
Inlining for Code Size Reduction
Vinícius S. Pacheco1

PUC-MG
Brazil

vinicius.pacheco@sga.pucminas.br

Thaís R. Damásio1
PUC-MG
Brazil

thais.damasio@sga.pucminas.br

Luís F. W. Góes
University of Leicester

UK
fabricio.goes@leicester.ac.uk

Fernando M. Quintão Pereira
UFMG
Brazil

fernando@dcc.ufmg.br

Rodrigo C. O. Rocha
University of Edinburgh

UK
rrocha@ed.ac.uk

Abstract
Function inlining is a compiler optimization that replaces the
call of a function with its body. Inlining is typically seen as
an optimization that improves performance at the expenses
of increasing code size. This paper goes against this intuition,
and shows that inlining can be employed, in specific situ-
ations, as a way to reduce code size. Towards this end, we
bring forward two results. First, we gauge the benefits of a
trivial heuristic for code-size reduction: the inlining of func-
tions that are invoked at only one call site in the program,
followed by the elimination of the original callee. Second,
we present and evaluate an analysis that identifies call sites
where inlining enables context-sensitive optimizations that
reduce code. We have implemented all these techniques in
the LLVM compilation infrastructure. When applied onto
MiBench, our inlining heuristics yield an average code size
reduction of 2.96%, reaching 11% in the best case, over clang
-Os. Moreover, our techniques preserve the performance
gains of LLVM’s standard inlining decisions on MiBench:
there is no statistically significant difference in the running
time of code produced by these different approaches.

Keywords: Code Size, Function Inlining, LTO.

1 Introduction
Compilers optimize programs along different dimensions of
efficiency, examples of which include running time, power
consumption and code size. The last one of them is the focus
1The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SBLP’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9062-0/21/09. . . $15.00
https://doi.org/10.1145/3475061.3475081

of this paper. Reducing code size is important in at least
three scenarios. Embedded [6] and mobile [3] systems being
the most well-known. Yet, code compression can also be
of capital importance in servers. As an example, the large
binaries produced as the result of translating PHP to C++
was one of the reasons behind the appearance of HHVM
in the Facebook software stack [13]. Furthermore, reducing
code also tends to speedup programs, as it maximizes the
amount of hot code that fits into the instruction cache [4, 14].

Function inlining is typically seen as an optimization that
improves running time at the cost of increasing code size.
This intuition is true in general: by replacing calls with a
copy of their function body, code tends to increase [5]. This
growth can be as dramatic as 100-fold, as recently observed
by Poesia and Pereira [15] on SPEC CPU2017’s deepsjeng.
Therefore, much of the effort that goes into the craft of state-
of-the-art inlining heuristics is aimed at maximizing speed
while preventing code-size explosion [2, 12, 23, 24].
Breaking with Folk Intuition. This paper departs from
what we call “folk intuition": the well-established idea that
inlining trades performance for size. While we acknowledge
that, in general, such is the case, we demonstrate that, when
properly engineered, inlining can be used specifically to
reduce code size. This paper starts by analyzing a straightfor-
ward heuristic: inlining—and eliminating—functions that are
called only once in the whole program [1]. This optimization
can be employed more aggressively at link time. As we show
in Section 4, this inlining heuristic is effective at reducing
code size. Afterwards, we extend this inlining heuristic a
step further. We perform an a posteriori analysis of inlined
code (instead of the traditional a priori approach). In other
words, we analyze the cost of inlining based on the effects
of inlining on the code after it happens, and not before, as
typically performed.
Summary of Contributions. This paper is the first to pro-
mote inlining for code-size reduction. Inlining for code-size
reduction is different of limiting the amount of code bloat
while inlining for performance. The proposal of using inlin-
ing to reduce code size is counterintuitive, because inlining
a function duplicates its body; hence, suggesting code expan-
sion. To achieve compression, we introduce an optimistic

1

SBLP’21, September 27-October 1, 2021, Joinville, Brazil V. Pacheco, T. Damásio et al.

strategy that first inlines a function call into a cloned ver-
sion of the caller. This heuristic then analyzes if inlining
enables further optimizations that would reduce code. If that
is not the case, then it backtracks to the original function
without inlining. This enables the compiler to use one level
of context-sensitiveness to take inlining decisions. Similar
to prior work [20], we are taking future optimizations into
account, in an explicit manner, to decide the profitability
of a given transformation. We also evaluate, in the context
of code size reduction, the well-known strategy of inlining
functions with a single call site, as previously mentioned.
In Section 4, we show that the combined solution reduces
MiBench’s [9] binaries by up to 11% (2.96% on average),
when compared to clang -Os.

2 Motivation
Inlining must be applied carefully. Excessive inlining, on
the limit, might augment the program by an exponential
factor [15]. This code explosion compromises program exe-
cution, as it leads to poor locality in the instruction cache.
Therefore, the main challenge for inlining heuristics consists
in determining which function calls should be inlined.

2.1 When Inlining Reduces Code Size
Inlining will replace the body of a function at its calling
sites. In face of no optimization, program size will increase
if the function body contains more instructions than what
is necessary to implement the call. These instructions—that
implement the function call—copy actual into formal param-
eters, and invoke the function itself, e.g., through a call
operation. Naturally, if they outsize the function body it-
self, inlining leads to code-size reduction. The next example
illustrates this possibility.

Example 2.1. Listing 1 shows a code snippet fromMiBench’s
lame. Function lame_init_infile calls GetSndSamples. When
compiled to x86, the binary representation of this call out-
sizes the body of GetSndSamples. Thus, inlining the call to
GetSndSamples leads to trivial code reduction.

1 static unsigned long num_samples;

2

3 unsigned long GetSndSamples(void) {

4 return num_samples;

5 }

6

7 void lame_init_infile(lame_global_flags *

gfp) {

8 count_samples_carefully =0;

9 OpenSndFile(gfp ,gfp ->inPath ,gfp ->

in_samplerate ,gfp ->num_channels);

10 if (GetSndSampleRate ()) gfp ->

in_samplerate=GetSndSampleRate ();

11 if (GetSndChannels ()) gfp ->num_channels=

GetSndChannels ();

12 gfp ->num_samples = GetSndSamples ();

13 }

Listing 1. Snippet extracted from file get_audio in lame
benchmark.

Inlining gives the compiler the chance to run context sen-
sitive optimizations. These optimizations might reduce code
size. Therefore, in face of optimizations, it is possible that,
even when the function body outsizes the code to invoke
the function, the binary still decreases. However, identifying
these scenarios is a non-trivial task, as Example 2.2 shows.

Example 2.2. Assume that function f1 calls function f2 in
Listing 2 with a null pointer as first argument. In this case,
f2 returns zero, regardless of other inputs. Under such cir-
cumstances, a combination of inlining, constant propagation
and dead-code elimination eliminates the call to f2 at Line
10 of Listing 2. When applied on x86, this inlining reduces
the code of f1 from 34 instructions (83 bytes) down to 11 (25
bytes). Even more reduction is possible, if the compiler can
prove that f2 is not used elsewhere. In this case, this function
could be removed from the executable program.

1 int f2(int *V, int n, int factor) {

2 int valid = V?1:0;

3 int s = 0;

4 for (int i = 0; i< (n*valid); i++)

5 s += factor*V[i];

6 return s;

7 }

8 int f1(int* W, int *V, int n, int t) {

9 for (int i = 0; i<n; i++) {

10 W[i] = t*i + f2(0,n,t);

11 }

12 }

Listing 2. Example of a function where the current version
of inline does not detect it as profitable.

The current inlining heuristic used in LLVM fails to iden-
tify opportunities like those seen in Example 2.2. It prevents
inlining f2 due to a threshold that limits code bloat. The
inliner measures the size of the control-flow graph from
function f2 prior to constant propagation and dead-code
elimination, missing the fact that the inlined code would be
fully optimized away. The goal of this paper is to incorporate
some level of code simplification in the inlining analysis,
using the calling context to decide whether inlining is prof-
itable. The concretization of this idea is the subject of the
next section.

2

Inlining for Code Size Reduction SBLP’21, September 27-October 1, 2021, Joinville, Brazil

3 Inlining for Code-Size Reduction
As already discussed in Section 2, there are situations in
which inlining leads to code-size reduction. This paper bene-
fits from two of them, which we describe below and explain
in the rest of this section:

• Solitary: the callee is invoked at one program site.
• Situational: context sensitive optimizations trim the
caller-callee pair.

3.1 Inlining of Solitary Calls
A solitary call is the invocation of a function that has a single
call site in the program. If this function is inlined, then code
size reduction is expected, as long as the compiler is allowed
to remove the original definition of the function. In this case,
only one instance of its body will remain in the optimized
program. This is known as dead function elimination [1].
Such elimination is possible under two circumstances:

1. The function is private to the current compilation unit,
e.g., marked as static in C. Private functions cannot be
referenced from an external translation unit. Once in-
lined, the function will be considered an unused global
symbol, and can safely be removed from the object file.

2. Inlining happens at link time. At that moment, the
compiler has access to the whole program, therefore
all functions are guaranteed to have no external use, if
not compiling a library. Hence, functions with a single
call site can be eliminated after inlining1.

Inlining solitary calls is a well-known heuristic, used in
several programming languages [1]. LLVM implements this
heuristic in its inlining analysis as a bonus constant that
is discounted from the cost of inlining a given call site2. In
this paper, we analyze this heuristic in isolation, as well as
combined with our situational heuristic, as a key strategy
when inlining for code size reduction.
Inlining and Register Pressure. Although code-size re-
duction is the expected effect in any of the two cases above,
it is not certain. In our experiments, we have observed that
code could still increase, even when the original copy of the
inlined function was eliminated. One situation that provokes
this counterintuitive behavior is register allocation. Inlining
of large functions may increase register pressure, because
more variables might be simultaneously alive at some pro-
gram point. Due to the extra register pressure, more load
and store instructions will be inserted into the architecture-
dependent version of the program. The adpcm(c) benchmark
is one such example (see Figure 3).

Register pressure bears no impact on the size of the LLVM
intermediate representation: register allocation happens once
1When compiling a library, dead function elimination should be restricted
to circumstance (1). In this case, non-static functions might be called by
external users. Thus, we cannot remove them even at link time.
2https://github.com/llvm/llvm-project/blob/main/llvm/lib/Analysis/Inline
Cost.cpp#L1590

this representation is lowered into machine code [17]. Thus,
inlining of solitary calls never increases the size of the pro-
gram’s intermediate representation, but can increase the size
of the final executable. To mitigate this effect, we limit the
size of the callee function to 750 LLVM instructions. This
threshold is arbitrary, and is based on the observation that
large functions are more likely to introduce a significant reg-
ister pressure after inlining. In future work, a more detailed
analysis can be introduced to avoid inlining functions that
may cause a significant increase in register pressure.

3.2 Optimistic Inlining with Rollback
Inlining enables context-sensitive optimizations. The context
of a function call is determined by the sequence of functions
active when that invocation happens. Context-sensitive opti-
mizations can be very effective. Quoting Poesia and Pereira
[15], “We have found speedup opportunities with our naïve
context-sensitive constant propagation algorithm. For in-
stance, in the Dhrystone benchmark, we could produce a
binary 32x faster than clang -O2. In this case, the com-
bination of constant propagation, loop unrolling and dead
code elimination let the compiler solve much of the com-
putations in the benchmark statically." Example 2.2, earlier
seen in Section 2 already illustrates the benefits of context-
information for code-size reduction. Nevertheless, in spite
of these benefits, compilers do not use context-sensitive in-
formation when determining the profitability of function
inlining. This omission is due to the fact that obtaining such
information is a costly endeavour.
The inlining heuristics from mainstream compilers com-

pute costs a priori, i.e., before inlining effectively takes place.
Yet, the product of a context-sensitive optimization can only
be observed a posteriori, i.e., after inlining happened. In this
section, we propose a strategy based on rollback that changes
this perspective; therefore, effectively implementing an in-
lining heuristic that considers information a posteriori. The
rollback strategy exploits the static aspect of code-size opti-
mizations. Figure 1a summarizes the flow of typical inline
heuristics and Figure 1b highlights the clone and rollback
steps that we propose in this paper.

A Posteriori Cost Evaluation. When the standard inlin-
ing analysis calculates the costs to decide whether or not it
will be profitable to inline a function, the compiler does not
have much information about the context of the caller-callee
pair and therefore cannot identify opportunities for future
optimizations. As shown in section 2.1, it is insufficient to
analyse the two functions separately. In some cases, it is
only visible that inlining is profitable after we have already
inlined and applied further optimizations.

Our solution always inlines, rolling back when inlining is
deemed unprofitable. For a given call site, we create a clone
of the caller function with the callee inlined. Then, we apply
standard compiler optimizations to simplify the inlined code

3

SBLP’21, September 27-October 1, 2021, Joinville, Brazil V. Pacheco, T. Damásio et al.

(B) Our Technique (A) Standard Inline

Calculates inlining
cost a priori

Inlining
profitable?

Inline function

Yes

No

Call site

Delete unprofitable
caller function

Estimate code size

Simplify inlined code

Inline cloned call

Clone caller function

Call site

Solitary call?

Inline function

Yes

No

R
ol

lb
ac

k
te

ch
ni

qu
e

Figure 1. (A) LLVM’s standard heuristic. (B) Our approach
that combines the solitary and rollback heuristics.

in the context of the cloned function. These optimizations in-
clude: constant propagation, code simplification, dead-code
elimination, and loop elimination. Once we have both ver-
sions of the caller function — original and optimized — we
use an objective function to decide which one to keep.
The objective function estimates the code-size benefit of

replacing the original by its optimized counterpart. In or-
der to estimate the code-size benefit, we first compute the
code-size cost for all instructions in each version of the func-
tion. Therefore, inlining is profitable if the code-size cost of
the original function is greater than that of the optimized
one. If inlining is deemed unprofitable, we keep the original
function, otherwise, we keep its optimized version.

However, one LLVM’s IR instruction does not necessarily
translate to one machine instruction. Thus, the profitability
is measured with the help of the compiler’s target-specific
cost model. The actual cost of each instruction comes from
querying this compiler’s built-in cost model, which provides
a target-dependent cost estimation that approximates the
code-size cost of an IR instruction when lowered to machine
instructions. Our implementation makes use of the code-size
costs provided by LLVM’s target-transformation interface
(TTI). This cost model is used by several optimizations im-
plemented in LLVM [16, 18, 19, 22].
The impact of the rollback strategy on the compilation

time depends on two key factors: First, the number of call
sites that must be analyzed by the rollback analysis. The
larger the number of call sites, the larger the number of
clones and simplifications that must be performed, therefore
increasing compilation time. Second, the size of the caller
and callee functions, since larger functions will take longer
to be both cloned and simplified. Therefore, in order to limit
the compilation time overhead introduced by this analysis,

we use a threshold on the size of the caller-callee pair. A
good threshold value will limit both factors by filtering out
all call sites involving caller-callee pairs of large functions.
In our evaluation (see Section 4), we show this threshold can
significantly reduce the impact on compilation time, with a
negligible impact on our code size reduction.

3.3 Link-Time Optimization
There are different ways of applying the proposed inlining
heuristics, with different trade-offs. For instance, inlining can
be applied per compilation-unit. This modus operandi leads
to lower compilation-time overheads as only a small part of
the program is considered at each moment. However, inter-
procedural optimizations, such as inlining, are also limited
to operate within a single translation unit at a time. Thus,
it prevents inlining when the caller-callee pair is defined in
different source files. Moreover, the compiler must also be
more conservative when removing callee functions with no
use after inlining, since these functions may still be used
externally, unless they are explicitly defined as internal to
its translation unit.
In contrast, link time optimizations (LTO) are performed

after all translation units have been linked into a singlemono-
lithic module, as shown in Figure 2. As a result, when per-
formed at link-time, inlining can be applied on the whole
program, exposing more optimization opportunities [11, 21].
Moreover, by having access to the whole program at once,
the compiler is also able to internalize global definitions
that were originally defined as externally available. Thus,
enabling the inliner to be more aggressive when removing
callee functions that become unused after inlining.

.c

.c

.c

...

opt

...

FE
FE

FE

opt

opt

link optInline BE .o

Function
Inlining

LTO

IR

} Back
End

Front
End

...

Figure 2. The LTO-based compilation pipeline.

Figure 2 shows an overview of the compilation pipeline
used throughout our evaluation, presented in Section 4. First,
we have the front-end and early code-size optimizations
applied to each compilation unit, where we use clang with
a default optimization level (e.g., -Os), but no inlining is
performed. Then, inlining is applied, in full LTO mode [11],
after all translation units are linked into a single module.
Finally, some late code-size optimizations and the back-end
are applied to the optimized code, again using clang with
an optimization level and inlining disabled.

4

Inlining for Code Size Reduction SBLP’21, September 27-October 1, 2021, Joinville, Brazil

4 Evaluation
This section evaluates the effectiveness of the inlining heuris-
tics discussed in Section 3. This evaluation shall be guided
by the following research questions:

• RQ-A: What is the impact of our inlining heuristics
on the size of the binaries that LLVM produces?

• RQ-B: How do our inlining decisions differ from those
taken by the standard LLVM inliner?

• RQ-C: What is the impact of our inlining heuristics
on the time that LLVM takes to compile programs?

• RQ-D: What is the effect of our inlining heuristics on
the execution time of programs that LLVM generates?

4.1 Experimental Setup
Software. Results reported in this section are produced on
Linux 20.04, released on April 23rd, 2020. The heuristics pre-
sented in Section 3 are implemented in LLVM v11. This
version of LLVM is also used as the experimental baseline.
Hardware. Experiments run on an Intel i7-8750H 2.20-4.10
GHz CPU (Central Processing Unit), 1TB HDD with 5400
RPM, and 32GB 2666MHz of RAM.
BenchmarksWeuseMiBench embedded benchmark suite [9]
to perform our experiments. This choice is motivated by the
goals of this work: since its conception, MiBench has been
a staple in discussions about code-compression.
Contending Approaches. In this section, we compare five
different approaches to generate code:

• Baseline: clang using the code size optimization (-Os)
with inlining disabled.

• Standard: the same as baseline but with inlining en-
abled, using LLVM’s inlining heuristics.

• Solitary: the baseline augmented with the inlining
heuristic for solitary calls (from section 3.1).

• Rollback: the baseline augmented with the rollback
strategy (proposed in section 3.2).

• Combined: the baseline with both the solitary and
the rollback heuristics combined.

Methodology Results for program speed and compilation
time are computed based on the execution of 51 samples.
We exclude the first execution of each benchmark per ap-
proach (the warm-up run). We also remove the slowest and
the fastest executions. Thus, results are the arithmetic aver-
age of 48 samples. We adopt a confidence interval of 99%.
Code size is measured as the size of the text segment of the
binary file produced at the end of the compilation pipeline
(after linking). Code size does not vary across samples; hence,
the confidence level is immaterial in this case. Charts that
report relative results use clang -Os without inlining as the
baseline. To prevent inlining, we created a new flag that
completely disables the Inliner pass. We use it instead of
-fno-inline-functions, because the latter still permits in-
lining. Our new flag is passed to clang in the early and late
code-size optimizations, as explained in section 3.3.

4.2 RQ-A: Code Size Reduction
Figure 3 compares the size of binaries produced by the differ-
ent inlining approaches. While the existing inlining heuristic
in LLVM corroborates the “folk intuition" that inlining in-
creases code size, as it causes an average increase of over
1% in the program binary, our inlining heuristics designed
specifically for code compression are able to achieve an av-
erage reduction of almost 3%. We conclude that this result
confirms our thesis that a properly engineered inlining heuristic
can be effective for code size reduction.
Inlining solitary calls already leads to code reduction,

achieving up to 7.2% of compression on rsynth and 2.51%,
on average, across all benchmarks. This heuristic yields
code growth only in adpcm(c), where an increase in reg-
ister pressure leads to more stack manipulation in the bi-
nary of this benchmark. Notice that this expansion happens
only at machine-code level; not in the LLVM intermediate-
representation level. Our rollback heuristic brings less benefit
when used alone: on average, we observe reductions of 1.18%.
However, in some benchmarks, such as basicmath, results
are very significant: rollback attains a reduction of 11%. In-
terestingly, the inlining of solitary calls bears no effect onto
this particular benchmark. Therefore, no heuristic strictly
dominates the other. Nevertheless, the best result is achieved
by combining both heuristics, producing an average reduc-
tion of 2.96%. In other words, once combined, the heuristics
generate code that is, on average, 2.96% smaller.

4.3 RQ-B: Qualitative Analysis
Figure 4 compares the inlining decisions performed by LLVM
with the decisions performed by the heuristics from Section 3.
Clearly, LLVM’s standard inlining heuristic leads to substan-
tially more inlining than our approach does. In absolute
numbers, the standard heuristic inlined 7,307 function calls,
whereas we inlined 1,748. Figure 4 also details the amount
of inlined calls that are common for both the standard and
the combined heuristics, as well as those that are unique to
each heuristic. Overall, our techniques have decided to apply
inlining at 1,264 common call sites. We have also inlined 484
calls that LLVM has forgone. Therefore, we conclude that our
combined heuristic is not performing less inlining by simply
restricting the standard heuristic. Rather, it achieves code-size
compression due to its improved decision-making analysis.
On the Size of Inlined Functions.The number of analyzed
call sites may vary depending on the different thresholds
used by each heuristic as well as their inlining decisions.
These thresholds limit the size of callees when performing
inlining (as explained in Section 3.1). Surprisingly, we have
noticed that the sizes of the inlined callee functions tend
to be larger for our heuristics focused on code-size reduc-
tion, which seems counter-intuitive. Nevertheless, besides
the difference in their thresholds, there are other fundamen-
tal differences among the inlining techniques that can also

5

SBLP’21, September 27-October 1, 2021, Joinville, Brazil V. Pacheco, T. Damásio et al.

ty
p

e
se

t

m
a
d

sh
a

p
g

p

g
h

o
st

sc
ri

p
t

is
p

e
ll

jp
e
g

 (
c)

jp
e
g

 (
d

)

d
ij
k
st

ra

F
F

T

la
m

e

ti
ff

 (
2

d
it

h
e
r)

ti
ff

 (
2

m
e
d

ia
n

)

ti
ff

 (
2

b
w

)
ti
ff

 (
2

rg
b

a
)

a
d

p
cm

 (
c)

q
so

rt
a
d

p
cm

 (
d

)

b
it

co
u

n
t

st
ri

n
g

se
a
rc

h

ri
jn

d
a
e
l

C
R

C
3

2

su
sa

n

b
lo

w
fi

sh
rs

yn
th

g
sm

p
a
tr

ic
ia

b
a
si

cm
a
th

M
e
a
n

5

0

5

10
C

o
d

e
 R

e
d

u
ct

io
n

 (
%

)

-1
.1

1

2.
51

1.
18
2.

96

Standard

Solitary

Rollback

Combined

-21.7

Figure 3. Variation of code size produced by the different inlining approaches. Results are relative to LLVM -Os with no
inlining in LTO mode. Positive bars denote percentage of size reduction; negative bars, percentage of size expansion. Averages
using -Oz as the baseline are similar, with Standard=-0.57%, Solitary=+2.66%, Rollback=1.18% and Combined=+3.08%.

0 100 200 300 400
Number of inlining functions

CRC32
rijndael

stringsearch
bitcount

susan
adpcm_d
adpcm_c

qsort
blowfish

FFT
dijkstra

sha
patricia

basicmath
gsm

ispell
rsynth

lame
jpeg_d
jpeg_c

mad
tiff2dither

tiff2bw
tiff2median

tiff2rgba
pgp

typeset
ghostscript

Number of Inlines made by Standard X Combined

Standard

Combined

Both Standard & Combined

2248

569

1430

Figure 4. Number of functions inlined by the LLVM’s Stan-
dard inlining heuristics and our Combined (Solitary plus
Rollback) approaches.

impact on the size of the callee function. The inlining of soli-
tary calls happens if: (i) the callee is invoked at only one site;
and (ii) the callee can be removed if unused. This heuristic is
limited by the code size of the callee, based on the adopted

threshold; however, the threshold is large. As a result, it ends
up choosing callee functions with the largest average sizes.
However, because only one copy of the function is kept, it is
still very effective at reducing code size.

Unlike the inlining of solitary calls, the rollback technique
directly estimates the size of the caller function after inlining
to analyze its profitability. However, as shown in Section 2.1,
inlining can enable several optimizations capable of sim-
plifying the inlined code, possibly even reducing complex
control-flow graphs to a single instruction. Therefore, the
size of the original callee function does not translate directly
to the size of the inlined code. This observation can be con-
firmed empirically by inspecting Figure 3.
The Effect of Inlining on Large Programs. Poesia and
Pereira have reported that the larger the program, the higher
the percentage of code-growth caused by inlining [15]. Our
experiments corroborate this observation. Even though the
MiBench programs are relatively small, their sizes vary
considerably. On average (arithmetic mean), binaries have
155.75 KB. One of the largest programs in our collection
is typeset, whose binary contains 572.44 KB distributed
across 452 functions. LLVM’s standard heuristic performed
inlining at 1,430 call sites, leading to a code expansion of
21.7%. Similar effects have been observed in ghostscript,
the largest program with 1,171.31 KB, as well as the other
large benchmarks such as mad and pgp. In contrast, three
different heuristics that stem from this work—inlining of soli-
tary calls, inlining with rollback and their combination—led
to code reduction in these two benchmarks (see Fig. 3).

4.4 RQ-C: Compilation Time
Figure 5 shows how compilation time varies depending on
the inlining heuristic adopted. On average, the time taken by
the inlining of solitary calls is statistically equivalent to the

6

Inlining for Code Size Reduction SBLP’21, September 27-October 1, 2021, Joinville, Brazil

ty
p

e
se

t

m
a
d

sh
a

p
g

p

g
h

o
st

sc
ri

p
t

is
p

e
ll

jp
e
g

 (
c)

jp
e
g

 (
d

)

d
ij
k
st

ra

F
F

T

la
m

e

ti
ff

 (
2

d
it

h
e
r)

ti
ff

 (
2

m
e
d

ia
n

)

ti
ff

 (
2

b
w

)
ti
ff

 (
2

rg
b

a
)

a
d

p
cm

 (
c)

q
so

rt
a
d

p
cm

 (
d

)

3.36 2.32

b
it

co
u

n
t

st
ri

n
g

se
a
rc

h

ri
jn

d
a
e
l

C
R

C
3

2

su
sa

n

b
lo

w
fi

sh
rs

yn
th

g
sm

p
a
tr

ic
ia

b
a
si

cm
a
th

M
e
a
n

0.75

1.00

1.25

1.50

1.75

2.00
N

o
rm

a
li

ze
d

 C
o
m

p
il

e
 T

im
e

1.
04
1.

01

1.
39

1.
22

Standard

Solitary
Rollback

Combined

2.39

Figure 5. Compilation time of different inlining approaches. Results are relative to LLVM -Os with no inlining in LTO mode.
Positive bars show growth in compilation time (in number of times).

baseline with no inlining, given a confidence level of 0.99.
The rollback heuristic, on the other hand, has an average
compilation overhead of 39%. The biggest slowdowns come
from pgp and ispell, which we shall discuss later.
The Impact of a Cut-OffThreshold.Without the rollback
threshold, the application of our heuristic onto typeset and
pgp would slowdown compilation by over 10x. These are the
two programs with the largest number of call sites. However,
our rollback threshold of 750 LLVM instructions is enough to
significantly reduce the compilation overhead. This thresh-
old skips 45% of the call sites involving the largest pairs of
caller-callee functions inMiBench. Figure 6 shows the call
sites that have been skipped. Even though pgp has the second
largest number of call sites, most of them involve functions
below the cut-off; hence, only 10% of its most expensive
call sites are skipped. The ispell, rsynth, and lame bench-
marks follow a similar pattern, as shown in Figure 6. Only a
tiny percentage of their call sites are cut off by the threshold.
Moreover, a significant percentage of the call sites that go
through the rollback heuristic have a combined size over 500
LLVM instructions; hence, being close to the threshold. This
pattern contributes to a larger overhead when compared to
other benchmarks. Interestingly, once these two heuristics
are combined, the total compilation time is less than when
rollback is used alone. The explanation for this behavior is
that the functions removed by our first heuristic, the inlining
of solitary calls, reduces the amount of code that must be
inspected by the rollback heuristic.

4.5 RQ-D: Execution Time
When restricted to the MiBench suite, our evaluation of
execution time shows that inlining has little impact on per-
formance. On average, the standard inlining heuristic has

Figure 6. Call sites sorted by the size of their caller-callee
functions. The red bars show the call sites that are skipped
based on the rollback threshold.

a speedup close to 1.01 over the baseline LLVM -Os with-
out inlining. This is somewhat expected since the longest
running programs execute for only about half a second.
Our combined inlining heuristics have a negligible im-

pact on the average speedup. Although the standard inlining
heuristic adopted by LLVM yielded slightly better results
than the other approaches considered in this paper, this dif-
ference cannot be considered statistically significant within a

7

SBLP’21, September 27-October 1, 2021, Joinville, Brazil V. Pacheco, T. Damásio et al.

confidence interval of 99%. Applying the Student Test on the
runtime measurements fromMiBench, then we have that
the p-value between the standard heuristic and the baseline
is 0.14. The p-value between the solitary heuristic and the
baseline is 0.62. The p-value between the rollback heuristic
and the baseline is 0.65, and the p-value between the com-
bined heuristic and the baseline is 0.51. All these values are
above the confidence level of 0.01; hence, they cannot be
considered statistically different.

Nevertheless, exceptions to these results could be observed
in individual benchmarks. In particular, inlining with roll-
back (Section 3.2) greatly improved the speed of one of the
versions of tiff (the so called 2median version). Similarly,
the inlining of solitary calls yielded statistically significant
speedups in ispell and ghostscript (our largest bench-
mark). However, it also led to regressions in blowfish. These
results are consequence of correct and wrong inlining de-
cisions. Given that our objective function was tuned for
code-size reduction, this behavior in performance is to be
expected. From this discussion, we conclude that, at least
when restricted to theMiBench programs, our heuristics can
reduce code-size without leading to performance degradation.

5 Related Work
Optimizations for Code-Size Reduction. Code-size re-
duction has never been a top concern in the implementa-
tion of mainstream compilers—program speed, instead, ap-
pearing as a core driving force. Nevertheless, the year of
2020 has seen much interest in the craft of optimizations
for code compression, at least in the LLVM community. Evi-
dence to this fact appears in recent industrial and academic
work [3, 7, 8, 10, 18, 19] and in the notes of the 2020 LLVM
developers meeting. For instance, quoting from the minutes,
“opt -Oz does not disable neither loop unrolling nor inlining",
which are transformations that usually cause code growth.
Interestingly enough, inlining emerges as a culprit for code
growth—a fact that is not always true, as this paper demon-
strates.
Customization of Inlining Heuristics. Descriptions of
inlining heuristics abound. Incidentally, the vast majority
of them use code-size as a negative cost when determin-
ing when inlining is profitable. For an overview on this ap-
proach, we recommend the work of Leupers and Marwedel
[12] and Zhao and Amaral [24]. The discussion carried out
by Xinrong et al. [23] summarizes well the perception of
the compiler community with regards to inlining: “Inlining
functions can eliminate the overhead which is resulted from
function calls, but with inlining, the code size also grows un-
predictably; this is not suitable for embedded processors whose
memory size is relatively small." We emphasize that such a
stance is not the position adopted in this paper. Even though

we are aware that unrestricted inlining may lead to code-
size explosion, we have demonstrated that, when applied
carefully, inlining can be a means to reduce code.
Inlining in Mainstream Compilers. Implementations of
inlining heuristics consider code size a priori, instead of a pos-
teriori. That means that when feeding an objective function
with code-size information, researchers count the function
body N times, where N is the number of times that said
function can be inlined. As an example, in LLVM, function
arguments subtract one unit from the inlining cost, because
it is assumed that one instruction is necessary to copy an
actual into a formal parameter. Each instruction in the would-
be inlined function adds +1 to this cost. This inherited be-
haviour of compiler cost models, which by default penalizes
inlining for code size reduction, obscures the exploration
of novel and somehow counterintuitive alternatives such as
the one proposed in this paper. Indeed, LLVM implements
a heuristic to prioritize the inlining of solitary calls (see
the LastCallToStaticBonus function at InlineCost.cpp).
However, in contrast to our goals, as explained in Section 3.1,
the goal of LLVM’s heuristic is not to reduce code size. Rather,
this heuristic exists in LLVM to limit code expansion. Thus,
code is still expected to grow, albeit by a smaller factor.

6 Conclusion
This paper has presented a new perspective on inlining: in-
stead of looking at it as a speed-oriented optimization, we
showed that it is possible to use inlining also as a means for
code size reduction. To this end, in Section 3 we have ex-
plored two inlining heuristics capable of reducing code size.
One of them—rollback—departs from traditional implemen-
tations of inlining because it measures benefits a posteriori,
after optimizations have trimmed the inlined code. Key to
this approach is a combination of function cloning with
traditional code-size optimizations to profit from context-
sensitive information. Experiments in LLVM have shown
that our heuristics could reduce the binary image of the
MiBench programs compiled to x86 in 2.96%, while still
keeping the performance improvements of standard inlining.
In this paper, we have evaluated only two inlining heuristics
tuned for code-size reduction. Nevertheless, the universe of
potential techniques is much larger, and we hope that this
study can inspire further explorations of this space.

Software. The implementation of the techniques described
in this paper are available at https://github.com/vinicpac/ll
vm-project/tree/inline, under the GPL-3.0 license.

Acknowledgments
Fernando Pereira has been supported byCNPq (Grant 406377/
2018-9); FAPEMIG (Grant PPM-00333-18) and CAPES (Edi-
tal CAPES PrInt). The authors also thank PUC Minas and
FAPEMIG for the scholarships that were made available to
Thaís and Vinícius.

8

Inlining for Code Size Reduction SBLP’21, September 27-October 1, 2021, Joinville, Brazil

References
[1] Maia Ginsburg Andrew W. Appel. 1998. Modern Compiler Implemen-

tation in C (1 ed.). Cambridge University Press.
[2] Kim Bongjae, Yookun Cho, and JimanHong. 2012. An efficient function

inlining scheme for resource-constrained embedded systems. Journal
of Information Science and Engineering 28.

[3] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with
Code-size Optimization for Production iOS Mobile Applications. In
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE Press, US, 1–12.

[4] J. Bradley Chen and Bradley D. D. Leupen. 1997. Improving Instruction
Locality with Just-in-Time Code Layout. In Windows NT Workshop
(NT’97). USENIX Association, USA, 4.

[5] Keith Cooper and Linda Torczon. 2012. Engineering a compiler (2 ed.).
Elsevier.

[6] Ivica Crnkovic. 2005. Component-Based Software Engineering for Em-
bedded Systems. In Proceedings of the 27th International Conference on
Software Engineering (ICSE ’05). Association for Computing Machinery,
NewYork, NY, USA, 712–713. https://doi.org/10.1145/1062455.1062631

[7] Anderson Faustino da Silva, Bruno Conde King, Jose Welsey Magal-
haes, Breno Guimares, Jeronimo Nunes, and Fernando Magno Quintao
Pereira. 2021. AnghaBench: a Suite with One Million Compilable C
Benchmarks for Code-Size Reduction. In CGO. IEEE, USA, 378–390.

[8] Anderson Faustino da Silva, Bernardo Lima, and Fernando
Magno Quintao Pereira. 2021. Exploring the Space of Optimization
Sequences for Code-Size Reduction: Insights and Tools. In CC. ACM,
New York, NY, USA, 47–58.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. 2001. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In WWC. IEEE, USA, 3–14.

[10] Masayo Haneda, Peter M. W. Knijnenburg, and Harry A. G. Wijshoff.
2006. Code Size Reduction by Compiler Tuning. In Embedded Computer
Systems: Architectures, Modeling, and Simulation, Stamatis Vassiliadis,
Stephan Wong, and Timo D. Hämäläinen (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 186–195.

[11] Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017. ThinLTO:
Scalable and Incremental LTO. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization (CGO ’17). IEEE Press,
111–121.

[12] Rainer Leupers and Peter Marwedel. 1999. Function inlining under
code size constraints for embedded processors. In 1999 IEEE/ACM
International Conference on Computer-Aided Design. IEEE, 253–256.

[13] Guilherme Ottoni. 2018. HHVM JIT: a profile-guided, region-based
compiler for PHP and Hack. In PLDI. ACM, New York, NY, USA, 151–
165. https://doi.org/10.1145/3192366.3192374

[14] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing function
placement for large-scale data-center applications. In Proceedings of
the 2017 International Symposium on Code Generation and Optimization,
CGO 2017, Austin, TX, USA, February 4-8, 2017. IEEE, New York, NY,
USA, 233–244. http://dl.acm.org/citation.cfm?id=3049858

[15] Gabriel Poesia and Fernando Magno Quintão Pereira. 2020. Dynamic
Dispatch of Context-Sensitive Optimizations. Proc. ACM Program.
Lang. 4, OOPSLA (2020). https://doi.org/10.1145/3428235

[16] A. Pohl, B. Cosenza, and B. Juurlink. 2018. Cost Modelling for Vec-
torization on ARM. In 2018 IEEE International Conference on Cluster
Computing (CLUSTER). 644–645.

[17] Fernando Magno Quintão Pereira and Jens Palsberg. 2008. Register
Allocation by Puzzle Solving. In PLDI. Association for Computing
Machinery, New York, NY, USA, 216–226. https://doi.org/10.1145/13
75581.1375609

[18] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function Merging by Sequence Alignment.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019). IEEE Press, USA, 149–163.

[19] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. Effective Function Merging in the SSA Form.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020). Association for Com-
puting Machinery, New York, NY, USA, 854–868.

[20] Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís
F. W. Góes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.
Vectorization-Aware Loop Unrolling with Seed Forwarding. In Pro-
ceedings of the 29th International Conference on Compiler Construction
(CC 2020). Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3377555.3377890

[21] P. W. Sathyanathan, W. He, and T. H. Tzen. 2017. Incremental whole
program optimization and compilation. In IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 221–232.

[22] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. 2018. VW-SLP: Auto-
vectorization with Adaptive Vector Width. In Proceedings of the 27th
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT ’18). ACM, New York, NY, USA, 12:1–12:15.

[23] Zhou Xinrong, Lu Yan, and Johan Lilius. 2007. Function inlining in
embedded systems with code size limitation. The International Arab
Journal of Information Technology 2, 154–161.

[24] Peng Zhao and José N. Amaral. 2003. To inline or not to inline?
Enhanced inlining decisions. In LCPC, Vol. 2958. 405–419.

9

