
#BHUSA @BlackHatEvents

New Memory Forensics Techniques to Defeat 
Device Monitoring Malware

Andrew Case, Gustavo Moreira, Austin Sellers, Golden Richard



#BHUSA @BlackHatEvents
Information Classification: General

Motivation
• Malware that is capable of monitoring hardware devices (keyboards, microphones, web 

cameras, etc.) is now commonly deployed against human targets 

• This type of malware poses a serious threat to privacy and security

• Existing memory forensic algorithms against this type of malware are outdated, 
incomplete, or non-existent



#BHUSA @BlackHatEvents
Information Classification: General

Research Goals
• For the major operating systems (Windows, Linux, macOS):

1. Study the methods used by userland (process) malware to monitor hardware devices

2. Research (source code review, binary analysis) how the abused APIs are implemented

3. Determine if current memory forensics tools could detect each abuse

4. For ones not currently detected, develop capabilities to automatically detect the abuse



#BHUSA @BlackHatEvents
Information Classification: General

Why Memory Forensics is Needed
• Across platforms, memory-only payloads are often used by malware that monitors 

hardware devices

• Disk and live forensics generally can find no traces of this malware

• Volatile memory is the *only* place to determine that such malware is present and to 
fully investigate it



#BHUSA @BlackHatEvents
Information Classification: General

Windows Research Setup
• Focused on Windows 10

• Analyzed all major builds starting with 10563 (2015) through 22000.556 (March 2022)

• Developed POC software that used the APIs abused by real-world malware

• Memory collection with VMware suspend states for initial work

• Used Surge Collect Pro and its file collection capabilities for long term automated testing



#BHUSA @BlackHatEvents
Information Classification: General

Windows Research - SetWindowsHookEx
● Historically, the most widely abused API by userland keyloggers

● Allows for registering for hooks (callbacks) for hardware events of interest in all threads 
in a desktop or a specific thread

● The most common use of the API leads to the malicious DLL being injected into every
process where a hook triggers (keystroke, mouse movement, etc.)

● Volatility’s messagehooks plugin aims to recover abuse of this API 
○ Never properly updated for Windows 10
○ Testing showed it did not support all hook variations



#BHUSA @BlackHatEvents
Information Classification: General

WH_KEYBOARD_LL
, WH_MOUSE, …

SetWindowsHookEx - Global Hooks in a DLL

C:\keylogger.dll

NULL



#BHUSA @BlackHatEvents
Information Classification: General



#BHUSA @BlackHatEvents
Information Classification: General

Enumerating Global Message Hooks

Image Source: [2], Full Technical Details: [1]

Enumeration Algorithm 

1) Enumerate the Desktops of 
each of Session -> Window 
Station

2) Enumerate the hooks 
(tagHOOK) of each 
Desktop

3) Gather the full path to the 
DLL hosting each hook 
through the (new) Atom 
Table



#BHUSA @BlackHatEvents
Information Classification: General



#BHUSA @BlackHatEvents
Information Classification: General

WH_KEYBOARD_LL

SetWindowsHookEx - Global Hooks in an EXE

NULL

NULL



#BHUSA @BlackHatEvents
Information Classification: General

Global Exe Hooks – WH_KEYBOARD_LL Only



First output block with “<any>” denotes that this hook 
applies to all threads in the desktop

Volatility knows the address of the hook, but not which 
process is hosting it

During our research, we discovered that 
the TIF_GLOBALHOOKER flag denotes 
if a thread has placed a hook. Volatility 
now parses this flag.

“True” here tells us that GUITesterAll
placed the hook



#BHUSA @BlackHatEvents
Information Classification: General

SetWindowsHookEx – Thread Specific Hooks

WH_KEYBOARD_LL
, WH_MOUSE, etc.

<TID of target thread>

DLL Handle | NULL



#BHUSA @BlackHatEvents
Information Classification: General

Enumerating Thread-Specific Hooks
• Thread-specific hooks are stored within the thread 

data structure

• A per-process data structure holds the “atom table” 
equivalent list of DLLs

• Volatility was previously unable to enumerate these 
hooks

Threads

Desktops

Hooks

“Atom Table”

Process Information



Adding Initial Support

Incorporating Per-Process “Atom Table”



#BHUSA @BlackHatEvents
Information Classification: General

Windows Research - RegisterRawInputDevices

HID_USAGE_GENERIC_KEYBOARD

HID_USAGE_PAGE_GENERIC

<Handle to the target window>



#BHUSA @BlackHatEvents
Information Classification: General

Registering to Monitor



#BHUSA @BlackHatEvents
Information Classification: General

Malicious Window Callback Procedure



#BHUSA @BlackHatEvents
Information Classification: General

Enumerating Input Monitors
• Per-process data structure stores a HID table

• This table stores a list of monitoring requests

• Each request tracks its target window and usage

Threads

Desktops

Hid Table

Process Information

Hid Request(s)



#BHUSA @BlackHatEvents
Information Classification: General

Detecting the Device Monitor



#BHUSA @BlackHatEvents
Information Classification: General

Linux Research – strace and ptrace
• ptrace is the debugging facility of Linux

• strace is a popular tool that relies on ptrace to monitor system calls made by other 
processes

• Allows for monitoring of buffers sent to hardware devices (keyboards, mics, …)

• Can be completely locked down, even to root users – but not universally applied



#BHUSA @BlackHatEvents
Information Classification: General

Detecting Direct Debugging



#BHUSA @BlackHatEvents
Information Classification: General

Logging in with “secretpassword!” password 

Typing ‘netstat’ once character at a time



#BHUSA @BlackHatEvents
Information Classification: General

Detecting Child Process Debugging

NOTE: SEIZED means that a process began being debugged after it was already started or that a child 
process was automatically debugged as a result of its parent process being debugged. See the ptrace(2)
manual page for complete information.



#BHUSA @BlackHatEvents
Information Classification: General

Linux Research – Input Events
The Input Event subsystem can be abused by userland malware to monitor 
keystrokes on physically attached keyboards



#BHUSA @BlackHatEvents
Information Classification: General

Linux Research - TIOCSTI
• TIOCSTI is an IOCTL that simulates input to a specific terminal and allows the caller to 

inject a character into that terminal’s input stream

Screenshot source: https://ruderich.org/simon/notes/su-sudo-from-root-tty-hijacking



#BHUSA @BlackHatEvents
Information Classification: General

Detecting TIOCSTI Abuse



#BHUSA @BlackHatEvents
Information Classification: General

macOS Research - CGEventTapCreate
• CGEventTapCreate is the most widely abused API on macOS for hardware device 

monitoring



#BHUSA @BlackHatEvents
Information Classification: General

POC source: https://github.com/caseyscarborough/keylogger

CGEventTapCreate POC Code



#BHUSA @BlackHatEvents
Information Classification: General

WINDOW
SERVER

KEYLOGGER 
PROCESS

KERNEL 
SPACE
mach_msg

1 2

_CGPlaceTap _XPlaceTap
•Events of interest
•Callback location



#BHUSA @BlackHatEvents
Information Classification: General

WINDOW
SERVER

KEYLOGGER 
PROCESS

KERNEL 
SPACE
mach_msg

1 2

_CGPlaceTap _XPlaceTap
•Events of interest
•Callback location

4 3

Registered callback 
receives keystroke

Keystroke Data



#BHUSA @BlackHatEvents
Information Classification: General

Detecting CGEventTapCreate Abuse



#BHUSA @BlackHatEvents
Information Classification: General

Conclusions
• Malware that targets devices will continue to pose a serious privacy and security threat 

to individuals and organizations 

• Our research effort enables automated detection and analysis of such malware

• Many of the data structures and subsystems analyzed previously had no public 
documentation

• Please see our whitepaper on the Black Hat website for complete details
• Nearly 30 pages of code samples, IDA Pro screenshots, data structure breakdowns, and more



#BHUSA @BlackHatEvents
Information Classification: General

Questions? Comments?
Contact

andrew@dfir.org

golden@cct.lsu.edu

Social Media
@volatility, @attrc, @nolaforensix, @volexity, @lsucct

2022 Volatility Plugin Contest now open!
https://volatility-labs.blogspot.com/2022/07/the-10th-annual-volatility-plugin-contest.html

mailto:andrew@dfir.org
mailto:golden@cct.lsu.edu
https://volatility-labs.blogspot.com/2022/07/the-10th-annual-volatility-plugin-contest.html


#BHUSA @BlackHatEvents
Information Classification: General

References
[1] https://volatility-labs.blogspot.com/2012/09/movp-31-detecting-malware-hooks-in.html
[2] https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/

https://volatility-labs.blogspot.com/2012/09/movp-31-detecting-malware-hooks-in.html
https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/

