
Parse Forest Diagnostics with Dr. Ambiguity

H. J. S. Basten and J. J. Vinju

Centrum Wiskunde & Informatica (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands

{Jurgen.Vinju,Bas.Basten}@cwi.nl

Abstract In this paper we propose and evaluate a method for locating
causes of ambiguity in context-free grammars by automatic analysis of
parse forests. A parse forest is the set of parse trees of an ambiguous
sentence. Deducing causes of ambiguity from observing parse forests is
hard for grammar engineers because of (a) the size of the parse forests,
(b) the complex shape of parse forests, and (c) the diversity of causes of
ambiguity.
We first analyze the diversity of ambiguities in grammars for program-
ming languages and the diversity of solutions to these ambiguities. Then
we introduce Dr. Ambiguity: a parse forest diagnostics tools that ex-
plains the causes of ambiguity by analyzing differences between parse
trees and proposes solutions. We demonstrate its effectiveness using a
small experiment with a grammar for Java 5.

1 Introduction

This work is motivated by the use of parsers generated from general context-
free grammars (CFGs). General parsing algorithms such as GLR and derivates
[33,9,3,6,16], GLL [32,20], and Earley [15,30] support parser generation for highly
non-deterministic context-free grammars. The advantages of constructing parsers
using such technology are that grammars may be modular and that real pro-
gramming languages (often requiring parser non-determinism) can be dealt with
efficiently1. It is common to use general parsing algorithms in (legacy) language
reverse engineering, where a language is given but parsers have to be recon-
structed [23], and in language extension, where a base language is given which
needs to be extended with unforeseen syntactical constructs [10].

The major disadvantage of general parsing is that multiple parse trees may be
produced by a parser. In this case, the grammar was not only non-deterministic,
but also ambiguous. We say that a grammar is ambiguous if generates more than
one parse tree for a particular input sentence. Static detection of ambiguity in
CFGs is undecidable in general [14].

It is not an overstatement to say that ambiguity is the Achilles’ heel of
CFG-general parsing. Most grammar engineers who are building a parser for a
programming language intend it to produce a single tree for each input program.
1 Linear behavior is usually approached and most algorithms can obtain cubic time
worst time complexity [31]

Ambihuous

Ambiguous
subsentence

Choice node

Unambiguous context

Figure 1. The complexity of a parse forest for a trivial Java class with one
method; the indicated subtree is an ambiguous if-with-dangling-else issue (180
nodes, 195 edges).�

�

�

�

If (<

ExprName (Id ("a")), <

IfElse (IfElse (

> ExprName (Id ("a")),

> If (

ExprName (Id ("b")), ExprName (Id ("b")),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("a"))), Method (MethodName (Id ("a"))),

[[

])), |]))),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("b"))), Method (MethodName (Id ("b"))),

[[

])))) |])))

Figure 2. Using diff -side-by-side to diagnose a trivial ambiguous syntax tree
for a dangling else in Java (excerpts of Figure 1).

They use a general parsing algorithm to efficiently overcome problematic non-
determinism, while ambiguity is an unintentional and unpredictable side-effect.
Other parsing technologies, for example Ford’s PEG [17] and Parr’s LL(*) [26],
do not report ambiguity. Nevertheless, these technologies also employ disam-
biguation techniques (ordered choice, dynamic lookahead). In combination with
a debug-mode that does produce all derivations, the results in this paper should
be beneficial for these parsing techniques as well. It should help the user to inten-
tionally select a disambiguation method. In any case, the point of departure for
the current paper is any parsing algorithm that will produce all possible parse
trees for an input sentence.

In other papers [4,5] we presented a fast ambiguity detection approach that
combines approximative and exhaustive techniques. The output of this method

are the ambiguous sentences found in the language of a tested grammar. Never-
theless, this is only a observation that the patient is ill, and now we need a cure.
We therefore will diagnose the sets of parse trees produced for specific ambiguous
sentences. The following is a typical grammar engineering scenario:

1. While testing or using a generated parser, or after having run a static am-
biguity detection tool, we discover that one particular sentence leads to a
set of multiple parse trees. This set is encoded as a single parse forest with
choice nodes where sub-sentences have alternative sub-trees.

2. The parser reports the location in the input sentence of each choice node.
Note that such choice nodes may be nested. Each choice node might be
caused by a different ambiguity in the CFG.

3. The grammar engineer extracts an arbitrary ambiguous sub-sentence and
runs the parser again using the respective sub-parser, producing a set of
smaller trees.

4. Each parse tree of this set is visualized on a 2D plane and the grammar en-
gineer spots the differences, or a (tree) diff algorithm is run by the grammar
engineer to spot the differences. Between two alternative trees, either the
shape of the tree is totally different (rules have moved up/down, left/right),
or completely different rules have been used, or both. As a result the output
of diff algorithms and 2D visualizations typically require some effort to un-
derstand. Figure 1 illustrates the complexity of an ambiguous parse forest for
a 5 line Java program that has a dangling else ambiguity. Figure 2 depicts
the output of diff on a strongly simplified representation (abstract syntax
tree) of the two alternative parse trees for the same nested conditional. Re-
alistic parse trees are not only too complex to display in this paper, but are
often too big to visualize on screen as well. The common solution is to prune
the input sentence step-by-step to eventually reach a very minimal example
that still triggers the ambiguity but is small enough to inspect.

5. The grammar engineer hopefully knows that for some patterns of differences
there are typical solutions. A solution is picked, and the parser is regenerated.

6. The smaller sentence is parsed again to test if only one tree (and which tree)
is produced.

7. The original sentence is parsed again to see if all ambiguity has been removed
or perhaps more diagnostics are needed for another ambiguous sub-sentence.
Typically, in programs one cause of ambiguity would lead to several instances
distributed over the source file. One disambiguation may therefore fix more
“ambiguities” in a source file.

The issues we address in this paper are that the above scenario is (a) an expert
job, (b) time consuming and (c) tedious. We investigate the invention of an expert
system that can automate finding a concise grammar-level explanation for any
choice node in a parse forest and propose a set of solutions that will eliminate
it. This expert system is shaped as a set of algorithms that analyze sets of
alternative parse trees, simulating what an expert would do when confronted
with an ambiguity.

The contributions of this paper are an overview of common causes of ambigu-
ity in grammars for programming language (Section 3), an automated tool (Dr.
Ambiguity) that diagnoses parse forests to propose one or more appropriate dis-
ambiguation techniques (Section 4) and an initial evaluation of its effectiveness
(Section 5). In 2006 we published a manual [34] to help users disambiguate SDF2
grammars. This well-read manual contains recipes for solving ambiguity in gram-
mars for programming languages. Dr. Ambiguity automates all tasks that users
perform when applying the recipes from this manual, except for finally adding
the preferred disambiguation declaration.

We need the following definitions. A context-free grammar G is defined as a
4-tuple (T,N, P, S), namely finite sets of terminal symbols T and non-terminal
symbols N , production rules P like N → α where α ∈ (T ∪ N)∗ and a start sym-
bol S. A sentential form is a finite string in (T ∪ N)∗. A sentence is a sentential
form without non-terminal symbols. An ε denotes the empty sentential form. We
use the other lowercase greek characters α, β, γ, . . . for variables over sentential
forms, uppercase roman characters for non-terminals (A,B, . . .) and lowercase
roman characters and numerical operators for terminals (a, b,+,−, ∗, /). By ap-
plying production rules as substitutions we can generate new sentential forms.
One substitution is called a derivation step, e.g. αAβ ⇒ αγβ with rule A → γ.
We use ⇒∗ to denote sequences of derivation steps. A full derivation is a se-
quence of production rule application that starts with a start-symbol and ends
with a sentence. The language of a grammar is the set of all sentences derivable
from S. In a bracketed derivation [18] we record each application of a rule by a
pair of brackets, for example S ⇒ (bEe) ⇒ (b(E + E)e) ⇒ (b((E ∗ E) + E)).
Brackets are (implicitly) indexed with their corresponding rule.

A non-deterministic derivation sequence is a derivation sequence in which
a � operator records choices between different derivation sequences. I.e. α ⇒
(β) � (γ) means that either β or γ may be derived from α using a single
derivation step. Note that β does not necessarily need to be different from γ. An
example non-deterministic derivation is E ⇒ (E+E)�(E ∗E)⇒ (E+(E ∗E))�
((E + E) ∗ E). A cyclic derivation sequence is any sequence α ⇒+ α, which is
only possible by applying rules that do not have to eventually generate terminal
symbols, such as A→ A and A→ ε.

A parse tree is an (ordered) finite tree representation of a bracketed full
derivation of a specific sentence. Each pair of brackets is represented by an
internal node labeled with the rule that was applied. Each terminal is a leaf node.
This implies the leafs of a parse tree form a sentence. Note that a single parse
tree may represent several equivalent derivation sequences. Namely in sentential
forms with several non-terminals one may always choose which non-terminal
to expand first. From here on we assume a canonical left-most form for such
equivalent derivation sequences, in which expansion always occurs at the left-
most non-terminal in a sentential form.

A parse forest is a set of parse trees possibly extended with ambiguity nodes
for each use of choice (�). Like parse trees, parse forests are limited to repre-
sent full derivations of a single sentence, each child of an ambiguity node is a

derivation for the same sub-sentence. One such child is called an alternative. For
simplicity’s sake, and without loss of generality, we assume that all ambiguity
nodes have exactly two alternatives.

A parse forest is ambiguous if it contains at least one ambiguity node. A
sentence is ambiguous if its parse forest is ambiguous. A grammar is ambiguous if
it can generate at least one ambiguous sentence. An ambiguity in a sentence is an
ambiguity node. An ambiguity of a grammar is the cause of such aforementioned
ambiguity. We define cause of ambiguity precisely in Section 3. Note that cyclic
derivation sequences can be represented by parse forests by allowing them to be
graphs instead of just trees [27].

A recognizer for G is a terminating function that takes any sentence α as
input and returns true if and only if S ⇒∗ α. A parser for G is a terminating
function that takes any finite sentence α as input and returns an error if the
corresponding recognizer would not return true, and otherwise returns a parse
forest for α. A disambiguation filter is a function that takes a parse forest for
α and returns a smaller parse forest for α [22]. A disambiguator is a function
that takes a parser and returns a parser that produces smaller parse forests.
Disambiguators may be implemented as parser actions, or by parser generators
which take additional disambiguation constructs as input [9]. We use the term
disambiguation for both disambiguation filters and disambiguators.

2 Solutions to ambiguity

There are basically two kinds of solutions to removing ambiguity from gram-
mars. The first involves restructuring the grammar to accept the same set of
sentences but using different rules. The second leaves the grammar as-is, but
adds disambiguations (see above). Although grammar restructuring is a valid
solution direction, we restrict ourselves to disambiguations in the current paper.
The benefit of disambiguation as opposed to grammar restructuring is that the
shape of the rules, and thus the shape of the parse trees remains unchanged.
This allows language engineers to maintain the intended semantic structure of
the language, keeping parse trees directly related to abstract syntax trees (or
even synonymous) [19].

Any solution may be language preserving, or not. We may change a gram-
mar to have it generate a different language, or we may change it to generate
the same language differently. Similarly, a disambiguation may remove sentences
from a language, or simply remove some ambiguous derivation without removing
a sentence. This depends on whether or not the filter is applied always in the
context of an ambiguous sentence, i.e. whether another tree is guaranteed to be
left over after a certain tree is filtered. It may be hard for a language engineer
who adds a disambiguation to understand whether it is actually language pre-
serving. Whether or not it is good to be language preserving depends entirely on
ad-hoc requirements. The current paper does not answer this question. Where
possible, we do indicate whether adding a certain disambiguation is expected to
be language preserving. Proving this property is out-of-scope.

Solving ambiguity is sometimes confused with making parsers deterministic.
From the perspective of the current paper, non-determinism is a non-issue. We
focus solely on solutions to ambiguity.

We now quote a number of disambiguation methods here. Conceptually, the
following list contains nothing but disambiguation methods that are commonly
supported by lexer and parser generators [1]. Still, the precise semantics of each
method we present here may be specific to the parser frameworks of SDF2 [19,35]
and Rascal [21]. In particular, some of these methods are specific to scanner-
less parsing, where a context-free grammar specifies the language down to the
character level [35,28]. We recommend [7], to appreciate the intricate differences
between semantics of operator priority mechanisms between parser generators.

Priority disallows certain direct edges between pairs of rules in parse trees
in order to affect operator priority. For instance, the production for the +

operator may not be a direct child of the * production [9].
Formally, let a priority relation > be a partial order between recursive rules
of an expression grammar. If A→ α1Aα2 > A→ β1Aβ2 then all derivations
γAδ ⇒ γ(α1Aα2)δ ⇒ γ(α1(β1Aβ2)α2) are illegal.

Associativity is similar to priority, but father and child are the same rule. It
can be used to affect operator associativity. For instance, the production of
the + operator may not be a direct right child of itself because + is left asso-
ciative [9]. Left and right associativity are duals, and non-assocativity means
no nesting is allowed at all. Formally, if a recursive rule A→ AαA is defined
left associative, then any derivation γAδ ⇒ γ(AαA)δ ⇒ γ(Aα(AαA))δ is
illegal.

Offside disallows certain derivations using the would-be indentation level of
an (indirect) child. If the child is “left” of a certain parent, the derivation
is filtered [24]. One example formalization is to let Π(x) compute the start
column of the sub-sentence generated by a sentential form x and let > define
a partial order between production rules. Then, if A → α1Xα2 > B → β
then all derivations γAδ ⇒ γ(α1Xα2)δ ⇒∗ γ(α1(. . . (β) . . .)α2)δ) are illegal
if Π(β) < Π(α1). Parsers may employ subtly different offside disambigua-
tors, depending on how Π is defined for each different language or even for
each different production rule within a language.

Preference removes a derivation, but only if another one of higher preference
is present. Again, we take a partial ordering > that defines preference be-
tween rules for the same non-terminal. Let A → α > A → β, then from all
derivations γAδ ⇒ γ((α) � (β))δ we must remove (β) to obtain A⇒ γ(α)δ.

Reserve disallows a fixed set of terminals from a certain (non-)terminal, com-
monly used to reserve keywords from identifiers. Let K be a set of sentences
and let I be a non-terminal from which they are declared to be reserved.
Then, for every α ∈ K, any derivation I ⇒∗ α is illegal.

Reject disallows a language generated from a non-terminal for a certain non-
terminal. This may be used to implement Reserve, but it is more powerful
than that [9]. Let (I - R) declare that the non-terminal R is rejected from
the non-terminal I. Then any derivation sequence I ⇒∗ α is illegal if and
only if ∃(R⇒∗ α).

Not Follow/Precede declarations disallow derivation steps if the generated sub-
sentence in its context is immediately followed/preceded by a certain termi-
nal. This is used to affect longest match behavior for regular languages, but
also to solve “dangling else” by not allowing the short version of if, when
it would be immediately followed by else [9]. Formally, we define follow
declaration as follows. Given A ⇒∗ β and a declaration A not-follow α,
where α is a sentence, any derivation S ⇒∗ γAαδ ⇒∗ γ(β)αδ is illegal. We
should mention that Follow declarations may simulate the effect of “shift be-
fore reduce” heuristics that deterministic —LR, LALR— parsers use when
confronted with a shift/reduce conflict.

Dynamic Reserve disallows a dynamic set of sub-sentences from a certain non-
terminal, i.e. using a symbol table [1]. The semantics is similar to Reject,
where the set K is dynamically changed as certain derivations (i.e. type
declarations) are applied.

Types removes certain type-incorrect sub-trees using a type-checker, leaving
correctly typed trees as-is [12]. Let C(d) be true if and only if derivation d
(represented by a tree) is a type-correct part of a program. Then all deriva-
tions γAδ ⇒ γ(α)δ are illegal if C(α) is false.

Heuristics There are many kinds of heuristic disambiguation that we bundle
under a single definition here. The preference of “Islands” over “Water” in
island grammars is an example [25]. Preference filters are sometimes gener-
alized by counting the number of preferred rules as well [9]. Counting rules is
used sometimes to choose a “simplest” derivation, i.e. the most shallow trees
are selected over deeper ones. Formally, Let C(d) be any function that maps
a derivation (parse tree) to an integer. If C(A⇒ α) > C(A⇒ β) then from
all derivations A⇒∗ (α) � (β) we must remove (β) to obtain (A)⇒ (α).

Not surprisingly, each kind of disambiguation characterizes certain properties of
derivations. In the following section we link such properties to causes of ambi-
guity. Apart from Types and Heuristics (which are too general to automatically
report specific suggestions for), we can then link the causes explicitly back to
the solution types.

3 Causes of ambiguity

Ambiguity is caused by the fact that the grammar can derive the same sentence
in at least two ways. This is not a particularly interesting cause, since it char-
acterizes all ambiguity in general. We are interested explaining to a grammar
engineer what is wrong for a very particular grammar and sentence and how
to possibly solve this particular issue. We are interested in the root causes of
specific occurrences of choice nodes in parse forests.

For example, let us consider a particular grammar for the C programming
language for which the sub-sentence “{S * b;}” is ambiguous. In one derivation
it is a block of a single statement that multiplies variables S and b, in another it
is a block of a single declaration of a pointer variable b to something of type S.

From a language engineer’s perspective, the causes of this ambiguous sentence
are that:

– “*” is used both in the rule that defines multiplication, and in the rule that
defines pointer types, and

– type names and variable names have the same lexical syntax, and
– blocks of code start with a possibly empty list of declarations and end with

a possibly empty list of statements, and
– both statements and declarations end with “;”.

The conjunction of all these causes explains us why there is an ambiguity. The
removal of just one of them fixes it. In fact, we know that for C the ambiguity
was fixed by introducing a disambiguator that reserves any declared type name
from variable names using a symbol table at parse time, effectively removing the
second cause.

We now define a cause of an ambiguity in a sub-sentence to be the existence
of any edge that is in the parse tree of one alternative of an ambiguity node,
but not in the other. In other words, each difference between two alternative
parse trees in a forest is one cause of the ambiguity. For example, two parse
tree edges differ if they represent the application of a different production rule,
span a different part of the ambiguous sub-sentence, or are located at different
heights in the tree.

We define an explanation of an ambiguity in a sentence to be the conjunction
of all causes of ambiguity in a sentence. An explanation is a set of differences. We
call it an explanation because an ambiguity exists if and only if all of its causes
exist. A solution is any change to the grammar, addition of a disambiguation
filter or use of a disambiguator that removes at least one of the causes.

Some causes of ambiguity may be solvable by the disambiguation methods
defined in Section 2, some may not. Our goals are therefore to first explain
the cause of ambiguity as concisely as possible, and then if possible propose a
palette of applicable disambiguations. Note that even though the given common
disambiguations have limited scope, disambiguation in general is always possible
by writing a disambiguation filter in any computationally complete programming
language.

3.1 Classes of Parse Tree Differences

Having precisely defined ambiguity and the causes thereof, we can now catego-
rize different kinds of causes into classes of differences between parse trees. The
difference classes are the theory behind the workings of Dr. Ambiguity (Sec-
tion 5). The upper part of Figure 3 summarizes the cause classes that we will
identify in the following.

For completeness we should explain that ambiguity of CFGs is normally
bisected into a class called Horizontal ambiguity and a class called Verti-
cal ambiguity [8,2,29]. Vertical contains all the ambiguity that causes parse
forests that have two different production rules directly under a choice node. For

All Edge Differences
(Root Causes)

Reorderings

Swaps

Same

RegExps

Terminals

White
Vertical

Lists

All Explanations
(Conjunctions of Root Causes)

Reorderings

Swaps

RegExps

Terminals

White

Vertical

Lists

Same

Priority

Associativity

Offside

Preference

Reserve Keyword

Follow restriction

Actions

Figure 3. A partial categorization of parse tree differences (Venn diagrams).
The categorization is complete for the disambiguation solutions in this paper.
Above single causes are categorized. Below conjunctions of causes that form
explanations are categorized.

instance, all edges of derivation sequences of form γAδ ⇒ γ((α) � (β))δ provided
that α 6= β are in Vertical. Vertical clearly identifies a difference class,
namely the trees with different edges directly under a choice node.

Horizontal ambiguity is defined to be all the other ambiguity. Horizontal
does not identify any difference class, since it just implies that the two top rules
are the same. Our previous example of ambiguity in a C grammar is an example
of such ambiguity. We conclude that in order to obtain full explanations of ambi-
guity the Horizontal/Vertical dichotomy is not detailed enough. Vertical
provides only a partial explanation (a single cause), while Horizontal provides
no explanations at all.

We now introduce a number of difference classes with the intention of char-
acterizing differences which can be solved by one of the aforementioned disam-
biguation methods. Each element in a different class points to a single cause of
ambiguity. A particular disambiguation method may be applicable in the pres-
ence of elements in one or more of these classes. The following categorization is
summarized by the upper part of Figure 3.

We define the Edges class to be the universe of all difference classes. In Edges
are all single derivation steps (equivalent to edges in parse forests) that occur in
one alternative but not in the other. If no such derivation steps exist, the two
alternatives are exactly equal. Note that Edges = Horizontal ∪Vertical.

The Terminals class contains all parse tree edges to non-ε leafs that occur
in one alternative but not in the other. If an explanation contains a differ-
ence in Terminals, we know that the alternatives have used different terminal
tokens—or in the case of scannerless, different character classes—for the same
sub-sentences. This is sometimes called lexical ambiguity. If no differences are in
Terminals, we know that the terminals used in each alternative are equal.

The Whitespace class (⊂ Terminals) simply identifies the differences in
Terminals that produce terminals consisting of nothing but spaces, tabs, new-
lines, carriage returns or linefeeds.

The RegExps class contains all edges of derivation steps that replace a non-
terminal by a sentential form that generates a regular language, occurring in one
derivation but not in the other, i.e. A⇒ (ρ) where ρ is a regular expression over
terminals. Of course, Terminals ⊂ RegExps. In character level grammars
(scannerless [9]), the RegExps class represents lexical ambiguity. Differences
in RegExps may point to solutions such as Reserve, Follow and Reject, since
longest match and keyword reservation are typical solution scenarios for ambi-
guity on the lexical level.

In the Swaps class we put all edges that have a corresponding edge in the
other alternative of which the source and target productions are equal but that
have swapped order. For instance, the lower edges in the parse tree fragment
((E ∗ E) + E) � (E ∗ (E + E)) are in Swaps. If all differences are in Swaps,
the set of rules used in the derivations of both alternatives are the same and
each rule is applied the same number of times—only their order of application
is different.

The Reorderings class generalizes Swaps with more than two rules to per-
mute. This may happen when rules are not directly recursive, but mutually
recursive in longer chains. Differences in Reorderings or Swaps obviously
suggest a Priority solution, but especially for non-directly recursive derivations
Priority will not work. For example, the notorious “dangling else” issue [1] gen-
erates differences in application order of mutually recursive statements and lists
of statements. For some grammars, a difference in Reorderings may also im-
ply a difference in Vertical, i.e. a choice between an if with an else and one
without. In this case a Preference solution would work. Some grammars (e.g.
the IBM COBOL VS2 standard) only have differences in Horizontal and Re-
orderings. In this case a Follow solution may prevent the use of the if without
the else if there is an else to be parsed. Note that the Offside solution is an
alternative method to remove ambiguity caused by Reorderings. Apparently,

we need even smaller classes of differences before we can be more precise about
suggesting a solution.

The Lists class contains differences in the length of certain lists between two
alternatives. For instance, we consider rules L → LE and observe differences
in the amount of times these rules are applied by the derivation steps in each
alternative. More precisely, for any L and E with the rule L → LE we find
chains of edges for derivation sequences αLβ ⇒ αLEβ ⇒ αLEEβ ⇒∗ αE+β,
and compute their length. The edges of such chains of different lengths in the two
alternatives are members of Lists. Examples of ambiguities caused by Lists are
those caused by not having “longest match” behavior: an identifier “aa” generated
using the rules I → a and I → I a may be split up in two shorter identifiers “a”
and “a” in another alternative. We can say that Lists ∩Regexps 6= ∅.

Note that differences in Lists ∩ Reorderings indicate a solution towards
Follow or Offside for they flag issues commonly seen in dangling constructs.
On the other hand a difference in Lists \ Reorderings indicates that there
must be another important difference to explain the ambiguity. The “ ‘{S * a}” ’
ambiguity in C is of that sort, since the length of declaration and statement
lists differ between the two alternatives, while also differences in Terminals are
necessary.

The Epsilons class contains all edges to ε leaf nodes that only occur in one of
the alternatives. They correspond to derivation steps αAβ ⇒ α()β, using A→ ε.
All cyclic derivations are caused by differences in Epsilons because one of the
alternatives of a cyclic ambiguity must derive the empty sub-sentence, while the
other eventually loops back. However, differences in Epsilons may also cause
other ambiguity than cyclic derivations.

The subset Optionals of Epsilons contains all edges of a derivation step
αAβ ⇒ α()β that only exist in one alternative, while a corresponding edge
of δAζ ⇒ δ(γ)ζ only exists in the other alternative. Problems that are solved
using longest match (Follow) are commonly caused by optional whitespace for
example.

4 Diagnosing Ambiguity

We provide an overview of the architecture and the algorithms of Dr. Ambiguity
in this section. In Section 5 we demonstrate its output on example parse forests
for an ambiguous Java grammar.

4.1 Architecture

Figure 4 shows an overview of our diagnostics tool: Dr. Ambiguity. We start from
the parse forest of an ambiguous sentence that is either encountered by a lan-
guage engineer or produced by a static ambiguity detection tool like AmbiDexter.

User selected
sub-forest

"AmbiDexter"
Static Ambiguity

Detector

Grammar

Parse Forest

Parser
Generator Parser

Input sentence

Iterate for every
ambiguous sub-

forest
one sub-forest

Iterate for every
pair of

alternatives

Disambiguation-specific
diff algorithm 1

Classification
Information

Disambiguation
Suggestions

...
Disambiguation-specific

diff algorithm n

"Dr. Ambiguity"

"Rascal" Parsing Features

Figure 4. Contextual overview (input/output) of “Dr. Ambiguity”.

Then, either the user points at a specific sub-sentence2, or Dr. Ambiguity finds
all ambiguous sub-sentences (e.g. choice nodes) and iterates over them. For each
choice node, the tool then generates all unique combinations of two children of
the choice node and applies a number of specialized diff algorithms to them.

Conceptually there exists one diff algorithm per disambiguation method (Sec-
tion 2). However, since some methods may share intermediate analyses there is
some additional intermediate stages and some data-dependency that is not de-
picted in Figure 4. These intermediate stages output information messages about
the larger difference classes that are to be analyzed further if possible. This out-
put is called “Classification Information” in Figure 4. The other output, called
“Disambiguation Suggestions” is a list of specific disambiguation solutions (with
reference to specific production rules from the grammar).

If no specific or meaningful disambiguation method is proposed the classifi-
cation information will provide the user with useful information on designing an
ad-hoc disambiguation.

Dr. Ambiguity is written in the Rascal domain specific programming lan-
guage [21]. This language is specifically targeted at analysis, transformation,
generation and visualization of source code. Parse trees are a built-in data-type
which can be queried using (higher order) pattern matching, visiting and set, list
and map comprehension facilities. To understand some of the Rascal snippets
in this section, please familiarize yourself with this definition for parse trees (as
introduced by [35]):

data Tree

= appl(Production prod, list[Tree] args) // production nodes

| amb(set[Tree] alternatives) // choice nodes

| char(int code); // terminal leaves

data Production

= prod(list[Symbol] lhs, Symbol rhs, Attributes attributes); // rules

Dr. Ambiguity, in total, is 250 lines of Rascal code that queries and traverses
terms of this parse tree format. The count includes source code comments. It
is slow on big parse forests3, which is why the aforementioned user-selection of
specific sub-sentences is important.
2 We use Eclipse IMP [13] as a platform for generating editors for programming lan-
guages defined using Rascal [21]. IMP provides contextual pop-up menus.

3 The current implementation of Rascal lacks many trivial optimizations.

4.2 Algorithms

Here we show some of the actual source code of Dr. Ambiguity.
First, the following two small functions iterate over all (deeply nested) choice

nodes (amb) and over all possible pairs of alternatives. This code uses deep match
(/), set matching, and set or list comprehensions. Note that the match operator
(:=) iterates over all possible matches of a value against a pattern, thus gener-
ating all different bindings for the free variables in the pattern. This feature is
used often in the implementation of Dr. Ambiguity.

list[Message] diagnose(Tree t) {

return [findCauses(x) | x <- {a | /a:amb(_) := t}];

}

list[Message] findCauses(Tree a) {

return [findCauses(x, y) | {x, y, _*} := a.alternatives];

}

The following functions each implement one of the diff algorithms from Fig-
ure 4. Intuitively they identify one of the spots from the lower Venn diagram in
Figure 3. The following two (slightly simplified4) functions detect opportunities
to apply priority or associativity disambiguations.

list[Message] priorityCauses(Tree x, Tree y) {

if (/appl(p,[appl(q,_),_*]) := x,

/t:appl(q,[_*,appl(p,_)]) := y, p != q) {

return [error("You might add this priority rule: <p> \> <q>")

,error("You might add this associativity group: left (<p> | <q>)")];

}

return [];

}

list[Message] associativityCauses(Tree x, Tree y) {

if (/appl(p,[appl(p,_),_*]) := x, /Tree t:appl(p,[_*,appl(p,_)]) := y) {

return [error("You might add this associativity declaration: left <p>")];

}

return [];

}

Both functions “simultaneously” search through the two alternative parse trees
p and q, detecting a vertical swap of two different rules (priority) or a horizontal
swap of the same rule p under itself (associativity).

This slightly more involved function detects dangling-else and proposes a
follow restriction as a solution:

list[Message] danglingCauses(Tree x, Tree y) {

if (appl(p,/appl(q,_)) := x, appl(q,/appl(p,_)) := y) {

return danglingOffsideSolutions(x, y)

+ danglingFollowSolutions(x, y);

}

return [];

4 We have removed references to location information that facilitates IDE features.

}

list[Message] danglingFollowSolutions(Tree x, Tree y) {

if (prod(lhs, _, _) := x.prod,

prod([prefix*, _, l:lit(_), more*], _, _) := y.prod,

lhs == prefix) {

return [error("You might add a follow restriction for <l> on: <x.prod>")];

}

return [];

}

The function danglingCauses detects re-orderings of arbitrary depth, after which
the outermost productions are compared by danglingFollowRestrictions to see
if one production is a prefix of the other.

Dr. Ambiguity currently contains 10 such functions, and we will probably
add more. Since they all employ the same style —(a) simultaneous deep match,
(b) production comparison and (c) construction of a feedback message— we have
not included more source code5.

4.3 Discussion on correctness

These diagnostics algorithms are typically wrong if one of the following four
errors is made:

– no suggestion is given, even though the ambiguity is of a quite common kind;
– the given suggestion does not resolve any ambiguity;
– the given suggestion removes both alternatives from the forest, resulting in

an empty forest (i.e., it removes the sentence from the language and is thus
not language preserving);

– the given suggestion removes the proper derivation, but also unintentionally
removes sentences from the language.

We address the first threat by demonstrating Dr. Ambiguity on Java in Sec-
tion 5. However, we do believe that the number of detection algorithms is open
in principle. For instance, for any disambiguation method that characterizes a
specific way of solving ambiguity we may have a function to analyze the charac-
teristic kind of difference. As an “expert tool”, automating proposals for common
solutions in language design, we feel that an open-ended solution is warranted.
More disambiguation suggestion algorithms will be added as more language de-
signs are made. Still, in the next section we will demonstrate that the current set
of algorithms is complete for all disambiguations applied to a scannerless defini-
tion of Java 5 [11], which actually uses all disambiguations offered by SDF2.

For the second and third threats, we claim that no currently proposed solution
removes both alternatives and all proposed solutions remove at least one. This is
the case because each suggestion is solely deduced from a difference between two
alternatives, and each disambiguation removes an artifact that is only present in
5 The source code is available at http://svn.rascal-mpl.org/rascal/trunk/src/org/

rascalmpl/library/Ambiguity.rsc.

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc

one of the alternatives. We are considering to actually prove this, but only after
more usability studies.

The final threat is an important weakness of Dr. Ambiguity, inherited from
the strength of the given disambiguation solutions. In principle and in prac-
tice, the application of rejects, follow restrictions, or semantic actions in general
renders the entire parsing process stronger than context-free. For example, us-
ing context-free grammars with additional disambiguations we may decide lan-
guage membership of many non-context-free languages. On the one hand, this
property is beneficial, because we want to parse programming languages that
have no or awkward context-free grammars. On the other hand, this property
is cumbersome, since we can not easily predict or characterize the effect of a
disambiguation filter on the accepted set of sentences.

Only in the Swaps class, and its sub-classes we may be (fairly) confident
that we do not remove unforeseen sentences from a language by introducing a
disambiguation. The reason is that if one of the alternatives is present in the
forest, the other is guaranteed to be also there. The running assumption is that
the other derivation has not been filtered by some other disambiguation. We
might validate this assumption automatically in many cases. So, application of
priority and associativity rules suggested by Dr. Ambiguity are safe if no other
disambiguations are applied.

5 Demonstration

In this section we evaluate the effectiveness of Dr. Ambiguity as a tool. We ap-
plied Dr. Ambiguity to a scannerless (character level) grammar for Java [11,10].
This well tested grammar was written in SDF2 by Bravenboer et al. and makes
ample use of its disambiguation facilities. For the experiment here we automat-
ically transformed the SDF2 grammar to Rascal’s EBNF-like form.

Table 1 summarizes which disambiguations were applied in this grammar.
Rascal supports all disambiguation features of SDF2, but some disambiguation
filters are implemented as libraries rather than built-in features. The @prefer

attribute is interpreted by a library function for example. Also, in SDF2 one can
(mis)use a non-transitive priority to remove a direct father/child relation from
the grammar. In Rascal we use a semantic action for this.

5.1 Evaluation method

Dr. Ambiguity is effective if it can explain the existence of a significant amount
of choice nodes in parse forests and proposes the right fixes. We measure this
effectiveness in terms of precision and recall. Dr. Ambiguity has high precision
if it does not propose too many solutions that are useless or meaningless to the
language engineer. It has high recall if it finds all the solutions that the language
engineer deems necessary. Our evaluation method is as follows:

– The set of disambiguations that Bravenboer applied to his Java grammar is
our “golden standard”.

Disambiguations Grammar snippet (Rascal notation)
7 levels of expression priority Expr = Expr "++"

> "++" Expr

1 father/child removal MethodSpec = Expr callee "." TypeArgs? Id {

if (callee is ExprName) fail; }

9 associativity groups Expr = left (Expr "+" Expr

| Expr "-" Expr)

10 rejects ID = [$A-Z_a-z] [$0-9A-Z_a-z]*
- Keywords

30 follow restrictions "+" = [\+]

[\+]

4 vertical preferences Stm = @prefer "if" "(" Expr ")" Stm

| "if" "(" Expr ")" Stm "else" Stm

Table 1. Disambiguations applied in the Java 5 grammar [11]

– The disambiguations in the grammar are selectively removed, which results
in different ambiguous versions of the grammar. New parsers are generated
for each version.

– An example Java program is parsed with each newly generated parser. The
program is unambiguous for the original grammar, but becomes ambiguous
for each altered version of the grammar.

– We measure the total amount and which kinds of suggestions are made by
Dr. Ambiguity for the parse forests of each grammar version, and compute
the precision and recall.

Recall is computed by |FoundDisambiguations ∩ RemovedDisambiguations|
|RemovedDisambiguations| ×100%. From

this number we see how much we have missed. We expect the recall to be 100%
in our experiments, since we designed our detection methods specifically for the
disambiguation techniques of SDF2.
Precision is computed by |FoundDisambiguations ∩ RemovedDisambiguations|

|FoundDisambiguations| × 100%.
We expect low precision, around 50%, because each particular ambiguity of-
ten has many different solution types. Low precision is not necessarily a bad
thing, provided the total amount of disambiguation suggestions remains human-
checkable.

5.2 Results

Table 2 contains the results of measuring the precision and recall on a number of
experiments. Each experiment corresponds to a removal of one or more disam-
biguation constructs and the parsing of a single Java program file that triggers
the introduced ambiguity6.

6 Note to reviewers: We intend to add more experiments with this grammar for the
camera-ready version of this paper.

Diagnoses
Experiment P A R F c v O Precision Recall
1. Remove priority between "*" and "+" 1 1 0 0 0 1 0 33% 100%
2. Remove associativity for "+" 0 1 0 0 0 0 0 100% 100%
3. Remove reservation of true keyword from ID 0 0 1 0 0 1 0 50% 100%
4. Remove longest match for identifiers 0 0 0 6 0 0 0 16% 100%
5. Remove package name vs. field access priority 0 0 0 0 6 1 0 14% 100%
6. Remove vertical preference for dangling else 0 0 0 1 14 1 1 7% 100%
7. All the above changes at the same time 1 2 1 7 20 4 1 17% 100%
Table 2. Precision/Recall results for each experiment, including (P)riority,
(A)ssociativity, (R)eject, (F)ollow restrictions, A(c)tions filtering edges,
A(v)oid/prefer suggestions, and (O)ffside rule. For each experiment, the figures
of the removed disambiguation are highlighted.

Table 2 shows that we indeed always find the removed disambiguation among
the suggestions. Also, we always find more than one suggestion (the second
experiment is the only exception).

The dangling-else ambiguity of experiment 6 introduces many small differ-
ences between two alternatives, which is why many (arbitrary) semantic actions
are proposed to solve these. We may learn from this that semantic actions need
to be presented to the language engineer as a last resort. For these disambigua-
tions the risk of collateral damage (a non-language preserving disambiguation)
is also quite high.

The final experiment tests whether the simultaneous analysis of different
choice nodes that are present in a parse forest may lead to a loss of precision
or recall. The results show that we find exactly the same suggestions. Also, as
expected the precision of such an experiment is very low. Note however, that Dr.
Ambiguity reports each disambiguation suggestion per choice node, and thus the
precision is usually perceived per choice node and never as an aggregated value
over an entire source file. Figure 5 depicts how Dr Ambiguity may report its
output.

5.3 Discussion

We have demonstrated the effectiveness of Dr. Ambiguity for only one gram-
mar. Moreover this grammar already contained disambiguations that we have
removed, simultaneously creating a representative case and a golden standard.

We may question whether Dr. Ambiguity would do well on grammars that
have not been written with any disambiguation construct in mind. We may also
question whether Dr. Ambiguity works well on completely different grammars,
such as for COBOL or PL/I. More experimental evaluation is warranted. Nev-
ertheless, this initial evaluation based on Java looks promising and does not
invalidate our approach.

Regarding the relatively low precision, we claimed that this is indeed wanted
in many cases. The actual resolution of an ambiguity is a language design ques-

Figure 5. Dr. Ambiguity reports diagnostics in the Rascal language workbench.

tion. Dr. Ambiguity should not a priori promote a particular disambiguation
over another well known disambiguation. For example, reverse engineers have a
general dislike of the offside rule because it complicates the construction of a
parser, while the users of a domain specific language may applaud the sparing
use of bracket literals.

6 Conclusions

We have presented theory and practice of automatically diagnosing the causes of
ambiguity in context-free grammars for programming languages and of proposing
disambiguation solutions. We have evaluated our prototype implementation on
an actively used and mature grammar for Java 5, to show that Dr. Ambiguity
can indeed propose the proper disambiguations.

Future work on this subject includes further extension, further usability study
and finally proofs of correctness. To support development of front-ends for many
programming languages and domain specific languages, we will include Dr. Am-
biguity in releases of the Rascal IDE (a software language workbench).

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques and Tools.
Addison-Wesley (1986)

2. Altman, T., Logothetis, G.: A note on ambiguity in context-free grammars. Inf.
Process. Lett. 35(3), 111–114 (1990)

3. Aycock, J., Horspool, R.: Faster generalized LR parsing. In: Jähnichen, S. (ed.)
CC 1999. LNCS, vol. 1575, pp. 32–46. Springer-Verlag (1999)

4. Basten, H.J.S.: Tracking down the origins of ambiguity in context-free grammars.
In: Proceedings of the 7th International Colloquium on Theoretical Aspects of
Computing (ICTAC 2010). LNCS, vol. 6255, pp. 76–90. Springer (2010)

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In:
Brabrand, C., Moreau, P.E. (eds.) Proceedings of the Tenth Workshop on Language
Descriptions, Tools and Applications (LDTA 2010). pp. 5:1–5:9. ACM (2010)

6. Begel, A., Graham, S.L.: XGLR–an algorithm for ambiguity in programming lan-
guages. Science of Computer Programming 61(3), 211 – 227 (2006), Special Issue on
The Fourth Workshop on Language Descriptions, Tools, and Applications (LDTA
2004)

7. Bouwers, E., Bravenboer, M., Visser, E.: Grammar engineering support for prece-
dence rule recovery and compatibility checking. ENTCS 203(2), 85 – 101 (2008),
proceedings of the Seventh Workshop on Language Descriptions, Tools, and Ap-
plications (LDTA 2007)

8. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. Sci. Comput. Program. 75(3), 176–191 (2010)

9. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters
for scannerless generalized LR parsers. In: Horspool, R.N. (ed.) Compiler Con-
struction, 11th International Conference, CC 2002. LNCS, vol. 2304, pp. 143–158.
Springer (2002)

10. Bravenboer, M., Tanter, E., Visser, E.: Declarative, formal, and extensible syntax
definition for AspectJ. SIGPLAN Not. 41, 209–228 (October 2006)

11. Bravenboer, M., Vermaas, R., de Groot, R., Dolstra, E.: Java-front:
Java syntax definition, parser, and pretty-printer. Tech. rep., http://

www.program-transformation.org (2011), http://www.program-transformation.org/
Stratego/JavaFront

12. Bravenboer, M., Vermaas, R., Vinju, J.J., Visser, E.: Generalized type-based dis-
ambiguation of meta programs with concrete object syntax. In: Glück, R., Lowry,
M.R. (eds.) Generative Programming and Component Engineering, 4th Interna-
tional Conference, GPCE 2005. LNCS, vol. 3676, pp. 157–172. Springer, Tallinn,
Estonia (2005)

13. Charles, P., Fuhrer, R.M., Jr., S.M.S., Duesterwald, E., Vinju, J.: Accelerating the
creation of customized, language-specific IDEs in eclipse. In: Arora, S., Leavens,
G.T. (eds.) Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009
(2009)

14. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P. (ed.) Computer Programming and Formal Systems, pp. 118–161.
North-Holland, Amsterdam (1963)

15. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102
(February 1970)

16. Economopoulos, G.R.: Generalised LR parsing algorithms. Ph.D. thesis, Royal
Holloway, University of London (August 2006)

17. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
SIGPLAN Not. 39, 111–122 (January 2004)

18. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Com-
puter and System Sciences 1(1), 1–23 (1967)

http://www.program-transformation.org
http://www.program-transformation.org
http://www.program-transformation.org/Stratego/JavaFront
http://www.program-transformation.org/Stratego/JavaFront

19. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

20. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) Software Language Engineering, LNCS, vol.
6563, pp. 42–61. Springer Berlin / Heidelberg (2011)

21. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal.
In: Fernandes, J.a., Lämmel, R., Visser, J., Saraiva, J.a. (eds.) Generative and
Transformational Techniques in Software Engineering III, LNCS, vol. 6491, pp.
222–289. Springer Berlin / Heidelberg (2011)

22. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars.
In: Pighizzini, G., San Pietro, P. (eds.) Proc. ASMICS Workshop on Parsing The-
ory. pp. 1–20. Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione,
Università di Milano, Milano, Italy (1994)

23. Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract. Exper.
31, 1395–1448 (December 2001)

24. Landin, P.J.: The next 700 programming languages. Commun. ACM 9, 157–166
(March 1966)

25. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of
the Eighth Working Conference on Reverse Engineering (WCRE 2001). pp. 13–.
WCRE 2001, IEEE Computer Society, Washington, DC, USA (2001)

26. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In:
Proceedings of the 32nd ACM SIGPLAN conference on Programming Language
Design and Implementation. pp. 425–436. PLDI 2011, ACM, New York, NY, USA
(2011)

27. Rekers, J.: Parser Generation for Interactive Environments. Ph.D. thesis, Univer-
sity of Amsterdam (1992)

28. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming lan-
guages. In: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation. pp. 170–178. PLDI 1989, ACM (1989)

29. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech.
rep., compilertools.net (2001), see http://accent.compilertools.net/Amber.html

30. Schröer, F.W.: ACCENT, a compiler compiler for the entire class of context-free
grammars, second edition. Tech. rep., compilertools.net (2006), see http://accent.

compilertools.net/Accent.html

31. Scott, E.: SPPF-style parsing from earley recognisers. ENTCS 203, 53–67 (April
2008)

32. Scott, E., Johnstone, A.: GLL parsing. ENTCS 253(7), 177 – 189 (2010), pro-
ceedings of the Ninth Workshop on Language Descriptions Tools and Applications
(LDTA 2009)

33. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers (1985)

34. Vinju, J.J.: SDF disambiguation medkit for programming languages. Tech. Rep.
SEN-1107, Centrum Wiskunde & Informatica (2011), http://oai.cwi.nl/oai/

asset/18080/18080D.pdf

35. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, Universiteit
van Amsterdam (1997)

http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Accent.html
http://accent.compilertools.net/Accent.html
http://oai.cwi.nl/oai/asset/18080/18080D.pdf
http://oai.cwi.nl/oai/asset/18080/18080D.pdf

	Parse Forest Diagnostics with Dr. Ambiguity

