
CSIDH ON THE SURFACE (CSURF)

ISOGENY-BASED CRYPTOGRAPHY SCHOOL, WEEK 3: 19-23 JULY 2021
(LECTURE NOTES BY WOUTER CASTRYCK)

These notes discuss the paper [2], which is joint work with Thomas Decru.

1. Endomorphism rings of supersingular elliptic curves over Fp
Throughout this text, we work with supersingular elliptic curves E over a prime

field Fp of characteristic p > 3. Such curves satisfy #E(Fp) = p+1, which in turn
implies that the Frobenius endomorphism π : E → E satisfies π2 = π ◦ π = [−p].
Exercise 1. Prove this last claim.

Let us write Endp(E) for the ring of endomorphisms of E that are defined over
Fp. The previous observation implies that Z[

√
−p] can be viewed as a subring of

Endp(E), through the injection

ιE : Z[
√
−p]→ Endp(E) : m+ n

√
−p 7→ [m] + [n] ◦ π.

From [19, §2 and §4] we know that Endp(E) is an order in an imaginary quadratic
field; necessarily, that field is isomorphic to Q(

√
−p).

We are not left with many options for Endp(E). Indeed, if p ≡ 1 mod 4 then we
know that Z[

√
−p] is the maximal order (= ring of integers) of Q(

√
−p), therefore

ιE must be an isomorphism. On the other hand, if p ≡ 3 mod 4 then the maximal
order is Z[(1 +

√
−p)/2], which is larger than Z[

√
−p] but only slightly: the index

is 2 so there is no room for another ring in between. We conclude that either
Endp(E) ∼= Z[

√
−p] or Endp(E) ∼= Z[(1+

√
−p)/2]. In the latter case, there exists

a unique endomorphism φ ∈ Endp(E) such that [2] ◦ φ = [1] + π, and we can
extend ιE to an isomorphism

Z[(1 +
√
−p)/2]→ Endp(E) : m+ n(1 +

√
−p)/2 7→ [m] + [n] ◦ φ,

that we still denote by ιE, by a mild abuse of notation.
The following terminology is key to our discussion and will be motivated in

Sections 3 and 4.

Definition 1. Over a finite prime field Fp with p ≡ 3 mod 4 and p > 3, a
supersingular elliptic curve with endomorphism ring Z[

√
−p] is said to live on the

floor, while a supersingular elliptic curve with endomorphism ring Z[(1+
√
−p)/2]

is said to live on the surface (also known as the crater).
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Both the floor and the surface are non-empty, i.e., both endomorphism rings occur:
you will check this in Exercise 2 below. One can also use Theorem 2 to see this.

The following criterion, which is taken from [10, §2], makes it very easy to
decide at which level we are: it suffices to look at the Fp-rational 2-torsion points.

Lemma 1. Consider a supersingular elliptic curve E over a prime field Fp with
p > 3. Then either #E[2](Fp) = 2 or #E[2](Fp) = 4, and we are in the latter
case if and only if Endp(E) ∼= Z[(1 +

√
−p)/2].

Proof. There exists at least one Fp-rational point of order two because #E(Fp) =
p+ 1 is even, and we of course have #E[2](Fp) ≤ #E[2] = 4, from which the first
claim follows. As for the second claim:
⇐ Any P ∈ E[2] satisfies P + π(P ) = 2φ(P ) = φ(2P ) = 0 and therefore
π(P ) = −P = P . Hence E[2] ⊂ E(Fp), as wanted.
⇒ Conversely, if E[2] ⊂ E(Fp) then any P ∈ E[2] satisfies P + π(P ) = 2P = 0,

hence ker[2] ⊂ ker(1 + π). The existence of an endomorphism φ ∈ Endp(E) such
that 2 ◦ [φ] = 1 + π now follows from [16, Cor. III.4.11]. �

Exercise 2. Consider the elliptic curves E± : y2 = x3 ± x over Fp with p ≡
3 mod 4 and p > 3. Prove that both curves are supersingular. Use Lemma 1 to
prove that Endp(E+) ∼= Z[

√
−p] and Endp(E−) ∼= Z[(1 +

√
−p)/2]. In the latter

case, can you give an explicit description of the endomorphism φ?

The reason for excluding p = 3 throughout these notes is to avoid pathologies of
the following kind (as a bonus exercise, you can show that the assumption p > 3
can in fact be dropped from the previous exercise):

Exercise 3. Consider the elliptic curve E : y2 = x3 + 2x+ 1 over F3. Show that
it is supersingular, that Endp(E) ∼= Z[(1 +

√
−3)/2] and that E[2](Fp) = ∅.

2. A quick recap of CSIDH

Let us call to mind the “CM torsor”, at the level of generality needed for this
lecture:

Theorem 2 (CM torsor). Consider a prime p > 3, and let O = Z[
√
−p] if

p ≡ 1 mod 4 and either O = Z[
√
−p] or O = Z[(1 +

√
−p)/2] if p ≡ 3 mod 4.

Write E`̀ p(O) to denote the set of all Fp-isomorphism classes of supersingular
elliptic curves E/Fp with Endp(E) ∼= O. Then the map

cl(O)× E`̀ p(O)→ E`̀ p(O) : ([a], E) 7→ [a]E := E/E[a],

where
E[a] =

⋂
α∈a

ker ιE(α),

is a well-defined free and transitive group action.

Proof. This is a special case of [19, Thm. 4.5].1 �

1The proof of [19, Thm. 4.5] contains a small error that was pointed out in [14, Proof of
Thm. 4.5], but this does not affect our statement.
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We also recall that if the norm of a is not a multiple of p, then this norm equals the
cardinality of E[a]. In turn, this equals the degree of the corresponding isogeny
E → E/E[a].

It is believed that computing [ab]E from a given triple E, [a]E, [b]E for secret
random [a], [b] ∈ cl(O) is very hard on average, even for quantum computers.
Following [8], this problem is called the parallelization problem. It immediately
gives rise to the Diffie–Hellman style key exchange protocol depicted in Figure 1.
In practice, Alice and Bob deviate from this protocol, in that they do not sample

Alice Bob
agree on E ∈ E`̀ p(O)

secret [a]
$← cl(O)

computes
[a]E

[a]E

secret [b]
$← cl(O)

computes
[b]E

[b]E

secret key:
[b]([a]E)

secret key:
[a]([b]E) = [ab]E =

Figure 1. Diffie–Hellman key exchange using the CM torsor

their ideal classes [a] and [b] uniformly at random, because both sampling a ran-
dom ideal class and computing its action are currently infeasible. Instead, they
generate them as

[l1]
e1 [l2]

e2 · · · [lr]er

for certain “easy ideals” l1, . . . , lr, where the secret exponent vector (e1, . . . , er)
is sampled from a set of size about # cl(O) ≈ √p.2 The protocol then relies on
the heuristic assumption that this way of sampling from cl(O) is close enough to
uniform [4, §7.1]. The more “easy ideals” we have at our disposal, the merrier:

Exercise 4. Assume that all ei are sampled uniformly randomly from a fixed,
appropriately sized balanced interval, i.e., an interval of the form [−B,B] for
some appropriate B. Show that the expected number of actions with the “easy
ideal” classes [li]

±1 needed for Alice’s public key generation is about r 2r
√
p/4.

We briefly recall how this works for CSIDH, while referring to [4] and to Tanja’s
lecture for more details. We work in the orbit of y2 = x3 + x over Fp, where

(1) p = 4`1`2 · · · `r − 1

for distinct small odd primes `1, . . . , `r. Note that p ≡ 3 mod 8 and p > 3 (we
assume r ≥ 1). From Exercise 2 we see that we are working on the floor, i.e., with
elliptic curves in E`̀ p(Z[

√
−p]). The prime p is constructed such that `iZ[

√
−p] =

lili for all i = 1, . . . , r, where li = (`i,
√
−p − 1) and where li = (`i,

√
−p + 1) is

2We refer to Section 7 for more precise class number estimates
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its complex conjugate. The ideal class [li] has inverse [li] and is not of very small
order.3 It is “easy” to act with, because for each E ∈ E`̀ p(Z[

√
−p]) the group

E[li] = {P ∈ E | [`i]P = 0 and π(P ) = P } = E[`i](Fp)
is small and defined over Fp (element-wise), indeed allowing for a fast computation
of the isogenous curve E/E[li]. The basic strategy is:

(a) select a random point Q ∈ E(Fp),
(b) compute P = [p+1

`i
]Q using double-and-add; return to step (a) if P = 0,

(c) quotient out the subgroup E[li] = 〈P 〉 using Vélu’s formulae.

The cost of step (b) can be amortized by precomputing a point of order `i1 · · · `is
for some well-chosen set of indices {i1, . . . , is} and pushing it through the corre-
sponding isogenies: in this way one can reduce the number of large scalar multi-
plications. We refer to [4, Alg. 2] for more details.

We can use balanced exponents as in Exercise 4 because [li] = [li]
−1 is equally

easy to act with. This may seem a non-trivial claim, because here the kernel

E[li] = {P ∈ E | [`i]P = 0 and π(P ) = −P }
= { 0 } ∪ { (x, y) ∈ E[`i] |x ∈ Fp, y ∈ Fp2 \ Fp }

contains points that are not defined over Fp. Nevertheless, it remains possible to
stick to Fp-arithmetic by using formulae that involve x-coordinates only. Alter-
natively, one can resort to the rule

(2) [a]−1E = ([a]Etwist)twist

from [5, Lem. 5], where ·twist stands for quadratic twisting, which is a very cheap
operation.

Example 1. The CSIDH-512 parameter set from [4] takes r = 74, with `1, . . . , `73
the first 73 odd primes and with `74 = 587, so that p ≈ 2511. We work with
balanced exponents, all sampled from {−5, . . . , 5}. This gives rise to an exponent
set of size (2 · 5 + 1)74 ≈ 2256 ≈ √p.

Further optimizations come from the use of Montgomery curves y2 = x3+Ax2+
x, which admit fast Vélu-type formulae, fast formulae for scalar multiplication,
and fast key validation; these features will be revisited in Section 6.

3. What about 2-isogenies?

Consider an elliptic curve E ∈ E`̀ p(Z[
√
−p]) for p a CSIDH prime as in (1).

Then we know that

E[(2,
√
−p− 1)] = {P ∈ E | [2]P = 0 and π(P ) = P } = E[2](Fp)

is a subgroup of order 2, thanks to Lemma 1. So it is the kernel of a 2-isogeny
emanating from E. Why aren’t such isogenies used during key generation? After
all, as discussed in Exercise 4, the more “easy isogenies” we have at our disposal,
the better, and computing 2-isogenies should be easier than computing isogenies
of any other degree.

3You will prove a statement of this kind in Exercise 9.
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The problem is that (2,
√
−p − 1) does not represent an element of the class

group:

Exercise 5. Prove that, for p ≡ 3 mod 4, the ideal (2,
√
−p− 1) is not invertible

(as a fractional ideal) in Z[
√
−p]. Hint: show that squaring the ideal amounts to

multiplying it by (2), and conclude.

It can be argued, see [10], that the subgroup E[(2,
√
−p− 1)] = E[2](Fp) takes us

to the surface, i.e., the codomain of the corresponding isogeny is an elliptic curve
whose endomorphism ring is the maximal order Z[(1 +

√
−p)/2].

But then, why not working with elliptic curves E on the surface, by considering
the orbit of y2 = x3 − x instead of y2 = x3 + x (see Exercise 2)? Recall that the
CM torsor is available at both levels, and in maximal orders every non-zero ideal
corresponds to an element of the class group, so this should avoid pathologies of
the foregoing kind. Unfortunately, we again run into trouble, now for a different
reason: while there are 3 outgoing 2-isogenies over Fp (one for each Fp-rational
point of order 2), none of them has a kernel of the form E[a] for some ideal
a ⊂ Z[(1 +

√
−p)/2]. It turns out that, perhaps not surprisingly, each of these 3

isogenies takes us to the floor. We again refer to [10] for a proof of these claims.

E`̀ p(Z[(1 +
√
−p)/2])

E`̀ p(Z[
√
−p])

Figure 2. Some components of the 2-isogeny graph of supersingu-
lar elliptic curves over Fp if p ≡ 3 mod 8 and p > 3 (as in CSIDH).

The crucial ingredient is that CSIDH primes satisfy p ≡ 3 mod 8. A summarizing
picture can be found in Figure 2.

Here is a short exercise showing the failure of two naive candidates for a.

Exercise 6. Show that (2,
√
−p − 1) = (2) as ideals of Z[(1 +

√
−p)/2], and

explain why this is just a reinterpretation of ⇐ in the proof of Lemma 1. Using
that p ≡ 3 mod 8, show that the ideal (2, (

√
−p− 1)/2) is the trivial ideal (1).

Returning to Z[
√
−p], we remark that while we don’t have horizontal (= endo-

morphism ring preserving) isogenies of degree 2, we do have horizontal isogenies
of degree 4:

Exercise 7. Let p ≡ 3 mod 8. Show that the ideal l0 = (4,
√
−p− 1) is invertible

in Z[
√
−p] and that its class [l0] has order 3. Show that for p a CSIDH prime as

in (1), the inverse of [l0] equals [l1] · · · [lr]. Finally, prove that acting with [l0] on
E`̀ p(Z[

√
−p]) amounts to cyclically permuting the 3 elliptic curves below a fixed

curve on the surface.
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Onuki and Takagi [12, §4.2] showed that acting with [l0] is remarkably easy: it
amounts to replacing the Montgomery coefficient A by 2(A − 6)/(A + 2). Thus,
despite its low order, one can expect a small efficiency gain from including [l0]
in the pool of “easy ideals” and letting the corresponding exponent e0 range in
{−1, 0, 1}.

Unfortunately, there is another, more compelling end to this story, which kills
this optimism:

Exercise 8. Let p ≡ 3 mod 8. As we have discussed, the map

mE`̀ : E`̀ p(Z[
√
−p])→ E`̀ p(Z[(1 +

√
−p)/2]) : E → E/E[2](Fp)

from the floor to the surface is 3-to-1. Prove that the group homomorphism

mcl : cl(Z[
√
−p])→ cl(Z[(1 +

√
−p)/2]) : [a] 7→ [aZ[(1 +

√
−p)/2]],

is also 3-to-1 and that its kernel is generated by the ideal class [l0] from the previous
exercise. Finally, show that both maps are compatible with the CM torsor, in that

mE`̀ ([a]E) = mcl([a])mE`̀ (E)

for all E ∈ E`̀ p(Z[
√
−p]) and all [a] ∈ cl(Z[

√
−p]).

This reduces the hardness of the parallelization problem in E`̀ p(Z[
√
−p]) to that

in E`̀ p(Z[(1 +
√
−p)/2]), where the acting class group is 3 times smaller. Thus,

our small efficiency gain is negatively compensated by a small security loss.

4. Changing the prime p

Wrapping up, if p ≡ 3 mod 8 then neither Z[
√
−p] nor Z[(1 +

√
−p)/2] admits

invertible ideals of norm 2. Can we fix this by switching to other p’s?
If p ≡ 7 mod 8 then the floor is equally problematic: the ring Z[

√
−p] again has

no invertible ideals of norm 2. But on the surface, things look more promising: we
have 2Z[(1+

√
−p)/2] = l0l0 with l0 = (2, (

√
−p−1)/2) and l0 = (2, (

√
−p+1)/2).

The ideal class [l0] has inverse [l0] and is not of very small order:

Exercise 9. Show that the order of [l0] in cl(Z[(1+
√
−p)/2]) is at least dlog2 pe.4

Thus, we have a good candidate for inclusion in our pool of “easy isogenies”.
However, it has a slightly different shape than we are used to; we will get back to
this in a minute.

It remains true that every curve E on the surface admits 3 outgoing 2-isogenies
over Fp, one for each Fp-rational point of order 2. But now, two of their kernels

are of the desired form, namely E[l0] and E[l0]. The third kernel is not of the form
E[a] for some ideal a ⊂ Z[(1 +

√
−p)/2], and the corresponding isogeny takes us

to the floor. Once again, we refer to [10] for a proof. A summarizing picture can
be found in Figure 3, where one sees a genuine volcano graph [18] showing up:
this is where the floor versus surface terminology comes from.

A CSURF prime is then a prime of the form

(3) p = 4f`0`1`2 · · · `r − 1

4Most likely, the order is way larger than this lower bound.
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E`̀ p(Z[(1 +
√
−p)/2])

E`̀ p(Z[
√
−p])

Figure 3. A component of the 2-isogeny graph of supersingular
elliptic curves over Fp when p ≡ 7 mod 8 (as in CSURF). The length
of the cycle equals the order of [(2, (

√
−p− 1)/2)].

where `0 = 2, where `1, . . . , `r are distinct small odd primes, and where f is a
small cofactor (it can be useful to tolerate this). As said, we work on the surface,
i.e., in the orbit of y2 = x3 − x over Fp. We again have

`iZ[(1 +
√
−p)/2] = (`i,

√
−p− 1)︸ ︷︷ ︸ (`i,

√
−p+ 1)︸ ︷︷ ︸

li li

for all i = 1, . . . , r, and acting with [li] or [li] is done as in CSIDH. Thus we can
concentrate on how to act with [l0] and [l0], which seems to require a different
treatment. Indeed,

E[l0] = {P ∈ E | [2]P = 0 and φ(P ) = P }
is not of the form E[2](Fp), so at first sight, it seems that our basic strategy (a-c)
from Section 2 fails: how can we make sure that the order-2 point P from step
(b) is a generator of E[l0]?

Exercise 10. Let p ≡ 3 mod 4 and consider an elliptic curve E : y2 = x3+ax2+bx
over Fp, where a, b ∈ Fp satisfy b(a2 − 4b) 6= 0. Prove that b is a square in Fp
if and only if the four halves of (0, 0) have x-coordinates in Fp. Hint: find two
expressions for the slope of the tangent line at such a half, and equate.

Lemma 3. Assume p ≡ 7 mod 8 and consider an elliptic curve E ∈ E`̀ p(Z[(1 +√
−p)/2]). Its 3 points of order 2 can be classified as follows:

• a point P→ whose four halves belong to E(Fp),
• a point P← whose four halves have x-coordinates in Fp and y-coordinates

outside Fp,
• a point P↓ whose four halves have x-coordinates outside Fp.

Furthermore, we have E[l0] = 〈P→〉 and E[l0] = 〈P←〉, while quotienting out 〈P↓〉
takes us to the floor E`̀ p(Z[

√
−p]).

Proof. If E[4](Fp) = E[4] then the curve on the floor which is 2-isogenous to
E would have all its 2-torsion defined over Fp (explain), in contradiction with
Lemma 1. Therefore we know that E[4](Fp) ( E[4]. Together with E[2](Fp) =
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E[2] and #E(Fp) = p + 1 ≡ 0 mod 8, this implies that E[4](Fp) ∼= Z2 × Z4. In
particular, there is a unique point P→ ∈ E[2] whose halves are defined over Fp,
namely, the point that corresponds to (0, 2) ∈ Z2 × Z4.

Using a change of variables if needed, we can assume that E : y2 = x3+ax2+bx
for certain a, b ∈ Fp and that P→ = (0, 0). From Exercise 10 we know that b is a
square. When translating the other points of order 2 to the origin, we get similar
equations, of which the coefficients at x become δ(δ ± a)/2 with δ2 = a2 − 4b.
The product of these coefficients equals the non-square −bδ2, so one of them is
a square and the other one is not. The classification then follows from another
application of Exercise 10.

Finally, since

φ(P→) = φ(2Q→) = Q→ + π(Q→) = 2Q→ = P→,

where Q→ denotes any half of P→, we know that E[l0] = 〈P→〉. A similar calcula-
tion (do it) shows that E[l0] = 〈P←〉. By exclusion, we then know that 〈P↓〉 must
take us to the floor. �

Thus our strategy (a-c) from Section 2 works better than expected. Indeed, the
point P = [(p + 1)/2]Q from step (b) admits [(p + 1)/4]Q as an Fp-rational half,
therefore it is guaranteed to generate E[l0].

Example 2. The CSURF-512 parameter set from [2] again takes r = 74 and lets

p = 4 · 3 · (2 · 3 · . . . · 389)︸ ︷︷ ︸
75 consecutive primes,

skip 347 and 359

− 1

which is about 2513. Thanks to the extra prime `0 = 2, we can sample the last 12
exponents e63, . . . , e74 from {−4, . . . , 4} rather than {−5, . . . , 5}, still covering an
exponent set of size (2 · 5 + 1)63(2 · 4 + 1)12 ≈ 2256 ≈ √p.

We end this section with a comment on the remaining case p ≡ 1 mod 4. Here,
the ideal (2,

√
−p − 1) ⊂ Z[

√
−p] is invertible of norm 2, but it squares to the

principal ideal (2), so its class has order 2. Repeatedly acting with this ideal class
makes us jump back and forth between two supersingular elliptic curves over Fp;
see Figure 4. Therefore 2-isogenies are not of great help here: when included

E`̀ p(Z[
√
−p])

Figure 4. Some components of the 2-isogeny graph of supersingu-
lar elliptic curves over Fp when p ≡ 1 mod 4.

in the pool of “easy isogenies”, it only makes sense to sample the corresponding
exponent e0 from {0, 1}. To make things worse, the 2-torsion part of the class
group does not offer any security, and somehow even compromises it [6, Thm. 10];
see Jana’s lecture for more details.
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5. Chains of 2-isogenies

Although our basic approach (a-c) successfully produces the generator P→ of
E[l0], this method is suboptimal. Indeed, an optimistic estimate for the cost of
the scalar multiplication in step (b) is 10 log p multiplications in Fp [7, §13.2], and
since there is a 50% chance of hitting P = 0, that cost is doubled on average. On
the other hand, writing E : y2 = f(x), we know that P→ = (α, 0) for some root α
of f(x). The roots of f(x) can be found using the Cantor–Zassenhaus algorithm,
after which one can determine which root corresponds to P→ by computing halves.

Exercise 11. Make a rough estimate of the expected cost of this approach, and
show that it improves upon our basic strategy (a-c).

The gain is not spectacular. Moreover, remember from Section 2 that the cost of
scalar multiplication can be amortized over various primes `i by pushing points
through isogenies. In view of this, implementing the root-finding approach seems
not worth the effort.

This story changes radically when considering chains of 2-isogenies, i.e., when
computing the action of [l0]

e0 for some e0 > 1. Indeed, after the first isogeny, we
get the point P← for free, since it is the generator of the kernel of the dual isogeny
(remember that l0l0 = (2)). Thus we are left with a quadratic polynomial, rather
than a cubic one.

Explicitly, for the first application of [l0] we find the point P→ using the basic
approach, and we position it at the origin:

(4) E : y2 = x3 + ax2 + bx, P→ = (0, 0).

The isogenous curve [l0]E = E/〈P→〉 is then given by

E1 : y2 = x3 − 2ax2 + (a2 − 4b)x

with (0, 0) generating the dual isogeny [17, Prop. on p. 79], so it concerns the point
P← of E1. For the next application of [l0], we need to find P→ ∈ E1. The roots of
x2 − 2ax+ a2 − 4b are a± 2β for some square root β ∈ F×p of b, so we know that

{(a± 2β, 0)} = {P→, P↓}.

To decide which point is which, in view of Lemma 3, it suffices to check whether
or not (a + 2β, 0) has a half with x-coordinates in Fp. To that end, let us move
(a+ 2β, 0) to the origin, in order to end up with a new defining equation

y2 = x3 + (a+ 6β)x2 + 4β(a+ 2β)x

for E1. In view of Exercise 10, we need to check whether 4β(a + 2β) is a square
or not.

We see that finding P→ on E1 can be done through a square root computation
(to determine β), followed by an additional quadratic residuosity check. This is
already much better than the basic approach using scalar multiplication. However,
interestingly, the quadratic residuosity check can be avoided! The reason is that
a+ 2β is always a square, regardless of our choice of β:
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Lemma 4. Assume p ≡ 7 mod 8 and consider an elliptic curve E : y2 = x3 +
ax2+bx in E`̀ p(Z[(1+

√
−p)/2]) such that b is the square of some element β ∈ F∗p.

Then P→ = (0, 0) if and only if a± 2β are both squares in F∗p.

Proof. An explicit computation shows that the halves of (0, 0) are

(β,±β
√
a+ 2β), (−β,±β

√
a− 2β)

(e.g., by your solution to Exercise 10) from which the lemma follows readily. �

Thus, in order for 4β(a+ 2β) to be a square, it suffices to let β be the principal
square root of b, i.e., the unique square root which is a square itself:

Exercise 12. Consider a prime number p ≡ 3 mod 4 and a square b ∈ F×p . Prove
that b has exactly one square root which is again a square, and show that it can
be computed as b(p+1)/4.

Summing up, in the first step one determines P→ using the basic approach,
after which one rewrites the curve in the form (4). Then one iteratively computes
β = b(p+1)/4 and substitutes a ← a + 6β, b ← 4β(a + 2β). The expected cost of
each iteration is ≈ 1.5 log p, which is about 13 times smaller than the expected
cost of the basic approach.

Example 3. Revisiting the CSURF-512 parameters, computer experiments sug-
gest that sampling e0 from {−137, . . . , 137} is near-optimal. This allows one to
sample 28 exponents from {−4, . . . , 4} rather than {−5, . . . , 5}, still covering an
exponent set of size (2 · 137 + 1)(2 · 5 + 1)46(2 · 4 + 1)28 ≈ 2256 ≈ √p. This leads
to a modest but noticeable speed-up of 5.68% for key generation, when compared
to CSIDH-512. The effect is likely to decrease as p grows, due to the reduced
relative weight of 2-isogenies.

We finally remark that the above ideas can be generalized to isogenies of larger
degree (although it scales badly), leading to a further speed-up. We refer to Fre’s
lecture on radical isogenies [3] for more details.

6. Choice of curve model

In CSIDH one works with Montgomery curves y2 = x3+Ax2+x, A ∈ Fp\{±2},
which have been studied intensively over the past decades. They enjoy well-
optimized formulae for scalar multiplication [7, §13.2.3] and isogeny computa-
tion [13, §4]. Conveniently, the starting curve y2 = x3 + x is already in Mont-
gomery form, and:

Proposition 5. Consider a prime p > 3 satisfying p ≡ 3 mod 8. Let E/Fp be a
supersingular elliptic curve. Then Endp(E) ∼= Z[

√
−p] if and only if there exists

an A ∈ Fp \ {±2} such that E is Fp-isomorphic to y2 = x3 +Ax2 + x. Moreover,
if such an A exists then it is unique.

Proof. This is [4, Prop. 8]. �
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Besides the convenience of having a unique and compact representant for each
curve E ∈ E`̀ p(Z[

√
−p]), this allows for an easy validation of Alice and Bob’s

public keys: all one needs to do is check for supersingularity. See [4, §5] for more
details.

For a CSURF prime p, the situation is more subtle. Firstly, both the floor
E`̀ p(Z[

√
−p]) and the surface E`̀ p(Z[(1+

√
−p)/2]) contain Montgomery curves [2,

Tbl. 1], so we can no longer hope for an “if and only if” as in Proposition 5.
Secondly, on the surface, we do not have uniqueness:

Proposition 6. Consider a prime p ≡ 7 mod 8. Let E/Fp be a supersingular
elliptic curve with endomorphism ring Z[(1 +

√
−p)/2]. There exist precisely two

coefficients A ∈ Fp \{±2} such that E is Fp-isomorphic to y2 = x3 +Ax2 +x. For
one of these coefficients, the point (0, 0) on the corresponding Montgomery curve
is the point P→. For the other coefficient, it concerns the point P←.

Exercise 13. Prove Proposition 6. Hint: use Exercise 10 and mimic the relevant
parts of the proof of Proposition 5.

Exercise 14. Show that if a Montgomery curve y2 = x3 + Ax2 + x satisfies
(0, 0) = P→, then its quadratic twist admits the model y2 = x3 − Ax2 + x, which
then satisfies (0, 0) = P←.

In order to have a unique representant, we suggest to work with Montgomery
curves for which (0, 0) = P→, even though this choice is somewhat arbitrary. This
has the following effect on key validation: besides checking supersingularity, one
should also verify that A ± 2 are both squares. This indeed guarantees that the
curve y2 = x3 +Ax2 +x is located on the surface, because it has 3 rational points
of order 2 (the discriminant A2 − 4 = (A + 2)(A − 2) is a square), and that
(0, 0) = P→ thanks to Lemma 4.

When computing isogenies of odd degree using the formulae from [13, §4], the
property (0, 0) = P→ is preserved. Thus the action of [l1]

e1 · · · [lr]er can be evalu-
ated exactly as in the case of CSIDH. As for the action of [l0]

e0 : if e0 is positive
then we proceed as in Section 5, where we note that the first instance of P→ comes
for free (i.e., no large scalar multiplication is needed). If e0 is negative then we
resort to (2): we switch to the quadratic twist, proceed as in Section 5, and twist
back.

It remains to fix a starting curve for Alice and Bob. From Exercise 2 we know
that y2 = x3 − x ∈ E`̀ p(Z[(1 +

√
−p)/2]), but this equation is not in the desired

form: we still need to position the point P→ at the origin. For this we substitute
x← x+ 1, to obtain the curve

(5) y2 = x3 + 3x2 + 2x,

which meets the requirements of Lemma 4: indeed, since p ≡ 7 mod 8 we know
that 2 is a square in F×p , and then so are 3 ± 2

√
2 = (1 ±

√
2)2. We obtain the

genuine Montgomery form

y2 = x3 + (3/
√

2)x2 + x

11



by means of a suitable rescaling of the variables.5

We conclude by remarking that it is also possible to work with the Montgomery−

form y2 = x3 + Ax2 − x, which is obtained by positioning P↓ at the origin and
which is unique:

Proposition 7. Consider a prime p ≡ 7 mod 8 and let E/Fp be a supersingular
elliptic curve. Then Endp(E) ∼= Z[(1 +

√
−p)/2] if and only if there exists an

A ∈ Fp such that E is Fp-isomorphic to y2 = x3 +Ax2 − x. Moreover, if such an
A exists then it is unique.

Proof. See [2, Prop. 4]. �

Because the Montgomery formulae for scalar multiplication and isogenies can
be turned into analogous formulae for Montgomery− curves with just a few sign
flips [2, §3.1], and in view of the resimplified key validation enabled by Proposi-
tion 7, it is tempting to switch to the Montgomery− form. This is exactly what
we put forward in [2]. However, we overlooked a subtlety that was pointed out to
us by Luca De Feo: at a low level [11, p. 261], Montgomery arithmetic exploits the
factorization x(P )2 − 1 = (x(P ) + 1)(x(P ) − 1) of the numerator of the formula
for x([2]P ), which does not carry over nicely to its Montgomery− counterpart
x(P )2 + 1. As a result, scalar multiplication becomes slightly less efficient. This,
together with a worsened compatibility with the 2-isogeny chains discussed in
Section 5, makes it more reasonable to stick to plain Montgomery curves.

7. A note on the size of the class group

For each positive squarefree integer d we write h(−d), resp. ∆(−d), for the class
number (= size of the class group), resp. the absolute value of the discriminant,
of the imaginary quadratic field Q(

√
−d). Recall that ∆(−d) = d if d ≡ 3 mod 4,

and that ∆(−d) = 4d if d ≡ 1 mod 4. Siegel proved that

log h(−d)

log
√

∆(−d)
→ 1

as d→∞, whence the popular estimate

(6) h(−d) ≈
√

∆(−d).

One should be careful with this statement: because of the logs, Siegel’s result
does not imply that the ratio h(−d)/

√
∆(−d) is in O(1). The best estimates for

this ratio are due to Littlewood, who under the generalized Riemann hypothesis
showed that it lies in the range[

(
π

12eγ
+ o(1))

1

log log ∆(−d)
, (

2eγ

π
+ o(1)) log log ∆(−d)

]
,

with γ the Euler-Mascheroni constant; one checks that eγ/π ≈ 0.56693.

5In some cases it may be interesting to omit this rescaling and directly work with (5), e.g.,
as input to the iteration from Section 5.
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Interestingly, if d is a CSIDH/CSURF prime p, then it has a strong preference
for the upper end of Littlewood’s range (which is good!). More concretely, we
have the following improved estimates over (6):

Estimate. For p a CSIDH prime, resp. a CSURF prime, we estimate

h(−p) ≈ eγ

3π

√
p log log p, resp. h(−p) ≈ eγ

π

√
p log log p.

As a small additional bonus worth log2(3) ≈ 1.58 bits, one finds that CSURF
primes tend to give rise to class groups that are 3 times as big when compared to
CSIDH.6

To explain the improved estimate, we content ourselves with a heuristic argu-
ment; note that we did not even rigorously define what CSIDH/CSURF primes
are, in that we did not quantify what it means for the `i’s to be small. For the
estimate, it is important that they are chosen “as small as possible”. For instance,
in the case of CSIDH, one could let `1, . . . , `r−1 be the first r− 1 odd primes, and
then choose `r minimal such that p = 4`1 · · · `r − 1 is prime.

Our central tool is the analytic class number formula:

Theorem 8. For all positive squarefree integers d > 3 satisfying d ≡ 3 mod 4 we
have

(7) h(−d) =

√
d

π

∏
primes `

`

`− χ−d(`)

where χ−d(`) is 0 if ` | d, it is the Legendre symbol
(−d
`

)
for odd ` - d, and it is

equal to (−1)(d
2−1)/8 if ` = 2 - d.

Proof. The analytic class number formula for imaginary quadratic fields can be
found in many textbooks and states that h(−d) = w(−d)

√
∆(−d)L(1, χ−d)/2π.

Here w(−d) denotes the number of units in the ring of integers of Q(
√
−d). Since

d ≡ 3 mod 4 and d > 3, we simply have ∆(−d) = d and w(−d) = 2. The factor
L(1, χ−d) is the evaluation at 1 of the Dirichlet L-function L(s, χ−d) with χ−d
the quadratic Dirichlet character for Q(

√
−d), which on primes takes the stated

values. The theorem follows by considering L(s, χ−d) in Euler product form, and
by using that the Euler product converges for s = 1. The latter claim is a bit
harder to find, but see e.g. this mathoverflow discussion. �

Exercise 15. Show that χ−d(`) = 1 if and only if ` splits in Q(
√
−d).

This immediately hints at why CSIDH/CSURF primes tend to yield large class
groups: by design, the small primes `i all split, so the Euler product in (7) starts
off with many factors that are bigger than 1. To quantify this, we estimate that
p is roughly equal to the product of all primes ` up to some bound B. The Prime
Number Theorem in Chebyshev’s form states that∑

`≤x

log ` ∼ x,

6To avoid confusion: in both cases we are talking about the class number of the maximal order,
i.e., this factor 3 is unrelated to the surface-versus-floor phenomena discussed in Exercise 8.
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implying that B ≈ log p. Let us first focus on the CSURF case, where these small
primes all split (except near the upper bound B). Then the Euler product begins
with ∏

`/log p

`

`− 1
,

which is about eγ log log p in view of Mertens’ third theorem. If p is a CSIDH
prime, then a similar estimate applies, but the first Euler factor

2

2− 1
becomes replaced by

2

2 + 1
,

i.e., the product scales down by a factor 3. The estimates now follow by simply
ignoring the Euler factors at primes ` larger than log p: this seems justified, as
these factors all lie very close to 1, and moreover they tend to “average out”
because χ−d(`) no longer has a preferred value. See [15] for a related discussion.

Example 4. For the CSIDH-512 prime this estimate is about 8.095·1076, whereas
the actual order of cl(Z[(1 +

√
−p)/2]), as computed in [1], is about 8.488 · 1076.

The naive estimate (6) is roughly 7.298 · 1076.

Regardless of these heuristics, we stress that the analytic class number formula
is a very useful tool for quickly computing class numbers up to high precision.
E.g., for CSIDH-512, computing

√
p

π

∏
`<106

`

`− χ−p(`)

already returns the class number to the above precision 8.488 · 1076.

Exercise 16. Use your favorite computer algebra package to compute the (un-
known) order of cl(Z[(1 +

√
−p)/2]), with p the CSIDH-1024 prime from [4], up

to 3 digits of decimal precision. Compare with the estimate (eγ/3π)
√
p log log p.

8. Take-away messages

(i) For a CSIDH prime p ≡ 3 mod 8, the class number # cl(Z[
√
−p]) contains

a factor 3 that offers no extra security; see Exercise 8.
(ii) Moving to cl(Z[(1 +

√
−p)/2]) with p ≡ 7 mod 8 comes with:

• a bonus “easy ideal” of norm 2, whose action can be computed very
efficiently, see Section 5
• a class group that regains a factor ≈ 3, which does not suffer from

the above security loss; see Section 7,
• a key validation requiring two additional quadratic residuosity checks;

see Section 6.
The resulting speed-up is small but noticeable. Overall there seems little
reason not to work on the surface, but don’t expect a dramatic impact.
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Solutions to some exercises

Exercise 1. The number of Fp-points on an elliptic curve E/Fp is given by the
formula p+1−α−α, with α, α the eigenvalues of π. These have absolute value

√
p,

so if #E(Fp) = p+ 1 then they must be equal to ±i
√
p. But then the characteris-

tic polynomial of π2 is given by (X − α2)(X − α2) = (X + p)2, so (π2 + [p])2 = 0,
which can only happen if π2 = [−p].

Exercise 2. The key ingredient is that −1 is not a square in F×p . This can be used
to answer the first question (prove that E± is supersingular), as follows: define

S1 = {x ∈ Fp |x3 ± x is a non-zero square },
S2 = {x ∈ Fp |x3 ± x = 0 },
S3 = {x ∈ Fp |x3 ± x is a non-square }

and note that #E±(Fp) = 2#S1 + #S2 + 1 (the +1 comes from the point at
infinity). Since −1 is a non-square, the sets S1 and S3 are in bijection via the map
x 7→ −x. Thus we find #E±(Fp) = #S1 + #S2 + #S3 + 1 = p + 1. The second
question is immediate from Lemma 1 and the observation that x3 +x = x(x2 + 1)
does not factor completely over Fp, while x3 − x = x(x− 1)(x+ 1) does.

The third question was a bit of an open question; I personally don’t know of
one uniform formula that covers all p. For the sake of illustration, let me include
an explicit description of φ for p = 7: it maps all affine points (x, y) 6= (−1, 0) to(

4(x+ 4)2

x+ 1
,
(x+ 4)(x+ 5)

(x+ 1)2
y

)
and it maps (−1, 0),∞ to ∞. So in this case the endomorphism is of degree 2
(for general p ≡ 3 mod 4 we have 4 deg φ = deg(1 + π) = p+ 17).

Exercise 9. Let r ≥ 1 denote the order of [l0] and assume by contradiction
that r < log2 p. We know that lr0 is principal, hence of the form (α) with α =
a+ b(1 +

√
−p)/2 for some a, b ∈ Z. Taking norms yields

2r =

(
a+

b

2

)2

+ p

(
b

2

)2

,

so our assumption implies b = 0. But then 2r = a2, so r is even and α = 2r/2. We
conclude

lr0 = (2r/2) = l
r/2
0 l

r/2

0 ,

which is impossible, in view of the unique ideal factorization property of Z[(1 +√
−p)/2].

7The fact that this equals deg 1 + deg π is incidental, i.e., it does not rely on some rule saying
deg(sum) = sum(degs)! The equality holds because there are p+1 points for which π(P ) = −P ,
which in turn follows from #E−(Fp) = p+ 1 (explain).
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Exercise 10. Let (x0, y0) be a half of (0, 0), and note that x0, y0 6= 0. The
tangent line at this point has slope

λ =
3x20 + 2ax0 + b

2y0
.

Because 2(x0, y0) = (0, 0), this tangent line should pass through −(0, 0) = (0, 0).
So another expression for λ is simply y0/x0. Equating both expressions and clear-
ing denominators yields 2y20 = 3x30+2ax20+bx0, and then substituting x30+ax20+bx0
for y20 and removing a factor x0 yields x20−b = 0. The statement is now immediate.

Exercise 14. Since −1 is not a square, the quadratic twist is given by −y2 =
x3 +Ax2 + x, and then the substitution x← −x yields the desired model. If the
point (0, 0) on y2 = x3 +Ax2 + x equals P→, then A± 2 are both squares in view
of Lemma 4. But then −A ± 2 are both non-squares, so again from Lemma 4
we see that the point (0, 0) on the twisted curve y2 = x3 − Ax2 + x is not the
point P→. By Exercise 10 it cannot be the point P↓ either, so it must concern the
remaining option P←.
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