Bounding distances to unsafe sets

Jared Miller, Mario Sznaier BrainPOP at LAAS-CNRS, June 28, 2021

Quantify safety of trajectories by distance to unsafe set

Relax distance using optimal transport theory

Develop occupation measure programs to bound distance

Flow System Setting

 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3] \qquad \forall t \in [0, 5]$

$$\begin{split} X_0 &= \{ x \mid (x_1 - 1.5)^2 + x_2 \leq 0.4^2 \} \\ X_u &= \{ x \mid x_1^2 + (x_2 + 0.7)^2 \leq 0.5^2, \\ \sqrt{2}/2(x_1 + x_2 - 0.7) \leq 0 \} \end{split}$$

Metric space (X, c) satisfying $\forall x, y \in X$:

$$c(x, y) > 0$$
 $x \neq y$
 $c(x, x) = 0$
 $c(x, y) = c(y, x)$
 $c(x, y) \leq c(x, z) + c(z, y)$ $\forall z \in X$

Point-Unsafe Set distance: $c(x; X_u) = \min_{y \in X_u} c(x, y)$

Distance Estimation Problem

L₂ bound of 0.2831

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^* x_0^*, t_p^*)$:

- x_p^* location on trajectory of closest approach
- y^* location on unsafe set of closest approach
- x_0^* initial condition to produce x_p^*
- t_p^* time to reach x_p^* from x_0^*

Safety Background

Barrier Program

Barrier function $B: X \to \mathbb{R}$ indicates safety

Half-circle Contours

Unsafe set
$$X_u = \{x \mid 1 - x_1^2 - x_2^2 \ge 0, -x_1 - x_2 \ge 0\}$$

Safety Margin

Unsafe set $X_{\mu} = \{x \mid p_i(x) \ge 0 \ \forall i = 1 \dots N_{\mu}\}$ Safety margin $p^* = \max \min_i p_i(x)$ along trajectories If $p^* < 0$, no trajectories enter X_{μ} (safe)

safe: $p^* \le -0.2831$

Safety Margin Scaling

Scale factor in constraints

 $q \leq 1 - x_1^2 - x_2^2$

$$q \leq \mathbf{s}(-x_1 - x_2)$$

Distance vs. Safety Margin

Peak Estimation

Peak Estimation Background

Find maximum value of p(x) along trajectories

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \max \langle p(x), \mu_p \rangle$$
$$\mu_p = \delta_{t=0} \otimes \mu_0 + \mathcal{L}_f^{\dagger} \mu$$
$$\langle 1, \mu_0 \rangle = 1$$
$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X)$$
$$\mu_0 \in \mathcal{M}_+(X_0)$$

Peak measure μ_p : free terminal time

(M., Henrion, Sznaier 2020) Solve $P^* = \max_x \min_i p_i(x)$ $p^* = \max q$ $q < \langle p_i(x), \mu_p \rangle$ $\forall i$ $\mu_{p} = \delta_{t=0} \otimes \mu_{0} + \mathcal{L}_{\epsilon}^{\dagger} \mu$ $\langle 1, \mu_0 \rangle = 1$ $\mu, \mu_p \in \mathcal{M}_+([0, T] \times X)$ $\mu_0 \in \mathcal{M}_+(X_0)$

Used for safety margins, $p^* \leq p_d^* < 0$

Distance Program

Distance Estimation Problem (reprise)

L₂ bound of 0.2831

Distance in points \rightarrow Earth-Mover distance

$$\begin{array}{ll} c(x,y) & \langle c(x,y),\eta\rangle \\ x \in X & \to & \langle 1,\eta\rangle = 1 \\ y \in X_u & \eta \in \mathcal{M}_+(X \times X_u) \end{array}$$

Joint (Wasserstein) probability measure η

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\begin{array}{ll} \mu_0^*: & \delta_{x=x_0^*} \\ \mu_p^*: & \delta_{t=t_p^*} \otimes \delta_{x=x_p^*} \\ \eta^*: & \delta_{x=x_p^*} \otimes \delta_{y=y^*} \end{array}$$

Occupation Measure $\forall v(t, x) \in C([0, T] \times X)$

$$\mu^*$$
: $\langle v(t,x), \mu \rangle = \int_0^{t_\rho^*} v(t, x^*(t \mid x_0^*)) dt$

Distance Program (Measures)

Infinite Dimensional Linear Program

$$p^* = \min \langle c(x, y), \eta \rangle$$

$$\pi^*_{\#} \eta = \pi^*_{\#} \mu_p$$

$$\mu_p = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger}_f \mu$$

$$\langle 1, \mu_0 \rangle = 1$$

$$\eta \in \mathcal{M}_+(X \times X_u)$$

$$\mu_p, \ \mu \in \mathcal{M}_+([0, T] \times X)$$

$$\mu_0 \in \mathcal{M}_+(X_0)$$

Prob. Measures: $\langle 1, \mu_0 \rangle = \langle 1, \mu_p \rangle = \langle 1, \eta \rangle = 1$

Distance Example (Twist)

'Twist' System,
$$T = 5$$

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)/2$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

 $L_{\rm 2}$ bound of 0.0425

Moon L2 Contours

Inside one circle, outside another

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Spurious Distance Bound

Numerical error may yield $p^* > 0$ even when unsafe

Ensure trajectories are safe before computing distance bound

Invalid L_2 bound of 4.371×10^{-4}

Distance Variations

Uncertainty in dynamics

Lifted distances (with absolute values)

Set-Set distances for shape safety

Distance Uncertainty

Time dependent uncertainty $w(t) \in W \ \forall t \in [0, T]$ Young measure μ , Liouville $\mu_p = \delta_0 \otimes \mu_0 + \pi_{\#}^{tx} \mathcal{L}_f^{\dagger} \mu$

L₂ bound of 0.1691

Lifted Distance

$$\|x - y\|_1 \qquad \min \sum_i q_i \\ -q_i \le \langle x_i - y_i, \eta \rangle \le q_i \qquad \forall i$$

$$\|x - y\|_3^3 \qquad \min \sum_i q_i \\ -q_i \le \langle (x_i - y_i)^3, \eta \rangle \le q_i \quad \forall i$$

Half-Circle L1 Contours

Lifted Distance (L1) Example

 L_1 bound of 0.4003

Shapes along Trajectories

Orientation $\omega(t) \in \Omega$, shape S

Body to global coordinate transformation A:

$$A: S \times \Omega \to X \qquad (s, \omega) \mapsto A(s; \omega)$$

Angular Velocity = 0 rad/sec

Angular Velocity = 1 rad/sec

Set-Set Distance Problem

Set-Set distance between $A_\omega \circ S$ and X_u given ω

$$P^* = \min_{t, \omega_0 \in \Omega_0, s \in S} c(x(t); X_u)$$
$$x(t) = A(s; \omega(t \mid \omega_0)) \quad \forall t \in [0, T]$$
$$\dot{\omega}(t) = f(t, \omega) \qquad \forall t \in [0, T]$$

 L_2 bound of 0.1465

Set-Set Program (Measures)

Add new 'shape' measure μ_s

$$p^* = \min \langle c(x, y), \eta \rangle$$

$$\mu_p = \delta_0 \otimes \mu_0 + \mathcal{L}_f^{\dagger} \mu$$

$$\pi_{\#}^{\omega} \mu_p = \pi_{\#}^{\omega} \mu_s$$

$$\pi_{\#}^{x} \eta = A(s; \omega)_{\#} \mu_s$$

$$\langle 1, \mu_0 \rangle = 1$$

$$\eta \in \mathcal{M}_+(X \times X_u)$$

$$\mu_s \in \mathcal{M}_+(\Omega \times S)$$

$$\mu_p, \ \mu \in \mathcal{M}_+([0, T] \times \Omega)$$

$$\mu_0 \in \mathcal{M}_+(\Omega_0)$$

Distance Estimation with occupation measures

Approximate recovery if moment matrices are low-rank

Extend to uncertain, lifted, set-set scenarios

- No relaxation gap
- Sparsity
- Time Delays
- Implementation
- Paper

Advisors: Mario Sznaier and Didier Henrion

Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.

National Science Foundation

Air Force Office of Scientific Research

Thank you for your attention

Bonus Material and Ideas

Distance Program (Functions)

Auxiliary v(t, x), point-set proxy $w(x) \le c(x; X_u)$:

$$egin{aligned} d^* &= \max_{\gamma \in \mathbb{R}} & \gamma \ v(0,x) \geq \gamma & & orall x \in X_0 \ w(x) \geq v(t,x) & & orall (t,x) \in [0,T] imes X \ c(x,y) \geq w(x) & & orall (t,y) \in X imes X_u \ \mathcal{L}_f v(t,x) \geq 0 & & orall (t,x) \in [0,T] imes X \ v \in C^1([0,T] imes X) \ w \in C(X) \end{aligned}$$

Lifted Distance Program (Measure)

New terms for lifted distance

$$p^{*} = \min \sum_{i} q_{i}$$

$$\mu_{p} = \delta_{0} \otimes \mu_{0} + \mathcal{L}_{f}^{\dagger} \mu$$

$$\pi_{\#}^{*} \eta = \pi_{\#}^{*} \mu_{p}$$

$$\langle 1, \mu_{0} \rangle = 1$$

$$- q_{i} \leq \langle c_{ij}(x, y), \eta \rangle \leq q_{i} \qquad \forall i, j$$

$$\eta \in \mathcal{M}_{+}(X \times X_{u})$$

$$\mu_{p}, \ \mu \in \mathcal{M}_{+}([0, T] \times X)$$

$$\mu_{0} \in \mathcal{M}_{+}(X_{0})$$

Same process as maximin peak

Lifted Distance Program (Function)

New terms β_i^{\pm} on costs $d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma$ $v(0,x) > \gamma$ $\forall x \in X_0$ w(x) > v(t,x) $\forall (t, x) \in [0, T] \times X$ $\sum_{i,j} (\beta_{ij}^+ - \beta_{ij}) c_{ij}(x, y) \ge w(x) \quad \forall (x, y) \in X \times X_u$ $\mathcal{L}_{f}v(t,x) > 0$ $\forall (t, x) \in [0, T] \times X$ $1^T(\beta_i^+ + \beta_i^-) = 1, \ \beta_i^\pm \in \mathbb{R}^{n_i}$ ∀i $v \in C^1([0, T] \times X)$ $w \in C(X)$

Set-Set Barrier Program

Original unsafe set $X_u \subset X$ Lifted unsafe set \tilde{X}_u :

$$ilde{X}_{u} = \{(s,\omega) \in S imes \Omega \mid A(s;\omega) \in X_{u}\}$$

Barrier Program for $B: \Omega \to \mathbb{R}$

$$egin{aligned} B(\omega) > 0 & & orall \omega \in \Omega \ \mathcal{L}_f B(\omega) \geq 0 & & orall \omega \in \Omega \ B(\omega) \leq 0 & & orall (s, \omega) \in ilde{X}_u \end{aligned}$$

Set-Set Program (Function)

d

Set-Set distance proxy $z(\omega) \leq \max_{s \in S} c(A(s; \omega); X_u)$:

$$\begin{aligned} ^* &= \max_{\gamma \in \mathbb{R}} \quad \gamma \\ v(0,\omega) \geq \gamma \\ c(x,y) \geq w(x) \\ w(A(s;\omega)) \geq z(\omega) \\ z(\omega) \geq v(t,\omega) \\ \mathcal{L}_f v(t,\omega) \geq 0 \\ v \in C^1([0,T] \times X) \\ w \in C(X), \ z \in C(\Omega) \end{aligned}$$

 $\forall x \in \Omega_0$ $\forall (x, y) \in X \times X_u$ $\forall (s, \omega) \in S \times \Omega$ $\forall (t, \omega) \in [0, T] \times \Omega$ $\forall (t, \omega) \in [0, T] \times \Omega$