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Abstract
Verifying concurrent programs is challenging due to the ex-
ponentially large thread interleaving space. The problem is
exacerbated by relaxed memory models such as Total Store
Order (TSO) and Partial Store Order (PSO) which further
explode the interleaving space by reordering instructions. A
recent advance, Maximal Causality Reduction (MCR), has
shown great promise to improve verification effectiveness by
maximally reducing redundant explorations. However, the
original MCR only works for the Sequential Consistency
(SC) memory model, but not for TSO and PSO. In this paper,
we develop novel extensions to MCR by solving two key
problems under TSO and PSO: 1) generating interleavings
that can reach new states by encoding the operational seman-
tics of TSO and PSO with first-order logical constraints and
solving them with SMT solvers, and 2) enforcing TSO and
PSO interleavings by developing novel replay algorithms that
allow executions out of the program order. We show that our
approach successfully enables MCR to effectively explore
TSO and PSO interleavings. We have compared our approach
with a recent Dynamic Partial Order Reduction (DPOR) al-
gorithm for TSO and PSO and a SAT-based stateless model
checking approach. Our results show that our approach is
much more effective than the other approaches for both state-
space exploration and bug finding – on average it explores
5-10X fewer executions and finds many bugs that the other
tools cannot find.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification–Model Checking

General Terms Algorithms, Design, Verification

Keywords Maximal Causality Reduction, Model Checking,
TSO, PSO

1. INTRODUCTION
Verifying concurrent programs has been a long-standing chal-
lenge due to state-space explosion caused by the huge thread
interleaving space. It is known that sequential consistency
(SC) [24] is the most intuitive memory model, under which
operations by different threads can interleave but those by
the same thread should always follow the program order. It is
challenging enough to verify concurrent programs under SC,
because the number of different interleavings grows exponen-
tially with the number of threads and the length of program
execution. What makes things worse is that to achieve better
performance, most contemporary multiprocessors implement
relaxed memory models, such as Total Store Order (TSO)
and Partial Store Order (PSO) [5, 33]. For TSO and PSO, the
verification problem is more challenging because operations
by the same thread may no longer follow the program order.
For instance, under TSO, a write and a following read by the
same thread can be re-ordered if they access different mem-
ory locations, and under PSO, which is a further relaxation
of TSO, two writes by the same thread can be re-ordered if
they target different locations.

The ability to re-order operations from the same thread
under TSO and PSO significantly explodes the state-space
over SC. Consider M concurrent threads each executing
Ni operations where i=1, 2, . . . ,M . The total number of
interleavings under SC can be calculated by the formula
M∏
i=1

(∑M
j=i Nj

Ni

)
[27], and that of allowing the reordering of

operations can be calculated by the formula (

M∏
i=1

Ni)! (i.e., the

number of permutations of all operations). Consider only four
threads and four operations each (M=Ni=4). The number
of interleavings under SC is 6 ∗ 107, whereas the number of
permutations is 2 ∗ 1013, which is 300,000 times larger.

Consequently, bugs may only occur under TSO or PSO
but not SC, and those bugs are much more difficult to
detect. Figure 1 shows a real bug extracted from a large
program (with over 40K lines of code) running on an electron
microscope [2]. The program runs safely under SC and TSO.
However, an error (lines 15-17 of Figure 1) is triggered when
it runs under PSO and unfortunately caused a loss of $12
million of equipment. The root cause of the error is that the
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1.class A {
2.    static Point currentPos = new Point(1,2);
3.    static class Point {
4.        int x;
5.        int y;
6.        Point(int x, int y) {
7.            this.x = x;
8.            this.y = y;
9.        }
10.    }
11.    public static void main(String[] args) {
12.        new Thread() {
13.            void f(Point p) {
14.             synchronized(this) {}
15.                if (p.x+1 != p.y) {
16.                    System.out.println(p.x+" "+p.y);
17.                    System.exit(1);
18.                }
19.            }
20.            @Override
21.            public void run() {
22.                while (currentPos == null);
23.                while (true)
24.                    f(currentPos);
25.            }
26.        }.start();
27.        while (true){
28.           currentPos = 
29.          new Point(currentPos.x+1, currentPos.y+1);
30.        }
31.    }
32.}

Figure 1: A real PSO bug in an electron microscope soft-
ware [2]. This bug caused a $12 million loss of equipment.

write to the object curPosition can happen before the write to
the field of the object, which is allowed under PSO. What is
worse is that this error can hardly be reproduced. On average,
the error appears only once in every 500, 000 loop iterations
of the program1.

A state-of-the-art approach for verifying concurrent pro-
grams is model checking [12]. Model checking techniques
can be divided into two categories: stateful and stateless,
both striving to explore state-space effectively by reduc-
ing redundant explorations. Stateful model checking tech-
niques [20, 25, 26, 37] store abstract states at runtime to help
avoid redundant explorations. In contrast, stateless model
checking (which we refer to as SMC in this paper) techniques
explore state-space systematically by driving concrete pro-
gram executions via a dynamic scheduler without storing
any states. Since the pioneering work of VeriSoft [17, 18]
and CHESS [32], SMC has been successfully applied in
real-world programs and has found many deep bugs through
optimization techniques such as partial order reduction
(POR) [16, 19] and context-bounding [32].

A key challenge in SMC is how to avoid redundant
explorations of the same program state. Although POR
reduces redundancy by characterizing distinct interleavings
(i.e., Mazurkiewicz traces [29]) with happens-before, it is
also limited by happens-before and cannot reduce redundant
interleavings that have different happens-before relations. To
maximally reduce redundancy, recently, we developed a new

1 Interestingly, our approach takes only three runs to find this PSO bug.

technique called Maximal Causality Reduction (MCR) [21].
By taking the value of reads and writes into consideration
and by exploiting the maximal causality between redundant
executions that lead to equivalent states, MCR ensures that
every explored execution reaches a distinct program state. In
this way, MCR minimizes the number of executions that must
be explored to verify concurrent programs. MCR achieves a
significant advance in SMC and has shown better scalability
and bug finding capability than POR and context bounding.
However, the MCR technique [21] is limited to SC only, and
it does not work for TSO and PSO.

Motivated by MCR, we have developed a new technique
that realizes MCR for TSO and PSO by solving the following
two technical challenges:

1. Soundly encoding the semantics of TSO and PSO (specif-
ically the write-to-read and write-to-write reorderings) by
relaxing the SC constraints in MCR [21].

2. Deterministically replaying TSO and PSO interleavings
for concurrent programs.

From a high-level perspective, we decompose the must-
happen-before constraints that are specialized for SC in MCR
into two parts: Φmem and Φsync, where Φmem captures the
reordering semantics allowed by different memory models,
and Φsync the happens-before constraints entailed by syn-
chronizations. Under TSO and PSO, the constraint Φmem

allows reads and writes to be re-ordered while respecting the
semantics of the memory models with store buffers (FIFO
queues). We assign one buffer to each thread for TSO and
multiple for PSO (each corresponds to a dynamic memory
location) to achieve the reordering. The other constraints re-
main the same as that in MCR. By invoking an off-the-shelf
SMT solver to solve the constraints, new interleavings are
generated and are used to replay the program to explore new
states. We further design a novel algorithm to deterministi-
cally replay concurrent programs under TSO and PSO, where
operations in the generated interleavings can be re-ordered
(i.e., does not follow the program order). The key insight of
our algorithm is to decide when to buffer a write and when
to flush it into the main memory by comparing the memory
location of the executed operation with that of the operation
given in the generated interleaving.

We have implemented our new algorithms in MCR and
evaluated them with a collection of popular multithreaded
benchmarks and real applications. We have also compared
our technique with two recent SMC techniques for TSO and
PSO: the DPOR algorithm by Zhang [38] and the SATCheck2

technique by Demsky and Lam [15]. Our experimental results
show that MCR with our approach is significantly more effec-
tive than DPOR and SATCheck for state-space exploration:
it takes 5X fewer executions than DPOR for TSO and 10X
fewer for PSO on average, whereas SATCheck misses states.
Moreover, our approach is much more effective than the other

2 SATCheck works for SC and TSO only.
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two approaches for finding TSO and PSO bugs: it typically
takes only a few executions to reveal a known error, whereas
DPOR and SATCheck either take 3-5X more executions or
fail to find the error.

This paper makes the following contributions:

• We present a new technique based on maximal causality
reduction (MCR) for effectively verifying concurrent
programs under TSO and PSO.

• We formalize TSO and PSO reordering semantics with
new MCR constraints and design novel replay algorithms
to enforce interleavings under both TSO and PSO.

• We evaluate our technique on popular benchmarks and
real applications and our results show significant improve-
ments over the recent approaches.

The rest of the paper is organized as follows: Section
2 introduces necessary background about MCR; Section 3
presents the semantics of TSO and PSO; Section 4 presents
our approach for encoding the TSO and PSO constraints and
new algorithms for replaying generated interleavings under
TSO and PSO. Section 5 presents a detailed case study of our
technique on the real bug in Figure 1; Section 6 reports our
experimental results; Section 7 discusses related work and
Section 8 concludes this paper.

2. Maximal Causality Reduction
In this section, we review the key ideas of MCR and illustrate
how MCR works with a simple example. We also identify its
limitation with respect to TSO and PSO.

2.1 Maximal Causal Model
A fundamental concept underpinning MCR is the Maximal
Causality Model (MCM) [22, 35], which takes as input an
observed execution trace of a multithreaded program and
captures the largest set of feasible traces that can be inferred
from the observed trace. In MCM, multithreaded programs
P are abstracted as the prefix-closed sets of finite traces,
called P-feasible traces, that P can produce when completely
or partially executed. A trace is abstracted as a sequence
of events, which are operations performed by threads on
concurrent objects. The following common types of events
are considered in MCM:

• begin(t)/end(t): the first/last event of thread t;
• read(t, x, v)/write(t, x, v): read/write x with value v;
• lock(t,l)/unlock(t,l): acquire/release a lock l;
• fork(t,t′): fork a new thread t′;
• join(t,t′): block until thread t′ terminates.

There are two important properties held by the sets of P-
feasible traces: prefix closedness and local determinism. The
former says that the prefixes of a P-feasible trace are also
P-feasible. The latter means the execution of a concurrent
operation is only determined by the previous events in the
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Figure 2: MCR workflow under SC

same thread. These two axioms allow us to associate any
consistent trace τ with a maximal set of traces MaxCausal(τ),
which comprises precisely the traces that can be generated by
any program that can generate τ .

It is shown in [22, 35] that MaxCausal(τ) is both sound
and maximal: any program that can generate τ can also
generate all traces in MaxCausal(τ), and for any trace τ ′

not in MaxCausal(τ) there exists a program generating τ
which cannot generate τ ′.

2.2 MCR Workflow
As illustrated in Figure 2, given a closed multithreaded
program with a fixed input, MCR systematically explores
all unique interleavings of the program in a closed loop, with
each explored interleaving covering a unique program state.
Initially, MCR executes the program following a random
interleaving and generates an initial trace τ . Then τ is used
to compute the maximal casual traces MaxCausal(τ), and
from which MCR generates new seed interleavings (if there
exist any). Each seed interleaving is produced by encoding
MaxCausal(τ) together with a new state constraint over a
read event in τ enforcing it to read a new value, such that
the seed interleaving will drive the program to reach a new
state (i.e., at least one read will read a new value). The seed
interleavings are then explored to cover new states, and to
generate new seed interleavings.

MCR terminates when all seed interleavings have been
explored and no new seed interleavings can be generated. For
a new value constraint, there can be multiple interleavings in
MaxCausal(τ) that satisfy the constraint. To avoid generating
redundant seed interleavings, MCR ensures that the prefix of
each newly explored interleaving is always preserved and
the generated seed interleaving is the shortest among all
satisfiable interleavings.

To generate a seed interleaving from an input trace τ ,
MCR consists of two main steps:

1. Encoding MaxCausal(τ) and a new state constraint into a
boolean formula;
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2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace τ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(τ). MCR then encodes MaxCausal(τ) into a for-
mula Φmc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (Φmhb); (2) lock-mutual-exclusion constraints
(Φlock); (3) data-validity constraints (Φvalidity). Φmc is then
conjoined with a new state constraint Φstate to generate a
final formula Φ that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (Φmhb). The
Φmhb constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (Φlock). The Φlock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): Ou1

< Ol2 ∨Ou2
< Ol1 .

Data-validity constraints (Φvalidity). The Φvalidity con-
straint ensures that all events in any trace in MaxCausal(τ)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in τ . Let ≺e denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in ≺e on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the Φvalidity constraint for
e is encoded as

∧
r∈≺e

Φvalue(r, v), where Φvalue(r, v) is the

state constraint that ensures r to read a value v:

Φvalue(r, v) ≡
∨

w∈Wx
v

(Φvalidity(w) ∧Ow < Or∧
w 6=w′∈Wx

(Ow′ < Ow ∨Or < Ow′))

New state constraints (Φstate). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in τ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1 
2: a = y

3: y = 1 
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0        

Thread1: Thread2:

1: x = 1 
2: y = 1 

3: if (y == 1) 
4:    if (x == 0)

 5:      ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1 
2: a = y

3: y = 1 
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0        

Thread1: Thread2:

1: x = 1 
2: y = 1 

3: if (y == 1) 
4:    if (x == 0)

 5:      ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in τ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v′ 6= v written
by any write on x, Φstate is written as Φvalue(r, v

′). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let ei denote the event at the line number i. Given a
trace τ = 〈e1, · · · , en〉, MCR uses n integer variables
〈O1, · · · , On〉 to denote the order in which the events happen
in a certain execution. The value of Oi represents the position
of ei in a trace. If Oi < Oj , then ei will be executed before
ej in the generated interleaving.

Suppose in the initial execution, MCR obtains the trace
τ0 = 〈e1, e2, e3, e4〉 under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
Φmhb = O1 < O2 ∧O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint Φvalue = O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with Φmhb, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace τ1 = 〈e1, e3, e2, e4〉 and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in τ1. Similarly, the read event e4 in
τ0 generates a new seed interleaving e3-e4, which produces
a new trace τ2 = 〈e3, e4, e1, e2〉 that reaches a new state
(a=1,b=0).
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As we can see, through only three different executions,
MCR successfully explores all three possible program states
under SC: (a=0,b=1), (a=1,b=1) and (a=1,b=0). However,
MCR misses the assertion violating state (a=0,b=0), which is
feasible under TSO and PSO. To reach this state, there must
be at least a reordering between (e1, e2) or (e3, e4). Neither
of them is possible in the formulation of MCR because both
of them violate the Φmhb constraint. Similarly, MCR cannot
trigger the PSO assertion violation in Figure 3(b), because
e1 must-happen-before e2 under SC. Next, we present the
semantics of TSO and PSO in Section 3. We will show
how our approach finds the errors under TSO and PSO in
Section 4.

3. TSO and PSO
We present the operational semantics of TSO and PSO [23,
33] following the same spirit as previous work [4, 6]. We also
discuss the relation of TSO and PSO to language memory
models (i.e., Java Memory Model) at the end of this section.

3.1 Hardware Memory Models
Total Store Ordering (TSO). TSO allows a read to com-
plete before an earlier write to a different memory location,
but maintains a total order over writes and operations ac-
cessing the same memory location. There are four kinds of
operations:

• Store. Whenever a thread ti executes a store operation, it
does not update it to the shared main memory immediately.
Instead, the store is buffered to the store buffer Bi (which
is a FIFO queue).

• Load. When a thread ti executes a load to a memory
location x, it first checks its buffer Bi. If the buffer
contains the store to x, then the load gets the latest value
written to x in the buffer; otherwise, the load obtains the
value from the main memory.

• Update. An update operation flushes the store buffer into
the main memory. It can happen at any point as long
as the store buffer is not empty. The memory model
allows any thread to non-deterministically perform the
update operation any number of times at any state of the
execution.

• Fence. Fences are special machine instructions that pre-
vent reordering between the operations before and after
the fence. A fence operation can only be executed when
the buffer is empty.

Consider a concurrent program with n threads T = t1 ×
t2×· · ·×tn and each thread ti is associated with a store buffer
Bi, forming a set of store buffers B = B1 ×B2 × · · · ×Bn.
Let M = M1 ×M2 · · · ×Mk be the memory locations in
the program, and each memory location can take value from
a data domain. We define a system configuration as a tuple
C = 〈T,M,B〉, and the local configuration of thread ti as
Ci = 〈M,Bi〉 where M is the current value in each memory

location, and Bi is the current value in the store buffer of
thread ti.

For two system configurations C = 〈T,M,B〉 and C′ =

〈T ′,M ′, B′〉, we use the notation C op−→ C′ to denote the
transition from C to C′ by executing the operation op, where
op is one of the four operations (store/load/update/fence)
defined above by a certain thread. Consider that op is executed
by thread ti. The transition on the system configuration is the

same as that on the local configuration of ti: Ci
op(ti)−−−−→ C′i.

We use w(ti, x, v)/r(ti, x, v)/u(ti, x, v)/fence(ti) to denote
these four operations respectively, meaning that thread ti
writes/reads value v to/from memory location x, updates the
value v to x from the store buffer to the main memory, or
performs the fence operation, respectively.

LetB⊕(x, v) denote buffering the write (x, v) to the store
buffer B, B 	 (x, v) flushing the write (x, v) to the main
memory from B, and B = ε denote that B is empty. Let
B(x) denote retrieving the value of the most recent buffered
write to x in B. Note that B(x) can be null when there is no
buffered write to x in B. We use ∅ to denote the null value.

The operational model is defined as follows:

1. Store: Ci
w(ti,x,v)−−−−−−→ C′i iff M ′ = M and B′i = Bi ⊕

(x, v).

2. Load: Ci
r(ti,x,v)−−−−−→ C′i iff M ′ = M , B′i = Bi and either

one of the following two cases:

(a) Load from buffer: Bi(x) 6= ∅ and v = Bi(x).

(b) Load from memory: Bi(x) = ∅ and v = M [x].

3. Update: Ci
u(ti,x,v)−−−−−→ C′i iff B′i = Bi 	 (x, v) and

M ′ = M [x←↩ v].

4. Fence: Ci
fence(ti)−−−−−−→ C′i iff Bi = ε and M ′ = M .

Partial Store Ordering (PSO). PSO is similar to TSO
except that it allows reordering writes on different memory
locations. The operational model of PSO can be defined by
slightly modifying the TSO model defined above. Under
PSO, each thread has multiple store buffers, each of which
corresponds to one unique memory location. In other words,
each memory location is assigned with a store buffer. Two
consecutive write operations on different memory locations
can be buffered into different store buffers, allowing them to
be executed out of the program order.

3.2 JMM on TSO/PSO Platforms
The motivation of our work stems from the real bug exhibited
in Figure 1. Readers may be concerned that Java has its own
memory model (JMM [28]) and the compiler and hardware
reorderings should respect the JMM. However, hardware
memory models are orthogonal to language memory models.
For any language, as long as the compiler does not insert
fences to prohibit reorderings, the hardware may exhibit
TSO/PSO behaviors. Because the JMM allows the delayed
stores as that in TSO and PSO [30, 34], the JVM inserts no
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barriers to disable the reorderings on TSO/PSO platforms.
Consequently, the reordering can cause the bug in Figure 1
to occur. A fix to this bug is to declare both the fields x and
y in Figure 1 as final. For final fields, the JVM inserts a
barrier after the initialization of them. Thus, once an object
is constructed, the values assigned to the final fields of the
object are visible to the other threads. This prevents the bug
from occurring in Figure 1.

4. OUR APPROACH
Our approach builds upon MCR but enables it to work for
both TSO and PSO. There are two crucial differences between
our approach and the original MCR [21]:

1. We relax the must-happens-before (MHB) relation be-
tween events to capture the semantics of TSO and PSO
when producing the seed interleavings.

2. We develop novel replay algorithms for TSO and PSO
interleavings that allow the reordering of events by the
same thread.

In this section, we first describe how to relax the MHB
constraints to allow the semantics of TSO and PSO defined
in Section 3. We then present our replay algorithms. Finally,
we discuss the limitation of our approach.

4.1 Relaxation of the MHB Constraints
To encode the semantics of TSO and PSO, we relax the MHB
constraints Φmhb of MCR (recall Section 2.3). Specifically,
we decompose Φmhb into two components:

Φmhb = Φmem ∧ Φsync

where (1) the memory operation constraint (Φmem) captures
the reordering semantics allowed by different memory mod-
els (TSO or PSO); (2) the synchronization constraint (Φsync)
captures the happens-before relation entailed by synchro-
nizations. Φsync is common for all memory models (e.g.,
SC/TSO/PSO).

Constraints on memory operations (Φmem). Under TSO,
following the operational semantics defined in Section 3, we
construct Φmem with four rules: (1) write-to-write constraints
(Φww). For all writes by the same thread, their order should
be consistent with the program order. (2) memory location
constraints (Φaddr). For all the reads and writes by the same
thread that access the same memory address, they should
follow the program order. (3) read-to-read constraints (Φrr).
All read operations from the same thread should follow the
program order. (4) read-to-write constraints (Φrw). Any read
operation and its following write operation from the same
thread should follow the program order. Together, Φmem is
represented as the conjunction of these four constraints:

Φmem = Φww ∧ Φrr ∧ Φrw ∧ Φaddr

PSO is a further relaxation of TSO. PSO not only allows
the write-to-read reordering allowed by TSO, but also the
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Figure 4: The must-happen-before constraints constructed
by MCR and our approach on the TSO and PSO examples in
Figure 3(a) and Figure 3(b), respectively.

reordering of write-to-write to different memory locations.
Therefore the only difference between the Φmem constraint
under TSO and PSO is the rule Φww. In PSO, Φww ensures
only that all writes to the same memory location from the
same thread should follow the program order.

Constraints on synchronizations (Φsync). For all synchro-
nizations (i.e., lock/unlock and begin/end) by the same thread,
they should always be executed in the program order. More-
over, for each synchronization, all its proceding reads and
writes should always happen before it, and all its following
reads and writes should always happen after it.

4.2 New States under Relaxed MHB
To show the difference brought by the relaxed MHB con-
straints compared to the original MCR, we use the example
in Figure 3(a) again to illustrate how it enables exposing
the TSO and PSO errors which MCR fails to expose. Same
as in Section 2.4, let us assume that τ0 = 〈e1, e2, e3, e4〉 is
observed as the initial trace. Figure 4 shows a comparison
between the MHB constraints on τ0 constructed by MCR
and by our approach for TSO and PSO, respectively. Con-
sider the read e4 (R(x)=1). To make R(x)=0 in the new seed
interleaving, MCR enforces e4 to happen before e1 by the
constraint O4 < O1. Under TSO, because e3 does not nec-
essarily happen before e4, our approach does not enforce
O3 < O4 (as shown in Figure 4a) compared to MCR. As a
result, the generated new seed interleaving by our approach
is just e4, whereas it is e3-e4 by MCR. By replaying the pro-
gram with the new seed interleaving e4, our approach will
explore a new execution and generate a new trace τ1 starting
with e4, such as τ1 = 〈e4, e1, e2, e3〉. In this case, τ1 reaches
the state (a=0,b=0), which violates the TSO assertion.

Likewise, under PSO, to expose the error in Figure 3b,
our approach generates an execution τ1 = 〈e2, e3, e4, e1〉
because of the reordering between e1 and e2 under PSO.

4.3 Deterministic Replay
A key challenge in extending MCR from SC to TSO and PSO
lies in how to replay the TSO and PSO interleavings. Under
the original MCR, the interleaving is abstracted as a sequence
of schedule choices, with each choice representing a thread ID
by the corresponding operation on a shared variable. Before a
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thread executes an operation on a shared location, it is blocked
first, and then the scheduler queries the seed interleaving
to decide which thread to execute next. For SC, since the
global order in the generated seed interleaving is consistent
with the program order, this replay strategy guarantees that
the operation chosen by the scheduler exactly matches with
the event in the interleaving. However, under TSO/PSO,
because operations can be executed out of the program order,
this simple global-ordering based replay approach no longer
works. To realize the reordering, we rely on a store buffer (a
FIFO queue) assigned to each thread to delay the execution
of a store. The difficulty comes from the non-determinism of
the update operation (recall Section 3) because it can happen
any time at any point of the execution to flush the store buffer.
To deterministically enforce a seed TSO/PSO interleaving,
there are two key issues to be addressed: (1) when to buffer
a write; and (2) when to flush the buffered write to the main
memory.

To solve this problem, we first extend the original abstrac-
tion of the SC interleaving in MCR by adding the memory
location information – addr – to each operation. The new
abstraction of interleaving is defined as follows:

Definition 1. An interleaving is a sequence of schedule
choices, with each schedule choice c(tid, addr) consisting
of a thread ID, tid, and a memory location, addr, that is
expected to be accessed by the corresponding operation.

The key idea of our TSO and PSO replay algorithms is
to use the accessed memory location to decide whether to
buffer a write by checking it against the information in the
seed interleaving.

Store Buffering/Updating. Before performing a store op-
eration, we first check if the memory location accessed by
this operation is the same as the one in the seed interleaving.
If yes, we can flush the store to the main memory. Other-
wise, we buffer the store in the store buffer (a FIFO Queue).
At this point, we do not update the schedule choice since
the operation has not been executed from the view of the
interleaving. Later, when the address by the event in the in-
terleaving matches with the one buffered in the FIFO queue,
we flush the value to the main memory and also update the
schedule choice to the next one.

Fence. The operational model of TSO and PSO requires
that before performing a fence operation, all the buffered
stores in the store buffer should be flushed into the memory.
However, in our approach, the re-execution of a program is
controlled by a given interleaving, and our replay algorithm
guarantees that when the scheduler meets a fence operation,
the buffer must be empty. The reason is that all events that
occur before a fence should happen before the fence and we
have already constrained all such events to happen before the
fence in the formula (recall Section 4.1). Therefore, when
the scheduler is about to execute a fence of an interleaving,
all the events before this fence have already been executed

t1:
x = 1;

a = y;

t2:
y = 1;

b = x;

Schedule Choice:

addr 
conflicts

buffer y=1
...

A concurrent program

addr matches, so t2:y 
must correspond to W(y) 

Store Buffer  B2

Figure 5: An example to illustrate Theorem 1 and Theorem 2.
B2 is the store buffer associated with thread t2.

(all buffered writes have already been flushed), and thus the
buffer is empty at the moment.

Based on the new abstraction above, we can prove the
following two theorems to guide our replay algorithms and to
guarantee their correctness. Theorem 1 guides our algorithm
to buffer writes and Theorem 2 guides our algorithm to flush
the buffered writes to memory.

Theorem 1. At replay, when the program counter (PC)
points to an event, say ei, corresponding to the choice of
the schedule, say cj , if addr(ei) 6= addr(cj), then ei must
be a write operation and it needs to be buffered.

Proof: If ei is a read or a fence operation, it implies that
a later operation cj (later according to the program order)
is allowed to happen before a read/fence operation. This
contradicts with the TSO and PSO operational models defined
in Section 3. Hence ei must be a write, and a certain operation
matching with cj that accesses a different location should be
executed before ei. Therefore, ei must be buffered.

Theorem 2. When considering a schedule choice cj in the
seed interleaving, if addr(cj) equals to the memory location
of the write at the head of the store buffer, then cj must
correspond to that buffered write.

Proof: By contradiction. Suppose that cj is a read or a
fence. Since there is a write w in the store buffer by the
same thread that accesses the same address as cj does, it
means that the read (or fence) is allowed to happen before
the write w which is before it. This again contradicts with the
operational models of TSO and PSO. Therefore, cj must be a
write. Similarly, cj cannot correspond to any other write in
the store buffer, otherwise cj would be allowed to be executed
before its preceding writes. Hence, cj must correspond to the
buffered write w and w should be flushed.

Example. Figure 5 illustrates the two theorems above.
When considering the schedule choice t2 : x, the instruction
y = 1 is to be executed. However, their addresses do not
match, which implies that the write y = 1 should be buffered
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(Theorem 1). When considering the last schedule choice
t2 : y, its address matches with that of the write at the head
of thread t2’s store buffer B2, which implies that t2 : y is a
buffered write and has to be flushed (Theorem 2).

4.4 TSO Replay
To replay TSO interleavings, we associate each thread ti
with a FIFO queue (to simulate the store buffer Bi) and we
assume the queue is unbounded. The interleaving here is a
seed interleaving generated based on the solution given by the
SMT solver. Each interleaving (recall Definition 1) consists
of a sequence of schedule choices c(tid, addr). The program
is executed under the control of an application-level scheduler
to enforce the schedule choices specified in the interleaving.

Algorithm 1 TSO replay algorithm

Input: A seed interleaving S – schedule choices
Output: a new trace by logging the instruction executed

1: Initial: index = 0 //global
2: while (index < S.length) do
3: c← S[index]
4: Inst← PC(c) //guided by the schedule choice
5: i = tid(Inst)
6: x = addr(Inst)
7: if Inst is a store then
8: v = value(Inst) //the value of the store
9: if addr(Inst) == addr(c) then

10: Write(x, v)
11: index = index+1
12: updateCheck_TSO(S)
13: else //buffer the store
14: Bi ← Bi ⊕ (x, v)

15: else if Inst is a load then
16: if x in Bi then
17: v = Bi(x) //read the most recent value

from buffer
18: else
19: v = mem(x) //read the value from mem-

ory
20: index = index+1
21: updateCheck_TSO(S)
22: else //fence – the buffer should be empty
23: Fence()
24: index = index+1

Algorithm 1 shows how we replay a TSO interleaving.
The key idea is to determine whether to buffer or to update a
store by comparing its memory location with that specified in
the schedule choice. We use a variable index to indicate the
current position of the interleaving. The index is initialized
to 0 and incremented by one each time when an instruction
is executed (except for the store buffer operation). Before
the program executes a load or a store on a shared variable,
the program is blocked and the schedule choice c given by

the interleaving is queried to decide the next instruction. The
next instruction is chosen by the program counter via the
schedule choice (see the statement PC(c) at line 4). Before
executing an instruction, the algorithm proceeds depending
on its type. If the instruction is a store, the algorithm first
checks whether the memory location of this store and that
specified in the schedule choice are equal or not. If they are
equal, we write the value to the memory (line 10). Otherwise
we buffer the store into the thread’s FIFO queue Bi. If the
instruction is a load, the algorithm first checks if there is a
buffered write inBi that writes to the same address. If yes, the
most recent buffered value is returned; otherwise, the value
from the main memory is returned. For fence instructions, we
simply proceed without the need to flush the buffer because
as discussed in Section 4.3 the buffer must be empty.

Algorithm 2 After a load/store, check whether there are
pending stores in the buffer that need to be updated.

1: function UPDATECHECK_TSO(S)
2: c← S[index] //return if index out of bound
3: i = tid(c)
4: while (addr(c) == addr(Bi[0])) do
5: Bi ← Bi 	 (x, v)
6: flush(x, v) //flush to memory
7: index = index+1
8: c← S[index] //return if index out of bound
9: i = tid(c)

10: function UPDATECHECK_PSO(S)
11: c← S[index] //return if index out of bound
12: i = tid(c)
13: j = varId(c)

14: while (addr(c) == addr(Bj
i [0])) do

15: Bj
i ← Bj

i 	 (x, v)
16: flush(x, v) //flush to memory
17: index = index + 1
18: c← S[index] //return if index out of bound
19: i = tid(c)
20: j = varId(c)

Each time afte a load or store is executed, our algorithm
checks if there are stores in the FIFO queue that should be
flushed. The function UpdateCheck_TSO in Algorithm 2
shows the process for flushing the buffered stores for TSO
and PSO. Recall Theorem 2 that when the current schedule
choice has the same memory location as that of the store at
the head of the buffer, the expected operation must be a store
that has been buffered. We hence follow this condition to
detect all such stores and update them to the memory.

Termination. Note that our algorithm just replays the
instructions within the interleaving, it terminates when
index = S.length. For those outside of the interleaving,
they are executed following the program order. The number
of while-loop iterations (line 2) is determined by the index,
which specifies the schedule choice. Although the index is

454



unchanged when buffering a store (line 13), it will eventually
be increased to the size of the schedule, which terminates
the algorithm. Each time after we execute or buffer an in-
struction, the program counter will be updated to point to the
next instruction controlled by the schedule choice (line 4).
Although the index is not changed, the address or the type
(read/write) of the operation will change, which leads to the
execution of a read/write, and eventually the execution of the
update function which increases the index.

The correctness of our algorithm is guaranteed by the
following theorem.

Theorem 3. Algorithm 1 correctly replays all the events in
the given TSO interleaving.

Proof: Theorem 1 and Theorem 2 guarantee that all events
in the given interleaving are replayed in the order as specified
in the interleaving. To prove Theorem 3, we only need to
prove that all the events in the interleaving are replayed, i.e.,
no event is missed. In our replay algorithm, each time after
an event is executed, the updateCheck_TSO(S) subroutine
updates (i.e., execute) the buffered events until the index
points to an event that is not buffered. Suppose there exists
an event e that is not executed when the replay algorithm is
finished. If e corresponds to a non-buffered event, e should be
executed directly when it is chosen by the index. On the other
hand, if e corresponds to a buffered store, there must exist a
nearest non-buffered event e′ preceding e in the interleaving.
After e′ is executed, updateCheck_TSO(S) subroutine will
execute e. Thus, in any case, no event will be missed.

Example. To illustrate the algorithm, consider a TSO
interleaving of the program in Figure 3a: e4, e1, e2, e3,
which corresponds to the sequence of schedule choices:
(t2,x),(t1,x),(t1,y),(t2,y). When replaying this interleaving,
the schedule choice (t2,x) guides the program to execute the
instruction y = 1 at line 3. Since the addresses do not match,
y = 1 is buffered and the schedule index does not change.
When the program reaches the instruction b = x at line 4,
since it is a load operation, b = x is executed directly. Simi-
larly, x = 1 and a = y at lines 1 and 2 are executed under the
schedule choices (t1,x),(t1,y). After a = y is executed, the
algorithm detects that the schedule choice (t2,y) corresponds
to the buffered write y = 1 in the FIFO queue. Therefore,
y = 1 is updated to the memory.

4.5 PSO Replay
Replaying PSO interleavings is similar to that for TSO. The
only difference is that under PSO, each thread is associated
with multiple FIFO queues with each queue corresponding
to one unique memory location. For a thread ti accessing a
memory locations mk, we assign a FIFO queue Bk

i for the
memory location mk. Algorithm 3 shows the replay process.
The key difference from Algorithm 1 is that when buffering
a store under PSO, the algorithm needs to buffer the store
to the FIFO queue corresponding to the memory location
accessed by the store. The function UpdateCheck_PSO in

Algorithm 2 shows the process for flushing the buffered stores
under PSO (similar to the process for TSO). We use varId()
to get the unique ID assigned to each variable by each thread,
and the buffer Bj

i corresponds to a variable belonging to
thread i with ID j.

Algorithm 3 PSO replay algorithm

Input: A seed interleaving S – schedule choices
Output: a new trace by logging the instruction executed

1: Initial: index = 0 //global
2: while (index < S.length) do
3: c← S[index]
4: Inst← PC(c) //guided by the schedule choice
5: xj = addr(Inst)
6: i = tid(Inst)
7: j = varId(xj)
8: if Inst is a store then
9: v = value(Inst) //the value of the store

10: if addr(Inst) == addr(c) then
11: Write(xj , v)
12: index = index + 1
13: updateCheck_PSO(S)
14: else //buffer the store
15: Bj

i ← Bj
i ⊕ (xj , v)

16: else if Inst is a load then
17: if xj in Bj

i then
18: v = Bj

i (xj) //read the most recent value
from buffer

19: else
20: v = mem(xj) //read the value from mem-

ory
21: index = index + 1
22: updateCheck_PSO(S,index)
23: else //fence – the buffer should be empty
24: Fence()
25: index = index+1

4.6 Discussion
We note that our approach is not optimal for minimizing the
redundancy under TSO and PSO, albeit MCR is optimal for
SC. The root problem is that under TSO and PSO, the gener-
ated seed interleavings are shorter than that under SC, which
results in the possibility that two distinct seed interleavings
may reach the same state. Consider again the example in Fig-
ure 3(a). In the initial execution τ0 = 〈e1, e2, e3, e4〉, there
exists two reads e2 (R(y)=0) and e4 (R(x)=1). If we force
the read on y (e2) to read value 1 which requires e3 to hap-
pen before e2, our approach will generate a seed interleaving
e3-e2. Likewise, if we force the read on x (e4) to read value
0, which requires e4 to happen before e1, our approach will
generate a seed interleaving e4.

If we continue with the seed interleaving e3-e2, we will
generate two more executions:
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    z = 0     
    x = 0
    y = 0
    x = 2
    y = 3
    z = 1           
 

1 
2 
3 
4 
5 
6

if (z==1) 
   if (x+1 != y)
        print(x, y)

7 
8 
9 

 

Initially x=1, y=2, z=0 
Thread 1: Thread 2: 

PSO ERROR

loop N times 

//create a new point
thread2.start()

thread2.join()

Figure 6: A simplified version of the program in Figure 1.
An execution 1-2-6-7-8-3-4-5-8-9 can trigger this error under
PSO.

• τ1 = 〈e3, e2, e1, e4〉 (a=1,b=1);
• τ2 = 〈e3, e2, e4, e1〉 (a=1,b=0).

And if we continue with the seed interleaving e4, we will
generate another two executions:

• τ3 = 〈e4, e1, e2, e3〉 (a=0,b=0);
• τ4 = 〈e4, e3, e2, e1〉 (a=1,b=0).

As we can see, under TSO, our approach explores five
executions to cover the whole state-space. However, the
optimal solution should only explore four executions, because
there are only four unique states. In our approach, τ2 and τ4
are equivalent to each other, both of which reach the state
(a=1,b=0).

The only difference between these two redundant execu-
tions is the permutation of the two seed interleavings: e3-e2
and e4, where e3-e2 targets the value read from y and e4 the
value read from x. Since these two seed interleavings are
non-overlapping and are permutable, they lead to the same
state. However, it is difficult to prune this type of redundancy
in the current MCR, because the seed interleavings are gener-
ated independently without considering their permutations. A
potential way to eliminate this redundancy for TSO and PSO
would be to merge multiple independent seed interleavings
into a single one. Nevertheless, this type of redudancy only
accounts for a minor portion of the explored executions, be-
cause the space of seed interleavings is significantly smaller
than the whole interleaving space. As we will show in our
experiments in Section 6, even with this redundancy, MCR
under TSO and PSO is much more effective than existing
approaches on both popular benchmarks and real programs.

5. Case Study
In this section, we present a case study of our approach on the
real PSO bug in Figure 1. We also compare our approach with
the DPOR algorithm for relaxed memory models by Zhang et
al. [38]. We show that our approach is much more effective
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Figure 7: The generated constraints by our approach under
three different memory models for the example in Figure 6.

than the DPOR algorithm for both state-space exploration
and bug finding.

To make the problem more clear, we simplify the program
to its equivalent form, as shown in Figure 6. Note that the
simplified example in Figure 6 is slightly different from the
program in Figure 1, but it exactly presents how the PSO bug
occurs in the original program. Lines 2 and 3 of the example
in Figure 6 simulate the instructions for constructing a new
Point object. Lines 4 and 5 write the initial values to the fields
of the object. We use an integer variable z to indicate whether
or not the object is constructed. If z = 1, it means that the
object is constructed. In our case, we do not simulate the
while statements but just update the values of x and y once,
which is enough to reveal the bug. We set the loop iterations
to N to control the complexity of the program.

Suppose that in the initial execution the two threads run
sequentially following the program order, we obtain a trace
as below3:

τ0 = 〈e1, e2, e3, e4, e5, e6, e7, e18, e28〉

where ei corresponds to an event performed at line i, and e18
and e28 correspond to the first and second (read to x and y)
events at line 8, respectively. In the initial trace, there are three
reads: e7 (R7(z)=1), e18 (R8(x)=2) and e28 (R8(y)=3). The
index of R corresponds to the line number of the statement.

Consider the read e18 (R8(x)=2). To generate a new seed
interleaving, we first try to enforce e18 to read a different
value 0 (by e2 which writes 0 to x). Figure 7 shows the
corresponding constraints constructed by MCR with our
approach for the three different memory models (SC, TSO
and PSO). Φstate ensures that R1

8(x) reads 0 by enforcing e2
to happen before e18 and e4 to either happen before e2 or after
e18. Φvalidity ensures that R7(z) reads the same value as it
reads in the trace τ0.

For SC and TSO, the generated constraint formula is not
satisfiable. However, for PSO, the SMT solver returns a
solution {O1 = 0, O2 = 0, O6 = 1, O7 = 2, O1

8 = 3}.
Based on this solution, we generate a new seed interleaving
to continue with: e1-e2-e6-e7-e18.

3 We set N to 1 in this case to simplify the presentation.
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Table 1: Experimental results between our approach and DPOR on the program in Figure 6 with N from 1 to 4. The numbers
indicate the number of executions explored by each approach. The symbols indicate timeout in one hour (∗), found the PSO bug
(4) or not (8), and threw an exception (�).

Loop times
DPOR MCR (our approach)

SC TSO PSO Error found? SC TSO PSO Error found?
N=1 4 4 � 8 2 2 10 4

N=2 105 105 � 8 43 43 89 4

N=3 4282 4282 � 8 296 296 819 4

N=4 14840∗ 14840∗ � 8 2767 2767 8420 4

By re-executing the program with this seed interleaving,
we obtain a new trace:

τ1 = 〈e1, e2, e6, e7, e18, e3, e4, e5, e28, e19, e29〉

The events after the seed interleaving are newly ex-
plored events. Among these new events there are again three
reads: e28 (R8(y)=3), e19 (R9(x)=2) and e29 (R9(y)=3). Since
R8(x) = 0 and R8(y) = 3 at line 8, the if condition is satis-
fied and hence the error is triggered. However, we note that
this bug is quite elusive. Before the read R9(x) at line 9, the
buffered write to x has already been flushed to the memory.
When the program executes line 9, we have R9(x) = 2 and
R9(y) = 3, which contradicts with the if condition.

Table 1 reports the results comparing our approach with
the DPOR algorithm on the number of explored executions
and on whether the approach can trigger the error or not
under PSO. We set the number of loop iterations from 1 to
4. Our results show that as the number of the loop iterations
increases, the number of executions explored by both of the
two approaches increases dramatically (2 to 8420 for MCR
and 4 to more than 14840 for DPOR). The reason is that the
state-space of the program significantly increases as more
reads and writes are executed. However, for all three memory
models, MCR can finish exploring the state-space in a few
seconds, whereas when N = 4, DPOR fails to finish the
exploration in an hour after exploring 14840 executions under
SC and TSO, and under PSO it terminates early by throwing
an exception (likely due to an implementation bug in the
rInsepct tool [38]). Moreover, our approach takes only three
executions to trigger the PSO error, whereas DPOR fails to
find the error by throwing an exception.

6. EXPERIMENTS
We have implemented our approach based on the original
MCR [21] for multithreaded Java programs with ASM [1]
for dynamic bytecode instrumentation and Z3 [14] for con-
straint solving. We extended MCR from SC to TSO and PSO
by relaxing the must-happen-before constraints and imple-
menting the TSO and PSO replay algorithms presented in
Section 4. We have evaluated our approach on a collection
of popular benchmarks and real applications shown in Ta-
ble 2. Dekker, Lamport, Bakery and Peterson are four classic
solutions to mutual exclusion problems from the previous

work [4, 11, 38], all of which are intensively racy programs.
StackUnsafe contains improper stack operations collected
from [38]. RVExample is the motivating example in the origi-
nal MCR paper [21]. Example is the real PSO bug example
in Figure 1. The other six benchmarks are real programs used
in previous concurrency studies [21, 22], including a large
application – Weblech.

In the rest of this section, we first describe our evaluation
methodology and then report our experimental results.

6.1 Evaluation Methodology
Our evaluation aims to answer the following three research
questions:

1. How effective is our approach for exploring the state-space
of concurrent programs?

2. How effective is our approach for finding TSO and PSO
errors?

3. How scalable is our approach for real programs?

For the first question, we compared our approach with
the most recent development of DPOR by Zhang et al. [38],
which extends the original DPOR algorithm [16] with sleep-
set reduction for TSO and PSO. Because their rInspect tool
is implemented for C/C++, we carefully transformed seven
standard benchmarks from Java to C/C++ or reversely for the
comparison.

For the second question, we compared the number of
executions required by different approaches to expose the in-
jected or known errors in each benchmark. We injected
assertion violations in the critical sections of four mu-
tual exclusion programs for different memory models. For
those benchmarks with known errors (e.g., StackUnsafe and
RVExample), we directly used those errors for the evalua-
tion. Besides DPOR, we also compared our approach with
SATCheck [15], a recent SAT-based stateless model check-
ing approach. SATCheck is a branch-driven approach that
aims to cover all branches and all the unknown behaviors
of the uninterpreted functions by systematically exploring
thread schedules under SC and TSO. However, we found
that the SATCheck tool missed executions during testing,
especially when the benchmarks become more complicated,
e.g., when the program has more conditional paths. Also,
since SATCheck runs on C/C++ programs that use primitive
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Table 2: Benchmarks

Program LoC #Thrd #Evt Description
Dekker 119 3 56 Two critical sections with 3 shared variables.
Lamport 162 3 40 Two critical sections with 4 variables.
bakery 119 3 27 n critical sections using 2n shared variables. We take n=2.
Peterson 94 3 72 Two critical sections with 3 variables
StackUnsafe 135 3 34 Unsafe operations on a stack by two threads, which cause the stack underflow.
RVExample 79 3 32 An example from original MCR [21], which contains a very tricky error
Example 73 2 44 The example program from Figure 6 with loop number from 1 to 4.

Account 373 5 51 Concurrent account deposits and withdrawals suffering from atomicity violations.
Airline 136 6 67 A race condition causing the tickets oversold.
Allocation 348 3 125 An atomicity violation causing the same block allocated or freed twice.
PingPong 388 6 44 The player is set to null by one thread and dereferenced by another throwing NPE.
StringBuf 1339 3 70 An atomicity violation in Java StringBuffer causing StringIndexOutOfBoundsException.
Weblech 35K 3 2045 A tool for downloading websites and enumerating standard web-browser behavior.

reads/writes to access the shared memory, it needs sophis-
ticated instrumentations to identify operations on shared
variables, which is done manually in SATCheck. For compar-
ison, we carefully transformed the seven benchmarks to the
input format of SATCheck.

For the third question, we tested our approach on six real
programs. We evaluated our approach on these programs
under TSO and PSO, in addition to SC which is supported in
the original MCR. Because none of the other two tools can
support complex real applications and both of them work for
C/C++ programs, we were not able to compare our results
with the other approaches.

All experiments were conducted on a MacBook with 2.6
GHz Intel Core i5 processor, 8 GB DDR3 memory and JDK
1.7. All results were averaged over three runs.

6.2 Results of State Space Exploration
Table 3 summarizes the results of state-space exploration
for the first seven benchmarks in Table 2. The first three
columns report the results of DPOR, the three columns in the
middle report the results of our approach, and the last three
columns report the comparison between the two approaches.
On average, MCR requires 5X to 10X (as much as 30X) fewer
executions than DPOR to explore the entire state-space. For
RVExample, which contains a very tricky error with loops,
DPOR takes almost 2,000 executions, while MCR only takes
57 executions under SC. Moreover, the rInspect tool cannot
finish under TSO and PSO by throwing a socket exception.
For our Example in Figure 1, MCR takes 2,767 executions
under SC and TSO, and 8,420 executions under PSO. Because
the tools are implemented in different languages, it is difficult
to compare the runtime speed between them. We hence
focused on evaluating the effectiveness of our approach
in reducing the number of executions but not the runtime
performance. In the original MCR paper [21], it has shown
that MCR outperforms DPOR in terms of runtime speed.

6.3 Results of Bug Finding
Table 4 summarizes the results of bug finding for the first
seven benchmarks in Table 2. The data in the table presents
the number of executions taken to find the bug. Overall,
our approach takes much fewer executions than the other
two approaches to find the errors. Moreover, our technique
is able to find all the known errors and injected assertion
violations, whereas DPOR fails to find the errors in Example
and RVExample by throwing exceptions, and SATCheck
fails to find those errors by either throwing segmentation
faults or repeating the same execution forever. For example,
for Dekker, Peterson and RVExample, the SATCheck tool
gets stuck with the same execution and runs forever. Due
to the implementation problem of the SATCheck tool and
complexity of the transformation of the benchmarks, at the
moment, it is difficult to make direct and fair comparisons
between SATCheck and our technique. For RVExample,
DPOR takes 301 executions to find that tricky error, while
our approach takes only 53 executions.

6.4 Results on Real Programs
Table 5 reports the number of executions taken by MCR to
explore the state-space of the six real programs under SC,
TSO and PSO as well as the number of data races found
during the exploration. MCR stops exploration when all state-
space of the program has been explored or it triggers a bug in
the program that leads to a runtime exception. Overall, MCR
scales well to these real programs, and it is highly effective
in exploring the state-space and finding bugs including data
races in these programs. For example, for Account, MCR
took only 7 executions to explore the whole state-space
under SC, and 9, 11 under TSO and PSO, and found 3 data
races. For Weblech, which contains over 2K critical events,
MCR finished after explorating 185, 106 and 113 executions,
respectively, under SC, TSO and PSO, and found 6 data races.
The reason that MCR explored fewer executions under TSO
and PSO than that under SC is that bugs in Weblech that
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Table 3: Results of state-space exploration between our approach and DPOR. ∗ means timeout in one hour and � an exception
happened before finishing the experiment.

Program DPOR MCR (our approach) SpeedUp
SC TSO PSO SC TSO PSO SC TSO PSO

Dekker 248 252 508 62 98 155 4.0X 2.6X 3.3X
Lamport 128 208 2672 14 91 102 9.1X 2.3X 29.4X
Bakery 350 1164 2040 77 158 165 4.5X 7.1X 12.4X
Peterson 36 95 120 13 18 19 2.8X 5.3X 6.3X
StackUnsafe 252 252 252 29 46 108 8.7X 5.5X 2.3X
RVExample 1959 � � 57 64 70 34.4X � �

Example
(N = 1 to 4)

4 4 � 2 2 10 2.0X 2.0X �
105 105 � 43 43 89 2.4X 2.4X �
4282 4282 � 296 296 819 14.5X 14.5X �

14840∗ 14840∗ � 2767 2767 8420 5.4X 5.4X �

Avg. 435 394 1118 42 79 103 10.4X 5.0X 10.9X

Table 4: Results of bug finding between our approach, DPOR and SATCheck. � means the tool failed to run on the benchmark,
! the tool finished the exploration without finding the bug, ∗ the tool repeats the same execution and did not terminate. Since
SATCheck does not support PSO, we only report its results on SC and TSO.

Program DPOR SATCheck MCR (our approach)
SC TSO PSO SC TSO SC TSO PSO

Dekker 22 28 29 32∗ 68735∗ 10 4 5
Lamport 6 8 24 � � 2 2 3
Bakery 12 15 15 � � 8 8 15
Peterson 4 5 6 19! 34282∗ 7 2 3
StackUnsafe 6 6 6 � � 2 2 2
RVExample 301 � � 60564∗ 70365∗ 53 54 39
Example 14840! 14840! � 1! 1! 2767! 2767! 3

Table 5: Results of MCR under SC, TSO and PSO on real
programs for state-space exploration and bug finding.

Program
#Executions # Data Races

SC TSO PSO SC TSO PSO
Account 7 12 12 3 3 3
Airline 8 11 11 0 0 0

StringBuf 3 3 3 0 0 0
Allocation 30 30 30 0 0 0
PingPong 411 483 527 7 7 7
Weblech 178 103 116 6 6 6

lead to runtime exceptions are revealed faster under TSO and
PSO.

7. RELATED WORK
Stateless model checking (SMC) prevails since the pioneering
work of VeriSoft [17]. Since then a large research effort has
been dedicated to reduction techniques that alleviate the state
explosion problem. The most popular techniques known are
Partial Order Reduction (POR) [12, 16] and context bound-
ing [31, 32], while context bounding does not reduce redun-
dancy but limits the search space to polynomial. A number of
techniques [3, 13, 31] based on POR or combining them have

been proposed to improve and optimize the performance of
POR. However, as pointed out in MCR [21], the effective-
ness of POR is limited by happens-before: it cannot reduce
redundant interleavings that have different happens-before re-
lations. Although MCR can maximally reduce the redundant
exploration, it assumes SC and does not allow reordering of
operations out of program order. The key conceptual contribu-
tion of this paper is enhancing MCR to support TSO and PSO
by solving two challenge problems: relaxed happens-before
modeling, and replay.

The feasibility of verifying concurrent programs under
relaxed memory models have been studied before [6, 7, 9].
Abdulla et al. [4] apply SMC techniques to TSO and PSO
by adopting a chronological trace presentation to relax the
behavior of SC. Similar to [4], Zhang et al. [38] develop an
approach that extends the original DPOR algorithm [16] to
support TSO and PSO. The approach refines the dependent
set to allow the reordering and introduces shadow threads
to simulate the non-determinism of independent events by
each thread. Both of the two approaches leverage DPOR to
reduce the state space. However, since DPOR is limited by the
happens-before relation, these approaches are less effective
than MCR.
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Several constraint-based approaches have also been pro-
posed for verifying concurrent programs, including Check-
Fence [8], SATCheck [15] and MemSAT [36]. CheckFence
verifies concurrent data structures for relaxed memory mod-
els by explicitly encoding all relevent events into a boolean
formula. MemSAT verifies various weak memory models by
specifying the memory model as a set of constraints in rela-
tional logic. By solving the constraints that encode both the
memory specifications and the program assertions, it is able
to find subtle bugs in test programs that satisfy the constraints.

There also exist several hybrid techniques [10, 11] that
combine stateless model checking with testing. Sober [10]
develops a run-time monitoring algorithm to detect violations
of SC by exploring SC-only executions and checking their
correctness via a model checker. Similar to our approach, RE-
LAXER [11] replays the program under an active scheduler
that enforces the semantics of relaxed memory models by
delaying selected writes or reads. However, as a testing tool,
RELAXER is unsound that it does not explore all state-space
and it may miss bugs.

8. CONCLUSION
We have presented an extension of MCR for stateless model
checking of concurrent programs under TSO and PSO. Our
approach solves two key technical challenges. First, how
to generate new unique interleavings by formulating the
operational semantics of TSO and PSO as first-order logical
constraints. Second, how to deterministically execute the
program following the generated TSO and PSO interleavings.
By relaxing the must happen-before constraints in MCR to
allow TSO and PSO reorderings, and by developing novel
replay algorithms that allow executions out of program order,
our approach enables MCR to effectively verify concurrent
programs for TSO and PSO. We have also presented our
experimental results of applying MCR on both popular
benchmarks and real applications and comparing MCR with
DPOR and SATCheck. Our results show that our approach
is much more effective than the other approaches for both
state-space exploration and bug finding.
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