
Breaking Secure Bootloaders



Talk Outline

Smartphones often use signature verification to protect their firmware

This is implemented in bootloaders, which can also provide facilities for firmware updates

Weaknesses in these update protocols can be exploited to bypass signature protections

The core SoC and peripheral chips are both potential targets for attack
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Project One – The SDM660 Android Bootloader

I had purchased an Android phone to do mobile research

I needed root access in order to use all of my testing tools

This required unlocking the bootloader, which disables signature verification protection

This required an unlock tool from the manufacturer



Custom Bootloader Unlock Functionality

Some smartphone manufacturers modify the bootloader to require custom tools for 
bootloader unlocking, or to remove bootloader unlocking entirely

This often requires creating a user account and waiting for a period of time

Unlocks are performed using custom USB fastboot commands

There are numerous reasons why these restrictions are placed on their hardware:

• Inexperienced users will not be tricked into deliberately weakening phone security

• Third parties can’t load the devices with malware before sale

• The manufacturer can track who is unlocking their bootloaders



Common Android Bootloader Protection

Analysis of an unlock on the phone was performed using 
USBPCAP

An 0x100 byte signature was downloaded from the 
manufacturer’s servers and sent to the phone

This was verified by the bootloader, which unlocked its 
restrictions

I decided to use an older phone to analyse this functionality

I set myself a challenge to break this functionality before the 
end of the seven day waiting period



Target Device

Mid-range phone released in 2017

Uses a Qualcomm Snapdragon 660 chipset – ARM64 architecture

I had previously unlocked the bootloader, but could lock it again for the project

Bootloader had been modified to add further custom functionality



Fastboot

Command interface for most Android bootloaders

Uses a basic USB interface – commands and responses are raw text

reboot

flash:

download:

oem device-info

oem unlock

etc



Implementing Fastboot

Easy to implement using standard USB libraries

Sends ASCII commands and data via a USB bulk 
endpoint

Returns human-readable responses back 
asynchronously via a bulk endpoint

Libraries exist for this purpose, but are 
unnecessary



ABL Bootloader

Provides Fastboot USB interface and verifies and executes Android Operating System

Accessed via ADB, or button combinations on boot

Stored in “abl” partition on device as a UEFI Filesystem

This can be extracted with the tool “uefi-firmware-parser”, to find a Portable Executable

Qualcomm’s base bootloader has source code available, but can be modified by vendors



Analysing The Bootloader

Fastboot commands are stored in a table as text 
commands and function callbacks

This can aid in identifying any hidden or non-standard 
commands

Changes in functionality of commands is also easy to 
identify

Logging strings in code help with identifying 
functionality



Identifying A Potential Bootloader Weakness

The “flash:” command usually only flashes partitions on unlocked bootloaders

The command had been modified by the manufacturer to allow flashing of specific custom 
partitions when the bootloader was locked

These partitions were handled differently from those implemented directly by Qualcomm

There was potential for memory corruption or partition overwrites in this custom functionality



Implementing the flash: command

I made assumptions about the command sequence:

I accidentally left an incorrect “flash:” command after my command sequence

This resulted in the bootloader crashing after sending this second “flash:” command

The lack of a “download:” command before the payload was the likely cause

Actual command sequence:

• download:<payload size>
• <send payload>
• flash:<partition>

My command sequence:

• flash:<partition>
• <send payload>



Analysis Of Crash

USB connectivity stopped functioning entirely

The phone required a hard reset – volume down + power for ten seconds

A smaller payload size was attempted – this did not crash the phone

A binary search approach was used to identify the maximum size without a crash

By rebooting the phone and sending sizes between a minimum and maximum value, the 
minimum size was found - 0x11bae0



Overwriting Memory

Due to the unusual memory size, this was assumed to be a buffer overflow

With no debugging available for the phone, identifying what memory was being overwritten 
would be difficult

The bootloader used stack canaries on all functions, which could potentially be triggered

The next byte was manually identified – 0x11bae1 bytes of data were sent, and the last byte 
value was incremented, if the phone didn’t crash it was valid

The next byte was identified to be 0xff



Overwriting Memory

By constantly power cycling, incrementing the byte value, and moving to the next byte in 
the sequence, a reasonable facsimile of the memory could be generated

This would not be the exact memory in use, but enough to not crash the bootloader

Once this was generated, it could potentially be modified to gain code execution

A way of automating this process to retrieve more bytes was required



Automated Power Cycling

It was suggested that removal of the phone battery and a 
USB relay could automate power cycling the phone

This would require removing glue from the phone case to 
access the battery

Instead, a hair tie was wrapped around the power and 
volume down buttons

This caused a boot loop which allowed USB access for 
sufficient time to test the overflow



Memory Dumping

The custom fastboot tool was modified to attempt this memory dumping

It verified two key events – a “flashing failed” response from the command being sent to 
the phone, and whether it crashed afterwards

Each iteration took 10-30 seconds



Memory Dumping

The phone was left overnight performing this loop

This generated 0x34 bytes of data which did not crash the phone

The repeated byte values and lack of default stack canary meant 
that this was likely not to be the stack

All of the 32-bit words were found to be valid ARM64 opcodes

FF 43 02 51 
60 02 00 0C 
60 02 00 0C 
60 02 00 0C 
60 02 00 0C 
E8 00 00 B0 
34 00 00 10 
01 00 00 0A 
08 0D 40 F9 
00 00 00 08 
C0 00 04 0B 
60 02 00 0A 
D3 9F FF 97 



Unknown Memory Analysis

Most opcodes, while valid operations, would not be the same as in the bootloader

Stack management and branch operations would have to be almost exact

Searching for the “SUB WSP” and “BL” opcodes in the bootloader yielded no results



ARM64 Features

ARM64 operations can often have unused bits flipped without altering functionality

Registers can be used in both 32-bit (Wx) and 64-bit (Xx) mode

Branch instructions can have conditions for jumping

These features could superficially allow for changes to the stack and branch handling 
instructions without altering functionality



Identifying Similar Instructions

I decided to use the “BL” instruction, it was likely to be less common than the stack

I performed a text search, removing the first nybble from the opcode

This would find branches in a similar relative address space to the dumped opcode

This identified a single valid instruction in the “crclist” parser, and opcodes that were similar 
to the memory dump



Outline Of Buffer Overflow

Analysis of the offsets showed that the bootloader was overwritten after 0x101000 bytes 
of data

The bootloader is executed from RAM, as demonstrated by this overflow 

The original bootloader binary, found in the partition, could be fully written using the 
overflow to prevent any subsequent crashes

This binary could be modified to run any required unsigned code



Unlocking The Bootloader

To unlock the bootloader, it was necessary to jump to the 
code after the RSA check

A simple branch instruction could be generated to jump to 
the relative address of the bootloader unlock function

Online ARM64 assemblers are available to rapidly generate 
these opcodes

This process would be difficult to debug, but 

success would be easy to identify





Replicating The Vulnerability

I was able to procure a second smartphone which also used an SDM660

All bootloader unlocking functionality was disabled by the manufacturer on this device

It was identified to use a similar signature verification approach to the original phone



Custom Bootloader Unlock

Using an OTA image, the bootloader was analysed

This showed the code which blocked the bootloader 
unlock

No hidden bootloader commands were identified on 
the device, however some OEM commands were noted



Differences In Memory Layout

Initially, the old crash was attempted

The device still functioned, implying the vulnerability may not be present

A much larger payload size was sent – 8MB

This crashed the phone, implying that the memory layout was different to the original

Manual analysis demonstrated that the bootloader was overwritten after 0x403000 bytes, 
different to the 0x101000 on the first device

With this, a bootloader unlock could be rapidly developed



Patching Bootloader Unlock

A single branch instruction was identified, which sent an error response or unlocked the 
bootloader, depending on whether the signature was accurate

This could be replaced with a NOP instruction, bypassing this check

This allowed the bootloader to be unlocked, 

and the phone to be rooted

The vulnerability was disclosed directly to 

Qualcomm, due to its potential 

existence on all SDM660 based phones



Bypassing Qualcomm’s Userdata Protection

Qualcomm’s chips encrypt the “userdata” partition, even when no passwords or PINs are 
used

This prevents forensic chip-off analysis, and access to users’ data via bootloader unlocking

If an unlocked bootloader tries to access the partition, it is identified as being “corrupted” 
and is formatted

Bypass of this protection could allow access to user data via physical access



Bypassing Qualcomm’s Userdata Protection

Using Qualcomm’s source code, this encryption process could be analysed

Encryption keys are intentionally inaccessible, even with code execution

The code uses an internal EFI API to decrypt the partition, which was unmodifiable

The API verifies whether it is unlocked, and whether the firmware is signed



Time Of Check To Time Of Use

The “boot” fastboot command loads and executes 
Android images deployed via USB

It was noted that verification and execution of the 
image were two separate functions

There was a high likelihood that the image could be 
changed between verification and execution

This could bypass bootloader unlocking protections 
while accessing the encrypted partition



Modifying Boot

The “boot” command receives the full Android “boot” image, via the fastboot
“download:” command

This is loaded into RAM, verified and executed

By patching the “boot” command, the behaviour could be altered for a TOCTOU attack

Instead of sending one image, two could be sent, and swapped after verification

A tool was created, which sent three pieces of data to achieve this: a four byte offset, a 
signed image, and an unsigned, malicious image



Patching In Functionality

The “boot” command does not function on locked bootloaders

The check for the lock state was replaced with an operation for moving the image pointer 
up by four bytes – to the signed image

The image at the moved pointer would then be verified



Patching In Functionality

Function calls occur between verification and 
booting

These are unnecessary to boot Android, and could 
be overwritten

This allowed for five spare instructions to be 
patched in

This would be sufficient to change to the unsigned 
image



Patching In Functionality

Four additional instructions were required:

• Move pointer back to start of payload - sub x19, x19, 4

• Read offset value - ldr w22, [x19]

• Add offset value to pointer - add x19, x19, x22

• Push new pointer value to “Info” structure “ImageBuffer” pointer - str x19, [x21,#0xa0]

These would be sufficient to swap the signed image with the unsigned image

Patching this code and executing it was found to be effective, facilitating the TOCTOU attack

This could allow for running unsigned Android images without unlocking the bootloader



Tethered Root

Unlocking the bootloader wipes all user data

Permanent rooting exposes the device to greater risk

A device being permanently rooted is not a necessity for most phone users

By deploying a rooted Android image via this TOCTOU attack, these problems can be 
resolved, as rebooting will remove the root capabilities

These can easily be generated using the Magisk app



Lockscreen Bypass

By accessing the unencrypted userdata partition, one 
can remove lockscreen restrictions

By using a custom recovery image, such as TWRP, or by 
modifying the Operating System, it is possible to gain 
access to all apps and stored data



Backdooring Encrypted Phones

Via developer functionality, further encryption can be placed on the userdata partition

This adds a password requirement, which forces a password to be input as the device is 
booting

The Android “boot” image, where the kernel and root filesystem are stored, is not encrypted

It is possible to add a reverse shell to the image, to access the data later



Backdooring Encrypted Phones



Disclosure and Impact

The TOCTOU attack was disclosed to Qualcomm

The attack was only possible with the initial buffer overflow vulnerability

Patching of the phone to prevent this attack would be difficult, due to its usage of internal, 
unmodifiable APIs

These weaknesses could allow an attacker with physical access to an SDM660-based 
phone to bypass all bootloader locking mechanisms



Project Two – The NXP PN Series

The NXP PN series is a set of chips used for NFC communication in smartphones and 
embedded electronics

By breaking the firmware protections on these chips, one could add new NFC capabilities

The NXP PN series is extremely popular in smartphones, and any exploits would be 
transferrable to a large number of devices



NXP PN553

NFC chip used solely in mobile devices

PN553 bears similarities with the PN547, PN548, PN551 and PN5180

All use a similar firmware update files and protocol

All use ARM Cortex-M architecture

Little public research available



Protocol

Communicates via I2C interface - /dev/nq-nci

Utilises NCI for NFC communication, the standard NFC protocol 

Custom protocol in use for firmware updates

Communication can be traced via ADB logcat



Forcing Firmware Updates

Tracing firmware updates can help in reverse engineering the protocol in use

Firmware updates only occur when signed firmware versions differ

Base Android image contains a main firmware image and recovery image

libpn553_fw.so

libpn553_rec.so

Swapping these files can force the update to occur

Each function can be traced against source code



Bootloader Firmware Update Protocol

Unique to NXP chips

Structure:

1 byte: Status

1 byte: Size

1 byte: Command

x bytes: Parameters

2 bytes: CRC-16

Encapsulated in 0xfc byte chunks for 
large payloads



Interfacing with device files

Reads and writes to /dev/nq-nci translate to communication over I2C

Chip can be configured via IOCTL functions

These can set power mode and enable/disable firmware update mode



Firmware File Format

Firmware files are kept in ELF files – libpn553_fw.so

This file has one sector, which contains binary formatted data

This data contains the commands that run in sequence for firmware updates

These commands can be extracted to rebuild the firmware image



Firmware Update Process

The C0 write command is used throughout

The first command contained unknown, high entropy data

All subsequent commands contained a 24-bit address, 16-bit 
size, data payload, and an unknown hash

These commands were required to be sent in the sequence 
they were stored in the update file



Stitching Firmware Updates

Memory addresses at the start of commands aided 
reconstruction of firmware

Firmware data was very small

Multiple references to code in inaccessible memory 
locations were noted

The core system functionality was likely to be stored in the 
bootloader



Memory Read Commands

Two commands were found to read back memory from the chip – A2 and E0

A2 was found to read memory from a provided address – limited only to memory that 
could be written during firmware updates

E0 was found to calculate checksums of memory, and provide four bytes of configuration 
data



RSA Public Key

Large block of random data was referenced in E0 memory dump – sized 0xC0

0x10001 (65537) was found after this block

These could be the modulus and exponent for a public RSA key

This size aided in identifying the signature of the firmware update



Unknown Hash

Block write commands end with a 256-bit hash

This was assumed to be SHA-256, but did not match the contents of the packet

Multiple other hashing algorithms were attempted, with no valid results

It was identified that the hash was for the next block in the sequence



Hashing Process

The first C0 command contains a version number, SHA-256 hash, and signature of the hash

This is a hash of the next block, which contains an additional hash

This cascades through the firmware update, with each subsequent block having a 
matching hash

This guarantees that all written blocks are valid, without verifying the entire update at 
once

The final block has no hash, because it has no subsequent block



Fuzzing

Targeted fuzzing was performed on both the Firmware Update and NCI interfaces

The chip was found to contain hidden, vendor-specific configs, accessible via the standard 
NCI Config Write command

Bitwise incrementing values were written to these configurations, which prevented the 
main firmware from continuing to function, bricking the core functionality of the chip

The bootloader still functioned, but the configurations could not be overwritten



Weaknesses in the Firmware Update Process

It was noted that the last block of the firmware update could be written multiple times, 
despite the hash-chain

This implied that the hash of the previous block remained in memory

There was a potential opportunity for overwriting this hash in memory

An invalid command, the same size as a firmware update block, was sent between these 
packets

This prevented the last block from being written, implying the hash had been overwritten 
in memory



Bypassing Signature Verification

Modified hashes could be written in the right portion of 
memory

The ability to overwrite the hash meant that the hash chain 
could be broken

This would allow writing of arbitrary memory blocks to the 
chip, by generating a valid hash

This could bypass the signature verification mechanisms of 
firmware updates, and allow us to overwrite the broken 
config



Repairing the Firmware

Using a dump of the working config, the new config could be hashed and written

This repaired the chip, and proved that arbitrary memory writes were possible

The next goal was to dump the bootloader from the chip



Patching New Features

All standard functions were stored in the bootloader, with limited functionality in the 
firmware update

The NCI Version Number command was part of the firmware update

The version number was easy to identify in memory, and its function references

A function was called using the version number and a pointer

This was identified to be a memcpy function



Patching New Features

The Branch instruction to the function could be overridden to point to a 
custom function

Using C and the gcc “-c” flag, a custom function could be written

Its effect on the version number command could be observed after 
flashing

The lack of data in the response implied that it was a memcpy for the 
return message



Patching New Features

The location of RAM was assumed to be at 0x100000, due to 
the firmware referencing this address space

The overridden memcpy was changed to search for a unique 
value in RAM, sent  in the NCI command

This provided a global pointer to command parameters at 
0x100007

This could then set a pointer to arbitrary memory

Using this functionality, the bootloader could be dumped



Dumping The Bootloader

The entire memory was stitched from the read commands

This could be disassembled, demonstrating it was valid

This functionality could be extended to modify the core NFC functionality of the chip



Replicating The Vulnerability – PN5180

The PN5180 is a chip often used by hobbyists for NFC connectivity

It has a similar architecture to the PN553, but uses a custom communication protocol

Can be communicated with via an SPI interface and GPIO pins

The firmware update process was the same, allowing the signature bypass to be replicated



Replicating The Vulnerability – PN5180

A command in the chip’s communication protocol read memory from a specific part of the 
EEPROM

This pointer was found in the firmware payload

By overwriting this and redeploying the firmware, the chip’s bootloader could be read, 
without functional code changes



Impact

The vulnerability was likely to be available on similar chipsets

This could allow an attacker with access to firmware updates to completely take over the 
chips

This would provide the capability to add custom and malicious NFC functionality

On smartphones, this would require full root access to the device

In hobbyist projects, this would expand the capabilities of the chip



Disclosure

The vulnerability was disclosed to NXP in June 2020

They confirmed that it affected multiple chips in their product line

A long remediation period was requested, with public release permitted in August 2021

Alteration of a primary bootloader is a complex task, which could risk bricking the chip

The current generation of NXP NFC products, including the SN series, are not affected

Remediation across all affected chipsets was performed in phased rollouts



Conclusion

Special thanks to Qualcomm and NXP for remediating the findings

Firmware signature protection is only as good as its implementation

Common chips are great targets, as they have high impact 

Bootloader vulnerabilities are common, even in popular hardware



End


