1 to MBC5
	4.5.2 General Notes

	4.6 Examples of MBC5 Programs on DMG and CGB

	5. MBC5 (With Rumble Feature)
	5.1 Overview
	5.2 Registers
	5.3 Memory Map
	5.4 Description of Registers
	5.5 Motor Control
	5.5.1 Vibration Level
	5.5.2 Vibration Pulse Examples

	5.6 Programming Cautions
	5.6.1 Memory Image
	5.6.2 RAM Data Protection
	5.6.3 Specifying External Sound Input (VIN)
	5.6.4 Disabling Vibration Using the SGB, SGB2, or 64GB Pak
	5.6.5 Limiting the Period of Continuous Vibration
	5.6.6 Disabling Vibration for Resets and Pauses
	5.6.7 Rumble Feature Selection
	5.6.8 Changes in Vibration Level with Battery Use

	5.7 Physical Effects of Vibration on the Body

	Chapter 9: Pocket Printer
	1. Overview
	2. Communication Specifications
	2.1 Bidirectional Communication
	2.2 Transfer Interval for Each Byte
	2.3 Packets and the Transfer Interval
	2.4 Synchronism Check when Connecting

	3. Communication Data Definitions
	3.1 Transferring to the Printer
	3.2 Receiving from the Printer
	3.3 Handling Errors

	4. Packet Details
	4.1 The Initialization and Connection Packet
	4.2 Print Instruction Packet
	4.3 Data Packet
	4.4 Data-End Packet
	4.5 Break Packet
	4.6 NUL Packet
	4.7 Packet Error
	4.8 Other Packets

	5. Printer Status and Packets
	6. Printer Print Sequence
	7. Processing of Connection Evaluation and Preamble Detection Failure
	7.1 Connection Evaluation (includes cable disconnection)
	7.2 Preamble Detection Failure

	8. Print Data
	9. Compression Algorithm
	10. Hardware Specifications
	10.1 General Specifications
	10.2 Dimensions and Weight

	11. Miscellaneous
	11.1 Cautions when Debugging
	11.2 Sample Programs Provided by Nintendo (subroutines)

	Appendix 1: Programming Cautions
	1. Using this Appendix
	2. Programming Cautions Regarding Game Boy
	2.1 LCDC/VRAM
	2.1.1 Setting the LCDC to OFF (Recommended)
	2.1.2 Window x-coordinate Register (Required)
	2.1.3 Displaying Multiple Windows (Required)

	2.2 Communication
	2.2.1 Communication Rate (Required)
	2.2.2 Communication Errors (Recommended)
	2.2.3 Effects of Other Infrared Devices (Recommended)

	2.3 Sound
	2.3.1 Using Sounds 1,2, and 3 (Required)
	2.3.2 Using Sound 3 (Required)

	2.4 Miscellaneous Notes
	2.4.1 Using Interrupts (Required)
	2.4.2 Reading Keys (Required)
	2.4.3 Using the Timer (Required)
	2.4.4 Using STOP Mode (Required)
	2.4.5 Using Paired Registers (Required)
	2.4.6 Using the HALT Instruction (Required)
	2.4.7 Switching the CPU Operating Speed (Recommended)
	2.4.8 Using Horizontal Blanking DMA (Required)
	2.4.9 Using General-Purpose DMA (Required)
	2.4.10 DMA Transfers to OAM (Required)
	2.4.11 Status Interrupts (Required)
	2.4.12 Chattering (Recommended)

	3. Programming Cautions Regarding MBCs
	3.1 All MBCs
	3.1.1 Protecting RAM Data (Recommended)

	3.2 MBC3
	3.2.1 Accessing the Clock Counters (Required)
	3.2.2 Condensation (Required)
	3.2.3 Control Register Initialization (Required)
	3.2.4 Clock Counter Registers (Required)

	3.3 MBC5
	3.3.1 Memory Image (Required)
	3.3.2 Specifying External Sound Input (VIN) (Required)
	3.3.3 Disabling Vibration Using the SGB, SGB2, or 64GB Pak (Recommended)
	3.3.4 Disabling Vibrations for Resets and Pauses (Recommended)
	3.3.5 Limiting the Period of Continuous Vibration (Recommended)
	3.3.6 Rumble Feature Selection (Recommended)
	3.3.7 Changes in Vibration Level with Battery Use (Recommended)

	4. SGB Programming Cautions
	4.1 ROM Data (Required)
	4.2 Default Data (Required)
	4.3 SOU_TRN Default Data (Required)

	5. Programming Cautions Regarding Pocket Printer
	5.1 Transfer Time Intervals (Required)
	5.2 Printing Multiple Sheets Continously (Recommended)
	5.3 Print Density (Recommended)
	5.4 Operation After the Motor is Stopped (Required)
	5.5 Feeds (Required)
	5.6 Point of Caution During Debugging (Recommended)
	5.7 Sample Program Provided by Nintendo (Recommended)

	6. Programming Cautions for U.S. Programmers

	Appendix 2: Register and Instruction Set Summaries
	1. Control Register Summary
	2. Sound Register Summary
	3. CPU Instruction Set Summary

	Appendix 3: Software Submission Requirements
	1. The Software Submission Process
	2. Items Required for Submissions
	2.1 Specification Sheet and Check List
	2.2 ROM Data
	2.3 Game Play Videotape/Rating Certificate
	2.4 Screen Text
	2.5 Instruction Manual

	3. Software Verification
	4. Licensee Game Play Videotape Pass/Fail Guidelines
	5. Licensing Screen Information Pass/Fail Guidelines
	6. Common Problems
	7. A Note on Objectionable Material
	8. Instructions for Software Specification Sheet
	9. Character Code List for Game Title Registration
	10. ROM Registration Data Specification
	10.1. Description of ROM Registration Data

	11. Storing Data to the Floppy Disk
	12. Production Software Selection
	13. Development Software Selection
	14. Game Content Guidelines
	15. Game Boy Price Quote Request Form

