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Chapter 1

Introduction to Matrices

1.1 Motivation

Recall that at some stage, we have solved a linear system of 3 equations in 3 unknowns. But,

for clarity, let us start with a few linear systems of 2 equations in 2 unknowns.

Example 1.1.1. 1. Consider the linear system

2x+ 5y = 7

2x+ 4y = 6.

}
(1.1.1)

The two linear systems represent a pair of non-parallel lines in R2. Note that x = 1, y = 1

is the unique solution of the given system as (1, 1) is the point of intersection of the two

given lines 2x+ 5y = 7 and 2x+ 4y = 6. But, we also see that[
2

2

]
· 1 +

[
5

4

]
· 1 =

[
7

6

]
,

which corresponds to the solution of[
2

2

]
· x+

[
5

4

]
· y =

[
7

6

]
⇔
{

2x+ 5y = 7

2x+ 4y = 6.

}
(1.1.2)

Equation (1.1.2) also implies that we can write the vector

[
7

6

]
as sum of the vectors

[
2

2

]

and

[
5

4

]
. So, even though we were looking at the point of intersection of two lines, an

interpretation of the solution gives information about vectors in R2.

2. Consider the linear system

x+ 5y + 4z = 11

x+ 6y − 7z = 1

2x+ 11y − 3z = 12.

 (1.1.3)

Here, we have three planes in R3 and an easy observation implies that the third equation

is the sum of the first two equations. Hence, the line of intersection of the first two planes

7



D
RA
FT

8 CHAPTER 1. INTRODUCTION TO MATRICES

is contained in the third plane. Hence, this system has infinite number of solutions given

by

x = 61− 59k, y = −10 + 11k, z = k with k arbitrary real number.

For example, verify that for k = 1, we get x = 2, y = 1 and z = 1 as a possible solution.

Also, 
1

1

2

 · 2 +


5

6

11

 · 1 +


4

−7

−3

 · 1 =


11

1

12

 =


1

1

2

 · 61 +


5

6

11

 · (−10) +


4

−7

−3

 · 0,
where the second part corresponds to k = 0 as a possible solution. Thus, we again see that

the vector


11

1

12

 is a sum of the three vectors


1

1

2

,


5

6

11

 and


4

−7

−3

 (which are associated

with the unknowns x, y and z, respectively) after multiplying by certain scalars which

itself appear as solutions of the linear system.

Before going to the next example, also note that the numbers −59, 11 and 1, which appear

as coefficients of k in the solution satisfies
1

1

2

 · (−59) +


5

6

11

 · 11 +


4

−7

−3

 · 1 =


0

0

0

.
3. As a last example, consider the linear system

x+ 5y + 4z = 11

x+ 6y − 7z = 1

2x+ 11y − 3z = 13.

 (1.1.4)

Here, we see that if we add the first two equations and subtract it with the third equation

then we are left with 0x+ 0y + 0z = 1, which has no solution. That is, the above system

has no solution. I leave it to the readers to verify that there does not exist any x, y and

z such that 
1

1

2

 · x+


5

6

11

 · y +


4

−7

−3

 · z =


11

1

13

.
Remark 1.1.2. So, what we see above is “each of the linear systems gives us certain ‘relation-

ships’ between vectors which are ‘associated’ with the unknowns”. These relationships will lead

to the study of certain objects when we study “vector spaces”. They are as follows:

1. The first idea of ‘relationship’ that helps us to write a vector in terms of other vectors will

lead us to the study of ’linear combination’ of vectors. So,

[
7

6

]
is a ‘linear combination’

of

[
2

2

]
and

[
5

4

]
. Similarly,


11

1

12

 is a ‘linear combination’ of


1

1

2

,


5

6

11

 and


4

−7

−3

.
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2. Further, it also leads to the study of ‘linear span’ of a set. A positive answer leads to the

vector being an element of the ‘linear span; and a negative answer to ‘NOT an element of

the linear span’. For example, for S =




1

1

2

,


5

6

11

,


4

−7

−3


, the vector


11

1

12

 belongs to

the ‘linear span’ of S, whereas,


11

1

13

 does NOT belong to the ‘linear span’ of S.

3. The idea of a unique solution leads us to the statement that the corresponding vectors are

‘linearly independent’. For example, the set

{[
2

2

]
,

[
5

4

]}
⊆ R2 is ‘linearly independent’.

Whereas, the set




1

1

2

,


5

6

11

,


4

−7

−3


 ⊆ R3 is NOT ‘linearly independent’ as


1

1

2

 · (−59) +


5

6

11

 · 11 +


4

−7

−3

 · 1 =


0

0

0

.

1.2 Definition of a Matrix

Definition 1.2.1. A rectangular array of numbers is called a matrix.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its

columns. A matrix A having m rows and n columns is said to be a matrix of size/ order

m× n and can be represented in either of the following forms:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 or A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 ,

where aij is the entry at the intersection of the ith row and jth column. One writes A ∈Mm,n(F)

to mean that A is an m×n matrix with entries from the set F, or in short A = [aij ] or A = (aij).

We write A[i, :] to denote the i-th row of A, A[:, j] to denote the j-th column of A and aij or

(A)ij or A[i, j], for the (i, j)-th entry of A.

For example, if A =

[
1 3 + i 7

4 5 6− 5i

]
then A[1, :] = [1 3 + i 7], A[:, 3] =

[
7

6− 5i

]
and

a22 = 5. Sometimes commas are inserted to differentiate between entries of a row vector. Thus,

A[1, :] may also be written as [1, 3+ i, 7]. A matrix having only one column is called a column

vector and a matrix with only one row is called a row vector. All our vectors will be column

vectors and will be represented by bold letters. A matrix of size 1× 1 is also called a scalar

and is treated as such and hence we may or may not put it under brackets.
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Definition 1.2.2. Two matrices A = [aij ], B = [bij ] ∈Mm,n(C) are said to be equal if aij = bij ,

for each i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

In other words, two matrices are said to be equal if they have the same order and their

corresponding entries are equal.

Example 1.2.3. 1. Consider a system of linear equations 2x + 5y = 7 and 3x + 2y = 6.

Then, we identify it with the matrix A =

[
2 5 7

3 2 6

]
. Here, A[:, 1] =

[
2

3

]
and A[:, 2] =

[
5

2

]
are associated with the variables/ unknowns x and y, respectively.

2. A =

[
0 0

0 0

]
, B =

[
0 1

0 0

]
Then, A 6= B as a12 6= b12. Similarly, if C =


0 0

0 0

0 0

 then

A 6= C as they are of different sizes.

1.2.1 Special Matrices

Definition 1.2.4. Let A = [aij ] be an m× n matrix with aij ∈ F.

1. Then A is called a zero-matrix, denoted 0 (order is mostly clear from the context), if

aij = 0 for all i and j. For example, 02×2 =

[
0 0

0 0

]
and 02×3 =

[
0 0 0

0 0 0

]
.

2. Then A is called a square matrix if m = n and is denoted by A ∈Mn(F).

3. Let A ∈Mn(F).

(a) Then, the entries a11, a22, . . . , ann are called the diagonal entries of A. They consti-

tute the principal diagonal of A.

(b) Then, A is said to be a diagonal matrix, , denoted diag(a11, . . . , ann), if aij = 0

for i 6= j. For example, the zero matrix 0n and

[
4 0

0 1

]
are diagonal matrices.

(c) Then, A = diag(1, . . . , 1) is called the identity matrix, denoted In, or in short I.

For example, I2 =

[
1 0

0 1

]
and I3 =


1 0 0

0 1 0

0 0 1

.

(d) If A = αI, for some α ∈ F, then A is called a scalar matrix.

(e) Then, A is said to be an upper triangular matrix if aij = 0 for i > j.

(f) Then, A is said to be a lower triangular matrix if aij = 0 for i < j.

(g) Then, A is said to be triangular if it is an upper or a lower triangular matrix.

For example,


0 1 4

0 3 −1

0 0 −2

 is upper triangular,


0 0 0

1 0 0

0 1 1

 is lower triangular and the

matrices 0, I are upper as well as lower triangular matrices.
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4. An m × n matrix A = [aij ] is said to have an upper triangular form if aij = 0 for all

i > j. For example, the matrices


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann

,


0 0 1

0 1 0

0 0 2

0 0 0

 and

[
1 2 0 0 1

0 0 0 1 1

]

have upper triangular forms.

5. For 1 ≤ i ≤ n, define ei = In[:, i], a matrix of order n × 1. Then the column matrices

e1, . . . , en are called the standard unit vectors or the standard basis of Mn,1(C) or

Cn. The dependence of n is omitted as it is understood from the context. For example,

if e1 ∈ C2 then, e1 =

[
1

0

]
and if e1 ∈ C3 then e1 =


1

0

0

.

1.3 Matrix Operations

As a first operation, we define ‘transpose’ and/or ‘conjugate transpose’ of a matrix. This allows

us to interchange the ideas related with the rows of a matrix with the columns of a matrix and

vice-versa. It’s use also helps us in looking at geometrical ideas that are useful in applications.

1.3.1 Transpose and Conjugate Transpose of Matrices

Definition 1.3.1. Let A = [aij ] ∈Mm,n(C). Then

1. the transpose of A, denoted AT , is an n×m matrix with (AT )ij = aji, for all i, j.

2. the conjugate transpose of A, denoted A∗, is an n ×m matrix with (A∗)ij = aji (the

complex-conjugate of aji), for all i, j.

If A =

[
1 4 + i

0 1− i

]
then AT =

[
1 0

4 + i 1− i

]
and A∗ =

[
1 0

4− i 1 + i

]
. Note that A∗ 6= AT .

Note that if x =

[
1

2

]
is a column vector then xT =

[
1 2

]
and x∗ are row vectors.

Theorem 1.3.2. For any matrix A, (A∗)∗ = A and (AT )T = A.

Proof. Let A = [aij ], A
∗ = [bij ] and (A∗)∗ = [cij ]. Clearly, the order of A and (A∗)∗ is the

same. Also, by definition cij = bji = aij = aij for all i, j.

1.3.2 Sum and Scalar Multiplication of Matrices

Definition 1.3.3. Let A = [aij ], B = [bij ] ∈Mm,n(C) and k ∈ C.

1. . Then the sum of A and B, denoted A + B, is defined to be the matrix C = [cij ] ∈
Mm,n(C) with cij = aij + bij for all i, j.

2. Then, the product of k ∈ C with A, denoted kA, equals kA = [kaij ] = [aijk] = Ak.
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Example 1.3.4. If A =

[
1 4 5

0 1 2

]
, B =

[
1 −4 6

1 1 7

]
then

A+B =

[
2 0 11

1 2 9

]
and 5A =

[
5 20 25

0 5 10

]
.

Theorem 1.3.5. Let A,B,C ∈Mm,n(C) and let k, ` ∈ C. Then

1. A+B = B +A (commutativity).

2. (A+B) + C = A+ (B + C) (associativity).

3. k(`A) = (k`)A.

4. (k + `)A = kA+ `A.

Proof. (1). Let A = [aij ] and B = [bij ]. Then by definition

A+B = [aij ] + [bij ] = [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B +A

as complex numbers commute. The other parts are left for the reader.

Definition 1.3.6. Let A ∈Mm,n(C). Then

1. the matrix 0m×n satisfying A+ 0 = 0 +A = A is called the additive identity.

2. the matrix B with A+B = 0 is called the additive inverse of A, denoted −A = (−1)A.

Exercise 1.3.7. 1. Find non zero, non-identity matrices A satisfying

(a) A∗ = A (such matrices are called Hermitian matrices).

Ans: A =


1 −1 + i 2− i

−1− i 3 i

2 + i −i −1

 = A∗ and A =


1 −1 2

−1 3 5

2 5 −1

 = A∗ = AT .

(b) A∗ = −A (such matrices are called skew-Hermitian matrices).

Ans: A =


i −1 + i 2− i

1 + i i −i
−2− i −i i

 = −A∗ and


0 −1 2

1 0 5

−2 −5 0

 = −A∗ = −AT .

2. Suppose A = [aij ], B = [bij ] ∈Mm,n(C).

(a) If A+B = 0 then show that B = (−1)A = [−aij ].
(b) If A+B = A then show that B = 0.

3. Let A ∈Mn(C). Then there exists matrices B and C such that A = B+C, where BT = B

(Symmetric matrix) and CT = −C (skew-symmetric matrix).

Ans: Note A =
A+AT

2
+
A−AT

2
. Here, B =

A+AT

2
and C =

A−AT
2

.
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4. Let A =


1 + i −1

2 3

i 1

 and B =

[
2 3 −1

1 1− i 2

]
. Compute A+B∗ and B +A∗.

5. Write the 3× 3 matrices A = [aij ] satisfying

(a) aij = 1 if i 6= j and 2 otherwise.

(b) aij = 1 if | i− j | ≤ 1 and 0 otherwise.

(c) aij = i+ j.

(d) aij = 2i+j.

Ans: a)A =


2 1 1

1 2 1

1 1 2

, b) A =


1 1 0

1 1 1

0 1 1

, c) A =


2 3 4

3 4 5

4 5 6

, d) A =


22 23 24

23 24 25

24 25 26

.

1.3.3 Multiplication of Matrices

We now come to the most important operation between matrices, called the matrix multipli-

cation. We define it as follows.

Definition 1.3.8. Let A = [aij ] ∈Mm,n(C) and B = [bij ] ∈Mn,r(C). Then, the product of A

and B, denoted AB, is a matrix C = [cij ] ∈Mm,r(C) such that for 1 ≤ i ≤ m, 1 ≤ j ≤ r

cij = A[i, :]B[:, j] = [ai1, ai2, . . . , ain]


b1j

b2j
...

bnj

 = ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj .

Thus, AB is defined if and only if the number of columns of A = the number of rows of

B. The way matrix product is defined seems quite complicated. Most of you have already seen

it. But, we will find other ways (3 more ways) to understand this matrix multiplication. These

will be quite useful at different stages in our study. So, we need to spend enough time on it.

Example 1.3.9. Let A =


1 −1

2 0

0 1

 and B =

[
3 4 5

−1 0 1

]
.

1. Entry-wise Method: (AB)11 = 1 · 3 + (−1) · (−1) = 3 + 1 = 4. Similarly, compute the

rest and verify that AB =


4 4 4

6 8 10

−1 0 1

.

2. Row Method: Note that A[1, :] is a 1 × 2 matrix and B is a 2 × 3 matrix and hence
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A[1, :]B is a 1× 3 matrix. So, matrix multiplication is defined. Thus,

A[1, :]B =
[
1 −1

][ 3 4 5

−1 0 1

]
= 1 ·

[
3 4 5

]
+ (−1) ·

[
−1 0 1

]
=
[
4 4 4

]
A[2, :]B =

[
2 0

][ 3 4 5

−1 0 1

]
= 2 ·

[
3 4 5

]
+ 0 ·

[
−1 0 1

]
=
[
6 8 10

]
A[3, :]B =

[
0 1

][ 3 4 5

−1 0 1

]
= 0 ·

[
3 4 5

]
+ 1 ·

[
−1 0 1

]
=
[
−1 0 1

]
.

Hence, if A =


A[1, :]

A[2, :]

A[3, :]

 then AB =


A[1, :]

A[2, :]

A[3, :]

B =


A[1, :]B

A[2, :]B

A[3, :]B

 =


4 4 4

6 8 10

−1 0 1

.

3. Column Method: Note that A is a 3× 2 matrix and B[:, 1] is a 2× 1 matrix and hence

A(B[:, 1]) is a 3× 1 matrix. So, matrix multiplication is defined. Thus,

A ·B[:, 1] =


1 −1

2 0

0 1


[

3

−1

]
=


1

2

0

 · 3 +


−1

0

1

 · −1 =


4

6

−1



A ·B[:, 2] =


1 −1

2 0

0 1


[

4

0

]
=


1

2

0

 · 4 +


−1

0

1

 · 0 =


4

8

0



A ·B[:, 1] =


1 −1

2 0

0 1


[

5

1

]
=


1

2

0

 · 5 +


−1

0

1

 · 1 =


4

10

1


Thus, if B =

[
B[:, 1] B[:, 2] B[:, 3]

]
then

AB = A
[
B[:, 1 B[:, 2] B[:, 3]

]
=
[
A ·B[:, 1 A ·B[:, 2] A ·B[:, 3]

]
=


4 4 4

6 8 10

−1 0 1

.

4. Matrix Method: We also have if A =
[
A[:, 1] A[:, 2]

]
and B =

[
B[1, :]

B[2, :]

]
then A[:, 1]

is a 3 × 1 matrix and B[1, :] is a 1 × 3 matrix. Thus, the matrix product A[:, 1] B[1, :] is

defined and is a 3× 3 matrix. Hence,

A[:, 1]B[1, :] +A[:, 2]B[2, :] =


1

2

0

[3 4 5
]

+


−1

0

1

[−1 0 1
]

=


3 4 5

6 8 10

0 0 0

+


1 0 −1

0 0 0

−1 0 1

 =


4 4 4

6 8 10

−1 0 1

.
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Remark 1.3.10. Let A ∈ Mm,n(C) and B ∈ Mn,p(C). Then the product AB is defined and

observe the following:

1. AB corresponds to operating (combining certain multiples of rows) on the rows of B. This

is called the row method for calculating the matrix product. Here,

(AB)[i, :] = A[i, :]B = ai1B[1, :] + · · ·+ ainB[n, :], for 1 ≤ i ≤ m.

2. AB also corresponds to operating (combining certain multiples of columns) on the columns

of A. This is called the column method for calculating the matrix product. Here,

(AB)[:, j] = AB[:, j] = A[:, 1]b1j + · · ·+A[:, n]bnj , for 1 ≤ j ≤ p.

3. Write A =


A[1, :]
...

A[m, :]

 and B =
[
B[:, 1] · · · B[:, p]

]
then

AB =


A[1, :]B[:, 1] A[1, :]B[:, 2] · · · A[1, :]B[:, p]

A[2, :]B[:, 1] A[2, :]B[:, 2] · · · A[2, :]B[:, p]
...

. . . · · ·
...

A[m, :]B[:, 1] A[m, :]B[:, 2] · · · A[m, :]B[:, p]

.

4. Write A =
[
A[:, 1] · · · A[:, n]

]
and B =


B[1, :]
...

B[n, :]

. Then

AB = A[:, 1]B[1, :] +A[:, 2]B[2, :] + · · ·+A[:, n]B[n, :].

5. If m 6= p then the product BA is NOT defined.

6. Let m = p. Here BA and AB can still be different. For example, if A =


1

2

3

 and B =

[
−1 2 3

]
then AB =


−1 2 3

−2 4 6

−3 6 9

 whereas BA = −1 + 4 + 9 = 12. As matrices, they

look quite different but it will be shown during the study of eigenvalues and eigenvectors

that they have similar structure.

7. If m = n = p, then the orders of AB and BA are same. Even then AB may NOT equal

BA. For example, if A =

[
1 1

−1 −1

]
and B =

[
1 1

1 1

]
then AB =

[
2 2

−2 −2

]
whereas

BA =

[
0 0

0 0

]
. Thus, AB 6= BA and hence

(A+B)2 = A2 +AB +BA+B2 6= A2 +B2 + 2AB.
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Whereas if C =

[
2 1

1 2

]
then BC = CB =

[
3 3

3 3

]
= 3A 6= A = CA. Note that cancella-

tion laws don’t hold.

Definition 1.3.11. Two square matrices A and B are said to commute if AB = BA.

Theorem 1.3.12. Let A ∈Mm,n(C), B ∈Mn,p(C) and C ∈Mp,q(C).

1. Then (AB)C = A(BC), i.e., the matrix multiplication is associative.

2. For any k ∈ C, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB +AC, i.e., multiplication distributes over addition.

4. If A ∈Mn(C) then AIn = InA = A.

Proof. (1). Verify that (BC)kj =
p∑̀
=1

bk`c`j and (AB)i` =
n∑
k=1

aikbk`. Therefore,

(
A(BC)

)
ij

=

n∑
k=1

aik
(
BC

)
kj

=

n∑
k=1

aik
( p∑
`=1

bk`c`j
)

=

n∑
k=1

p∑
`=1

aik
(
bk`c`j

)
=

n∑
k=1

p∑
`=1

(
aikbk`

)
c`j =

p∑
`=1

( n∑
k=1

aikbk`
)
c`j =

T∑
`=1

(
AB
)
i`
c`j =

(
(AB)C

)
ij
.

Using a similar argument, the next part follows. The other parts are left for the reader.

Exercise 1.3.13. 1. Let A ∈Mn(C) and e1, . . . , en ∈Mn,1(C) (see Definition 5). Then

(a) Ae1 = A[:, 1], . . . , Aen = A[:, n].

(b) eT1A = e∗1A = A[1, :], . . . , eTnA = e∗nA = A[n, :].

Ans: Just use matrix multiplication to get the required results.

2. Let L1, L2 ∈Mn(C) be lower triangular matrices. If D ∈Mn(C) is a diagonal matrix then

(a) L1L2 is a lower triangular matrix.

(b) DL1 and L1D are lower triangular matrices.

The same holds for upper triangular matrices.

Ans: Just use matrix multiplication to get the required results.

3. Let A ∈Mm,n(C) and B ∈Mn,p(C).

(a) Prove that (AB)∗ = B∗A∗.

Ans: By definition (AB)∗ = (AB)T = BTAT = BT AT = B∗A∗.

(b) If A[1, :] = 0T then (AB)[1, :] = 0T .

Ans: By definition (AB)[1, :] = A[1, :]B = 0TB = 0T .

(c) If B[:, 1] = 0 then (AB)[:, 1] = 0.

Ans: By definition (AB)[:, 1] = AB[:, 1] = A0 = 0.
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(d) If A[i, :] = A[j, :] for some i and j then (AB)[i, :] = (AB)[j, :].

Ans: By definition (AB)[i, :] = A[i, :]B = A[j, :]B = (AB)[j, :].

(e) If B[:, i] = B[:, j] for some i and j then (AB)[:, i] = (AB)[:, j].

Ans: By definition (AB)[:, i] = AB[:, i] = AB[:, j] = (AB)[:, j].

4. Construct matrices A and B that satisfy the following statements.

(a) The product AB is defined but BA is not defined.

Ans: Let A be a 2× 3 matrix and B be a 3× 1 matrix.

(b) The products AB and BA are defined but they have different orders.

Ans: Let A be a 2× 3 matrix and B be a 3× 2 matrix.

(c) The products AB and BA are defined, they have the same order but AB 6= BA.

Ans: Let A =

[
1 1

1 1

]
and B =

[
1 −1

1 −1

]
. Then AB =

[
2 −2

2 −2

]
whereas BA = 0.

(d) Construct a 2× 2 matrix satisfying A2 = A.

Ans: Let A =

[
α

β

][
a b

]
. Then, using the associative product of matrix multiplication,

we see that

A2 =

([
α

β

][
a b

])([α
β

][
a b

])
=

[
α

β

]([
a b

][α
β

])[
a b

]
=

([
a b

][α
β

])
A.

Thus, A2 = tA, for some scalar t. For example, if we choose
[
a b

][α
β

]
= 1 then

A2 = A. So, we have infinite number of choices for a and b depending on α and β. The

same idea can be used for any n× n matrix.

(e) Let A =

[
0 1

0 0

]
and B =


0 1 1

0 0 1

0 0 0

. Guess a formula for An and Bn and prove it?

Ans: An = 0 for n ≥ 2 and Bn = 0 for n ≥ 3.

(f) Let A =

[
1 1

0 1

]
, B =


1 1 1

0 1 1

0 0 1

 and C =


1 1 1

1 1 1

1 1 1

. Is it true that A2−2A+I = 0?

What is B3 − 3B2 + 3B − I? Is C2 = 3C?

Ans: Yes, all the three statements are TRUE.

5. Let A ∈Mm,n(C). If Ax = 0 for all x ∈Mn,1(C) then A = 0, the zero matrix.

Ans: Take x = ei. Then 0 = Ax = Aei = A[:, i]. Hence the i-th column of A is the zero

vector. Thus, as we vary i in {1, 2, . . . , n}, we see that all the columns of A are zero.

6. Let A,B ∈Mm,n(C). If Ax = Bx, for all x ∈Mn,1(C) then prove that A = B.

Ans: Take C = A−B. Now use (5) above to show that C = 0 and conclude that A = B.
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7. Let x =


x1
...

xn

,y =


y1
...

yn

 ∈Mn,1(C). Then y∗x =
n∑
i=1

yixi, x∗x =
n∑
i=1
|xi|2,

xy∗ =


x1y1 x1y2 · · · x1yn
...

. . . · · ·
...

xny1 xny2 · · · xnyn

 and xx∗ =


|x1|2 x1x2 · · · x1xn

x2x1 |x2|2 · · · x2xn
...

...
. . .

...

xnx1 xnx2 · · · |xn|2

.

Ans: Just use matrix multiplication to get the required results.

8. Let A be an upper triangular matrix. If A∗A = AA∗ then prove that A is a diagonal

matrix. The same holds for lower triangular matrix.

Ans: Let A =


a11 a12 · · · a1n

0 a22 · · · a2n
...

. . .
. . .

...

0 0 · · · ann

 be an upper triangular matrix. Then (A∗A)11 = |a11|2

and (AA∗)11 = |a11|2 + |a12|2 + · · ·+ |a1n|2. Thus, A∗A = AA∗ implies |a11|2 + |a12|2 + · · ·+
|a1n|2 = |a11|2. Hence, a12 = 0, . . . , a1n = 0. Now, use (A∗A)22 = (AA∗)22 to conclude

a23 = 0, . . . , a2n = 0 and so on.

9. Let A be a 3× 3 upper triangular matrix with diagonal entries a, b, c. Then

(A− aI3)(A− bI3)(A− cI3) = 0.

Note that (A− aI3)[:, 1] = 0. So, if A[:, 1] = 0 then B[1, :] doesn’t play any role in AB.

Ans: Note (A− aI)[:, 1] = 0, (A− bI)[:, 1] =


?

0

0

, (A− bI)[:, 2] =


?

0

0

. Hence

(A−aI)(A−bI) =


0 0 ?

0 0 ?

0 0 ?

. Thus, (A−aI)(A−bI)(A−cI) =


0 0 ?

0 0 ?

0 0 ?



? ? ?

0 ? ?

0 0 0

 = 0.

10. Let A and B be two m× n matrices. Then, prove that (A+B)∗ = A∗ +B∗.

Ans: (A+B)∗ = (A+B)T = AT +BT = AT +BT = A∗ +B∗.

11. Find A,B,C ∈M2(C) such that AB = AC but B 6= C (Cancellation laws don’t hold).

Ans: Let A =

[
1 −1

1 −1

]
, B =

[
1 1

1 1

]
and C =

[
2 −3

2 −3

]
. Then AB = 0 = AC.

12. Let A =


0 1 0

0 0 1

1 0 0

. Compute A2 and A3. Is A3 = I? Determine aA3 + bA+ cA2.
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Ans: A2 =


0 0 1

1 0 0

0 1 0

 and A3 = I. So, aA3 + bA+ cA2 =


a b c

c a b

b c a

. Such matrices are

called circulant matrices.

1.3.4 Inverse of a Matrix

Definition 1.3.14. Let A ∈Mn(C). Then

1. B ∈Mn(C) is said to be a left inverse of A if BA = In.

2. C ∈Mn(C) is called a right inverse of A if AC = In.

3. A is invertible (has an inverse) if there exists B ∈Mn(C) such that AB = BA = In.

Lemma 1.3.15. Let A ∈Mn(C). If there exist B,C ∈Mn(C) such that AB = In and CA = In

then B = C, i.e., If A has a left inverse and a right inverse then they are equal.

Proof. Note that C = CIn = C(AB) = (CA)B = InB = B.

Remark 1.3.16. Lemma 1.3.15 implies that whenever A is invertible, the inverse is unique.

Thus, we denote the inverse of A by A−1. That is, AA−1 = A−1A = I.

Theorem 1.3.17. Let A and B be two invertible matrices. Then,

1. (A−1)−1 = A.

2. (AB)−1 = B−1A−1.

3. (A∗)−1 = (A−1)∗.

Proof. (1). Let B = A−1. Then AB = BA = I. Thus, by definition, B is invertible and

B−1 = A. Or equivalently, (A−1)−1 = A.

(2). By associativity (AB)(B−1A−1) = A(BB−1)A−1 = I = (B−1A−1)(AB).

(3). As AA−1 = A−1A = I, we get (AA−1)∗ = (A−1A)∗ = I∗. Or equivalently, (A−1)∗A∗ =

A∗(A−1)∗ = I. Thus, by definition (A∗)−1 = (A−1)∗.

We will again come back to the study of invertible matrices in Sections 2.4 and 2.8.

Exercise 1.3.18. 1. If A is an invertible matrix then (A−1)r = A−r, for all r ∈ N.

2. If A1, . . . , Ar are invertible matrices then B = A1A2 · · ·Ar is also invertible.

Ans: Use Theorem 1.3.17.2 repeatedly.

3. Find the inverse of

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
and

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

Ans: If A =

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
then A−1 = A and if B =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
then

B−1 =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
.
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4. Let A ∈Mn(C) be an invertible matrix. Then

(a) A[i, :] 6= 0T , for any i.

(b) A[:, j] 6= 0, for any j.

(c) A[i, :] 6= A[j, :], for any i and j.

(d) A[:, i] 6= A[:, j], for any i and j.

(e) A[3, :] 6= αA[1, :] + βA[2, :], for any α, β ∈ C, whenever n ≥ 3.

(f) A[:, 3] 6= αA[:, 1] + βA[:, 2], for any α, β ∈ C, whenever n ≥ 3.

Ans: As A is invertible, there exists B ∈Mn(C) such that AB = BA = In. Therefore,

(a) if A[i, :] = 0T then eTi = In[i, :] = (AB)[i, :] = A[i, :]B = 0TB = 0T .

(b) if A[:, j] = 0 then ej = In[:, j] = (BA)[:, j] = BA[:, j] = B0 = 0.

(c) if A[i, :] = A[j, :] then

eTi = In[i, :] = (AB)[i, :] = A[i, :]B = A[j, :]B = (AB)[j, :] = In[j, :] = eTj .

(d) if A[:, i] = A[:, j] then

ei = In[:, i] = (BA)[:, i] = BA[:, i] = BA[:, j] = (BA)[:, j] = In[:, j] = ej .

(e) if A[3, :] = αA[1, :] + βA[2, :] then

eT3 = In[3, :] = (AB)[3, :] = A[3, :]B = (αA[1, :] + βA[2, :])B

= αA[1, :]B + βA[2, :]B = α(AB)[1, :] + β(AB)[2, :]

= αIn[1, :] + βIn[2, :] = αeT1 + βeT2 .

(f) if A[:, 3] = αA[:, 1] + βA[:, 2] then

e3 = In[:, 3] = (BA)[:, 3] = BA[:, 3] = B (αA[:, 1] + βA[:, 2])

= αBA[:, 1] + βBA[:, 2] = α(BA)[:, 1] + β(BA)[:, 2]

= αIn[:, 1] + βIn[:, 2] = αe1 + βe2.

5. Determine A that satisfies (I + 3A)−1 =

[
1 2

2 1

]
.

Ans: A =
−1

9

[
4 −2

−2 4

]
as (I+3A) =

(
(I + 3A)−1

)−1
=

([
1 2

2 1

])−1
=
−1

3

[
1 −2

−2 1

]
.

6. Let A be an invertible matrix satisfying A3 +A− 2I = 0. Then A−1 =
1

2

(
A2 + I

)
.

Ans: As A is invertible, multiplying by A−1 gives A2 + I − 2A−1 = 0. Hence, the result.

7. Let A = [aij ] be an invertible matrix and B = [pi−jaij ], for some p ∈ C, p 6= 0. Then

B−1 = [pi−j(A−1)ij ].

Ans: Note that B = DAD−1, where D = diag(p, p2, . . . , pn) is a diagonal matrix. As

p 6= 0, D is invertible. Hence B−1 is invertible and B−1 = (DAD−1)−1 = DA−1D−1.
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1.4 Some More Special Matrices

Definition 1.4.1. 1. For 1 ≤ k ≤ m and 1 ≤ ` ≤ n, define ek` ∈Mm,n(C) by

(ek`)ij =

{
1, if (k, `) = (i, j)

0, otherwise.

Then, the matrices ek` for 1 ≤ k ≤ m and 1 ≤ ` ≤ n are called the standard basis

elements for Mm,n(C).

So, if ek` ∈M2,3(C) then e11 =

[
1 0 0

0 0 0

]
=

[
1

0

][
1 0 0

]
, e12 =

[
0 1 0

0 0 0

]
=

[
1

0

][
0 1 0

]
and e22 =

[
0 0 0

0 1 0

]
=

[
0

1

][
0 1 0

]
.

In particular, if eij ∈Mn(C) then eij = eie
T
j = eie

∗
j , for 1 ≤ i, j ≤ n.

2. Let A ∈Mn(R). Then

(a) A is called symmetric if AT = A. For example, A =

[
1 3

3 2

]
.

(b) A is called skew-symmetric if AT = −A. For example, A =

[
0 3

−3 0

]
.

(c) A is called orthogonal if AAT = ATA = I. For example, A =
1√
2

[
1 1

1 −1

]
.

(d) A is said to be a permutation matrix if A has exactly one non-zero entry, namely

1, in each row and column. For example, In for each positive integer n,

[
0 1

1 0

]
,

0 1 0

0 0 1

1 0 0

,


0 0 1

0 1 0

1 0 0

 and


0 1 0

1 0 0

0 0 1

 are permutation matrices. Verify that per-

mutation matrices are Orthogonal matrices.

3. Let A ∈Mn(C). Then

(a) A is called normal if A∗A = AA∗. For example,

[
1 i

i 1

]
is a normal matrix.

(b) A is called Hermitian if A∗ = A. For example, A =

[
1 1 + i

1− i 2

]
.

(c) A is called skew-Hermitian if A∗ = −A. For example, A =

[
0 1 + i

−1 + i 0

]
.

(d) A is called unitary if AA∗ = A∗A = I. For example, A =
1√
3

[
1 + i 1

−1 1− i

]
.

Verify that Hermitian, skew-Hermitian and Unitary matrices are normal matrices.

4. A vector u ∈Mn,1(C) such that u∗u = 1 is called a unit vector.
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5. A matrix A is called idempotent if A2 = A. For example, A =

[
1 0

1 0

]
is idempotent.

6. An idempotent matrix which is also Hermitian is called a projection matrix. For example,

if u ∈Mn,1(C) is a unit vector then A = uu∗ is a Hermitian, idempotent matrix. Thus A

is a projection matrix.

In particular, if u ∈Mn,1(R) is a unit vector then A = uuT . Then verify that uT (x−Ax) =

uTx − uTAx = uTx − uT (uuT )x = 0 (as uTu = 1), for any x ∈ R3. Thus, with respect

to the dot product in R3, Ax is the foot of the perpendicular from the point x on the

vector u. In particular, if u =
1√
6

[1, 2,−1]T and A = uuT . Then, for any vector

x = [x1, x2, x3]
T ∈M3,1(R),

Ax = (uuT )x = u(uTx) =
x1 + 2x2 − x3√

6
u =

x1 + 2x2 − x3
6

[1, 2,−1]T .

7. Fix a unit vector u ∈Mn,1(R) and let A = 2uuT − In. Then, verify that A ∈Mn(R) and

Ay = 2(uTy)u−y, for all y ∈ Rn. This matrix is called the reflection matrix about the

line, say `, containing the points 0 and u. This matrix fixes each point on the line ` and

send the vector v, which is orthogonal to u, to −v.

8. Let A ∈ Mn(C). Then, A is said to be nilpotent if there exists a positive integer n

such that An = 0. The least positive integer k for which Ak = 0 is called the order of

nilpotency. For example, if A = [aij ] ∈ Mn(C) with aij equal to 1 if i − j = 1 and 0,

otherwise then An = 0 and A` 6= 0 for 1 ≤ ` ≤ n− 1.

Exercise 1.4.2. 1. Consider the matrices eij ∈Mn(C) for 1 ≤ i, j,≤ n. Is e12e11 = e11e12?

What about e12e22 and e22e12?

Ans: Note e11 = e1e
T
1 and e12 = e1e

T
2 . Thus e12e11 = (e1e

T
2 )(e1e

T
1 ) = e1(e

T
2 e1)e

T
1 = 0

as eT2 e1 = 0. Where as e11e12 = (e1e
T
1 )(e1e

T
2 ) = e1(e

T
1 e1)e

T
2 = e1e

T
2 = e12.

2. Let {u1,u2,u3} be three vectors in R3 such that u∗iui = 1, for 1 ≤ i ≤ 3, and u∗iuj = 0

whenever i 6= j. Prove the following.

(a) If U = [u1 u2 u3] then U∗U = I. What about UU∗ = u1u
∗
1 + u2u

∗
2 + u3u

∗
3?

Ans: U∗U =


u∗1
u∗2
u∗3

[u1 u2 u3

]
=


u∗1u1 u∗1u2 u∗1u3

u∗2u1 u∗2u2 u∗2u3

u∗3u1 u∗3u2 u∗3u3

 = I3.

Check (UU∗)2 = U(U∗U)U∗ = UU∗ and UU∗ is Hermitian. So, UU∗ is a projection

matrix. It will be shown later that UU∗ = I3.

(b) If A = uiu
∗
i , for 1 ≤ i ≤ 3 then A2 = A. Is A Hermitian? Is A a projection matrix?

Ans: A2 = (uiu
∗
i )(uiu

∗
i ) = ui(u

∗
iui)u

∗
i = uiu

∗
i = A. Clearly, A is Hermitian. Thus,

A is a projection.

(c) If A = uiu
∗
i + uju

∗
j , for i 6= j then A2 = A. Is A a projection matrix?

Ans: A2 = (uiu
∗
i + uju

∗
j )(uiu

∗
i + uju

∗
j ) = uiu

∗
i + uju

∗
j = A as u∗iuj = 0 = u∗jui.

Clearly, A is Hermitian. So, A is a projection matrix.
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3. Let A be an n× n upper triangular matrix. If A is also an orthogonal matrix then A is a

diagonal matrix with diagonal entries ±1.

4. Prove that in M5(R), there are infinitely many orthogonal matrices of which only finitely

many are diagonal (in fact, there number is just 32).

5. Prove that permutation matrices are real orthogonal.

6. Let A,B ∈Mn(C) be two unitary matrices. Then both AB and BA are unitary matrices.

7. Let A ∈Mn(C) be a Hermitian matrix.

(a) Then the diagonal entries of A are necessarily real numbers.

Ans: Note that aii = e∗iAei = e∗iA
∗ei = (e∗iAei)

∗ = aii. Thus aii = aii ⇒ aii ∈ R.

(b) Then, for any x ∈Mn,1(C). x∗Ax is a real number.

Ans: As x∗Ax is a scalar, x∗Ax = (x∗Ax)∗ = x∗A∗x = x∗Ax⇒ x∗Ax ∈ R.

(c) For each B ∈Mn(C) the matrix B∗AB is Hermitian.

Ans: (B∗AB)∗ = B∗A∗B = B∗AB.

(d) Further, if A2 = 0 then A = 0.

Ans: 0 = A2 = A∗A. So, 0 = (A∗A)11 = |a11|2 + |a21|2 + · · ·+ |an1|2 implies ai1 = 0

for 1 ≤ i ≤ n. Similarly, use 0 = (A∗A)ii for i ≥ 2 to get other entries as zero.

8. Let A ∈Mn(C). If x∗Ax ∈ R for every x ∈Mn,1(C) then A is a Hermitian matrix. [Hint:

Use ej , ej + ek and ej + iek of Mn,1(C) for x.]

Ans: Taking x = ei gives aii = e∗iAei = x∗Ax ∈ R. So, aii ∈ R.

Taking x = ei + iej , gives x∗Ax = aii − iaji + iaij + ajj , a real number. As aii, ajj ∈ R,

aij − aji is a purely imaginary number, i.e., they have the same real part. Similarly, taking

x = ei + ej gives aij + aji ∈ R, i.e., they have opposite imaginary parts. So aij = aji.

9. Let A and B be Hermitian matrices. Then AB is Hermitian if and only if AB = BA.

10. Let A ∈Mn(C) be a skew-Hermitian matrix. Then prove that

(a) the diagonal entries of A are either zero or purely imaginary.

(b) for each B ∈Mn(C) prove that B∗AB is a skew-Hermitian matrix.

Ans: Note that −aii = e∗i (−A)ei = e∗iA
∗ei = aii. Thus −aii = aii and hence aii is

either zero or purely imaginary. (B∗AB)∗ = B∗A∗B = −(B∗AB).

(c) Then, for any x ∈Mn,1(C), x∗Ax is either 0 or purely imaginary.

Ans: As x∗Ax is a scalar, x∗Ax = (x∗Ax)∗ = x∗A∗x = x∗(−A)x = −(x∗Ax). So,

if x∗Ax = a+ ib then a− ib = −(a+ ib) and hence a = 0.

11. Let A ∈Mn(C). Then A = S1+S2, where S1 = 1
2(A+A∗) is Hermitian and S2 = 1

2(A−A∗)
is skew-Hermitian.
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12. Let A,B be skew-Hermitian matrices with AB = BA. Is the matrix AB Hermitian or

skew-Hermitian?

Ans: (AB)∗ = B∗A∗ = (−B)(−A) = BA = AB.

13. Let A be a nilpotent matrix. Then prove that I +A is invertible.

Ans: Verify (I+A)(I−A+ · · ·+(−1)k−1Ak−1) = (I−A+ · · ·+(−1)k−1Ak−1)(I+A) = I.

14. Let A =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 and B =


1 0 0

0 cos θ sin θ

0 sin θ − cos θ

, for θ ∈ [−π, π). Are they

orthogonal?

Ans: Yes, as AAT = I = ATA and BTB = I = BBT .

1.5 Submatrix of a Matrix

Definition 1.5.1. For k ∈ N, let [k] = {1, . . . , k}. Also, let A ∈Mm×n(C).

1. Then, a matrix obtained by deleting some of the rows and/or columns of A is said to be

a submatrix of A.

2. If S ⊆ [m] and T ⊆ [n] then by A(S|T) , we denote the submatrix obtained from A by

deleting the rows with indices in S and columns with indices in T . By A[S, T ], we mean

A(Sc|T c), where Sc = [m] \ S and T c = [n] \ T . Whenever, S or T consist of a single

element, then we just write the element. If S = [m], then A[S, T ] = A[:, T ] and if T = [n]

then A[S, T ] = A[S, :] which matches with our notation in Definition 1.2.1.

3. If m = n, the submatrix A[S, S] is called a principal submatrix of A.

Example 1.5.2. 1. Let A =

[
1 4 5

0 1 2

]
. Then, A[{1, 2}, {1, 3}] = A[:, {1, 3}] =

[
1 5

0 2

]
,

A[1, 1] = [1], A[2, 3] = [2], A[{1, 2}, 1] = A[:, 1] =

[
1

0

]
, A[1, {1, 3}] = [1 5] and A are a few

sub-matrices of A. But the matrices

[
1 4

1 0

]
and

[
1 4

0 2

]
are not sub-matrices of A.

2. Let A =


1 2 3

5 6 7

9 8 7

, S = {1, 3} and T = {2, 3}. Then, A[S, S] =

[
1 3

9 7

]
, A(S | S) =

[
6
]
,

A[T, T ] =

[
6 7

8 7

]
and A(T | T ) =

[
1
]

are principal sub-matrices of A.

Let A ∈ Mn,m(C) and B ∈ Mm,p(C). Then the product AB is defined. Suppose r < m.

Then A and B can be decomposed as A = [P Q] and B =

[
H

K

]
, where P ∈ Mn,r(C) and

H ∈Mr,p(C) so that AB = PH +QK. This is proved next.
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Theorem 1.5.3. Let the matrices A,B, P,H,Q and K be defined as above. Then

AB = PH +QK.

Proof. Verify that the matrix products PH and QK are valid. Further, their sum is defined

as PH,QK ∈ Mn,p(C). Now, let P = [Pij ], Q = [Qij ], H = [Hij ], and K = [Kij ]. Then, for

1 ≤ i ≤ n and 1 ≤ j ≤ p, we have

(AB)ij =
m∑
k=1

aikbkj =
r∑

k=1

aikbkj +
m∑

k=r+1

aikbkj =
r∑

k=1

PikHkj +
m∑

k=r+1

QikKkj

= (PH)ij + (QK)ij = (PH +QK)ij .

Thus, the required result follows.

Remark 1.5.4. Theorem 1.5.3 is very useful due to the following reasons:

1. The matrices P,Q,H and K can be further partitioned so as to form blocks that are either

identity or zero or have certain nice properties. So, such partitions are useful during

different matrix operations. Examples of such partitions appear throughout the notes. For

example, let A =

[
Ir 0

0 0

]
, P =

[
P1 P2

]
and Q =

[
Q1

Q2

]
. Then, verify that PAQ = P1Q1.

This is similar to the understanding that

[
x1 x2

][a11 a12

a21 a22

][
y1

y2

]
= x1a11y1 + x1a12y2 + x2a21y1 + x2a22y2.

2. Suppose one wants to prove a result for a square matrix A. If we want to prove it using

induction then we can prove it for the 1 × 1 matrix (the initial step of induction). Then

assume the result to hold for all k × k sub-matrices of A or just the first k × k principal

sub-matrix of A. At the next step write A =

[
B x

xT a

]
, where B is a k × k matrix. Then

the result holds for B and then one can proceed to prove it for A.

Exercise 1.5.5. 1. Complete the proofs of Theorems 1.3.5 and 1.3.12.

2. Let x =

[
x1

x2

]
, y =

[
y1

y2

]
, A =

[
cosα − sinα

sinα cosα

]
and B =

[
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

]
.

(a) Then y = Ax gives the counter-clockwise rotation through an angle α.

Ans: Note that A sends the vector

[
1

0

]
to

[
cosα

sinα

]
and the vector

[
0

1

]
to

[
− sinα

cosα

]
which are counter-clockwise rotations by α of the respective vectors.

(b) Then y = Bx gives the reflection about the line y = tan(θ)x.

Ans: Let y = tan(θ)x be the line `1. Then

[
a

a tan θ

]
is a general point on `1. Further,

B

[
a

a tan θ

]
=

[
a

a tan θ

]
. So, B fixes every point on `1.
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Now let `2 be the line which passes through

[
a

a tan θ

]
and is perpendicular to `1. A

general point on `2 is

[
a sec2 θ − y tan θ

y

]
. Then

B

[
a sec2 θ − y tan θ

y

]
=

[
2a− a sec2 θ + y tan θ

2a tan θ − y

]
.

Note that

[
2a− a sec2 θ + y tan θ

2a tan θ − y

]
lies on `2 and

[
a

a tan θ

]
is the mid-point of the two

points

[
2a− a sec2 θ + y tan θ

2a tan θ − y

]
and

[
a sec2 θ − y tan θ

y

]
. Thus,

[
2a− a sec2 θ + y tan θ

2a tan θ − y

]

is the reflection of

[
a sec2 θ − y tan θ

y

]
about the line `1.

(c) Let α = θ and compute y = (AB)x and y = (BA)x. Do they correspond to reflec-

tion? If yes, then about which line(s)?

Ans: Note AB =

[
cos(3θ) sin(3θ)

sin(3θ) − cos(3θ)

]
and BA =

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
. So, the lines

are y = tan

(
3θ

2

)
x and y = tan

(
θ

2

)
x.

(d) Further, if y = Cx gives the counter-clockwise rotation through β and y = Dx gives

the reflections about the line y = tan(δ) x. Then prove that

i. AC = CA and y = (AC)x gives the counter-clockwise rotation through α+ β.

Ans: Verify that AC = CA =

[
cos(α+ β) − sin(α+ β)

sin(α+ β) cos(α+ β)

]
ii. y = (BD)x and y = (DB)x give rotations. Which angles do they represent?

Ans: BD =

[
cos 2(θ − δ) − sin 2(θ − δ)
sin 2(θ − δ) cos 2(θ − δ)

]
, DB =

[
cos 2(δ − θ) − sin 2(δ − θ)
sin 2(δ − θ) cos 2(δ − θ)

]
.

3. Let A ∈ Mn(C). If AB = BA for all B ∈ Mn(C) then A is a scalar matrix, i.e., A = αI

for some α ∈ C (use the matrices eij in Definition 1.4.1.1).

Ans: Let B = eij = eie
T
j for i 6= j. Then AB = Aeie

T
j = A[:, i]eTj and BA = eie

T
j A =

eiA[j, :]. But,

A[:, i]eTj =

j-th

↓
[0, · · · ,0, A[:, i], 0, · · · ,0] and eiA[j, :] =



0
...

0

A[j, :]

0
...

0


←i-th .

Hence aij = 0, if i 6= j and ajj = aii.
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4. For An×n = [aij ], the trace of A, denoted tr(A), is defined by tr(A) = a11 +a22 + · · ·+ann.

(a) Compute tr(A) for A =

[
3 2

2 2

]
and A =

[
4 −3

−5 1

]
.

Ans: 3 + 2 = 5 and 4 + 1 = 5.

(b) Let A be a matrix with A

[
1

2

]
= 2

[
1

2

]
and A

[
1

−2

]
= 3

[
1

−2

]
. Determine tr(A)?

Ans: Let A =

[
a b

c d

]
. Then, the given conditions imply a+2b = 2, c+2d = 4, a−2b =

3 and c− 2d = −6. Thus tr(A) = a + d =
5

2
+

5

2
= 5.

(c) Let A and B be two square matrices of the same order. Then

i. tr(A + B) = tr(A) + tr(B).

Ans: tr(A + B) =
n∑

i=1
(A + B)ii =

n∑
i=1

(A)ii +
n∑

i=1
(B)ii = tr(A) + tr(B).

ii. tr(AB) = tr(BA).

Ans: tr(AB) =
n∑

i=1
(AB)ii =

n∑
i=1

n∑
j=1

aijbji =
n∑

j=1

n∑
i=1

bjiaij =
n∑

j=1
(BA)jj = tr(BA).

(d) Does there exist matrices A,B ∈Mn(C) such that AB −BA = cI, for some c 6= 0?

Ans: No. Note that tr(AB− BA) = 0, where as, for c 6= 0, tr(c I) = nc 6= 0.

5. Let J ∈Mn(R) be a matrix having each entry 1.

(a) Verify that J = 11T , where 1 is a column vector having all entries 1.

(b) Verify that J2 = nJ .

(c) Also, for any α1, α2, β1, β2 ∈ R, verify that there exist α3, β3 ∈ R such that

(α1In + β1J) · (α2In + β2J) = α3In + β3J.

(d) Let α, β ∈ R such that α 6= 0 and α + nβ 6= 0. Now, define A = αIn + βJ . Then,

use the above to prove that A is invertible.

Ans: J2 = (11T )(11T ) = 1(1T1)1T = n11T = nJ .

Note that in part (5c), α3 = α1α2 and β3 = α1β2 + α2β1 + nβ1β2. So, using the third

part B =
1

α
I − β

α(α+ nβ)
J is the inverse of A.

6. Suppose the matrices B and C are invertible and the involved partitioned products are

defined, then verify that that[
A B

C 0

]−1
=

[
0 C−1

B−1 −B−1AC−1

]
.

Ans: Just multiply and verify.



D
RA
FT

28 CHAPTER 1. INTRODUCTION TO MATRICES

7. Let A =

[
A11 x

y∗ c

]
, where A11 ∈Mn(C) is invertible and c ∈ C.

(a) If p = c− y∗A−111 x is non zero, then verify that

A−1 =

[
A−111 0

0 0

]
+

1

p

[
A−111 x

−1

] [
y∗A−111 −1

]
.

Ans: Just multiply and verify.

(b) Use the above to find the inverse of


0 −1 2

1 1 4

−2 1 1

 and


0 −1 2

3 1 4

−2 5 −3

.

Ans: A−111 =

[
1 1

−1 0

]
, p = 1 −

[
−2 1

] [ 1 1

−1 0

][
2

4

]
= 15. So, the inverse equals

1 1 0

−1 0 0

0 0 0

+
1

15


6

−2

−1

[−3 −2 −1
]

=


1 1 0

−1 0 0

0 0 0

+
1

15


−18 −12 −6

6 2 2

3 2 1


=


−1/5 1/5 −2/5

−3/5 4/15 2/15

1/5 2/15 1/15

.

For the second matrix the inverse is


−23/33 7/33 −2/11

1/33 4/33 2/11

17/33 2/33 1/11


8. Let x ∈Mn,1(R) be a unit vector (recall the reflection matrix).

(a) Define A = In − 2xxT . Prove that A is symmetric and A2 = I. The matrix A is

commonly known as the Householder matrix.

Ans: A2 = (In − 2xxT )(In − 2xxT ) = In − 4xxT + 4xxT = In as xTx = 1.

(b) Let α 6= 1 be a real number and define A = In − αxxT . Prove that A is symmetric

and invertible. [The inverse is also of the form In + βxxT , for some β.]

Ans: Just multiply and verify that β =
α

α− 1
as xTx = 1.

9. Let A ∈ Mn(R) be an invertible matrix and let x,y ∈ Mn,1(R). Also, let β ∈ R such that

α = 1 + βyTA−1x 6= 0. Then, verify the famous Shermon-Morrison formula

(A+ βxyT )−1 = A−1 − β

α
A−1xyTA−1.

This formula gives the information about the inverse when an invertible matrix is modified

by a rank (see Definition 2.5.1) one matrix.

Ans: Just multiply and verify.

10. Let A ∈ Mm,n(C). Then, a matrix G ∈ Mn,m(C) is called a generalized inverse (for

short, g-inverse) of A if AGA = A.
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(a) For example, a generalized inverse of the matrix A = [1, 2] is a matrix G =

[
1− 2α

α

]
,

for all α ∈ R. So, for a fixed singular matrix A, there are infinitely many g-inverses.

(b) A generalized inverse G is called a pseudo inverse or a Moore-Penrose inverse

if GAG = G and the matrices AG and GA are symmetric. Thus, verify that AG and

GA are both idempotent matrices. It can also be shown that the pseudo inverse of a

matrix is unique. Check that for α =
2

5
the matrix G is a pseudo inverse of A.

(c) It turns out that among all the g-inverses, the inverse with the least euclidean norm

is the pseudo inverse.

1.6 Summary

In this chapter, we started with the definition of a matrix and came across lots of examples.

We recall these examples as they will be used in later chapters to relate different ideas:

1. The zero matrix of size m× n, denoted 0m×n or 0.

2. The identity matrix of size n× n, denoted In or I.

3. Triangular matrices.

4. Hermitian/Symmetric matrices.

5. Skew-Hermitian/skew-symmetric matrices.

6. Unitary/Orthogonal matrices.

7. Idempotent matrices.

8. Nilpotent matrices.

We also learnt product of two matrices. Even though it seemed complicated, it basically

tells that multiplying by a matrix on the

1. left of A is same as operating on (playing with) the rows of A.

2. right of A is same as operating on (playing with) the columns of A.

The matrix multiplication is not commutative. We also defined the inverse of a matrix. Further,

there were exercises that informs us that the rows and columns of invertible matrices cannot

have certain properties.
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Chapter 2

System of Linear Equations

2.1 Introduction

We start this section with our understanding of the system of linear equations.

Example 2.1.1. Let us look at some examples of linear systems.

1. Suppose a, b ∈ R. Consider the system ax = b in the variable x. If

(a) a 6= 0 then the system has a unique solution x = b
a .

(b) a = 0 and

i. b 6= 0 then the system has no solution.

ii. b = 0 then the system has infinite number of solutions, namely all x ∈ R.

2. Recall that the linear system ax + by = c for (a, b) 6= (0, 0), in the variables x and y,

represents a line in R2. So, let us consider the points of intersection of the two lines

a1x+ b1y = c1, a2x+ b2y = c2, (2.1.1)

where a1, a2, b1, b2, c1, c2 ∈ R with (a1, b1), (a2, b2) 6= (0, 0) (see Figure 2.1 for illustration

of different cases).

❵✶

❵✷

◆♦ ❙♦❧�t✐♦♥

P❛✐✁ ♦❢ P❛✁❛❧❧✂❧ ❧✐♥✂s

❵✶ ✄☎❞ ❵✷

■♥☞♥✐t✂ ◆�♠❜✂✁ ♦❢ ❙♦❧�t✐♦♥s

❈♦✐♥❝✐✆✂♥t ▲✐♥✂s

❵✶

❵✷✝

❯♥✐✞�✂ ❙♦❧�t✐♦♥✿ ■♥t✂✁s✂❝t✐♥❣ ▲✐♥✂s

✟ ✿ P♦✐♥t ♦❢ ■♥t✂✁s✂❝t✐♦♥

Figure 2.1: Examples in 2 dimension.

(a) Unique Solution (a1b2− a2b1 6= 0): The linear system x− y = 3 and 2x+ 3y = 11

has

[
x

y

]
=

[
4

1

]
as the unique solution.

31
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(b) No Solution (a1b2 − a2b1 = 0 but a1c2 − a2c1 6= 0): The linear system x+ 2y = 1

and 2x+ 4y = 3 represent a pair of parallel lines which have no point of intersection.

(c) Infinite Number of Solutions (a1b2− a2b1 = 0 and a1c2− a2c1 = 0): The linear

system x + 2y = 1 and 2x + 4y = 2 represent the same line. So, the solution set

equals

[
x

y

]
=

[
1− 2y

y

]
=

[
1

0

]
+ y

[
−2

1

]
with y arbitrary. Observe that the vector

i.

[
1

0

]
corresponds to the solution x = 1, y = 0 of the given system.

ii.

[
−2

1

]
gives x = −2, y = 1 as the solution of x+ 2y = 0, 2x+ 4y = 0.

(d) If the linear system ax+ by = c has

i. (a, b) = (0, 0) and c 6= 0 then ax+ by = c has no solution.

ii. (a, b, c) = (0, 0, 0) then ax+by = c has infinite number of solutions, namely

whole of R2.

Let us now look at different interpretations of the solution concept.

Example 2.1.2. Observe the following of the linear system in Example 2.1.1.2a.

1.

[
4

1

]
corresponds to the point of intersection of the corresponding two lines.

2. Using matrix multiplication, the given system equals Ax = b, where A =

[
1 −1

2 3

]
,

x =

[
x

y

]
and b =

[
3

11

]
. So, the solution is x = A−1b = 1

5

[
3 1

−2 1

][
3

11

]
=

[
4

1

]
.

3. Re-writing Ax = b as

[
1

2

]
x +

[
−1

3

]
y =

[
3

11

]
gives us 4

[
1

2

]
+ 1

[
−1

3

]
=

[
3

11

]
. This

corresponds to addition of vectors in the Euclidean plane.

Thus, there are three ways of looking at the linear system Ax = b, where, as the name

suggests, one of the ways is looking at the point of intersection of planes, the other is the vector

sum approach and the third is the matrix multiplication approach. We will see that all the

three approaches are fundamental to the understanding of linear algebra.

Definition 2.1.3. A system of m linear equations in n variables x1, x2, . . . , xn is a set of

equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

... (2.1.2)

am1x1 + am2x2 + · · ·+ amnxn = bm

where for 1 ≤ i ≤ m and 1 ≤ j ≤ n; aij , bi ∈ R. The linear system (2.1.2) is called homoge-

neous if b1 = 0 = b2 = · · · = bm and non-homogeneous, otherwise.
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Definition 2.1.4. Let A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

, x =


x1
...

xn

 and b =


b1
...

bm

. Then, Equa-

tion (2.1.2) can be re-written as Ax = b, where A is called the coefficient matrix and the

block matrix [A b] is called the augmented matrix .

In the above definition, note the following.

1. the i-th row of the augmented matrix, namely, ([A b])[i, :], corresponds to the i-th linear

equation.

2. the j-th column of the augmented matrix, namely, ([A b])[:, j], corresponds to the j-th

unknown/variable whenever 1 ≤ j ≤ n and

3. the (n+ 1)-th column, namely ([A b])[:, n+ 1], corresponds to the vector b.

Definition 2.1.5. Consider a linear system Ax = b. Then

1. a solution of Ax = b is a vector y such that the matrix product Ay indeed equals b.

2. the set of all solutions is called the solution set of the system.

3. this linear system is called consistent if it admits a solution and is called inconsistent

if it admits no solution.

For example, Ax = b, with A =


1 1 1

1 4 2

4 1 1

 and b =


1

0

1

 has




0

−1

2


 as the solution set.

Similarly, A =

[
1 1

1 2

]
and b =

[
2

3

]
has

{[
1

1

]}
as the solution set. Further, they are consistent

systems. Whereas, the system x+ y = 2, 2x+ 2y = 3 is inconsistent (has no solution).

Definition 2.1.6. For the linear system Ax = b the corresponding linear homogeneous system

Ax = 0 is called the associated homogeneous system.

The readers are advised to supply the proof of the next remark.

Remark 2.1.7. Consider the linear system Ax = b with two distinct solutions, say u and v.

1. Then xh = u− v is a non-zero solution of the associated homogeneous system Ax = 0.

2. Thus, any two distinct solutions of Ax = b differs by a solution of the associated homoge-

neous system Ax = 0, i.e., {x0 +xh} is the solution set of Ax = b with x0 as a particular

solution and xh, a solution of the associated homogeneous system Ax = 0.

3. Equivalently, A (αu + (1− α)v) = αAu + (1−α)Av = αb + (1−α)b = b. Thus, the line

joining the two points u and v is also a solution of the system Ax = b.

4. Now, consider the associated homogeneous linear system Ax = 0.

(a) Then, x = 0, the zero vector, is always a solution, called the trivial solution.
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(b) Let w 6= 0 be a solution of Ax = 0. Then w is called a non-trivial solution. Thus

y = cw is also a solution for all c ∈ R. So, a non-trivial solution implies the solution

set has infinite number of elements.

(c) Let w1, . . . ,wk be solutions of Ax = 0. Then,
k∑
i=1

aiwi is also a solution of Ax = 0,

for each choice of ai ∈ R, 1 ≤ i ≤ k.

Example 2.1.8. Let A =

[
1 1

1 1

]
. Then x =

[
1

−1

]
is a non-trivial solution of Ax = 0.

Exercise 2.1.9. 1. Consider a system of 2 equations in 3 variables. If this system is con-

sistent then how many solutions does it have?

Ans: Since there are two intersecting (system is consistent) planes in R3 they will intersect

in a line. So, infinite number of solutions.

2. Give a linear system of 3 equations in 2 variables such that the system is inconsistent

whereas it has 2 equations which form a consistent system.

Ans: x+ y = 2, x+ 2y = 3, 2x+ 3y = 4.

3. Give a linear system of 4 equations in 3 variables such that the system is inconsistent

whereas it has three equations which form a consistent system.

Ans: x+ y + z = 3, x+ 2y + 3z = 6, 2x+ 3y + 4z = 4, 2x+ 2y + z = 5.

4. Let Ax = b be a system of m equations in n variables, where A ∈Mm,n(R).

(a) Can the system, Ax = b have exactly two distinct solutions for any choice of m and

n? Give reasons for your answer.

(b) Can the system Ax = b have only a finitely many (greater than 1) solutions for any

choice of m and n? Give reasons for your answer.

Ans: No. Let x1,x2 be two solutions. Define z = ax1 + (1 − a)x2 for a ∈ R. Then

Az = aAx1 + (1− a)Ax2 = ab + (1− a)b = b.

2.2 Row-Reduced Echelon Form (RREF)

A system of linear equations can be solved by people differently. But, the final solution set

remains the same. In this section, we use a systematic way to solve any linear system which is

popularly known as the Guass - Jordan. We start with Gauss Elimination Method.

2.2.1 Gauss Elimination Method

To proceed with the understanding of the solution set of a system of linear equations, we start

with the definition of a pivot.

Definition 2.2.1. Let A be a non-zero matrix. Then, in each non-zero row of A, the left most

non-zero entry is called a pivot/leading entry. The column containing the pivot is called a

pivotal column.



D
RA
FT

2.2. ROW-REDUCED ECHELON FORM (RREF) 35

If aij is a pivot then we denote it by aij . For example, the entries a12 and a23 are pivots

in A =


0 3 4 2

0 0 0 0

0 0 2 1

. Thus, columns 2 and 3 are pivotal columns.

Definition 2.2.2. A matrix is in row echelon form (REF) (staircase/ ladder like)

1. if the zero rows are at the bottom;

2. if the pivot of the (i + 1)-th row, if it exists, comes to the right of the pivot of the i-th

row.

3. if the entries below the pivot in a pivotal column are 0.

Example 2.2.3. 1. The following matrices are in echelon form.
0 2 4 2

0 0 1 1

0 0 0 0

,


1 1 0 2 3

0 0 0 3 4

0 0 0 0 1

,


1 2 0 5

0 2 0 6

0 0 0 1

0 0 0 0

 and


1 0 0

0 1 0

0 0 1

.

2. The following matrices are not in echelon form (determine the rule(s) that fail).
0 1 4 2

0 0 0 0

0 0 1 1

 and


1 1 0 2 3

0 0 0 0 1

0 0 0 1 4

.

We now start with solving two systems of linear equations. The idea is to manipulate the

rows of the augmented matrix in place of the linear equations themselves. Since, multiplying

a matrix on the left corresponds to row operations, we left multiply by certain matrices to

the augmented matrix so that the final matrix is in row echelon form (REF). The process of

obtaining the REF of a matrix is called the Gauss Elimination method. The readers should

carefully look at the matrices being multiplied on the left in the examples given below.

Example 2.2.4. 1. Solve the linear system y + z = 2, 2x+ 3z = 5, x+ y + z = 3.

Solution: Let B0 = [A b], the augmented matrix. Then, B0 =


0 1 1 2

2 0 3 5

1 1 1 3

. We now

systematically proceed to get the solution.

(a) Interchange 1-st and 2-nd equations (interchange B0[1, :] and B0[2, :] to get B1).

2x+ 3z = 5

y + z = 2

x+ y + z = 3

B1 =


0 1 0

1 0 0

0 0 1

B0 =


2 0 3 5

0 1 1 2

1 1 1 3

 .

(b) In the new system, replace 3-rd equation by 3-rd equation minus
1

2
times the 1-st
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equation (replace B1[3, :] by B1[3, :]−
1

2
B1[1, :] to get B2).

2x+ 3z = 5

y + z = 2

y − 1
2z = 1

2

B2 =


1 0 0

0 1 0

−1/2 0 1

B1 =


2 0 3 5

0 1 1 2

0 1 −1/2 1/2

 .
(c) In the new system, replace 3-rd equation by 3-rd equation minus 2-nd equation

(replace B2[3, :] by B2[3, :]−B2[2, :] to get B3).

2x+ 3z = 5

y + z = 2

−3
2z = −3

2

B3 =


1 0 0

0 1 0

0 −1 1

B2 =


2 0 3 5

0 1 1 2

0 0 -3/2 −3/2

 .
Observe that the matrix B3 is in REF. Using the last row of B3, we get z = 1. Using

this and the second row of B3 gives y = 1. Finally, the first row gives x = 1. Hence,

the solution set of Ax = b is {[x, y, z]T | [x, y, z] = [1, 1, 1]}, a unique solution. The

method of finding the values of the unknowns y and x, using the 2-nd and 1-st row of B3

and the value of z is called back substitution.

2. Solve the linear system x+ y + z = 4, 2x+ 3z = 5, y + z = 3.

Solution: Let B0 = [A b] =


1 1 1 4

2 0 3 5

0 1 1 3

 be the augmented matrix. Then

(a) The given system looks like (correspond to the augment matrix B0).

x+ y + z = 4

2x+ 3z = 5

y + z = 3

B0 =


1 1 1 4

2 0 3 5

0 1 1 3

 .
(b) In the new system, replace 2-nd equation by 2-nd equation minus 2 times the 1-st

equation (replace B0[2, :] by B0[2, :]− 2 ·B0[1, :] to get B1).

x+ y + z = 4

−2y + z = −3

y + z = 3

B1 =


1 0 0

−2 1 0

0 0 1

B0 =


1 1 1 4

0 -2 1 −3

0 1 1 3

 .
(c) In the new system, replace 3-rd equation by 3-rd equation plus 1/2 times the 2-nd

equation (replace B1[3, :] by B1[3, :] + 1/2 ·B1[2, :] to get B2).

x+ y + z = 4

−2y + z = −3
3

2
z =

3

2

B2 =


1 0 0

0 1 0

0 1/2 1

B1 =


1 1 1 4

0 -2 1 −3

0 0 3/2 3/2

 .
Observe that the matrix B2 is in REF. Verify that the solution set is {[x, y, z]T | [x, y, z] =

[1, 2, 1]}, again a unique solution.
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In both the Examples, observe the following.

1. Each operation on the linear system corresponds to a similar operation on the rows of the

augmented matrix.

2. At each stage, the new augmented matrix was obtained by left multiplication by a matrix,

say E. Note that E is obtained by changing exactly one row of the identity matrix. The

readers should find the relationship between the matrix E and the row operations that

have been made on the augmented matrix.

3. Thus, the task of understanding the solution set of a linear system reduces to understand-

ing the form of the matrix E.

4. Note that E corresponds to a row operation made on the identity matrix I3.

5. Also, for each matrix E note that we have a matrix F , again a variant of I3 such that

EF = I3 = FE.

We use the above ideas to define elementary row operations and the corresponding elemen-

tary matrices in the next subsection.

2.2.2 Elementary Row Operations

Definition 2.2.5. Let A ∈Mm,n(C). Then, the elementary row operations are

1. Eij : Interchange the i-th and j-th rows, namely, interchange A[i, :] and A[j, :].

2. Ek(c) for c 6= 0: Multiply the k-th row by c, namely, multiply A[k, :] by c.

3. Eij(c) for c 6= 0: Replace the i-th row by i-th row plus c-times the j-th row, namely,

replace A[i, :] by A[i, :] + cA[j, :].

Definition 2.2.6. A matrix E ∈Mm(R) is called an elementary matrix if it is obtained by

applying exactly one elementary row operation to the identity matrix Im.

For better understanding we give the elementary matrices for m = 3.

Notation Operations on

Equations

Elementary Row Opera-

tions: A is 3× n matrix

Elementary

Matrix

E2(c), c 6= 0;

Ek(c), c 6= 0

Multiply the 2-th

row by c

A[2, :]← cA[2, :]


1 0 0

0 c 0

0 0 1


E21(c), c 6= 0;

Eij(c), c 6= 0

Replace 2-th row by

2-nd row plus c-times

1-st row

A[2, :]← A[2, :] + cA[1, :]


1 0 0

c 1 0

0 0 1



E23; Eij Interchange 2-nd and

3-rd rows

Interchange A[2, :] and A[3, :]


1 0 0

0 0 1

0 1 0
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Example 2.2.7. Verify that E2(5) =


1 0 0

0 5 0

0 0 1

, E12(−5) =


1 −5 0

0 1 0

0 0 1

 and E13 =


0 0 1

0 1 0

1 0 0


are elementary matrices.

Exercise 2.2.8. 1. Which of the following matrices are elementary?
2 0 1

0 1 0

0 0 1

 ,


1
2 0 0

0 1 0

0 0 1

 ,


1 −1 0

0 1 0

0 0 1

 ,


1 0 0

5 1 0

0 0 1

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 1

1 0 0

0 1 0

 .
Ans: 2-nd, 3-rd,m 4-th and 5-th.

2. Find some elementary matrices E1, . . . , Ek such that Ek · · ·E1

[
2 1

1 2

]
= I2.

Ans: Take E1 =

[
1/2 0

0 1

]
, E2 =

[
1 0

−1 1

]
, E3 =

[
1 0

0 2/3

]
and E4 =

[
1 −1/2

0 1

]
.

We now give the elementary matrices for general n.

Example 2.2.9. Let e1, . . . , en be the standard unit vectors of Mn,1(R). Then, using eTi ej =

0 = eTj ei and eTi ei = 1 = eTj ej , verify that each elementary matrix is invertible.

1. Ek(c) = In + (c− 1)eke
T
k for c 6= 0. Verify that

Ek(c)Ek(1/c) =
(
In + (c− 1)eke

T
k

) (
In + (1/c− 1)eke

T
k

)
= In = Ek(1/c)Ek(c).

2. Eij(c) = In + c eie
T
j for c 6= 0. Verify that

Eij(c)Eij(−c) =
(
In + c eie

T
j

) (
In − c eie

T
j

)
= In = Eij(−c)Eij(c).

3. Eij = In − eie
T
i − eje

T
j + eie

T
j + eje

T
i . Verify that

EijEij =
(
In − eie

T
i − eje

T
j + eie

T
j + eje

T
i

) (
In − eie

T
i − eje

T
j + eie

T
j + eje

T
i

)
= In.

We now show that the above elementary matrices correspond to respective row operations.

Remark 2.2.10. Let A ∈Mm,n(R).

1. For c 6= 0, Ek(c)A corresponds to the replacement of A[k, :] by cA[k, :].

Using eTk ek = 1 and A[k, :] = eTkA, we get

(Ek(c)A)[k, :] = eTk (Ek(c)A) = eTk
(
Im + (c− 1)eke

T
k

)
A =

(
eTk + (c− 1)eTk (eke

T
k )
)
A

=
(
eTk + (c− 1)eTk

)
A = ceTkA = cA[k, :].

A similar argument with eTi ek = 0, for i 6= k, gives (Ek(c)A)[i, :] = A[i, :], for i 6= k.
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2. For c 6= 0, Eij(c)A corresponds to the replacement of A[i, :] by A[i, :] + cA[j, :].

Using eTi ei = 1 and A[i, :] = eTi A, we get

(Eij(c)A)[i, :] = eTi (Eij(c)A) = eTi
(
Im + c eie

T
j

)
A =

(
eTi + c eTi (eie

T
j )
)
A

=
(
eTi + c eTj

)
A = A[i, :] + cA[j, :].

A similar argument with eTk ei = 0, for k 6= i, gives (Eij(c)A)[k, :] = A[k, :], for k 6= i.

3. EijA corresponds to interchange of A[i, :] and A[j, :].

Using eTi ei = 1, eTi ej = 0 and A[i, :] = eTi A, we get

(EijA)[i, :] = eTi (EijA) = eTi
(
Im − eie

T
i − eje

T
j + eie

T
j + eje

T
i

)
A

=
(
eTi − eTi − 0T + eTj + 0T

)
A = eTj A = A[j, :]

Similarly, using eTj ej = 1, eTj ei = 0 and A[j, :] = eTj A show that (EijA)[j, :] = A[i, :].

Further, using eTk ei = 0 = eTk ej, for k 6= i, j show that (EijA)[k, :] = A[k, :].

Definition 2.2.11. Two matrices A and B are said to be row equivalent if one can be

obtained from the other by a finite number of elementary row operations. Or equivalently,

there exists elementary matrices E1, . . . , Ek such that B = E1 · · ·EkA.

Definition 2.2.12. The linear systems Ax = b and Cx = d are said to be row equivalent if

their respective augmented matrices, [A b] and [C d], are row equivalent.

Thus, note that the linear systems at each step in Example 2.2.4 are row equivalent to each

other. We now prove that the solution set of two row equivalent linear systems are same.

Theorem 2.2.13. Let Ax = b and Cx = d be two row equivalent linear systems. Then they

have the same solution set.

Proof. Let E1, . . . , Ek be the elementary matrices such that E1 · · ·Ek[A b] = [C d]. Put

E = E1 · · ·Ek. Then

EA = C, E b = d, A = E−1C and b = E−1 d. (2.2.3)

Now assume that Ay = b holds. Then, by Equation (2.2.3)

C y = EA y = E b = d. (2.2.4)

On the other hand if C z = d holds then using Equation (2.2.3), we have

A z = E−1C z = E−1d = b. (2.2.5)

Therefore, using Equations (2.2.4) and (2.2.5) the required result follows.

The following result is a particular case of Theorem 2.2.13.

Corollary 2.2.14. Let A and B be two row equivalent matrices. Then, the systems Ax = 0

and Bx = 0 have the same solution set.
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Example 2.2.15. Are the matrices A =


1 0 0

0 1 0

0 0 1

 and B =


1 0 a

0 1 b

0 0 0

 row equivalent?

Solution: No, as


a

b

−1

 is a solution of Bx = 0 but it isn’t a solution of Ax = 0.

The following exercise shows that every square matrix is row equivalent to an upper trian-

gular matrix. We will come back to this idea again in the chapter titled “Advanced Topics”.

Exercise 2.2.16. 1. Let A = [aij ] ∈ Mn(R). Then there exists an orthogonal matrix U

such that UA is upper triangular. The proof uses the following ideas.

(a) If A[1, :] = 0 then proceed to the next column. Else, A[:, 1] 6= 0.

(b) If A[:, 1] = αe1, for some α ∈ R, α 6= 0, proceed to the next column. Else, either

a11 = 0 or a11 6= 0.

(c) If a11 = 0 then left multiply A with E1i (an orthogonal matrix) so that the (1, 1)

entry of B = E1iA is non-zero. Hence, without loss of generality, let a11 6= 0.

(d) Let [w1, . . . , wn]T = w ∈ Rn with w1 6= 0. Then use the Householder matrix H such

that Hw = w1e1, i.e., find x ∈ Rn such that (In − 2xxT )w = w1e1.

Ans: Given condition implies w − w1e1 = 2(xTw)x. So x =
w − w1e1

2xTw
. As

1

2xTw
is scalar, use x = α(w − w1e1). Show that α satisfies α2

(
wTw − w2

1

)
= 1 and

Hw = w1e1.

(e) So, Part 1d gives an orthogonal matrix H1 with H1A =

[
w1 ∗
0 A1

]
.

(f) Use induction to get H2 ∈ Mn−1(R) satisfying H2A1 = T1, an upper triangular

matrix.

(g) Define H =

[
1 0T

0 H2

]
H1. Then H is an orthogonal matrix and HA =

[
w1 ∗
0 T1

]
, an

upper triangular matrix.

2. Let A ∈ Mn(R) such that tr(A) = 0. Then prove that there exists a non-singular matrix

S such that SAS−1 = B with B = [bij ] and bii = 0, for 1 ≤ i ≤ n.

Ans: If diag(A) = 0 done. Else, assume a11 6= 0. If there is i such that ai1 6= 0 then use

S = E1i(c), for c = −a11
ai1

, it to get (SAS−1)11 = 0. If ai1 = 0 for all i 6= 1, then tr(A) = 0

implies, there exists i such that aii 6= 0. Use this entry to get a non-zero entry in the first

column. Now, use induction.

2.3 Initial Results on LU Decomposition

Consider the linear system Ax = b, where A ∈Mn(R) and b ∈Mn(R) are known matrices and

x ∈Mn(R) is the unknown matrix. Recall that in Example 2.2.4 we used the Gauss Elimination

method to get the REF of the augmented matrix. If the REF was [C d] then C was an upper

triangular matrix. The upper triangular form of C was used during back substitution.
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The decomposition of a square matrix A as LU , where L is a lower triangular matrix and U is

an upper triangular matrix plays an important role in numerical linear algebra. To get a better

understanding of the LU-decomposition (LU-factorization), we recall a few observations

and give a few examples.

1. Observe that solving the system Ax = b is quite easy whenever A is a triangular matrix.

2. As L is a triangular matrix, the linear system Ly = b can be easily solved. Let y0 be a

solution of Ly = b.

3. Now consider the linear system Uz = y0. As U is again triangular, this system can again

be easily solved. Let u0 be a solution of Uz = y0. Then, z0 is a solution of the system

Ax = b as

Az0 = (LU)z0 = L(Uz0) = Ly0 = b.

Hence, we observe that solving the system Ax = b reduces to solving two easier linear systems,

namely Ly = b and Uz = y, where y is obtained as a solution of Ly = b.

To give the LU -decomposition for a square matrix A, we need to know the determinant of A,

namely det(A), and its properties. Since, we haven’t yet studied it, we just give the idea of the

LU -decomposition. For the general case, the readers should see the chapter titled “Advanced

Topics”. Let us start with a few examples.

Example 2.3.1. 1. Let A =

[
0 1

1 0

]
. Then A cannot be decomposed into LU .

For if, A = LU =

[
a 0

b c

][
e f

0 g

]
then the numbers a, b, c, e, f, g ∈ R satisfy

ae = 0, af = 1, be = 1 and bf + cg = 0.

But, ae = 0 implies either a = 0 or e = 0, contradicting either af = 1 or be = 1.

2. Let ε > 0 and A =

[
ε 1

1 0

]
. Then, A = LU , where L =

[
1 0
1
ε 1

]
and U =

[
ε 1

0 −1
ε

]
. Thus,

comparing it with the previous example, we see that the LU -decomposition is highly

unstable.

3. Let A =

[
1 2

2 2

]
. Then, for any choice of α 6= 0, L =

[
1 0

2 α

]
and U =

[
1 2

0 − 2
α

]
gives

A = LU . Check that if we restrict ourselves with the condition that the diagonal entries

of L are all 1 then the decomposition is unique.

4. Let A =


1 1 1

2 0 3

0 1 1

. Then, using ideas in Example 2.2.4.2 verify that A = LU , where

L =


1 0 0

2 1 0

0 −1/2 1

 and U =


1 1 1

0 −2 1

0 0 3/2

.

5. Recall that in Example 2.2.4.2, we had pivots pivots at each stage. Whereas, in Exam-

ple 2.2.4.1, we had to interchange the first and second row to get a pivot. So, it is not

possible to write A = LU .
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6. Finally, using A = LU , the system Ax = b reduces to LUx = b. Here, the solution of

Ly = b, for b =


4

5

3

 equals y =


4

−3

3/2

. This, in turn implies x =


1

2

1

 as the solution of

both Ux = y or Ax = b.

So, to proceed further, let A ∈ Mn(R). Then, recall that for any S ⊆ {1, 2, . . . , n}, A[S, S]

denotes the principal submatrix of A corresponding to the elements of S (see Page 24). Then,

we assume that det(A[S, S]) 6= 0, for every S = {1, 2, . . . , i}, 1 ≤ i ≤ n.

We need to show that there exists an invertible lower triangular matrix L such that LA is

an invertible upper triangular matrix. The proof uses the following ideas.

1. By assumption A[1, 1] = a11 6= 0. Write A =

[
a11 A12

A21 A22

]
, where A22 is a (n−1)× (n−1).

2. Let L1 =

[
1 0T

x In−1

]
, where x =

−1

a11
A21. Then L1 is a lower triangular matrix and

L1A =

[
1 0T

x In−1

][
a11 A12

A21 A22

]
=

[
a11 A12

a11x +A21 xA12 +A22

]
=

[
a11 A12

0 xA12 +A22

]
.

3. Note that (2, 2)-th entry of L1A equals the (1, 1)-th entry of xA12 +A22. This equals−1

a11


a21
...

an1

[a12 · · · a1n

]
11

+ (A22)11 =
a11a22 − a12a21

a11
=
A[{1, 2}, {1, 2}]

a11
6= 0.

4. Thus, L1 is an invertible lower triangular matrix with L1A =

[
a11 ∗
0 A1

]
and (A1)11 6= 0.

Hence, det(A) = a11 det(A1) and det(A1[S, S]) 6= 0, for all S ⊆ {1, 2, . . . , n− 1} as

(a) the determinant of a lower triangular matrix equals product of diagonal entries and

(b) if A and B are two n× n matrices then det(AB) = det(A) · det(B).

5. Now, using induction, we get L2 ∈ Mn−1(R), an invertible lower triangular matrix, with

1’s on the diagonal such that L2A1 = T1, an invertible upper triangular matrix.

6. Define L̃ =

[
1 0T

0 L2

]
L1. Then, verify that L̃A =

[
a11 ∗
0 T1

]
, is an upper triangular matrix

with L̃ as an invertible lower triangular matrix.

7. Defining L =
(
L̃
)−1

, we see that L is a lower triangular matrix (inverse of a lower trian-

gular matrix is lower triangular) with A = LU and U =

[
a11 ∗
0 T1

]
, an upper triangular

invertible matrix.

As mentioned above, we will again come back to this at a later stage.
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2.4 Row-Reduced Echelon Form (RREF)

We now proceed to understand the row-reduced echelon form (RREF) of a matrix. This un-

derstanding will be used to define the row-rank of a matrix in the next section. In subsequent

sections and chapters, RREF is used to obtain very important results.

Definition 2.4.1. A matrix C is said to be in row-reduced echelon form (RREF)

1. if C is already in REF,

2. if the pivot of each non-zero row is 1,

3. if every other entry in each pivotal column is zero.

A matrix in RREF is also called a row-reduced echelon matrix.

Example 2.4.2. 1. The following matrices are in RREF.
0 1 0 −2

0 0 1 1

0 0 0 0

,


0 1 3 0

0 0 0 1

0 0 0 0

,


1 0 0 5

0 1 0 6

0 0 1 2

0 0 0 0

 and


1 1 0 0 0

0 0 0 1 0

0 0 0 0 1

.

Note that if we look at the pivotal rows and columns then I2 is present in the first two

matrices and I3 is there in the next two. Also, the subscripts 2 and 3, respectively, in I2

and I3 correspond to the number of pivots.

2. The following matrices are not in RREF (determine the rule(s) that fail).
0 3 3 0

0 0 0 1

0 0 0 0

,


0 1 3 0

0 0 0 0

0 0 0 1

,


0 1 3 1

0 0 0 1

0 0 0 0

.

Even though, we have two pivots in examples 1 and 3, the matrix I2 doesn’t appear as a

submatrix in pivotal rows and columns. In the first one, we have

[
3 0

0 1

]
as a submatrix

and in the third the corresponding submatrix is

[
1 1

0 1

]
.

We now give another examples to indicate its application to the theory of the system of

linear equations.

Example 2.4.3. Consider a linear system Ax = b, where A ∈ M3(C) and A[:, 1] 6= 0. If

[C d] = RREF([A b]) then what are the possible choices for [C d] and what are its

implication?

Solution: Since there are 3 rows, the number of pivots can be at most 3. So, let us verify that

there are 7 different choices for [C d] = RREF([A b]).

1. There are exactly 3 pivots. These pivots can be in either the columns {1, 2, 3}, {1, 2, 4}
and {1, 3, 4} as we have assumed A[:, 1] 6= 0. The corresponding cases are given below.
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(a) Pivots in the columns 1, 2, 3⇒ [C d] =


1 0 0 d1

0 1 0 d2

0 0 1 d3

. Here, Ax = b is consistent.

The unique solution equals


x

y

z

 =


d1

d2

d3

.

(b) Pivots in the columns 1, 2, 4 or 1, 3, 4⇒ [C d] equals


1 0 α 0

0 1 β 0

0 0 0 1

 or


1 α 0 0

0 0 1 0

0 0 0 1

.

Here, Ax = b is inconsistent for any choice of α, β as there is a row of [0 0 0 1]. This

corresponds to solving 0 · x+ 0 · y + 0 · z = 1, an equation which has no solution.

2. There are exactly 2 pivots. These pivots can be in either the columns {1, 2}, {1, 3} or

{1, 4} as we have assumed A[:, 1] 6= 0. The corresponding cases are given below.

(a) Pivots in the columns 1, 2 or 1, 3⇒ [C d] equals


1 0 α d1

0 1 β d2

0 0 0 0

 or


1 α 0 d1

0 0 1 d2

0 0 0 0

.

Here, for the first matrix, the solution set equals
x

y

z

 =


d1 − αz
d2 − βz

z

 =


d1

d2

d3

+ z


−α
−β
1

,
where z is arbitrary. Here, z is called the “Free variable” as z can be assigned any

value and x and y are called “Basic Variables” and they can be written in terms of

the free variable z and constant.

(b) Pivots in the columns 1, 4 ⇒ [C d] =


1 α β 0

0 0 0 1

0 0 0 0

 which has a row of [0 0 0 1].

This corresponds to solving 0 ·x+ 0 · y+ 0 · z = 1, an equation which has no solution.

3. There is exactly one pivot. In this case [C d] =


1 α β d1

0 0 0 0

0 0 0 0

. Here, Ax = b is consis-

tent and has infinite number of solutions for every choice of α, β as RREF([A b])

has no row of the form [0 0 0 1].

2.4.1 The Gauss-Jordan Elimination Method

So, having seen the application of the RREF to the augmented matrix, let us proceed with the

algorithm, commonly known as the Gauss-Jordan Elimination (GJE), which helps us compute

the RREF.

1. Input: A ∈Mm,n(R).

2. Output: a matrix B in RREF such that A is row equivalent to B.
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3. Step 1: Put ‘Region’ = A.

4. Step 2: If all entries in the Region are 0, STOP. Else, in the Region, find the leftmost

nonzero column and find its topmost nonzero entry. Suppose this nonzero entry is aij = c

(say). Box it. This is a pivot.

5. Step 3: Interchange the row containing the pivot with the top row of the region. Also,

make the pivot entry 1 by dividing this top row by c. Use this pivot to make other entries

in the pivotal column as 0.

6. Step 4: Put Region = the submatrix below and to the right of the current pivot. Now,

go to step 2.

Important: The process will stop, as we can get at most min{m,n} pivots.

Example 2.4.4. Apply GJE to


0 2 3 7

1 1 1 1

1 3 4 8

0 0 0 1


1. Region = A as A 6= 0.

2. Then, E12A =


1 1 1 1

0 2 3 7

1 3 4 8

0 0 0 1

. Also, E31(−1)E12A =


1 1 1 1

0 2 3 7

0 2 3 7

0 0 0 1

 = B (say).

3. Now, Region =


2 3 7

2 3 7

0 0 1

 6= 0. Then, E2(
1
2)B =


1 1 1 1

0 1 3
2

7
2

0 2 3 7

0 0 0 1

 = C(say). Then,

E12(−1)E32(−2)C =


1 0 −1

2
−5
2

0 1 3
2

7
2

0 0 0 0

0 0 0 1

 = D(say).

4. Now, Region =

[
0 0

0 1

]
. Then, E34D =


1 0 −1

2
−5
2

0 1 3
2

7
2

0 0 0 1

0 0 0 0

. Now, multiply on the left

by E13(
5
2) and E23(

−7
2 ) to get


1 0 −1

2 0

0 1 3
2 0

0 0 0 1

0 0 0 0

, a matrix in RREF. Thus, A is row

equivalent to F , where F = RREF(A) =


1 0 −1

2 0

0 1 3
2 0

0 0 0 1

0 0 0 0

.
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5. Note that we have multiplied A on the left by the elementary matrices, E12, E31(−1),

E2(1/2), E32−2, E12(−1), E34, E23(−7/2), E13(5/2), i.e.,

E13(5/2)E23(−7/2)E34E12(−1)E32(−2)E2(1/2)E31(−1)E12A = F = RREF(A).

6. Or equivalently, we have an invertible matrix P such that PA = F = RREF(A), where

P = E13(5/2)E23(−7/2)E34E12(−1)E32(−2)E2(1/2)E31(−1)E12.

Exercise 2.4.5. Let A =


0 0 1

1 0 3

3 0 7

 , B =


0 1 1 3

0 0 1 3

1 1 0 0

 and C =


0 −1 1

−2 0 3

−5 1 0

 . Determine

their RREF.

Ans: RREF(A) =


1 0 0

0 0 1

0 0 0

, RREF(B) =


1 0 0 0

0 1 0 0

0 0 1 3

 and RREF(C) = I3.

2.4.2 Results on RREF

The proof of the next result is beyond the scope of this book and hence is omitted.

Theorem 2.4.6. Let A and B be two row equivalent matrices in RREF. Then A = B.

As an immediate corollary, we obtain the following important result.

Corollary 2.4.7. The RREF of a matrix A is unique.

Proof. Suppose there exists a matrix A having B and C as RREFs. As the RREFs are obtained

by left multiplication of elementary matrices, there exist elementary matrices E1, . . . , Ek and

F1, . . . , F` such that B = E1 · · ·EkA and C = F1 · · ·F`A. Thus,

B = E1 · · ·EkA = E1 · · ·Ek(F1 · · ·F`)−1C = E1 · · ·EkF−1` · · ·F−12 F−11 C.

As inverse of an elementary matrix is an elementary matrix, B and C are are row equivalent.

As B and C are in RREF, using Theorem 2.4.6, B = C.

Remark 2.4.8. Let A ∈Mm,n(R).

1. Then, the uniqueness of RREF implies that RREF(A) is independent of the choice of the

row operations used to get the final matrix which is in RREF.

2. Let B = EA, for some elementary matrix E. Then, RREF(A) = RREF(B).

3. Then RREF(A) = PA, for some invertible matrix P .

4. Let F = RREF(A) and B = [A[:, 1], . . . , A[:, s]], for some s ≤ n. Then,

RREF(B) = [F [:, 1], . . . , F [:, s]].

Proof. By Remark 2.4.8.3, there exist an invertible matrix P , such that

F = PA = [PA[:, 1], . . . , PA[:, n]] = [F [:, 1], . . . , F [:, n]].
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But, PB = [PA[:, 1], . . . , PA[:, s]] = [F [:, 1], . . . , F [:, s]]. As F is in RREF, its first s

columns are also in RREF. Thus, by Corollary 2.4.7, RREF(PB) = [F [:, 1], . . . , F [:, s]].

Now, a repeated application of Remark 2.4.8.2 implies RREF(B) = [F [:, 1], . . . , F [:, s]].

Thus, the required result follows.

Proposition 2.4.9. Let A ∈ Mn(R). Then, A is invertible if and only if RREF(A) = In, i.e.,

every invertible matrix is a product of elementary matrices.

Proof. If RREF(A) = In then there exist elementary matrices E1, . . . , Ek such that In =

RREF(A) = E1 · · ·EkA. As elementary matrices are invertible and product of invertible ma-

trices are invertible, we get A = (E1 · · ·Ek)−1 ⇔ A−1 = E1 · · ·Ek.
Now, let A be invertible with B = RREF(A) = E1 · · ·EkA, for some elementary matrices

E1, . . . , Ek. As A and Ei’s are invertible, the matrix B is invertible. Hence, B doesn’t have any

zero row. Thus, all the n rows of B have pivots. Therefore, B has n pivotal columns. As B

has exactly n columns, each column is a pivotal column and hence B = In. Thus, the required

result follows.

Exercise 2.4.10. 1. Let A ∈ Mm,n(R). Then RREF(SA) = RREF(A), for any invertible

matrix S ∈Mn(R).

Ans: A direct application of Proposition 2.4.9 and Remark 2.4.8.2.

2. Let A ∈Mn(R) be an invertible matrix. Then, for any matrix B, define C =
[
A B

]
and

D =

[
A

B

]
. Then, RREF(C) =

[
In A−1B

]
and RREF(D) =

[
In

0

]
.

Ans: A−1C =
[
A−1A A−1B

]
=
[
In A−1B

]
. Note

[
In A−1B

]
is in RREF. For the

second part, the matrix X =

[
A−1 0

−BA−1 In

]
is invertible and XD =

[
In

0

]
is in RREF.

2.4.3 Computing the Inverse using GJE

Recall that if A ∈ Mn(C) is invertible then there exists a matrix B such that AB = In = BA.

So, we want to find a B such that[
e1 · · · en

]
= In = AB = A

[
B[:, 1] · · · B[:, n]

]
=
[
AB[:, 1] · · · AB[:, n]

]
.

So, if B =
[
B[:, 1] · · · B[:, n]

]
is the matrix of unknowns then we need to solve n-system

of linear equations AB[:, 1] = e1, . . ., AB[:, n] = en. Thus, we have n-augmented matrices

[A | e1], . . ., [A | en]. So, in place of solving the n-augmented matrices separately, the idea of

GJE is to consider the augmented matrix[
A e1 e2 · · · en

]
=
[
A In

]
.

Thus, if E is an invertible matrix such that E
[
A In

]
=
[
In B

]
then EA = In and E = B.

Hence, invertibility of E implies AE = In and hence, B = E = A−1. This idea together with

Remark 2.4.8.4 is used to compute A−1 whenever it exists.
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Let A ∈ Mn(R). Compute RREF(C), where C = [A I In]. Then RREF(C) = [RREF(A) B].

Now, either RREF(A) = In or RREF(A) 6= In. Thus, if RREF(A) = In then we must have

B = A−1. Else, A is not invertible. We show this with an example.

Example 2.4.11. Use GJE to find the inverse of A =


0 0 1

0 1 1

1 1 1

.

Solution: Applying GJE to [A | I3] =


0 0 1 1 0 0

0 1 1 0 1 0

1 1 1 0 0 1

 gives

[A | I3] E13→


1 1 1 0 0 1

0 1 1 0 1 0

0 0 1 1 0 0

 E13(−1),E23(−2)→


1 1 0 −1 0 1

0 1 0 −1 1 0

0 0 1 1 0 0


E12(−1)→


1 0 0 0 −1 1

0 1 0 −1 1 0

0 0 1 1 0 0

.

Thus, A−1 =


0 −1 1

−1 1 0

1 0 0

.

Exercise 2.4.12. Use GJE to compute the inverseA =


1 2 3

1 3 2

2 4 7

 and B =


1 3 3

2 3 2

3 5 4

.

Ans: A−1 =


13 −2 −5

−3 1 1

−2 0 1

 and B−1 =


−2 −3 3

2 5 −4

−1 −4 3

.

2.5 Rank of a Matrix

Recall that the RREF of a matrix is unique. So, we use RREF(A) to define the rank of a A.

Definition 2.5.1. Let A ∈ Mm,n(C). Then, the rank of A, denoted Rank(A), is the number

of pivots in the RREF(A).

Note that Rank(A) is defined using the number of pivots in RREF (A). These pivots

were obtained using the row operations. The question arises, what if we had applied column

operations? That is, what happens when we multiply by invertible matrices on the right?

Will the pivots using column operations remain the same or change? This question cannot be

answered at this stage. Using the ideas in vector spaces, we can show that the number of pivots

do not change and hence, we just use the word Rank(A).

We now illustrate the calculation of the rank by giving a few examples.
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Example 2.5.2. Determine the rank of the following matrices.

1. Rank(In) = n and Rank(0) = 0.

2. Let A = diag(d1, . . . , dn). Then, Rank(A) equals the number of non-zero di’s.

3. Let A =

[
1 2

2 4

]
. Then RREF(A) =

[
1 2

0 0

]
⇒ Rank(A) = 1.

4. Let A =

[
1 2 3

2 4 6

]
. Then RREF(A) =

[
1 2 3

0 0 0

]
⇒ Rank(A) = 1.

5. Let A =


1 0 0

0 1 0

2 2 0

. Then RREF(A) =


1 0 0

0 1 0

0 0 0

⇒ Rank(A) = 2.

6. Let A =

[
1 2

2 4

]
and B =

[
−2 −2

1 1

]
. Then, Rank(A) = Rank(B) = 1. Also, verify that

AB = 0 and BA =

[
−6 −12

3 6

]
. So, Rank(AB) = 0 6= 1 = Rank(BA). Observe that A

and B are not invertible. So, the rank can either remain the same or reduce.

7. Let A =


1 2 1 1 1

2 3 1 2 2

1 1 0 1 1

. Then, Rank(A) = 2 as it’s REF has two pivots.

Remark 2.5.3. Before proceeding further, for A,B ∈Mm,n(C), we observe the following.

1. If A and B are row-equivalent then Rank(A) = Rank(B).

2. The number of pivots in the RREF(A) equals the number of pivots in REF of A. Hence,

one needs to compute only the REF to determine the rank.

Exercise 2.5.4. Let A ∈Mm,n(R).

1. Then Rank(A) ≤ min{m,n}.

Ans: The number of pivots cannot be more than the number of rows or the number of

columns.

2. If B =

[
A C

0 0

]
then Rank(B) = Rank([A C]).

Ans: RREF(B) = RREF([A C]).

3. If B =

[
A 0

0 0

]
then Rank(B) = Rank(A)

Ans: RREF(B) =

[
RREF(A) 0

0 0

]
.

4. If A = PB, for some invertible matrix P then Rank(A) = Rank(B).

Ans: P invertible implies RREF(A) = RREF(B).
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5. If A =

[
A11 A12

A21 A22

]
then Rank(A) ≤ Rank

([
A11 A12

])
+ Rank

([
A21 A22

])
.

We now have the following result.

Corollary 2.5.5. Let A ∈Mm,n(R) and B ∈Mn,q(R). Then, Rank(AB) ≤ Rank(A).

In particular, if B ∈Mn(R) is invertible then Rank(AB) = Rank(A).

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and A1 ∈ Mr,n(R) such

that PA = RREF(A) =

[
A1

0

]
. Then, PAB =

[
A1

0

]
B =

[
A1B

0

]
. So, using Remark 2.5.3 and

Exercise 2.5.4.2

Rank(AB) = Rank(PAB) = Rank

([
A1B

0

])
= Rank(A1B) ≤ r = Rank(A). (2.5.1)

In particular, if B is invertible then, using Equation (2.5.1), we get

Rank(A) = Rank(ABB−1) ≤ Rank(AB)

and hence the required result follows.

Proposition 2.5.6. Let A ∈Mn(C) be an invertible matrix and let S be any subset of {1, 2, . . . , n}.
Then Rank(A[S, :]) = |S| and Rank(A[:, S]) = |S|.

Proof. Without loss of generality, let S = {1, . . . , r} and Sc = {r+1, . . . , n}. Write A1 = A[:, S]

and A2 = A[:, Sc]. Since A is invertible, RREF(A) = In. Hence, by Remark 2.4.8.3, there exists

an invertible matrix P such that PA = In. Thus,[
PA1 PA2

]
= P

[
A1 A2

]
= PA = In =

[
Ir 0

0 In−r

]
.

Thus, PA1 =

[
Ir

0

]
and PA2 =

[
0

In−r

]
. So, using Corollary 2.5.5, Rank(A1) = r.

For the second part, let B1 = A[S, :], B2 = A[Sc, :] and let Rank(B1) = t < s. Then, by

Exercise 2, there exists an s× s invertible matrix Q and a matrix C in RREF, of size t×n and

having exactly t pivots, such that

QB1 = RREF(B1) =

[
C

0

]
. (2.5.2)

As t < s, QB1 has at least one zero row. Then

[
Q 0

0 In−r

]
A =

[
Q 0

0 In−r

][
B1

B2

]
=

[
QB1

B2

]
=


C

0

B2

.

As

[
Q 0

0 In−r

]
and A are invertible, their product is invertible. But, their product has a zero

row, a contradiction. Thus, Rank(B1) = s.

Let us also look at the following example to understand the prove of the next theorem.
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Example 2.5.7. Let A =


1 2 3 4

2 4 5 1

1 2 4 7

. Then RREF(A) =


1 2 0 0

0 0 1 0

0 0 0 1

. Thus, we have

an invertible matrix P such that PA = RREF(A). Note that Rank(A) = 3 and hence I3 is

a submatrix of RREF(A). So, we need to find Q ∈ M4(R) such that PAQ =
[
I3 0

]
. Now,

consider the following column operations.

1. Let B =


1 0 0 2

0 1 0 0

0 0 1 0

. Then B = RREF(A) E23E34.

2. B(E41(−2))T = BE14(−2) =


1 0 0 2

0 1 0 0

0 0 1 0




1 0 0 −2

0 1 0 0

0 0 1 0

0 0 0 1

 =
[
I3 0

]
.

3. Thus, define Q = E23E34E14(−2) to get PAQ =
[
I3 0

]
.

Theorem 2.5.8. Let A ∈Mm,n(R). If Rank(A) = r then, there exist invertible matrices P and

Q such that

P A Q =

[
Ir 0

0 0

]
.

Proof. Let C = RREF(A). Then, by Remark 2.4.8.3 there exists as invertible matrix P such

that C = PA. Note that C has r pivots and they appear in columns, say i1 < i2 < · · · < ir.

Now, let Q1 = E1i1E2i2 · · ·Erir . As Ejij ’s are elementary matrices that interchange the

columns of C, one has D = CQ1 =

[
Ir B

0 0

]
, where B ∈Mr,n−r(R).

Now, let Q2 =

[
Ir −B
0 In−r

]
and Q = Q1Q2. Then Q is invertible and

PAQ = CQ = CQ1Q2 = DQ2 =

[
Ir B

0 0

][
Ir −B
0 In−r

]
=

[
Ir 0

0 0

]
.

Thus, the required result follows.

Since we are multiplying by invertible matrices on the right, the idea of the above theorem

cannot be used for solving the system of linear equations. But, this idea can be used to

understand the properties of the given matrix, such as ideas related to rank-factorization, row-

space, column space and so on which have not yet been defined.

As a corollary of Theorem 2.5.8, we now give the rank-factorization of a matrix A.

Corollary 2.5.9. Let A ∈ Mm,n(R). If Rank(A) = r then there exist matrices B ∈ Mm,r(R)

and C ∈Mr,n(R) such that Rank(B) = Rank(C) = r and A = BC. Furthermore, A =
r∑
i=1

xiy
T
i ,

for some xi ∈ Rm and yi ∈ Rn.
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Proof. By Theorem 2.5.8, there exist invertible matrices P and Q such that P A Q =

[
Ir 0

0 0

]
.

Or equivalently, A = P−1
[
Ir 0

0 0

]
Q−1. Decompose P−1 = [B D] and Q−1 =

[
C

F

]
such that

B ∈Mm,r(R) and C ∈Mr,n(R). Then Rank(B) = Rank(C) = r (see Proposition 2.5.6) and

A = [B D]

[
Ir 0

0 0

][
C

F

]
=
[
B 0

][C
F

]
= BC.

Furthermore, assume that B =
[
x1 · · · xr

]
and C =


yT1
...

yTr

. Then A = BC =
r∑
i=1

xiy
T
i .

Proposition 2.5.10. Let A,B ∈ Mm,n(R). Then, prove that Rank(A + B) ≤ Rank(A) +

Rank(B). In particular, if A =
k∑
i=1

xiy
T
i , for some xi,yi ∈ R, for 1 ≤ i ≤ k, then Rank(A) ≤ k.

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and a matrix A1 ∈Mr,n(R)

such that PA = RREF(A) =

[
A1

0

]
. Then,

P (A+B) = PA+ PB =

[
A1

0

]
+

[
B1

B2

]
=

[
A1 +B1

B2

]
.

Now using Corollary 2.5.5, we have

Rank(A+B) = Rank(P (A+B)) ≤ r + Rank(B2) ≤ r + Rank(B) = Rank(A) + Rank(B).

Thus, the required result follows. The other part follows, as Rank(xiy
T
i ) = 1, for 1 ≤ i ≤ k.

Exercise 2.5.11. 1. Let A ∈ Mm,n(R) be a matrix of rank 1. Then prove that A = xyT ,

for non-zero vectors x ∈ Rm and y ∈ Rn.

Ans: Use Corollary 2.5.9.

2. Let A ∈Mm(R). If Rank(A) = 1 then prove that A2 = αA, for some scalar α.

Ans: By previous question, A = xyT , for non-zero vectors x,y ∈ Rm. Thus

A2 =
(
xyT

)
·
(
xyT

)
= x

(
yTx

)
yT =

(
yTx

)
· xyT = αA, for α = yTx.

3. Let A =

[
2 4 8

1 3 2

]
and B =

[
1 0 0

0 1 0

]
.

(a) Find P and Q such that B = PAQ. Thus, A = P−1
[
I2 0

]
Q−1.

(b) Define G = Q

[
I2

xT

]
P . Then, verify that AGA = A. Hence, G is a g-inverse of A.

(c) In particular, if b = 0 then G = Q

[
I2

0T

]
P . In this case, verify that GAG = G,

(AG)T = AG and (GA)T = GA. Hence, this G is the pseudo-inverse of A.
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4. Let A =

[
1 2 3

2 1 1

]
.

(a) Find a matrix G such that AG = I2. Hint: Let G =


a α

b β

c γ

. Now, use AG = I2 to

get the solution space and proceed.

(b) What can you say about the number of such matrices? Give reasons for your answer.

(c) Does the choice of G in part (a) also satisfies (AG)T = AG and (GA)T = GA? Give

reasons for your answer.

(d) Does there exist a matrix C such that CA = I3? Give reasons for your answer.

(e) Could you have used the ideas from Exercise 2.5.11.3 to get your answers?

Ans: Note that G =
1

3


−1 + k 2 + z

2− 5k −1− 5z

3k 3z

, for k, z arbitrary. Then AG = I2. Does there

exists a value of z for which G =


−8/35 3/5

1/7 0

11/35 −1/5

? Note that for this choice of G, one has

AGA = A,GAG = G, (AG)T = AG and (GA)T = GA.

5. Let A ∈ Mm,n(R) with Rank(A) = r. Then, using Theorem 2.5.8, we can find invertible

matrices P and Q such that P A Q =

[
Ir 0

0 0

]
. Choose arbitrary matrices U, V and W

such that the matrix

[
Ir U

V W

]
is an n×m matrix. Define G = Q

[
Ir U

V W

]
P . Then, prove

that G is a g-inverse of A.

6. Let A ∈Mm,n(R) with Rank(A) = r. Then, using Corollary 2.5.9 there exist matrices B ∈
Mm,r(R) and C ∈ Mr,n(R) such that Rank(B) = Rank(C) = r and A = BC. Thus, BTB

and CCT are invertible matrices. Now, define G1 = (BTB)−1BT and G2 = CT (CCT )−1.

Then, prove that G = G2G1 is a pseudo-inverse of A.

Ans: Write down the expressions and use (CCT )(CCT )−1 = Ir = (CCT )−1(CCT ) and

(BTB)−1(BTB) = Ir = (BTB)(BTB)−1.

2.6 Solution set of a Linear System

Having learnt RREF of a matrix and the properties of the rank function, let us go back to the

system of linear equations and apply those ideas to have a better understanding of the system

of linear equations. So, let us consider the linear system Ax = b. Then, using Remark 2.4.8.4

Rank([A b]) ≥ Rank(A). Further, the augmented matrix has exactly one extra column. Hence,
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either

Rank([A b]) = Rank(Augmented Matrix) = Rank(Coefficient matrix) + 1 = Rank(A) + 1

or

Rank([A b]) = Rank(Augmented Matrix) = Rank(Coefficient matrix) = Rank(A).

In the first case, there is a pivot in the (n + 1)-th column of the augmented matrix [A b].

Thus, the column corresponding to b has a pivot. This implies b 6= 0. This implies that the

row corresponding to this pivot in RREF([A b]) has all entries before this pivot as 0. Thus,

in RREF([A b]) this pivotal row equals [0 0 · · · 0 1]. But, this corresponds to the equation

0 · x1 + 0 · x2 + · · ·+ 0 · xn = 1. This implies that the Ax = b has no solution whenever

b 6= 0 and Rank(Augmented Matrix) > Rank(Coefficient matrix).

We now define the words “basic variables” and “free variables”.

Definition 2.6.1. Consider the linear system Ax = b. If RREF([A b]) = [C d]. Then,

the variables corresponding to the pivotal columns of C are called the basic variables and the

variables that correspond to non-pivotal columns are called free variables.

To understand the second case, we look at the homogeneous system Ax = 0.

Example 2.6.2. Consider a linear system Ax = 0. Suppose RREF(A) = C, where

C =



1 0 2 −1 0 0 2

0 1 1 3 0 0 5

0 0 0 0 1 0 −1

0 0 0 0 0 1 −4

0 0 0 0 0 0 0


.

Then to get the solution set, observe that C has 4 pivotal columns, namely, the columns 1, 2, 5

and 6. Thus, x1, x2, x5 and x6 are basic variables. Therefore, the remaining variables x3, x4 and

x7 are free variables. Hence, the solution set is given by



x1

x2

x3

x4

x5

x6

x7


=



−2x3 + x4 − 2x7

−x3 − 3x4 − 5x7

x3

x4

4x7

4− x7
x7


= x3



−2

−1

1

0

0

0

0


+ x4



1

−3

0

1

0

0

0


+ x7



−2

−5

0

0

4

−1

1


,
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where x3, x4 and x7 are arbitrary. Let

[
u1 u2 u3

]
=



−2 1 −2

−1 −3 −5

1 0 0

0 1 0

0 0 4

0 0 −1

0 0 1


.

Then, for 1 ≤ i ≤ 3, Cui = 0 ⇒ Aui = 0. Further, as x3, x4 and x7 are the free variables,

observe that the submatrix of
[
u1 u2 u3

]
corresponding to the 3-rd, 4-th and 7-th rows

equals I3.

Let us now summarize the above ideas and examples.

Theorem 2.6.3. Let Ax = b be a linear system in n variables with RREF([A b]) = [C d].

1. Then the system Ax = b is inconsistent if Rank([A b]) > Rank(A).

2. Then the system Ax = b is consistent if Rank([A b]) = Rank(A).

(a) Further, Ax = b has a unique solution if Rank(A) = n.

(b) Further, Ax = b has infinite number of solutions if Rank(A) < n. In this

case, there exist vectors x0,u1, . . . ,un−r ∈ Rn with Ax0 = b and Aui = 0, for

1 ≤ i ≤ n− r. Furthermore, the solution set is given by

{x0 + k1u1 + k2u2 + · · ·+ kn−run−r | ki ∈ R, 1 ≤ i ≤ n− r}.

Proof. Part 1: As Rank([A b]) > Rank(A), by Remark 2.4.8.4 ([C d])[r + 1, :] = [0T 1]. Note

that this row corresponds to the linear equation

0 · x1 + 0 · x2 + · · ·+ 0 · xn = 1

which clearly has no solution. Thus, by Theorem 2.2.13, Ax = b is inconsistent.

Part 2: As Rank([A b]) = Rank(A), by Remark 2.4.8.4, [C d] doesn’t have a row of the

form [0T 1]. Further, the number of pivots in [C d] and that in C is same, namely, r pivots.

Part 2a: As Rank(A) = r = n, there are no free variables. Hence, xi = di, for 1 ≤ i ≤ n,

is the unique solution.

Part 2b: As Rank(A) = r < n. Suppose the pivots appear in columns i1, . . . , ir with

1 ≤ i1 < · · · < ir ≤ n. Thus, the variables xij , for 1 ≤ j ≤ r, are basic variables and the

remaining n− r variables, say xt1 , . . . , xtn−r , are free variables with t1 < · · · < tn−r. Since C is

in RREF, in terms of the free variables and basic variables, the `-th row of [C d], for 1 ≤ ` ≤ r,
corresponds to the equation (writing basic variables in terms of a constant and free variables)

xi` +
n−r∑
k=1

c`tkxtk = d` ⇔ xi` = d` −
n−r∑
k=1

c`tkxtk .



D
RA
FT

56 CHAPTER 2. SYSTEM OF LINEAR EQUATIONS

Thus, the system Cx = d is consistent. Hence, by Theorem 2.2.13 the system Ax = b is

consistent and the solution set of the system Ax = b and Cx = d are the same. Therefore, the

solution set of the system Cx = d (or equivalently Ax = b) is given by



xi1
...

xir

xt1

xt2
...

xtn−r


=



d1 −
n−r∑
k=1

c1tkxtk

...

dr −
n−r∑
k=1

crtkxtk

xt1

xt2
...

xtn−r


=



d1
...

dr

0

0
...

0


+ xt1



c1t1
...

crt1

1

0
...

0


+ xt2



c1t2
...

crt2

0

1
...

0


+ · · ·+ xtn−r



c1tn−r
...

crtn−r

0

0
...

1


. (2.6.3)

Define x0 =



d1
...

dr

0

0
...

0


and u1 =



c1t1
...

crt1

1

0
...

0


, . . . ,un−r =



c1tn−r
...

crtn−r

0

0
...

1


. Then, it can be easily verified

that Ax0 = b and, for 1 ≤ i ≤ n − r, Aui = 0. Also, by Equation (2.6.3) the solution set has

indeed the required form, where ki corresponds to the free variable xti . As there is at least one

free variable the system has infinite number of solutions.

Thus, note that the solution set of Ax = b depends on the rank of the coefficient matrix, the

rank of the augmented matrix and the number of unknowns. In some sense, it is independent

of the choice of m.

Exercise 2.6.4. Consider the linear system given below. Use GJE to find the RREF of its

augmented matrix and use it to find the solution.

x + y −2 u + v = 2

z +u +2 v = 3

v + w = 3

v +2 w = 5

Ans: RREF([A b]) =


1 1 0 −2 0 0 1

0 0 1 1 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 2

. Thus, the solution set equals
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{x0 + cu1 + du2 : c, d ∈ R}, where x0 =



1

0

1

0

1

2


, u1 =



−1

1

0

0

0

0


and u2 =



2

0

−1

1

0

0


.

Let A ∈Mm,n(R). Then, Rank(A) ≤ m. Thus, using Theorem 2.6.3 the next result follows.

Corollary 2.6.5. Let A ∈Mm,n(R). If Rank(A) = r < n then the homogeneous system Ax = 0

has at least one non-trivial solution.

Remark 2.6.6. Let A ∈ Mm,n(R). Then, Theorem 2.6.3 implies that Ax = b is consistent

if and only if Rank(A) = Rank([A b]). Further, the the vectors ui’s associated with the free

variables in Equation (2.6.3) are solutions of the associated homogeneous system Ax = 0.

We end this subsection with some applications.

Example 2.6.7. 1. Determine the equation of the circle passing through the points (−1, 4), (0, 1)

and (1, 4).

Solution: The equation a(x2 + y2) + bx+ cy+ d = 0, for a, b, c, d ∈ R, represents a circle.

Since this curve passes through the given points, we get a homogeneous system having 3

equations in4 unknowns, namely
(−1)2 + 42 −1 4 1

(0)2 + 12 0 1 1

12 + 42 1 4 1



a

b

c

d

 = 0.

Solving this system, we get [a, b, c, d] = [ 3
13d, 0,−16

13d, d]. Hence, choosing d = 13, the

required circle is given by 3(x2 + y2)− 16y + 13 = 0.

2. Determine the equation of the plane that contains the points (1, 1, 1), (1, 3, 2) and (2,−1, 2).

Solution: The general equation of a plane in space is given by ax + by + cz + d = 0,

where a, b, c and d are unknowns. Since this plane passes through the 3 given points, we

get a homogeneous system in 3 equations and 4 variables. So, it has a non-trivial solution,

namely [a, b, c, d] = [−4
3d,−d

3 ,−2
3d, d]. Hence, choosing d = 3, the required plane is given

by −4x− y + 2z + 3 = 0.

3. Let A =


2 3 4

0 −1 0

0 −3 4

. Then, find a non-trivial solution of Ax = 2x. Does there exist a

nonzero vector y ∈ R3 such that Ay = 4y?

Solution: Solving for Ax = 2x is equivalent to solving (A − 2I)x = 0. The augmented

matrix of this system equals


0 3 4 0

0 −3 0 0

0 −3 2 0

. Verify that xT = [1, 0, 0] is a nonzero
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solution. For the other part, the augmented matrix for solving (A − 4I)y = 0 equals
−2 3 4 0

0 −5 0 0

0 −3 0 0

. Thus, verify that yT = [2, 0, 1] is a nonzero solution.

Exercise 2.6.8. 1. Let A ∈ Mn(R). If A2x = 0 has a non trivial solution then show that

Ax = 0 also has a non trivial solution.

Ans: Choose x0 6= 0 such that A2x0 = 0. If Ax0 = 0 then x0 is a non-trivial solution of

Ax = 0. Else, Ax0 6= 0 is a non-trivial solution of Ax = 0.

2. Let u = (1, 1,−2)T and v = (−1, 2, 3)T . Find condition on x, y and z such that the system

cu + dv = (x, y, z)T in the unknowns c and d is consistent.

Ans: 7x− y + 3z = 0

3. Find condition(s) on x, y, z so that the systems given below (in the unknowns a, b and c)

is consistent?

(a) a+ 2b− 3c = x, 2a+ 6b− 11c = y, a− 2b+ 7c = z.

(b) a+ b+ 5c = x, a+ 3c = y, 2a− b+ 4c = z.

Ans: (a) 5x− 2y + z = 0. (b) x− 3y + z = 0.

4. For what values of c and k, the following systems have i) no solution, ii) a unique

solution and iii) infinite number of solutions.

(a) x+ y + z = 3, x+ 2y + cz = 4, 2x+ 3y + 2cz = k.

(b) x+ y + z = 3, x+ y + 2cz = 7, x+ 2y + 3cz = k.

(c) x+ y + 2z = 3, x+ 2y + cz = 5, x+ 2y + 4z = k.

(d) x+ 2y + 3z = 4, 2x+ 5y + 5z = 6, 2x+ (c2 − 6)z = c+ 20.

(e) x+ y + z = 3, 2x+ 5y + 4z = c, 3x+ (c2 − 8)z = 12.

Ans: (a) c = 1 and k 6= 7 ⇒ No Solution. c = 1 and k = 7 ⇒ Infinite number of

solutions. c 6= 1⇒ Unique solution.

(b) c = 1/2⇒ No solution. c 6= 1/2⇒ Unique solution.

(c) c = 4 and k 6= 5 ⇒ No Solution. c = 4 and k = 5 ⇒ Infinite number of solutions.

c 6= 4⇒ Unique solution.

(d) c = 4 ⇒ No solution, c = −4 ⇒ Infinite number of solutions. c 6= ±4 ⇒ Unique

solution.

(e) c = −3 ⇒ No solution, c = 3 ⇒ Infinite number of solutions. c 6= ±3 ⇒ Unique

solution.

5. Consider the linear system Ax = b in m equations and 3 unknowns. Then, for each of

the given solution set, determine the possible choices of m? Further, for each choice of

m, determine a choice of A and b.

(a) (1, 1, 1)T is the only solution.
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(b) {c(1, 2, 1)T |c ∈ R} as the solution set.

(c) {(1, 1, 1)T + c(1, 2, 1)T |c ∈ R} as the solution set.

(d) {c(1, 2, 1)T + d(2, 2,−1)T |c, d ∈ R} as the solution set.

(e) {(1, 1, 1)T + c(1, 2, 1)T + d(2, 2,−1)T |c, d ∈ R} as the solution set.

Ans: (a) A unique solution ⇒ RREF([A b]) =


1 0 0 1

0 1 0 1

0 0 1 1

.

(b) Only the homogeneous system with A


1

2

1

 = 0⇒ RREF([A b]) =

[
1 0 −1 0

0 1 −2 0

]
.

(c)Similarly, ⇒ A


1

2

1

 = 0. ⇒ RREF([A b]) =

[
1 0 −1 a

0 1 −2 b

]
. To get


1

1

1

 as a particular

solution, choose z = 1 to get a = 0 and b = −1.

(d) Homogeneous system ⇒ RREF([A b]) =
[
1 a b 0

]
with a = −3/4 and b = 1/2.

(e) Similarly, RREF([A b]) =
[
1 −3/4 1/2 c

]
. Show c = 3/4 to get (1, 1, 1)T .

2.7 Square Matrices and Linear Systems

In this section, we apply our ideas to the linear system Ax = b, where the coefficient matrix is

square. We start with proving a few equivalent conditions that relate different ideas.

Theorem 2.7.1. Let A ∈Mn(R). Then, the following statements are equivalent.

1. A is invertible.

2. RREF(A) = In.

3. A is a product of elementary matrices.

4. Rank(A) = n.

5. The homogeneous system Ax = 0 has only the trivial solution.

6. The system Ax = b has a unique solution for every b.

7. The system Ax = b is consistent for every b.

Proof. 1 ⇔ 2 and 2 ⇔ 3 See Proposition 2.4.9.

2 ⇔ 4 By definition. For the converse, Rank(A) = n ⇒ A has n pivots and A has n

columns. So, all columns are pivots. Thus, RREF(A) = In.

1 =⇒ 5 As A is invertible A−1A = In. So, if x0 is any solution of the homogeneous

system Ax = 0 then

x0 = In · x0 = (A−1A)x0 = A−1(Ax0) = A−1 0 = 0.
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5 =⇒ 1 Ax = 0 has only the trivial solution implies that there are no free variables. So,

all the unknowns are basic variables. So, each column is a pivotal column. Thus, RREF(A) = In.

1 ⇒ 6 Note that x0 = A−1b is the unique solution of Ax = b.

6 ⇒ 7 A unique solution implies that is at least one solution. So, nothing to show.

7 =⇒ 1 Given assumption implies that for 1 ≤ i ≤ n, the linear system Ax = ei has a

solution, say ui. Define B = [u1,u2, . . . ,un]. Then

AB = A[u1,u2, . . . ,un] = [Au1, Au2, . . . , Aun] = [e1, e2, . . . , en] = In.

Now, consider the linear homogeneous system Bx = 0. Then AB = In implies that

x0 = Inx0 = (AB)x0 = A(Bx0) = A0 = 0.

Thus, the homogeneous system Bx = 0 has a only the trivial solution. Hence, using Part 5, B

is invertible. As AB = In and B is invertible, we get BA = In. Thus AB = In = BA. Thus, A

is invertible as well.

We now give an immediate application of Theorem 2.7.1 without proof.

Theorem 2.7.2. The following two statements cannot hold together for A ∈Mn(R).

1. The system Ax = b has a solution for every b.

2. The system Ax = 0 has a non-trivial solution.

As an immediate consequence of Theorem 2.7.1, the readers should prove that one needs to

compute either the left or the right inverse to prove invertibility of A ∈Mn(R).

Corollary 2.7.3. Let A ∈Mn(R). Then the following holds.

1. If there exists C such that CA = In then A−1 exists.

2. If there exists B such that AB = In then A−1 exists.

Corollary 2.7.4. (Theorem of the Alternative) The following two statements cannot hold

together for A ∈Mn(C) and b ∈ Rn.

1. The system Ax = b has a solution.

2. The system yTA = 0T ,yTb 6= 0 has a solution.

Proof. Observe that if x0 is a solution of Ax = b and y0 is a solution of yTA = 0T then

yT0 b = yT0 (Ax0) = (yT0 A)x0 = 0Tx0 = 0.

Note that one of the requirement in the last corollary is yTb 6= 0. Thus, we want non-zero

vectors x0 and y0 in Rn such that they are solutions of Ax = b and yTA = 0T , respectively,

with the added condition that y0 and b are not orthogonal or perpendicular (their dot product

is not zero).

Exercise 2.7.5. 1. Give the proof of Theorem 2.7.2 and Corollary 2.7.3.
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2. Let A ∈Mn,m(R) and B ∈Mm,n(R). Either use Theorem 2.7.1.5 or multiply the matrices

to verify the following statementes.

(a) Then, prove that I −BA is invertible if and only if I −AB is invertible.

(b) If I −AB is invertible then, prove that (I −BA)−1 = I +B(I −AB)−1A.

(c) If I −AB is invertible then, prove that (I −BA)−1B = B(I −AB)−1.

(d) If A,B and A+B are invertible then, prove that (A−1 +B−1)−1 = A(A+B)−1B.

3. Let bT = [1, 2,−1,−2]. Suppose A is a 4× 4 matrix such that the linear system Ax = b

has no solution. Mark each of the statements given below as true or false?

(a) The homogeneous system Ax = 0 has only the trivial solution.

Ans: FALSE. Only the trivial solution implies A is invertible, contradicting No solution.

(b) The matrix A is invertible.

Ans: FALSE. A invertible implies Ax = b has a solution for every b.

(c) Let cT = [−1,−2, 1, 2]. Then, the system Ax = c has no solution.

Ans: FALSE. A solution x0 ⇒ −x0 is a solution of Ax = b.

(d) Let B = RREF(A). Then,

i. B[4, :] = [0, 0, 0, 0].

Ans: TRUE

ii. B[4, :] = [0, 0, 0, 1].

Ans: FALSE

2.8 Determinant

Recall the notations used in Section 1.5 on Page 24 . If A =


1 2 3

1 3 2

2 4 7

 then A(1 | 2) =

[
1 2

2 7

]

and A({1, 2} | {1, 3}) = [4]. The actual definition of the determinant requires an understanding

of group theory. So, we will just give an inductive definition which will help us to compute

the determinant and a few results. The advanced students can find the main definition of the

determinant in Appendix 9.2.22, where it is proved that the definition given below corresponds

to the expansion of determinant along the first row.

Definition 2.8.1. Let A be a square matrix of order n. Then, the determinant of A, denoted

det(A) (or | A | ) is defined by

det(A) =


a, if A = [a] (corresponds to n = 1),
n∑
j=1

(−1)1+ja1j det
(
A(1 | j)

)
, otherwise.

Example 2.8.2. 1. Let A = [−2]. Then, det(A) = | A | = −2.
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2. Let A =

[
a b

c d

]
. Then, det(A) = a det(A(1 | 1))− b det(A(1 | 2)) = ad− bc.

(a) If A =

[
1 2

0 5

]
then det(A) = 1 · 5− 2 · 0 = 5.

(b) If B =

[
2 1

5 0

]
then det(B) = 2 · 0− 1 · 5 = −5.

Observe that B is obtained from A by interchanging the columns. This has resulted in

the value of the determinant getting multiplied by −1. So, if we think of the columns of

the matrix as vectors in R2 then, the sign of determinant gets related with the orientation

of the parallelogram formed using the two column vectors.

3. Let A = [aij ] be a 3× 3 matrix. Then,

det(A) = | A | = a11 det(A(1 | 1))− a12 det(A(1 | 2)) + a13 det(A(1 | 3))

= a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a12
∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22).

For A =


1 2 3

2 3 1

1 2 2

, det(A) = 1 ·
∣∣∣∣∣3 1

2 2

∣∣∣∣∣− 2 ·
∣∣∣∣∣2 1

1 2

∣∣∣∣∣+ 3 ·
∣∣∣∣∣2 3

1 2

∣∣∣∣∣ = 4− 2(3) + 3(1) = 1.

Exercise 2.8.3. Find the determinant of the following matrices.

i)


1 2 7 8

0 4 3 2

0 0 2 3

0 0 0 5

 ii)


3 0 0 1

0 2 0 5

6 −7 1 0

3 2 0 6

 iii)


1 a a2

1 b b2

1 c c2

.

Definition 2.8.4. A matrix A is said to be a singular if det(A) = 0 and is called non-

singular if det(A) 6= 0.

It turns out that the determinant of a matrix equals the volume of the parallelepiped formed

using the columns of the matrix. With this understanding, the singularity of A gets related with

the dimension in which we are looking at the parallelepiped. For, example, the length makes

sense in one-dimension but it doesn’t make sense to talk of area (which is a two-dimensional

idea) of a line segment. Similarly, it makes sense to talk of volume of a cube but it doesn’t make

sense to talk of the volume of a square or rectangle or parallelogram which are two-dimensional

objects.

We now state a few properties of the determinant function. For proof, see Appendix 9.3.

Theorem 2.8.5. Let A be an n× n matrix.

1. det(In) = 1.

2. If A is a triangular matrix with d1, . . . , dn on the diagonal then det(A) = d1 · · · dn.
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3. If B = EijA, for 1 ≤ i 6= j ≤ n, then det(B) = −det(A). In particular, det(Eij) = −1

4. If B = Ei(c)A, for c 6= 0, 1 ≤ i ≤ n, then det(B) = cdet(A). In particular, det(Ei(c)) = c.

5. If B = Eij(c)A, for c 6= 0 and 1 ≤ i 6= j ≤ n, then det(B) = det(A). In particular,

det(Eij(c)) = 1.

6. If A[i, :] = 0T , for 1 ≤ i, j ≤ n then det(A) = 0.

7. If A[i, :] = A[j, :] for 1 ≤ i 6= j ≤ n then det(A) = 0.

Example 2.8.6. Let A =


2 2 6

1 3 2

1 1 2

. Then A
E1(

1
2
)→

∣∣∣∣∣∣∣∣
1 1 3

1 3 2

1 1 2

∣∣∣∣∣∣∣∣
E21(−1)E31(−1)→

∣∣∣∣∣∣∣∣
1 1 3

0 2 −1

0 0 −1

∣∣∣∣∣∣∣∣.
Thus, using Theorem 2.8.5, det(A) = 2 · (1 · 2 · (−1)) = −4, where the first 2 appears from the

elementary matrix E1(
1

2
).

Exercise 2.8.7. Prove the following without computing the determinant (use Theorem 2.8.5).

1. Let A =
[
u v 2u + 3v

]
, where u,v ∈ R3. Then, det(A) = 0.

2. Let A =


a b c

e f g

h j `

. If x 6= 0 and B =


a e x2a+ xe+ h

b f x2b+ xf + j

c g x2c+ xg + `

 then det(A) = det(B).

Hence, conclude that 3 divides

∣∣∣∣∣∣∣∣
3 1 2

4 7 1

1 4 −2

∣∣∣∣∣∣∣∣.
Remark 2.8.8. Theorem 2.8.5.3 implies that the determinant can be calculated by expanding

along any row. Hence, the readers are advised to verify that

det(A) =

n∑
j=1

(−1)k+jakj det(A(k | j)), for 1 ≤ k ≤ n.

Example 2.8.9. Using Remark 2.8.8, one has∣∣∣∣∣∣∣∣∣∣
2 2 6 1

0 0 2 1

0 1 2 0

1 2 1 1

∣∣∣∣∣∣∣∣∣∣
= (−1)2+3 · 2 ·

∣∣∣∣∣∣∣∣
2 2 1

0 1 0

1 2 1

∣∣∣∣∣∣∣∣+ (−1)2+4 ·

∣∣∣∣∣∣∣∣
2 2 6

0 1 2

1 2 1

∣∣∣∣∣∣∣∣ = −2 · 1 + (−8) = −10.

2.8.1 Inverse of a Matrix

Definition 2.8.10. Let A ∈Mn(R). Then, the cofactor matrix, denoted Cof(A), is an Mn(R)

matrix with Cof(A) = [Cij ], where

Cij = (−1)i+j det (A(i | j)) , for 1 ≤ i, j ≤ n.

And, the Adjugate (classical Adjoint) of A, denoted Adj(A), equals CofT (A).
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Example 2.8.11. Let A =


1 2 3

2 3 1

1 2 4

. Then,

Adj(A) = CofT (A) =


C11 C21 C31

C12 C22 C32

C13 C23 C33



=


(−1)1+1 det(A(1|1)) (−1)2+1 det(A(2|1)) (−1)3+1 det(A(3|1))

(−1)1+2 det(A(1|2)) (−1)2+2 det(A(2|2)) (−1)3+2 det(A(3|2))

(−1)1+3 det(A(1|3)) (−1)2+3 det(A(2|3)) (−1)3+3 det(A(3|3))



=


10 −2 −7

−7 1 5

1 0 −1

 .

Now, verify that AAdj(A) =


−1 0 0

0 −1 0

0 0 −1

 =


det(A) 0 0

0 det(A) 0

0 0 det(A)

 = Adj(A)A.

Consider xI3 −A =


x− 1 −2 −3

−2 x− 3 −1

−1 −2 x− 4

. Then,

Adj(xI −A) =


C11 C21 C31

C12 C22 C32

C13 C23 C33

 =


x2 − 7x+ 10 2x− 2 3x− 7

2x− 7 x2 − 5x+ 1 x+ 5

x+ 1 2x x2 − 4x− 1



= x2I + x


−7 2 3

2 −5 1

1 2 −4

+Adj(A) = x2I +Bx+ C(say).

Hence, we observe that Adj(xI − A) = x2I + Bx + C is a polynomial in x with coefficients as

matrices. Also, note that (xI −A)Adj(xI −A) = (x3 − 8x2 + 10x− det(A))I3. Thus

(xI −A)(x2I +Bx+ C) = (x3 − 8x2 + 10x− det(A))I3.

That is, we have obtained a matrix identity. Hence, replacing x by A makes sense. But, then

the LHS is 0. So, for the RHS to be zero, we must have A3 − 8A2 + 10A − det(A)I = 0 (this

equality is famously known as the Cayley-Hamilton Theorem).

The next result relates adjugate matrix with the inverse, in case det(A) 6= 0.

Theorem 2.8.12. Let A ∈Mn(R).

1. Then
n∑
j=1

aij Cij =
n∑
j=1

aij(−1)i+j det(A(i|j)) = det(A), for 1 ≤ i ≤ n.

2. Then
n∑
j=1

aij C`j =
n∑
j=1

aij(−1)i+j det(A(`|j)) = 0, for i 6= `.
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3. Thus A(Adj(A)) = det(A)In. Hence,

whenever det(A) 6= 0 one has A−1 =
1

det(A)
Adj(A). (2.8.1)

Proof. Part 1: It follows directly from Remark 2.8.8 and the definition of the cofactor.

Part 2: Fix positive integers i, ` with 1 ≤ i 6= ` ≤ n. Suppose that the i-th and `-th rows of

B are equal to the i-th row of A and B[t, :] = A[t, :], for t 6= i, `. Since two rows of B are equal,

det(B) = 0. Now, let us expand the determinant of B along the `-th row. We see that

0 = det(B) =

n∑
j=1

(−1)`+jb`j det
(
B(` | j)

)
(2.8.2)

=
n∑
j=1

(−1)`+jaij det
(
B(` | j)

)
(bij = b`j = aij for all j)

=
n∑
j=1

(−1)`+jaij det
(
A(` | j)

)
=

n∑
j=1

aijC`j . (2.8.3)

This completes the proof of Part 2.

Part 3: Using the first two parts, observe that[
A
(
Adj(A)

)]
ij

=

n∑
k=1

aik
(
Adj(A)

)
kj

=

n∑
k=1

aikCjk =

{
0, if i 6= j,

det(A), if i = j.

Thus, A(Adj(A)) = det(A)In. Therefore, if det(A) 6= 0 then A
(

1
det(A)Adj(A)

)
= In. Hence,

by Proposition 2.4.9, A−1 = 1
det(A)Adj(A).

Example 2.8.13. For A =


1 −1 0

0 1 1

1 2 1

 , Adj(A) =


−1 1 −1

1 1 −1

−1 −3 1

 and det(A) = −2. Thus,

by Theorem 2.8.12.3, A−1 =


1/2 −1/2 1/2

−1/2 −1/2 1/2

1/2 3/2 −1/2

.

Let A be a non-singular matrix. Then, by Theorem 2.8.12.3, A−1 = 1
det(A)Adj(A). Thus

A
(
Adj(A)

)
=
(
Adj(A)

)
A = det(A) In and this completes the proof of the next result

Corollary 2.8.14. Let A be a non-singular matrix. Then,

n∑
i=1

Cik aij =

{
det(A), if j = k,

0, if j 6= k.

The next result gives another equivalent condition for a square matrix to be invertible.

Theorem 2.8.15. A square matrix A is non-singular if and only if A is invertible.

Proof. Let A be non-singular. Then, det(A) 6= 0 and hence A−1 = 1
det(A)Adj(A).

Now, let us assume that A is invertible. Then, using Theorem 2.7.1, A = E1 · · ·Ek, a product

of elementary matrices. Thus, a repeated application of Parts 3, 4 and 5 of Theorem 2.8.5 gives

det(A) 6= 0.
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2.8.2 Results on the Determinant

The next result relates the determinant of a matrix with the determinant of its transpose. Thus,

the determinant can be computed by expanding along any column as well.

Theorem 2.8.16. Let A ∈Mn(R). Then det(A) = det(AT ). Further, det(A∗) = det(A).

Proof. If A is singular then, by Theorem 2.8.15, A is not invertible. So, AT is also not invertible

and hence by Theorem 2.8.15, det(AT ) = 0 = det(A).

Now, let A be a non-singular and let AT = B. Then, by definition,

det(AT ) = det(B) =
n∑
j=1

(−1)1+jb1j det
(
B(1 | j)

)
=

n∑
j=1

(−1)1+jaj1 det
(
A(j | 1)

)
=

n∑
j=1

aj1Cj1 = det(A)

using Corollary 2.8.14. Further, using induction and the first part, one has

det(A∗) = det((A)T ) = det(A) =

n∑
j=1

(−1)1+ja1j det
(
A(1 | j)

)
=

n∑
j=1

(−1)1+ja1j det
(
A(1 | j)

)
= det(A)

Hence, the required result follows.

The next result relates the determinant of product of two matrices with their determinants.

Theorem 2.8.17. Let A and B be square matrices of order n. Then,

det(AB) = det(A) · det(B) = det(BA).

Proof. Case 1: Let A be non-singular. Then, by Theorem 2.8.12.3, A is invertible and by

Theorem 2.7.1, A = E1 · · ·Ek, a product of elementary matrices. Thus, a repeated application

of Parts 3, 4 and 5 of Theorem 2.8.5 and an inductive argument gives the desired result as

det(AB) = det(E1 · · ·EkB) = det(E1) det(E2 · · ·EkB)

= det(E1) det(E2 · · ·Ek) det(B) = det(E1E2 · · ·Ek) det(B)

= det(A) det(B).

Case 2: Let A be singular. Then, by Theorem 2.8.15 A is not invertible. So, by Proposi-

tion 2.4.9 there exists an invertible matrix P such that PA =

[
C1

0

]
. So A = P−1

[
C1

0

]
. As P

is invertible, using Part 1, we have

det(AB) = det

((
P−1

[
C1

0

])
B

)
= det

(
P−1

[
C1B

0

])
= det(P−1) · det

([
C1B

0

])
= det(P ) · 0 = 0 = 0 · det(B) = det(A) det(B).

Thus, the proof of the theorem is complete.

We now give an application of Theorem 2.8.17.
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Example 2.8.18. Let A ∈ Mn(R) be an orthogonal matrix then, by definition, AAT = I.

Thus, by Theorems 2.8.17 and 2.8.16

1 = det(I) = det(AAT ) = det(A) det(AT ) = det(A) det(A) = (det(A))2 .

Hence detA = ±1. In particular, if A =

[
a b

c d

]
∈M2(R) then the following holds.

1. I = AAT =

[
a2 + b2 ac+ bd

ac+ bd c2 + d2

]
.

2. Thus a2 + b2 = 1 and hence there exists θ ∈ [−π, π) such that a = cos θ and b = sin θ.

3. Further, ac+ bd = 0 and c2 + d2 = 1⇒ c = sin θ, d = − cos θ or c = − sin θ, d = cos θ.

4. Thus A =

[
cos θ sin θ

sin θ − cos θ

]
or A =

[
cos θ sin θ

− sin θ cos θ

]
.

5. For A =

[
cos θ sin θ

sin θ − cos θ

]
, det(A) = −1. Then A represents a reflection about the line

y = mx. Determine m? (see Exercise 2.2b).

6. For A =

[
cos θ sin θ

− sin θ cos θ

]
, det(A) = 1. Then A represents a rotation through the angle θ.

Is the rotation clockwise or counter-clockwise (see Exercise 2.2a)?

Exercise 2.8.19. 1. Let A be a square matrix. Then, prove that A is invertible ⇔ AT is

invertible ⇔ ATA is invertible ⇔ AAT is invertible.

2. Let A and B be two matrices having positive entries and of orders 1 × n and n × 1,

respectively. Which of BA or AB is invertible? Give reasons.

2.8.3 Cramer’s Rule

Consider the linear system Ax = b. Then, using Theorems 2.7.1 and 2.8.15, we conclude

that Ax = b has a unique solution for every b if and only if det(A) 6= 0. The next theorem,

commonly known as the Cramer’s rule gives a direct method of finding the solution of the

linear system Ax = b when det(A) 6= 0.

Theorem 2.8.20. Let A be an n × n non-singular matrix. Then, the unique solution of the

linear system Ax = b with the unknown vector xT = [x1, . . . , xn] is given by

xj =
det(Aj)

det(A)
, for j = 1, 2, . . . , n,

where Aj is the matrix obtained from A by replacing the j-th column of A, namely A[:, j], by b.

Proof. Since det(A) 6= 0, A is invertible. Thus A−1[A | b] = [I | A−1b]. Let d = A−1b. Then

Ax = b has the unique solution xj = dj , for 1 ≤ j ≤ n. Thus,

A−1Aj = A−1
[
A[:, 1], . . . , A[:, j − 1],b, A[:, j + 1], . . . , A[:, n]

]
=

[
A−1A[:, 1], . . . , A−1A[:, j − 1], A−1b, A−1A[:, j + 1], . . . , A−1A[:, n]

]
= [e1, . . . , ej−1,d, ej+1, . . . , en].
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Thus, det(A−1Aj) = dj , for 1 ≤ j ≤ n. Also,

dj =
dj
1

=
det(A−1Aj)

det(I)
=

det(A−1Aj)
det(A−1A)

=
det(A−1) det(Aj)

det(A−1) det(A)
=

det(Aj)

det(A)
.

Hence, xj =
det(Aj)

det(A)
and the required result follows.

Example 2.8.21. Solve Ax = b using Cramer’s rule, where A =


1 2 3

2 3 1

1 2 2

 and b =


1

1

1

.

Solution: Check that det(A) = 1 and xT = [−1, 1, 0] as

x1 =

∣∣∣∣∣∣∣∣
1 2 3

1 3 1

1 2 2

∣∣∣∣∣∣∣∣ = −1, x2 =

∣∣∣∣∣∣∣∣
1 1 3

2 1 1

1 1 2

∣∣∣∣∣∣∣∣ = 1, and x3 =

∣∣∣∣∣∣∣∣
1 2 1

2 3 1

1 2 1

∣∣∣∣∣∣∣∣ = 0.

2.9 Miscellaneous Exercises

Exercise 2.9.1. 1. Determine the determinant of an orthogonal matrix.

Ans: A orthogonal implies AAT = I ⇒ det(A)2 = 1⇒ det(A) = ±1.

2. Let A be a unitary matrix then what can you say about | det(A) |?

Ans: Using Theorem 2.8.16 and A unitary⇒ AA∗ = I ⇒ |det(A)|2 = 1⇒ |det(A)| = ±1.

3. Let A ∈Mn(R). Prove that the following statements are equivalent:

(a) A is not invertible.

(b) Rank(A) 6= n.

(c) det(A) = 0.

(d) A is not row-equivalent to In.

(e) The homogeneous system Ax = 0 has a non-trivial solution.

(f) The system Ax = b is either inconsistent or it has an infinite number of solutions.

(g) A is not a product of elementary matrices.

4. Let A ∈M2n+1(R) be a skew-symmetric matrix. Then det(A) = 0.

Ans: A skew-symmetric ⇒ det(A) = det(AT ) = det(−A) = (−1)2n+1 det(A). Thus

det(A) = 0⇒ 0 ∈ σ(A).

5. If A is a Hermitian matrix then detA is a real number.

6. Let A ∈Mn(R). Then A is invertible if and only if Adj(A) is invertible.

7. Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).
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8. Let A be an n× n invertible matrix and let P =

[
A B

C D

]
. Then, show that Rank(P ) = n

if and only if D = CA−1B.

9. Let A be a 2× 2 matrix with tr(A) = 0 and det(A) = 0. Then, A is a nilpotent matrix.

10. Determine necessary and sufficient condition for a triangular matrix to be invertible.

11. Let A and B be two non-singular matrices. Are the matrices A + B and A − B non-

singular? Justify your answer.

12. For what value(s) of λ does the following systems have non-trivial solutions? Also, for

each value of λ, determine a non-trivial solution.

(a) (λ− 2)x+ y = 0, x+ (λ+ 2)y = 0.

(b) λx+ 3y = 0, (λ+ 6)y = 0.

13. Let a1, . . . , an ∈ R and define A = [aij ]n×n with aij = aj−1i . Prove that det(A) =∏
1≤i<j≤n

(aj − ai). This matrix is usually called the van der monde matrix.

14. Let A = [aij ] ∈Mn(R) with aij = max{i, j}. Prove that detA = (−1)n−1n.

15. Let p ∈ R, p 6= 0. Let A = [aij ], B = [bij ] ∈ Mn(R) with bij = pi−jaij, for 1 ≤ i, j ≤ n.

Then, compute det(B) in terms of det(A).

16. The position of an element aij of a determinant is called even or odd according as i+ j is

even or odd. Prove that if all the entries in

(a) odd positions are multiplied with −1 then the value of determinant doesn’t change.

(b) even positions are multiplied with −1 then the value of determinant

i. does not change if the matrix is of even order.

ii. is multiplied by −1 if the matrix is of odd order.

2.10 Summary

In this chapter, we started with a system of m linear equations in n variables and formally

wrote it as Ax = b and in turn to the augmented matrix [A | b]. Then, the basic operations on

equations led to multiplication by elementary matrices on the right of [A | b]. These elementary

matrices are invertible and applying the GJE on a matrix A, resulted in getting the RREF of

A. We used the pivots in RREF matrix to define the rank of a matrix. So, if Rank(A) = r and

Rank([A | b]) = ra

1. then, r < ra implied the linear system Ax = b is inconsistent.

2. then, r = ra implied the linear system Ax = b is consistent. Further,

(a) if r = n then the system Ax = b has a unique solution.
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(b) if r < n then the system Ax = b has an infinite number of solutions.

We have also seen that the following conditions are equivalent for A ∈Mn(R).

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.

3. The row reduced echelon form of A is I.

4. A is a product of elementary matrices.

5. The system Ax = b has a unique solution for every b.

6. The system Ax = b has a solution for every b.

7. Rank(A) = n.

8. det(A) 6= 0.

So, overall we have learnt to solve the following type of problems:

1. Solving the linear system Ax = b. This idea will lead to the question “is the vector b a

linear combination of the columns of A”?

2. Solving the linear system Ax = 0. This will lead to the question “are the columns of A

linearly independent/dependent”? In particular, we will see that

(a) if Ax = 0 has a unique solution then the columns of A are linear independent.

(b) if Ax = 0 has a non-trivial solution then the columns of A are linearly dependent.
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Chapter 3

Vector Spaces

In this chapter, we will mainly be concerned with finite dimensional vector spaces over R or C.

Please note that the real and complex numbers have the property that any pair of elements can

be added, subtracted or multiplied. Also, division is allowed by a non-zero element. Such sets in

mathematics are called field. So, Q,R and C are examples of field and they have infinite number

of elements. But, in mathematics, we do have fields that have only finitely many elements. For

example, consider the set Z5 = {0, 1, 2, 3, 4}. In Z5, we define addition and multiplication,

respectively, as

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

and

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

.

Then, we see that the elements of Z5 can be added, subtracted and multiplied. Note that 4

behaves as −1 and 3 behaves as −2. Thus, 1 behaves as −4 and 2 behaves as −3. Also, we see

that in this multiplication 2 · 3 = 1 and 4 · 4 = 1. Hence,

1. the division by 2 is similar to multiplying by 3,

2. the division by 3 is similar to multiplying by 2, and

3. the division by 4 is similar to multiplying by 4.

Thus, Z5 indeed behaves like a field. So, in this chapter, F will represent a field.

3.1 Vector Spaces: Definition and Examples

Let us recall that the vectors in R2 and R3 satisfy the following properties:

1. Vector Addition: To every pair u,v ∈ R3 there corresponds a unique element u+v ∈ R3

(called the addition of vectors) such that

(a) u + v = v + u (Commutative law).

71
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(b) (u + v) + w = u + (v + w) (Associative law).

(c) R3 has a unique element, denoted 0, called the zero vector that satisfies u+0 = u,

for every u ∈ R3 (called the additive identity).

(d) for every u ∈ R3 there is an element w ∈ R3 that satisfies u + w = 0.

2. Scalar Multiplication: For each u ∈ R3 and α ∈ R, there corresponds a unique element

α · u ∈ R3 (called the scalar multiplication) such that

(a) α · (β · u) = (α · β) · u for every α, β ∈ R and u ∈ R3.

(b) 1 · u = u for every u ∈ R3, where 1 ∈ R.

3. Distributive Laws: relating vector addition with scalar multiplication

For any α, β ∈ R and u,v ∈ R3, the following distributive laws hold:

(a) α · (u + v) = (α · u) + (α · v).

(b) (α+ β) · u = (α · u) + (β · u).

So, we want the above properties to hold for any collection of vectors. Thus, formally, we have

the following definition.

Definition 3.1.1. A vector space V over F, denoted V(F) or in short V (if the field F is clear

from the context), is a non-empty set, in which one can define vector addition, scalar multipli-

cation. Further, with these definitions, the properties of vector addition, scalar multiplication

and distributive laws (see items 1, 2 and 3 above) are satisfied.

Remark 3.1.2. 1. The elements of F are called scalars.

2. The elements of V are called vectors.

3. We denote the zero element of F by 0, whereas the zero element of V will be denoted by 0.

4. Observe that Condition 1d implies that for every u ∈ V, the vector w ∈ V such that

u + w = 0 holds, is unique. For if, w1,w2 ∈ V with u + wi = 0, for i = 1, 2 then by

commutativity of vector addition, we see that

w1 = w1 + 0 = w1 + (u + w2) = (w1 + u) + w2 = 0 + w2 = w2.

Hence, we represent this unique vector by −u and call it the additive inverse.

5. If V is a vector space over R then V is called a real vector space.

6. If V is a vector space over C then V is called a complex vector space.

7. In general, a vector space over R or C is called a linear space.

Some interesting consequences of Definition 3.1.1 is stated next. Intuitively, they seem

obvious. The proof are given for better understanding of the given conditions.

Theorem 3.1.3. Let V be a vector space over F. Then,

1. u + v = u implies v = 0.
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2. α · u = 0 if and only if either u = 0 or α = 0.

3. (−1) · u = −u, for every u ∈ V.

Proof. Part 1: By Condition 1d and Remark 3.1.2.4, for each u ∈ V there exists −u ∈ V such

that −u + u = 0. Hence u + v = u implies

0 = −u + u = −u + (u + v) = (−u + u) + v = 0 + v = v.

Part 2: As 0 = 0 + 0, using Condition 3, α · 0 = α · (0 + 0) = (α · 0) + (α · 0). Thus, using

Part 1, α · 0 = 0 for any α ∈ F. Similarly, 0 ·u = (0 + 0) ·u = (0 ·u) + (0 ·u) implies 0 ·u = 0,

for any u ∈ V.

Now suppose α ·u = 0. If α = 0 then the proof is over. So, assume that α 6= 0, α ∈ F. Then

(α)−1 ∈ F and using, 1 · u = u for every vector u ∈ V (see Condition 2.2b), we have

0 = (α)−1 · 0 = (α)−1 · (α · u) = ((α)−1 · α) · u = 1 · u = u.

Thus, if α 6= 0 and α · u = 0 then u = 0.

Part 3: As 0 = 0 · u = (1 + (−1))u = u + (−1) · u, one has (−1) · u = −u.

Example 3.1.4. The readers are advised to justify the statements given below.

1. Let V = {0}. Then, V is a real as well as a complex vector space.

2. Let A ∈ Mm,n(F) and define V = {x ∈Mn,1(F) : Ax = 0}. Then, by Theorem 2.1.7, V
satisfies:

(a) 0 ∈ V as A0 = 0.

(b) if x ∈ V then αx ∈ V, for all α ∈ F. In particular, for α = −1, −x ∈ V.

(c) if x,y ∈ V then, for any α, β ∈ F, αx + βy ∈ V.

Thus, V is a vector space over F.

3. Consider R with the usual addition and multiplication. Then R forms a real vector space.

4. Let Rn = {(a1, . . . , an)T | ai ∈ R, 1 ≤ i ≤ n}. For u = (a1, . . . , an)T , v = (b1, . . . , bn)T ∈
V and α ∈ R, define

u + v = (a1 + b1, . . . , an + bn)T and α · u = (αa1, . . . , αan)T

(called component-wise operations). Then, V is a real vector space. The vector

space Rn is called the real vector space of n-tuples.

Recall that the symbol i represents the complex number
√
−1.

5. Let Cn = {(z1, . . . , zn)T | zi ∈ C, 1 ≤ i ≤ n}. For z = (z1, . . . , zn),w = (w1, . . . , wn)T ∈
Cn and α ∈ F, define component-wise vector sum and scalar multiplication. Then, verify

that Cn forms a vector space over C (called the complex vector space) as well as over R
(called the real vector space). Unless specified otherwise, Cn will be considered a complex

vector space.



D
RA
FT

74 CHAPTER 3. VECTOR SPACES

Remark 3.1.5. If F = C then i(1, 0, . . . , 0)T = (i, 0, . . . , 0)T is allowed. Whereas, if

F = R then i(1, 0, . . . , 0)T doesn’t make sense as i 6∈ R.

6. Fix m,n ∈ N and let Mm,n(C) = {Am×n = [aij ] | aij ∈ C}. Then, with usual addition

and scalar multiplication of matrices, Mm,n(C) is a complex vector space. If m = n, the

vector space Mm,n(C) is denoted by Mn(C).

7. Let S be a non-empty set and let RS = {f | f is a function from S to R}. For f, g ∈ RS

and α ∈ R, define (f + αg)(x) = f(x) + αg(x), for all x ∈ S. Then, RS is a real vector

space. In particular, for S = N, observe that RN consists of all real sequences and forms

a real vector space.

8. Fix a, b ∈ R with a < b and let C([a, b],R) = {f : [a, b] → R | f is continuous}. Then,

C([a, b],R) with (f + αg)(x) = f(x) + αg(x), for all x ∈ [a, b], is a real vector space.

9. Let C(R,R) = {f : R→ R | f is continuous}. Then, C(R,R) is a real vector space, where

(f + αg)(x) = f(x) + αg(x), for all x ∈ R.

10. Fix a < b ∈ R and let C2((a, b),R) = {f : (a, b) → R | f ′′ is continuous}. Then,

C2((a, b),R) with (f + αg)(x) = f(x) + αg(x), for all x ∈ (a, b), is a real vector space.

11. Let R[x] = {a0 + a1x + · · · + anx
n | ai ∈ R, for 0 ≤ i ≤ n}. Now, let p(x), q(x) ∈ R[x].

Then, we can choose m such that p(x) = a0 + a1x + · · · + amx
m and q(x) = b0 + b1x +

· · ·+ bmx
m, where some of the ai’s or bj ’s may be zero. Then, we define

p(x) + q(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (am + bm)xm

and αp(x) = (αa0) + (αa1)x + · · · + (αam)xm, for α ∈ R. With these operations

“component-wise addition and multiplication”, it can be easily verified that R[x] forms a

real vector space.

12. Fix n ∈ N and let R[x;n] = {p(x) ∈ R[x] | p(x) has degree ≤ n}. Then, with component-

wise addition and multiplication, the set R[x;n] forms a real vector space.

13. Let V and W be vector spaces over F, with operations (+, •) and (⊕,�), respectively. Let

V×W = {(v,w) | v ∈ V,w ∈W}. Then, V×W forms a vector space over F, if for every

(v1,w1), (v2,w2) ∈ V×W and α ∈ R, we define

(v1,w1)⊕′ (v2,w2) = (v1 + v2,w1 ⊕w2), and

α ◦ (v1,w1) = (α • v1, α�w1).

v1+v2 and w1⊕w2 on the right hand side mean vector addition in V and W, respectively.

Similarly, α •v1 and α�w1 correspond to scalar multiplication in V and W, respectively.

Note that R2 is similar to R× R, where the operations are the same in both spaces.

14. Let Q be the set of scalars. Then,
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(a) R is a vector space over Q. In this space, all the irrational numbers are vectors but

not scalars.

(b) V = {a+ b
√

2 : a, b ∈ Q} is a vector space.

(c) V = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} is a vector space.

(d) V = {a+ b
√
−3 : a, b ∈ Q} is a vector space.

15. Let R+ = {x ∈ R | x > 0}. Then,

(a) R+ is not a vector space under usual operations of addition and scalar multiplication.

(b) R+ is a real vector space with 1 as the additive identity if we define

u⊕ v = u · v and α� u = uα, for all u,v ∈ R+ and α ∈ R.

16. For any α ∈ R and x = (x1, x2)
T ,y = (y1, y2)

T ∈ R2, define

x⊕ y = (x1 + y1 + 1, x2 + y2 − 3)T and α� x = (αx1 + α− 1, αx2 − 3α+ 3)T .

Then, R2 is a real vector space with (−1, 3)T as the additive identity.

17. Recall the field Z5 = {0, 1, 2, 3, 4} given on the first page of this chapter. Then, V =

{(a, b) | a, b ∈ Z5} is a vector space over Z5 having 25 elements/vectors.

From now on, we will use ‘u + v’ for ‘u⊕ v’ and ‘αu or α · u’ for ‘α� u’.

Exercise 3.1.6. 1. Verify that the vectors spaces mentioned in Example 3.1.4 do satisfy all

the conditions for vector spaces.

2. Does R with x⊕ y = x− y and α� x = −αx, for all x, y, α ∈ R form a vector space?

3. Let V = R2. For x = (x1, x2)
T ,y = (y1, y2)

T ∈ R2 and α ∈ R, define

(a) (x1, y1)
T ⊕ (x2, y2)

T = (x1 + x2, 0)T and α� (x1, y1)
T = (αx1, 0)T .

(b) x + y = (x1 + y1, x2 + y2)
T and αx = (αx1, 0)T .

Then, does V form a vector space under any of the two operations?

3.1.1 Vector Subspace

Definition 3.1.7. Let V be a vector space over F. Then, a non-empty subset W of V is called

a subspace of V if W is also a vector space with vector addition and scalar multiplication in

W coming from that in V (compute the vector addition and scalar multiplication in V and then

the computed vector should be an element of W).

Example 3.1.8.

1. The vector space R[x;n] is a subspace of R[x].

2. Is V = {xp(x) | p(x) ∈ R[x]} a subspace of R[x]?

3. Let V be a vector space. Then V and {0} are subspaces, called trivial subspaces.
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4. The real vector space R has no non-trivial subspace. To check this, let V 6= {0} be a

vector subspace of R. Then, there exists x ∈ R, x 6= 0 such that x ∈ V. Now, using scalar

multiplication, we see that {αx | α ∈ R} ⊆ V. As, x 6= 0, the set {αx | α ∈ R} = R. This

in turn implies that V = R.

5. W = {x ∈ R3 | [1, 2,−1]x = 0} is a subspace. It represents a plane in R3 containing 0.

6. W =

{
x ∈ R3 |

[
1 1 1

1 −1 −1

]
x = 0

}
is a subspace. What does it represent?

7. Verify that W = {(x, 0)T ∈ R2 | x ∈ R} is a subspace of R2.

8. Is the set of sequences converging to 0 a subspace of the set of all bounded sequences?

9. Let V be the vector space of Example 3.1.4.16. Then,

(a) S = {(x, 0)T | x ∈ R} is not a subspace of V as (x, 0)T⊕(y, 0)T = (x+y+1,−3)T 6∈ S.

(b) Verify that W = {(x, 3)T | x ∈ R} is a subspace of V.

10. The vector space R+ defined in Example 3.1.4.15 is not a subspace of R.

Let V(F) be a vector space and W ⊆ V,W 6= ∅. We now prove a result which implies that

to check W to be a subspace, we need to verify only one condition.

Theorem 3.1.9. Let V(F) be a vector space and W ⊆ V,W 6= ∅. Then, W is a subspace of V
if and only if αu + βv ∈W whenever α, β ∈ F and u,v ∈W.

Proof. Let W be a subspace of V and let u,v ∈W. As W is a subspace, the scalar multiplication

and vector addition gives elements of W itself. Hence, for every α, β ∈ F, αu, βv ∈ W and

αu + βv ∈W.

Now, we assume that αu + βv ∈ W, whenever α, β ∈ F and u,v ∈ W. To show, W is a

subspace of V:

1. Taking α = 0 and β = 0⇒ 0 ∈W. So, W is non-empty.

2. Taking α = 1 and β = 1, we see that u + v ∈W, for every u,v ∈W.

3. Taking β = 0, we see that αu ∈ W, for every α ∈ F and u ∈ W. Hence, using Theo-

rem 3.1.3.3, −u = (−1)u ∈W as well.

4. The commutative and associative laws of vector addition hold as they hold in V.

5. The conditions related with scalar multiplication and the distributive laws also hold as

they hold in V.

Exercise 3.1.10. 1. Prove that a line in R2 is a subspace if and only if it passes through

origin.

2. Prove that {(x, y, z)T ∈ R3 | ax+ by + cz = d} is a subspace of R3 if and only if d = 0.
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3. Does the set V given below form a subspace? Give reasons for your answer.

(a) Let V = {(x, y, z)T | x+ y + z = 1}.
(b) Let V = {(x, y)T ∈ R2 | x · y = 0}.
(c) Let V = {(x, y)T ∈ R2 | x = y2}.
(d) Let V = {(x, y)T ∈ R2 | x, y ≥ 0}.

4. Determine all the subspaces of R and R2.

5. Fix n ∈ N. In the examples given below, is W a subspace of Mn(R), where

(a) W = {A ∈Mn(R) | A is upper triangular}?

(b) W = {A ∈Mn(R) | A is symmetric}?

(c) W = {A ∈Mn(R) | A is skew-symmetric}?

(d) W = {A ∈Mn(R) | A is a diagonal matrix}?

(e) W = {A ∈Mn(R) | trace(A) = 0}?

(f) W = {A ∈Mn(R) | AT = 2A}?

6. Fix n ∈ N. Then, is W = {A = [aij ] ∈ Mn(R | a11 + a22 = 0} a subspace of the complex

vector space Mn(C)? What if Mn(C) is a real vector space?

7. Is W = {f ∈ C([−1, 1]) | f(−1/2) = 0, f(1/2) = 0} a subspace of C([−1, 1])?

8. Are all the sets given below subspaces of R[x]?

(a) W = {f(x) ∈ R[x] | deg(f(x)) = 3}.

(b) W = {f(x) ∈ R[x] | xg(x) for some g(x) ∈ R[x]}.

9. Among the following, determine the subspaces of the complex vector space Cn?

(a) {(z1, z2, . . . , zn)T | z1 is real }.

(b) {(z1, z2, . . . , zn)T | z1 + z2 = z3}.

(c) {(z1, z2, . . . , zn)T | | z1 |=| z2 |}.

10. Prove that G = {A ∈Mn(R) | det(A) = 0} is not subspaces of Mn(R).

3.2 Linear Combination and Linear Span

Let us recollect that system Ax = b was either consistent (has a solution) or inconsistent (no

solution). It turns out that the system Ax = b is consistent leads to the idea that the vector b

is a linear combination of the columns of A. Let us try to understand them using examples.

Example 3.2.1.
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1. Let A =


1 1

1 2

1 3

 and b =


2

3

4

. Then,


2

3

4

 =


1

1

1

 +


1

2

3

. Thus,


2

3

4

 is a linear

combination of the vectors in S =




1

1

1

,


1

2

3


. Similarly, the vector


10

16

22

 is a linear

combination of the vectors in S as


10

16

22

 = 4


1

1

1

+ 6


1

2

3

 = A

[
4

6

]
.

2. Let b =


2

3

5

. Then, the system Ax = b has no solution as REF ([A b]) =


1 1 2

0 1 1

0 0 1

.

Formally, we have the following definition.

Definition 3.2.2. Let V be a vector space over F and let S = {u1, . . . ,un} ⊆ V. Then, a

vector u ∈ V is called a linear combination of elements of S if we can find α1, . . . , αn ∈ F
such that

u = α1u1 + · · ·+ αnun =
n∑
i=1

αiui.

Or equivalently, any vector of the form
n∑
i=1

αiui, where α1, . . . , αn ∈ F, is said to be a linear

combination of the elements of S.

Thus, the system Ax = b has a solution ⇒ b is a linear combination of the columns of A.

Or equivalently, b is a linear combination means the system Ax = b has a solution. So, recall

that when we were solving a system of linear equations, we looked at the point of intersections

of lines or plane etc. But, here it leads us to the study of whether a given vector is a linear

combination of a given set S or not? Or in the language of matrices, is b a linear combination

of columns of the matrix A or not?

Example 3.2.3.

1. (3, 4, 5) is not a linear combination of (1, 1, 1) and (1, 2, 1) as the linear system (3, 4, 5) =

a(1, 1, 1) + b(1, 2, 1), in the unknowns a and b has no solution.

2. Is (4, 5, 5) a linear combination of (1, 0, 0), (2, 1, 0) and (3, 3, 1)?

Solution: Define A =


1 2 3

0 1 3

0 0 1

 and b =


4

5

5

. Then, does the system Ax = b has a

solution? Verify that x = [9, −10, 5]T is a solution.

Exercise 3.2.4. 1. Let x ∈ R3. Prove that xT is a linear combination of (1, 0, 0), (2, 1, 0)

and (3, 3, 1).
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Ans: Let x = (x, y, z)T and A =


1 2 3

0 1 3

0 0 1

. To show: A


a

b

c

 = x in the unknowns a, b

and c has a solution for every x. True, as RREF(A) = I3.

2. Find condition(s) on x, y, z ∈ R such that

(a) (x, y, z) is a linear combination of (1, 2, 3), (−1, 1, 4) and (3, 3, 2).

(b) (x, y, z) is a linear combination of (1, 2, 1), (1, 0,−1) and (1, 1, 0).

(c) (x, y, z) is a linear combination of (1, 1, 1), (1, 1, 0) and (1,−1, 0).

Ans: (a) 5x− 7y + 3z = 0 (b) x− y + z = 0 (c) No condition.

3.2.1 Linear Span

Let V be a vector space over F and S a subset of V. We now look at ‘linear span’ of a collection

of vectors. So, here we ask “what is the largest collection of vectors that can be obtained as

linear combination of vectors from S”? Or equivalently, what is the smallest subspace of V that

contains S? We first look at an example for clarity.

Example 3.2.5. Let S = {(1, 0, 0), (1, 2, 0)} ⊆ R3. We want the largest possible subspace

of R3 which contains vectors of the form α(1, 0, 0), β(1, 2, 0) and α(1, 0, 0) + β(1, 2, 0) for all

possible choices of α, β ∈ R. Note that

1. `1 = {α(1, 0, 0) : α ∈ R} gives the X-axis.

2. `2 = {β(1, 2, 0) : β ∈ R} gives the line passing through (0, 0, 0) and (1, 2, 0).

So, we want the largest subspace of R3 that contains vectors which are formed as sum of

any two points on the two lines `1 and `2. Or the smallest subspace of R3 that contains S? We

give the definition next.

Definition 3.2.6. Let V be a vector space over F and S ⊆ V.

1. Then, the linear span of S, denoted LS(S), is defined as

LS(S) = {α1u1 + · · ·+ αnun | αi ∈ F,ui ∈ S, for 1 ≤ i ≤ n}.

That is, LS(S) is the set of all possible linear combinations of finitely many vectors of S.

If S is an empty set, we define LS(S) = {0}.

2. V is said to be finite dimensional if there exists a finite set S such that V = LS(S).

3. If there does not exist any finite subset S of V such that V = LS(S) then V is called

infinite dimensional.

Example 3.2.7. For the set S given below, determine LS(S).

1. S = {(1, 0)T , (0, 1)T } ⊆ R2.

Solution: LS(S) = {a(1, 0)T + b(0, 1)T | a, b ∈ R} = {(a, b)T | a, b ∈ R} = R2. Thus,

R2 is finite dimensional.
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2. S = {(1, 1, 1)T , (2, 1, 3)T }. What does LS(S) represent in R3?

Solution: LS(S) = {a(1, 1, 1)T + b(2, 1, 3)T | a, b ∈ R} = {(a+ 2b, a+ b, a+ 3b)T | a, b ∈
R}. Note that LS(S) represents a plane passing through the points (0, 0, 0)T , (1, 1, 1)T

and (2, 1, 3)T . To get he equation of the plane, we proceed as follows:

Find conditions on x, y and z such that (a+ 2b, a+ b, a+ 3b) = (x, y, z). Or equivalently,

find conditions on x, y and z such that a+ 2b = x, a+ b = y and a+ 3b = z has a solution

for all a, b ∈ R. The RREF of the augmented matrix equals


1 0 2y − x
0 1 x− y
0 0 z + y − 2x

. Thus,

the required condition on x, y and z is given by z + y − 2x = 0. Hence,

LS(S) = {a(1, 1, 1)T + b(2, 1, 3)T | a, b ∈ R} = {(x, y, z)T ∈ R3 | 2x− y − z = 0}.

Verify that if T = S ∪ {(1, 1, 0)T } then LS(T ) = R3. Hence, R3 is finite dimensional. In

general, for every fixed n ∈ N, Rn is finite dimensional as Rn = LS ({e1, . . . , en}).

3. S = {1 + 2x+ 3x2, 1 + x+ 2x2, 1 + 2x+ x3}.
Solution: To understand LS(S), we need to find condition(s) on α, β, γ, δ such that the

linear system

a(1 + 2x+ 3x2) + b(1 + x+ 2x2) + c(1 + 2x+ x3) = α+ βx+ γx2 + δx3

in the unknowns a, b, c is always consistent. An application of GJE method gives

α+ β − γ − 3δ = 0 as the required condition. Thus,

LS(S) = {α+ βx+ γx2 + δx3 ∈ R[x] | α+ β − γ − 3δ = 0}.

Note that, for every fixed n ∈ N, R[x;n] is finite dimensional as R[x;n] = LS ({1, x, . . . , xn}).

4. S =

I3,


0 1 1

1 1 2

1 2 0

,


0 1 2

1 0 2

2 2 4


 ⊆M3(R).

Solution: To get the equation, we need to find conditions on aij ’s such that the system
α β + γ β + 2γ

β + γ α+ β 2β + 2γ

β + 2γ 2β + 2γ α+ 2γ

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

,
in the unknowns α, β, γ is always consistent. Now, verify that the required condition

equals

LS(S) = {A = [aij ] ∈M3(R) | A = AT , a11 =
a22 + a33 − a13

2
,

a12 =
a22 − a33 + 3a13

4
, a23 =

a22 − a33 + 3a13
2

}
.

In general, for each fixed m,n ∈ N, the vector space Mm,n(R) is finite dimensional as

Mm,n(R) = LS ({eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}).
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5. C[x] is not finite dimensional as the degree of a polynomial can be any large positive

integer. Indeed, verify that C[x] = LS({1, x, x2, . . . , xn, . . .}).

6. The vector space R over Q is infinite dimensional.

Exercise 3.2.8. Determine the equation of the geometrical object represented by LS(S).

1. S = {π} ⊆ R.

Ans: R

2. S = {(x, y)T : x, y < 0} ⊆ R2.

Ans: R2

3. S = {(x, y)T : either x 6= 0 or y 6= 0} ⊆ R2.

Ans: R2

4. S = {(1, 0, 1)T , (0, 1, 0)T , (2, 0, 2)T } ⊆ R3. Give two examples of vectors u,v different

from the given set such that LS(S) = LS(u,v).

Ans: {(x, y, z) ∈ R3 : x = z}. Take u = (1, 2, 1)T and v = (2, 1, 2)T .

5. S = {(x, y, z)T : x, y, z > 0} ⊆ R3.

6. S =




0 1 0

−1 0 1

0 −1 0

,


0 0 1

0 0 1

−1 −1 0

,


0 1 1

−1 0 0

−1 0 0


 ⊆M3(R).

Ans: Set of 3× 3 skew-symmetric matrices.

7. S = {(1, 2, 3, 4)T , (−1, 1, 4, 5)T , (3, 3, 2, 3)T } ⊆ R4.

Ans: {(x, y, z, w) ∈ R4 : x+ 9z − 7w = 0, y + 6z − 5w = 0}.

8. S = {1 + 2x+ 3x2,−1 + x+ 4x2, 3 + 3x+ 2x2} ⊆ C[x; 2].

Ans: {a+ bx+ cx2 ∈ C[x; 2] : 5a− 7b+ 3c = 0}

9. S = {1, x, x2, . . .} ⊆ C[x].

Ans: The whole space C[x].

Lemma 3.2.9. Let V be a vector space over F with S ⊆ V. Then LS(S) is a subspace of V.

Proof. By definition, 0 ∈ LS(S). So, LS(S) is non-empty. Let u,v ∈ LS(S). To show,

au + bv ∈ LS(S) for all a, b ∈ F. As u,v ∈ LS(S), there exist n ∈ N, vectors wi ∈ S and

scalars αi, βi ∈ F such that u = α1w1 + · · ·+ αnwn and v = β1w1 + · · ·+ βnwn. Hence,

au + bv = (aα1 + bβ1)w1 + · · ·+ (aαn + bβn)wn ∈ LS(S)

as aαi + bβi ∈ F for 1 ≤ i ≤ n. Thus, by Theorem 3.1.9, LS(S) is a vector subspace.

Exercise 3.2.10. Let V be a vector space over F and W ⊆ V.



D
RA
FT

82 CHAPTER 3. VECTOR SPACES

1. Then LS(W ) = W if and only if W is a subspace of V.

2. If W is a subspace of V and S ⊆W then LS(S) is a subspace of W as well.

Theorem 3.2.11. Let V be a vector space over F and S ⊆ V. Then LS(S) is the smallest

subspace of V containing S.

Proof. For every u ∈ S, u = 1 · u ∈ LS(S). Thus, S ⊆ LS(S). Need to show that LS(S) is the

smallest subspace of V containing S. So, let W be any subspace of V containing S. Then, by

Exercise 3.2.10, LS(S) ⊆W and hence the result follows.

Definition 3.2.12. Let V be a vector space over F and S, T be two subsets of V. Then, the

sum of S and T , denoted S + T equals {s + t| s ∈ S, t ∈ T}.

Example 3.2.13.

1. If V = R, S = {0, 1, 2, 3, 4, 5, 6} and T = {5, 10, 15} then S + T = {5, 6, . . . , 21}.

2. If V = R2, S =

{[
1

1

]}
and T =

{[
−1

1

]}
then S + T =

{[
0

2

]}
.

3. If V = R2, S =

{[
1

1

]}
and T = LS

([
−1

1

])
then S + T =

{[
1

1

]
+ c

[
−1

1

]
| c ∈ R

}
.

Exercise 3.2.14. Let P and Q be two non-trivial, distinct subspaces of R2. Then P +Q = R2.

Ans: Since P and Q are non-trivial both of them are lines passing through 0. As they are

distinct, there exist vectors u =

[
a

b

]
∈ P \Q and v =

[
c

d

]
∈ Q \P . Thus, the matrix A =

[
a c

b d

]

is invertible (ad − bc 6= 0). Hence Ax = b, for the unknown vector x =

[
x1

x2

]
, has a solution for

every b =

[
b1

b2

]
∈ R2. Therefore, if x =

[
x1

x2

]
is a solution then b = x1u + x2v.

We leave the proof of the next result for readers.

Lemma 3.2.15. Let P and Q be two subspaces of a vector space V over F. Then P + Q is a

subspace of V. Furthermore, P +Q is the smallest subspace of V containing both P and Q.

Exercise 3.2.16. 1. Let a ∈ R2,a 6= 0. Then {x ∈ R2 | aTx = 0} is a non-trivial subspace

of R2. Geometrically, what does this set represent in R2?

Ans: A line through (0, 0) and perpendicular to a.

2. Find all subspaces of R3.

Ans: 1. {0},R3 → trivial subspaces. 2. a line passing through 0 and 3. a plane passing

through 0.

3. Let U =

{[
a b

−b 0

]
| a, b ∈ R

}
and W =

{[
a 0

0 d

]
| a, d ∈ R

}
be subspaces of M2(R).

Determine U ∩W. Is M2(R) = U + W?

Ans: U ∩W =

{[
a 0

0 0

]
| a ∈ R

}
,

[
0 1

1 0

]
6∈ U + W ( M2(R).
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4. Let W and U be two subspaces of a vector space V over F.

(a) Prove that W ∩ U is a subspace of V.

(b) Give examples of W and U such that W ∪ U is not a subspace of V.

(c) Determine conditions on W and U such that W ∪ U a subspace of V?

(d) Prove that LS(W ∪ U) = W + U.

Ans: (a) Just use Theorem 3.1.9. (b) Take V = R2,U = {(x, 0) : x ∈ R} and

W = {(0, b) : b ∈ R} (c) Show that either W ⊆ U or U ⊆ W. (d) By definition

W + U is the smallest subspace containing both W and U. Hence, the result.

5. Let S = {x1,x2,x3,x4}, where x1 = (1, 0, 0)T ,x2 = (1, 1, 0)T ,x3 = (1, 2, 0)T and x4 =

(1, 1, 1)T . Then, determine all xi such that LS(S) = LS(S \ {xi}).

Ans: Verify that x4 6∈ LS(x1,x2,x3). Further, x3 = 2x2 − x1. Hence, for i = 1, 2, 3,

LS(S) = LS(S \ {xi}).

6. Let W = LS((1, 0, 0)T , (1, 1, 0)T ) and U = LS((1, 1, 1)T ). Prove that W + U = R3 and

W ∩ U = {0}. If v ∈ R3, determine w ∈ W and u ∈ U such that v = w + u. Is it

necessary that w and u are unique?

Ans: Let (x, y, z) ∈W ∩ U⇒ (x, y, z) ∈ U⇒ x = y = z. Further, (x, y, z) ∈W→ z = 0.

Hence, W∩U = {0}. Let v = (x, y, z)T ⇒ (x, y, z) = (x−y, 0, 0)+(y−z, y−z, 0)+(z, z, z).

Hence, v = (x, y, z)T = (x− z, y − z, 0)T + (z, z, z)T . Yes, as W ∩ U = {0}.

7. Let W = LS((1,−1, 0), (1, 1, 0)) and U = LS((1, 1, 1), (1, 2, 1)). Prove that W + U = R3

and W ∩ U 6= {0}. Find v ∈ R3 such that v = w + u, for 2 different choices of w ∈ W
and u ∈ U. Thus, the choice of vectors w and u is not unique.

Ans: Verify that (0, 1, 0) ∈W∩U. Thus, Y -axis belongs to both the subspaces. Fir example,

(0, 1, 0) = 1
2(1, 1, 0)− 1

2(1,−1, 0) = (1, 2, 1)− (1, 1, 1).

8. Let S = {(1, 1, 1, 1)T , (1,−1, 1, 2)T , (1, 1,−1, 1)T } ⊆ R4. Does (1, 1, 2, 1)T ∈ LS(S)? Fur-

thermore, determine conditions on x, y, z and u such that (x, y, z, u)T ∈ LS(S).

Ans: (1, 1, 2, 1) = 3
2(1, 1, 1, 1)− 1

2(1, 1,−1, 1). L(S) = {(x, y, z, u)T ∈ R4 : 3x−y−2u = 0}.

3.3 Linear Independence

Let us now go back to homogeneous system Ax = 0. Here, we saw that this system has either a

non-trivial solution or only the trivial solution. The idea of a non-trivial solution leads to linear

dependence of vectors and the idea of only the trivial solution leads to linear independence. We

look at a few examples for better understanding.

Example 3.3.1.
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1. Let A =


1 1

1 2

1 3

. Then Ax = 0 has only the trivial solution. So, we say that the columns

of A are linearly independent. Thus, the set S =




1

1

1

,


1

2

3


, consisting of columns of

A, is linearly independent.

2. Let A =


1 1 2

1 2 3

1 3 5

. As REF (A) =


1 1 2

0 1 1

0 0 1

, Ax = 0 has only the trivial solution.

Hence, the set S =




1

1

1

,


1

2

3

,


2

3

5


, consisting of columns of A, is linearly independent.

3. Let A =


1 1 2

1 2 3

1 3 4

. As REF (A) =


1 1 2

0 1 1

0 0 0

, Ax = 0 has a non-trivial solution. Hence,

the set S =




1

1

1

,


1

2

3

,


2

3

4


, consisting of columns of A, is linearly dependent.

Formally, we have the following definition.

Definition 3.3.2. Let S = {u1, . . . ,um} be a non-empty subset of a vector space V over F.

Then, S is said to be linearly independent if the linear system

α1u1 + α2u2 + · · ·+ αmum = 0, (3.3.1)

in the unknowns αi’s, 1 ≤ i ≤ m, has only the trivial solution. If Equation (3.3.1) has a

non-trivial solution then S is said to be linearly dependent. If S has infinitely many vectors

then S is said to be linearly independent if for every finite subset T of S, T is linearly

independent.

Observe that we are solving a linear system over F. Hence, whether a set is linearly inde-

pendent or linearly dependent depends on the set of scalars.

Example 3.3.3.

1. Consider C2 as a vector space over R. Let S = {(1, 2)T , (i, 2i)T }. Then, the linear system

a · (1, 2)T + b · (i, 2i)T = (0, 0)T , in the unknowns a, b ∈ R has only the trivial solution,

namely a = b = 0. So, S is a linear independent subset of the vector space C2 over R.

2. Consider C2 as a vector space over C. Then S = {(1, 2)T , (i, 2i)T } is a linear dependent

subset of the vector space C2 over C as a = −i and b = 1 is a non-trivial solution.
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3. Let V be the vector space of all real valued continuous functions with domain [−π, π].

Then V is a vector space over R. Question: What can you say about the linear indepen-

dence or dependence of the set S = {1, sin(x), cos(x)}?
Solution: For all x ∈ [−π, π], consider the system

[
1 sin(x) cos(x)

]
a

b

c

 = 0⇔ a · 1 + b · sin(x) + c · cos(x) = 0, (3.3.2)

in the unknowns a, b and c. Even though we seem to have only one linear system, we we

can obtain the following two linear systems (the first using differentiation and the second

using evaluation at 0,
π

2
and π of the domain).

a+ b sinx+ c cosx = 0

0 · a+ b cosx− c sinx = 0

0 · a− b sinx− c cosx = 0

 or


a+ c = 0

a+ b = 0

a− c = 0

Clearly, the above systems has only the trivial solution. Hence, S is linearly independent.

4. Let A ∈Mm,n(C). If Rank(A) < m then, the rows of A are linearly dependent.

Solution: As Rank(A) < m, there exists an invertible matrix P such that PA =

[
C

0

]
.

Thus, 0T = (PA)[m, :] =
m∑
i=1

pmiA[i, :]. As P is invertible, at least one pmi 6= 0. Thus, the

required result follows.

5. Let A ∈Mm,n(C). If Rank(A) < n then, the columns of A are linearly dependent.

Solution: As Rank(A) < n the system Ax = 0 has a non-trivial solution.

6. Let S = {0}. Is S linearly independent?

Solution: Let u = 0. So, consider the system αu = 0. This has a non-trivial solution

α = 1 as 1 · 0 = 0.

7. Let S =

{[
0

0

]
,

[
1

2

]}
. Then Ax = 0 corresponds to A =

[
0 1

0 2

]
. This has a non-trivial

solution x =

[
1

0

]
. Hence, S is linearly dependent.

8. Let S =

{[
1

2

]}
. Is S linearly independent?

Solution: Let u =

[
1

2

]
. Then the system αu = 0 has only the trivial solution. Hence S

is linearly independent.

So, we observe that 0, the zero-vector cannot belong to any linearly independent set. Fur-

ther, a set consisting of a single non-zero vector is linearly independent.

Exercise 3.3.4. 1. Show that S = {(1, 2, 3)T , (−2, 1, 1)T , (8, 6, 10)T } ⊆ R3 is linearly de-

pendent.
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Ans: Let A =


1 −2 8

2 1 6

3 1 10

. The det(A) = 0. So, linearly dependent.

2. Let A ∈ Mn(R). Suppose x,y ∈ Rn \ {0} such that Ax = 3x and Ay = 2y. Then, prove

that x and y are linearly independent.

Ans: Consider the linear system ax + by = 0 in the unknowns a and b. Multiplying by A

and using the given conditions, we get 0 = 3ax + 2by. Thus, ax = 0. As x 6= 0 ⇒ a = 0.

Thus b = 0.

3. Let A =


2 1 3

4 −1 3

3 −2 5

. Determine x,y, z ∈ R3 \ {0} such that Ax = 6x, Ay = 2y and

Az = −2z. Use the vectors x,y and z obtained above to prove the following.

(a) A2v = 4v, where v = cy + dz for any c, d ∈ R.

(b) The set {x,y, z} is linearly independent.

(c) Let P = [x, y, z] be a 3× 3 matrix. Then, P is invertible.

(d) Let D =


6 0 0

0 2 0

0 0 −2

. Then AP = PD.

Ans: (a) A2v = A (A(cy + dz)) = A (2cy − 2dz) = 2cAy−2dAz = 4(cy+dz) = 4v.

(b) Consider the system ax+by+cz = 0 in the unknowns a, b and c. Multiply by A to get

6ax+2by−2cz = 0 and again multiply this equation by A to get 62ax+22by+(−2)2cz =

0. Thus


1 1 1

6 2 −2

62 22 (−2)2



ax

by

cz

 = 0. Hence,


ax

by

cz

 =


0

0

0

 implies result. (b) implies

(c). (d) follows using matrix multiplication.

3.3.1 Basic Results on Linear Independence

The reader is expected to supply the proof of the next proposition.

Proposition 3.3.5. Let V be a vector space over F.

1. Then, 0, the zero-vector, cannot belong to a linearly independent set.

2. Then, every subset of a linearly independent set in V is also linearly independent.

3. Then, a set containing a linearly dependent set of V is also linearly dependent.

We now prove a couple of results which will be very useful in the next section.

Proposition 3.3.6. Let S be a linearly independent subset of a vector space V over F. If

T1, T2 are two subsets of S such that T1 ∩ T2 = ∅ then, LS(T1) ∩ LS(T2) = {0}. That is, if

v ∈ LS(T1) ∩ LS(T2) then v = 0.
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Proof. Let v ∈ LS(T1)∩LS(T2). Then, there exist vectors u1, . . . ,uk ∈ T1, w1, . . . ,w` ∈ T2 and

scalars αi’s and βj ’s (not all zero) such that v =
k∑
i=1

αiui and v =
∑̀
j=1

βjwj . Thus, we see that

k∑
i=1

αiui+
∑̀
j=1

(−βj)wj = 0. As the scalars αi’s and βj ’s are not all zero, we see that a non-trivial

linear combination of some vectors in T1 ∪ T2 ⊆ S is 0. This contradicts the assumption that S

is a linearly independent subset of V. Hence, each of α’s and βj ’s is zero. That is v = 0.

Lemma 3.3.7. Let S be a linearly independent subset of a vector space V over F. Then, each

v ∈ LS(S) is a unique linear combination of vectors from S.

Proof. Suppose there exists v ∈ LS(S) with v ∈ LS(T1), LS(T2) with T1, T2 ⊆ S. Let T1 =

{v1, . . . ,vk} and T2 = {w1, . . . ,w`}, for some vi’s and wj ’s in S. Define T = T1 ∪ T2. Then,

T is a subset of S. Hence, using Proposition 3.3.5, the set T is linearly independent. Let T =

{u1, . . . ,up}. Then, there exist αi’s and βj ’s in F, not all zero, such that v = α1u1 + · · ·+αpup

as well as v = β1u1 + · · ·+ βpup. Equating the two expressions for v gives

(α1 − β1)u1 + · · ·+ (αp − βp)up = 0. (3.3.3)

As T is a linearly independent subset of V, the system c1v1 + · · · + cpvp = 0, in the variables

c1, . . . , cp, has only the trivial solution. Thus, in Equation (3.3.3), αi − βi = 0, for 1 ≤ i ≤ p.

Thus, for 1 ≤ i ≤ p, αi = βi and the required result follows.

Theorem 3.3.8. Let S = {u1, . . . ,uk} be a non-empty subset of a vector space V over F. If

Z ⊆ LS(S) having more than k vectors then, Z is a linearly dependent subset in V.

Proof. Let Z = {w1, . . . ,wm}. As wi ∈ LS(S), there exist aij ∈ F such that

wi = ai1u1 + · · ·+ aikuk, for 1 ≤ i ≤ m.

So, 
w1

...

wm

 =


a11u1 + · · ·+ a1kuk

...

am1u1 + · · ·+ amkuk

 =


a11 · · · a1k
...

. . .
...

am1 · · · amk




u1

...

uk

.
As m > k, the homogeneous system ATx = 0 has a non-trivial solution, say y 6= 0, i.e.,

ATy = 0⇔ yTA = 0T . Thus,

yT


w1

...

wm

 = yT

A


u1

...

uk


 = (yTA)


u1

...

uk

 = 0T


u1

...

uk

 = 0T .

As y 6= 0, a non-trivial linear combination of vectors in Z is 0. Thus, the set Z is linearly

dependent subset of V.

Corollary 3.3.9. Fix n ∈ N. Then, any subset S of Rn with | S | ≥ n+1 is linearly dependent.
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Proof. Observe that Rn = LS({e1, . . . , en}), where ei = In[:, i], is the i-th column of In. Hence,

using Theorem 3.3.8, the required result follows.

Theorem 3.3.10. Let S be a linearly independent subset of a vector space V over F. Then, for

any v ∈ V the set S ∪ {v} is linearly dependent if and only if v ∈ LS(S).

Proof. Let us assume that S ∪ {v} is linearly dependent. Then, there exist vi’s in S such that

the linear system

α1v1 + · · ·+ αpvp + αp+1v = 0 (3.3.4)

in the variables αi’s has a non-trivial solution, say αi = ci, for 1 ≤ i ≤ p + 1. We claim that

cp+1 6= 0.

For, if cp+1 = 0 then, Equation (3.3.4) has a non-trivial solution corresponds to having a

non-trivial solution of the linear system α1v1 + · · ·+αpvp = 0 in the variables α1, . . . , αp. This

contradicts Proposition 3.3.5.2 as {v1, . . . ,vp} ⊆ S, a linearly independent set. Thus, cp+1 6= 0

and we get

v = − 1

cp+1
(c1v1 + · · ·+ cpvp) ∈ LS(v1, . . . ,vp) as − ci

cp+1
∈ F, for 1 ≤ i ≤ p.

Now, assume that v ∈ LS(S). Then, there exists vi ∈ S and ci ∈ F, not all zero, such that

v =
p∑
i=1

civi. Thus, the linear system α1v1 + · · ·+ αpvp + αp+1v = 0 in the variables αi’s has a

non-trivial solution [c1, . . . , cp,−1]. Hence, S ∪ {v} is linearly dependent.

We now state a very important corollary of Theorem 3.3.10 without proof. This result can

also be used as an alternative definition of linear independence and dependence.

Corollary 3.3.11. Let V be a vector space over F and let S be a subset of V containing a

non-zero vector u1.

1. If S is linearly dependent then, there exists k such that LS(u1, . . . ,uk) = LS(u1, . . . ,uk−1).

Or equivalently, if S is a linearly dependent set then there exists a vector uk, for k ≥ 2,

which is a linear combination of the previous vectors.

2. If S linearly independent then, v ∈ V \ LS(S) if and only if S ∪ {v} is also a linearly

independent subset of V.

3. If S is linearly independent then, LS(S) = V if and only if each proper superset of S is

linearly dependent.

As an application, we have the following result about finite dimensional vector spaces. We

leave the proof for the reader as it directly follows from Corollary 3.3.11 and the idea that an

algorithm has to finally stop if it has finite number of steps to implement.

Theorem 3.3.12. Let V is a finite dimensional vector space over F.

1. If S is a finite subset of V such that LS(S) = V then we can find a subset T of S such

that T is linearly independent and LS(T ) = V.
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2. Let T be a linearly independent subset of V. Then, we can find a superset S of T such

that S is linearly independent and LS(S) = V.

Exercise 3.3.13.

1. Prove Corollary 3.3.11.

2. Let V and W be subspaces of Rn such that V + W = Rn and V ∩W = {0}. Prove that

each u ∈ Rn is uniquely expressible as u = v + w, where v ∈ V and w ∈W.

3. Let W be a subspace of a vector space V over F. For u,v ∈ V \W, define K = LS(W,u)

and M = LS(W,v). Then, prove that v ∈ K if and only if u ∈M .

4. Suppose V is a vector space over R as well as over C. Then, prove that {u1, . . . ,uk}
is a linearly independent subset of V over C if and only if {u1, . . . ,uk, iu1, . . . , iuk} is a

linearly independent subset of V over R.

5. Is the set {1, x, x2, . . .} a linearly independent subset of the vector space C[x] over C?

6. Is the set {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} a linearly independent subset of the vector space

Mm,n(C) over C (see Definition 1.4.1.1)?

3.3.2 Application to Matrices

In this subsection, we use the understanding of vector spaces to relate the rank of a matrix

with linear independence and dependence of rows and columns of a matrix. We start with our

understanding of the RREF.

Theorem 3.3.14. Let A ∈Mm,n(C) with Rank(A) = r. Then,

1. there exist r rows of A that are linearly independent.

2. every collection of (r + 1) rows of A are linearly dependent.

3. there exist r columns of A that are linearly independent.

4. every collection of (r + 1) columns of A are linearly dependent.

Proof. As Rank(A) = r, there exist an invertible matrix P and an r × n matrix B having r

pivots such that PA = RREF(A) = R =

[
B

0

]
. As B is in RREF, the matrix Ir is a submatrix

of B. Hence, the rows of B are linearly independent. Thus, we have shown that the pivotal

rows of R are linearly independent. These pivotal rows would have come from certain initial

rows, say i1, . . . , ir, of A. Thus, the rows {A[i1, :], . . . , A[ir, :}] is a linearly independent set.

Further, PA =

[
B

0

]
implies, A = P−1

[
B

0

]
= [P1 P2]

[
B

0

]
= P1B, for some matrix P1 Thus,

every row of A is a linear combination of the r-rows of B. Hence, using Theorem 3.3.8 any

collection of (r + 1) rows of A are linearly dependent.

Let B[:, i1], . . . , B[:, ir] be the pivotal columns of B. Then, they are linearly independent

due to pivotal 1’s. As B = RREF(A), there exists an invertible matrix P such that B = PA.

Then, the corresponding columns of A satisfy

[A[:, i1], . . . , A[:, ir]] = [P−1B[:, i1], . . . , P
−1B[:, ir]] = P−1[B[:, i1], . . . , B[:, ir]].
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As P is invertible, the systems [A[:, i1], . . . , A[:, ir]]


x1
...

xr

 = 0 and [B[:, i1], . . . , B[:, ir]]


x1
...

xr

 = 0

are row-equivalent. Thus, they have the same solution set. Hence, {A[:, i1], . . . , A[:, ir]} is

linearly independent if and only if {B[:, i1], . . . , B[:, ir]} is linear independent. Thus, the required

result follows.

We consider an example for clarity of the above result.

Example 3.3.15. Let A =


1 1 1 0

1 0 −1 1

2 1 0 1

1 1 1 2

 with RREF(A) = B =


1 0 −1 0

0 1 2 0

0 0 0 1

0 0 0 0

.

1. Then, B[:, 3] = −B[:, 1] + 2B[:, 2]. Thus, A[:, 3] = −A[:, 1] + 2A[:, 2].

2. As the 1-st, 2-nd and 4-th columns of B are linearly independent, the set consisting of

corresponding columns {A[:, 1], A[:, 2], A[:, 4]} is linearly independent.

3. Also, note that during the application of GJE, the 3-rd and 4-th rows were interchanged.

Hence, the rows A[1, :], A[2, :] and A[4, :] are linearly independent.

As an immediate corollary of Theorem 3.3.14 one has the following result.

Corollary 3.3.16. The following statements are equivalent for A ∈Mn(C).

1. A is invertible.

2. The columns of A are linearly independent.

3. The rows of A are linearly independent.

Exercise 3.3.17. 1. Let S1 = {u1, . . . ,un} and S2 = {w1, . . . ,wn} be subsets of a complex

vector space V. Also, let
[
w1 · · · wn

]
=
[
u1 · · · un

]
A for some matrix A ∈ Mn(C).

(a) If A = [aij ] is invertible then S1 is a linearly independent if and only if S2 is linearly

independent.

Ans: Suppose S2 is linearly independent and consider the linear system
n∑
i=1

αiui = 0 in

the variables αi’s. Then 0 =
n∑
i=1

αiui =
n∑
i=1

αi

(
n∑
j=1

(A−1)jiwj

)
=

n∑
j=1

(
n∑
i=1

(A−1)jiαi

)
wj .

As S2 is linearly independent,
n∑
i=1

(A−1)jiαi = 0, for 1 ≤ j ≤ n. Or equivalently

A−1


α1

...

αn

 = 0. Thus αi = 0 for all i and hence the set S1 is linearly independent.

(b) If S2 is linearly independent then prove that A is invertible. Further, in this case,

the set S1 is necessarily linearly independent.
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Ans: Suppose A is not invertible. Then there exists x0 =
[
x01 · · · x0n

]T
6= 0 such

that Ax0 = 0. Thus, we have obtained x0 6= 0 such that

[
w1 · · · wn

]
x01

...

x0n

 =
[
u1 · · · un

]
A


x01

...

x0n

 =
[
u1 · · · un

]
0 = 0,

a contradiction to S2 being a linearly independent set.

2. Let S = {u1, . . . ,un} ⊆ Cn and T = {Au1, . . . , Aun}, for some matrix A ∈Mn(C).

(a) If S is linearly dependent then prove that T is linear dependent.

(b) If S is linearly independent then prove that T is linearly independent for every in-

vertible matrix A.

(c) If T is linearly independent then S is linearly independent. Further, in this case, the

matrix A is necessarily invertible.

3.4 Basis of a Vector Space

Definition 3.4.1. Let S be a subset of a set T . Then, S is said to be a maximal subset of

T having property P if

1. S has property P and

2. no proper superset of S in T has property P .

Example 3.4.2. Let T = {2, 3, 4, 7, 8, 10, 12, 13, 14, 15}. Then, a maximal subset of T of

consecutive integers is S = {2, 3, 4}. Other maximal subsets are {7, 8}, {10} and {12, 13, 14, 15}.
Note that {12, 13} is not maximal. Why?

Definition 3.4.3. Let V be a vector space over F. Then, S is called a maximal linearly

independent subset of V if

1. S is linearly independent and

2. no proper superset of S in V is linearly independent.

Example 3.4.4.

1. In R3, the set S = {e1, e2} is linearly independent but not maximal as S ∪ {(1, 1, 1)T } is

a linearly independent set containing S.

2. In R3, S = {(1, 0, 0)T , (1, 1, 0)T , (1, 1,−1)T } is a maximal linearly independent set as S is

linearly independent and any collection of 4 or more vectors from R3 is linearly dependent

(see Corollary 3.3.9).

3. Let S = {v1, . . . ,vk} ⊆ Rn. Now, form the matrix A = [v1, . . . ,vk] and let B =

RREF(A). Then, using Theorem 3.3.14, we see that if B[:, i1], . . . , B[:, ir] are the piv-

otal columns of B then {vi1 , . . . ,vir} is a maximal linearly independent subset of S.

4. Is the set {1, x, x2, . . .} a maximal linearly independent subset of C[x] over C?
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5. Is the set {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} a maximal linearly independent subset of Mm,n(C)

over C?

Theorem 3.4.5. Let V be a vector space over F and S a linearly independent set in V. Then,

S is maximal linearly independent if and only if LS(S) = V.

Proof. Let v ∈ V. As S is linearly independent, using Corollary 3.3.11.2, the set S ∪ {v} is

linearly independent if and only if v ∈ V \ LS(S). Thus, the required result follows.

Let V = LS(S) for some set S with | S | = k. Then, using Theorem 3.3.8, we see that if

T ⊆ V is linearly independent then | T | ≤ k. Hence, a maximal linearly independent subset

of V can have at most k vectors. Thus, we arrive at the following important result.

Theorem 3.4.6. Let V be a vector space over F and let S and T be two finite maximal linearly

independent subsets of V. Then | S | = | T | .

Proof. By Theorem 3.4.5, S and T are maximal linearly independent if and only if LS(S) =

V = LS(T ). Now, use the previous paragraph to get the required result.

Let V be a finite dimensional vector space. Then, by Theorem 3.4.6, the number of vectors

in any two maximal linearly independent set is the same. We use this number to now define

the dimension of a vector space.

Definition 3.4.7. Let V be a finite dimensional vector space over F. Then, the number of

vectors in any maximal linearly independent set is called the dimension of V, denoted dim(V).

By convention, dim({0}) = 0.

Example 3.4.8.

1. As {1} is a maximal linearly independent subset of R, dim(R) = 1.

2. As {e1, . . . , en} is a maximal linearly independent subset in Rn, dim(Rn) = n.

3. As {e1, . . . , en} is a maximal linearly independent subset in Cn over C, dim(Cn) = n.

4. Using Exercise 3.3.13.4, {e1, . . . , en, ie1, . . . , ien} is a maximal linearly independent subset

in Cn over R. Thus, as a real vector space, dim(Cn) = 2n.

5. As {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a maximal linearly independent subset of Mm,n(C) over

C, dim(Mm,n(C)) = mn.

Definition 3.4.9. Let V be a finite dimensional vector space over F. Then, a maximal linearly

independent subset of V is called a basis of V. The vectors in a basis are called basis vectors.

By convention, a basis of {0} is the empty set.

Thus, using Theorem 3.3.12 we see that every finite dimensional vector space has a basis.

Remark 3.4.10 (Standard Basis). The readers should verify the statements given below.

1. All the maximal linearly independent set given in Example 3.4.8 form the standard basis

of the respective vector space.
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2. {1, x, x2, . . .} is the standard basis of R[x] over R.

3. Fix a positive integer n. Then {1, x, x2, . . . , xn} is the standard basis of R[x;n] over R.

4. Let V = {A ∈ Mn(R) | A = AT }. Then, V is a vector space over R with standard basis

{eii, eij + eji | 1 ≤ i < j ≤ n}.

5. Let V = {A ∈ Mn(R) | AT = −A}. Then, V is a vector space over R with standard basis

{eij − eji | 1 ≤ i < j ≤ n}.

Definition 3.4.11. Let V be a vector space over F. Then, a subset S of V is called minimal

spanning if LS(S) = V and no proper subset of S spans V.

Example 3.4.12.

1. Note that {−2} is a basis and a minimal spanning subset in R.

2. Let u1,u2,u3 ∈ R2. Then {u1,u2,u3} can neither be a basis nor a minimal spanning

subset of R2.

3. Let V = {(x, y, 0)T | x, y ∈ R} ⊆ R3. Then, B = {(1, 0, 0)T , (1, 3, 0)T } is a basis of V.

4. Let V = {(x, y, z)T ∈ R3 | x + y − z = 0} ⊆ R3. As each element (x, y, z)T ∈ V satisfies

x+ y − z = 0. Or equivalently z = x+ y, we see that

(x, y, z) = (x, y, x+ y) = (x, 0, x) + (0, y, y) = x(1, 0, 1) + y(0, 1, 1).

Hence, {(1, 0, 1)T , (0, 1, 1)T } forms a basis of V.

5. Let S = {a1, . . . , an}. Then, RS is a real vector space (see Example 3.1.4.7). For 1 ≤ i ≤ n,

define the functions

ei(aj) =

{
1 if j = i

0 otherwise
.

Then, prove that B = {e1, . . . , en} is a linearly independent subset of RS over R. Is it a

basis of RS over R? What can you say if S is a countable set?

6. Let S = {v1, . . . ,vk} ⊆ Rn. Define A = [v1, . . . ,vk]. Then, using Example 3.4.4.3,

we see that dim(LS(S)) = Rank(A). Further, using Theorem 3.3.14, the columns of A

corresponding to the pivotal columns in RREF(A) form a basis of LS(S).

3.4.1 Main Results associated with Bases

Theorem 3.4.13. Let V be a non-zero vector space over F. Then, the following statements are

equivalent.

1. B is a basis (maximal linearly independent subset) of V.

2. B is linearly independent and spans V.

3. B is a minimal spanning set in V.
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Proof. 1 ⇒ 2 By definition, every basis is a maximal linearly independent subset of V.

Thus, using Corollary 3.3.11.2, we see that B spans V.

2 ⇒ 3 Let S be a linearly independent set that spans V. As S is linearly independent,

for any x ∈ S, x /∈ LS (S − {x}). Hence LS (S − {x}) $ LS(S) = V.

3 ⇒ 1 If B is linearly dependent then using Corollary 3.3.11.1, B is not minimal

spanning. A contradiction. Hence, B is linearly independent.

We now need to show that B is a maximal linearly independent set. Since LS(B) = V, for

any x ∈ V \ B, using Corollary 3.3.11.2, the set B ∪ {x} is linearly dependent. That is, every

proper superset of B is linearly dependent. Hence, the required result follows.

Now, using Lemma 3.3.7, we get the following result.

Remark 3.4.14. Let B be a basis of a vector space V over F. Then, for each v ∈ V, there exist

unique ui ∈ B and unique αi ∈ F, for 1 ≤ i ≤ n, such that v =
n∑
i=1

αiui.

The next result is generally known as “every linearly independent set can be extended to

form a basis of a finite dimensional vector space”. Also, recall Theorem 3.3.12.

Theorem 3.4.15. Let V be a vector space over F with dim(V) = n. If S is a linearly independent

subset of V then there exists a basis T of V such that S ⊆ T .

Proof. If LS(S) = V, done. Else, choose u1 ∈ V \ LS(S). Thus, by Corollary 3.3.11.2, the set

S∪{u1} is linearly independent. We repeat this process till we get n vectors in T as dim(V) = n.

By Theorem 3.4.13, this T is indeed a required basis.

3.4.2 Constructing a Basis of a Finite Dimensional Vector Space

We end this section with an algorithm which is based on the proof of the previous theorem.

Step 1: Let v1 ∈ V with v1 6= 0. Then, {v1} is linearly independent.

Step 2: If V = LS(v1), we have got a basis of V. Else, pick v2 ∈ V \ LS(v1). Then, by

Corollary 3.3.11.2, {v1,v2} is linearly independent.

Step i: Either V = LS(v1, . . . ,vi) or LS(v1, . . . ,vi) $ V. In the first case, {v1, . . . ,vi} is

a basis of V. Else, pick vi+1 ∈ V \ LS(v1, . . . ,vi). Then, by Corollary 3.3.11.2, the set

{v1, . . . ,vi+1} is linearly independent.

This process will finally end as V is a finite dimensional vector space.

Exercise 3.4.16. 1. Let B = {u1, . . . ,un} be a basis of a vector space V over F. Then,

does the condition
n∑
i=1

αiui = 0 in αi’s imply that αi = 0, for 1 ≤ i ≤ n?

Ans: Yes, as every basis is linearly independent.

2. Let S = {v1, . . . ,vp} be a subset of a vector space V over F. Suppose LS(S) = V but S

is not a linearly independent set. Then, does this imply that each v ∈ V is expressible
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in more than one way as a linear combination of vectors from S? Is it possible to get a

subset T of S such that T is a basis of V over F? Give reasons for your answer.

Ans: Yes. If v1 = 0 then v2 = 1 · v1 + 1 · v2 = 10 · v1 + 1 · v2. Now, let v1 6= 0. As S is

linearly dependent by Corollary 3.3.11 there exists k, 2 ≤ k ≤ p such that LS(v1, . . . ,vk) =

LS(v1, . . . ,vk−1). In this case, 1 · vk = vk =
k−1∑
i=1

αivi, for some αi’s in F. Whenever

vk ∈ LS(v1, . . . ,vk−1), remove it from S and proceed.

3. Let V be a vector space of dimension n and let S be a subset of V having n vectors .

(a) If S is linearly independent then prove that S forms a basis of V.

Ans: If LS(S) 6= V then you can choose v ∈ V \ LS(S) so that S ∪ {v} is linearly

independent ⇒ dim(V) ≥ n+ 1, a contradiction.

(b) If LS(S) = V then prove that S forms a basis of V.

Ans: If S is not a basis then there exists T a proper subset of S such that S is linearly

independent and LS(T ) = LS(S) = V⇒ dim(V) < n, a contradiction.

4. Let {v1, . . . ,vn} be a basis of Cn. Then, prove that the two matrices B = [v1, . . . ,vn] and

C =


vT1
...

vTn

 are invertible.

Ans: Consider the homogeneous system Bx = 0. {v1, . . . ,vn} is linearly independent implies

the system has only the trivial solution. So, using Theorem 2.7.1 B is invertible. A similar

idea implies that C is invertible.

5. Let W1 and W2 be two subspaces of a finite dimensional vector space V such that W1 ⊆W2.

Then, prove that W1 = W2 if and only if dim(W1) = dim(W2).

Ans: If W1 = W2 then indeed dim(W1) = dim(W2). So, let dim(W1) = dim(W2). If

W1 ( W2 then there exists vector v ∈ W2 \W1. Then for any basis S of W1, v 6∈ LS(S).

Thus, the set S ∪ {v} is linearly independent ⇒ dim(W2) > dim(W1), a contradiction.

6. Let W1 be a subspace of a finite dimensional vector space V over F. Then, prove that

there exists a subspace W2 of V such that

W1 ∩W2 = {0},W1 + W2 = V and dim(W2) = dim(V)− dim(W1).

Also, prove that for each v ∈ V there exist unique vectors w1 ∈ W1 and w2 ∈ W2 with

v = w1 +w2. The subspace W2 is called the complementary subspace of W1 in V and

we write V = W1 ⊕W2.

Ans: Choose a basis, say S = {x1, . . . ,xk}, of W1. Then S is linearly independent subset

of V. Use Theorem 3.4.15 to get a basis of V, say T = {x1, . . . ,xk, . . . ,xn}, where n =

dim(V). Define W2 = LS ({xk+1, . . . ,xn}). Then, T is linearly independent implies that

W1 ∩W2 = {0} and so on.
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7. Let V be a finite dimensional vector space over F. If W1 and W2 are two subspaces of V
such that W1∩W2 = {0} and dim(W1)+dim(W2) = dim(V) then prove that W1+W2 = V.

Ans: Let S1 and S2 be the bases of W1 and W2, respectively. As W1∩W2 = {0}, S = S1∪S2
is also linearly independent. Now, use Exercise 3.3a to get the result as S has dim(V) vectors.

8. Consider the vector space C([−π, π]) over R. For each n ∈ N, define en(x) = sin(nx).

Then, prove that S = {en | n ∈ N} is linearly independent. [Hint: Need to show that every

finite subset of S is linearly independent. So, on the contrary assume that there exists ` ∈ N and

functions ek1 , . . . , ek` such that α1ek1 + · · · + α`ek` = 0, for some αt 6= 0 with 1 ≤ t ≤ `. But,

the above system is equivalent to looking at α1 sin(k1x) + · · ·+α` sin(k`x) = 0 for all x ∈ [−π, π].

Now in the integral∫ π

−π
sin(mx) (α1 sin(k1x) + · · ·+ α` sin(k`x)) dx =

∫ π

−π
sin(mx)0 dx = 0

replace m with ki’s to show that αi = 0, for all i, 1 ≤ i ≤ `. This gives the required contradiction.]

9. Is the set {1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .} a linearly subset of the

vector space C([−π, π],R) over R?

10. Find a basis of R3 containing the vector (1, 1,−2)T and (1, 2,−1)T .

Ans: Just find a vector that doesn’t belong to linear span of given vectors.

11. Determine a basis and dimension of W = {(x, y, z, w)T ∈ R4 | x+ y − z + w = 0}.

Ans: A basis of W equals S = {(−1, 1, 0, 0)T , (1, 0, 1, 0)T , (−1, 0, 0, 1)T }.

12. Find a basis of V = {(x, y, z, u) ∈ R4 | x− y − z = 0, x+ z − u = 0}.

Ans: A basis of V equals S = {(−1,−2, 1, 0)T , (1, 1, 0, 1)T }.

13. Let A =


1 0 1 1 0

0 1 2 3 0

0 0 0 0 1

. Find a basis of V = {x ∈ R5 | Ax = 0}.

Ans: A basis of V equals S = {(−1,−2, 1, 0, 0)T , (−1,−3, 0, 1, 0)T }.

14. Let uT = (1, 1,−2),vT = (−1, 2, 3) and wT = (1, 10, 1). Find a basis of LS(u,v,w).

Determine a geometrical representation of LS(u,v,w).

Ans: LS(u,v,w) = {(x, y, z)T ∈ R3 : 7x − y + 3z = 0}. Any two of them form a basis.

Geometrically, it represents a plane containing the vectors u,v and w.

15. Is the set W = {p(x) ∈ R[x; 4] | p(−1) = p(1) = 0} a subspace of R[x; 4]? If yes, find its

dimension.

Ans: Verify W = {p(x) ∈ R[x; 4] | p(x) = (x2 − 1)g(x), g(x) ∈ R[x; 2]}. So, dim(W) = 3.



D
RA
FT

3.5. FUNDAMENTAL SUBSPACES ASSOCIATED WITH A MATRIX 97

3.5 Fundamental Subspaces Associated with a Matrix

In this section, we will study results that are intrinsic to the understanding of linear algebra

from the point of view of matrices. For the sake of clarity, we will also restrict our attention to

matrices with real entries. So, we start with defining the four fundamental subspaces associated

with a matrix.

Definition 3.5.1. Let A ∈ Mm,n(R). Then, we define the four fundamental subspaces associ-

ated with A as

1. Col(A) = {Ax | x ∈ Rn} is a subspace of Rm, called the Column space, and is the

linear span of the columns of A.

2. Row(A) = Col(AT ) = {ATx | x ∈ Rm} is a subspace of Rn, called the row space of A

and is the linear span of the rows of A.

3. Null(A) = {x ∈ Rn | Ax = 0}, called the Null space of A.

4. Null(AT ) = {x ∈ Rm | ATx = 0}, also called the left-null space.

Exercise 3.5.2. Let A ∈Mm,n(R). Then prove that

1. Null(A) and Row(A) are subspaces of Rn.

2. Null(AT ) and Col(A) are subspaces of Rm.

Example 3.5.3.

1. Compute the fundamental subspaces for A =


1 1 1 −2

1 2 −1 1

1 −2 7 −11

.

Solution: Verify the following

(a) Row(A) = {(x, y, z, u)T ∈ R4 | 3x− 2y = z, 5x− 3y + u = 0}.
(b) Col(A) = {(x, y, z)T ∈ R3 | 4x− 3y − z = 0}.
(c) Null(A) = {(x, y, z, u)T ∈ R4 | x+ 3z − 5u = 0, y − 2z + 3u = 0}.
(d) Null(AT ) = {(x, y, z)T ∈ R3 | x+ 4z = 0, y − 3z = 0}.

2. Let A =


1 1 0 −1

1 −1 1 2

2 0 1 1

. Then, verify that

(a) Col(A) = {x = (x1, x2, x3)
T ∈ R3 | x1 + x2 − x3 = 0}.

(b) Row(A) = {x = (x1, x2, x3, x4)
T ∈ R4 | x1 − x2 − 2x3 = 0, x1 − 3x2 − 2x4 = 0}.

(c) Null(A) = LS({(1,−1,−2, 0)T , (1,−3, 0,−2)T }).
(d) Null(AT ) = LS((1, 1,−1)T ).

Remark 3.5.4. Let A ∈ Mm,n(R). Then, in Example 3.5.3, observe that the direction ratios

of normal vectors of Col(A) matches with vector in Null(AT ). Similarly, the direction ratios

of normal vectors of Row(A) matches with vectors in Null(A). Are these true in the general

setting?
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Exercise 3.5.5. 1. For the matrices given below, determine the four fundamental spaces.

Further, find the dimensions of all the vector subspaces so obtained.

A =


1 2 1 3 2

0 2 2 2 4

2 −2 4 0 8

4 2 5 6 10

 and B =


2 4 0 6

−1 0 −2 5

−3 −5 1 −4

−1 −1 1 2

.

2. Let A = [X Y ]. Then, determine the condition under which Col(X) = Col(Y ).

The next result is a re-writing of the results on system of linear equations. The readers are

advised to provide the proof for clarity.

Lemma 3.5.6. Let A ∈Mm×n(C) and let E be an elementary matrix. If

1. B = EA then Null(A) = Null(B), Row(A) = Row(B). Thus, the dimensions of the

corresponding spaces are equal.

2. B = AE then Null(AT ) = Null(BT ), Col(A) = Col(B). Thus, the dimensions of the

corresponding spaces are equal.

Let W1 and W1 be two subspaces of a vector space V over F. Then, recall that (see

Exercise 3.2.16.4d) W1 + W2 = {u + v | u ∈ W1, v ∈ W2} = LS(W1 ∪W2) is the smallest

subspace of V containing both W1 and W2. We now state a result similar to a result in Venn

diagram that states | A | + | B | = | A ∪ B | + | A ∩ B |, whenever the sets A and B are

finite (for a proof, see Appendix 9.4.1).

Theorem 3.5.7. Let V be a finite dimensional vector space over F. If W1 and W2 are two

subspaces of V then

dim(W1) + dim(W2) = dim(W1 + W2) + dim(W1 ∩W2). (3.5.1)

For better understanding, we give an example for finite subsets of Rn. The example uses

Theorem 3.3.14 to obtain bases of LS(S), for different choices S. The readers are advised to

see Example 3.3.14 before proceeding further.

Example 3.5.8. Let V = {(v, w, x, y, z)T ∈ R5 | v+ x+ z = 3y} and W = {(v, w, x, y, z)T ∈
R5 | w − x = z, v = y}. Find bases of V and W containing a basis of V ∩W.

Solution: One can first find a basis of V ∩W and then heuristically add a few vectors to get

bases for V and W, separately.

Alternatively, First find bases of V,W and V ∩ W, say BV ,BW and B. Now, consider

S = B ∪ BV . This set is linearly dependent. So, obtain a linearly independent subset of S that

contains all the elements of B. Similarly, do for T = B ∪ BW .

So, we first find a basis of V∩W. Note that (v, w, x, y, z)T ∈ V∩W if v, w, x, y and z satisfy

v + x− 3y + z = 0, w − x− z = 0 and v = y. The solution of the system is given by

(v, w, x, y, z)T = (y, 2y, x, y, 2y − x)T = y(1, 2, 0, 1, 2)T + x(0, 0, 1, 0,−1)T .
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Thus, B = {(1, 2, 0, 1, 2)T , (0, 0, 1, 0,−1)T } is a basis of V ∩W. Similarly, a basis of V is

given by C = {(−1, 0, 1, 0, 0)T , (0, 1, 0, 0, 0)T , (3, 0, 0, 1, 0)T , (−1, 0, 0, 0, 1)T } and that of W is

given by D = {(1, 0, 0, 1, 0)T , (0, 1, 1, 0, 0)T , (0, 1, 0, 0, 1)T }. To find the required basis form a

matrix whose rows are the vectors in B, C and D (see below) and apply row operations other

than Eij . Then, after a few row operations, we get

1 2 0 1 2

0 0 1 0 −1

−1 0 1 0 0

0 1 0 0 0

3 0 0 1 0

−1 0 0 0 1


→



1 2 0 1 2

0 0 1 0 −1

0 1 0 0 0

0 0 0 1 3

0 0 0 0 0

0 0 0 0 0





1 2 0 1 2

0 0 1 0 −1

1 0 0 1 0

0 1 1 0 0

0 1 0 0 1


→



1 2 0 1 2

0 0 1 0 −1

0 1 0 0 1

0 0 0 0 0

0 0 0 0 0


.

Thus, a required basis of V is {(1, 2, 0, 1, 2)T , (0, 0, 1, 0,−1)T , (0, 1, 0, 0, 0)T , (0, 0, 0, 1, 3)T }. Sim-

ilarly, a required basis of W is {(1, 2, 0, 1, 2)T , (0, 0, 1, 0,−1)T , (0, 1, 0, 0, 1)T }.

Exercise 3.5.9. 1. Give an example to show that if A and B are equivalent then Col(A)

need not equal Col(B).

2. Let V = {(x, y, z, w)T ∈ R4 | x + y − z + w = 0, x + y + z + w = 0, x + 2y = 0} and

W = {(x, y, z, w)T ∈ R4 | x − y − z + w = 0, x + 2y − w = 0} be two subspaces of R4.

Think of a method to find bases and dimensions of V, W, V ∩W and V + W.

3. Let W1 and W2 be two subspaces of a vector space V. If dim(W1) + dim(W2) > dim(V),

then prove that dim(W1 ∩W2) ≥ 1.

3.6 Fundamental Theorem of Linear Algebra and Applications

We start with proving the rank-nullity theorem and give some of it’s consequences.

Theorem 3.6.1 (Rank-Nullity Theorem). Let A ∈Mm×n(C). Then,

dim(Col(A)) + dim(Null(A)) = n. (3.6.2)

Proof. Let dim(Null(A)) = r ≤ n and let B = {u1, . . . ,ur} be a basis of Null(A). Since B is

a linearly independent set in Rn, extend it to get C = {u1, . . . ,un} as a basis of Rn. Then,

Col(A) = LS(AB) = LS(Au1, . . . , Aun)

= LS(0, . . . ,0, Aur+1, . . . , Aun) = LS(Aur+1, . . . , Aun).

So, D = {Aur+1, . . . , Aun} spans Col(A). We further need to show that D is linearly indepen-

dent. So, consider the homogeneous linear system given below in the unknowns α1, . . . , αn−r.

α1Aur+1 + · · ·+ αn−rAun = 0⇔ A(α1ur+1 + · · ·+ αn−run) = 0 (3.6.3)

Thus, α1ur+1 + · · ·+αn−run ∈ Null(A) = LS(B). Therefore, there exist scalars βi, 1 ≤ i ≤ r,
such that

n−r∑
i=1

αiur+i =
r∑
j=1

βjuj . Or equivalently,

β1u1 + · · ·+ βrur − α1ur+1 − · · · − αn−run = 0. (3.6.4)
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Equation (3.6.4) is a linear system in vectors from C with αi’s and βj ’s as unknowns. As C is a

linearly independent set, the only solution of Equation (3.6.4) is

αi = 0, for 1 ≤ i ≤ n− r and βj = 0, for 1 ≤ j ≤ r.

In other words, we have shown that the only solution of Equation (3.6.3) is the trivial solution.

Hence, {Aur+1, . . . , Aun} is a basis of Col(A). Thus, the required result follows.

Theorem 3.6.1 is part of what is known as the fundamental theorem of linear algebra (see

Theorem 3.6.5). The following are some of the consequences of the rank-nullity theorem. The

proofs are left as an exercise for the reader.

Exercise 3.6.2. 1. Let A ∈Mm,n(R).

(a) If n > m then the system Ax = 0 has infinitely many solutions,

(b) If n < m then there exists b ∈ Rm \ {0} such that Ax = b is inconsistent.

2. The following statements are equivalent for an m× n matrix A.

(a) Rank (A) = k.

(b) There exist a set of k rows of A that are linearly independent.

(c) There exist a set of k columns of A that are linearly independent.

(d) dim(Col(A)) = k.

(e) There exists a k× k submatrix B of A with det(B) 6= 0. Further, the determinant of

every (k + 1)× (k + 1) submatrix of A is zero.

(f) There exists a linearly independent subset {b1, . . . ,bk} of Rm such that the system

Ax = bi, for 1 ≤ i ≤ k, is consistent.

(g) dim(Null(A)) = n− k.

3. Let A ∈ Mn(R) and define a function f : Rn → Rn by f(x) = Ax. Then, the following

statements are equivalent.

(a) f is one-one.

(b) f is onto.

(c) f is invertible.

4. Let A =

[
1 −1

1 −1

]
. Then, verify that Null(A) = Col(A). Can such examples exist in Rn

for n odd? What about n even? Further, verify that R2 6= Null(A) + Col(A). Does it

contradict the rank-nullity theorem?

5. Determine a 2× 2 matrix A of rank 1 such that R2 = Null(A) + Col(A).

We end this section by proving the fundamental theorem of linear algebra. We start with

the following result.

Lemma 3.6.3. Let A ∈Mm,n(R). Then, Null(A) = Null(ATA).
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Proof. Clearly, Null(A) ⊆ Null(ATA) as Ax = 0 implies (ATA)x = AT (Ax) = 0.

So, let x ∈ Null(ATA). Then, (ATA)x = 0 implies (Ax)T (Ax) = xTATAx = xT0 = 0.

Thus, Ax = 0 and the required result follows.

Let u,v ∈ Rn. Then u is said to be orthogonal to v if uTv = 0 (dot product of vectors in

Rn). Further, for S ⊆ Rn, the orthogonal complement of S, denoted S⊥, is defined as

S⊥ = {x ∈ Rn : xT s = 0 for all s ∈ S}.

The readers are required to prove the following lemma.

Lemma 3.6.4. Consider the vector space Rn. Then, for S ⊆ Rn prove that

1. S⊥ is a subspace of Rn.

2. S⊥ = (LS(S))⊥.

3. (S⊥)⊥ = S⊥ if and only if S is a subspace of Rn.

4. Let W be a subspace of Rn. Then, there exists a subspace V of Rn such that

(a) Rn = W⊕ V. Or equivalently, W and V are complementary subspaces.

(b) vTu = 0, for every u ∈ W and v ∈ V. This, further implies that W and V are also

orthogonal to each other. Such spaces are called orthogonal complements.

Theorem 3.6.5 (Fundamental Theorem of Linear Algebra). Let A ∈Mm,n(R). Then,

1. dim(Null(A)) + dim(Col(A)) = n.

2. Null(A) =
(
Col(AT )

)⊥
and Null(AT ) =

(
Col(A)

)⊥
.

3. dim(Col(A)) = dim(Col(AT )). Or equivalently, Row-rank(A) = Column-rank(A).

Proof. Part 1: Proved in Theorem 3.6.1.

Part 2: To show: Null(A) ⊆ Col(AT )⊥. Equivalently, need to show that for each

x ∈ Null(A) and u ∈ Col(AT ),uTx = 0. As u ∈ Col(AT ) there exists y ∈ Rm such that

u = ATy. Further, x ∈ Null(A) implies Ax = 0. Thus, we see that

uTx =
(
ATy

)T
x = (yTA)x = yT (Ax) = yT0 = 0.

Hence, Null(A) ⊆ Col(AT )⊥.

We now show that Col(AT )⊥ ⊆ Null(A). Let z ∈ Col(AT )⊥ ⊆ Rn. Then, for every

y ∈ Rm, ATy ∈ Col(AT ) and hence (ATy)T z = 0. In particular, for y = Az ∈ Rm, we have

0 = (ATy)T z = yTAz = yTy⇔ y = 0.

Thus Az = 0 and z ∈ Null(A). This completes the proof of the first equality in Part 2. A

similar argument gives the second equality.

Part 3: Note that, using the rank-nullity theorem we have

dim(Col(A)) = n− dim(Null(A)) = n− dim
((

Col(AT )
)⊥)

= n−
(
n− dim

(
Col(AT )

))
.

Thus, dim(Col(A)) = dim
(
Col(AT )

)
.

Hence the proof of the fundamental theorem is complete.
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Remark 3.6.6. Let A ∈Mm,n(R). Then, Theorem 3.6.5.2 implies the following:

1. Null(A) =
(
Col(AT )

)⊥
. This is just stating the usual fact that if x ∈ Null(A) then

Ax = 0. Hence, the dot product of every row of A with x equals 0.

2. Rn = Null(A)⊕Col(AT ). Further, Null(A) is orthogonal complement of Col(AT ).

3. Rm = Null(AT )⊕Col(A). Further, Null(AT ) is orthogonal complement of Col(A).

As an implication of last two parts of Theorem 3.6.5, we show the existence of an invertible

function f : Col(AT )→ Col(A).

Corollary 3.6.7. Let A ∈ Mm,n(R). Then, the function f : Col(AT ) → Col(A) defined by

f(x) = Ax is invertible.

Proof. Let us first show that f is one-one. So, let x,y ∈ Col(AT ) such that f(x) = f(y).

Hence, Ax = Ay. Thus x − y ∈ Null(A) = (Col(AT ))⊥ (by Theorem 3.6.5.2). Therefore,

x− y ∈ (Col(AT ))⊥ ∩Col(AT ) = {0}. Thus x = y and hence f is one-one.

We now show that f is onto. So, let z ∈ Col(A). To find y ∈ Col(AT ) such that f(y) = z.

As z ∈ Col(A) there exists w ∈ Rn with z = Aw. But Null(A) and Col(AT ) are

complementary subspaces and hence, there exists unique vectors, w1 ∈ Null(A) and w2 ∈
Col(AT ), such that w = w1 + w2. Thus, z = Aw implies

z = Aw = A(w1 + w2) = Aw1 +Aw2 = 0 +Aw2 = Aw2 = f(w2),

for w2 ∈ Col(AT . Thus, the required result follows.

The readers should look at Example 3.5.3 and Remark 3.5.4. We give one more example.

Example 3.6.8. Let A =


1 1 0

2 1 1

3 2 1

. Then, verify that

1. {(0, 1, 1)T , (1, 1, 2)T } is a basis of Col(A).

2. {(1, 1,−1)T } is a basis of Null(AT ).

3. Null(AT ) = (Col(A))⊥.

For more information related with the fundamental theorem of linear algebra the interested

readers are advised to see the article “The Fundamental Theorem of Linear Algebra, Gilbert

Strang, The American Mathematical Monthly, Vol. 100, No. 9, Nov., 1993, pp. 848 - 855.” The

diagram 3.6 has been taken from the above paper. It also explains Corollary 3.6.7.

Exercise 3.6.9. 1. Find subspaces W1 6= {0} and W2 6= {0} in R3 such that they are

orthogonal but they are not orthogonal complement of each other.

Ans: Take the X-axis and the Y -axis.

2. Let A ∈Mm,n(R). Prove that Col(AT ) = Col(ATA). Thus, Rank(A) = n if and only if

Rank(ATA) = n. [ Hint: Use the rank-nullity theorem and/ or Lemma 3.6.3]

3. Let A ∈Mm,n(R). Then, for every
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(a) x ∈ Rn, x = u + v, where u ∈ Col(AT ) and v ∈ Null(A) are unique.

(b) y ∈ Rm, y = w + z, where w ∈ Col(A) and z ∈ Null(AT ) are unique.

4. Let A,B ∈ Mn(R) such that A is idempotent and AB = BA = 0. Then prove that

Col(A+B) = Col(A) + Col(B).

Ans: Clearly, Col(A+B) ⊆ Col(A)+Col(B). To show, Col(A)+Col(B) ⊆ Col(A+

B). So, let x ∈ Col(A). Then, there exists y ∈ Rn such that x = Ay. Thus,

(A+B)x = (A+B)Ay = A2y +BAy = Ay = x⇒ Col(A) ⊆ Col(A+B).

Now, let y ∈ Col(B). Then, there exists z ∈ Rn such that y = Bz. Thus,

(A+B)(z−Az) = A(z−Az) +B(z−Az) = 0 +Bz = y⇒ Col(B) ⊆ Col(A+B).

Thus, the required result follows.

5. Let A ∈Mm,n(R). Then, a matrix G ∈Mn,m(R) is a g-inverse of A if and only if for any

b ∈ Col(A), the vector y = Gb is a solution of the system Ay = b.

Ans: Let G be a g-inverse of A. Hence, AGA = A. As b ∈ Col(A) there exists x ∈ Rn

such that b = Ax. Thus,

Ay = AGb = (AG)(Ax) = (AGA)x = Ax = b.

Now, let us assume that for any b ∈ Col(A), the vector y = Gb is a solution of the system

Ay = b. Then, AGb = b, for every b ∈ Col(A). Or equivalently, AGAx = Ax, for every

x ∈ Rn (as Col(A) = {Ax : x ∈ Rn}). Thus, AGA = A and hence G is a g-inverse of A.
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6. Let A ∈ Mm,n(R). If G ∈ Mn,m(R) is a g-inverse of A then, for any b ∈ Col(A) the

solution set of the system Ay = b is given by Gb + (I −GA)z, for any arbitrary vector z.

Ans: Using Exercise 3.6.9.5, AGb = b. Further AGA = A implies A(I−GA)z) = 0. Thus,

A(Gb + (I − GA)z) = b. Conversely, let x be any solution of Ay = b. So, Ax = b. We

need to show, x = Gb + (I −GA)z, for some vector z. So, put z = x−Gb. Then, for this

choice of z, GAz = GA(x −Gb) = G(Ax) −G(AGb) = Gb −Gb = 0. Thus, verify that

Gb + (I −GA)z = Gb + z−GAz = x−GAz = x− 0 = x.

3.7 Summary

In this chapter, we defined vector spaces over F. The set F was either R or C. To define a vector

space, we start with a non-empty set V of vectors and F the set of scalars. We also needed to

do the following:

1. first define vector addition and scalar multiplication and

2. then verify the conditions in Definition 3.1.1.

If all conditions in Definition 3.1.1 are satisfied then V is a vector space over F. If W was a

non-empty subset of a vector space V over F then for W to be a space, we only need to check

whether the vector addition and scalar multiplication inherited from that in V hold in W.

We then learnt linear combination of vectors and the linear span of vectors. It was also shown

that the linear span of a subset S of a vector space V is the smallest subspace of V containing

S. Also, to check whether a given vector v is a linear combination of u1, . . . ,un, we needed to

solve the linear system c1u1 + · · · + cnun = v in the variables c1, . . . , cn. Or equivalently, the

system Ax = b, where in some sense A[:, i] = ui, 1 ≤ i ≤ n, xT = [c1, . . . , cn] and b = v. It

was also shown that the geometrical representation of the linear span of S = {u1, . . . ,un} is

equivalent to finding conditions in the entries of b such that Ax = b was always consistent.

Then, we learnt linear independence and dependence. A set S = {u1, . . . ,un} is linearly

independent set in the vector space V over F if the homogeneous system Ax = 0 has only the

trivial solution in F. Else S is linearly dependent, whereas before the columns of A correspond

to the vectors ui’s.

We then talked about the maximal linearly independent set (coming from the homogeneous

system) and the minimal spanning set (coming from the non-homogeneous system) and culmi-

nating in the notion of the basis of a finite dimensional vector space V over F. The following

important results were proved.

1. A linearly independent set can be extended to form a basis of V.

2. Any two bases of V have the same number of elements.

This number was defined as the dimension of V, denoted dim(V).

Now let A ∈Mn(R). Then, combining a few results from the previous chapter, we have the

following equivalent conditions.
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1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.

3. RREF(A) = In.

4. A is a product of elementary matrices.

5. The system Ax = b has a unique solution for every b.

6. The system Ax = b has a solution for every b.

7. Rank(A) = n.

8. det(A) 6= 0.

9. Col(AT ) = Row(A) = Rn.

10. Rows of A form a basis of Rn.

11. Col(A) = Rn.

12. Columns of A form a basis of Rn.

13. Null(A) = {0}.
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Chapter 4

Inner Product Spaces

4.1 Definition and Basic Properties

Recall the dot product in R2 and R3. It satisfies the following properties.

1. u · (a v + w) = a v · u + u ·w, for all u,v,w ∈ R3 and a ∈ R.

2. u · v = v · u, for all u,v ∈ R3.

3. u · u ≥ 0 for all u ∈ R3. Further, equality holds if and only if u = 0.

The dot product helped us to compute the length of vectors and talk of perpendicularity of

vectors. This enabled us to rephrase geometrical problems in R2 and R3 in the language of

vectors. We now generalize the idea of dot product to achieve similar goal for a general vector

space over R or C.

Definition 4.1.1. Let V be a vector space over F. An inner product over V, denoted by

〈 , 〉, is a map from V× V to F satisfying

1. 〈a u + v,w〉 = a 〈u,w〉+ 〈v,w〉, for all u,v,w ∈ V and a ∈ F,

2. 〈u,v〉 = 〈v,u〉, the complex conjugate of 〈u,v〉, for all u,v ∈ V and

3. 〈u,u〉 ≥ 0 for all u ∈ V. Furthermore, equality holds if and only if u = 0.

Remark 4.1.2. Using the definition of inner product, we immediately observe that

1. 〈u,0〉 = 〈u,0 + 0〉 = 〈u,0〉+ 〈u,0〉. Thus, 〈u,0〉 = 0, for all u ∈ V.

2. 〈v, α w〉 = 〈α w,v〉 = α 〈w,v〉 = α 〈v,w〉, for all α ∈ F and v,w ∈ V.

3. If 〈u,v〉 = 0 for all v ∈ V then in particular 〈u,u〉 = 0. Hence u = 0.

Definition 4.1.3. Let V be a vector space with an inner product 〈 , 〉. Then, (V, 〈 , 〉) is called

an inner product space (in short, ips).

Example 4.1.4. Examples 1 to 4 that appear below are called the standard inner product

or the dot product. Whenever an inner product is not clearly mentioned, it will be assumed

to be the standard inner product.

107
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1. For u = (u1, . . . , un)T ,v = (v1, . . . , vn)T ∈ Rn define 〈u,v〉 = u1v1 + · · · + unvn = vTu.

Then, 〈 , 〉 is indeed an inner product and hence
(
Rn, 〈 , 〉

)
is an ips.

2. For u = (u1, . . . , un)T ,v = (v1, . . . , vn)T ∈ Cn define 〈u,v〉 = u1v1 + · · · + unvn = v∗u.

Then,
(
Cn, 〈 , 〉

)
is an ips.

3. For A,B ∈Mn(R), define 〈A,B〉 = tr(BTA). Then,

〈A+B,C〉 = tr
(
CT(A + B)

)
= tr(CTA) + tr(CTB) = 〈A,C〉+ 〈B,C〉 and

〈A,B〉 = tr(BTA) = tr( (BTA)T ) = tr(ATB) = 〈B,A〉.

If A = [aij ] then 〈A,A〉 = tr(ATA) =
n∑

i=1
(ATA)ii =

n∑
i,j=1

aijaij =
n∑

i,j=1
a2ij and therefore,

〈A,A〉 > 0 for all non-zero matrix A.

4. Consider the real vector space C[−1, 1] and define 〈f, g〉 =
1∫
−1
f(x)g(x)dx. Then,

(a) 〈f , f〉 =
1∫
−1
| f(x) |2dx ≥ 0 as | f(x) |2 ≥ 0. Further, 〈f , f〉 = 0 if and only if f ≡ 0 as

f is continuous.

(b) 〈g, f〉 =
1∫
−1

g(x)f(x)dx =
1∫
−1

g(x)f(x)dx =
1∫
−1

f(x)g(x)dx = 〈f ,g〉.

(c) 〈f + g,h〉 =
1∫
−1

(f + g)(x)h(x)dx =
1∫
−1

[f(x)h(x) + g(x)h(x)]dx = 〈f ,h〉+ 〈g,h〉.

(d) 〈αf ,g〉 =
1∫
−1

(αf(x))g(x)dx = α
1∫
−1

f(x)g(x)dx = α〈f ,g〉.

5. For x = (x1, x2)
T ,y = (y1, y2)

T ∈ R2 and A =

[
4 −1

−1 2

]
, define 〈x,y〉 = yTAx. Then,

〈 , 〉 is an inner product as 〈x,x〉 = (x1 − x2)2 + 3x21 + x22.

6. Fix A =

[
a b

b c

]
with a, c > 0 and ac > b2. Then, 〈x,y〉 = yTAx is an inner product on

R2 as 〈x,x〉 = ax21 + 2bx1x2 + cx22 = a
[
x1 + bx2

a

]2
+ 1

a

[
ac− b2

]
x22.

7. Verify that for x = (x1, x2, x3)
T ,y = (y1, y2, y3)

T ∈ R3, 〈x,y〉 = 10x1y1 + 3x1y2 + 3x2y1 +

2x2y2 + x2y3 + x3y2 + x3y3 defines an inner product.

Exercise 4.1.5. For x = (x1, x2)
T ,y = (y1, y2)

T ∈ R2, we define three maps that satisfy at

least one condition out of the three conditions for an inner product. Determine the condition

which is not satisfied. Give reasons for your answer.

1. 〈x,y〉 = x1y1.

2. 〈x,y〉 = x21 + y21 + x22 + y22.

3. 〈x,y〉 = x1y
3
1 + x2y

3
2.

As 〈u,u〉 > 0, for all u 6= 0, we use inner product to define the length/ norm of a vector.
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Definition 4.1.6. Let V be an inner product space over F. Then, for any vector u ∈ V, we

define the length (norm) of u, denoted ‖u‖ =
√
〈u,u〉, the positive square root. A vector of

norm 1 is called a unit vector. Thus,
u

‖u‖ is called the unit vector in the direction of u.

Example 4.1.7. 1. Let V be an ips and u ∈ V. Then, for any scalar α, ‖αu‖ =
∣∣α∣∣ · ‖u‖.

2. Let u = (1,−1, 2,−3)T ∈ R4. Then, ‖u‖ =
√

1 + 1 + 4 + 9 =
√

15. Thus, 1√
15

u and

− 1√
15

u are unit vectors in the direction of u.

Exercise 4.1.8. 1. Let u = (−1, 1, 2, 3, 7)T ∈ R5. Find all α ∈ R such that ‖αu‖ = 1.

2. Let u = (−1, 1, 2, 3, 7)T ∈ C5. Find all α ∈ C such that ‖αu‖ = 1.

3. Let u = (1, 2)T ,v = (2,−1)T ∈ R2. Then, does there exist an inner product in R2 such

that ‖u‖ = 1, ‖v‖ = 1 and 〈u,v〉 = 0? [Hint: Let A =

[
a b

b c

]
and define 〈x,y〉 = yTAx.

Use given conditions to get a linear system of 3 equations in the variables a, b, c.]

4. Prove that under the standard inner product in Mm,n(R),

‖A‖2 = tr(ATA) =

m∑
k=1

‖A[k, :]T‖2 =

n∑
`=1

‖A[:, `]‖2, for all A ∈Mm,n(R).

4.2 Cauchy-Schwartz Inequality

A very useful and a fundamental inequality, commonly called the Cauchy-Schwartz inequality,

is a generalization of |x · y| ≤ ‖x‖ · ‖y‖, and is proved next.

Theorem 4.2.1 (Cauchy- Schwartz inequality). Let V be an inner product space over F. Then,

for any u,v ∈ V
| 〈u,v〉 | ≤ ‖u‖ ‖v‖. (4.2.1)

Moreover, equality holds in Inequality (4.2.1) if and only if u and v are linearly dependent. In

particular, if u 6= 0 then v =

〈
v,

u

‖u‖

〉
u

‖u‖ .

Proof. If u = 0 then Inequality (4.2.1) holds. Hence, let u 6= 0. Then, by Definition 4.1.1.3,

〈λu + v, λu + v〉 ≥ 0 for all λ ∈ F and v ∈ V. In particular, for λ = −〈v,u〉‖u‖2 , we have

0 ≤ 〈λu + v, λu + v〉 = λλ‖u‖2 + λ〈u,v〉+ λ〈v,u〉+ ‖v‖2

=
〈v,u〉
‖u‖2

〈v,u〉
‖u‖2 ‖u‖

2 − 〈v,u〉‖u‖2 〈u,v〉 −
〈v,u〉
‖u‖2 〈v,u〉+ ‖v‖2 = ‖v‖2 − | 〈v,u〉 |

2

‖u‖2 .

Or, in other words | 〈v,u〉 |2 ≤ ‖u‖2‖v‖2 and the proof of the inequality is over.

Now, note that equality holds in Inequality (4.2.1) if and only if 〈λu + v, λu + v〉 = 0, or

equivalently, λu + v = 0. Hence, u and v are linearly dependent. Moreover,

0 = 〈0,u〉 = 〈λu + v,u〉 = λ〈u,u〉+ 〈v,u〉

implies that v = −λu =
〈v,u〉
‖u‖2 u =

〈
v,

u

‖u‖

〉
u

‖u‖ .

As an immediate corollary, the following hold.
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Corollary 4.2.2. Prove the following results.

1.

(
n∑
i=1

xiyi

)2

= |x · y|2 ≤ ‖x‖2 · ‖y‖2 =

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
, for all x,y ∈ Rn.

2. ‖Ax‖ ≤ ‖A‖ · ‖x‖, for all A ∈Mm,n(R) and x ∈ Rn.

Proof. We will just prove the second part. Note that

‖Ax‖2 =
m∑
k=1

| (Ax)k |2 =
m∑
k=1

| (A[k, :] x) |2 =
n∑
k=1

|〈x, A[k, :]T 〉|2

≤
m∑
k=1

‖x‖2 · ‖A[k, :]T ‖2 = ‖x‖2
m∑
k=1

‖A[k, :]T ‖2 = ‖x‖2‖A‖2

Exercise 4.2.3. 1. Let a, b ∈ R with a, b > 0. Then, prove that (a+ b)

(
1

a
+

1

b

)
≥ 4. In

general, for 1 ≤ i ≤ n, let ai ∈ R with ai > 0. Then

(
n∑
i=1

ai

)(
n∑
i=1

1

ai

)
≥ n2.

Ans: Use the Cauchy-Schwartz inequality with ui =
√
ai and vi =

1√
bi

.

2. Prove that | z1 + · · ·+ zn | ≤
√
n( | z1 |2 + · · ·+ | zn |2), for z1, . . . , zn ∈ C. When does

the equality hold?

Ans: Use the Cauchy-Schwartz inequality with u = z and v = 1. For equality z = α1.

3. Let V be an ips. If u,v ∈ V with ‖u‖ = 1, ‖v‖ = 1 and 〈u,v〉 = 1 then prove that u = αv

for some α ∈ F. Is α = 1?

Ans: By Cauchy-Schwartz inequality, 1 = |〈u,v〉| ≤ ‖u‖ · ‖v‖ = 1. As equality holds

u = αv, for some aα ∈ F. So, 1 = ‖u‖ = ‖αv‖ = |α| · ‖v‖ = |α|.

Let V be a real vector space. Then, for u,v ∈ V, the Cauchy-Schwartz inequality implies

that −1 ≤ 〈u,v〉
‖u‖ ‖v‖ ≤ 1. This together with the properties of the cosine function is used to

define the angle between two vectors in a real inner product space.

Definition 4.2.4. Let V be a real vector space. If θ ∈ [0, π] is the angle between u,v ∈ V\{0}
then we define

cos θ =
〈u,v〉
‖u‖ ‖v‖ .

Example 4.2.5. 1. Take (1, 0)T , (1, 1)T ∈ R2. Then cos θ = 1√
2
. So θ = π/4.

2. Take (1, 1, 0)T , (1, 1, 1)T ∈ R3. Then, angle between them, say β = cos−1 2√
6
.

3. Angle depends on the IP. Take 〈x,y〉 = 2x1y1 + x1y2 + x2y1 + x2y2 on R2. Then, angle

between (1, 0)T , (1, 1)T ∈ R2 equals cos−1 3√
10

.

4. As 〈x,y〉 = 〈y,x〉 for any real vector space, the angle between x and y is same as the

angle between y and x.

We will now prove that if A,B and C are the vertices of a triangle (see Figure 4.1) and a, b

and c, respectively, are the lengths of the corresponding sides then cos(A) =
b2 + c2 − a2

2bc
. This

in turn implies that the angle between vectors has been rightly defined.
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a
b

c
A B

C

R

Figure 4.1: Triangle with vertices A,B and C

Lemma 4.2.6. Let A,B and C be the vertices of a triangle (see Figure 4.1) with corresponding

side lengths a, b and c, respectively, in a real inner product space V then

cos(A) =
b2 + c2 − a2

2bc
.

Proof. Let 0, u and v be the coordinates of the vertices A,B and C, respectively, of the triangle

ABC. Then, ~AB = u, ~AC = v and ~BC = v − u. Thus, we need to prove that

cos(A) =
‖v‖2 + ‖u‖2 − ‖v − u‖2

2‖v‖‖u‖ ⇔ ‖v‖2 + ‖u‖2 − ‖v − u‖2 = 2 ‖v‖ ‖u‖ cos(A).

Now, by definition ‖v−u‖2 = ‖v‖2+‖u‖2−2〈v,u〉 and hence ‖v‖2+‖u‖2−‖v−u‖2 = 2 〈u,v〉.
As 〈v,u〉 = ‖v‖ ‖u‖ cos(A), the required result follows.

Exercise 4.2.7. Let x,y ∈ Rn then prove that

1. 〈x,y〉 = 0⇐⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2 (Pythagoras Theorem).

Solution: Use ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x,y〉 to get the required result follows.

2. ‖x‖ = ‖y‖ ⇐⇒ 〈x + y,x − y〉 = 0 (x and y form adjacent sides of a rhombus as the

diagonals x + y and x− y are orthogonal).

Solution: Use 〈x + y,x− y〉 = ‖x‖2 − ‖y‖2 to get the required result follows.

3. 4〈x,y〉 = ‖x + y‖2 − ‖x− y‖2 (polarization identity in Rn).

Solution: Just expand the right hand side to get the required result follows.

4. ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (parallelogram law: the sum of squares of the

lengths of the diagonals of a parallelogram equals twice the sum of squares of the lengths

of its sides).

Solution: Just expand the left hand side to get the required result follows.

4.3 Normed Linear Space

In the last two sections, we have used the idea of inner product to define the norm/ length of

a vector. This idea was used to get the Cauchy-Schwartz inequality, the basic back ground for

defining the angle between two vectors. The question arises ‘does every norm come from an

inner product’. To understand it, we first state the properties that a norm must enjoy. We only

look at linear spaces which are vector spaces over R or C.

Definition 4.3.1. Let V be a linear space.
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1. Then, a norm on V is a function f(x) = ‖x‖ from V to R such that

(a) ‖x‖ ≥ 0 for all x ∈ V and if ‖x‖ = 0 then x = 0.

(b) ‖αx‖ = | α | ‖x‖ for all α ∈ F and x ∈ V.

(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ V (triangle inequality).

2. A linear space with a norm on it is called a normed linear space (nls).

Remark 4.3.2. 1. Let V be an ips. Is it true that f(x) =
√
〈x,x〉 is a norm?

Proof. Yes, f(x) indeed defines an inner product. The readers should verify the first two

conditions. For the third condition, using the Cauchy-Schwartz inequality, we get

f(x + y)2 = 〈x + y,x + y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
≤ ‖x‖2 + ‖x‖ · ‖y‖+ ‖x‖ · ‖y‖+ ‖y‖2 = (f(x) + f(y))2.

Thus, f(x) =
√
〈x,x〉 is a norm, called the norm induced by the inner product 〈·, ·〉.

2. If ‖ · ‖ is a norm in V then d(x,y) = ‖x−y‖, for x,y ∈ V, defines a distance function.

Proof. To see this, note that

(a) d(x,x) = 0, for each x ∈ V.

(b) using the triangle inequality, for any z ∈ V, we have

d(x,y) = ‖x−y‖ = ‖ (x− z)−(y − z) ‖ ≤ ‖ (x− z) ‖+‖ (y − z) ‖ = d(x, z)+d(z,y).

Theorem 4.3.3. Let V be a normed linear space and x,y ∈ V. Then
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖.

Proof. As ‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖ + ‖y‖ one has ‖x‖ − ‖y‖ ≤ ‖x − y‖. Similarly, one

obtains ‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖. Combining the two, the required result follows.

Exercise 4.3.4. 1. Let V be a complex ips. Then,

4〈x,y〉 = ‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2 (Polarization Identity).

2. Consider the complex vector space Cn. If x,y ∈ Cn then prove that

(a) If x 6= 0 then ‖x + ix‖2 = ‖x‖2 + ‖ix‖2, even though 〈x, ix〉 6= 0.

(b) 〈x,y〉 = 0 whenever ‖x + y‖2 = ‖x‖2 + ‖y‖2 and ‖x + iy‖2 = ‖x‖2 + ‖iy‖2.

Ans: Just calculate both the sides.

3. Let A ∈ Mn(C) satisfy ‖Ax‖ ≤ ‖x‖ for all x ∈ Cn. Then, prove that if α ∈ C with

| α | > 1 then A− αI is invertible.

Ans: The matrix B = A − αI is invertible if and only if the system Bx = 0 has only the

trivial solution. So, let x0 be a solution of Bx = 0. Then 0 = Bx0 = (A − αI)x0 implies

Ax0 = αx0. As |α| > 1, we get ‖x0‖ < |α|‖x0‖ = ‖αx0‖ = ‖Ax0‖ ≤ ‖x0‖, a contradiction.

The next result is stated without proof as the proof is beyond the scope of this book.
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Theorem 4.3.5. Let ‖·‖ be a norm on a normed linear space V. Then the norm ‖·‖ is induced

by some inner product if and only if ‖ · ‖ satisfies the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

We now define a norm which doesn’t come from an inner product.

Example 4.3.6. For x = (x1, x2)
T ∈ R2, we define ‖x‖ = |x1| + |x2|. Verify that ‖x‖ is

indeed a norm. But, for x = e1 and y = e2, 2(‖x‖2 + ‖y‖2) = 4 whereas

‖x + y‖2 + ‖x− y‖2 = ‖(1, 1)T ‖2 + ‖(1,−1)T ‖2 = (|1| + |1|)2 + (|1| + | − 1|)2 = 8.

So the parallelogram law fails. Thus, ‖x‖ is not induced by any inner product in R2.

Exercise 4.3.7. Does there exist an inner product in R2 such that ‖x‖ = max{|x1|, |x2|}?
Ans: No, as the parallelogram law fails. Take x = e1 and y = e2. Then 2(‖x‖2 + ‖y‖2) = 4

whereas ‖x + y‖2 + ‖x− y‖2 = ‖(1, 1)T ‖2 + ‖(1,−1)T ‖2 = (|1|)2 + (|1|)2 = 2.

4.4 Orthogonality in Inner Product Space

We come back to the study of Inner product spaces the topic which is a building block for most

of the applications. To start with, we give the definition of orthogonality of two vectors.

Definition 4.4.1. Let V be an inner product space over F. Then,

1. the vectors u,v ∈ V are called orthogonal/perpendicular if 〈u,v〉 = 0.

2. Let S ⊆ V. Then, the orthogonal complement of S in V, denoted S⊥, equals

S⊥ = {v ∈ V : 〈v,w〉 = 0, for all w ∈ S}.

Example 4.4.2. 1. 0 is orthogonal to every vector as 〈0,x〉 = 0 for all x ∈ V.

2. If V is a vector space over R or C then 0 is the only vector that is orthogonal to itself.

3. Let V = R.

(a) If S = {0} then, S⊥ = R.

(b) If S = R then, S⊥ = {0}.
(c) Let S be any subset of R containing a non-zero real number. Then S⊥ = {0}.

4. Let u = (1, 2)T . What is u⊥ in R2?

Solution: By definition, u⊥ = {(x, y)T ∈ R2 | x + 2y = 0}. Thus, u⊥ is the Null(u).

Note that u⊥ = LS
(
(2,−1)T

)
. Further, observe that for any vector x ∈ R2,

x = 〈x,u〉 u

‖u‖2 +

(
x− 〈x,u〉 u

‖u‖2
)

=
x1 + 2x2

5
(1, 2)T +

2x1 − x2
5

(2,−1)T

is a decomposition of x into two vectors, one parallel to u and the other parallel to u⊥.
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5. Fix u = (1, 1, 1, 1)T ,v = (1, 1,−1, 0)T ∈ R4. Determine z,w ∈ R4 such that u = z + w

with the condition that z is parallel to v and w is orthogonal to v.

Solution: As z is parallel to v, z = kv = (k, k,−k, 0)T , for some k ∈ R. Since w is

orthogonal to v the vector w = (a, b, c, d)T satisfies a+ b− c = 0. Thus, c = a+ b and

(1, 1, 1, 1)T = u = z + w = (k, k,−k, 0)T + (a, b, a+ b, d)T .

Comparing the corresponding coordinates, gives the linear system d = 1, a + k = 1,

b+ k = 1 and a+ b− k = 1 in the unknowns a, b, d and k. Thus, solving for a, b, d and k

gives z =
1

3
(1, 1,−1, 0)T and w =

1

3
(2, 2, 4, 3)T .

6. Apollonius’ Identity: Let the length of the sides of a triangle be a, b, c ∈ R and that of

the median be d ∈ R. If the median is drawn on the side with length a then prove that

b2 + c2 = 2

(
d2 +

(a
2

)2)
.

7. Let P = (1, 1, 1)T , Q = (2, 1, 3)T and R = (−1, 1, 2)T be three vertices of a triangle in R3.

Compute the angle between the sides PQ and PR.

Solution: Method 1: Note that ~PQ = (2, 1, 3)T − (1, 1, 1)T = (1, 0, 2)T , ~PR =

(−2, 0, 1)T and ~RQ = (−3, 0,−1)T . As 〈 ~PQ, ~PR〉 = 0, the angle between the sides

PQ and PR is
π

2
.

Method 2: ‖PQ‖ =
√

5, ‖PR‖ =
√

5 and ‖QR‖ =
√

10. As ‖QR‖2 = ‖PQ‖2 + ‖PR‖2,
by Pythagoras theorem, the angle between the sides PQ and PR is

π

2
.

Exercise 4.4.3. 1. Let V be an ips.

(a) If S ⊆ V then S⊥ is a subspace of V and S⊥ = (LS(S))⊥.

(b) Furthermore, if V is finite dimensional then S⊥ and LS(S) are complementary.

Thus, V = LS(S)⊕ S⊥. Equivalently, 〈u,w〉 = 0, for all u ∈ LS(S) and w ∈ S⊥.

2. Find v,w ∈ R3 such that v,w and (1,−1,−2)T are mutually orthogonal.

3. Let W = {(x, y, z, w)T ∈ R4 : x+ y + z − w = 0}. Find a basis of W⊥.

4. Determine W⊥, where W = {A ∈Mn(R) | AT = A}.

5. Consider R3 with the standard inner product. Find

(a) S⊥ for S = {(1, 1, 1)T , (0, 1,−1)T }.
(b) k such that cos−1 (〈u,v〉) = π/3, where u = (1,−1, 1)T and v = (1, k, 1)T .

(c) vectors v,w ∈ R3 such that v,w and u = (1, 1, 1)T are mutually orthogonal.

6. Consider R3 with the standard inner product. Find the plane containing

(a) (1, 1− 1) with (a, b, c) 6= 0 as the normal vector.

(b) (2,−2, 1)T and perpendicular to the line ` = {(t− 1, 3t+ 2, t+ 1) : t ∈ R}.
(c) the lines (1, 2,−2) + t(1, 1, 0) and (1, 2,−2) + t(0, 1, 2).

(d) (1, 1, 2)T and orthogonal to the line `{(2 + t, 3, 1− t) : t ∈ R}.
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7. Let P = (3, 0, 2)T , Q = (1, 2,−1)T and R = (2,−1, 1)T be three points in R3. Then,

(a) find the area of the triangle with vertices P,Q and R.

(b) find the area of the parallelogram built on vectors ~PQ and ~QR.

(c) find a non-zero vector orthogonal to the plane of the above triangle.

(d) find all vectors x orthogonal to ~PQ and ~QR with ‖x‖ =
√

2.

(e) the volume of the parallelepiped built on vectors ~PQ and ~QR and x, where x is one

of the vectors found in Part (d). Do you think the volume would be different if you

choose the other vector x?

8. Let p1 be a plane containing the point A = (1, 2, 3)T and the vector (2,−1, 1)T as its

normal. Then,

(a) find the equation of the plane p2 that is parallel to p1 and contains (−1, 2,−3)T .

(b) calculate the distance between the planes p1 and p2.

9. In the parallelogram ABCD, AB‖DC and AD‖BC and A = (−2, 1, 3)T , B = (−1, 2, 2)T

and C = (−3, 1, 5)T . Find the

(a) coordinates of the point D,

(b) cosine of the angle BCD.

(c) area of the triangle ABC

(d) volume of the parallelepiped determined by AB,AD and (0, 0,−7)T .

4.4.1 Properties of Orthonormal Vectors

We start with the definition of an orthonormal set.

Definition 4.4.4. Let V be an ips. Then, a non-empty set S = {v1, . . . ,vn} ⊆ V is called an

orthogonal set if vi and vj are mutually orthogonal, for 1 ≤ i 6= j ≤ n, i.e.,

〈ui,uj〉 = 0, for 1 ≤ i < j ≤ n.

Further, if ‖vi‖ = 1, for 1 ≤ i ≤ n, Then S is called an orthonormal set. If S is also a

basis of V then S is called an orthonormal basis of V.

Example 4.4.5. 1. A few orthonormal sets in R2 are{
(1, 0)T , (0, 1)T

}
,
{ 1√

2
(1, 1)T ,

1√
2

(1,−1)T
}

and
{ 1√

5
(2, 1)T ,

1√
5

(1,−2)T
}
.

2. Let S = {e1, . . . , en} be the standard basis of Rn. Then, S is an orthonormal set as

(a) ‖ei‖ = 1, for 1 ≤ i ≤ n.

(b) 〈ei, ej〉 = 0, for 1 ≤ i 6= j ≤ n.

3. The set

{[
1√
3
,− 1√

3
, 1√

3

]T
,
[
0, 1√

2
, 1√

2

]T
,
[

2√
6
, 1√

6
,− 1√

6

]T}
is an orthonormal set in R3.
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4. Recall that 〈f(x), g(x)〉 =
π∫
−π

f(x)g(x)dx defines the standard inner product in C[−π, π].

Consider S = {1} ∪ {em | m ≥ 1} ∪ {fn | n ≥ 1}, where 1(x) = 1, em(x) = cos(mx) and

fn(x) = sin(nx), for all m,n ≥ 1 and for all x ∈ [−π, π]. Then,

(a) S is a linearly independent set.

(b) ‖1‖2 = 2π, ‖em‖2 = π and ‖fn‖2 = π.

(c) the functions in S are orthogonal.

Hence,

{
1√
2π

}
∪
{

1√
π

em | m ≥ 1

}
∪
{

1√
π

fn | n ≥ 1

}
is an orthonormal set in C[−π, π].

We now prove the most important initial result of this section.

Theorem 4.4.6. Let S = {u1, . . . ,un} be an orthonormal subset of an ips V(F).

1. Then S is a linearly independent subset of V.

2. Suppose v ∈ LS(S) with v =
n∑
i=1

αiui, for some αi’s in F. Then,

(a) αi = 〈v,ui〉.
(b) ‖v‖2 = ‖

n∑
i=1

αiui‖2 =
n∑
i=1
| αi |2.

3. Let z ∈ V and y =
n∑
i=1
〈z,ui〉ui.

(a) Then z = y + (z− y) with 〈z− y,y〉 = 0, i.e., z− y ∈ LS(S)⊥.

(b) Pythagoras Theorem: ‖z‖2 = ‖y‖2 + ‖z− y‖2.
(c) Thus, y is the nearest vector in LS(S). That is, if w ∈ LS(S) with w 6= y then

‖z−w‖2 = ‖z− y + y −w‖2 = ‖z− y‖2 + ‖y −w‖2 > ‖z− y‖2.

4. Let dim(V) = n. Then 〈v,ui〉 = 0 for all i = 1, 2, . . . , n if and only if v = 0.

Proof. Part 1: Consider the linear system c1u1 + · · ·+ cnun = 0 in the unknowns c1, . . . , cn. As

〈0,u〉 = 0 and 〈uj ,ui〉 = 0, for all j 6= i, we have

0 = 〈0,ui〉 = 〈c1u1 + · · ·+ cnun,ui〉 =

n∑
j=1

cj〈uj ,ui〉 = ci〈ui,ui〉 = ci.

Hence ci = 0, for 1 ≤ i ≤ n. Thus, the above linear system has only the trivial solution. So,

the set S is linearly independent.

Part 2: Note that 〈v,ui〉 = 〈
n∑
j=1

αjuj ,ui〉 =
n∑
j=1

αj〈uj ,ui〉 = αi〈ui,ui〉 = αi. This completes

Sub-part (a). For Sub-part (b), we have

‖v‖2 = ‖
n∑
i=1

αiui‖2 =

〈
n∑
i=1

αiui,

n∑
i=1

αiui

〉
=

n∑
i=1

αi

〈
ui,

n∑
j=1

αjuj

〉

=
n∑
i=1

αi

n∑
j=1

αj 〈ui,uj〉 =

n∑
i=1

αiαi 〈ui,ui〉 =

n∑
i=1

| αi |2.
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Part 3: Note that for 1 ≤ i ≤ n,

〈z− y,ui〉 = 〈z,ui〉 − 〈y,ui〉 = 〈z,ui〉 −
〈

n∑
j=1

〈z,uj〉uj ,ui
〉

= 〈z,ui〉 −
n∑
j=1

〈z,uj〉〈uj ,ui〉 = 〈z,ui〉 − 〈z,ui〉 = 0.

So, z− y ∈ LS(S)⊥. As y ∈ LS(S), 〈z− y,y〉 = 0 and

‖z‖2 = ‖y + (z− y)‖2 = ‖y‖2 + ‖z− y‖2 ≥ ‖y‖2.

Further, w,y ∈ LS(S) implies w − y ∈ LS(S). Hence 〈z− y,w − y〉 = 0 and

‖z−w‖2 = ‖z− y + y −w‖2 = ‖z− y‖2 + ‖y −w‖2 > ‖z− y‖2.

Part 4: Follows directly using Part 2b as {u1, . . . ,un} is a basis of V.

A rephrasing of Theorem 4.4.6.2b gives a generalization of the Pythagoras theorem, popu-

larly known as the Parseval’s formula. The proof is left as an exercise for the reader.

Theorem 4.4.7. Let V be an with an orthonormal basis {v1, · · · ,vn}. Then

〈x,y〉 =

n∑
i=1

〈x,vi〉〈y,vi〉, for each x,y ∈ V.

Furthermore, if x = y then ‖x‖2 =
n∑
i=1
| 〈x,vi〉 |2 (generalizing the Pythagoras Theorem).

We have another corollary of Theorem 4.4.6 which talks about an orthogonal set.

Theorem 4.4.8 (Bessel’s Inequality). Let V be an ips with {v1, · · · ,vn} as an orthogonal set.

Then, for each z ∈ V,
n∑
k=1

| 〈z,vk〉 |2
‖vk‖2

≤ ‖z‖2. Equality holds if and only if z =
n∑
k=1

〈z,vk〉
‖vk‖2

vk.

Proof. For 1 ≤ k ≤ n, define uk =
vk
‖vk‖

and use Theorem 4.4.6.4 to get the required result.

Remark 4.4.9. Using Theorem 4.4.6, we see that if B =
[
v1, . . . ,vn

]
is an ordered orthonormal

basis of an ips V then

[u]B =


〈u,v1〉

...

〈u,vn〉

, for each u ∈ V.

Thus, to get the coordinates of a vector with respect to an orthonormal ordered basis, we just

need to compute the inner product with basis vectors.

To proceed further with the applications of the above ideas, we pose a question for better

understanding.
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Q

y0
Plane − P

R

Example 4.4.10. Which point on the plane P is closest to the point, say Q?

Solution: Let y be the foot of the perpendicular from Q on P . Thus, by Pythagoras

Theorem (see Theorem 4.4.6.3c), y is unique. So, the question arises: how do we find y?

Note that
−→
yQ gives a normal vector of the plane P . Hence,

−→
Q = y +

−→
yQ. So, need to

decompose
−→
Q into two vectors such that one of them lies on the plane P and the other is

orthogonal to the plane.

Thus, we see that given u,v ∈ V \ {0}, we need to find two vectors, say y and z, such that

y is parallel to u and z is perpendicular to u. Thus, y = u cos(θ) and z = u sin(θ), where θ is

the angle between u and v.

O⃗R = v − ⟨v,u⟩
∥u∥2 u

O⃗Q = ⟨v,u⟩
∥u∥2 u

R

θO
Q

P

u

v

R

Figure 4.2: Decomposition of vector v

We do this as follows (see Figure 4.2). Let û =
u

‖u‖ be the unit vector in the direction

of u. Then, using trigonometry, cos(θ) = ‖ ~OQ‖
‖ ~OP‖ . Hence ‖ ~OQ‖ = ‖ ~OP‖ cos(θ). Now using

Definition 4.2.4, ‖ ~OQ‖ = ‖v‖
∣∣∣ 〈v,u〉‖v‖ ‖u‖

∣∣∣ =
∣∣∣ 〈v,u〉‖u‖

∣∣∣, where the absolute value is taken as the

length/norm is a positive quantity. Thus,

~OQ = ‖ ~OQ‖ û =

〈
v,

u

‖u‖

〉
u

‖u‖ .

Hence, y = ~OQ =

〈
v,

u

‖u‖

〉
u
‖u‖ and z = v−

〈
v,

u

‖u‖

〉
u

‖u‖ . In literature, the vector y = ~OQ

is called the orthogonal projection of v on u, denoted Proju(v). Thus,

Proju(v) =

〈
v,

u

‖u‖

〉
u

‖u‖ and ‖Proju(v)‖ = ‖ ~OQ‖ =

∣∣∣∣〈v,u〉‖u‖

∣∣∣∣ . (4.4.2)

Moreover, the distance of u from the point P equals ‖ ~OR‖ = ‖ ~PQ‖ =
∥∥∥v − 〈v, u

‖u‖〉 u
‖u‖

∥∥∥.

Example 4.4.11. 1. Determine the foot of the perpendicular from the point (1, 2, 3) on the

XY -plane.

Solution: Verify that the required point is (1, 2, 0)?

2. Determine the foot of the perpendicular from the point Q = (1, 2, 3, 4) on the plane

generated by (1, 1, 0, 0), (1, 0, 1, 0) and (0, 1, 1, 1).
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Answer: (x, y, z, w) lies on the plane x−y−z+2w = 0⇔ 〈(1,−1,−1, 2), (x, y, z, w)〉 = 0.

So, the required point equals

(1, 2, 3, 4)− 〈(1, 2, 3, 4),
1√
7

(1,−1,−1, 2)〉 1√
7

(1,−1,−1, 2)

= (1, 2, 3, 4)− 4

7
(1,−1,−1, 2) =

1

7
(3, 18, 25, 20).

3. Determine the projection of v = (1, 1, 1, 1)T on u = (1, 1,−1, 0)T .

Solution: By Equation (4.4.2), we have Projv(u) = 〈v,u〉 u

‖u‖2 = 1
3(1, 1,−1, 0)T and

w = (1, 1, 1, 1)T − Projv(u) = 1
3(2, 2, 4, 3)T is orthogonal to u.

4. Let u = (1, 1, 1, 1)T ,v = (1, 1,−1, 0)T ,w = (1, 1, 0,−1)T ∈ R4. Write v = v1 + v2, where

v1 is parallel to u and v2 is orthogonal to u. Also, write w = w1 + w2 + w3 such that

w1 is parallel to u, w2 is parallel to v2 and w3 is orthogonal to both u and v2.

Solution: Note that

(a) v1 = Proju(v) = 〈v,u〉 u
‖u‖2 = 1

4u = 1
4(1, 1, 1, 1)T is parallel to u.

(b) v2 = v − 1
4u = 1

4(3, 3,−5,−1)T is orthogonal to u.

Note that Proju(w) is parallel to u and Projv2
(w) is parallel to v2. Hence, we have

(a) w1 = Proju(w) = 〈w,u〉 u
‖u‖2 = 1

4u = 1
4(1, 1, 1, 1)T is parallel to u,

(b) w2 = Projv2
(w) = 〈w,v2〉 v2

‖v2‖2 = 7
44(3, 3,−5,−1)T is parallel to v2 and

(c) w3 = w −w1 −w2 = 3
11(1, 1, 2,−4)T is orthogonal to both u and v2.

4.5 Gram-Schmidt Orthonormalization Process

In view of the importance of Theorem 4.4.6, we inquire into the question of extracting an

orthonormal basis from a given basis. The process of extracting an orthonormal basis from a

finite linearly independent set is called the Gram-Schmidt Orthonormalization process.

We first consider a few examples. Note that Theorem 4.4.6 also gives us an algorithm for doing

so, i.e., from the given vector subtract all the orthogonal projections/components. If the new

vector is nonzero then this vector is orthogonal to the previous ones. The proof follows directly

from Theorem 4.4.6 but we give it again for the sake of completeness.

Theorem 4.5.1 (Gram-Schmidt Orthogonalization Process). Let V be an ips. If {v1, . . . ,vn}
is a set of linearly independent vectors in V then there exists an orthonormal set {w1, . . . ,wn}
in V. Furthermore, LS(w1, . . . ,wi) = LS(v1, . . . ,vi), for 1 ≤ i ≤ n.

Proof. Note that for orthonormality, we need ‖wi‖ = 1, for 1 ≤ i ≤ n and 〈wi,wj〉 = 0, for

1 ≤ i 6= j ≤ n. Also, by Corollary 3.3.11.2, vi /∈ LS(v1, . . . ,vi−1), for 2 ≤ i ≤ n, as {v1, . . . ,vn}
is a linearly independent set. We are now ready to prove the result by induction.

Step 1: Define w1 =
v1

‖v1‖
then LS(v1) = LS(w1).

Step 2: Define u2 = v2 − 〈v2,w1〉w1. Then, u2 6= 0 as v2 6∈ LS(v1). So, let w2 =
u2

‖u2‖
.
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Note that {w1,w2} is orthonormal and LS(w1,w2) = LS(v1,v2).

Step 3: For induction, assume that we have obtained an orthonormal set {w1, . . . ,wk−1} such

that LS(v1, . . . ,vk−1) = LS(w1, . . . ,wk−1). Now, note that

uk = vk −
k−1∑
i=1
〈vk,wi〉wi = vk −

k−1∑
i=1

Projwi(vk) 6= 0 as vk /∈ LS(v1, . . . ,vk−1). So, let us put

wk =
uk
‖uk‖

. Then, {w1, . . . ,wk} is orthonormal as ‖wk‖ = 1 and

‖uk‖〈wk,w1〉 = 〈uk,w1〉 = 〈vk −
k−1∑
i=1

〈vk,wi〉wi,w1〉 = 〈vk,w1〉 − 〈
k−1∑
i=1

〈vk,wi〉wi, w1〉

= 〈vk,w1〉 −
k−1∑
i=1

〈vk,wi〉〈wi, w1〉 = 〈vk,w1〉 − 〈vk,w1〉 = 0.

Similarly, 〈wk,wi〉 = 0, for 2 ≤ i ≤ k − 1. Clearly, wk = uk/‖uk‖ ∈ LS(w1, . . . ,wk−1,vk). So,

wk ∈ LS(v1, . . . ,vk).

As vk = ‖uk‖wk +
k−1∑
i=1
〈vk,wi〉wi, we get vk ∈ LS(w1, . . . ,wk). Hence, by the principle of

mathematical induction LS(w1, . . . ,wk) = LS(v1, . . . ,vk) and the required result follows.

We now illustrate the Gram-Schmidt process with a few examples.

Example 4.5.2. 1. Let S = {(1,−1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)} ⊆ R4. Find an orthonormal

set T such that LS(S) = LS(T ).

Solution: As we just require LS(S) = LS(T ), we can order the vectors as per our

convenience. So, let v1 = (1, 0, 1, 0)T ,v2 = (0, 1, 0, 1)T and v3 = (1,−1, 1, 1)T . Then,

w1 = 1√
2
(1, 0, 1, 0)T . As 〈v2,w1〉 = 0, we get w2 = 1√

2
(0, 1, 0, 1)T . For the third vector,

let u3 = v3 − 〈v3,w1〉w1 − 〈v3,w2〉w2 = (0,−1, 0, 1)T . Thus, w3 = 1√
2
(0,−1, 0, 1)T .

2. Let S =

{
v1 =

[
2 0 0

]T
,v2 =

[
3
2 2 0

]T
,v3 =

[
1
2

3
2 0

]T
,v4 =

[
1 1 1

]T}
. Find

an orthonormal set T such that LS(S) = LS(T ).

Solution: Take w1 = v1
‖v1‖ =

[
1 0 0

]T
= e1. For the second vector, consider u2 =

v2 − 3
2w1 =

[
0 2 0

]T
. So, put w2 = u2

‖u2‖ =
[
0 1 0

]T
= e2.

For the third vector, let u3 = v3 −
2∑
i=1
〈v3,wi〉wi = (0, 0, 0)T . So, v3 ∈ LS((w1,w2)). Or

equivalently, the set {v1,v2,v3} is linearly dependent.

So, for again computing the third vector, define u4 = v4 −
2∑
i=1
〈v4,wi〉wi. Then, u4 =

v4 −w1 −w2 = e3. So w4 = e3. Hence, T = {w1,w2,w4} = {e1, e2, e3}.

3. Find an orthonormal set in R3 containing (1, 2, 1)T .

Solution: Let (x, y, z)T ∈ R3 with
〈
(1, 2, 1), (x, y, z)

〉
= 0. Thus,

(x, y, z) = (−2y − z, y, z) = y(−2, 1, 0) + z(−1, 0, 1).

Observe that (−2, 1, 0) and (−1, 0, 1) are orthogonal to (1, 2, 1) but are themselves not

orthogonal.
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Method 1: Apply Gram-Schmidt process to { 1√
6
(1, 2, 1)T , (−2, 1, 0)T , (−1, 0, 1)T } ⊆ R3.

Method 2: Valid only in R3 using the cross product of two vectors.

In either case, verify that { 1√
6
(1, 2, 1), −1√

5
(2,−1, 0), −1√

30
(1, 2,−5)} is the required set.

We now state the following result without proof.

Corollary 4.5.3. Let V 6= {0} be a finite dimensional ips. Then

1. V has an orthonormal basis.

2. any linearly independent set S in V can be extended to form an orthonormal basis of V.

Remark 4.5.4. Let S = {v1, . . . ,vn} 6= {0} be a non-empty subset of a finite dimensional

vector space V. Then, we observe the following.

1. If S is linearly independent then we obtain an orthonormal basis {w1, . . . ,wn} of LS(S).

2. If S is linearly dependent then as in Example 4.5.2.2, there will be stages at which the

vector uk = 0. Thus, we will obtain an orthonormal basis {w1, . . . ,wm} of LS(S), but

note that m < n.

3. a re-arrangement of elements of S then we may obtain another orthonormal basis of

LS(v1, . . . ,vn). But, observe that the size of the two bases will be the same.

Exercise 4.5.5. 1. Let (V, 〈 , 〉) be an n-dimensional ips. If u ∈ V with ‖u‖ = 1 then give

reasons for the following statements.

(a) Let S⊥ = {v ∈ V | 〈v,u〉 = 0}. Then, dim(S⊥) = n− 1.

(b) Let 0 6= β ∈ F. Then S = {v ∈ V : 〈v,u〉 = β} is not a subspace of V.

(c) Let v ∈ V. Then v = v0 + 〈v,u〉u for a vector v0 ∈ S⊥. Thus V = LS(u, S⊥).

2. Let V be an ips with B = {v1, . . . ,vn} as a basis. Then, prove that B is orthonormal if

and only if for each x ∈ V, x =
n∑
i=1
〈x,vi〉vi. [Hint: Since B is a basis, each x ∈ V has a

unique linear combination in terms of vi’s.]

Ans: Note that the uniqueness ⇒ vi = 1 · vi = 〈vi,vi〉vi +
∑
j 6=i
〈vi,vj〉vj , for 1 ≤ i ≤ n.

Thus, 〈vi,vi〉 = 1 and 〈vi,vj〉 = 0, for j 6= i.

3. Let S be a subset of V having 101 elements. Suppose that the application of the Gram-

Schmidt process yields u5 = 0. Does it imply that LS(v1, . . . ,v5) = LS(v1, . . . ,v4)? Give

reasons for your answer.

Ans: Yes. u5 = v5−
4∑
i=1
〈v5,wi〉wi. So, u5 = 0⇒ v5 ∈ LS(w1, . . . ,w4) = LS(v1, . . . ,v4).

4. Let B = {v1, . . . ,vn} be an orthonormal set in Rn. For 1 ≤ k ≤ n, define Ak =
k∑
i=1

viv
T
i .

Then prove that ATk = Ak and A2
k = Ak. Thus, Ak’s are projection matrices. Further,

show that Rank(Ak) = k.

5. Determine an orthonormal basis of R4 containing (1,−2, 1, 3)T and (2, 1,−3, 1)T .
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6. Let x ∈ Rn with ‖x‖ = 1.

(a) Then prove that {x} can be extended to form an orthonormal basis of Rn.

(b) Let the extended basis be {x,x2, . . . ,xn} and B = [e1, . . . , en] the standard ordered

basis of Rn. Prove that A =

[
[x]B, [x2]B, . . . , [xn]B

]
is an orthogonal matrix.

7. Let v,w ∈ Rn, n ≥ 1 with ‖u‖ = ‖w‖ = 1. Prove that there exists an orthogonal matrix

P such that Pv = w. Prove also that A can be chosen such that det(P ) = 1.

Ans: Let {v,v2, . . . ,vn} be an extended orthonormal basis of Rn containing v. Simi-

larly, let {w,w2, . . . ,wn} be an extended orthonormal basis of Rn containing w. Define

A = [v,v2, . . . ,vn] and B = [w,w2, . . . ,wn]. Then A and B are orthogonal matrices with

Ae1 = v and Be1 = w. So, det(A) = ±1 and det(B) = ±1 and BA−1v = w. If

det(BA−1) = −1, just change v2 as a column to −v2.

4.6 QR Decomposition

In this section, we study the QR-decomposition of a matrix A ∈ Mn(R). The decomposition

is obtained by applying the Gram-Schmidt Orthogonalization process to the columns of the

matrix A. Thus, the set {A[:, 1], . . . , A[:, n]} of the columns of A are taken as the collection of

vectors {v1, . . . ,vn}.
If Rank(A) = n then the columns of A are linearly independent and the application of

the Gram-Schmidt process gives us vectors {w1, . . . ,wn} ⊆ Rn such that the matrix Q =[
w1 · · · wn

]
is an orthogonal matrix. Further the condition

LS(A[:, 1], . . . , A[:, k]) = LS(w1, . . . ,wk), for 1 ≤ k ≤ n,

in the Gram-Schmidt process implies that A[:, k] = LS(w1, . . . ,wk), for 1 ≤ k ≤ n. Hence,

there exist αjk ∈ R, 1 ≤ j ≤ k, such that A[:, k] = [w1, . . . ,wk]


α1k

...

αkk

. Thus A = QR, where

Q =
[
w1 · · · wn

]
and R =


α11 α12 · · · α1n

0 α22 · · · α2n

...
...

. . .
...

0 0 · · · αnn

 .

This decomposition is stated next.

Theorem 4.6.1 (QR Decomposition). Let A ∈ Mn(R) be a matrix with Rank(A) = n. Then,

there exist matrices Q and R such that Q is orthogonal and R is upper triangular with A = QR.

Furthermore, the diagonal entries of R can be chosen to be positive. Also, in this case, the

decomposition is unique.

Proof. The argument before the statement of the theorem gives us A = QR, with
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1. Q being an orthogonal matrix (see Exercise 5.8.8.5) and

2. R being an upper triangular matrix.

Thus, this completes the proof of the first part. Note that

1. αii 6= 0, for 1 ≤ i ≤ n, as A[:, 1] 6= 0 and A[:, i] /∈ LS(w1, . . . ,wi−1) as A has full column

rank.

2. if αii < 0, for some i, 1 ≤ i ≤ n then we can replace vi in Q by −vi to get new matrices

Q and R with the added condition that the diagonal entries of R are positive.

Uniqueness: Suppose Q1R1 = Q2R2 for some orthogonal matrices Qi’s and upper triangular

matrices Ri’s with positive diagonal entries. As Qi’s and Ri’s are invertible, we get Q−12 Q1 =

R2R
−1
1 . As product of upper triangular matrices is also upper triangular (see Exercise 2) the

matrix R2R
−1
1 is an upper triangular matrix. Similarly, Q−12 Q1 is an orthogonal matrix.

So, the matrix R2R
−1
1 is an orthogonal upper triangular matrix. Hence R2R

−1
1 = In. So,

R2 = R1 and therefore Q2 = Q1.

Remark 4.6.2. Note that in the proof of Theorem 4.6.1, we just used the idea that A[:, i] ∈
LS(w1, . . . ,wi) to get the scalars αji, for 1 ≤ j ≤ i. As {w1, . . . ,wi} is an orthonormal set

αji = 〈A[:, i],wj〉, for 1 ≤ j ≤ i.

So, it is quite easy to compute the entries of the upper triangular matrix R.

Now, let A be an m × n matrix with Rank(A) = r. Then, by Remark 4.5.4, we obtain an

orthonormal set {w1, . . . ,wr} ⊆ Rn such that

LS(A[:, 1], . . . , A[:, j]) = LS(w1, . . . ,wi), for 1 ≤ i ≤ j ≤ n.

Hence, proceeding on the lines of the above theorem, one has the following result.

Theorem 4.6.3 (Generalized QR Decomposition). Let A be an m×n matrix with Rank(A) = r.

Then A = QR, where

1. Q = [w1, . . . ,wr] is an m× r matrix with QTQ = Ir,

2. LS(A[:, 1], . . . , A[:, j]) = LS(v1, . . . ,vi), for 1 ≤ i ≤ j ≤ n and

3. R is an r × n matrix with Rank(R) = r.

We look at a few examples to understand it better.

Example 4.6.4. 1. Let A =


1 0 1 2

0 1 −1 1

1 0 1 1

0 1 1 1

. Find an orthogonal matrix Q and an upper

triangular matrix R such that A = QR.
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Solution: From Example 4.5.2, we know that w1 = 1√
2
(1, 0, 1, 0)T , w2 = 1√

2
(0, 1, 0, 1)T

and w3 = 1√
2
(0,−1, 0, 1)T . We now compute w4. If v4 = (2, 1, 1, 1)T then

u4 = v4 − 〈v4,w1〉w1 − 〈v4,w2〉w2 − 〈v4,w3〉w3 =
1

2
(1, 0,−1, 0)T .

Thus, w4 = 1√
2
(−1, 0, 1, 0)T . Hence, we see that A = QR with

Q =
[
w1, . . . ,w4

]
=


1√
2

0 0 1√
2

0 1√
2
−1√
2

0

1√
2

0 0 −1√
2

0 1√
2

1√
2

0

 and R =


√

2 0
√

2 − 3√
2

0
√

2 0 −
√

2

0 0
√

2 0

0 0 0 1√
2

.

2. Let A =


1 1 1 0

−1 0 −2 1

1 1 1 0

1 0 2 1

. Find a 4 × 3 matrix Q satisfying QTQ = I3 and an upper

triangular matrix R such that A = QR.

Solution: Let us apply the Gram-Schmidt orthonormalization process to the columns of

A. As v1 = (1,−1, 1, 1)T , we get w1 = 1
2v1. Let v2 = (1, 0, 1, 0)T . Then,

u2 = v2 − 〈v2,w1〉w1 = (1, 0, 1, 0)T −w1 =
1

2
(1, 1, 1,−1)T .

Hence, w2 = 1
2(1, 1, 1,−1)T . Let v3 = (1,−2, 1, 2)T . Then,

u3 = v3 − 〈v3,w1〉w1 − 〈v3,w2〉w2 = v3 − 3w1 + w2 = 0.

So, we again take v3 = (0, 1, 0, 1)T . Then,

u3 = v3 − 〈v3,w1〉w1 − 〈v3,w2〉w2 = v3 − 0w1 − 0w2 = v3.

So, w3 = 1√
2
(0, 1, 0, 1)T . Hence,

Q = [v1,v2,v3] =


1
2

1
2 0

−1
2

1
2

1√
2

1
2

1
2 0

1
2

−1
2

1√
2

 and R =


2 1 3 0

0 1 −1 0

0 0 0
√

2

 .

The readers are advised to check the following:

(a) Rank(A) = 3,

(b) A = QR with QTQ = I3, and

(c) R is a 3× 4 upper triangular matrix with Rank(R) = 3.

Remark 4.6.5. Let A ∈Mm,n(R) with Rank(A) = n .

1. Then ATA is invertible (see Exercise 3.6.9.3).

2. By Theorem 4.6.3, there exist matrices Q ∈Mm,n(R) and R ∈Mn,n(R) such that A = QR.
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3. Further, the columns of Q form an orthonormal set and hence QTQ = In.

4. Furthermore, Rank(R) = n as Rank(A) = n. Thus R is invertible. Hence RTR is

invertible and (RTR)−1 = R−1(RT )−1.

5. So, if Q = [w1, . . . ,wn] then

A(ATA)−1AT = QR(RTR)−1RTQT = (QR)(R−1(RT )−1)RTQT = QQT .

6. Thus P = A(ATA)−1AT = QQT = [w1, . . . ,wn]


wT

1
...

wT
n

 =
n∑
i=1

wiw
T
i is the projection

matrix that projects on Col(A) (see Exercise 4.5.5.4).

4.7 Summary

In the previous chapter, we learnt that if V is vector space over F with dim(V) = n then V
basically looks like Fn. Also, any subspace of Fn is either Col(A) or Null(A) or both, for some

matrix A with entries from F.

So, we started this chapter with inner product, a generalization of the dot product in R3

or Rn. We used the inner product to define the length/norm of a vector. The norm has the

property that “the norm of a vector is zero if and only if the vector itself is the zero vector”. We

then proved the Cauchy-Schwartz Inequality which helped us in defining the angle between two

vector. Thus, one can talk of geometrical problems in Rn and proved some geometrical results.

We then independently defined the notion of a norm in Rn and showed that a norm is

induced by an inner product if and only if the norm satisfies the parallelogram law (sum of

squares of the diagonal equals twice the sum of square of the two non-parallel sides).

The next subsection dealt with the fundamental theorem of linear algebra where we showed

that if A ∈Mm,n(C) then

1. dim(Null(A)) + dim(Col(A)) = n.

2. Null(A) =
(
Col(A∗)

)⊥
and Null(A∗) =

(
Col(A)

)⊥
.

3. dim(Col(A)) = dim(Col(A∗)).

We then saw that having an orthonormal basis is an asset as determining the coordinates

of a vector boils down to computing the inner product.

So, the question arises, how do we compute an orthonormal basis? This is where we came

across the Gram-Schmidt Orthonormalization process. This algorithm helps us to determine

an orthonormal basis of LS(S) for any finite subset S of a vector space. This also lead to the

QR-decomposition of a matrix.
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Chapter 5

Linear Transformations

5.1 Definitions and Basic Properties

Recall that understanding functions, their domain, co-domain and their properties, such as

one-one, onto etc. played an important role. So, in this chapter, we study functions over vector

spaces that preserve the operations of vector addition and scalar multiplication.

Definition 5.1.1. Let V and W be vector spaces over F with vector operations +, · in V and

⊕,� in W. A function (map) f : V → W is called a linear transformation if for all α ∈ F
and u,v ∈ V the function f satisfies

f(α · u) = α� f(u) and f(u + v) = f(u)⊕ f(v). (5.1.1)

By L(V,W), we denote the set of all linear transformations from V to W. In particular, if

W = V then the linear transformation f is called a linear operator and the corresponding set

of linear operators is denoted by L(V).

Even though, in the definition above, we have differentiated between the vector addition

and scalar multiplication for domain and co-domain, we will not differentiate them in the book

unless necessary.

Equation (5.1.1) just states that the two operations, namely, taking the image (apply f) and

doing ‘vector space operations (vector addition and scalar multiplication) commute, i.e., first

apply vector operations (u+v or αv) and then look at their images f(u+v) or f(αv)) is same

as first computing the images (f(u), f(v)) and then compute vector operations (f(u) + f(v)

and αf(v)). Or equivalently, we look at only those functions which preserve vector operations.

Definition 5.1.2. Let g, h ∈ L(V,W). Then g and h are said to be equal if g(x) = h(x), for

all x ∈ V.

We now give examples of linear transformations.

Example 5.1.3. 1. Let V be a vector space. Then, the maps Id,0 ∈ L(V), where

(a) Id(v) = v, for all v ∈ V, is commonly called the identity operator.

(b) 0(v) = 0, for all v ∈ V, is commonly called the zero operator.

127
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2. Let V and W be vector spaces over F. Then, 0 ∈ L(V,W), where 0(v) = 0, for all v ∈ V,

is commonly called the zero transformation.

3. The map f(x) = 7x, for all x ∈ R, is an element of L(R) as

f(ax) = 7(ax) = a(7x) = af(x) and f(x + y) = 7(x + y) = 7x + 7y = f(x) + f(y).

4. Let V,W and Z be vector spaces over F. Then, for any T ∈ L(V,W) and S ∈ L(W,Z),

the map S ◦ T ∈ L(V,Z), defined by (S ◦ T )(v) = S
(
T (v)

)
for all v ∈ V, is called the

composition of maps. Observe that for each u,v ∈ V and α, β ∈ R,

(S ◦ T )(αv + βu) = S
(
T (αv + βu)

)
= S

(
αT (v) + βf(u)

)
= αS

(
T (v)

)
+ βS

(
T (u)

)
= α(S ◦ T )(v) + β(S ◦ T )(u).

Hence S ◦ T , in short ST , is an element of L(V,Z).

5. Fix a ∈ Rn and define f(x) = aTx, for all x ∈ Rn. Then f ∈ L(Rn,R). In particular, if

x = [x1, . . . , xn]T then, for all x ∈ Rn,

(a) f(x) =
n∑
i=1

xi = 1Tx is a linear transformation.

(b) fi(x) = xi = eTi x is a linear transformation, for 1 ≤ i ≤ n.

6. Define f : R2 → R3 by f
(
(x, y)T

)
= (x+ y, 2x− y, x+ 3y)T . Then f ∈ L(R2,R3). Here

f(e1) = (1, 2, 1)T and f(e2) = (1,−1, 3)T .

7. Fix A ∈Mm×n(C). Define fA(x) = Ax, for every x ∈ Cn. Then, fA ∈ L(Cn,Cm). Thus,

for each A ∈Mm,n(C), there exists a linear transformation fA ∈ L(Cn,Cm).

8. Define f : Rn+1 → R[x;n] by f
(
(a1, . . . , an+1)

T
)

= a1 + a2x + · · · + an+1x
n, for each

(a1, . . . , an+1) ∈ Rn+1. Then f is a linear transformation.

9. Fix A ∈Mn(C). Now, define fA : Mn(C)→Mn(C) and gA : Mn(C)→ C by

fA(B) = AB and gA(B) = tr(AB), for every B ∈Mn(C).

Then fA and gA are both linear transformations.

10. Is the map T : R[x;n]→ R[x;n+ 1] defined by T (f(x)) = xf(x), for all f(x) ∈ R[x;n] a

linear transformation?

11. The maps T, S : R[x]→ R[x] defined by T (f(x)) = d
dxf(x) and S(f(x)) =

x∫
0

f(t)dt, for all

f(x) ∈ R[x] are linear transformations. Is it true that TS = Id? What about ST?

12. Recall the vector space RN in Example 3.1.4.7. Now, define maps T, S : RN → RN

by T ({a1, a2, . . .}) = {0, a1, a2, . . .} and S({a1, a2, . . .}) = {a2, a3, . . .}. Then, T and S,

commonly called the shift operators, are linear operators with exactly one of ST or TS

as the Id map.
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13. Recall the vector space C(R,R) (see Example 3.1.4.9). Define T : C(R,R) → C(R,R) by

T (f)(x) =
x∫
0

f(t)dt. For example, T (sin)(x) =
x∫
0

sin(t)dt = 1−cos(x), for all x ∈ R. Then,

verify that T is a linear transformation.

Remark 5.1.4. Let A ∈ Mn(C) and define TA : Cn → Cn by TA(x) = Ax, for every x ∈ Cn.

Then, verify that T kA(x) = (TA ◦ TA ◦ · · · ◦ TA)︸ ︷︷ ︸
k times

(x) = Akx, for any positive integer k.

Exercise 5.1.5. Fix A ∈Mn(C). Then, do the following maps define linear transformations?

1. Define f, g : Mn(C)→Mn(C) by f(B) = A∗B and g(B) = BA, for every B ∈Mn(C).

2. Define h, t : Mn(C)→ C by h(B) = tr(A∗B) and t(B) = tr(BA), for every B ∈Mn(C).

We now prove that any linear transformation sends the zero vector to a zero vector.

Proposition 5.1.6. Let T ∈ L(V,W). Suppose that 0V is the zero vector in V and 0W is the

zero vector of W. Then T (0V) = 0W.

Proof. Since 0V = 0V + 0V, we get T (0V) = T (0V + 0V) = T (0V) + T (0V). As T (0V) ∈W,

0W + T (0V) = T (0V) = T (0V) + T (0V).

Hence T (0V) = 0W.

From now on 0 will be used as the zero vector of the domain and co-domain. We now

consider a few more examples for better understanding.

Example 5.1.7. 1. Does there exist a linear transformation T : V→W such that T (v) 6= 0,

for all v ∈ V?

Solution: No, as T (0) = 0 (see Proposition 5.1.6).

2. Does there exist a linear transformation T : R→ R such that T (x) = x2, for all x ∈ R?

Solution: No, as T (ax) = (ax)2 = a2x2 = a2T (x) 6= aT (x), unless a = 0, 1.

3. Does there exist a linear transformation T : R→ R such that T (5) = 10 and T (10) = 5?

Solution: No, as T (10) = T (5 + 5) = T (5) + t(5) = 10 + 10 = 20 6= 5.

4. Does there exist a linear transformation f : R2 → R2 such that f((x, y)T ) = (x+ y, 2)T ?

Solution: No, as f(0) 6= 0.

5. Does there exist a linear transformation f : R2 → R2 such that f((x, y)T ) = (x+ y, xy)T ?

Solution: No, as f((2, 2)T ) = (4, 4)T 6= 2(2, 1)T = 2f((1, 1)T ).

6. Define a map T : C→ C by T (z) = z, the complex conjugate of z. Is T a linear operator

over the real vector space R?

Solution: Yes, as for any α ∈ R, T (αz) = αz = αz = αT (z).

We now define the range space.

Definition 5.1.8. Let f ∈ L(V,W). Then the range/ image of f , denoted Rng(f) or Im(f),

is given by Rng(f) = {f(x) : x ∈ V}.
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As an exercise, show that Rng(f) is a subspace of W. The next result, which is a very

important result, states that a linear transformation is known if we know its image on a basis

of the domain space.

Lemma 5.1.9. Let V and W be vector spaces over F with B = {v1,v2, . . .} as a basis of V. If

f ∈ L(V,W) then T is determined if we know the set {f(v1), f(v2), . . .}, ı.e., if we know the

image of f on the basis vectors of V, or equivalently, Rng(f) = LS(f(x)|x ∈ B).

Proof. Let B be a basis of V over F. Then, for each v ∈ V, there exist vectors u1, . . . ,uk in B
and scalars c1, . . . , ck ∈ F such that v =

k∑
i=1

ciui. Thus

T (v) = f

(
k∑
i=1

ciui

)
=

k∑
i=1

f(ciui) =

k∑
i=1

ciT (ui).

Or equivalently, whenever

v = [u1, . . . ,uk]


c1
...

ck

 then f(v) =
[
f(u1) · · · f(uk)

]
c1
...

ck

. (5.1.2)

Thus, the image of f on v just depends on where the basis vectors are mapped. Equation 5.1.2

also shows that Rng(f) = {f(x) : x ∈ V} = LS(f(x)|x ∈ B).

Example 5.1.10. Determine Rng(T ) of the following linear transformations.

1. f ∈ L(R3,R4), where f((x, y, z)T ) = (x− y + z, y − z, x, 2x− 5y + 5z)T .

Solution: Consider the standard basis {e1, e2, e3} of R3. Then

Rng(f) = LS(f(e1), T (e2), T (e3)) = LS
(
(1, 0, 1, 2)T , (−1, 1, 0,−5)T , (1,−1, 0, 5)T

)
= LS

(
(1, 0, 1, 2)T , (1,−1, 0, 5)T

)
= {λ(1, 0, 1, 2)T + β(1,−1, 0, 5)T | λ, β ∈ R}

= {(λ+ β,−β, λ, 2λ+ 5β) : λ, β ∈ R}
= {(x, y, z, w)T ∈ R4 | x+ y − z = 0, 5y − 2z + w = 0},

2. Let B ∈ M2(R). Now, define a map T : M2(R) → M2(R) by T (A) = BA − AB, for all

A ∈M2(R). Determine Rng(T ) and Null(T ).

Solution: Recall that {eij |1 ≤ i, j ≤ 2} is a basis of M2(R). So,

(a) if B = cI2 then Rng(T ) = {0}.

(b) if B =

[
1 2

2 4

]
then T (e11) =

[
0 −2

2 0

]
, T (e12) =

[
−2 −3

0 2

]
, T (e21) =

[
2 0

3 −2

]
and

T (e22) =

[
0 2

−2 0

]
. Thus, Rng(T ) = LS

([
0 2

−2 0

]
,

[
2 3

0 −2

]
,

[
−2 0

−3 2

])
.

(c) for B =

[
1 2

2 3

]
, verify that Rng(T ) = LS

([
0 2

−2 0

]
,

[
2 2

0 −2

]
,

[
−2 0

−2 2

])
.
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Recall that by Example 5.1.3.5, for each a ∈ Rn, the map T (x) = aTx, for each x ∈ Rn, is

a linear transformation from Rn to R. We now show that these are the only ones.

Corollary 5.1.11. [Reisz Representation Theorem] Let T ∈ L(Rn,R). Then, there exists

a ∈ Rn such that T (x) = aTx.

Proof. By Lemma 5.1.9, T is known if we know the image of T on {e1, . . . , en}, the standard

basis of Rn. So, for 1 ≤ i ≤ n, let T (ei) = ai, for some ai ∈ R. Now define a = [a1, . . . , an]T

and x = [x1, . . . , xn]T ∈ Rn. Then, for all x ∈ Rn,

T (x) = T

(
n∑
i=1

xiei

)
=

n∑
i=1

xiT (ei) =
n∑
i=1

xiai = aTx.

Thus, the required result follows.

Example 5.1.12. In each of the examples given below, state whether a linear transformation

exists or not. If yes, give at least one linear transformation. If not, then give the condition due

to which a linear transformation doesn’t exist.

1. Can we construct a linear transformation T : R2 → R2 such that T ((1, 1)T ) = (e, 2)T and

T ((2, 1)T ) = (5, 4)T ?

Solution: The first thing that we need to answer is “is the set {(1, 1), (2, 1)} linearly

independent”? The answer is ‘Yes’. So, we can construct it. So, how do we do it?

We now need to write any vector

[
x

y

]
= α

[
1

1

]
+ β

[
2

1

]
=

[
1 2

1 1

][
α

β

]
as by definition of

linear transformation

T

([
x

y

])
= T

(
α

[
1

1

]
+ β

[
2

1

])
= αT

([
1

1

])
+ βT

([
2

1

])
= α

[
e

2

]
+ β

[
5

4

]

=

[
e 5

2 4

][
α

β

]
=

[
e 5

2 4

]([
1 2

1 1

])−1 [
x

y

]

=

[
e 5

2 4

][
−1 2

1 −1

][
x

y

]
=

[
(5− e)x+ (2e− 5)y

2x

]
.

2. T : R2 → R2 such that T ((1, 1)T ) = (1, 2)T and T ((1,−1)T ) = (5, 10)T ?

Solution: Yes, as the set {(1, 1), (1,−1)} is a basis of R2. Write B =

[
1 1

1 −1

]
. Then,

T

([
x

y

])
= T

(
(BB−1)

[
x

y

])
= T

(
B

(
B−1

[
x

y

]))

=

[
T

([
1

1

])
, T

([
1

−1

])][1 1

1 −1

]−1[
x

y

]
=

[
1 5

2 10

][1 1

1 −1

]−1[
x

y

] =

[
1 5

2 10

][
x+y
2

x−y
2

]
=

[
3x− 2y

6x− 4y

]
.



D
RA
FT

132 CHAPTER 5. LINEAR TRANSFORMATIONS

3. T : R2 → R2 such that T ((1, 1)T ) = (1, 2)T and T ((5, 5)T ) = (5, 11)T ?

Solution: Note that the set {(1, 1), (5, 5)} is linearly dependent. Further, (5, 11)T =

T ((5, 5)T ) = 5T ((1, 1)T )5(1, 2)T = (5, 10)T gives us a contradiction. Hence, there is no

such linear transformation.

4. Does there exist a linear transformation T : R3 → R2 with T (1, 1, 1) = (1, 2), T (1, 2, 3) =

(4, 3) and T (2, 3, 4) = (7, 8)?

Solution: Here, the set {(1, 1, 1), (1, 2, 3), (2, 3, 4)} is linearly dependent and (2, 3, 4) =

(1, 1, 1) + (1, 2, 3). So, we need T ((2, 3, 4)) = T ((1, 1, 1) + (1, 2, 3)) = T ((1, 1, 1)) +

T ((1, 2, 3)) = (1, 2) + (4, 3) = (5, 5). But, we are given T (2, 3, 4) = (7, 8), a contradiction.

So, such a linear transformation doesn’t exist.

5. T : R2 → R2 such that T ((1, 1)T ) = (1, 2)T and T ((5, 5)T ) = (5, 10)T ?

Solution: Yes, as (5, 10)T = T ((5, 5)T ) = 5T ((1, 1)T ) = 5(1, 2)T = (5, 10)T .

To construct one such linear transformation, note that {(1, 1)T , (1, 0)T } is a basis of R2.

Let B =

[
1 1

1 0

]
and pick v ∈ R2. Now define T ((1, 0)T ) = v = (v1, v2)

T . Then, as in the

previous example, note that B−1
[
x

y

]
=

[
0 1

1 −1

][
x

y

]
=

[
y

x− y

]
and hence

T

([
x

y

])
=

[
T

([
1

1

])
, T

([
1

0

])]
B−1

[
x

y

]
=

[
1 v1

2 v2

][
y

x− y

]
= y

[
1

2

]
+ (x− y)v.

6. Does there exist a linear transformation T : R3 → R2 with T (1, 1, 1) = (1, 2), T (1, 2, 3) =

(4, 3) and T (2, 3, 4) = (5, 5)?

Solution: As (2, 3, 4) = (1, 1, 1) + (1, 2, 3) and T ((2, 3, 4)) = T ((1, 1, 1) + (1, 2, 3)) =

T ((1, 1, 1)) + T ((1, 2, 3)), such a linear transformation exists. To get the linear transfor-

mation, get a basis, namely {1, 1, 1), (1, 2, 3), e1}, of R3. Note that this basis contains

(1, 1, 1) and (1, 2, 3). Now, define T (e1) as any vector of R2. This give us a linear trans-

formation satisfying the given condition.

7. T : R2 → R2 such that Null(T ) = {x ∈ R2 | T (x) = 0} = LS{(1, π)T }?
Solution: Yes. Take {(1, π)T ,u} as a basis of R2 and define T ((1, π)T ) = 0 and T (u) = u.

8. T : M2(R)→ R3 such that Null(T ) = {x ∈M2(R) | T (x) = 0} = LS

{[
1 2

2 1

]}
?

Solution: Yes. Take

{[
1 2

2 1

]
, e11, e12, e21

}
as a basis of M2(R) and define

T (e11) = e1, T (e12) = e2, T (e21) = e3 and T

([
1 2

2 1

])
= 0.

Exercise 5.1.13. 1. Use matrices to construct linear operators T, S : R3 → R3 that satisfy:

(a) T 6= 0, T ◦ T = T 2 6= 0, T ◦ T ◦ T = T 3 = 0.

(b) T 6= 0, S 6= 0, S ◦ T = ST 6= 0, T ◦ S = TS = 0.
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(c) S ◦ S = S2 = T 2 = T ◦ T, S 6= T .

(d) T ◦ T = T 2 = Id, T 6= Id.

Ans: In the following, the matrices to define T and S are respectively, A and B.

(a) A =


0 1 1

0 0 1

0 0 0

 (b) A =


0 0 0

0 1 −1

0 1 −1

 and B =


1 0 0

0 1 1

0 1 1


(c) A =


0 1 0

0 0 1

0 0 0

 and B =


0 5 0

0 0 1/5

0 0 0

 (d) A =


1 0 1

0 1 0

0 0 −1

.

2. Fix a positive integer p and let T : Rn → Rn be a linear operator with T k 6= 0 for

1 ≤ k ≤ p and T p+1 = 0. Then prove that there exists a vector x ∈ Rn such that the set

{x, T (x), . . . , T p(x)} is linearly independent.

Ans: Note that T p 6= 0. So, there exists a vector x0 ∈ Rn such that T p(x0) 6= 0.

Claim: {x0, T (x0), . . . , T
p(x0)} is linearly independent. So, consider the linear system

c1x0 + c2T (x0) + · · ·+ cp+1T
p(x0) = 0 in the unknowns ci, 1 ≤ i ≤ p+ 1.

As T p+1 = 0, T `(x0) = 0, for all ` ≥ p+ 1. Hence,

0 = T p(0) = T p (c1x0 + c2T (x0) + · · ·+ cp+1T
p(x0)) = c1T

p(x0)⇒ c1 = 0.

A similar argument with T p−1, . . . , T implies c2 = 0, . . . , cp = 0 and finally cp+1 = 0 as

T p(x0) 6= 0.

3. Fix x0 ∈ Rn with x0 6= 0. Now, define T ∈ L(Rn,Rm) by T (x0) = y0, for some y0 ∈ Rm.

Define T−1(y0) = {x ∈ Rn : T (x) = y0}. Then prove that x ∈ T−1(y0) if and only if

x− x0 ∈ T−1(0). Further, T−1(y0) is a subspace of Rn if and only if y0 = 0.

Ans: x ∈ T−1(y0)⇔ T (x) = y0. But T (x0) = y0 implies T (x0) = T (x)⇔ T (x− x0) =

0⇔ x− x0 ∈ T−1(0). The other part follows as for a subspace, we need x− x0 ∈ T−1(y0)

whenever x ∈ T−1(y0) and x0 ∈ T−1(y0).

4. Let V and W be vector spaces over F. If {v1, . . . ,vn} is a basis of V and {w1, . . . ,wn} ⊆W
then prove that there exists a unique T ∈ L(V,W) with T (vi) = wi, for i = 1, . . . , n.

Ans: For v =
n∑
i=1

αivi ∈ V, define T ∈ L(V,W) by T (v) =
n∑
i=1

αiT (vi). Verify that T

satisfies T (vi) = wi, for i = 1, . . . , n. For uniqueness, let S ∈ L(V,W) satisfy S(vi) = wi, for

i = 1, . . . , n. Then, use the linearity of S to imply S(v) =
n∑
i=1

αiS(vi), whenever v =
n∑
i=1

αivi.

Now, use Definition 5.1.2.

5. Let V be a vector space and let a ∈ V. Then the map Ta : V→ V defined by Ta(x) = x+a,

for all x ∈ V is called the translation map. Prove that Ta ∈ L(V) if and only if a = 0.

Ans: Ta ∈ L(V)⇔ Ta(x + y) = Ta(x) + Ta(y)⇔ x + y + a = x + a + y + a⇔ a = 0.
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6. Prove that there exists infinitely many linear transformations T : R3 → R2 such that

T ((1,−1, 1)T ) = (1, 2)T and T ((−1, 1, 2)T ) = (1, 0)T ?

Ans: Note that {(1,−1, 1)T , (−1, 1, 2)T , (1, 0, 0)T } is a linearly independent set. One can

replace (1, 0, 0)T be any vector v such that {(1,−1, 1)T , (−1, 1, 2)T ,v} is a linearly indepen-

dent set. Further, you can define T (v) as any element of R2. So, you have uncountably

infinite number of choices.

7. Does there exist a linear transformation T : R3 → R2 such that

(a) T ((1, 0, 1)T ) = (1, 2)T , T ((0, 1, 1)T ) = (1, 0)T and T ((1, 1, 1)T ) = (2, 3)T ?

(b) T ((1, 0, 1)T ) = (1, 2)T , T ((0, 1, 1)T ) = (1, 0)T and T ((1, 1, 2)T ) = (2, 3)T ?

Ans: (a) yes, as the set {(1, 0, 1)T , (0, 1, 1)T , (1, 1, 1)T } is linearly independent subset of R3.

(b) Here, (1, 1, 2)T = (1, 0, 1)T + (0, 1, 1)T . So, for T to be a linear transform, we need

T ((1, 1, 2)T ) = T ((1, 0, 1)T ) + T ((0, 1, 1)T ). Here, we see that T ((1, 1, 2)T ) = (2, 3)T 6=
(1, 2)T + (1, 0)T = T ((1, 0, 1)T ) + T ((0, 1, 1)T ). Hence, no such linear transform exists.

8. Find T ∈ L(R3) for which Rng(T ) = LS
(
(1, 2, 0)T , (0, 1, 1)T , (1, 3, 1)T

)
.

Ans: As T ∈ L(R3), take T (e1) = (1, 2, 0)T , T (e2) = (0, 1, 1)T and T (e3) = (1, 3, 1)T .

9. Let T : R3 → R3 be defined by T ((x, y, z)T ) = (2x+ 3y+ 4z, x+ y+ z, x+ y+ 3z)T . Find

the value of k for which there exists a vector x ∈ R3 such that T (x) = (9, 3, k)T .

Ans: Notre that to find x ∈ R3 such that T (x) = (9, 3, k)T is equivalent to solving the linear

system Ax =


9

3

k

, where A =


2 3 4

1 1 1

1 1 3

. Verify that k = 5.

10. Let T : R3 → R3 be defined by T ((x, y, z)T ) = (2x− 2y + 2z,−2x+ 5y + 2z, x+ y + 4z)T .

Find x ∈ R3 such that T (x) = (1, 1,−1)T .

Ans: Solve the linear system Ax =


1

1

−1

, where A =


2 −2 2

−2 5 2

1 1 4

. Verify x =


21

12

−17/2

.

11. Let T : R3 → R3 be defined by T ((x, y, z)T ) = (2x + y + 3z, 4x − y + 3z, 3x − 2y + 5z)T .

Determine x,y, z ∈ R3 \ {0} such that T (x) = 6x, T (y) = 2y and T (z) = −2z. Is the set

{x,y, z} linearly independent?

Ans: Let A =


2 1 3

4 −1 3

3 −2 5

. Then T (x) = Ax. Thus, we need to solve (A − 6I3)x = 0,

(A − 2I3)y = 0 and (A + 2I3)z = 0. Verify x =


1

1

1

,y =


3

3

−1

 and z =


13

−19

−11

. Yes,

{x,y, z} is a linearly independent set.
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12. Let T : R3 → R3 be defined by T ((x, y, z)T ) = (2x+ 3y + 4z,−y,−3y + 4z)T . Determine

x,y, z ∈ R3 \ {0} such that T (x) = 2x, T (y) = 4y and T (z) = −z. Is the set {x,y, z}
linearly independent?

Ans: Proceed as in the previous question to get x =


1

0

0

,y =


2

0

1

 and z =


9

−5

−3

. Yes,

{x,y, z} is a linearly independent set.

13. Does there exist a linear transformation T : R3 → Rn such that T ((1, 1,−2)T ) = x,

T ((−1, 2, 3)T ) = y and T ((1, 10, 1)T ) = z

(a) with z = x + y?

(b) with z = cx + dy, for some choice of c, d ∈ R?

Ans: Note that 4(1, 1,−2)T+3(−1, 2, 3)T−(1, 10, 1)T = 0. Thus, for a linear transformation

T to exist, we need 4 T ((1, 1,−2)T ) + 3 T ((−1, 2, 3)T ) = T ((1, 10, 1)T ). Or equivalently, we

need z = 4x + 3y.

14. For each matrix A given below, define T ∈ L(R2) by T (x) = Ax. What do these linear

operators signify geometrically?

(a) A ∈
{

1

2

[√
3 −1

1
√

3

]
,

1√
2

[
1 −1

1 1

]
,
1

2

[
1 −

√
3√

3 1

]
,

[
0 −1

1 0

]
,

[
cos
(
2π
3

)
− sin

(
2π
3

)
sin
(
2π
3

)
cos
(
2π
3

) ]}.

(b) A ∈
{

1

2

[
1 −1

−1 1

]
,
1

5

[
1 2

2 4

]
,

[
0 0

0 1

]
,

[
1 0

0 0

]}
.

(c) A ∈
{

1

2

[√
3 1

1 −
√

3

]
,

1√
2

[
1 1

1 −1

]
,
1

2

[
1
√

3√
3 −1

]
,

[
cos
(
2π
3

)
sin
(
2π
3

)
sin
(
2π
3

)
− cos

(
2π
3

)]}.

Ans: (a) Counter-clockwise rotations by θ =
(π

6

)
,
(π

4

)
,
(π

3

)
and

(
2π

3

)
(b) Projection onto the line {t(1,−1) : t ∈ R}, {t(1, 2) : t ∈ R}, Y -axis and X-axis

(c) Reflection about the line y = x tan θ with θ =
( π

12

)
,
(π

8

)
,
(π

6

)
and

(π
3

)
15. Consider the space C3 over C. If f ∈ L(C3) with f(x) = x, f(y) = (1 + i)y and f(z) =

(2 + 3i)z, for x,y, z ∈ C3 \ {0} then prove that {x,y, z} forms a basis of C3.

Ans: Consider the linear system ax + by + cz = 0 in the unknowns a, b and c. Applying f to

the above equation gives ax + b(1 + i)y + c(2 + 3i)z = 0. Applying f to this equation gives

ax + b(1 + i)2y + c(2 + 3i)2z = 0. The three equations written together gives
1 1 1

1 1 + i 2 + 3i

12 (1 + i)2 (2 + 3i)2



ax

by

cz

 = 0.

The coefficient matrix is a vandermonde matrix and hence the system has a unique solution

ax = 0, by = 0 and cz = 0. As x,y, z ∈ C3 \ {0}, a = b = c = 0.
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5.2 Rank-Nullity Theorem

Recall that for any f ∈ L(V,W), Rng(f) = {f(v)|v ∈ V} (see Definition 5.1.8). Now, in line

with the ideas in Theorem 3.6.1, we define the null-space or the kernel of a linear transformation.

At this stage, the readers are advised to recall Section 3.6 for clarity and similarity with the

results in this section.

Definition 5.2.1. Let f ∈ L(V,W). Then the null space of f , denoted Null(f) or Ker(f),

is given by Null(f) = {v ∈ V|f(v) = 0}. In most linear algebra books, it is also called the

kernel of f and written Ker(f). Further, if V is finite dimensional then one writes

dim(Rng(T )) = Rank(T ) and dim(Null(T )) = Nullity(T ).

Example 5.2.2. 1. Define f ∈ L(R3,R4) by f((x, y, z)T ) = (x−y+z, y−z, x, 2x−5y+5z)T .

Then, by definition,

Null(f) = {(x, y, z)T ∈ R3 : f((x, y, z)T ) = 0}
= {(x, y, z)T ∈ R3 : (x− y + z, y − z, x, 2x− 5y + 5z)T = 0}
= {(x, y, z)T ∈ R3 : x− y + z = 0, y − z = 0, x = 0, 2x− 5y + 5z = 0}
= {(x, y, z)T ∈ R3 : y − z = 0, x = 0}
= {(0, z, z)T ∈ R3 : z ∈ R} = LS((0, 1, 1)T )

2. Fix B ∈M2(R). Now, define T : M2(R)→M2(R) by T (A) = BA−AB, for all A ∈M2(R).

Solution: Then A ∈ Null(T ) if and only if A commutes with B. In particular,

{I,B,B2, . . .} ⊆ Null(T ). For example, if B = αI, for some α then Null(T ) = M2(R).

Exercise 5.2.3. 1. Let T ∈ L(V,W). Then Null(T ) is a subspace of V. Furthermore, if

V is finite dimensional then dim(Null(T )),dim(Rng(T )) ≤ dim(V).

Ans: dim(Null(T )) ≤ dim(V) as Null(T ) is a subspace of V. dim(Rng(T )) ≤ dim(V)

as Rng(T )) = LS(T (v1), T (v2), . . . , T (vn)), where {v1, . . . ,vn} is a basis of V.

2. Define T ∈ L(R2,R4) by T ((x, y)T ) = (x+y, x−y, 2x+y, 3x−4y)T . Determine Null(T ).

Ans: Let A =


1 1

1 −1

2 1

3 −4

. Then, Null(T ) = {x ∈ R2 : Ax = 0} = {(0, 0)T }.

3. Describe Null(D) and Rng(D), where D ∈ L(R[x;n]) is defined by (D(f))(x) = f ′(x),

the differentiation with respect to x. Note that Rng(D) ⊆ R[x;n− 1].

Ans: Null(D) = {f(x) ∈ R[x;n] : f(x) is a constant polynomial} and

Rng(D) = {f(x) ∈ R[x;n] : f(x) is a polynomial of degree ≤ n− 1} = R[x;n− 1].

4. Define T ∈ L(R[x]) by (T (f))(x) = xf(x), for all f(x) ∈ L(R[x]). What can you say

about Null(T ) and Rng(T )?

Ans: Null(T ) = {0} and Rng(T ) = {f(x) ∈ R[x] : f(x) = a1x+ · · ·+ anx
n, ai ∈ R}.
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5. Define T ∈ L(R3) by T (e1) = e1 + e3, T (e2) = e2 + e3 and T (e3) = −e3. Then

(a) determine T ((x, y, z)T ), for x, y, z ∈ R.

(b) determine Null(T ) and Rng(T ).

(c) is it true that T 2 = Id?

Ans: T ((x, y, z)T ) =


1 0 0

0 1 0

1 1 −1



x

y

z

, Null(T ) = {0} and Rng(T ) = R3. Yes.

We now prove a result which is similar to Exercise 3.3.17.2.

Theorem 5.2.4. Let V and W be vector spaces over F and let T ∈ L(V,W).

1. If S ⊆ V is linearly dependent then T (S) = {T (v) | v ∈ V} is linearly dependent.

2. Suppose S ⊆ V such that T (S) is linearly independent then S is linearly independent.

Proof. Part 1 : As S is linearly dependent, there exist k ∈ N and vi ∈ S, for 1 ≤ i ≤ k, such that

the system
k∑
i=1

xivi = 0, in the unknowns xi’s, has a non-trivial solution, say xi = ai ∈ F, 1 ≤ i ≤

k. Thus
k∑
i=1

aivi = 0. Then ai’s also give a non-trivial solution to the system
k∑
i=1

yiT (vi) = 0,

where yi’s are unknown, as
k∑
i=1

aiT (vi) =
k∑
i=1

T (aivi) = T

(
k∑
i=1

aivi

)
= T (0) = 0. Hence the

required result follows.

Part 2 : On the contrary assume that S is linearly dependent. Then by Part 1, T (S) is

linearly dependent, a contradiction to the given assumption that T (S) is linearly independent.

We now prove the rank-nullity Theorem. The proof of this result is similar to the proof of

Theorem 3.6.1. We give it again for the sake of completeness.

Theorem 5.2.5 (Rank-Nullity Theorem). Let V and W be vector spaces over F. If dim(V) is

finite and T ∈ L(V,W) then

Rank(T ) + Nullity(T ) = dim(Rng(T )) + dim(Null(T )) = dim(V).

Proof. Let dim(V) = n. As Null(T ) ⊆ V, let dim(Null(T )) = k ≤ n. Let B = {v1, . . . ,vk}
be a basis of Null(T ). We extend it to form a basis C = {v1, . . . ,vk,vk+1, . . . ,vn} of V. As

T (v) = 0, for all v ∈ B,

Rng(T ) = LS(T (v1), . . . , T (vk), T (vk+1), . . . , T (vn)) = LS(T (vk+1), . . . , T (vn)).

We claim that {T (vk+1), . . . , T (vn)} is linearly independent subset of W.

So, consider the system
n−k∑
i=1

aiT (vk+i) = 0 in the unknown a1, . . . , an−k. Note that

n−k∑
i=1

aiT (vk+i) = 0⇔ T

(
n−k∑
i=1

aivk+i

)
= 0⇔

n−k∑
i=1

aivk+i ∈ Null(T ).
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Hence, there exists b1, . . . , bk ∈ F such that
n−k∑
i=1

aivk+i =
k∑
j=1

bjvj . This gives a new system

n−k∑
i=1

aivk+i +

k∑
j=1

(−bj)vj = 0,

in the unknowns ai’s and bj ’s. As C is linearly independent, the new system has only the trivial

solution, namely [a1, . . . , ak,−b1, . . . ,−b`]T = 0. Hence, the system
n−k∑
i=1

aiT (vk+i) = 0 has only

the trivial solution. Thus, the set {T (vk+1), . . . , T (vn)} is linearly independent subset of W. It

also spans Rng(T ) and hence is a basis of Rng(T ). Therefore,

dim(Rng(T )) + dim(Null(T )) = k + (n− k) = n = dim(V).

Thus, we have proved the required result.

As an immediate corollary, we have the following result. The proof is left for the reader.

Corollary 5.2.6. Let V and W be finite dimensional vector spaces over F and let T ∈ L(V,W).

If dim(V) = dim(W) then the following statements are equivalent.

1. T is one-one.

2. Ker(T ) = {0}.

3. T is onto.

4. dim(Rng(T )) = dim(W) = dim(V).

Exercise 5.2.7. 1. Prove Corollary 5.2.6.

2. Let V and W be finite dimensional vector spaces over F. If T ∈ L(V,W) then

(a) T cannot be onto if dim(V) < dim(W).

(b) T cannot be one-one if dim(V) > dim(W).

Ans: If T is onto then Rng(T ) = W. So, dim(V) ≥ dim(Rng(T )) = dim(W) (by the

rank-nullity theorem), a contradiction to dim(V) < dim(W).

If T is one-one then Null(T ) = {0}. Thus, dim(W) ≥ dim(Rng(T )) = dim(V), a contra-

diction to dim(V) > dim(W).

3. Let A ∈ Mn(R) with A2 = A. Define T ∈ L(Rn) by T (v) = Av for all v ∈ Rn. Then

prove that

(a) T 2 = T , or equivalently, (T (Id− T ))(x) = 0, for all x ∈ Rn.

(b) Null(T ) ∩Rng(T ) = {0}.

(c) Rn = Rng(T ) + Null(T ).

Ans: By definition, T 2(x) = T (T (x)) = T (Ax) = A(Ax) = A2x = Ax = T (x). Since the

above is true for all x ∈ Rn, T 2 = T . Or equivalently, T 2 − T = 0⇔ T (T − Id) = 0.
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Let x ∈ Null(T )∩Rng(T ). Then x ∈ Null(T ) implies T (x) = 0 and x ∈ Rng(T ) implies

there exists y ∈ Rn such that T (y) = x. Thus, t2 = T implies

x = T (y) = T 2(y) = T
(
T (y)

)
= T (x) = 0.

Note that Rng(T ) + Null(T ) ⊆ Rn and using the rank-nullity theorem

dim(Rng(T )+Null(T )) = dim(Rng(T ))+dim(Null(T ))−dim(Null(T )∩Rng(T )) = n.

4. Let z1, z2, . . . , zk be k distinct complex numbers. Define T ∈ L(C[x;n],Ck) by T
(
P (z)

)
=(

P (z1), . . . , P (zk)
)T

, for all P (z) ∈ C[x;n]. Determine Rank(T ).

Ans: Without loss of generality, let zi 6= 0, for all i. Define f(x) = (x−z1) · · · (x−zk). Then

f(x) is a polynomial in C[x;n] of degree k. Observe that {f(x), xf(x), . . . , xn−kf(x)} is a

basis of Null(T ). Extend it to get {1, x, . . . , xk−1, f(x), xf(x), . . . , xn−kf(x)} as a basis of

C[x;n]. Then, Rng(T ) = LS(T (1), T (x), . . . , T (xk−1)). Hence, Rank(T ) = k.

5.3 Algebra of Linear Transformations

We start with the following definition.

Definition 5.3.1. Let V,W be vector spaces over F and let S, T ∈ L(V,W). Then, we define

the point-wise

1. sum of S and T , denoted S + T , by (S + T )(v) = S(v) + T (v), for all v ∈ V.

2. scalar multiplication, denoted c T for c ∈ F, by (c T )(v) = c (T (v)), for all v ∈ V.

To understand the next result, consider L(R2,R3) and let B =

{
v1 =

[
1

0

]
,v2 =

[
0

1

]}

and C =

w1 =


1

0

0

,w2 =


0

1

0

,w3 =


0

0

1


 be bases of R2 and R3, respectively. Now, for

1 ≤ i ≤ 2, 1 ≤ j ≤ 3, define elements of L(R2,R3) by

fji(vk) =

{
wj , if k = i

0, if k 6= i.

Then verify that the above maps correspond to the following collection of matrices?

f11 =


1 0

0 0

0 0

, f12 =


0 1

0 0

0 0

, f21 =


0 0

1 0

0 0

, f22 =


0 0

0 1

0 0

, f31 =


0 0

0 0

1 0

, f32 =


0 0

0 0

0 1

.
Theorem 5.3.2. Let V and W be vector spaces over F. Then L(V,W) is a vector space over

F. Furthermore, if dimV = n and dimW = m, then dimL(V,W) = mn.
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Proof. It can be easily verified that under point-wise addition and scalar multiplication, defined

above, L(V,W) is indeed a vector space over F. We now prove the other part. So, let us

assume that B = {v1, . . . ,vn} and C = {w1, . . . ,wm} are bases of V and W, respectively. For

1 ≤ i ≤ n, 1 ≤ j ≤ m, we define the functions fji on the basis vectors of V by

fji(vk) =

{
wj , if k = i

0, if k 6= i.

For other vectors of V, we extend the definition by linearity, i.e., if v =
n∑
s=1

αsvs then

fji(v) = fji

(
n∑
s=1

αsvs

)
=

n∑
s=1

αsfji(vs) = αifji(vi) = αiwj . (5.3.1)

Thus fji ∈ L(V,W). We now show that {fji|1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of L(V,W).

As a first step, we show that fji’s are linearly independent. So, consider the linear system
n∑
i=1

m∑
j=1

cjifji = 0, in the unknowns cji’s, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Using the point-wise addition

and scalar multiplication, we get

0 = 0(vk) =

 n∑
i=1

m∑
j=1

cjifji

 (vk) =
n∑
i=1

m∑
j=1

cjifji(vk) =
m∑
j=1

cjkwj .

But, the set {w1, . . . ,wm} is linearly independent. Hence the only solution equals cjk = 0, for

1 ≤ j ≤ m. Now, as we vary vk from v1 to vn, we see that cji = 0, for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

Thus, we have proved the linear independence of {fji|1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Now, let us prove that LS ({fji|1 ≤ i ≤ n, 1 ≤ j ≤ m}) = L(V,W). So, let f ∈ L(V,W).

Then, for 1 ≤ s ≤ n, f(vs) ∈W and hence there exists βts’s such that f(vs) =
m∑
t=1

βtswt. So, if

v =
n∑
s=1

αsvs ∈ V then, using Equation (5.3.1), we get

f(v) = f

(
n∑
s=1

αsvs

)
=

n∑
s=1

αsf(vs) =

n∑
s=1

αs

(
m∑
t=1

βtswt

)
=

n∑
s=1

m∑
t=1

βts(αswt)

=
n∑
s=1

m∑
t=1

βtsfts(v) =

(
n∑
s=1

m∑
t=1

βtsfts

)
(v).

Since the above is true for every v ∈ V, we get f =
n∑
s=1

m∑
t=1

βtsfts. Thus, we conclude that

f ∈ LS ({fji|1 ≤ i ≤ n, 1 ≤ j ≤ m}). Hence, LS ({fji|1 ≤ i ≤ n, 1 ≤ j ≤ m}) = L(V,W) and

thus the required result follows.

We now give a corollary of the rank-nullity theorem.

Corollary 5.3.3. Let V be a vector space over F with dim(V) = n. If S, T ∈ L(V) then

1. Nullity(T ) + Nullity(S) ≥ Nullity(ST ) ≥ max{Nullity(T ),Nullity(S)}.

2. min{Rank(S),Rank(T )} ≥ Rank(ST ) ≥ n− Rank(S)− Rank(T ).



D
RA
FT

5.3. ALGEBRA OF LINEAR TRANSFORMATIONS 141

Proof. The prove of Part 2 is omitted as it directly follows from Part 1 and Theorem 5.2.5.

Part 1 - Second Inequality: Suppose v ∈ Ker(T ). Then

(ST )(v) = S(T (v)) = S(0) = 0

implies Ker(T ) ⊆ Ker(ST ). Thus Nullity(T ) ≤ Nullity(ST ).

By Theorem 5.2.5, Nullity(S) ≤ Nullity(ST ) ⇔ Rank(S) ≥ Rank(ST ). This holds as

Rng(T ) ⊆ V implies Rng(ST ) = S(Rng(T )) ⊆ S(V) = Rng(S).

Part 1 - First Inequality: Let {v1, . . . ,vk} be a basis of Null(T ). Then {v1, . . . ,vk} ⊆
Null(ST ). So, let us extend it to get a basis {v1, . . . ,vk,u1, . . . ,u`} of Null(ST ).

Now, proceeding as in the proof of the rank-nullity theorem, implies that {T (u1), . . . , T (u`)}
is a linearly independent subset of Null(S). Hence, Nullity(S) ≥ ` and therefore, we get

Nullity(ST ) = k + ` ≤ Nullity(T ) + Nullity(S).

Before proceeding further, recall the following definition about a function.

Definition 5.3.4. Let f : S → T be any function. Then

1. a function g : T → S is called a left inverse of f if (g ◦ f)(x) = x, for all x ∈ S. That is,

g ◦ f = Id, the identity function on S.

2. a function h : T → S is called a right inverse of f if (f ◦ h)(y) = y, for all y ∈ T . That

is, f ◦ h = Id, the identity function on T .

3. f is said to be invertible if it has a right inverse and a left inverse.

Remark 5.3.5. Let f : S → T be invertible. Then, it can be easily shown that any right inverse

and any left inverse are the same. Thus, the inverse function is unique and is denoted by f−1.

It is well known that f is invertible if and only if f is both one-one and onto.

Lemma 5.3.6. Let V and W be vector spaces over F and let T ∈ L(V,W). If T is one-one and

onto then, the map T−1 : W → V is also a linear transformation. The map T−1 is called the

inverse linear transform of T and is defined by T−1(w) = v whenever T (v) = w.

Proof. Part 1: As T is one-one and onto, by Theorem 5.2.5, dim(V) = dim(W). So, by

Corollary 5.2.6, for each w ∈ W there exists a unique v ∈ V such that T (v) = w. Thus, one

defines T−1(w) = v.

We need to show that T−1(α1w1 + α2w2) = α1T
−1(w1) + α2T

−1(w2), for all α1, α2 ∈ F
and w1,w2 ∈W. Note that by previous paragraph, there exist unique vectors v1,v2 ∈ V such

that T−1(w1) = v1 and T−1(w2) = v2. Or equivalently, T (v1) = w1 and T (v2) = w2. So,

T (α1v1 + α2v2) = α1w1 + α2w2, for all α1, α2 ∈ F. Hence, for all α1, α2 ∈ F, we get

T−1(α1w1 + α2w2) = α1v1 + α2v2 = α1T
−1(w1) + α2T

−1(w2).

Thus, the required result follows.

Example 5.3.7. 1. Let T : R2 → R2 be given by (x, y) (x+ y, x− y). Then, verify that

T−1 is given by  
(x+y

2 , x−y2
)
.
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2. Let T ∈ L(Rn,R[x;n − 1]) be given by (a1, . . . , an)  
n∑
i=1

aix
i−1, for (a1, . . . , an) ∈ Rn.

Then, T−1 maps
n∑
i=1

aix
i−1  (a1, . . . , an), for each polynomial

n∑
i=1

aix
i−1 ∈ R[x;n − 1].

Verify that T−1 ∈ L(R[x;n− 1],Rn).

Definition 5.3.8. Let V and W be vector spaces over F and let T ∈ L(V,W). Then, T is said

to be singular if {0} $ Ker(T ), i.e., Ker(T ) contains a non-zero vector. If Ker(T ) = {0}
then, T is called non-singular.

Example 5.3.9. Let T ∈ L(R2,R3) be defined by T

([
x

y

])
=


x

y

0

. Then, verify that T is

non-singular. Is T invertible?

We now prove a result that relates non-singularity with linear independence.

Theorem 5.3.10. Let V and W be vector spaces over F and let T ∈ L(V,W). Then the

following statements are equivalent.

1. T is one-one.

2. T is non-singular.

3. Whenever S ⊆ V is linearly independent then T (S) is necessarily linearly independent.

Proof. 1⇒2 On the contrary, let T be singular. Then, there exists v 6= 0 such that T (v) =

0 = T (0). This implies that T is not one-one, a contradiction.

2⇒3 Let S ⊆ V be linearly independent. Let if possible T (S) be linearly dependent.

Then, there exists v1, . . . ,vk ∈ S and α = (α1, . . . , αk)
T 6= 0 such that

k∑
i=1

αiT (vi) = 0.

Thus, T

(
k∑
i=1

αivi

)
= 0. But T is non-singular and hence we get

k∑
i=1

αivi = 0 with α 6= 0, a

contradiction to S being a linearly independent set.

3⇒1 Suppose that T is not one-one. Then, there exists x,y ∈ V such that x 6= y but

T (x) = T (y). Thus, we have obtained S = {x − y}, a linearly independent subset of V with

T (S) = {0}, a linearly dependent set. A contradiction to our assumption. Thus, the required

result follows.

Definition 5.3.11. Let V and W be vector spaces over F and let T ∈ L(V,W). Then, T is

said to be an isomorphism if T is one-one and onto. The vector spaces V and W are said to

be isomorphic, denoted V ∼= W, if there is an isomorphism from V to W.

We now give a formal proof of the statement that every finite dimensional vector space V
over F looks like Fn, where n = dim(V).

Theorem 5.3.12. Let V be an n-dimensional vector space over F. Then V ∼= Fn.
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Proof. Let {v1, . . . ,vn} be a basis of V and {e1, . . . , en}, the standard basis of Fn. Define

T ∈ L(V,Fn) by T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiei, whenever v =
n∑
i=1

viei ∈ V. Then, it is easy to

observe that T is one-one and onto. Hence, T is an isomorphism.

As a direct application using the countability argument, one obtains the following result

Corollary 5.3.13. The vector space R over Q is not finite dimensional. Similarly, the vector

space C over Q is not finite dimensional.

We now summarize the different definitions related with a linear operator on a finite dimen-

sional vector space. The proof basically uses the rank-nullity theorem and they appear in some

form in previous results. Hence, we leave the proof for the reader.

Theorem 5.3.14. Let V be a finite dimensional vector space over F with dimV = n. Then the

following statements are equivalent for T ∈ L(V).

1. T is one-one.

2. Ker(T ) = {0}.

3. Rank(T ) = n.

4. T is onto.

5. T is an isomorphism.

6. If {v1, . . . ,vn} is a basis for V then so is {T (v1), . . . , T (vn)}.

7. T is non-singular.

8. T is invertible.

5.4 Ordered Bases

Let V be a vector space of dimension n over F. Then Theorem 5.3.12 implies that V is isomorphic

to Fn. So, one should be able to visualize the elements of V as an n-tuple. Further, our problem

may require us to look at a subspace W of V whose dimension is very small as compared to the

dimension of V (this is generally encountered when we work with sparse matrices or whenever

we do computational work). It may also be possible that a basis of W may not look like a

standard basis of Fn, where the coefficient of ei gave the i-th component of the vector. We start

with the following example. Note that we will be using ‘small brackets’ in place of ‘braces’ to

represent a basis.

Example 5.4.1.

1. Let f(x) = 1 − x2 ∈ R[x; 2]. If B = (1, x, x2) be a basis of R[x; 2] then, f(x) =

[
1 x x2

]
1

0

−1

.
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2. Let V = {(u, v, w, x, y)T ∈ R5 | w − x = u, v = y, u + v + x = 3y}. Then, verify that

B =
(
(−1, 0, 0, 1, 0)T , (2, 1, 2, 0, 1)T

)
= (u1,u2), say, can be taken as a basis of V. So, even

though V is a subspace of R5, we just need two scalars α, β to understand any vector in

V. For example, (7, 5, 10, 3, 5)T = 3u1 + 5u2 = [u1,u2]

[
3

5

]
= [u2,u1]

[
5

3

]
.

So, from Example 5.4.1 we conclude the following: Let V be a vector space of dimension n

over F. If we fix a basis, say, B = (u1,u2, . . . ,un) of V and if v ∈ V with v =
n∑
i=1

αiui ⇒

v = [u1,u2, . . . ,un]


α1

α2

...

αn

 = [u2,u1, . . . ,un]


α2

α1

...

αn


Note the change in the first two components of the column vectors which are elements of Fn.

So, a change in the position of the vectors ui’s gives a change in the column vector. Hence,

if we fix the order of the basis vectors ui’s then with respect to this order all vectors can be

thought of as elements of Fn. We use the above discussion to define an ordered basis.

Definition 5.4.2. Let W be a vector space over F with a basis B = {u1, . . . ,um}. Then, an

ordered basis for W is a basis B together with a one-to-one correspondence between B and

{1, 2, . . . ,m}. Since there is an order among the elements of B, we write B = (u1, . . . ,um). The

matrix B = [u1, . . . ,um] containing the basis vectors of Wm and is called the basis matrix.

Example 5.4.3. Note that for Example 5.4.1.1 [1, x, x2] is a basis matrix, whereas for Exam-

ple 5.4.1.2, [u1,u2] and [u2,u1] are basis matrices.

Definition 5.4.4. Let B = [v1, . . . ,vm] be the basis matrix corresponding to an ordered basis

B = (v1, . . . ,vm) of W. Since B is a basis of W, for each v ∈ W, there exist βi, 1 ≤ i ≤ m,

such that v =
m∑
i=1

βivi = B


β1
...

βm

. The vector


β1
...

βm

, denoted [v]B, is called the coordinate

vector of v with respect to B. Thus,

v = B[v]B = [v1, . . . ,vm][v]B, or equivalently, v = [v]TB


v1

...

vm

. (5.4.1)

The expressions in Equation (5.4.1) are generally viewed as a symbolic expressions.

Example 5.4.5. Consider Example 5.4.1. Then for

1. f(x) = 1−x2 ∈ R[x; 2] with B = (1, x, x2) as an ordered basis of R[x; 2]⇒ (x)]B =


1

0

−1

.
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2. (7, 5, 10, 3, 5) ∈ V = {(u, v, w, x, y)T ∈ R5 | w − x = u, v = y, u + v + x = 3y} with

B =
(
(−1, 0, 0, 1, 0)T , (2, 1, 2, 0, 1)T

)
as an ordered basis of V⇒ [(7, 5, 10, 3, 5)]B =

[
3

5

]
.

Remark 5.4.6. Let V be a vector space over F of dimension n. Suppose B = (v1, . . . ,vn) is

an ordered basis of V.

1. Then [αv + w]B = α[v]B + [w]B, for all α ∈ F and v,w ∈ V.

2. So, once we have fixed B, we can think of each element of V as a vector in Fn. Therefore,

if S = {w1, . . . ,wm} ⊆ V then in place of working with S, we can work with its coordinates

or equivalently with S′ = {[w1]B, . . . , [wm]B}. Hence,

(a) S is linearly independent if and only if S′ is linearly independent in Fn.

(b) S is linearly dependent if and only if S′ is linearly dependent in Fn.

(c) a vector v ∈ LS(S) if and only if [v]B ∈ LS(S′).

(d) for any ordered basis C = (w1, . . . ,wn) of V, we can work with the n × n matrix

C =
[
[w1]B · · · [wm]B

]
. Note that C is invertible.

(e) the symbolic expression v = B[v]B can also be thought of as a matrix equation. Thus

v = B[v]B ⇔ [v]B = B−1v for every v ∈ V. (5.4.2)

Example 5.4.7. Consider the matrix A =


1 2 3

2 1 3

3 1 4

 ∈Mm,n(R). If B = (e11, e12, e13, . . . , e33)

is an ordered basis of M3(R) then [A]TB =
[
1 2 3 2 1 3 3 1 4

]
.

Thus, a little thought implies that Mm,n(R) can be mapped to Rmn with respect to the

ordered basis B = (e11, . . . , e1n, e21, . . . , e2n, . . . , em1, . . . , emn) of Mm,n(R).

The next definition relates the coordinates of a vector with respect to two distinct ordered

bases. This allows us to move from one ordered basis to another ordered basis.

Definition 5.4.8. Let V be a vector space over F with dim(V) = n. Let A = [v1, . . . ,vn] and

B = [u1, . . . ,un] be basis matrices corresponding to the ordered bases A and B, respectively, of

V. Thus, continuing with the symbolic expression in Equation (5.4.1), we have

A = [v1, . . . ,vn] = [B[v1]B, . . . , B[vn]B] = B [[v1]B, . . . , [vn]B] = B[A]B, (5.4.3)

where [A]B = [[v1]B, . . . , [vn]B], is called the matrix of A with respect to the ordered basis

B or the change of basis matrix from A to B.

We now summarize the ideas related with ordered bases. This also helps us to understand

the nomenclature ‘change of basis matrix’ for the matrix [A]B.

Theorem 5.4.9. Let V be a vector space over F with dim(V) = n. Further, let A = (v1, . . . ,vn)

and B = (u1, . . . ,un) be two ordered bases of V.

1. Then the matrix [A]B is invertible. Further, Equation (5.4.2) gives [A]B = B−1A.
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2. Similarly, the matrix [B]A is invertible and [B]A = A−1B.

3. Moreover, [x]B = [A]B[x]A, for all x ∈ V, i.e., [A]B takes coordinate vector of x with

respect to A to the coordinate vector of x with respect to B.

4. Similarly, [x]A = [B]A[x]B, for all x ∈ V.

5. Furthermore ([A]B)−1 = [B]A.

Proof. Part 1: Note that using Equation (5.4.3), we see that the matrix [A]B takes a linearly

independent set to another linearly independent set. Hence, by Exercise 3.3.17, the matrix [A]B
is invertible, which proves Part 1. A similar argument gives Part 2.

Part 3: Using Equation (5.4.2), [x]B = B−1x = B−1(AA−1)x = (B−1A)(A−1x) = [A]B[x]A,

for all x ∈ V. A similar argument gives Part 4 and clearly Part 5.

Example 5.4.10.

1. Let V = Rn, A = [v1, . . . ,vn] and B = (e1, . . . , en) be the standard ordered basis. Then

A = [v1, . . . ,vn] = [[v1]B, . . . , [vn]B] = [A]B.

2. Suppose A =
(
(1, 0, 0)T , (1, 1, 0)T , (1, 1, 1)T

)
and B =

(
(1, 1, 1)T , (1,−1, 1)T , (1, 1, 0)T

)
are

two ordered bases of R3. Then, we verify the statements in the previous result.

(a) Using Equation (5.4.2),


x

y

z


A

=




1 1 1

0 1 1

0 0 1



−1 

x

y

z

 =


x− y
y − z
z

.

(b) Similarly,


x

y

z


B

=


1 1 1

1 −1 1

1 1 0


−1

x

y

z

 =
1

2


−1 1 2

1 −1 0

2 0 −2



x

y

z

 =
1

2


−x+ y + 2z

x− y
2x− 2z

.

(c) [A]B =


−1/2 0 1

1/2 0 0

1 1 0

, [B]A =


0 2 0

0 −2 1

1 1 0

 and [A]B[B]A = I3.

Exercise 5.4.11. In R3, let A =
(
(1, 2, 0)T , (1, 3, 2)T , (0, 1, 3)T

)
be an ordered basis.

1. If B =
(
(1, 2, 1)T , (0, 1, 2)T , (1, 4, 6)T

)
is another ordered basis of R3. Then, determine

[A]B, [B]A and verify that [A]B[B]A = I3.

Ans: [A]B = B−1A =


2 2 −1

2 3 −1

−1 −1 1

 and [B]A = A−1B =


2 −1 1

−1 1 0

1 0 2

.

2. Determine the ordered basis C such that [A]C =


2 1 3

3 1 2

0 0 1

.

Ans: C =
(
(2, 7, 6)T , (−1,−4,−4)T , (−4,−12,−7)T

)
.
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5.5 Matrix of a linear transformation

In Example 5.1.3.7, we saw that for each A ∈ Mm×n(R) there exists a linear transformation

T ∈ L(Rn,Rm) given by T (x) = Ax, for all x ∈ Rn. In this section, we prove that if V
and W are finite dimensional vector spaces over F with ordered bases A = (v1, . . . ,vn) and

B = (w1, . . . ,wm), respectively, then any T ∈ L(V,W) corresponds to an m× n matrix.

To understand it let A = [v1, . . . ,vn] and B = [w1, . . . ,wm] be the basis matrix of A and

B, respectively. Thus, for any T ∈ L(V,W) and v ∈ V, using the symbolic expression in

Equation (5.4.1), we see that T (v) = B[T(v)]B and v = A[v]A. Hence, for any x ∈ V

B[T(x)]B = T (x) = T ([v1, . . . ,vn][x]A) =
[
T (v1) · · · T (vn)

]
[x]A

=
[
B[T (v1)]B · · · B[T (vn)]B

]
[x]A = B

[
[T (v1)]B · · · [T (vn)]B

]
[x]A.

As we can think of B as an invertible matrix (see Equation (5.4.2)), we get

[T(x)]B = [[T (v1)]B, . . . , [T (vn)]B] [x]A, for each x ∈ V.

Note that the matrix
[
[T (v1)]B · · · [T (vn)]B

]
, denoted T [A,B], is an m × n matrix and is

unique with respect to the ordered bases A and B as the i-th column equals [T (vi)]B, for the

i-th vector vi ∈ A, 1 ≤ i ≤ n. So, we immediately have the following definition and result.

Definition 5.5.1. Let A = (v1, . . . ,vn) and B = (w1, . . . ,wm) be ordered bases of V and W,

respectively. If T ∈ L(V,W) then the matrix T [A,B] is called the coordinate matrix of T or

the matrix of the linear transformation T with respect to the bases A and B, respectively.

When there is no mention of bases, we take it to be the standard ordered bases and denote

the corresponding matrix by [T ]. Also, note that for each x ∈ V, the matrix T [A,B][x]A is

the coordinate vector of T (x) with respect to the ordered basis B of the co-domain. Thus,

the matrix T [A,B] takes coordinate vector of the domain points to the coordinate vector of its

images. The above discussion is stated as the next result.

Theorem 5.5.2. Let A = (v1, . . . ,vn) and B = (w1, . . . ,wm) be ordered bases of V and W,

respectively. If T ∈ L(V,W) then there exists a matrix S ∈Mm×n(F) with

S = T [A,B] =
[
[T (v1)]B · · · [T (vn)]B

]
and [T (x)]B = S [x]A, for all x ∈ V.

See Figure 5.1 for clarity on which basis occurs at which place.

Remark 5.5.3. Let V and W be vector spaces over F with ordered bases A1 = (v1, . . . ,vn)

and B1 = (w1, . . . ,wm), respectively. Also, for α ∈ F with α 6= 0, let A2 = (αv1, . . . , αvn) and

B2 = (αw1, . . . , αwm) be another set of ordered bases of V and W, respectively. Then, for any

T ∈ L(V,W)

T [A2,B2] =
[
[T (αv1)]B2 · · · [T (αvn)]B2

]
=
[
[T (v1)]B1 · · · [T (vn)]B1

]
= T [A1,B1].

Thus, the same matrix can be the matrix representation of T for two different pairs of bases.
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𝕍 𝕎

x 𝑇 (x)
‖

[x]𝒜

𝒜

‖
[𝑇 (x)]ℬ = 𝑇 [𝒜, ℬ] [x]𝒜

ℬ

1

Figure 5.1: Matrix of the Linear Transformation

Q = (0, 1)

P = (1, 0)
θ

θ

O

Q′ = (− sin θ, cos θ)

P ′ = (cos θ, sin θ)

θ

α
P = (x, y)

O

P ′ = (x′, y′)

R

Figure 5.2: Counter-clockwise Rotation by an angle θ

We now give a few examples to understand the above discussion and Theorem 5.5.2.

Example 5.5.4. 1. Let T ∈ L(R2) represent a counter-clockwise rotation by an angle θ, for

some θ ∈ [0, 2π]. Then, using the right figure in Figure 5.2, we see that x = OP cosα

and y = OP sinα. Thus, verify that[
x′

y′

]
=

[
OP ′ cos(α+ θ)

OP ′ sin(α+ θ)

]
=

[
OP
(
cosα cos θ − sinα sin θ

)
OP
(
sinα cos θ + cosα sin θ

)] =

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
.

Or equivalently, using the left figure in Figure 5.2 we see that the matrix in the standard

ordered basis of R2 equals

[T ] =
[
T (e1), T (e2)

]
=

[
cos θ − sin θ

sin θ cos θ

]
. (5.5.1)

2. Let T ∈ L(R2) with T ((x, y)T ) = (x+ y, x− y)T .

(a) Then [T ] =
[
[T (e1)] [T (e2)]

]
=

[
1 1

1 −1

]
.

(b) On the image space take the ordered basis as B =

([
1

0

]
,

[
1

1

])
. Then

[T ] =
[
[T (e1)]B [T (e2)]B

]
=

[[
1

1

]
B

[
1

−1

]
B

]
=

[
0 2

1 −1

]
.
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(c) In the above, let the ordered basis of the domain space be A =

([
−1

1

]
,

[
3

1

])
. Then

T [A,B] =

[[
T

[
−1

1

]]
B

[
T

[
3

1

]]
B

]
=

[[
0

−2

]
B

[
4

2

]
B

]
=

[
2 2

−2 2

]
.

3. Let A = (e1, e2) and B = (e1 + e2, e1 − e2) be two ordered bases of R2. Then Compute

T [A,A] and T [B,B], where T ((x, y)T ) = (x+ y, x− 2y)T .

Solution: Note that the bases matrices for the two ordered bases are A = Id2 and

B =

[
1 1

1 −1

]
, respectively. So, A−1 = Id2 and B−1 =

1

2

[
1 1

1 −1

]
. Thus,

T [A,A] =

[[
T

([
1

0

])]
A
,

[
T

([
0

1

])]
A

]
=

[[
1

1

]
A
,

[
1

−2

]
A

]
=

[
1 1

1 −2

]
and

T [B,B] =

[[
T

([
1

1

])]
B
,

[
T

([
1

−1

])]
B

]
=

[[
2

−1

]
B
,

[
0

3

]
B

]
=

[
1
2

3
2

3
2 −3

2

]

as

[
2

−1

]
B

= B−1
[

2

−1

]
and

[
0

3

]
B

= B−1
[

0

3

]
.

4. Let T ∈ L(R3,R2) be defined by T ((x, y, z)T ) = (x+ y − z, x+ z)T . Determine [T ].

Solution: By definition

[T ] = [[T (e1)], [T (e2)], [T (e3)]] =

[[
1

1

]
,

[
1

0

]
,

[
−1

1

]]
=

[
1 1 −1

1 0 1

]
.

5. Define T ∈ L(C3) by T (x) = x, for all x ∈ C3. Note that T is the Id map. De-

termine the coordinate matrix with respect to the ordered basis A =
(
e1, e2, e3

)
and

B =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
.

Solution: By definition, verify that

T [A,B] = [[T (e1)]B, [T (e2)]B, [T (e3)]B] =




1

0

0


B

,


0

1

0


B

,


0

0

1


B

 =


1 −1 0

0 1 −1

0 0 1


and

T [B,A] =




1

0

0


A

,


1

1

0


A

,


1

1

1


A

 =


1 1 1

0 1 1

0 0 1

 .
Thus, verify that T [B,A]−1 = T [A,B] and T [A,A] = T [B,B] = I3 as the given map is

indeed the identity map.

We now give a remark which relates the above ideas with respect to matrix multiplication.

Remark 5.5.5. 1. Fix S ∈ Mn(C) and define T ∈ L(Cn) by T (x) = Sx, for all x ∈ Cn. If

A is the standard basis of Cn then [T ] = S as

[T ][:, i] = [T (ei)]A = [S(ei)]A = [S[:, i]]A = S[:, i], for 1 ≤ i ≤ n.
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2. Fix S ∈ Mm,n(C) and define T ∈ L(Cn,Cm) by T (x) = Sx, for all x ∈ Cn. Let A and B
be the standard ordered bases of Cn and Cm, respectively. Then T [A,B] = S as

(T [A,B])[:, i] = [T (ei)]B = [Sei]B = [S[:, i]]B = S[:, i], for 1 ≤ i ≤ n.

3. Fix S ∈Mn(C) and define T ∈ L(Cn) by T (x) = Sx, for all x ∈ Cn. Let A = (v1, . . . ,vn)

and B = (u1, . . . ,un) be two ordered bases of Cn with respective basis matrices A and B.

Then

T [A,B] =
[
[T (v1)]B · · · [T (v1)]B

]
=
[
B−1T (v1) · · · B−1T (v1)

]
=

[
B−1Sv1 · · · B−1Sv1

]
= B−1S

[
v1 · · · vn

]
= B−1SA.

In particular, if A = B then T [A,A] = A−1SA. Thus, if S = In then

(a) T = Id and Id[A,A] = In.

(b) Id[A,B] = B−1A, an invertible matrix.

(c) Similarly, Id[B,A] = A−1B. So, Id[B,A] · Id[A,B] = (A−1B)(B−1A) = In.

Example 5.5.6. 1. Let T
(
(x, y)T

)
= (x+ y, x− y)T and A = (e1, e1 + e2) be the ordered

basis of R2. Then, for S =

[
1 1

1 −1

]
, T (x) = Sx. Further, if A =

[
1 1

0 1

]
is the basis

matrix of A then using Remark 5.5.5.3a, we obtain

T [A,A] = A−1SA =

[
1 −1

0 1

][
1 1

1 −1

][
1 1

0 1

]
=

[
1 −1

0 1

][
1 2

1 0

]
=

[
0 2

1 0

]
.

2. [Finding T from T [A,B]] Let V and W be vector spaces over F with ordered bases A and

B, respectively. Suppose we are given the matrix S = T [A,B]. Then to determine the

corresponding T ∈ L(V,W), we go back to the symbolic expression in Equation (5.4.1)

and Theorem 5.5.2. We see that

(a) T (v) = B[T (v)]B = BT [A,B][v]A = BS[v]A.

(b) In particular, if V = W = Fn and A = B then T (v) = BSB−1v.

(c) Further, if B is the standard ordered basis then T (v) = Sv.

Exercise 5.5.7. 1. Relate Remark 5.5.5.3 with Theorem 5.4.9 as Id is the identity map.

2. Verify Remark 5.5.5 from different examples in Example 5.5.4.

3. Let T ∈ L(R2) represent the reflection about the line y = mx. Find [T ].

Ans: Note that T (1, 0) =
1

1 +m2
(1−m2, 2m) and T (0, 1) =

1

1 +m2
(2m,m2 − 1). Thus,

A = [T ] =
1

1 +m2

[
1−m2 2m

2m m2 − 1

]
.
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4. Let T ∈ L(R3) represent the reflection about/across the X-axis. Find [T ]. What about the

reflection across the XY -plane?

Ans:


1 0 0

0 −1 0

0 0 −1




1 0 0

0 1 0

0 0 −1

.

5. Let T ∈ L(R3) represent the counter-clockwise rotation around the positive Z-axis by an

angle θ, 0 ≤ θ < 2π. Find its matrix with respect to the standard ordered basis of R3.

[Hint: Is


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 the required matrix?]

6. Define a function D ∈ L(R[x;n]) by D(f(x)) = f ′(x). Find the matrix of D with respect

to the standard ordered basis of R[x;n]. Observe that Rng(D) ⊆ R[x;n− 1].

Ans: Note that this is an (n+ 1)× (n+ 1) matrix and equals



0 1 0 · · · 0

0 0 2 · · · 0

0 0 0
. . . 0

...
...

...
. . . n

0 0 0 · · · 0


.

5.6 Similarity of Matrices

Let V be a vector space over F with dim(V) = n and ordered basis B. Then any T ∈ L(V)

corresponds to a matrix in Mn(F). Then in Remark 5.5.5.3 we have already seen that if A is

the standard ordered basis of Fn and B is any ordered basis of Fn with basis matrix B then

T [B,B] = B−1T [A,A]B. Similarly, if C is any other ordered basis of Fn with basis matrix C

then T [C, C] = C−1T [A,A]C and thus

T [C, C] = C−1 T [A,A] C = C−1(B T [B,B] B−1)C = (B−1C)−1 T [B,B] (B−1C).

This idea can be generalized to any finite dimensional vector space. To do so, we start with

the matrix of the composition of two linear transformations. This also helps us to relate matrix

multiplication with composition of two functions.

(V, B, n) (W, C, m) (Z, D, p)
T [B, C]m×n S[C, D]p×m

(ST )[B, D]p×n = S[C, D] · T [B, C]

R

Figure 5.3: Composition of Linear Transformations

Theorem 5.6.1 (Composition of Linear Transformations). Let V, W and Z be finite dimen-

sional vector spaces over F with ordered bases B, C and D, respectively. Also, let T ∈ L(V,W)
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and S ∈ L(W,Z). Then S ◦ T = ST ∈ L(V,Z) (see Figure 5.3). Then

(ST ) [B,D] = S[C,D] · T [B, C].

Proof. Let B = (u1, . . . ,un), C = (v1, . . . ,vm) and D = (w1, . . . ,wp) be the ordered bases of

V,W and Z, respectively. As (ST )(u) ∈ Z, using Theorem 5.5.2, we note that

[(ST )(u)]D =
[
S
(
T (u)

)]
D = S[C,D] · [T (u)]C = S[C,D] · (T [B, C] · [u]B) .

So, for all u ∈ V, we get (S[C,D] · T [B, C]) [u]B = [(ST )(u)]D = (ST )[B,D] [u]B. Hence

(ST ) [B,D] = S[C,D] · T [B, C].
As an immediate corollary of Theorem 5.6.1 we see that the matrix of the inverse linear

transform is the inverse of the matrix of the linear transform, whenever the inverse exists.

Theorem 5.6.2 (Inverse of a Linear Transformation). Let V is a vector space with dim(V) = n.

If T ∈ L(V) is invertible then for any ordered basis B and C of the domain and co-domain,

respectively, one has (T [C,B])−1 = T−1[B, C]. That is, the inverse of the coordinate matrix of

T is the coordinate matrix of the inverse linear transform.

Proof. As T is invertible, TT−1 = Id. Thus, Remark 5.5.5.3 and Theorem 5.6.1 imply

In = Id[B,B] = (TT−1)[B,B] = T [C,B] · T−1[B, C].

Hence, by definition of inverse, T−1[B, C] = (T [C,B])−1 and the required result follows.

Exercise 5.6.3. Find the matrix of the linear transformations given below.

1. Let B =
(
x1,x2,x3

)
be an ordered basis of R3. Now, define T ∈ L(R3) by T (x1) = x2,

T (x2) = x3 and T (x3) = x1. Determine T [B,B]. Is T invertible?

Ans: T [B,B] =


0 0 1

1 0 0

0 1 0

.

2. Let B =
(
1, x, x2, x3

)
be an ordered basis of R[x; 3] and define T ∈ L(R[x; 3]) by T (1) = 1,

T (x) = 1 + x, T (x2) = (1 + x)2 and T (x3) = (1 + x)3. Prove that T is invertible. Also,

find T [B,B] and T−1[B,B].

Ans: Note that {1, 1 + x, (1 + x)2, (1 + x)3} is linearly independent. As T takes a linearly

independent to another linearly independent, T is invertible. Further

T [B,B] =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

 and (T−1)[B,B] =


1 −1 1 −1

0 1 −2 3

0 0 1 −3

0 0 0 1

.

Let V be a finite dimensional vector space. Then, the next result answers the question “what

happens to the matrix T [B,B] if the ordered basis B changes to C?”
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(V,B) (V,B)

(V, C) (V, C)

T [B,B]

T [C, C]

Id[B, C] Id[B, C]
T ◦ Id

Id ◦ T

Figure 1: Commutative Diagram for Similarity of Matrices

1

Figure 5.4: T [C, C] = Id[B, C] · T [B,B] · (Id[B, C])−1 - Similarity of Matrices

Theorem 5.6.4. Let B = (u1, . . . ,un) and C = (v1, . . . ,vn) be two ordered bases of V and Id

the identity operator. Then, for any linear operator T ∈ L(V)

T [C, C] = Id[B, C] · T [B,B] · (Id[B, C])−1 . (5.6.1)

Proof. As Id is the identity operator, the composite functions (T ◦ Id), (Id ◦ T ) from (V,B) to

(V, C) are equal (see Figure 5.4 for clarity). Hence, their matrix representations with respect to

ordered bases B and C are equal. Thus, (T ◦ Id)[B, C] = T [B, C] = (Id ◦ T )[B, C]. Thus, using

Theorem 5.6.1, we get

Id[B, C] · T [B,B] = T [B, C] = T [C, C]Id[B, C].

Hence, using Theorem 5.6.2, the required result follows.

Let V be a vector space and let T ∈ L(V). If dim(V) = n then every ordered basis B of V
gives an n × n matrix T [B,B]. So, as we change the ordered basis, the coordinate matrix of

T changes. Theorem 5.6.4 tells us that all these matrices are related by an invertible matrix.

Thus, we are led to the following definitions.

Definition 5.6.5. Let V be a vector space with ordered bases B and C. If T ∈ L(V) then,

T [C, C] = Id[B, C] · T [B,B] · Id[C,B]. The matrix Id[B, C] is called the change of basis matrix

(also, see Theorem 5.4.9) from B to C.

Definition 5.6.6. Let X,Y ∈Mn(C). Then, X and Y are said to be similar if there exists a

non-singular matrix P such that P−1XP = Y ⇔ X = PY P−1 ⇔ XP = PY .

Example 5.6.7. Let B =
(
1 + x, 1 + 2x+ x2, 2 + x

)
and C =

(
1, 1 + x, 1 + x+ x2

)
be ordered

bases of R[x; 2]. Then, verify that Id[B, C]−1 = Id[C,B], as

Id[C,B] = [[1]B, [1 + x]B, [1 + x+ x2]B] =


−1 1 −2

0 0 1

1 0 1

 and

Id[B, C] = [[1 + x]C , [1 + 2x+ x2]C , [2 + x]C ] =


0 −1 1

1 1 1

0 1 0

 .
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Exercise 5.6.8. 1. Let A ∈ Mn(R) such that tr(A) = 0. Then prove that there exists a

non-singular matrix S such that SAS−1 = B with B = [bij ] and bii = 0, for 1 ≤ i ≤ n.

Ans: If A = 0 or diag(A) = 0 done. Else, assume a11 6= 0 and choose x ∈ Rn such

that {x, Ax} are linearly independent. Extend this set to form an ordered basis, B, of Rn.

Compute A[B,B] and use induction to get the result. Note tr(SAS−1) = tr(A).

2. Let V be a vector space with dim(V) = n. Let T ∈ L(V) satisfy Tn−1 6= 0 but Tn = 0.

Then, use Exercise 5.1.13.2 to get an ordered basis B =
(
u, T (u), . . . , Tn−1(u)

)
of V.

(a) Now, prove that T [B,B] =



0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

...

0 0 · · · 1 0


.

(b) Let A ∈ Mn(C) satisfy An−1 6= 0 but An = 0. Then, prove that A is similar to the

matrix given in Part 2a.

3. Let A be an ordered basis of a vector space V over F with dim(V) = n. Then prove that

the set of all possible matrix representations of T is given by (also see Definition 5.6.5)

{S · T [A,A] · S−1 | S ∈Mn(F) is an invertible matrix}.

4. Let B1(α, β) = {(x, y)T ∈ R2 : (x − α)2 + (y − β)2 ≤ 1}. Then, can we get a linear

transformation T ∈ L(R2) such that T (S) = W , where S and W are given below?

(a) S = B1(0, 0) and W = B1(1, 1).

(b) S = B1(0, 0) and W = B1(.3, 0).

(c) S = B1(0, 0) and W = hull(±e1,±e2), where hull means the convex hull.

(d) S = B1(0, 0) and W = {(x, y)T ∈ R2 : x2 + y2/4 = 1}.
(e) S = hull(±e1,±e2) and W is the interior of a pentagon.

5. Let V, W be vector spaces over F with dim(V) = n and dim(W) = m and ordered bases

B and C, respectively. Define IB,C : L(V,W) → Mm,n(F) by IB,C(T ) = T [B, C]. Show

that IB,C is an isomorphism. Thus, when bases are fixed, the number of m× n matrices

is same as the number of linear transformations.

6. Define T ∈ L(R3) by T ((x, y, z)T ) = (x+ y + 2z, x− y − 3z, 2x+ 3y + z)T . Let B be the

standard ordered basis and C =
(
(1, 1, 1)T , (1,−1, 1)T , (1, 1, 2)T

)
be another ordered basis

of R3. Then find

(a) matrices T [B,B] and T [C, C].
(b) the matrix P such that P−1T [B,B] P = T [C, C]. Note that P = Id[C,B].

Ans: T [B,B] =


1 1 2

1 −1 −3

2 3 1

, T [C, C] =


−3/2 5/2 −1

7/2 3/2 6

2 −2 1

 and Id[C,B] =


1 1 1

1 −1 1

1 1 2

.
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5.7 Orthogonal Projections and Applications

As an application of the ideas and results related with orthogonality, we would like to go back

to the system of linear equations. So, recall that we started with the solution set of the linear

system Ax = b, for A ∈ Mm,n(C),x ∈ Cn and b ∈ Cm. We saw that if b ∈ Col(A) then the

system Ax = b is consistent and one can use the Gauss-Jordan method to get the solution set

of Ax = b. If the system is inconsistent can we talk of the ‘best possible solution’? How do we

define ‘Best’?

In most practical applications, the linear systems are inconsistent due to various reasons.

The reasons could be related with human error, or computational/rounding-off error or missing

data or there is not enough time to solve the whole linear system. So, we need to go bound

consistent linear systems. In quite a few such cases, we are interested in finding a point x ∈ Rn

such that the error vector, defined as ‖b − Ax‖ has the least norm. Thus, we consider the

problem of finding x0 ∈ Rn such that

‖b−Ax0‖ = min{‖b−Ax‖ : x ∈ Rn}, (5.7.1)

i.e., we try to find the vector x0 ∈ Rn which is nearest to b.

To begin with, recall the following result from Page 116.

Theorem 5.7.1 (Decomposition). Let V be an ips having W as a finite dimensional subspace.

Suppose {f1, . . . , fk} is an orthonormal basis of W. Then, for each b ∈ V, y =
k∑
i=1
〈b, fi〉fi is the

closest point in W from b. Thus

min{‖b−Ax‖ : x ∈ Rn} = ‖b− y‖.

We now give a definition and then an implication of Theorem 5.7.1.

Definition 5.7.2. Let W be a finite dimensional subspace of an ips V. Then, by Theorem 5.7.1,

for each v ∈ V there exist unique vectors w ∈W and u ∈W⊥ with v = w + u. We thus define

the orthogonal projection of V onto W, denoted PW, by

PW : V→W by PW(v) = w.

The vector w is called the projection of v on W.

So, note that the solution x0 ∈ Rn satisfying ‖b − Ax0‖ = min{‖b − Ax‖ : x ∈ Rn} is the

projection of b on the Col(A).

Remark 5.7.3. Let A ∈ Mm,n(R) and W = Col(A). Then, to find the orthogonal projection

PW(b), we can use either of the following ideas:

1. Determine an orthonormal basis {f1, . . . , fk} of Col(A). Then PW(b) =
k∑
i=1
〈b, fi〉fi. Note

that

x0 = PW(b) =

k∑
i=1

〈b, fi〉fi =

k∑
i=1

fi(f
T
i b) =

k∑
i=1

(
fif

T
i

)
b =

(
k∑
i=1

fif
T
i

)
b = P b,

where P =
k∑
i=1

fif
T
i is called the projection matrix of Rm onto Col(A).
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2. By Theorem 3.6.5.2, Col(A) = Null(AT )⊥. Hence, for b ∈ Rm there exists unique

u ∈ Col(A) and v ∈ Null(AT ) such that b = u + v. Thus, using Definition 5.7.2 and

Theorem 5.7.1, PW(b) = u.

We now give another method to obtain the vector x0 of Equation 5.7.1.

Corollary 5.7.4. Let A ∈Mm,n(R) and b ∈ Rm. Then, x0 is a least square solution of Ax = b

if and only if x0 is a solution of the system ATAx = ATb.

Proof. As b ∈ Rm, by Remark 5.7.3, there exists y ∈ Col(A) and v ∈ Null(AT ) such that

b = y + v and min{‖b−w‖ | w ∈ Col(A)} = ‖b− y‖. As y ∈ Col(A), there exists x0 ∈ Rn

such that Ax0 = y, i.e.,

min{‖b−w‖ | w ∈ Col(A)} = ‖b− y‖ = ‖b−Ax0‖.

Hence (ATA)x0 = AT (Ax0) = ATy = AT (b− v) = ATb− 0 = ATb (as v ∈ Null(AT )).

Conversely, let x1 ∈ Rn be a solution of ATAx = ATb, i.e., AT (Ax1 − b) = 0. To show

min{‖b−Ax‖ | x ∈ Rn} = ‖b−Ax1‖.

Note that AT (Ax1 − b) = 0 implies

0 = (x− x1)
T0 = (x− x1)

TAT (Ax1 − b) = (Ax−Ax1)
T (Ax1 − b) = 〈Ax1 − b, Ax−Ax1〉.

Thus, the vectors b−Ax1 and Ax1 −Ax are orthogonal and hence

‖b−Ax‖2 = ‖b−Ax1 +Ax1 −Ax‖2 = ‖b−Ax1‖2 + ‖Ax1 −Ax‖2 ≥ ‖b−Ax1‖2.

Thus, min{‖b−Ax‖ | x ∈ Rn} = ‖b−Ax1‖. Hence, the required result follows.

We now give two examples to relate the above discussions.

Example 5.7.5. 1. Determine the projection of (1, 1, 1)T on Null ([1, 1,−1]).

Solution: Here A = [1, 1,−1], a basis of Null(A) equals {(1,−1, 0)T , (1, 0, 1)T }, which

is not an orthonormal set. Also, a basis of Col(AT ) equals {(1, 1,−1)T }.
(a) Method 1: Observe that { 1√

2
(1,−1, 0)T ,

1√
6

(1, 1, 2)T } is a basis of Null(A). Thus,

the projection matrix P =
1

2


1

−1

0

[1 −1 0
]
+

1

6


1

1

2

[1 1 2
]

=


2/3 −1/3 1/3

−1/3 2/3 1/3

1/3 1/3 1/3


and P


1

1

1

 =


2/3

2/3

4/3

.

(b) Method 2: Then the columns of B =


1 1 1

−1 0 1

0 1 −1

 form a basis of R3. Then

x =
1

3


−2

4

1

 is a solution of Bx =


1

1

1

. Thus, we see that (1, 1, 1)T = u + v, where



D
RA
FT

5.7. ORTHOGONAL PROJECTIONS AND APPLICATIONS 157

u =
1

3
(1, 1,−1)T ∈ Col(AT ) and v =

(−2

3
(1,−1, 0)T +

4

3
(1, 0, 1)T

)
=

2

3
(1, 1, 2)T ∈

Null(A). Thus, the required projection equals v =

(
2

3
,
2

3
,
4

3

)T
.

(c) Method 3: Since we want the projection on Null(A). Consider B =


1 1

−1 0

0 1

.

Then Null(A) = Col(B). Thus, we need the vector x0, a solution of the linear sys-

tem BTBx = BT


1

1

1

. Or equivalently, we need the solution of

[
2 1

1 2

]
x =

[
0

2

]
. The

solution x0 =
2

3

[
−1

2

]
. Thus, the projection vector equals Bx0 = v =

(
2

3
,
2

3
,
4

3

)T
.

2. Find the foot of the perpendicular from the point v = (1, 2, 3, 4)T on the plane generated

by the vectors (1, 1, 0, 0)T , (1, 0, 1, 0)T and (0, 1, 1, 1)T .

(a) Method 1: Note that the three vectors lie on the plane x− y − z − 2w = 0. Then

r = (1,−1,−1, 2)T is the normal vector of the plane. Hence

v − Projrv = (1, 2, 3, 4)T − 4

7
(1,−1,−1, 2)T =

1

7
(3, 18, 25, 20)T

is the required projection of v.

(b) Method 2: Using the Gram-Schmidt process, we get

w1 =
1√
2

(1, 1, 0, 0)T ,w2 =
1√
6

(1,−1, 2, 0)T ,w3 =
1√
21

(−2, 2, 2, 3)T

as an orthonormal basis of the plane generated by the vectors (1, 1, 0, 0)T , (1, 0, 1, 0)T

and (0, 1, 1, 1)T . Thus, the projection matrix equals

P =
3∑
i=1

wiw
T
i =


6/7 1/7 1/7 −2/7

1/7 6/7 −1/7 2/7

1/7 −1/7 6/7 2/7

−2/7 2/7 2/7 3/7

 and Pv =
1

7


3

18

25

20

.

(c) Method 3: Let A =


1 1 0

1 0 1

0 1 1

0 0 1

. Then we need x0 satisfying (ATA)x = ATb. Here

ATA =


2 1 1

1 2 1

1 1 3

 and ATb =


3

4

9

. Note that (ATA)−1 =
1

7


5 −2 −1

−2 5 −1

−1 −1 3

 and

hence the solution of the system (ATA)x = ATb equals

x = (ATA)−1(ATb) =
1

7


5 −2 −1

−2 5 −1

−1 −1 3




2 1 1

1 2 1

1 1 3

 =
1

7


−2

5

20

.
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Thus, Ax =


1 1 0

1 0 1

0 1 1

0 0 1

 · 1

7


−2

5

20

 =
1

7


3

18

25

20

 is the nearest vector to v = (1, 2, 3, 4)T .

Exercise 5.7.6. 1. Let W = {(x, y, z, w) ∈ R4 : x = y, z = w} be a subspace of R4.

Determine the matrix of the orthogonal projection.

2. Let PW1 and PW2 be the orthogonal projections of R2 onto W1 = {(x, 0) : x ∈ R} and

W2 = {(x, x) : x ∈ R}, respectively. Note that PW1 ◦ PW2 is a projection onto W1. But,

it is not an orthogonal projection. Hence or otherwise, conclude that the composition of

two orthogonal projections need not be an orthogonal projection?

3. Let A =

[
1 1

0 0

]
. Then, A is idempotent but not symmetric. Now, define P : R2 → R2 by

P (v) = Av, for all v ∈ R2. Then,

(a) P is idempotent.

(b) Null(P ) ∩Rng(P ) = Null(A) ∩Col(A) = {0}.

(c) R2 = Null(P ) + Rng(P ). But, (Rng(P ))⊥ = (Col(A))⊥ 6= Null(A).

(d) Since (Col(A))⊥ 6= Null(A), the map P is not an orthogonal projector. In this

case, P is called a projection of R2 onto Rng(P ) along Null(P ).

4. Find all 2 × 2 real matrices A such that A2 = A. Hence, or otherwise, determine all

projection operators of R2.

5. Let W be an (n − 1)-dimensional subspace of Rn with ordered basis BW = [f1, . . . , fn−1].

Suppose B = [f1, . . . , fn−1, fn] is an orthogonal ordered basis of Rn obtained by extending

BW. Now, define a function Q : Rn → Rn by Q(v) = 〈v, fn〉fn −
n−1∑
i=1
〈v, fi〉fi. Then,

(a) Q fixes every vector in W⊥.

(b) Q sends every vector w ∈W to −w.

(c) Q ◦Q = In.

The function Q is called the reflection operator with respect to W⊥.

6. Let {f1, . . . , fk} be an orthonormal basis of a subspace W of Rn. If {f1, . . . , fn} is an

extended orthonormal basis of Rn, define PW =
k∑
i=1

fif
T
i and PW⊥ =

n∑
i=k+1

fif
T
i . Then

prove that

(a) In − PW = PW⊥.

(b) (PW)T = PW and (PW⊥)T = PW⊥. That is, PW and PW⊥ are symmetric.

(c) (PW)2 = PW and (PW⊥)2 = PW⊥. That is, PW and PW⊥ are idempotent.

(d) PW ◦ PW⊥ = PW⊥ ◦ PW = 0.
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5.8 Orthogonal Operator and Rigid Motion∗

We now give the definition and a few properties of an orthogonal operator in Rn.

Definition 5.8.1. A linear operator T : Rn → Rn is said to be an orthogonal operator if

‖T (x)‖ = ‖x‖, for all x ∈ Rn.

Example 5.8.2. Prove that the following maps T are orthogonal operators.

1. Fix a unit vector a ∈ Rn and define T : Rn → Rn by T (x) = 2〈x,a〉a− x, for all x ∈ Rn.

Solution: Note that Proja(x) = 〈x,a〉a. So,
〈
〈x,a〉a, x− 〈x,a〉a

〉
= 0 and

‖x‖2 = ‖x− 〈x,a〉a + 〈x,a〉a‖2 = ‖x− 〈x,a〉a‖2 + ‖〈x,a〉a‖2.

Thus, ‖x− 〈x,a〉a‖2 = ‖x‖2 − ‖〈x,a〉a‖2 and hence

‖T (x)‖2 = ‖(〈x,a〉a) + (〈x,a〉a− x)‖2 = ‖〈x,a〉a‖2 + ‖x− 〈x,a〉a‖2 = ‖x‖2.

2. Fix θ, 0 ≤ θ < 2π and define T : R2 → R2 by T (x) =

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
, for all x ∈ R2.

Solution: Note that ‖T (x)‖ = ‖
[
x cos θ − y sin θ

x sin θ + y cos θ

]
‖ =

√
x2 + y2 = ‖

[
x

y

]
‖.

We now show that an operator is orthogonal if and only if it preserves the angle.

Theorem 5.8.3. Let T ∈ L(Rn). Then, the following statements are equivalent.

1. T is an orthogonal operator.

2. 〈T (x), T (y)〉 = 〈x,y〉, for all x,y ∈ Rn, i.e., T preserves inner product.

Proof. 1 ⇒ 2 Let T be an orthogonal operator. Then, ‖T (x + y)‖2 = ‖x + y‖2. So,

‖T (x)‖2 + ‖T (y)‖2 + 2〈T (x), T (y)〉 = ‖T (x) + T (y)‖2 = ‖T (x + y)‖2 = ‖x‖2 + ‖y‖2 + 2〈x,y〉.
Thus, using definition again 〈T (x), T (y)〉 = 〈x,y〉.

2 ⇒ 1 If 〈T (x), T (y)〉 = 〈x,y〉, for all x,y ∈ Rn then T is an orthogonal operator as

‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x,x〉 = ‖x‖2.

As an immediate corollary, we obtain the following result.

Corollary 5.8.4. Let T ∈ L(Rn). Then, T is an orthogonal operator if and only if “for every

orthonormal basis {u1, . . . ,un} of Rn, {T (u1), . . . , T (un)} is an orthonormal basis of Rn”.

Thus, if B is an orthonormal ordered basis of Rn then T [B,B] is an orthogonal matrix.

Definition 5.8.5. A map T : Rn → Rn is said to be an isometry or a rigid motion if

‖T (x)− T (y)‖ = ‖x− y‖, for all x,y ∈ Rn. That is, an isometry is distance preserving.

Observe that if T and S are two rigid motions then ST is also a rigid motion. Furthermore,

it is clear from the definition that every rigid motion is invertible.

Example 5.8.6. The maps given below are rigid motions/isometry.
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1. Let ‖ · ‖ be a norm in Rn. If a ∈ Rn then the translation map Ta : Rn → Rn defined by

Ta(x) = x + a for all x ∈ Rn, is an isometry/rigid motion as

‖Ta(x)− Ta(y)‖ = ‖ (x + a)− (y + a) ‖ = ‖x− y‖.

2. Theorem 5.8.3 implies that every orthogonal operator is an isometry.

We now prove that every rigid motion that fixes origin is an orthogonal operator.

Theorem 5.8.7. The following statements are equivalent for any map T : Rn → Rn.

1. T is a rigid motion that fixes origin.

2. T is linear and 〈T (x), T (y)〉 = 〈x,y〉, for all x,y ∈ Rn (preserves inner product).

3. T is an orthogonal operator.

Proof. We have already seen the equivalence of Part 2 and Part 3 in Theorem 5.8.3. Let us now

prove the equivalence of Part 1 and Part 2/Part 3.

If T is an orthogonal operator then T (0) = 0 and ‖T (x)− T (y)‖ = ‖T (x− y)‖ = ‖x− y‖.
This proves Part 3 implies Part 1.

We now prove Part 1 implies Part 2. So, let T be a rigid motion that fixes 0. Thus,

T (0) = 0 and ‖T (x) − T (y)‖ = ‖x − y‖, for all x,y ∈ Rn. Hence, in particular for y = 0, we

have ‖T (x)‖ = ‖x‖, for all x ∈ Rn. So,

‖T (x)‖2 + ‖T (y)‖2 − 2〈T (x), T (y)〉 = ‖T (x)− T (y)‖2 = ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x,y〉.

Thus, using ‖T (x)‖ = ‖x‖, for all x ∈ Rn, we get 〈T (x), T (y)〉 = 〈x,y〉, for all x,y ∈ Rn. Now,

to prove T is linear, we use 〈T (x), T (y)〉 = 〈x,y〉, for all x,y ∈ Rn, in 3-rd and 4-th line below

to get

‖T (x + y)− (T (x) + T (y)) ‖2 = 〈T (x + y)− (T (x) + T (y)) , T (x + y)− (T (x) + T (y))〉
= 〈T (x + y), T (x + y)〉 − 2 〈T (x + y), T (x)〉
−2 〈T (x + y), T (y)〉+ 〈T (x) + T (y), T (x) + T (y)〉

= 〈x + y,x + y〉 − 2〈x + y,x〉 − 2〈x + y,y〉
+〈T (x), T (x)〉+ 2〈T (x), T (y)〉+ 〈T (y), T (y)〉

= −〈x + y,x + y〉+ 〈x,x〉+ 2〈x,y〉+ 〈y,y〉 = 0.

Thus, T (x+y)−(T (x) + T (y)) = 0 and hence T (x+y) = T (x)+T (y). A similar calculation

gives T (αx) = αT (x) and hence T is linear.

Exercise 5.8.8. 1. Let A,B ∈Mn(C). Then, A and B are said to be

(a) Orthogonally Congruent if B = STAS, for some orthogonal matrix S.

(b) Unitarily Congruent if B = S∗AS, for some unitary matrix S.

Prove that Orthogonal and Unitary congruences are equivalence relations on Mn(R) and

Mn(C), respectively.
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2. Let x ∈ C2. Identify it with the complex number x = x1 + ix2. If we rotate x by a

counterclockwise rotation θ, 0 ≤ θ < 2π then, we have

xeiθ = (x1 + ix2) (cos θ + i sin θ) = x1 cos θ − x2 sin θ + i[x1 sin θ + x2 cos θ].

Thus, the corresponding vector in R2 is[
x1 cos θ − x2 sin θ

x1 sin θ + x2 cos θ

]
=

[
cos θ − sin θ

sin θ cos θ

][
x1

x2

]
.

Is the matrix,

[
cos θ − sin θ

sin θ cos θ

]
, the matrix of the corresponding rotation? Justify.

3. Let A ∈M2(R) and T (θ) =

[
cos θ sin θ

− sin θ cos θ

]
, for θ ∈ R. Then, A is an orthogonal matrix

if and only if A = T (θ) or A =

[
0 1

1 0

]
T (θ), for some θ ∈ R.

Ans: To see this assume that A =

[
a b

c d

]
is orthogonal. Thus a2 + b2 = c2 + d2 = 1 and

ac+ bd = ab+ cd = 0. Note that (b− c)(d− a) = ac+ bd− ab− cd = 0 and so either b = c

or a = d.

Without loss we assume a = d, otherwise we consider

[
0 1

1 0

]
A. If a 6= 0, then from

0 = ac + bd = a(c + b), we get c = −b. So A =

[
cos θ ± sin θ

∓ sin θ cos θ

]
. If a = d = 0,

then b, c ∈ {−1, 1}. In both the cases A = T (θ), for some θ.

4. Let A ∈Mn(R). Then, the following statements are equivalent.

(a) A is an orthogonal matrix.

(b) A−1 = AT .

(c) AT is orthogonal.

(d) the columns of A form an orthonormal basis of the real vector space Rn.

(e) the rows of A form an orthonormal basis of the real vector space Rn.

(f) for any two vectors x,y ∈ Rn, 〈Ax, Ay〉 = 〈x,y〉 Orthogonal matrices preserve

angle.

(g) for any vector x ∈ Rn, ‖Ax‖ = ‖x‖ Orthogonal matrices preserve length.

5. Let U ∈Mn(C). Then, prove that the following statements are equivalent.

(a) U is a unitary matrix.

(b) U−1 = U∗.

(c) U∗ is unitary.

(d) the columns of U form an orthonormal basis of the complex vector space Cn.
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(e) the rows of U form an orthonormal basis of the complex vector space Cn.

(f) for any two vectors x,y ∈ Cn, 〈Ux, Uy〉 = 〈x,y〉 Unitary matrices preserve

angle.

(g) for any vector x ∈ Cn, ‖Ux‖ = ‖x‖ Unitary matrices preserve length.

Ans: Part 5a⇔ Part 5g. If U is unitary, then ‖x‖2 = x∗x = x∗U∗Ux = ‖Ux‖2. Conversely,

we have

〈U∗Ux,x〉 = 〈Ux, Ux〉 = ‖Ux‖2 = ‖x‖2 = 〈x,x〉, for all x.

That is 〈(U∗U − I)x,x〉 = 0, for all x. Put B = U∗U − I. Now, taking x = ei, we see that

B(i, i) = 0. For i 6= j, taking x = ei + ej , we get

x∗Bx = B(i, i) +B(i, j) +B(j, i) +B(j, j) = 0,

so that B(i, j) +B(j, i) = 0. Taking x = ei + iej (here i2 = −1), we get

x∗Bx = B(i, i) + iB(i, j)− iB(j, i) +B(j, j) = 0,

so that B(i, j)−B(j, i) = 0. Thus B = 0 and so U∗U = I. The rest is exercise.

6. If A = [aij ] and B = [bij ] are unitarily equivalent then prove that
∑
ij
|aij |2 =

∑
ij
|bij |2.

Ans: Notice that U is an isometry implies that∑
|bij |2 =

∑
i

‖B[:, i]‖2 =
∑
i

‖(UB)[:, i]‖2 =
∑
i

‖(AU)[:, i]‖2

=
∑
i

‖(AU)[i, :]‖2 =
∑
i

‖A[i, :]‖2 =
∑
|aij |2.

Alternate. An alternate proof for the above is the following:∑
|aij |2 = tr(A∗A) = tr(UB∗U∗UBU∗) = tr(U[B∗BU∗]) = tr([B∗BU∗]U) = tr(B∗B) =

∑
|bij|2.

7. Let U be a unitary matrix and for every x ∈ Cn, define

‖x‖1 = max{|xi| : xT = [x1, . . . ,xn]}.

Then, is it necessary that ‖Ux‖1 = ‖x‖1?

Ans: No. You may use rotation matrices to see this.

5.9 Dual Space*

Definition 5.9.1. Let V be a vector space over F. Then a map T ∈ L(V,F) is called a linear

functional on V.

Example 5.9.2. 1. Let a ∈ Cn be fixed. Then, T (x) = a∗x is a linear function from Cn to

C.
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2. Define T (A) = tr(A), for all A ∈Mn(R). Then, T is a linear functional from Mn(R) to R.

3. Define T (f) =
b∫
a
f(t)dt, for all f ∈ C([a, b],R). Then, T is a linear functional from

L(C([a, b],R) to R.

4. Define T (f) =
b∫
a
t2f(t)dt, , for all f ∈ C([a, b],R). Then, T is a linear functional from

L(C([a, b],R) to R.

5. Define T : C3 → C by T ((x, y, z)T ) = x. Is it a linear functional?

6. Let B be a basis of a vector space V over F. For a fixed element u ∈ B, define

T (x) =

{
1 if x = u

0 if x ∈ B \ u.

Now, extend T linearly to all of V. Does, T give rise to a linear functional?

Definition 5.9.3. Let V be a vector space over F. Then L(V,F) is called the dual space of

V and is denoted by V∗. The double dual space of V, denoted V∗∗, is the dual space of V∗.

We first give an immediate corollary of Theorem 5.3.12.

Corollary 5.9.4. Let V and W be vector spaces over F with dimV = n and dimW = m.

1. Then L(V,W) ∼= Fmn. Moreover, {fij |1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of L(V,W).

2. In particular, if W = F then L(V,F) = V∗ ∼= Fn. Moreover, if {v1, . . . ,vn} is a basis of

V then the set {fi|1 ≤ i ≤ n} is a basis of V∗, where fi(vk) =

{
1, if k = i

0, k 6= i.
The basis

{fi|1 ≤ i ≤ n} is called the dual basis of Fn.

Exercise 5.9.5. Let V be a vector space. Suppose there exists v ∈ V such that f(v) = 0, for

all f ∈ V∗. Then prove that v = 0.

So, we see that V∗ can be understood through a basis of V. Thus, one can understand V∗∗

again via a basis of V∗. But, the question arises “can we understand it directly via the vector

space V itself?” We answer this in affirmative by giving a canonical isomorphism from V to V∗∗.
To do so, for each v ∈ V, we define a map Lv : V∗ → F by Lv(f) = f(v), for each f ∈ V∗. Then

Lv is a linear functional as

Lv(αf + g) = (αf + g) (v) = αf(v) + g(v) = αLv(f) + Lv(g).

So, for each v ∈ V, we have obtained a linear functional Lv ∈ V∗∗. Note that, if v 6= w then,

Lv 6= Lw. Indeed, if Lv = Lw then, Lv(f) = Lw(f), for all f ∈ V∗. Thus, f(v) = f(w), for all

f ∈ V∗. That is, f(v−w) = 0, for each f ∈ V∗. Hence, using Exercise 5.9.5, we get v−w = 0,

or equivalently, v = w.

We use the above argument to give the required canonical isomorphism.

Theorem 5.9.6. Let V be a vector space over F. If dim(V) = n then the canonical map

T : V→ V∗∗ defined by T (v) = Lv is an isomorphism.
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Proof. Note that for each f ∈ V∗,

Lαv+u(f) = f(αv + u) = αf(v) + f(u) = αLv(f) + Lu(f) = (αLv + Lu) (f).

Thus, Lαv+u = αLv+Lu. Hence, T (αv+u) = αT (v)+T (u). Thus, T is a linear transformation.

For verifying T is one-one, assume that T (v) = T (u), for some u,v ∈ V. Then, Lv = Lu. Now,

use the argument just before this theorem to get v = u. Therefore, T is one-one.

Thus, T gives an inclusion (one-one) map from V to V∗∗. Further, applying Corollary 5.9.4.2

to V∗, gives dim(V∗∗) = dim(V∗) = n. Hence, the required result follows.

We now give a few immediate consequences of Theorem 5.9.6.

Corollary 5.9.7. Let V be a vector space of dimension n with basis B = {v1, . . . ,vn}.
1. Then, a basis of V∗∗, the double dual of V, equals D = {Lv1 , . . . , Lvn}. Thus, for each

T ∈ V∗∗ there exists x ∈ V such that T (f) = f(x), for all f ∈ V∗. Or equivalently, there

exists x ∈ V such that T = Tx.

2. If C = {f1, . . . , fn} is the dual basis of V∗ defined using the basis B (see Corollary 5.9.4.2)

then D is indeed the dual basis of V∗∗ obtained using the basis C of V∗. Thus, each basis

of V∗ is the dual basis of some basis of V.

Proof. Part 1 is direct as T : V → V∗∗ was a canonical inclusion map. For Part 2, we need to

show that

Lvi(fj) =

{
1, if j = i

0, if j 6= i
or equivalently fj(vi) =

{
1, if j = i

0, if j 6= i

which indeed holds true using Corollary 5.9.4.2.

Let V be a finite dimensional vector space. Then Corollary 5.9.7 implies that the spaces V
and V∗ are naturally dual to each other.

We are now ready to prove the main result of this subsection. To start with, let V and W
be vector spaces over F. Then, for each T ∈ L(V,W), we want to define a map T̂ : W∗ → V∗.
So, if g ∈ W∗ then, T̂ (g) a linear functional from V to F. So, we need to be evaluate T̂ (g) at

an element of V. Thus, we define
(
T̂ (g)

)
(v) = g (T (v)), for all v ∈ V. Now, we note that

T̂ ∈ L(W∗,V∗), as for every g, h ∈W∗,(
T̂ (αg + h)

)
(v) = (αg + h) (T (v)) = αg (T (v)) + h (T (v)) =

(
αT̂ (g) + T̂ (h)

)
(v),

for all v ∈ V implies that T̂ (αg + h) = αT̂ (g) + T̂ (h).

Theorem 5.9.8. Let V and W be vector spaces over F with ordered bases A = (v1, . . . ,vn)

and B = (w1, . . . ,wm), respectively. Also, let A∗ = (f1, . . . , fn) and B∗ = (g1, . . . ,gm) be the

corresponding ordered bases of the dual spaces V∗ and W∗, respectively. Then,

T̂ [B∗,A∗] = (T [A,B])T ,

the transpose of the coordinate matrix T .
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Proof. Note that we need to compute T̂ [B∗,A∗] =
[[
T̂ (g1)

]
A∗
, . . . ,

[
T̂ (gm)

]
A∗

]
and prove that

it equals the transpose of the matrix T [A,B]. So, let

T [A,B] = [[T (v1)]B , . . . , [T (vn)]B] =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

.

Thus, to prove the required result, we need to show that

[
T̂ (gj)

]
A∗

= [f1, . . . , fn]


aj1

aj2
...

ajn

 =

n∑
k=1

ajkfk, for 1 ≤ j ≤ m. (5.9.1)

Now, recall that the functionals fi’s and gj ’s satisfy

(
n∑
k=1

αkfk

)
(vt) =

n∑
k=1

αk (fk(vt)) = αt,

for 1 ≤ t ≤ n and [gj(w1), . . . ,gj(wm)] = eTj , a row vector with 1 at the j-th place and 0,

elsewhere. So, let B = [w1, . . . ,wm] and evaluate T̂ (gj) at vt’s, the elements of A.(
T̂ (gj)

)
(vt) = gj (T (vt)) = gj (B [T (vt)]B) = [gj(w1), . . . ,gj(wm)] [T (vt)]B

= eTj


a1t

a2t
...

amt

 = ajt =

(
n∑
k=1

ajkfk

)
(vt).

Thus, the linear functional T̂ (gj) and
n∑
k=1

ajkfk are equal at vt, for 1 ≤ t ≤ n, the basis vectors

of V. Hence T̂ (gj) =
n∑
k=1

ajkfk which gives Equation (5.9.1).

Remark 5.9.9. The proof of Theorem 5.9.8 also shows the following.

1. For each T ∈ L(V,W) there exists a unique map T̂ ∈ L(W∗,V∗) such that(
T̂ (g)

)
(v) = g (T (v)) , for each g ∈W∗.

2. The coordinate matrices T [A,B] and T̂ [B∗,A∗] are transpose of each other, where the

ordered bases A∗ of V∗ and B∗ of W∗ correspond, respectively, to the ordered bases A of

V and B of W.

3. Thus, the results on matrices and its transpose can be re-written in the language of a

vector space and its dual space.

5.10 Summary
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Chapter 6

Eigenvalues, Eigenvectors and

Diagonalizability

6.1 Introduction and Definitions

Note that we have been trying to solve the linear system Ax = b. But, in most cases, we are

not able to solve it because of certain restrictions. Hence in the last chapter, we looked at the

nearest solution or obtained the projection of b on the column space of A.

These problems arise from the fact that either our data size is too large or there are missing

informations (data is incomplete or the data has ambiguities or the data is inaccurate) or the

data is coming too fast in the sense that our computational power doesn’t match the speed at

which data is received or it could be any other reason. So, to take care of such issues, we either

work with a submatrix of A or with the matrix ATA. We also try to concentrate on only a few

important aspects depending on our past experience.

Thus, we need to find certain set of critical vectors/directions associated with the given

linear system. Hence, in this chapter, all our matrices will be square matrices. They will have

real numbers as entries for convenience. But, we need to work over complex numbers. Hence,

we will be working with Mn(C) and x = (x1, . . . , xn)T ∈ Cn, for some n ∈ N. Further, Cn will

be considered only as a complex vector space. We start with an example for motivation.

Example 6.1.1. Let A be a real symmetric matrix. Consider the following problem:

Maximize (Minimize) xTAx such that x ∈ Rn and xTx = 1.

To solve this, consider the Lagrangian

L(x, λ) = xTAx− λ(xTx− 1) =

n∑
i=1

n∑
j=1

aijxixj − λ
(

n∑
i=1

x2i − 1

)
.

167
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Partially differentiating L(x, λ) with respect to xi for 1 ≤ i ≤ n, we get

∂L

∂x1
= 2a11x1 + 2a12x2 + · · ·+ 2a1nxn − 2λx1,

... =
...

∂L

∂xn
= 2an1x1 + 2an2x2 + · · ·+ 2annxn − 2λxn.

Therefore, to get the points of extremum, we solve for

0T =

(
∂L

∂x1
,
∂L

∂x2
, . . . ,

∂L

∂xn

)T
=
∂L

∂x
= 2(Ax− λx).

Thus, to solve the extremal problem, we need λ ∈ R, x ∈ Rn such that x 6= 0 and Ax = λx.

Note that we could have started with a Hermitian matrix and arrived at a similar situation.

So, in previous chapters, we had looked at Ax = b, where A and b were known. Here, we need

to solve Ax = λx with x 6= 0. Note that 0 is already a solution and is not of interest to us.

Further, we will see that we are interested in only those solutions of Ax = λx which are linearly

independent. To proceed further, let us take a few examples, where we will try to look at what

does the system Ax = b imply?

Example 6.1.2. 1. Let A =

[
1 2

2 1

]
, B =

[
9 −2

−2 6

]
and x =

[
x

y

]
.

(a) Then A magnifies the nonzero vector

[
1

1

]
three times as A

[
1

1

]
= 3

[
1

1

]
and behaves

by changing the direction of

[
1

−1

]
as A

[
1

−1

]
= −1

[
1

−1

]
. Further, the vectors

[
1

1

]

and

[
1

−1

]
are orthogonal.

(b) B magnifies both the vectors

[
1

2

]
and

[
−2

1

]
as B

[
1

2

]
= 5

[
1

2

]
and B

[
2

−1

]
= 10

[
2

−1

]
.

Here again, the vectors

[
1

2

]
and

[
2

−1

]
are orthogonal.

(c) xTAx = 3
(x+ y)2

2
− (x− y)2

2
. Here, the displacements occur along perpendicular

lines x+ y = 0 and x− y = 0, where x+ y = (x, y)

[
1

1

]
and x− y = (x, y)

[
1

−1

]
.

Whereas xTBx = 5
(x+ 2y)2

5
+ 10

(2x− y)2

5
. Here also the maximum/minimum

displacements occur along the orthogonal lines x + 2y = 0 and 2x − y = 0, where

x+ 2y = (x, y)

[
1

2

]
and 2x− y = (x, y)

[
2

−1

]
.

(d) the curve xTAx = 10 represents a hyperbola, where as the curve xTBx = 10 rep-

resents an ellipse (see the left two curves in Figure 6.1 drawn using the package

“Sagemath”).
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Figure 6.1: A Hyperbola and two Ellipses (first one has orthogonal axes)

.

In the above two examples we looked at symmetric matrices. What if our matrix is not

symmetric?

2. Let C =

[
7 −2

2 2

]
, a non-symmetric matrix. Then, does there exist a non-zero x ∈ C2

which gets magnified by C?

We need x 6= 0 and α ∈ C such that Cx = αx⇔ [αI2−C]x = 0. As x 6= 0, [αI2−C]x = 0

has a solution if and only if det[αI −A] = 0. But,

det[αI −A] = det

([
α− 7 2

−2 α− 2

])
= α2 − 9α+ 18.

So α = 6, 3. For α = 6, verify that x =

[
2

1

]
6= 0 satisfies Cx = 6x. Similarly, x =

[
1

2

]
satisfies Cx = 3x. In this example,

(a) we still have magnifications in the directions

[
2

1

]
and

[
1

2

]
.

(b) the maximum/minimum displacements do not occur along the lines 2x+ y = 0 and

x+ 2y = 0 (see the third curve in Figure 6.1). Note that

{x ∈ R2 : xTAx = 10} = {x ∈ R2 : xT

[
7 0

0 2

]
x = 10},

where

[
7 0

0 2

]
is a symmetrization of A.

(c) the lines 2x+ y = 0 and x+ 2y = 0 are not orthogonal.

We observe the following about the matrices A,B and C that appear above:

1. det(A) = −3 = 3×−1, det(B) = 50 = 5× 10 and det(C) = 18 = 6× 3.

2. tr(A) = 2 = 3− 1, tr(B) = 15 = 5 + 10 and det(C) = 9 = 6 + 3.

3. The sets

{[
1

1

]
,

[
1

−1

]}
,

{[
1

2

]
,

[
2

−1

]}
and

{[
2

1

]
,

[
1

2

]}
are linearly independent.
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4. If v1 =

[
1

1

]
and v2 =

[
1

−1

]
and S = [v1,v2] then

(a) AS = [Av1, Av2] = [3v1,−v2] = S

[
3 0

0 −1

]
⇔ S−1AS =

[
3 0

0 −1

]
= diag(3,−1).

(b) Let u1 =
1√
2
v1 and u2 =

1√
2
v2. Then, u1 and u2 are orthonormal unit vectors,

i.e., if U = [u1,u2] then I = UU∗ = u1u
∗
1 + u2u

∗
2 and A = 3u1u

∗
1 − u2u

∗
2.

5. If v1 =

[
1

2

]
and v2 =

[
2

−1

]
and S = [v1,v2] then

(a) AS = [Av1, Av2] = [5v1, 10v2] = S

[
5 0

0 10

]
⇔ S−1AS =

[
5 0

0 10

]
= diag(3,−1).

(b) Let u1 =
1√
5
v1 and u2 =

1√
5
v2. Then, u1 and u2 are orthonormal unit vectors,

i.e., if U = [u1,u2] then I = UU∗ = u1u
∗
1 + u2u

∗
2 and A = 5u1u

∗
1 + 10u2u

∗
2.

6. If v1 =

[
2

1

]
and v2 =

[
1

2

]
and S = [v1,v2] then S−1CS =

[
6 0

0 3

]
= diag(6, 3).

Thus, we see that givenA ∈Mn(C), the number λ ∈ C and x ∈ Cn,x 6= 0 satisfyingAx = λx

have certain nice properties. For example, all of them are similar to diagonal matrices. That

is, for each matrix discussed above, there exists a basis of C2 with respect to which the matrix

representation is a diagonal matrix. To understand the ideas better, we start with the following

definitions.

Definition 6.1.3. Let A ∈Mn(C). Then the equation

Ax = λx⇔ (A− λIn)x = 0 (6.1.1)

is called the eigen-condition.

1. An α ∈ C is called a characteristic value/root or eigenvalue or latent root of A if

there exists x 6= 0 satisfying Ax = αx.

2. A x 6= 0 satisfying Equation (6.1.1) is called a characteristic vector or eigenvector or

invariant/latent vector of A corresponding to λ.

3. The tuple (α,x) with x 6= 0 and Ax = αx is called an eigen-pair or characteristic-pair.

4. For an eigenvalue α ∈ C, Null(A− αI) = {x ∈ Rn|Ax = αx} is called the eigen-space

or characteristic vector space of A corresponding to α.

Theorem 6.1.4. Let A ∈ Mn(C) and α ∈ C. Then α is an eigenvalue of A if and only if

det(A− αIn) = 0.

Proof. Let B = A− αIn. Then, by definition, α is an eigenvalue of A if any only if the system

Bx = 0 has a non-trivial solution. By Theorem 2.6.3 this holds if and only if det(B) = 0.

Definition 6.1.5. Let A ∈ Mn(C). Then det(A− λI) is a polynomial of degree n in λ and is

called the characteristic polynomial of A, denoted PA(λ), or in short P (λ).
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1. The equation PA(λ) = 0 is called the characteristic equation of A.

2. The multi-set (collection with multiplicities) {α ∈ C : PA(α) = 0} is called the spectrum

of A, denoted σ(A). Hence, σ(A) contains all the eigenvalues of A containing multiplicities.

3. The Spectral Radius, denoted ρ(A), of A ∈Mn(C) equals max{|α| : α ∈ σ(A)}.

We thus observe the following.

Remark 6.1.6. Let A ∈ Mn(C). Then A is singular if and only if 0 ∈ σ(A). Further, the

following statements hold.

1. If α ∈ σ(A) then

(a) {0} $ Null(A − αI). Therefore, if Rank(A − αI) = r then r < n. Hence, by

Theorem 2.6.3, the system (A− αI)x = 0 has n− r linearly independent solutions.

(b) v ∈ Null(A−αI) if and only if cv ∈ Null(A−αI), for c 6= 0. Thus, an eigenvector

v of A is in some sense a line ` = Span({v}) that passes through 0 and v and has

the property that the image of ` is either ` itself or 0.

(c) If x1, . . . ,xr ∈ Null(A−αI) then
r∑
i=1

cixi ∈ Null(A−αI), for all ci ∈ C. Hence, if

S is a collection of eigenvectors then, we necessarily want the set S to be linearly

independent.

2. α ∈ σ(A) if and only if α is a root of PA(x) ∈ C[x]. As deg(PA(x)) = n, A has exactly n

eigenvalues in C, including multiplicities.

3. Let (α,x) be an eigen-pair of A ∈Mn(R). If α ∈ R then x ∈ Rn.

4. Let (α,x) be an eigen-pair of A. Then A2x = A(Ax) = A(αx) = α(Ax) = α2x. Thus,

the polynomial f(A) = b0I + b1A+ · · ·+ bkA
k (in A) has (f(α),x) as an eigen-pair.

Almost all books in mathematics differentiate between characteristic value and eigenvalue

as the ideas change when one moves from complex numbers to any other scalar field. We give

the following example for clarity.

Remark 6.1.7. Let A ∈M2(F). Then, A induces a map T ∈ L(F2) defined by T (x) = Ax, for

all x ∈ F2. We use this idea to understand the difference.

1. Let A =

[
0 1

−1 0

]
. Then, pA(λ) = λ2 + 1.

(a) A has no characteristic value in R as λ2 + 1 = 0 has no root in R.

(b) A has ±i as the roots of P (λ) = 0 in C. Hence, verify that A has (i, (1, i)T ) and

(−i, (i, 1)T ) as eigen-pairs or characteristic-pairs.

2. Let A =

[
1 2

1 3

]
. Then 2±

√
3 are the roots of the characteristic equation.

(a) Hence A has no characteristic value over Q.

(b) But A has characteristic values or eigenvalues over R.
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Let us look at some more examples. Also, as stated earlier, we look at roots of the charac-

teristic equation over C.

Example 6.1.8. 1. Let A = diag(d1, . . . , dn) with di ∈ C, 1 ≤ i ≤ n. Then, p(λ) =
n∏
i=1

(λ− di) and thus verify that (d1, e1), . . . , (dn, en) are the eigen-pairs.

2. Let A =

[
1 0

0 1

]
. Then, 1 is a repeated eigenvalue of A. In this case, (A− I2)x = 0 has a

solution for every x ∈ C2. Hence, any two linearly independent vectors xT ,yT ∈ C2

gives (1,x) and (1,y) as the two eigen-pairs for A. In general, if S = {x1, . . . ,xn} is a

basis of Cn then (1,x1), . . . , (1,xn) are eigen-pairs of In, the identity matrix.

3. Let A =

[
1 1

0 1

]
. Then, p(λ) = (1−λ)2. Hence, σ(A) = {1, 1}. But the complete solution

of the system (A− I2)x = 0 equals x = ce1, for c ∈ C. Hence using Remark 6.1.6.2, e1 is

an eigenvector. Therefore, 1 is a repeated eigenvalue whereas there is only one

eigenvector.

4. Let A = (aij) be an n × n triangular matrix. Then, p(λ) =
n∏
i=1

(λ − aii) and thus verify

that σ(A) = {a11, a22, . . . , ann}. What can you say about the eigenvectors if the diagonal

entries of A are all distinct?

5. Let A =

[
1 −1

1 1

]
. Then,

(
1 + i,

[
i

1

])
and

(
1− i,

[
1

i

])
are the eigen-pairs of A.

6. Let A =


0 1 0

0 0 1

0 0 0

. Then, σ(A) = {0, 0, 0} with e1 as the only eigenvector.

7. Let A =



0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


. Then, σ(A) = {0, 0, 0, 0, 0}. Note that A



x1

x2

x3

x4

x5


= 0 implies

x2 = 0 = x3 = x5. Thus, e1 and e4 are the only eigenvectors. Note that the diagonal

blocks of A are nilpotent matrices.

Exercise 6.1.9. 1. Prove that the matrices A and AT have the same set of eigenvalues.

Construct a 2× 2 matrix A such that the eigenvectors of A and AT are different.

Ans: Use pA(α) = det(A−αI) = det((A−αI)T ) = det(AT−αI) = pAT (α). For the second

part, A =

[
1 1

−1 −1

]
. Then 0 ∈ σ(A). Verify that 1TA = 01T and A

[
1

−1

]
= 0

[
1

−1

]
.

2. Prove that λ ∈ C is an eigenvalue of A if and only if λ ∈ C is an eigenvalue of A∗.

Ans: Use pA(α) = det(A− αI) = det((A− αI)T ) = det(A∗ − αI) = pA∗(α). Thus

λ ∈ σ(A)⇔ pA(λ) = 0⇔ pA(λ) = 0⇔ pA∗(λ) = 0.
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3. Let A ∈Mn(R) be an idempotent matrix. Determine its eigenvalues and eigenvectors.

Ans: Let (α,x) be an eigen-pair of A. Then A2 = A implies α2x = αx. As x 6= 0, α2 =

α ⇒ α = 0, 1. Thus Null(A) gives the eigenvectors for 0. Further, all non-zero vectors in

Col(A) are eigenvectors for 1 (x ∈ Col(A)⇒ Ay = x⇒ Ax = A(Ay) = A2y = Ay = x).

So, just choose a linearly independent set from Null(A) and Col(A) to get eigenvectors for

0 and 1, respectively.

4. Let A be a nilpotent matrix. Then, prove that its eigenvalues are all 0.

Ans: A is nilpotent implies there exist N ∈ N such that AN = 0. So, if (α,x) is an eigen-pair

of A then αN is an eigenvalue of AN = 0. Thus αN = 0⇒ α = 0.

5. Let J = 11T ∈Mn(C). Then, J is a matrix with each entry 1. Show that

(a) (n,1) is an eigenpair for J .

(b) 0 ∈ σ(J) with multiplicity n−1. Find a set of n−1 linearly independent eigenvectors

for 0 ∈ σ(J).

Ans: Note that J1 = (11T )1 = 1(1T1) = n1. Let x ∈ Rn such that 1Tx = 0. Note that

there are n− 1 such linearly independent vectors as the set
1√
n

1 can be extended to form an

orthonormal basis of Rn. For each such x, Jx = (11T )x = 1(1Tx) = 0x.

6. Let A = [aij ] ∈ Mn(R), where aij = a, if i = j and b, otherwise. Then, verify that

A = (a− b)I + bJ . Hence, or otherwise determine the eigenvalues and eigenvectors of J .

Ans: By previous exercise, A1 = (a− b)1 + b(n1) = (a+ (n− 1)b)1. The other eigenvalues

are a− b with eigenvectors that are orthogonal to 1.

7. Let A ∈Mn(R) be a matrix of rank 1. Determine its eigen-pairs.

Ans: Use Exercise 2.5.11.1 to write A = xyT , for non-zero vectors x,y ∈ Rn. Clearly, x

is an eigenvector of A for α = yTx. Let yi, for 1 ≤ i ≤ n − 1 be vectors in Rn which are

orthogonal to y. Then they are eigenvectors for α = 0.

8. For a fixed θ ∈ R, find eigen-pairs of A =

[
cos θ − sin θ

sin θ cos θ

]
and R =

[
cos θ sin θ

sin θ − cos θ

]
.

Ans: pA(x) = x2 − 2 cos θx+ 1 and pR(x) = x2 − 1. Thus, e±iθ ∈ σ(A) and ±1 ∈ σ(R).

9. Let A ∈ Mn(C) satisfy ‖Ax‖ ≤ ‖x‖ for all x ∈ Cn. Then prove that every eigenvalue of

A lies between −1 and 1.

10. Let A = [aij ] ∈ Mn(C) with
n∑
j=1

aij = a, for all 1 ≤ i ≤ n. Then, prove that a is an

eigenvalue of A with corresponding eigenvector 1 = [1, 1, . . . , 1]T .

Ans: Just multiply by 1.

11. Let B ∈Mn(C) and C ∈Mm(C). Let Z =

[
B 0

0 C

]
. Then
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(a) (α,x) is an eigen-pair for B implies

(
α,

[
x

0

])
is an eigen-pair for Z.

(b) (β,y) is an eigen-pair for C implies

(
β,

[
0

y

])
is an eigen-pair for Z.

Ans: Just multiply to verify the eigen-conditions.

Definition 6.1.10. Let A ∈ L(Cn). Then, a vector y ∈ Cn \{0} satisfying y∗A = λy∗ is called

a left eigenvector of A for λ.

Example 6.1.11. Let A =

[
7 −2

2 2

]
, x =

[
2

1

]
, y =

[
1

2

]
, u =

[
2

−1

]
and v =

[
1

−2

]
. Then

verify that (6,x) and (3,y) are (right) eigen-pairs of A and (6,u), (3,v) are left eigen-pairs of

A. Note that xTv = 0 and yTu = 0. This is true in general and is proved next.

Theorem 6.1.12. [Principle of bi-orthogonality] Let (λ,x) be a (right) eigen-pair and (µ,y)

be a left eigen-pair of A. If λ 6= µ then y is orthogonal to x.

Proof. Verify that µy∗x = (y∗A)x = y∗(Ax) = y∗(λx) = λy∗x. Thus y∗x = 0.

Exercise 6.1.13. 1. Let Ax = λx and x∗A = µx∗. Then µ = λ.

Ans: Note λ(x∗x) = x∗(λx) = x∗(Ax) = (x∗A)x = (µx∗)x = µ(x∗x).

2. Let S be a non-singular matrix such that its columns are left eigenvectors of A. Then,

prove that the columns of (S∗)−1 are right eigenvectors of A.

Ans: Note (S[:, i])∗A = αi(S[:, i])∗, for 1 ≤ i ≤ n implies
(S[:, 1])∗

(S[:, 2])∗

...

(S[:, n])∗

A =


(S[:, 1])∗A

(S[:, 2])∗A
...

(S[:, n])∗A

 =


(S[:, 1])∗α1

(S[:, 2])∗α2

...

(S[:, n])∗αn

 =


α1 0 · · · 0

0 α2 · · · 0
...

. . .
. . .

...

0 0 · · · αn




(S[:, 1])∗

(S[:, 2])∗

...

(S[:, n])∗

.

Thus S∗A = ΛS∗ and hence A(S∗)−1 = (S∗)−1Λ.

Definition 6.1.14. Let T ∈ L(Cn). Then α ∈ C is called an eigenvalue of T if there exists

v ∈ Cn with v 6= 0 such that T (v) = αv.

Proposition 6.1.15. Let T ∈ L(Cn) and let B be an ordered basis in Cn. Then (α,v) is an

eigen-pair of T if and only if (α, [v]B) is an eigen-pair of A = T [B,B].

Proof. By definition, T (v) = αv if and only if [Tv]B = [αv]B. Or equivalently, α ∈ σ(T ) if and

only if A[v]B = α[v]B. Thus, the required result follows.

Thus, the spectrum of a linear operator is independent of the choice of basis.

Remark 6.1.16. We give two examples to show that a linear operator on an infinite

dimensional vector space need not have an eigenvalue.
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1. Let V be the space of all real sequences (see Example 3.1.4.7) and define T ∈ L(V) by

T (a0, a1, . . .) = (0, a1, a2, . . .).

Let if possible (α,x) be an eigen-pair of T with x = (x1, x2, . . .). Then

T (x) = αx⇔ (0, x1, x2, . . .) = α(x1, x2, . . .) = (αx1, αx2, . . .).

So, if α 6= 0 then x1 = 0. This in turn implies x = 0, a contradiction. If α = 0 then

(0, x1, x2, . . .) = (0, 0, . . .)⇒ x = 0, a contradiction. Hence, T doesn’t have an eigenvalue.

2. Recall the map T ∈ L(C[x]) defined by T (f(x)) = xf(x), for all f(x) ∈ C[x].

T has an eigen-pair (α, f(x)) ⇔ xf(x) = αf(x) ⇔ (x − α)f(x) = 0. As x is an indeter-

minate, f(x) is the zero polynomial. Hence, T cannot have an eigenvector.

We now prove the observations that det(A) is the product of eigenvalues and tr(A) is the

sum of eigenvalues.

Theorem 6.1.17. Let λ1, . . . , λn, not necessarily distinct, be the A = [aij ] ∈ Mn(C). Then,

det(A) =
n∏
i=1

λi and tr(A) =
n∑

i=1
aii =

n∑
i=1

λi.

Proof. Since λ1, . . . , λn are the eigenvalues of A, by definition,

det(A− xIn) = (−1)n
n∏
i=1

(x− λi) (6.1.2)

is an identity in x as polynomials. Therefore, by substituting x = 0 in Equation (6.1.2), we get

det(A) = (−1)n(−1)n
∏n
i=1 λi =

∏n
i=1 λi. Also,

det(A− xIn) =


a11 − x a12 · · · a1n

a21 a22 − x · · · a2n
...

...
. . .

...

an1 an2 · · · ann − x

 (6.1.3)

= a0 − xa1 + · · ·+ (−1)n−1xn−1an−1 + (−1)nxn (6.1.4)

for some a0, a1, . . . , an−1 ∈ C. Then, an−1, the coefficient of (−1)n−1xn−1, comes from the term

(a11 − x)(a22 − x) · · · (ann − x).

So, an−1 =
n∑
i=1

aii = tr(A), the trace of A. Also, from Equation (6.1.2) and (6.1.4), we have

a0 − xa1 + · · ·+ (−1)n−1xn−1an−1 + (−1)nxn = (−1)n
n∏
i=1

(x− λi).

Therefore, comparing the coefficient of (−1)n−1xn−1, we have

tr(A) = an−1 = (−1)

{
(−1)

n∑
i=1

λi

}
=

n∑
i=1

λi.

Hence, we get the required result.
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Exercise 6.1.18. 1. Let A ∈ Mn(C). Then, A is invertible if and only if 0 is not an

eigenvalue of A.

Ans: A is invertible ⇔ det(A) 6= 0⇔
n∏
i=1

λi 6= 0.

2. Let A ∈Mn(R). Then, prove that

(a) if α ∈ σ(A) then αk ∈ σ(Ak), for all k ∈ N.

(b) if A is invertible and α ∈ σ(A) then αk ∈ σ(Ak), for all k ∈ Z.

Ans: Use induction with A2x = A(Ax) = A(αx) = α(Ax) = α2x as the idea. Further, A

is invertible implies 0 /∈ σ(A). Thus, Ax = αx with α 6= 0 implies
1

α
x = A−1x.

3. Let A be a 3× 3 orthogonal matrix (AAT = I). If det(A) = 1, then prove that there exists

v ∈ R3 \ {0} such that Av = v.

Ans: A is orthogonal ⇒ det(A) = ±1. Let (α,x) be an eigen-pair. As A is orthogonal,

‖Av‖ = ‖v‖ for all v ∈ Rn. Thus |α| = 1. Further, A has real entries implies the complex

roots occur in pair. So, among the 3 eigenvalues, one of them has to be real. Thus, det(A) = 1

implies the real root is 1. Hence, Av = v, the eigenvector for 1.

4. Let A ∈M2n+1(R) with AT = −A. Then, prove that 0 is an eigenvalue of A.

Ans: A skew-symmetric of odd order ⇒ det(A) = 0⇒ 0 ∈ σ(A).

6.2 Spectrum of a Matrix

Definition 6.2.1. Let A ∈Mn(C). Then, for α ∈ σ(A)

1. the algebraic multiplicity of α, denoted Alg.Mulα(A), is the multiplicity of α as a

root of the characteristic polynomial or the number of times α ∈ σ(A).

2. the geometric multiplicity of α, denoted Geo.Mulα(A), equals dim(Null(A− αI)).

Example 6.2.2. 1. Let A =


1 1 0

0 1 1

0 0 1

. Then σ(A) = {1, 1, 1, }. Hence, the algebraic

multiplicity of 1 is 3, i.e., Alg.Mul1(A) = 3. Verify that Geo.Mul1(A) = 1.

2. Let A =



3 1 1

0 3 1

0 0 3

0 0

0

2 1 0

0 2 1

0 0 2

0

0 0
3 1

0 3


. Then A is an upper triangular matrix and thus

σ(A) = {3, 3, 3, 3, 3, 2, 2, 2}, Alg.Mul3(A) = 5 and Alg.Mul2(A) = 3. Verify that

Rank(A− 3I) = 6, Rank(A− 2I) = 7⇒ Geo.Mul3(A) = 2 and Geo.Mul2(A) = 1.
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We now show that for any eigenvalue α, the algebraic and geometric multiplicities do not

change under similarity transformation, or equivalently, under change of basis.

Theorem 6.2.3. Let A and B be two similar matrices. Then,

1. α ∈ σ(A) if and only if α ∈ σ(B).

2. for each α ∈ σ(A), Alg.Mulα(A) = Alg.Mulα(B) and Geo.Mulα(A) = Geo.Mulα(B).

Proof. Since A and B are similar, there exists an invertible matrix S such that A = SBS−1.

So, α ∈ σ(A) if and only if α ∈ σ(B) as

det(A− xI) = det(SBS−1 − xI) = det
(
S(B − xI)S−1

)
= det(S) det(B − xI) det(A−1) = det(B − xI). (6.2.5)

Note that Equation (6.2.5) also implies that Alg.Mulα(A) = Alg.Mulα(B). We will now

show that Geo.Mulα(A) = Geo.Mulα(B).

So, let Q1 = {v1, . . . ,vk} be a basis of Null(A − αI). Then, B = SAS−1 implies that

Q2 = {Sv1, . . . , Svk} ⊆ Null(B−αI). Since Q1 is linearly independent and S is invertible, we

get Q2 is linearly independent. So, Geo.Mulα(A) ≤ Geo.Mulα(B). Now, we can start with

eigenvectors of B and use similar arguments to get Geo.Mulα(B) ≤ Geo.Mulα(A). Hence

the required result follows.

Remark 6.2.4. 1. Let A = S−1BS. Then, from the proof of Theorem 6.2.3, we see that x

is an eigenvector of A for λ if and only if Sx is an eigenvector of B for λ.

2. Let A and B be two similar matrices then σ(A) = σ(B). But, the converse is not true.

For example, take A =

[
0 0

0 0

]
and B =

[
0 1

0 0

]
.

3. Let A ∈ Mn(C). Then, for any invertible matrix B, the matrices AB and BA =

B(AB)B−1 are similar. Hence, in this case the matrices AB and BA have

(a) the same set of eigenvalues.

(b) Alg.Mulα(AB) = Alg.Mulα(BA), for each α ∈ σ(A).

(c) Geo.Mulα(AB) = Geo.Mulα(BA), for each α ∈ σ(A).

We will now give a relation between the geometric multiplicity and the algebraic multiplicity.

Theorem 6.2.5. Let A ∈Mn(C). Then, for α ∈ σ(A), Geo.Mulα(A) ≤ Alg.Mulα(A).

Proof. Let Geo.Mulα(A) = k. So, suppose that {v1, . . . ,vk} is an orthonormal basis of

Null(A− αI). Extend it to get {v1, . . . ,vk,vk+1, . . . ,vn} as an orthonormal basis of Cn. Put

P = [v1, . . . ,vk,vk+1, . . . ,vn]. Then P ∗ = P−1 and

P ∗AP = P ∗ [Av1, . . . , Avk, Avk+1, . . . , Avn]

=



v∗1
...

v∗k
v∗k+1

...

v∗n


[αv1, . . . , αvk, ∗, . . . , ∗] =



α · · · 0 ∗ · · · ∗

0
. . . 0 ∗ · · · ∗

0 · · · α ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
...

0 · · · 0 ∗ · · · ∗


.
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Now, if we denote the lower diagonal submatrix as B then P ∗ = P−1 implies

PA(x) = det(A− xI) = det(P ∗AP − xI) = (α− x)k det(B − xI). (6.2.6)

So, Alg.Mulα(A) = Alg.Mulα(P ∗AP ) ≥ k = Geo.Mulα(A).

As a corollary to the above result, one obtains the following observations.

Remark 6.2.6. Let A ∈Mn(C).

1. Then, for each α ∈ σ(A), dim(Null(A− αI)) ≥ 1. So, we have at least one eigenvector.

2. If Alg.Mulα(A) = r then dim(Null(A − αI)) ≤ r. Thus, A may not have r linearly

independent eigenvectors.

Exercise 6.2.7. 1. Let A =


1 2 3

3 2 1

2 3 1

. Then
(

6,x1 = 1√
3
1
)

is an eigen-pair of A. Let

(x1, e1, e2) be an ordered basis of C3. Put X =
[
x1 e1 e2

]
. Compute X−1AX. Can

you now find the remaining eigenvalues of A?

Ans: AX =


1 2 3

3 2 1

2 3 1

[x1 e1 e2

]
=


6 1 2

6 3 2

6 2 3

 = XT , with T =


6 2 3

0 −1 −1

0 1 −1

.

Thus, the matrix B in the proof of Theorem 6.2.5 is

[
−1 −1

1 −1

]
with eigenvalues are −1± i.

2. Let A ∈Mm×n(R) and B ∈Mn×m(R).

(a) If α ∈ σ(AB) and α 6= 0 then

i. α ∈ σ(BA).

ii. Alg.Mulα(AB) = Alg.Mulα(BA).

iii. Geo.Mulα(AB) = Geo.Mulα(BA).

(b) If 0 ∈ σ(AB) and n = m then Alg.Mul0(AB) = Alg.Mul0(BA) as there are n

eigenvalues, counted with multiplicity.

(c) Give an example to show that Geo.Mul0(AB) need not equal Geo.Mul0(BA) even

when n = m.

Ans: (a.i, a.ii) Verify that

[
I 0

−A I

][
0 B

0 AB

]
=

[
BA B

0 0

][
I 0

−A I

]
=

[
0 B

0 0

]
(a.iii) Let {u1, . . . ,uk} be k linearly independent eigenvalues of AB corresponding to α. Then,

{Bu1, . . . , Buk} are k linearly independent eigenvalues of BA corresponding to α as α 6= 0

and
k∑
j=1

cjBuj = 0 implies
k∑
j=1

cjuj = 0, a contradiction.

(c) A =

[
1 1

1 1

]
and B =

[
1 −1

1 −1

]
.

3. Let A ∈ Mn(R) be an invertible matrix and let x,y ∈ Rn with x 6= 0 and yTA−1x 6= 0.

Define B = xyTA−1. Then, prove that
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(a) λ0 = yTA−1x is an eigenvalue of B of multiplicity 1.

(b) 0 is an eigenvalue of B of multiplicity n− 1 [Hint: Use Exercise 6.2.7.2a].

(c) 1 + αλ0 is an eigenvalue of I + αB of multiplicity 1, for any α ∈ R, α 6= 0.

(d) 1 is an eigenvalue of I + αB of multiplicity n− 1, for any α ∈ R, α 6= 0.

(e) det(A+ αxyT ) equals (1 + αλ0) det(A), for any α ∈ R, α 6= 0. This result is known

as the Shermon-Morrison formula for determinant.

Ans: (a) Bx = (xyTA−1)x = x
(
yTA−1x

)
= λ0x. Note that xyTA−1 and yTA−1x, a

1× 1 matrix, has the same set of non-zero eigenvalues. As λ0 6= 0, the multiplicity of λ0 is 1.

(b) Exercise 6.2.7.2a implies that the other eigenvalues of B must be 0. As B has n eigen-

values, the eigenvalue 0 has algebraic multiplicity n− 1.

(c) x is an eigenvector of I + αB for 1 + αλ0.

(d) As the other eigenvalues of B are 0, the other eigenvalues of I + αB are 0.

(e) Determinant is product of eigenvalues.

4. Let A,B ∈M2(R) such that det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.

Ans: (a) Yes as they are solutions of the same characteristic polynomial x2−tr(A)x+det(A).

(b) See Remark 6.2.4.

5. Let A,B ∈Mn(R). Also, let (λ1,u) and (λ2,v) are eigen-pairs of A and B, respectively.

(a) If u = αv for some α ∈ R then (λ1 + λ2,u) is an eigen-pair for A+B.

(b) Give an example to show that if u and v are linearly independent then λ1 + λ2 need

not be an eigenvalue of A+B.

Ans: (a) Just multiply. (b) A =

[
1 1

1 1

]
and B =

[
7 −2

2 2

]
. Then σ(A+B) = {11±

√
13

2
},

whereas σ(A) = {2, 0} and σ(B) = {6, 3}.

6.3 Basic Results on Diagonalization

Let A ∈Mn(C) and let T ∈ L(Cn) be defined by T (x) = Ax, for all x ∈ Cn. In this section, we

first find conditions under which one can obtain a basis B of Cn such that T [B,B] is a diagonal

matrix. To start with, we have the following definition.

Definition 6.3.1. A matrix A ∈ Mn(C) is said to be diagonalizable if A is similar to a

diagonal matrix. Or equivalently, P−1AP = D ⇔ AP = PD, for some diagonal matrix D and

invertible matrix P . Or equivalently, there exists an ordered basis B of Cn such that A[B,B] is

a diagonal matrix.
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Example 6.3.2. 1. Let A ∈ Mn(C) be a diagonalizable matrix. Then, by definition, A is

similar to D = diag(d1, . . . , dn). Thus, by Remark 6.2.4, σ(A) = σ(D) = {d1, . . . , dn}.

2. Let A =

[
0 1

0 0

]
. Then, A cannot be diagonalized.

Solution: A is diagonalizable implies A is similar to a diagonal matrix D with diagonal

entries {d1, d2} = {0, 0}. Hence D = 0⇒ A = SDS−1 = 0, a contradiction.

3. Let A =


2 1 1

0 2 1

0 0 2

. Then, A cannot be diagonalized.

Solution: A is diagonalizable implies A is similar to a diagonal matrix D with diagonal

entries {d1, d2, d3} = {2, 2, 2}. Hence, D = 2I3 ⇒ A = SDS−1 = 2I3, a contradiction.

4. Let A =

[
0 1

−1 0

]
. Then,

(
i,

[
i

1

])
and

(
−i,
[
−i
1

])
are two eigen-pairs of A. Define

U = 1√
2

[
i −i
1 1

]
. Then, U∗U = I2 = UU∗ and U∗AU =

[
−i 0

0 i

]
.

Theorem 6.3.3. Let A ∈Mn(R).

1. Let S be an invertible matrix such that S−1AS = diag(d1, . . . , dn). Then, for 1 ≤ i ≤ n,

the i-th column of S is an eigenvector of A corresponding to di.

2. Then, A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. Let S = [u1, . . . ,un]. Then S−1AS = D implies AS = SD. Thus

[Au1, . . . , Aun] = A [u1, . . . ,un] = AS = SD = S diag(d1, . . . , dn) = [d1u1, . . . , dnun] .

Or equivalently, Aui = diui, for 1 ≤ i ≤ n. As S is invertible, {u1, . . . ,un} are linearly

independent. Hence, (di,ui), for 1 ≤ i ≤ n, are eigen-pairs of A. This proves Part 1 and “only

if” part of Part 2.

Conversely, let {u1, . . . ,un} be n linearly independent eigenvectors of A corresponding to

eigenvalues α1, . . . , αn. Then, by Corollary 3.3.16, S = [u1, . . . ,un] is non-singular and

AS = [Au1, . . . , Aun] = [α1u1, . . . , λnun] = [u1, . . . ,un]


α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn

 = SD,

where D = diag(α1, . . . , αn). Therefore, S−1AS = D. This implies A is diagonalizable.

The next result implies that the eigenvectors corresponding to distinct eigenvalues are lin-

early independent. A proof is given for clarity. A separate proof appears later in Corollary 6.3.7.

Theorem 6.3.4. Let (α1,v1), . . . , (αk,vk) be k eigen-pairs of A ∈ Mn(C) with αi’s distinct.

Then, {v1, . . . ,vk} is linearly independent.
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Proof. Let {v1, . . . ,vk} be linearly dependent. Then, there exists a smallest ` ∈ {1, . . . , k − 1}
and c 6= 0 such that v`+1 = c1v1 + · · ·+ c`v`. So,

α`+1v`+1 = α`+1c1v1 + · · ·+ α`+1c`v`. (6.3.1)

and

α`+1v`+1 = Av`+1 = A (c1v1 + · · ·+ c`v`) = α1c1v1 + · · ·+ α`c`v`. (6.3.2)

Now, subtracting Equation (6.3.2) from Equation (6.3.1) gives

0 = (α`+1 − α1) c1v1 + · · ·+ (α`+1 − α`) c`v`.

So, v` ∈ LS(v1, . . . ,v`−1), a contradiction to the choice of `. Thus, the required result follows.

An immediate corollary of Theorem 6.3.3 and Theorem 6.3.4 is stated next without proof.

Corollary 6.3.5. Let A ∈Mn(C) have n distinct eigenvalues. Then, A is diagonalizable.

Remark 6.3.6. 1. Let A =


1 2 3 4

0 2 1 2

0 0 3 5

0 0 0 7

. Then σ(A) = {1, 2, 3, 7}, which are distinct.

Hence, A is diagonalizable.

2. The converse of Theorem 6.3.4 is not true as In has n linearly independent eigenvectors

corresponding to the eigenvalue 1, repeated n times.

Corollary 6.3.7. Let α1, . . . , αk be k distinct eigenvalues A ∈Mn(C). Also, for 1 ≤ i ≤ k, let

dim(Null(A− αiIn)) = ni. Then, A has
k∑
i=1

ni linearly independent eigenvectors.

Proof. For 1 ≤ i ≤ k, let Si = {ui1, . . . ,uini} be a basis of Null(A− αiIn). Then, we need to

prove that
k⋃
i=1

Si is linearly independent. To do so, denote pj(A) =

(
k∏
i=1

(A− αiIn)

)
/ (A− αjIn),

for 1 ≤ j ≤ k. Then, note that pj(A) is a polynomial in A of degree k − 1 and

pj(A)u =

 0, if u ∈ Null(A− αiIn), for some i 6= j∏
i 6=j

(αj − αi)u if u ∈ Null(A− αjIn) (6.3.3)

So, to prove that
k⋃
i=1

Si is linearly independent, consider the linear system

c11u11 + · · ·+ c1n1u1n1 + · · ·+ ck1uk1 + · · ·+ cknkuknk = 0

in the variables cij ’s. Now, applying the matrix pj(A) and using Equation (6.3.3), we get∏
i 6=j

(αj − αi)
(
cj1uj1 + · · ·+ cjnjujnj

)
= 0.

But
∏
i 6=j

(αj − αi) 6= 0 as αi’s are distinct. Hence, cj1uj1 + · · · + cjnjujnj = 0. As Sj is a basis

of Null(A− αjIn), we get cjt = 0, for 1 ≤ t ≤ nj . Thus, the required result follows.
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Corollary 6.3.8. Let A ∈ Mn(C) with distinct eigenvalues α1, . . . , αk. Then, A is diagonaliz-

able if and only if Geo.Mulαi(A) = Alg.Mulαi(A), for each 1 ≤ i ≤ k.

Proof. Let Alg.Mulαi(A) = mi. Then
k∑
i=1

mi = n. Let Geo.Mulαi(A) = ni, for 1 ≤ i ≤ k.

Then, by Corollary 6.3.7, A has
k∑
i=1

ni linearly independent eigenvectors. Also, by Theorem 6.2.5,

ni ≤ mi, for 1 ≤ i ≤ mi.

Now, let A be diagonalizable. Then, by Theorem 6.3.3, A has n linearly independent

eigenvectors. As ni ≤ mi, we get n =
k∑
i=1

ni ≤
k∑
i=1

mi = n. Thus ni = mi, 1 ≤ i ≤ k.

Now, assume that mi = ni, for 1 ≤ i ≤ k. Then A has
k∑
i=1

ni =
k∑
i=1

mi = n linearly

independent eigenvectors. Hence by Theorem 6.3.3, A is diagonalizable.

Definition 6.3.9. 1. A matrix A ∈ Mn(C) is called defective if for some α ∈ σ(A),

Geo.Mulα(A) < Alg.Mulα(A).

2. A matrix A ∈Mn(C) is called non-derogatory if Geo.Mulα(A) = 1, for each α ∈ σ(A).

As a direct consequence of the above discussions, we obtain the following result.

Corollary 6.3.10. Let A ∈Mn(C). Then,

1. A is non-defective if and only if A is diagonalizable.

2. A has distinct eigenvalues if and only if A is non-derogatory and non-defective.

Example 6.3.11. Let A =


2 1 1

1 2 1

0 −1 1

. Then,

1,


1

0

−1


 and

2,


1

1

−1


 are the only

eigen-pairs. Hence, by Theorem 6.3.3, A is not diagonalizable.

Exercise 6.3.12. 1. A strictly upper triangular matrix is not diagonalizable.

2. A be diagonalizable if and only if A+ αI is diagonalizable for every α ∈ C.

Ans: A diagonalizable ⇔ A = P−1DP , for some D = diag(d1, . . . , dn) and invertible

matrix P ⇔ A+ αI = P−1D1P , where D1 = diag(d1 + α, . . . , , dn + α).

3. Let A be an n×n matrix with λ ∈ σ(A) with alg.mulλ(A) = m. If Rank[A−λI] 6= n−m
then prove that A is not diagonalizable.

Ans: Diagonalizability⇒ m = Geo.Mulα(A) = dim (Null[A− λI]) = n−Rank[A−λI]

(rank-nullity theorem). Thus, we need Rank[A− λI] = n−m.

4. Let A and B be two similar matrices such that A is diagonalizable. Prove that B is

diagonalizable.

Ans: A diagonalizable ⇔ A = P−1DP , for some D = diag(d1, . . . , dn) and invertible

matrix P . A similar to B ⇔ A = SBS−1, for some S invertible. So, B = (PS)−1D(PS).
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5. If σ(A) = σ(B) and both A and B are diagonalizable then prove that A is similar to B.

Thus, they are two basis representation of the same linear transformation.

Ans: Let A = RD1R
−1 and B = QD2Q

−1 with σ(A) as the diagonal entries of D1 and

σ(B) as the diagonal entries of D2. As σ(A) = σ(B), there exists a permutation matrix P

such that D1 = PD2P
−1 (P−1 = P T ). Verify that B = (RPQ−1)−1A(RPQ−1).

6. Let A ∈Mn(R) and B ∈Mm(R). Suppose C =

[
A 0

0 B

]
. Then, prove that C is diagonal-

izable if and only if both A and B are diagonalizable.

Ans: Use Exercise 6.1.9.11.

7. Let J = 11T be an n× n. Define A = (a− b)I + bJ . Is A diagonalizable?

Ans: Use Exercise 6.1.9.6.

8. Is the matrix A =


2 1 1

1 2 1

1 1 2

 diagonalizable?

Ans: Verify A = I + J .

9. Let T : R5 −→ R5 be a linear operator with Rank(T − I) = 3 and

Null(T ) = {(x1, x2, x3, x4, x5) ∈ R5 | x1 + x4 + x5 = 0, x2 + x3 = 0}.

(a) Determine the eigenvalues of T?

(b) For each distinct eigenvalue α of T , determine Geo.Mulα(T ).

(c) Is T diagonalizable? Justify your answer.

Ans: Eigenvalues of T are 0 and 1 as T (x) = 0 and Rank(T − I) = 3 ⇒ T (x) = x have

non-trivial solutions. dim(Null(T )) = 3 ⇒ Geo.Mul0(T ) = 3 and Geo.Mul1(T ) = 2.

So, 5 linearly independent eigenvectors. Thus, diagonalizable.

10. Let A ∈Mn(R) with A 6= 0 but A2 = 0. Prove that A cannot be diagonalized.

Ans: A diagonalizable will imply A = 0 as all eigenvalues of A are 0 (note A2 = 0).

11. Are the matrices


1 0 −1

0 0 1

0 2 0

,


1 −3 3

0 −5 6

0 −3 4

 and


1 3 3

0 −5 6

0 −3 4

 diagonalizable?

Ans: True, True and False.

12. Let A ∈Mn(C) be a matrix of rank 1. Then

(a) A has at most one non-zero eigenvalue of algebraic multiplicity 1.

(b) find this eigenvalue and its geometric multiplicity.

(c) when is A diagonalizable?
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Ans: (a.i) Note that Ax = (xy∗)x = (y∗x)x. Thus, α = y∗x ∈ σ(A).

(a.ii) Since y 6= 0, let {z1, . . . , zn−1} be an orthonormal basis of y⊥. Then, Azi = xy∗zi = 0,

hence the geometric multiplicity of 0 is at least n − 1. So, if y∗x 6= 0, then the geometric

multiplicity of y∗x is 1. If y∗x = 0, then the geometric multiplicity of 0 could be n− 1 or n.

(a.iii) A is not diagonalizable if and only if y∗x = 0 and the geometric multiplicity of the

eigenvalue 0 is n− 1. Or equivalently, A is diagonalizable if and only if tr(A) 6= 0.

13. Let u,v ∈ Cn such that {u,v} is a linearly independent set. Define A = uvT + vuT .

(a) Then prove that A is a symmetric matrix.

(b) Then prove that dim(Ker(A)) = n− 2.

(c) Then 0 ∈ σ(A) and has multiplicity n− 2.

(d) Determine the other eigenvalues of A.

Ans: (a) AT = (uvT + vuT )T = vuT + uvT = A. Also, A = [u,v]

[
vT

uT

]
.

(b) Let w ∈ {u,v}⊥. Then Aw = 0 and dim
(
{u,v}⊥

)
= n− 2.

(c) Hence, 0 is an eigenvalue with multiplicity n− 2.

(d) As the eigenvalues of AB and BA are same (except for the multiplicity of the

eigenvalue 0), consider the 2 × 2 matrix

[
vTu vTv

uTu uTv

]
. The eigenvalue of this 2 × 2

matrix gives the other eigenvalues.

6.4 Schur’s Unitary Triangularization and Diagonalizability

We now prove one of the most important results in diagonalization, called the Schur’s Lemma

or the Schur’s unitary triangularization.

Lemma 6.4.1. [Schur’s unitary triangularization (SUT)] Let A ∈Mn(C). Then, there exists

a unitary matrix U such that A is similar to an upper triangular matrix. Further, if A ∈Mn(R)

and σ(A) have real entries then U is a real orthogonal matrix.

Proof. We prove the result by induction on n. The result is clearly true for n = 1. So, let n > 1

and assume the result to be true for k < n and prove it for n.

Let (λ1,x1) be an eigen-pair of A with ‖x1‖ = 1. Now, extend it to form an orthonormal

basis {x1,x2, . . . ,xn} of Cn and define X = [x1,x2, . . . ,xn]. Then, X is a unitary matrix and

X∗AX = X∗[Ax1, Ax2, . . . , Axn] =


x∗1
x∗2
...

x∗n

 [λ1x1, Ax2, . . . , Axn] =

[
λ1 ∗
0 B

]
, (6.4.4)

where B ∈Mn−1(C). Now, by induction hypothesis there exists a unitary matrix U ∈Mn−1(C)

such that U∗BU = T is an upper triangular matrix. Define Û = X

[
1 0

0 U

]
. As product of
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unitary matrices is unitary, the matrix Û is unitary and

(
Û
)∗
AÛ =

[
1 0

0 U∗

]
X∗AX

[
1 0

0 U

]
=

[
1 0

0 U∗

][
λ1 ∗
0 B

][
1 0

0 U

]

=

[
λ1 ∗
0 U∗B

][
1 0

0 U

]
=

[
λ1 ∗
0 U∗BU

]
=

[
λ1 ∗
0 T

]
.

Since T is upper triangular,

[
λ1 ∗
0 T

]
is upper triangular.

Further, if A ∈Mn(R) and σ(A) has real entries then x1 ∈ Rn with Ax1 = λ1x1. Now, one

uses induction once again to get the required result.

Remark 6.4.2. Let A ∈ Mn(C). Then, by Schur’s Lemma there exists a unitary matrix U

such that U∗AU = T = [tij ], a triangular matrix. Thus,

{α1, . . . , αn} = σ(A) = σ(U∗AU) = {t11, . . . , tnn}. (6.4.5)

Furthermore, we can get the αi’s in the diagonal of T in any prescribed order.

Definition 6.4.3. Let A,B ∈ Mn(C). Then, A and B are said to be unitarily equiva-

lent/similar if there exists a unitary matrix U such that A = U∗BU .

Remark 6.4.4. We know that if two matrices are unitarily equivalent then they are necessarily

similar as U∗ = U−1, for every unitary matrix U . But, similarity doesn’t imply unitary equiv-

alence (see Exercise 6.4.6.5). In numerical calculations, unitary transformations are preferred

as compared to similarity transformations due to the following main reasons:

1. A is unitary implies ‖Ax‖ = ‖x‖. This need not be true under a similarity.

2. As U−1 = U∗, for a unitary matrix, unitary equivalence is computationally simpler.

3. Also, computation of “conjugate transpose” doesn’t create round-off error in calculation.

Example 6.4.5. Consider the two matrices A =

[
3 2

−1 0

]
and B =

[
1 1

0 2

]
. Then, we show

that they are similar but not unitarily similar.

Solution: Note that σ(A) = σ(B) = {1, 2}. As the eigenvalues are distinct, by Theo-

rem 6.3.5, the matrices A and B are diagonalizable and hence there exists invertible matrices

S and T such that A = SΛS−1, B = TΛT−1, where Λ =

[
1 0

0 2

]
. Thus A = ST−1B(ST−1)−1.

But
∑ |aij |2 6= ∑ |bij |2. Hence by Exercise 5.8.8.6, they cannot be unitarily similar.

Exercise 6.4.6.

1. If A is unitarily similar to a triangular matrix T = [tij ] then
∑
i<j
|tij |2 = tr(A∗A)−∑ |λi|2.

Ans: See Exercise 5.8.8.6.
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2. Consider the following 6 matrices.

M1 =


2 −1 3

√
2

0 1
√

2

0 0 3

, M2 =


2 1 3

√
2

0 1 −
√

2

0 0 3

, M3 =


2 0 3

√
2

1 1
√

2

0 0 1

,

M4 =


2 0 3

√
2

−1 1 −
√

2

0 0 1

, M5 =


1 1 4

0 2 2

0 0 3

 and M6 =


2 1 4

0 1 2

0 0 1

.

Now, use the exercises given below to conclude that the upper triangular matrix obtained

in the “Schur’s Lemma” need not be unique.

(a) Prove that M1,M2 and M5 are unitarily equivalent.

(b) Prove that M3,M4 and M6 are unitarily equivalent.

(c) Do the above results contradict Exercise 5.8.8.5c? Give reasons for your answer.

Ans: Let U =


1 0 0

0 −1 0

0 0 1

 and V =


1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0

0 0 1

. Then U and V are unitary

and UM1U
−1 = M2, V M1V

−1 = M5, UM3U
−1 = M4, V M3V

−1 = M6. No, they do

not contradict Exercise 5.8.8.5c as we need to look at
∑ |aij |2, for all A = [aij ].

3. Prove that A =


1 1 1

0 2 1

0 0 3

 and B =


2 −1

√
2

0 1 0

0 0 3

 are unitarily equivalent.

Ans: Let V =


1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0

0 0 1

. Then VMV −1 = N .

4. Let A ∈ Mn(C). Then, Prove that if x∗Ax = 0, for all x ∈ Cn, then A = 0. Do these

results hold for arbitrary matrices?

Ans: Let x = ej . Then x∗Ax = 0 ⇒ ajj = 0, for all j. Now, take x = e1 + e2 and

y = e1 + ie2. Then 0 = x∗Ax = aij + aji and 0 = y∗Ay = aij − aji. Thus aij = 0.

5. Show that the matrices A =

[
4 4

0 4

]
and B =

[
10 9

−4 −2

]
are similar. Is it possible to find

a unitary matrix U such that A = U∗BU?

Ans: Take S =

[
3 2

−2 0

]
. Then S−1BS = A. There doesn’t exist an unitary matrix as the

sum of the squares of the matrix entries are NOT equal.

We now use Lemma 6.4.1 to give another proof of Theorem 6.1.17.

Corollary 6.4.7. Let A ∈Mn(C). If α1, . . . , αn ∈ σ(A) then det(A) =
n∏
i=1

αi and tr(A) =
n∑

i=1
αi.

Proof. By Schur’s Lemma there exists a unitary matrix U such that U∗AU = T = [tij ], a

triangular matrix. By Remark 6.4.2, σ(A) = σ(T ). Hence, det(A) = det(T ) =
n∏
i=1

tii =
n∏
i=1

αi

and tr(A) = tr(A(UU∗)) = tr(U∗(AU)) = tr(T) =
n∑

i=1
tii =

n∑
i=1

αi.
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6.4.1 Diagonalizability of some Special Matrices

We now use Schur’s unitary triangularization Lemma to state the main theorem of this sub-

section. Also, recall that A is said to be a normal matrix if AA∗ = A∗A. Further, Hermitian,

skew-Hermitian and scalar multiples of Unitary matrices are examples of normal matrices.

Theorem 6.4.8. [Spectral Theorem for Normal Matrices] Let A ∈Mn(C). If A is a normal

matrix then there exists a unitary matrix U such that U∗AU = diag(α1, . . . , αn).

Proof. By Schur’s Lemma there exists a unitary matrix U such that U∗AU = T = [tij ], a

triangular matrix. Since A is a normal

T ∗T = (U∗AU)∗(U∗AU) = U∗A∗AU = U∗AA∗U = (U∗AU)(U∗AU)∗ = TT ∗.

Thus, we see that T is an upper triangular matrix with T ∗T = TT ∗. Thus, by Exercise 1.3.13.8,

T is a diagonal matrix and this completes the proof.

We re-write Theorem 6.4.8 in another form to indicate that A can be decomposed into linear

combination of orthogonal projectors onto eigen-spaces. Thus, it is independent of the choice

of eigenvectors. This remark is also valid for Hermitian, skew-Hermitian and Unitary matrices.

Remark 6.4.9. Let A ∈Mn(C) be a normal matrix with eigen-pairs α1, . . . , αn.

1. Then, there exists a unitary matrix U = [u1, . . . ,un] such that

(a) ui is an eigenvector of A for αi, 1 ≤ i ≤ n.

(b) In = U∗U = UU∗ = u1u
∗
1 + · · ·+ unu

∗
n.

(c) the columns of U form a set of orthonormal eigenvectors for A (use Theorem 6.3.3).

(d) A = A · In = A (u1u
∗
1 + · · ·+ unu

∗
n) = α1u1u

∗
1 + · · ·+ αnunu

∗
n.

2. Let the distinct eigenvalues of A be α1, . . . , αk with respective eigen-spaces W1, . . . ,Wk.

(a) Then each eigenvector belongs to some Wi. So, Wi’s are orthogonal to each other.

(b) Hence Cn = W1 ⊕ · · · ⊕Wk.

(c) If Pαi is the orthogonal projector onto Wi, 1 ≤ i ≤ k, then A = α1P1 + · · · + αkPk.

Thus, A depends only on the eigen-spaces and not on the computed eigenvectors.

Theorem 6.4.8 also implies that if A ∈ Mn(C) is a normal matrix then after a rotation or

reflection of axes (unitary transformation), the matrix A basically looks like a diagonal matrix.

As a special case, we now give the spectral theorem for Hermitian matrices.

Theorem 6.4.10. [Spectral Theorem for Hermitian Matrices] Let A ∈Mn(C) be a Hermitian

matrix. Then Remark 6.4.9 holds. Further, all the eigenvalues of A are real.

Proof. The first part is immediate from Theorem 6.4.8 as Hermitian matrices are also normal

matrices. Let (α,x) be an eigen-pair. To show, α is a real number.

As A∗ = A and Ax = αx, we have x∗A = x∗A∗ = (Ax)∗ = (αx)∗ = αx∗. Hence,

αx∗x = x∗(αx) = x∗(Ax) = (x∗A)x = (αx∗)x = αx∗x.
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As x is an eigenvector, x 6= 0. Hence, ‖x‖2 = x∗x 6= 0. Thus α = α, i.e., α ∈ R.

As an immediate corollary of Theorem 6.4.10 and the second part of Lemma 6.4.1, we give

the following result without proof.

Corollary 6.4.11. Let A ∈ Mn(R) be symmetric. Then there exists an orthogonal matrix

P and real numbers α1, . . . , αn such that A = P diag(α1, . . . , αn)P T . Or equivalently, A is

diagonalizable using orthogonal matrix.

Exercise 6.4.12. 1. Let A be a normal matrix. If all the eigenvalues of A are 0 then prove

that A = 0. What happens if all the eigenvalues of A are 1?

Ans: A normal implies A = UDU∗ with D diagonal. Now, verify that if D = 0 then A = 0

and if D = I then A = I.

2. Let A be a skew-symmetric matrix. Then A is unitarily diagonalizable and the eigenvalues

of A are either zero or purely imaginary.

Ans: Unitarily diagonalizable as A is a normal matrix. Ax = αx ⇒ x∗(A) = x∗(−A∗) =

−(Ax)∗ = −(αx)∗ = −αx∗. Thus, in the proof of Theorem 6.4.10 αx∗x = −αx∗x ⇒ the

result.

3. Characterize all normal matrices in M2(R).

Ans:

[
a b

c d

][
a c

b d

]
=

[
a2 + b2 ac+ bd

ac+ bd c2 + d2

]
and

[
a c

b d

][
a b

c d

]
=

[
a2 + c2 ab+ cd

ab+ cd b2 + d2

]
.

From b2 = c2, we have either b = c, in which case AT = A or b = −c 6= 0, in which case

a = d. If a = d = 0, we get AT = −A. We could have other matrices like

[
2 1

−1 2

]
.

4. Let σ(A) = {λ1, . . . , λn}. Then, prove that the following statements are equivalent.

(a) A is normal.

(b) A is unitarily diagonalizable.

(c)
∑
i,j
|aij |2 =

∑
i
|λi|2.

(d) A has n orthonormal eigenvectors.

Ans: In view of earlier results, we only prove c) ⇒ b). By Schur’ theorem, there exists

a unitary matrix U such that U∗AU = T is upper triangular. As U∗AU = T , we have∑
i,j
|aij |2 =

∑
i,j
|tij |2 =

∑
i
|tii|2. So tij = 0, for all i < j.

5. Let A be a normal matrix with (λ,x) as an eigen-pair. Then,

(a) (A∗)kx for k ∈ Z+ is also an eigenvector corresponding to λ.

(b) (λ,x) is an eigen-pair for A∗. [Hint: Verify ‖A∗x− λx‖2 = ‖Ax− λx‖2.]

6. Let A be an n× n unitary matrix. Then,

(a) |λ| = 1 for any eigenvalue λ of A.
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(b) the eigenvectors x,y corresponding to distinct eigenvalues are orthogonal.

7. Let A be a 2× 2 orthogonal matrix. Then, prove the following:

(a) if det(A) = 1 then A =

[
cos θ − sin θ

sin θ cos θ

]
, for some θ, 0 ≤ θ < 2π. That is, A

counterclockwise rotates every point in R2 by an angle θ.

(b) if detA = −1 then A =

[
cos θ sin θ

sin θ − cos θ

]
, for some θ, 0 ≤ θ < 2π. That is, A

reflects every point in R2 about a line passing through origin. Determine this line.

Or equivalently, there exists a non-singular matrix P such that P−1AP =

[
1 0

0 −1

]
.

8. Let A be a 3× 3 orthogonal matrix. Then, prove the following:

(a) if det(A) = 1 then A is a rotation about a fixed axis, in the sense that A has an

eigen-pair (1,x) such that the restriction of A to the plane x⊥ is a two dimensional

rotation in x⊥.

(b) if detA = −1 then A corresponds to a reflection across a plane P , followed by a

rotation about the line through origin that is orthogonal to P .

9. Let A be a normal matrix. Then, prove that Rank(A) equals the number of nonzero

eigenvalues of A.

10. [Equivalent characterizations of Hermitian matrices] Let A ∈ Mn(C). Then, the fol-

lowing statements are equivalent.

(a) The matrix A is Hermitian.

(b) The number x∗Ax is real for each x ∈ Cn.

(c) The matrix A is normal and has real eigenvalues.

(d) The matrix S∗AS is Hermitian for each S ∈Mn(C).

Ans: i)⇒ii),iii),iv) can be shown easily.

ii)⇒i). Taking x = ei + ıej , we have x∗Ax = aii − ıaji + ıaij + ajj ∈ R. As aii, ajj ∈ R, we

see that aij − aji is a purely imaginary number, i.e., they have the same real part. Similarly,

taking x = ei + ej , we see that aij + aji ∈ R, that is, they have opposite imaginary parts. So

aij = aji.

iii)⇒i). Suppose that A∗A = AA∗ and λ(A) ∈ R. By Spectral theorem A = U∗ΛU , for some

unitary matrix, where Λ is a real matrix. Taking conjugate transpose, we see that A∗ = A.

iv)⇒i). Follows by taking S = I.

6.4.2 Cayley Hamilton Theorem

Let A ∈Mn(C). Then, in Theorem 6.1.17, we saw that

PA(x) = det(xI −A) = xn − an−1xn−1 + an−2xn−2 + · · ·+ (−1)n−1a1x+ (−1)na0 (6.4.6)
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for certain ai ∈ C, 0 ≤ i ≤ n − 1. Also, if α is an eigenvalue of A then PA(α) = 0. So,

xn− an−1xn−1 + an−2xn−2 + · · ·+ (−1)n−1a1x+ (−1)na0 = 0 is satisfied by n complex numbers

which are eigenvalues of A. It turns out that the expression

An − an−1An−1 + an−2An−2 + · · ·+ (−1)n−1a1A+ (−1)na0I = 0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton

theorem. We give a proof using Schur’s unitary triangularization. To do so, we look at

multiplication of certain upper triangular matrices.

Lemma 6.4.13. Let A1, . . . , An ∈ Mn(C) be upper triangular matrices such that the (i, i)-th

entry of Ai equals 0, for 1 ≤ i ≤ n. Then A1A2 · · ·An = 0.

Proof. We use induction to prove that the first k columns of A1A2 · · ·Ak is 0, for 1 ≤ k ≤ n.

The result is clearly true for k = 1 as the first column of A1 is 0. For clarity, we show that the

first two columns of A1A2 is 0. Let B = A1A2. Then, using A1[:, 1] = 0 and (A2)ji = 0, for

i = 1, 2, j ≥ 2, we get

B[:, i] = A1[:, 1](A2)1i +A1[:, 2](A2)2i + · · ·+A1[:, n](A2)ni = 0 + · · ·+ 0 = 0.

So, assume that the first n − 1 columns of C = A1 · · ·An−1 is 0. To show B = CAn = 0. As

n − 1 columns of C are zero, C[:, 1](An)1i + C[:, 2](An)2i + · · · + C[:, n − 1](An)(n−1)i = 0, for

1 ≤ i ≤ n− 1. Also C[:, n](An)ni = 0 as the last row of An = 0T . Thus

B[:, i] = C[:, 1](An)1i + C[:, 2](An)2i + · · ·+ C[:, n](An)ni = 0 + · · ·+ 0 = 0.

Hence, by the induction hypothesis the required result follows.

We now prove the Cayley Hamilton Theorem using Schur’s unitary triangularization.

Theorem 6.4.14. [Cayley Hamilton Theorem] Let A ∈Mn(C). Then A satisfies its charac-

teristic equation, i.e., if PA(x) = det(xIn −A) = xn − an−1xn−1 + · · ·+ (−1)n−1a1x+ (−1)na0

then

An − an−1An−1 + · · ·+ (−1)n−1a1A+ (−1)na0I = 0

holds true as a matrix identity.

Proof. Let σ(A) = {α1, . . . , αn} then PA(x) =
n∏
i=1

(x− αi). And, by Schur’s unitary triangular-

ization there exists a unitary matrix U such that U∗AU = T , an upper triangular matrix with

tii = αi, for 1 ≤ i ≤ n. Now, observe that if Ai = T − αiI then the Ai’s satisfy the conditions

of Lemma 6.4.13. Hence

(T − α1I) · · · (T − αnI) = 0.

Therefore,

PA(A) =

n∏
i=1

(A− αiI) =

n∏
i=1

(UTU∗ − αiUIU∗) = U
[
(T − α1I) · · · (T − αnI)

]
U∗ = U0U∗ = 0.

Thus, the required result follows.

We now give some examples and then implications of the Cayley Hamilton Theorem.
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Remark 6.4.15. 1. Let A =

[
1 2

1 −3

]
. Then, PA(x) = x2 + 2x− 5. Hence, verify that

A2 + 2A− 5I2 =

[
3 −4

−2 11

]
+ 2

[
1 2

1 −3

]
− 5

[
1 0

0 1

]
= 0.

Further, A2 = −2A+ 5I implies A−1 =
1

5
(A+ 2I2) =

1

5

[
3 2

1 −1

]
and

A3 = A(A2) = A(−2A+5I) = −2A2+5I = −2(−2A+5I)+5I = 4A−10I+5I = 4A−5I.

Now, use induction to show Am ∈ LS(I, A), for all m ≥ 1.

2. Let A =

[
3 1

2 0

]
. Then, PA(t) = t2 − 3t − 2. So, PA(A) = 0 ⇒ A2 = 3A + 2I. Thus,

A−1 = A−3I
2 . Further, induction implies Am ∈ LS(I, A), for all m ≥ 1.

3. Let A =

[
0 1

0 0

]
. Then, PA(x) = x2. So, even though A 6= 0, A2 = 0.

4. For A =


0 0 1

0 0 0

0 0 0

, PA(x) = x3. So, Cayley Hamilton theorem ⇒ A3 = 0. Here A2 = 0.

5. For A =


1 0 0

0 1 1

0 0 1

, PA(t) = (t− 1)3. So PA(A) = 0. But, observe that q(A) = 0, where

q(t) = (t− 1)2.

6. Let A ∈Mn(C) with PA(x) = xn − an−1xn−1 + · · ·+ (−1)n−1a1x+ (−1)na0.

(a) Then, for any ` ∈ N, the division algorithm gives α0, α1, . . . , αn−1 ∈ C and a poly-

nomial f(x) with coefficients from C such that

x` = f(x)PA(x) + α0 + xα1 + · · ·+ xn−1αn−1.

Hence, by the Cayley Hamilton theorem, A` = α0I + α1A+ · · ·+ αn−1An−1.

i. Thus, to compute any power of A, one needs to apply the division algorithm to

get αi’s and know Ai, for 1 ≤ i ≤ n − 1. This is quite helpful in numerical

computation as computing powers takes much more time than division.

ii. Note that LS
{
I, A,A2, . . .

}
is a subspace of Mn(C). Also, dim (Mn(C)) = n2.

But, the above argument implies that dim
(
LS
{
I, A,A2, . . .

})
≤ n.

iii. In the language of graph theory, it says the following: “Let G be a graph on n

vertices and A its adjacency matrix. Suppose there is no path of length n− 1 or

less from a vertex v to a vertex u in G. Then, G doesn’t have a path from v to u

of any length. That is, the graph G is disconnected and v and u are in different

components of G.”
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(b) Suppose A is non-singular. Then, by definition a0 = det(A) 6= 0. Hence,

A−1 =
1

a0

[
a1I − a2A+ · · ·+ (−1)n−2an−1An−2 + (−1)n−1An−1

]
.

This matrix identity can be used to calculate the inverse.

(c) The above also implies that if A is invertible then A−1 ∈ LS
{
I, A,A2, . . .

}
. That is,

A−1 is a linear combination of the vectors I, A, . . . , An−1.

Exercise 6.4.16. Miscellaneous Exercises:

1. Use the Cayley-Hamilton theorem to compute the inverse of following matrices:
2 3 4

5 6 7

1 1 2

,


−1 −1 1

1 −1 1

0 1 1

 and


1 −2 −1

−2 1 −1

0 −1 2

.

2. Let A,B ∈M2(C) such that A = AB −BA. Then, prove that A2 = 0.

3. Let A,B ∈Mn(C) be upper triangular matrices with the top leading principal submatrix of

A of size k being 0. If B[k + 1, k + 1] = 0 then prove that the leading principal submatrix

of size k + 1 of AB is 0.

4. Let B ∈Mm,n(C) and A =

[
0 B

BT 0

]
. Then

(
λ,

[
x

y

])
is an eigen-pair ⇔

(
−λ,

[
x

−y

])
is an eigen-pair.

5. Let B,C ∈Mn(R). Define A =

[
B C

−C B

]
. Then, prove the following:

(a) if s is a real eigenvalue of A with corresponding eigenvector

[
x

y

]
then s is also an

eigenvalue corresponding to the eigenvector

[
−y

x

]
.

(b) if s+ it is a complex eigenvalue of A with corresponding eigenvector

[
x + iy

−y + ix

]
then

s− it is also an eigenvalue of A with corresponding eigenvector

[
x− iy
−y − ix

]
.

(c) (s+ it,x + iy) is an eigen-pair of B+iC if and only if (s− it,x− iy) is an eigen-pair

of B − iC.

(d)

(
s+ it,

[
x + iy

−y + ix

])
is an eigen-pair of A if and only if (s+ it,x + iy) is an eigen-

pair of B + iC.

(e) det(A) = | det(B + iC)|2.

The next section deals with quadratic forms which helps us in better understanding of conic

sections in analytic geometry.
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6.5 Quadratic Forms

Definition 6.5.1. Let A ∈Mn(C). Then A is said to be

1. positive semi-definite (psd) if x∗Ax ∈ R and x∗Ax ≥ 0, for all x ∈ Cn.

2. positive definite (pd) if x∗Ax ∈ R and x∗Ax > 0, for all x ∈ Cn \ {0}.

3. negative semi-definite (nsd) if x∗Ax ∈ R and x∗Ax ≤ 0, for all x ∈ Cn.

4. negative definite (nd) if x∗Ax ∈ R and x∗Ax < 0, for all x ∈ Cn \ {0}.

5. indefinite if x∗Ax ∈ R and there exist x,y ∈ Cn such that x∗Ax < 0 < y∗Ay.

Lemma 6.5.2. Let A ∈Mn(C). Then A is Hermitian if and only if at least one of the following

statements hold:

1. S∗AS is Hermitian for all S ∈Mn.

2. A is normal and has real eigenvalues.

3. x∗Ax ∈ R for all x ∈ Cn.

Proof. Let S ∈Mn, (S∗AS)∗ = S∗A∗S = S∗AS. Thus S∗AS is Hermitian.

Suppose A = A∗. Then, A is clearly normal as AA∗ = A2 = A∗A. Further, if (λ,x) is an

eigenpair then λx∗x = x∗Ax ∈ R implies λ ∈ R.

For the last part, note that x∗Ax ∈ C. Thus x∗Ax = (x∗Ax)∗ = x∗A∗x = x∗Ax, we get

Im(x∗Ax) = 0. Thus, x∗Ax ∈ R.

If S∗AS is Hermitian for all S ∈Mn then taking S = In gives A is Hermitian.

If A is normal then A = U∗ diag(λ1, . . . , λn)U for some unitary matrix U . Since λi ∈ R,

A∗ = (U∗ diag(λ1, . . . , λn)U)∗ = U∗ diag(λ1, . . . , λn)U = U∗ diag(λ1, . . . , λn)U = A. So, A is

Hermitian.

If x∗Ax ∈ R for all x ∈ Cn then aii = e∗iAei ∈ R. Also, aii+ajj+aij+aji = (ei+ej)
∗A(ei+

ej) ∈ R. So, Im(aij) = −Im(aji). Similarly, aii + ajj + iaij − iaji = (ei + iej)
∗A(ei + iej) ∈ R

implies that Re(aij) = Re(aji). Thus, A = A∗.

Remark 6.5.3. Let A ∈ Mn(R). Then the condition x∗Ax ∈ R, for all x ∈ Cn, in Defini-

tion 6.5.8 implies AT = A, i.e., A is a symmetric matrix. But, when we study matrices over

R, we seldom consider vectors from Cn. So, in such cases, we assume A is symmetric.

Example 6.5.4. 1. Let A =

[
2 1

1 2

]
or A =

[
3 1 + i

1− i 4

]
. Then, A is positive definite.

2. Let A =

[
1 1

1 1

]
or A =

[ √
2 1 + i

1− i
√

2

]
. Then, A is positive semi-definite but not positive

definite.

3. Let A =

[
−2 1

1 −2

]
or A =

[
−2 1− i

1 + i −2

]
. Then, A is negative definite.

4. Let A =

[
−1 1

1 −1

]
or A =

[
−2 1− i

1 + i −1

]
. Then, A is negative semi-definite.
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5. Let A =

[
0 1

1 −1

]
or A =

[
1 1 + i

1− i 1

]
. Then, A is indefinite.

Theorem 6.5.5. Let A ∈Mn(C). Then, the following statements are equivalent.

1. A is positive semi-definite.

2. A∗ = A and each eigenvalue of A is non-negative.

3. A = B∗B for some B ∈Mn(C).

Proof. 1 ⇒ 2: Let A be positive semi-definite. Then, by Lemma 6.5.2, A is Hermitian. If

(α,v) is an eigen-pair of A then α‖v‖2 = α(v∗v) = v∗(αv) = v∗Av ≥ 0. So, α ≥ 0.

2 ⇒ 3: Let σ(A) = {α1, . . . , αn}. Then, by spectral theorem, there exists a unitary

matrix U such that U∗AU = D with D = diag(α1, . . . , αn). As αi ≥ 0, for 1 ≤ i ≤ n, define

D
1
2 = diag(

√
α1, . . . ,

√
αn). Then, A = UD

1
2 [D

1
2U∗] = B∗B.

3 ⇒ 1: Let A = B∗B. Then, for x ∈ Cn, x∗Ax = x∗B∗Bx = ‖Bx‖2 ≥ 0. Thus, the

required result follows.

A similar argument gives the next result and hence the proof is omitted.

Theorem 6.5.6. Let A ∈Mn(C). Then, the following statements are equivalent.

1. A is positive definite.

2. A∗ = A and each eigenvalue of A is positive.

3. A = B∗B for a non-singular matrix B ∈Mn(C).

Remark 6.5.7. Let A ∈Mn(C) be Hermitian with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then, there

exists a unitary matrix U = [u1,u2, . . . ,un] and a diagonal matrix D = diag(λ1, λ2, . . . , λn)

such that A = UDU∗. Now, for 1 ≤ i ≤ n, define αi = max{λi, 0} and βi = min{λi, 0}. Then

1. for D1 = diag(α1, α2, . . . , αn), the matrix A1 = UD1U
∗ is positive semi-definite.

2. for D2 = diag(β1, β2, . . . , βn), the matrix A2 = UD2U
∗ is positive semi-definite.

3. A = A1 −A2. The matrix A1 is generally called the positive semi-definite part of A.

Definition 6.5.8. Let A = [aij ] ∈ Mn(C) be a Hermitian matrix and let x,y ∈ Cn. Then, a

sesquilinear form in x,y ∈ Cn is defined as H(x,y) = y∗Ax. In particular, H(x,x), denoted

H(x), is called a Hermitian form. In case A ∈Mn(R), H(x) is called a quadratic form.

Remark 6.5.9. Observe that

1. if A = In then the bilinear/sesquilinear form reduces to the standard inner product.

2. H(x,y) is ‘linear’ in the first component and ‘conjugate linear’ in the second component.

3. the quadratic form H(x) is a real number. Hence, for α ∈ R, the equation H(x) = α,

represents a conic in Rn.

Example 6.5.10. 1. Let A ∈ Mn(R). Then, f(x,y) = yTAx, for x,y ∈ Rn, is a bilinear

form on Rn.

2. Let A =

[
1 2− i

2 + i 2

]
. Then, A∗ = A and for x =

[
x

y

]
∈ C2, verify that

H(x) = x∗Ax = |x|2 + 2|y|2 + 2Re ((2− i)xy)

where ‘Re’ denotes the real part of a complex number, is a sesquilinear form.
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6.5.1 Sylvester’s law of inertia

The main idea of this section is to express H(x) as sum or difference of squares. Since H(x) is

a quadratic in x, replacing x by cx, for c ∈ C, just gives a multiplication factor by |c|2. Hence,

one needs to study only the normalized vectors. Let us consider Example 6.1.2 again. There

we see that

xTAx = 3
(x+ y)2

2
− (x− y)2

2
= (x+ 2y)2 − 3y2, and (6.5.1)

xTBx = 5
(x+ 2y)2

5
+ 10

(2x− y)2

5
= (3x− 2y

3
)2 +

50y2

9
. (6.5.2)

Note that both the expressions in Equation (6.5.1) is the difference of two non-negative terms.

Whereas, both the expressions in Equation (6.5.2) consists of sum of two non-negative terms.

Is the number of non-negative terms, appearing in the above expressions, just a coincidence?

For a better understanding, we define inertia of a Hermitian matrix.

Definition 6.5.11. Let A ∈ Mn(C) be a Hermitian matrix. The inertia of A, denoted i(A),

is the triplet (i+(A), i−(A), i0(A)), where i+(A) is the number of positive eigenvalues of A,

i−(A) is the number of negative eigenvalues of A and i0(A) is the nullity of A. The difference

i+(A)− i−(A) is called the signature of A.

Exercise 6.5.12. Let A ∈ Mn(C) be a Hermitian matrix. If the signature and the rank of A

is known then prove that one can find out the inertia of A.

To proceed with the earlier discussion, let A ∈ Mn(C) be Hermitian with eigenvalues

α1, . . . , αn. Then, by Theorem 6.4.10, U∗AU = D = diag(α1, . . . , αn), for some unitary matrix

U . Let x = Uz. Then, ‖x‖ = 1 implies ‖z‖ = 1. Thus, if z =


z1
...

zn

 then

H(x) = z∗U∗AUz = z∗Dz =

n∑
i=1

αi|zi|2 =

p∑
i=1

|√αi zi|2 −
r∑

i=p+1

∣∣∣√|αi| zi∣∣∣2 , (6.5.3)

where α1, . . . , αp > 0, αp+1, . . . , αr < 0 and αr+1, . . . , αn = 0, where p = i+(A) and r − p =

i−(A). Thus, we see that the possible values of H(x) seem to depend only on the positive and

negative eigenvalues of A. Since U is an invertible matrix, the components zi’s of z = U−1x =

U∗x are commonly known as the linearly independent linear forms. Note that each zi is a

linear expression in the components of x.

As a next result, we show that in any expression of H(x) as a sum or difference of n absolute

squares of linearly independent linear forms, the number p (respectively, r−p) gives the number

of positive (respectively, negative) eigenvalues of A. This is popularly known as the ‘Sylvester’s

law of inertia’.

Lemma 6.5.13. [Sylvester’s Law of Inertia] Let A ∈ Mn(C) be a Hermitian matrix and let

x ∈ Cn. Then, every Hermitian form H(x) = x∗Ax, in n variables can be written as

H(x) = |y1|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2
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where y1, . . . ,yr are linearly independent linear forms in the components of x and the integers

p and r satisfying 0 ≤ p ≤ r ≤ n, depend only on A.

Proof. Equation (6.5.3) implies that H(x) has the required form. We only need to show that

p and r are uniquely determined by A. Hence, let us assume on the contrary that there exist

p, q, r, s ∈ N with p > q such that

H(x) = |y1|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2 (6.5.4)

= |z1|2 + · · ·+ |zq|2 − |zq+1|2 − · · · − |zs|2, (6.5.5)

where y =

[
Y1

Y2

]
= Mx, z =

[
Z1

Z2

]
= Nx with Y1 =


y1

...

yp

 and Z1 =


z1
...

zq

 for some invertible

matrices M and N . Now the invertibility of M and N implies z = By, for some invertible matrix

B. Decompose B =

[
B1 B2

B3 B4

]
, where B1 is a q × p matrix. Then

[
Z1

Z2

]
=

[
B1 B2

B3 B4

][
Y1

Y2

]
. As

p > q, the homogeneous linear system B1Y1 = 0 has a nontrivial solution, say Ỹ1 =


ỹ1
...

ỹp

 and

consider ỹ =

[
Ỹ1

0

]
. Then for this choice of ỹ, Z1 = 0 and thus, using Equations (6.5.4) and

(6.5.5), we have

H(ỹ) = |ỹ1|2 + |ỹ2|2 + · · ·+ |ỹp|2 − 0 = 0− (|zq+1|2 + · · ·+ |zs|2).

Now, this can hold only if Ỹ1 = 0, a contradiction to Ỹ1 being a non-trivial solution. Hence

p = q. Similarly, the case r > s can be resolved. This completes the proof of the lemma.

Remark 6.5.14. Since A is Hermitian, Rank(A) equals the number of nonzero eigenvalues.

Hence, Rank(A) = r. The number r is called the rank and the number r − 2p is called the

inertial degree of the Hermitian form H(x).

Do we need ∗-congruence at this stage?
We now look at another form of the Sylvester’s law of inertia. We start with the following

definition.

Definition 6.5.15. Let A,B ∈ Mn(C). Then, A is said to be ∗-congruent (read star-

congruent) to B if there exists an invertible matrix S such that A = S∗BS.

Theorem 6.5.16. [Second Version: Sylvester’s Law of Inertia] Let A,B ∈ Mn(C) be

Hermitian. Then, A is ∗-congruent to B if and only if i(A) = i(B).

Proof. By spectral theorem U∗AU = ΛA and V ∗BV = ΛB, for some unitary matrices U, V

and diagonal matrices ΛA,ΛB of the form diag(+, · · · ,+,−, · · · ,−, 0, · · · , 0). Thus, there exist

invertible matrices S, T such that S∗AS = DA and T ∗BT = DB, where DA, DB are diagonal

matrices of the form diag(1, · · · , 1,−1, · · · ,−1, 0, · · · , 0).
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If i(A) = i(B), then it follows that DA = DB, i.e., S∗AS = T ∗BT and hence A =

(TS−1)∗B(TS−1).

Conversely, suppose that A = P ∗BP , for some invertible matrix P , and i(B) = (k, l,m).

As T ∗BT = DB, we have, A = P ∗(T ∗)−1DBT
−1P = (T−1P )∗DB(T−1P ). Now, let X =

(T−1P )−1. Then, A = (X−1)∗DBX
−1 and we have the following observations.

1. As rank and nullity do not change under similarity transformation, i0(A) = i0(DB) = m

as i(B) = (k, l,m).

2. Using i(B) = (k, l,m), we also have

X[:, k + 1]∗AX[:, k + 1] = X[:, k + 1]∗
(
(X−1)∗DB(X−1)

)
X[:, k + 1] = e∗k+1DBek+1 = −1.

Similarly, X[:, k + 2]∗AX[:, k + 2] = · · · = X[:, k + l]∗AX[:, k + l] = −1. As the vectors

X[:, k+ 1], . . . , X[:, k+ l] are linearly independent, using 9.7.10, we see that A has at least

l negative eigenvalues.

3. Similarly, X[:, 1]∗AX[:, 1] = · · · = X[:, k]∗AX[:, k] = 1. As X[:, 1], . . . , X[:, k] are linearly

independent, using 9.7.10 again, we see that A has at least k positive eigenvalues.

Thus, it now follows that i(A) = (k, l,m).

6.5.2 Applications in Eculidean Plane

We now obtain conditions on the eigenvalues of A, corresponding to the associated quadratic

form, to characterize conic sections in R2, with respect to the standard inner product.

Definition 6.5.17. Let f(x, y) = ax2 + 2hxy + by2 + 2fx+ 2gy + c be a general quadratic in

x and y, with coefficients from R. Then,

H(x) = xTAx =
[
x, y

][a h

h b

][
x

y

]
= ax2 + 2hxy + by2

is called the associated quadratic form of the conic f(x, y) = 0.

Proposition 6.5.18. Consider the quadratic f(x, y) = ax2 + 2hxy + by2 + 2gx+ 2fy + c, for

a, b, c, g, f, h ∈ R. If (a, b, h) 6= (0, 0, 0) then f(x, y) = 0 represents

1. a parabola or a pair of parallel lines if ab− h2 = 0,

2. a hyperbola or a pair of perpendicular lines if ab− h2 < 0,

3. an ellipse or a circle or a point (point of intersection of a pair of perpendicular lines) if

ab− h2 > 0.

Proof. Consider the associated quadratic ax2 + 2hxy + by2 with A =

[
a h

h b

]
as the associated

symmetric matrix. Then, by Corollary 6.4.11, A = U diag(α1, α2)U
T , where U = [u1,u2] is an
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orthogonal matrix, with (α1,u1) and (α2,u2) as eigen-pairs of A. As (a, b, h) 6= (0, 0, 0) at least

one of α1, α2 6= 0. Also,

xTAx =
[
x, y

]
U

[
α1 0

0 α2

]
UT

[
x

y

]
=
[
u v

][α1 0

0 α2

][
u

v

]
= α1u

2 + α2v
2,

where

[
u

v

]
= UTx. The lines u = 0, v = 0 are the two linearly independent linear forms, which

correspond to two perpendicular lines passing through the origin in the (x, y)-plane. In terms

of u, v, f(x, y) reduces to f(u, v) = α1u
2 + α2v

2 + d1u+ d2v + c, for some choice of d1, d2 ∈ R.

We now look at different cases:

1. if α1 = 0 and α2 6= 0 then ab− h2 = det(A) = α1α2 = 0. In this case,

f(u, v) = 0⇔ α2

(
v +

d2
2α2

)2

= c1 − d1u,

for some c1 ∈ R.

(a) If d1 = 0, the quadratic corresponds to either the same line v+
d2

2α2
= 0, two parallel

lines or two imaginary lines, depending on whether c1 = 0, c1α2 > 0 and c1α2 < 0,

respectively.

(b) If d1 6= 0, the quadratic corresponds to a parabola of the form V 2 = 4aU , for some

translate U = u+ α and V = v + β.

2. If α1α2 < 0 then ab − h2 = det(A) = λ1λ2 < 0. If α2 = −β2 < 0, for β2 >

0 then the quadratic reduces to α1(u + d1)
2 − β2(v + d2)

2 = d3, or equivalently, to(√
α1(u+ d1) +

√
β2(v + d2)

)
·
(√
α1(u+ d1)−

√
β2(v + d2)

)
= d3, for some d1, d2, d3 ∈ R.

Thus, the quadratic corresponds to

(a) a pair of perpendicular lines u+ d1 = 0 and v + d2 = 0 whenever d3 = 0.

(b) a hyperbola with orthogonal principal axes u + d1 = 0 and v + d2 = 0 whenever

d3 6= 0. In particular, if d3 > 0 then the corresponding equation equals

α1(u+ d1)
2

d3
− α2(v + d2)

2

d3
= 1.

3. If α1α2 > 0 then ab − h2 = det(A) = α1α2 > 0. Here, the quadratic reduces to α1(u +

d1)
2 + α2(v + d2)

2 = d3, for some d1, d2, d3 ∈ R. Thus, the quadratic corresponds to

(a) a point which is the point of intersection of the pair of orthogonal lines u + d1 = 0

and v + d2 = 0 if d3 = 0.

(b) an empty set if α1d3 < 0.

(c) an ellipse or circle with u + d1 = 0 and v + d2 = 0 as the orthogonal principal axes

if α1d3 > 0 with the corresponding equation

α1(u+ d1)
2

d3
+
α2(v + d2)

2

d3
= 1.

Thus, we have considered all the possible cases and the required result follows.
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Remark 6.5.19. Observe that the linearly independent forms

[
u

v

]
= UT

[
x

y

]
are functions of

the eigenvectors u1 and u2. Further, the linearly independent forms together with the shifting

of the origin give us the principal axes of the corresponding conic.

Example 6.5.20. 1. Let H(x) = x2 + y2 + 2xy be the associated quadratic form for a class

of curves. Then, A =

[
1 1

1 1

]
and the eigen-pairs are

(
2,

[
1/
√

2

1/
√

2

])
and

(
0,

[
1/
√

2

−1/
√

2

])
.

In particular, for

(a) f(x, y) = x2 + 2xy+ y2 − 8x− 8y+ 16, we have f(x, y) = 0⇔ (x+ y − 4)2 = 0, just

one line.

(b) f(x, y) = x2 + 2xy+ y2− 8x− 8y, we have f(x, y) = 0⇔ (x+ y − 8) · (x+ y) = 0, a

pair of parallel lines.

(c) f(x, y) = x2 + 2xy + y2 − 6x− 10y − 3, we have

f(x, y) = 0 ⇔ 2

(
x+ y√

2

)2

+ 0

(
x− y√

2

)2

= 8
√

2

(
x+ y√

2

)
− 2
√

2

(
x− y√

2

)
+ 3

⇔
(
x+ y − 4√

2

)2

= −
√

2

(
x− y − 19/2√

2

)
,

a parabola with principal axes x+ y = 4, 2x− 2y = 19 and directrix x− y = 10.

Figure 6.2: Conic x2 + 2xy + y2 − 6x− 10y = 3

2. Let H(x) = 10x2−5y2+20xy be the associated quadratic form for a class of curves. Then

A =

[
10 10

10 −5

]
and the eigen-pairs are

(
15,

[
2/
√

5

1/
√

5

])
and

(
−10,

[
1/
√

5

−2/
√

5

])
. So, for

(a) f(x, y) = 10x2 − 5y2 + 20xy + 16x− 2y + 1, we have f(x, y) = 0⇔ 3(2x+ y + 1)2 −
2(x− 2y − 1)2 = 0, a pair of perpendicular lines.

(b) f(x, y) = 10x2 − 5y2 + 20xy + 16x− 2y + 19, we have

f(x, y) = 0⇔
(
x− 2y − 1

3

)2

−
(

2x+ y + 1√
6

)2

= 1,

a hyperbola.
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(c) f(x, y) = 10x2 − 5y2 + 20xy + 16x− 2y − 17, we have

f(x, y) = 0⇔
(

2x+ y + 1√
6

)2

−
(
x− 2y − 1

3

)2

= 1,

a hyperbola.

Figure 6.3: Conic 10x2 − 5y2 + 20xy + 16x− 2y = c, c = −1, c = −19 and c = 17

3. Let H(x) = 6x2 + 9y2 + 4xy be the associated quadratic form for a class of curves. Then,

A =

[
6 2

2 9

]
, and the eigen-pairs are

(
10,

[
1/
√

5

2/
√

5

])
and

(
5,

[
2/
√

5

−1/
√

5

])
. So, for

(a) f(x, y) = 6x2 + 9y2 + 4xy + 10y − 53, we have

f(x, y) = 0⇔
(
x+ 2y + 1

5

)2

+

(
2x− y − 1

5
√

2

)2

= 1,

an ellipse.

Figure 6.4: Conic 6x2 + 9y2 + 4xy + 10y = 53

.

Exercise 6.5.21. Sketch the graph of the following surfaces:

1. x2 + 2xy + y2 + 6x+ 10y = 3.

Ans: a parabola.
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2. 2x2 + 6xy + 3y2 − 12x− 6y = 5.

Ans: a hyperbola.

3. 4x2 − 4xy + 2y2 + 12x− 8y = 10.

Ans: an ellipse.

4. 2x2 − 6xy + 5y2 − 10x+ 4y = 7.

Ans: an ellipse.

6.5.3 Applications in Eculidean Space

As a last application, we consider a quadratic in 3 variables, namely x1, x2 and x3. To do so,

let A =


a h g

h b f

g f c

, x =


x1

x2

x3

, b =


l

m

n

 and y =


y1

y2

y3

 with

f(x1, x2, x3) = xTAx + 2bTx + q

= ax21 + bx22 + cx23 + 2hx1x2 + 2gx1x3 + 2fx2x3

+2lx1 + 2mx2 + 2nx3 + q (6.5.6)

Then, we observe the following:

1. As A is symmetric, P TAP = diag(α1, α2, α3), where P = [u1,u2,u3] is an orthogonal

matrix and (αi,ui), for i = 1, 2, 3 are eigen-pairs of A.

2. Let y = P Tx. Then, f(x1, x2, x3) reduces to

g(y1, y2, y3) = α1y
2
1 + α2y

2
2 + α3y

2
3 + 2l1y1 + 2l2y2 + 2l3y3 + q. (6.5.7)

3. Depending on the values of αi’s, rewrite g(y1, y2, y3) to determine the center and the

planes of symmetry of f(x1, x2, x3) = 0.

Example 6.5.22. Determine the following quadrics f(x, y, z) = 0, where

1. f(x, y, z) = 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz + 4x+ 2y + 4z + 2.

2. f(x, y, z) = 3x2 − y2 + z2 + 10.

3. f(x, y, z) = 3x2 − y2 + z2 − 10.

4. f(x, y, z) = 3x2 − y2 + z − 10.

Solution: (1) Here A =


2 1 1

1 2 1

1 1 2

, b =


2

1

2

 and q = 2. So, verify P =


1√
3

1√
2

1√
6

1√
3
−1√
2

1√
6

1√
3

0 −2√
6

 and

P TAP = diag(4, 1, 1). Hence, f(x, y, z) = 0 reduces to

4

(
x+ y + z√

3

)2

+

(
x− y√

2

)2

+

(
x+ y − 2z√

6

)2

= −(4x+ 2y + 4z + 2).
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Or equivalently to 4

(
4(x+ y + z) + 5

4
√

3

)2

+

(
x− y + 1√

2

)2

+

(
x+ y − 2z − 1√

6

)2

= 9
12 . So, the

principal axes of the quadric (an ellipsoid) are 4(x+ y+ z) = −5, x− y = 1 and x+ y− 2z = 1.

Part 2 Here f(x, y, z) = 0 reduces to y2

10 − 3x2

10 − z2

10 = 1 which is the equation of a

hyperboloid consisting of two sheets with center 0 and the axes x, y and z as the principal axes.

Part 3 Here f(x, y, z) = 0 reduces to 3x2

10 −
y2

10 + z2

10 = 1 which is the equation of a

hyperboloid consisting of one sheet with center 0 and the axes x, y and z as the principal axes.

Part 4 Here f(x, y, z) = 0 reduces to z = y2−3x2+10 which is the equation of a hyperbolic

paraboloid.

Figure 6.5: Ellipsoid, hyperboloid of two sheets and one sheet, hyperbolic paraboloid

.

6.6 Singular Value Decomposition

In Theorem 6.4.10, we saw that if A ∈Mn(C) is a Hermitian matrix then we can find a unitary

matrix U such that A = UDU∗, where D is a diagonal matrix. That is, after a rotation

or reflection of axes, the matrix A basically looks like a diagonal matrix. We also saw it’s

applications in Section 6.5. In this section, the idea is to have a similar understanding for any

matrix A. We will do it over complex numbers and hence, the ideas from Theorem 6.4.10 will

be used. We start with the following result.

Lemma 6.6.1. Let A ∈Mm,n(C) with m ≤ n and RankA = k ≤ m. Then A = UDV ∗, where

1. U is a unitary matrix and is obtained from the spectral decomposition of AA∗ = UΛU∗

with λ11 ≥ · · · ≥ λmm ≥ 0 are the eigenvalues of AA∗,

2. D = Λ1/2, and

3. V ∗ is formed by taking the first k rows of U∗A and adding m−k new rows so that V ∗ has

orthonormal rows.

If A is real, then U and V may be chosen to have real entries.

Proof. Note that AA∗ is an m×m Hermitian matrix. Thus, for any x ∈ Cm,

x∗(AA∗)x = (x∗A)(A∗x) = (A∗x)∗(A∗x) = ‖A∗x‖2 ≥ 0.
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Hence, the matrix AA∗ is a positive semi-definite matrix. Therefore, all it’s eigenvalues are

non-negative. So, by the spectral theorem, Theorem 6.4.10, AA∗ = UΛU∗, where λii ≥ 0 are

in decreasing order. As RankA = k, λii > 0, for 1 ≤ i ≤ k and λii = 0, for k+ 1 ≤ i ≤ m. Now,

let Σ = [σij ] be the diagonal matrix with

σii =

{
1/
√
λii, if i ≤ k

1, otherwise.

Then, we see that the matrix X = ΣU∗A is an m× n matrix with

XX∗ = (ΣU∗A)(A∗UΣ) = ΣU∗(UΛU∗)UΣ =

[
Ik 0

0 0

]
. (6.6.8)

As XX∗ =

[
Ik 0

0 0

]
, the first k-rows of X form an orthonormal set. Note that the first k rows

of the matrix X are given by

X[1, :] =
1√
λ11

(U∗A)[1, :], . . . , X[k, :] =
1√
λkk

(U∗A)[k, :].

Or equivalently,

(U∗A)[1, :] = X[1, :]
√
λ11, . . . , (U

∗A)[k, :] = X[k, :]
√
λkk. (6.6.9)

Now, take these k rows of X and add m− k many rows to form V ∗, so that the rows of V ∗ are

orthonormal, i.e., V ∗V = Im. Also, using (6.6.8), we see that (ΣU∗AA∗UΣ)k+1,k+1 = 0. Thus,

(ΣU∗A)[k + 1, :](A∗UΣ)[:, k + 1] = 0 ⇒ (ΣU∗A)[k + 1, :] = 0.

This in turn implies that (U∗A)[k + 1, :] = 0. Similarly, (U∗A)[j, :] = 0, for k + 2 ≤ j ≤ m.

Thus, using (6.6.9) and the definition of the matrix V ∗, we get

U∗A =



X[1, :]
√
λ11

...

X[k, :]
√
λkk

0T

...

0T


= diag(

√
λ11, . . . ,

√
λkk, 0, . . . 0)



X[1, :]
...

X[k, :]

V ∗[k + 1, :]
...

V ∗[m, :]


= DV ∗

where D = diag(
√
λ11, . . . ,

√
λkk, 0, . . . 0). Thus, we have A = UDV ∗.

We already know that in spectral theorem, that if A is real symmetric, we could choose U

to be a real orthogonal matrix and that makes the first k rows of V to have real entries. We

can always choose the next m− k vectors to also have real entries.

It is important to note that

A∗A = (UDV ∗)∗(UDV ∗) = (V DU∗)(UDV ∗) = V D2V ∗,

where D2 = diag(λ11, . . . , λkk, 0, . . . 0) are the eigenvalues of A∗A and the columns of V are the

corresponding eigenvectors.
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Corollary 6.6.2. [Polar decomposition] Let A ∈ Mm,n(C) with m ≤ n. Then A = PW , for

some positive semi-definite matrix P with RankP = RankA and a matrix W having orthonormal

rows. In fact, P = (AA∗)1/2.

Proof. By Lemma 6.6.1, A = UDV ∗, where U is a unitary matrix which is obtained from

the spectral decomposition of AA∗ = UΛU∗, D = Λ1/2, and V ∗ has orthonormal rows. Then

A = (UDU∗)(UV ∗). Notice that the matrix UV ∗ also has orthonormal rows. Note that

UDU∗ = UΛ1/2U∗ = (AA∗)1/2. So, if we put P = UDU∗ and W = UV ∗ then, we see that

A = PW with P = (AA∗)1/2 is positive semi-definite matrix with RankP = RankA and a matrix

W having orthonormal rows.

Corollary 6.6.3. [Singular value decomposition] Let A ∈Mm,n(C) with m ≤ n and RankA =

k ≤ m. Then A = UDV ∗, where

1. U is an m×m unitary matrix and is obtained from the spectral decomposition of AA∗ =

UΛU∗ with λ11 ≥ · · · ≥ λmm ≥ 0 are the eigenvalues of AA∗,

2. D =
[
Λ1/2 0m,n−m

]
, and

3. V ∗ is formed by taking the first k rows of U∗A and adding n − k new rows so that V is

an n× n unitary matrix.

If A is real, then U and V may be chosen to have real entries.

Proof. Follows from Lemma 6.6.1.

Definition 6.6.4. Let A ∈Mm,n. In view of Corollary 6.6.3, the values
√
λ11, . . . ,

√
λrr, where

r = min{m,n}, are called the singular values of A. (Sometimes only the nonzero λii’s are

understood to be the singular values of A).

Let A ∈ Mm,n(C). Then, by the singular value decomposition of A we mean writing

A = UΣV ∗, where U ∈Mm(C), V ∈Mn(C) are unitary matrices and Σ ∈Mm,n(R) with Σii as

the singular values of A, for 1 ≤ i ≤ RankA and the remaining entries of Σ being 0.

In Corollary 6.6.3, we saw that the matrix U is obtained as the unitary matrix in the spectral

decomposition of AA∗, the Σii’s are the square-root of the eigenvalues of AA∗, and V ∗ is formed

by taking the first r = RankA rows of U∗A and adding n− k new rows so that V ∗ is a unitary

matrix.

Now, let us go back to matrix multiplication and try to understand A = UΣV ∗. So, let

U =
[
u1 u2 · · · um

]
and V =

[
v1 v2 · · · vm

]
. Then,

A = UΣV ∗ =
[
u1 u2 · · · um

]


√
λ11 0 0 · · · 0 0

0
√
λ22 0 · · · 0 0

0 0
√
λ33 · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · 0 0




v∗1
v∗2
...

v∗n


=

√
λ11u1v

∗
1 +

√
λ22u2v

∗
2 + · · ·+

√
λmmumv∗m. (6.6.10)
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Example 6.6.5. Let A =

[
2 1 1

1 2 −1

]
. Then, AAT =

[
6 3

3 6

]
. Thus, AAT = UDUT , where

U =
1√
2

[
1 1

1 −1

]
and D =

[
9 0

0 3

]
. Hence, Σ =

[
3 0 0

0
√

3 0

]
. Here,

UTA =
1√
2

[
3 3 0

1 −1 2

]
=

[
3 0

0
√

3

][
1√
2

1√
2

0

1√
6
− 1√

6
2√
6

]
.

Thus, V T =


1√
2

1√
2

0

1√
6
− 1√

6
2√
6

1√
3

−1√
3

−1√
3

 and it’s rows are the eigenvectors of ATA =


5 4 1

4 5 −1

1 −1 2

.
In actual computations, the values of m and n could be very large. Also, the largest and

the smallest eigenvalues or the rows and columns of A that are of interest to us may be very

small. So, in such cases, we compute the singular value decomposition to relate the above ideas

or to find clusters which have maximum influence on the problem being looked. For example,

in the above computation, the singular value 3 is the larger of the two singular values. So, if

we are looking at the largest deviation or movement etc. then we need to concentrate on the

singular value 3. Then, using equation (6.6.10), note that 3 is associated with the first column

of U and the first row of V T . Similarly,
√

3 is associated with the second column of U and the

second row of V T .

Note that in any computation, we need to decompose our problem into sub-problems. If

the decomposition into sub-problems is possible through orthogonal decomposition then in some

sense the sub-problems can be handled separately. That’s how the singular value decomposition

helps us in applications. This is the reason, that with slight change, SVD is also called “factor

analysis” or “principal component analysis” and so on.

Exercise 6.6.6. 1. Let A ∈ Mm,n(C) with m ≥ n. Then A = WQ, for some positive

semi-definite matrix Q and a matrix W of orthonormal columns.

Ans: Note that A∗ ∈ Mm,n(C) with n ≤ m. Thus, using the polar decomposition, we get

A∗ = PM , for some positive semi-definite matrix P and a matrix MK having orthonormal

rows. Thus, A = M∗P ∗ = M∗P as P = P ∗. Note that the columns of M∗ are orthonormal.

2. Let A ∈Mn,1(C). Illustrate the polar decomposition and the singular value decompositions

for A = ei and for A = e1 + 2e2 + · · ·+ nen.

Ans: For 1 ≤ i ≤ n, note that ei = A =
[
1
][

1 0 · · · 0
]
Ei1, where recall that Ei1 is

the elementary matrix obtained by interchanging the first row of In with the i-th row of In.

Similarly, if A =


1

2
...

n

 then, A =
[
1
][√(

n+1
2

)
0 · · · 0

]


1√
(n+1

2 )
2√

(n+1
2 )

· · · n√
(n+1

2 )

uT1
...

uTn−1

,

where ui’s are chosen so that the set

{
1√

(n+1
2 )
A,u1, . . . ,un−1

}
forms an orthonormal set .
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3. Let A ∈ Mm,n(C) with RankA = r. If d1, . . . , dr are the non-zero singular values of A

then, there exist Σ ∈ Mm,n(R), and unitary matrices U ∈ Mm(C) and V ∈ Mn(C) such

that A = UΣV ∗, where Σ =

[
Σ1 0

0 0

]
with Σ1 = diag(d1, . . . , dr). Then, prove that

G = V DU∗, for D =

[
Σ−11 0

0 0

]
∈Mn,m(C) is the pseudo-inverse of A.

Ans: Note that ΣD =

[
Ir 0

0 0

]
∈ Mm(C), whereas DΣ =

[
Ir 0

0 0

]
∈ Mn(C). Now, verify

the required conditions for pseudo-inverse.
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Jordan canonical form

7.1 Jordan canonical form theorem

We start this chapter with the following theorem which generalizes the Schur Upper triangu-

larization theorem.

Theorem 7.1.1. [Generalized Schur’s theorem] Let A ∈ Mn(C). Suppose λ1, . . . , λk are

the distinct eigenvalues of A with multiplicities m1, . . . ,mk, respectively. Then, there exists a

non-singular matrix W such that

W−1AW =
k⊕
i=1

Ti, where, Ti ∈Mmi(C), for 1 ≤ i ≤ k

and Ti’s are upper triangular matrices with constant diagonal λi. If A has real entries with real

eigenvalues then W can be chosen to have real entries.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U

such that U∗AU = T , an upper triangular matrix with diag(T ) = (λ1, . . . , λ1, . . . , λk, . . . , λk).

Now, for any upper triangular matrix B, a real number α and i < j, consider the matrix

F (B, i, j, α) = Eij(−α)BEij(α), where the matrix Eij(α) is defined in Definition 2.2.5. Then,

for 1 ≤ k, ` ≤ n,

(F (B, i, j, α))k` =


Bij − αBjj + αBii, whenever k = i, ` = j

Bi` − αBj`, whenever ` 6= j

Bkj + αBki, whenever k 6= i

Bk`, otherwise.

(7.1.1)

Now, using Equation (7.1.1), the diagonal entries of F (T, i, j, α) and T are equal and

(F (T, i, j, α))ij =

{
Tij , whenever Tjj = Tii

0, whenever Tjj 6= Tii and α =
Tij

Tjj−Tii .

Thus, if we denote the matrix F (T, i, j, α) by T1 then (F (T1, i− 1, j, α))i−1,j = 0, for some

choice of α, whenever (T1)i−1,i−1 6= Tjj . Moreover, this operation also preserves the 0 created by

207
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F (T, i, j, α) at (i, j)-th place. Similarly, F (T1, i, j + 1, α) preserves the 0 created by F (T, i, j, α)

at (i, j)-th place. So, we can successively apply the following sequence of operations to get

T → F (T,m1,m1+1, α) = T1 → F (T1,m1−1,m1+1, β)→ · · · → F (Tm1−1, 1,m1+1, γ) = Tm1 ,

where α, β, . . . , γ are appropriately chosen and Tm1 [:,m1 + 1] = λ2em1+1. Thus, observe that

the above operation can be applied for different choices of i and j with i < j to get the required

result.

Practice 7.1.2. Apply Theorem 7.1.1 to the matrix given below for better understanding.

1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7

0 0 0 2 3 4 5 6 7

0 0 0 0 2 3 4 5 6

0 0 0 0 0 2 3 4 5

0 0 0 0 0 0 3 4 5

0 0 0 0 0 0 0 3 4

0 0 0 0 0 0 0 0 3



.

Definition 7.1.3. 1. Let λ ∈ C and k be a positive integer. Then, by the Jordan block

Jk(λ) ∈Mk(C), we understand the matrix
λ 1

. . .
. . .

λ 1

λ

.

2. A Jordan matrix is a direct sum of Jordan blocks. That is, if A is a Jordan matrix

having r blocks then there exist positive integers ki’s and complex numbers λi’s (not

necessarily distinct), for 1 ≤ i ≤ r such that

A = Jk1(λ1)⊕ · · · ⊕ Jkr(λr).

We now give some examples of Jordan matrices with diagonal entries 0.

Example 7.1.4. 1. J1(0) =
[
0
]

is the only Jordan matrix of size 1.

2. J1(0)⊕ J1(0) =

[
0 0

0 0

]
and J2(0) =

[
0 1

0 0

]
are Jordan matrices of size 2.

3. Even though , J1(0) ⊕ J2(0) and J2(0) ⊕ J1(0) are two Jordan matrices of size 3, we do

not differentiate between them as they are similar (use permutations).

4. J1(0) ⊕ J1(0) ⊕ J1(0) =


0 0 0

0 0 0

0 0 0

, J2(0) ⊕ J1(0) =


0 1 0

0 0 0

0 0 0

 and J3(0) =


0 1 0

0 0 1

0 0 0


are Jordan matrices of size 3.
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5. Observe that the number of Jordan matrices of size 4 with 0 on the diagonal are 5.

We now give some properties of the Jordan blocks. The proofs are immediate and hence left

for the reader. They will be used in the proof of subsequent results.

Remark 7.1.5. [Jordan blocks] Fix a positive integer k. Then,

1. Jk(λ) is an upper triangular matrix with λ as an eigenvalue.

2. Jk(λ) = λIk + Jk(0).

3. Alg.Mulλ(Jk(λ)) = k.

4. The matrix Jk(0) satisfies the following properties.

(a) Rank((Jk(0)i) = k − i, for 1 ≤ i ≤ k.

(b) JTk (0)Jk(0) =

[
0 0

0 Ik−1

]
.

(c) Jk(0)p = 0 whenever p ≥ k.

(d) Jk(0)ei = ei−1 for i = 2, . . . , k.

(e)
(
I − JTk (0)Jk(0)

)
x =

[
x1

0

]
= 〈x, e1〉e1.

5. Thus, using Remark 7.1.5.4d Geo.Mulλ(Jk(λ)) = 1.

Exercise 7.1.6. 1. Fix a positive integer k and a complex number λ. Then, prove that

(a) Rank(Jk(λ)− λIk) = k − 1.

(b) Rank(Jk(λ) − αIk) = k, whenever α 6= λ. Or equivalently, for all α 6= λ the matrix

Jk(λ)− αIk is invertible.

(c) for 1 ≤ i ≤ k, Rank((Jk(λ)− λIk)i) = k − i.
(d) for α 6= λ, Rank((Jk(λ)− αIk)i) = k, for all i.

2. Let J be a Jordan matrix that contains ` Jordan blocks for λ. Then, prove that

(a) Rank(J − λI) = n− `.
(b) J has ` linearly independent eigenvectors for λ.

(c) Rank(J − λI) ≥ Rank((J − λI)2) ≥ Rank((J − λI)3) ≥ · · · .

3. Let A ∈Mn(C). Then, prove that AJn(λ) = Jn(λ)A if and only if AJn(0) = Jn(0)A.

Definition 7.1.7. Let J be a Jordan matrix containing Jt(λ), for some positive integer t

and some complex number λ. Then, the smallest value of k for which Rank((J − λI)k) stops

decreasing is the order of the largest Jordan block Jk(λ) in J . This number k is called the

index of the eigenvalue λ.

Lemma 7.1.8. Let A ∈Mn(C) be strictly upper triangular. Then, A is similar to a direct sum

of Jordan blocks. Or equivalently, there exists integers n1 ≥ . . . ≥ nm ≥ 1 and a non-singular

matrix S such that

A = S−1
(
Jn1(0)⊕ · · · ⊕ Jnm(0)

)
S.

If A ∈Mn(R) then S can be chosen to have real entries.



D
RA
FT

210 CHAPTER 7. JORDAN CANONICAL FORM

Proof. We will prove the result by induction on n. For n = 1, the statement is trivial. So, let

the result be true for matrices of size ≤ n− 1 and let A ∈ Mn(C) be strictly upper triangular.

Then, A =

[
0 aT

0 A1

]
. By induction hypothesis there exists an invertible matrix S1 such that

A1 = S−11

(
Jn1(0)⊕ · · · ⊕ Jnm(0)

)
S1 with

m∑
i=1

ni = n− 1.

Thus,

[
1 0

0 S−11

]
A

[
1 0

0 S1

]
=

[
1 0

0 S−11

][
0 aT

0 A1

][
1 0

0 S1

]
=

[
0 aTS1

0 S−1A1S1

]
=


0 aT1 aT2

0 Jn1(0) 0

0 0 J

,
where S−11

(
Jn1(0)⊕ · · · ⊕ Jnm(0)

)
S1 = Jn1(0)⊕ J and aTS1 =

[
aT1 aT2

]
. Now, writing Jn1 to

mean Jn1(0) and using Remark 7.1.5.4e, we have
1 −aT1 J

T
n1

0

0 In1 0

0 0 I




0 aT1 aT2

0 Jn1 0

0 0 J




1 aT1 J
T
n1

0

0 In1 0

0 0 I

 =


0 〈a1, e1〉eT1 aT2

0 Jn1 0

0 0 J

.
So, we now need to consider two cases depending on whether 〈a1, e1〉 = 0 or 〈a1, e1〉 6= 0. In the

first case, A is similar to


0 0 aT2

0 Jn1 0

0 0 J

. This in turn is similar to


Jn1 0 0

0 0 aT2

0 0 J

 by permuting

the first row and column. At this stage, one can apply induction and if necessary do a block

permutation, in order to keep the block sizes in decreasing order.

So, let us now assume that 〈a1, e1〉 6= 0. Then, writing α = 〈a1, e1〉, we have
1
α 0 0

0 I 0

0 0 1
αI




0 αeT1 aT2

0 Jn1 0

0 0 J



α 0 0

0 I 0

0 0 αI

 =


0 eT1 aT2

0 Jn1 0

0 0 J

 ≡
[
Jn1+1 e1a

T
2

0 J

]
.

Now, using Remark 7.1.5.4c, verify that[
I ei+1a

T
2 J

i−1

0 I

][
Jn1+1 eia

T
2 J

i−1

0 J

][
I −ei+1a

T
2 J

i−1

0 I

]
=

[
Jn1+1 ei+1a

T
2 J

i

0 J

]
, for i ≥ 1.

Hence, for p = n− n1 − 1, we have[
I ep+1a

T
2 J

p−1

0 I

]
· · ·
[
I e2a

T

0 I

][
Jn1+1 e1a

T

0 J

][
I −e2a

T

0 I

]
· · ·
[
I −ep+1a

TJp−1

0 I

]
=

[
Jn1+1 0

0 J

]
.

If necessary, we need to do a block permutation, in order to keep the block sizes in decreasing

order. Hence, the required result follows.

Practice 7.1.9. Convert


0 1 1

0 0 1

0 0 0

 to J3(0) and


0 1 2

0 0 0

0 0 0

 to J2(0)⊕ J1(0).

Ans: Verify that E12(−1)AE12(1) = J3(0) and E23(2)AE23(−2) = J2(0)⊕ J1(0).
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Corollary 7.1.10. A ∈Mn(C). Then, A is similar to J , a Jordan matrix.

Proof. Let λ1, . . . , λk be the distinct eigenvalues of A with algebraic multiplicities m1, . . . ,mk.

By Theorem 7.1.1, there exists a non-singular matrix S such that S−1AS =
k⊕
i=1

Ti, where Ti

is upper triangular with diagonal (λi, . . . , λi). Thus Ti − λiImi is a strictly upper triangular

matrix. Thus, by Theorem 7.1.8, there exist a non-singular matrix Si such that

S−1i
(
Ti − λiImi

)
Si = J(0),

a Jordan matrix with 0 on the diagonal and the size of the Jordan blocks decreases as we move

down the diagonal. So, S−1i TiSi = J(λi) is a Jordan matrix with λi on the diagonal and the

size of the Jordan blocks decreases as we move down the diagonal.

Now, take W = S

(
k⊕
i=1

Si

)
. Then, verify that W−1AW is a Jordan matrix.

Let A ∈Mn(C). Suppose λ ∈ σ(A) and J is a Jordan matrix that is similar to A. Then, for

each fixed i, 1 ≤ i ≤ n, by `i(λ), we denote the number of Jordan blocks Jk(λ) in J for which

k ≥ i. Then, the next result uses Exercise 7.1.6 to determine the number `i(λ).

Remark 7.1.11. Let A ∈ Mn(C). Suppose λ ∈ σ(A) and J is a Jordan matrix that is similar

to A. Then, for 1 ≤ k ≤ n,

`k(λ) = Rank(A− λI)k−1 − Rank(A− λI)k.

Proof. In view of Exercise 7.1.6, we need to consider only the Jordan blocks Jk(λ), for different

values of k. Hence, without loss of generality, let us assume that J =
n⊕
i=1

aiJi(λ), where ai’s are

non-negative integers and J contains exactly ai copies of the Jordan block Ji(λ), for 1 ≤ i ≤ n.

Then, by definition and Exercise 7.1.6, we observe the following:

1. n =
∑
i≥1

iai.

2. Rank(J − λI) =
∑
i≥2

(i− 1)ai.

3. Rank((J − λI)2) =
∑
i≥3

(i− 2)ai.

4. In general, for 1 ≤ k ≤ n, Rank((J − λI)k) =
∑

i≥k+1

(i− k)ai.

Thus, writing `i in place of `i(λ), we get

`1 =
∑
i≥1

ai =
∑
i≥1

iai −
∑
i≥2

(i− 1)ai = n− Rank(J − λI),

`2 =
∑
i≥2

ai =
∑
i≥2

(i− 1)ai −
∑
i≥3

(i− 2)ai = Rank(J − λI)− Rank((J − λI)2),

...

`k =
∑
i≥k

ai =
∑
i≥k

(i− (k − 1))ai −
∑
i≥k+1

(i− k)ai = Rank((J − λI)k−1)− Rank((J − λI)k).

Now, the required result follows as rank is invariant under similarity operation and the matrices

J and A are similar.
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Lemma 7.1.12. [Similar Jordan matrices] Let J and J ′ be two similar Jordan matrices of

size n. Then, J is a block permutation of J ′.

Proof. For 1 ≤ i ≤ n, let `i and `′i be, respectively, the number of Jordan blocks of J and J ′

of size at least i corresponding to λ. Since J and J ′ are similar, the matrices (J − λI)i and

(J ′ − λI)i are similar for all i, 1 ≤ i ≤ n. Therefore, their ranks are equal for all i ≥ 1 and

hence, `i = `′i for all i ≥ 1. Thus the required result follows.

We now state the main result of this section which directly follows from Lemma 6.4.1,

Theorem 7.1.1 and Corollary 7.1.10 and hence the proof is omitted.

Theorem 7.1.13. [Jordan canonical form theorem] Let A ∈ Mn(C). Then, A is similar to

a Jordan matrix J , which is unique up to permutation of Jordan blocks. If A ∈Mn(R) and has

real eigenvalues then the similarity transformation matrix S may be chosen to have real entries.

This matrix J is called the the Jordan canonical form of A, denoted Jordan CF(A).

We now start with a few examples and observations.

Example 7.1.14. Let us use the idea from Lemma 7.1.11 to find the Jordan Canonical Form

of the following matrices.

1. Let A = J4(0)2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

.

Solution: Note that `1 = 4− Rank(A− 0I) = 2. So, there are two Jordan blocks.

Also, `2 = Rank(A− 0I)− Rank((A− 0I)2) = 2. So, there are at least 2 Jordan blocks of

size 2. As there are exactly two Jordan blocks, both the blocks must have size 2. Hence,

Jordan CF(A) = J2(0)⊕ J2(0).

2. Let A1 =


1 1 0 1

0 1 1 1

0 0 1 1

0 0 0 1

.

Solution: Let B = A1 − I. Then, `1 = 4− Rank(B) = 1. So, B has exactly one Jordan

block and hence A1 is similar to J4(1).

3. A2 =


1 1 0 1

0 1 1 1

0 0 1 0

0 0 0 1

.

Solution: Let C = A2 − I. Then, `1 = 4− Rank(C) = 2. So, C has exactly two Jordan

blocks. Also, `2 = Rank(C)−Rank(C2) = 1 and `3 = Rank(C2)−Rank(C3) = 1. So, there

is at least 1 Jordan blocks of size 3.

Thus, we see that there are two Jordan blocks and one of them is of size 3. Also, the size

of the matrix is 4. Thus, A2 is similar to J3(1)⊕ J1(1).
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4. Let A = J4(1)2 ⊕A1 ⊕A2, where A1 and A2 are given in the previous exercises.

Solution: One can directly get the answer from the previous exercises as the matrix A is

already in the block diagonal form. But, we compute it again for better understanding.

Let B = A − I. Then, `1 = 16 − Rank(B) = 5, `2 = Rank(B) − Rank(B2) = 11 − 7 = 4,

`3 = Rank(B2)− Rank(B3) = 7− 3 = 4 and `4 = Rank(B3)− Rank(B4) = 3− 0 = 3.

Hence, J4(1) appears thrice (as `4 = 3 and `5 = 0), J3(1) also appears once (as `3−`4 = 1),

J2(1) does not appear as (as `2 − `3 = 0) and J1(1) appears once (as `1 − `2 = 1). Thus,

the required result follows.

Remark 7.1.15. [Observations about Jordan CF(A)]

1. What are the steps to find Jordan CFA?

Ans: Let λ1, . . . , λk be the distinct eigenvalues of A. Now, apply the Schur Upper Tri-

angularization Lemma (see Lemma 6.4.1) to get an upper triangular matrix, say T such

that the diagonal entries of T are λ1, . . . , λ1, λ2, . . . , λ2, . . . , λk, . . . , λk. Now, apply sim-

ilarity transformations (see Theorem 7.1.1) to get T =
k⊕
i=1

Ti, where each diagonal entry

of Ti is λi. Then, for each i, 1 ≤ i ≤ k, use Theorem 7.1.8 to get an invertible matrix

Si such that S−1i (Ti − λiI)Si = J̃i, a Jordan matrix. Thus, we obtain a Jordan matrix

Ji = J̃i+λiI = S−1i TiSi, where each diagonal entry of Ji is λi. Hence, S =
k⊕
i=1

Si converts

T =
k⊕
i=1

Ti into the required Jordan matrix.

2. Let A ∈ Mn(C) be a diagonalizable matrix. Then, by definition, A is similar to
n⊕
i=1

λi,

where λi ∈ σ(A), for 1 ≤ i ≤ n. Thus, Jordan CF(A) =
n⊕
i=1

λi, up to a permutation of

λi’s.

3. In general, the computation of Jordan CF(A) is not numerically stable. To understand

this, let Aε =

[
ε 0

1 0

]
. Then, Aε is diagonalizable as A has distinct eigenvalues. So,

Jordan CF(Aε) =

[
ε 0

0 0

]
.

Whereas, for A =

[
0 0

1 0

]
, we know that Jordan CF(A) =

[
0 1

0 0

]
6= lim

ε→0
Jordan CF(Aε).

Thus, a small change in the entries of A may change Jordan CF(A) significantly.

4. Let A ∈ Mn(C) and ε > 0 be given. Then, there exists an invertible matrix S such

that S−1AS =
k⊕
i=1

Jni(λi, ε), where Jni(λi, ε) is obtained from Jni(λi) by replacing each

off diagonal entry 1 by an ε. To get this, define Di(ε) = diag(1, ε, ε2, . . . , εni−1), for

1 ≤ i ≤ k. Now compute
k⊕
i=1

(
(Di(ε))−1Jni(λi)Di(ε)

)
.

5. Let Jordan CF(A) contain ` Jordan blocks for λ. Then, A has ` linearly independent

eigenvectors for λ.
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For if, A has at least ` + 1 linearly independent eigenvectors for λ, then dim(Null(A −
λI)) > `. So, Rank(A − λI) < n − `. But, the number of Jordan blocks for λ in A is `.

Thus, we must have Rank(J − λI) = n− `, a contradiction.

6. Let λ ∈ σ(A). Then, by Remark 7.1.5.5, Geo.Mulλ(A) = the number of Jordan blocks

Jk(λ) in Jordan CF(A).

7. Let λ ∈ σ(A). Then, by Remark 7.1.5.3, Alg.Mulλ(A) = the sum of the sizes of all

Jordan blocks Jk(λ) in Jordan CF(A).

8. Let λ ∈ σ(A). Then, Jordan CF(A) does not get determined by Alg.Mulλ(A) and

Geo.Mulλ(A). For example,
[
0
]
⊕
[

0 1

0 0

]
⊕


0 1 0

0 0 1

0 0 0

 and

[
0 1

0 0

]
⊕
[

0 1

0 0

]
⊕
[

0 1

0 0

]
are different Jordan CFs but they have the same algebraic and geometric multiplicities.

9. Let A ∈ Mn(C). Suppose that, for each λ ∈ σ(A), the values of Rank(A − λI)k, for

k = 1, . . . , n are known. Then, using Remark 7.1.11, Jordan CF(A) can be computed.

But, note here that finding rank is numerically unstable as
[
ε
]

has rank 1 but it converges

to
[
0
]

which has a different rank.

Theorem 7.1.16. [A is similar to AT ] Let A ∈Mn(C). Then, A is similar to AT .

Proof. Let Kn =


1

. .
.

1

. Then, observe that K−1 = K and KJn(a)K = Jn(a)T , as the

(i, j)-th entry of A goes to (n− i+ 1, n− j + 1)-th position in KAK. Hence,[⊕
Kni

] [⊕
Jni(λi)

] [⊕
Kni

]
=
[⊕

Jni(λi)
]T
.

Thus, J is similar to JT . But, A is similar to J and hence AT is similar to JT and finally we

get A is similar to AT . Therefore, the required result follows.

Exercise 7.1.17. 1. Let M =



−2 0 −1 2 2

−2 2 −1 1 1

1 0 2 0 −1

−3 0 −1 4 1

−4 0 −1 2 4


, Null(M − 2I) = LS





1

0

0

1

1


,



0

1

0

0

0




and σ(M) = {2, 2, 2, 2, 2}. Then determine the Jordan canonical form of M .

2. Fix k ∈ N and let λ 6= 0.

(a) Then prove that Jk(λ)−1 =



1/λ −1/λ2 1/λ3 · · · (−1)k+1/λk

0 1/λ
. . .

. . . (−1)k/λk−1

0 0
. . .

...

0 0
. . . 1/λ −1/λ2

0 0 0 1/λ


, for all k ≥ 1.

Ans: Just multiply by Jk(λ) and verify.
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(b) Show that

(
Jk(λ)−1 − 1

λ
Ik

)
is a nilpotent matrix of index k.

Ans: Just multiply and check.

(c) Use the previous part to conclude Jordan CF

(
Jk(λ)−1 − 1

λ
Ik

)
= Jk(0).

(d) Therefore, prove that Jordan CF
(
Jk(λ)−1

)
= Jk

(
1

λ

)
.

(e) Further, let Jordan CF(A) =
k⊕
i=1

Jni(λ) for some integers n1 ≥ · · · ≥ nk ≥ 1. Then

Jordan CF(A−1) =
k⊕
i=1

Jni(1/λ).

(f) Let Jordan CF(A) =
k⊕
i=1

Jni(λi) for some integers n1 ≥ · · · ≥ nk ≥ 1 and λi 6= 0

for 1 ≤ i ≤ k. Then prove that Jordan CF(A−1) =
k⊕
i=1

Jni(1/λi).

7.2 Minimal polynomial

Recall that a polynomial p(x) = a0 +a1x+ · · ·+anx
n with an = 1 is called a monic polynomial.

We now have the following definition.

Definition 7.2.1. Let P (t) = tn + an−1tn−1 + · · · + a0 be a monic polynomial in t of degree

n. Then, the n× n matrix A =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0

. . .
. . .

...
...

0 0 0 · · · 0 −an−2
0 0 0 1 −an−1


, denoted A(n : a0, . . . , an−1) or

Companion(P ), is called the companion matrix of P (t).

Remark 7.2.2. Let A ∈Mn(C) and let f(x) = xn+an−1xn−1+· · ·+a1x+a0 be its characteristic

polynomial. Then by the Cayley Hamilton Theorem, An + an−1An−1 + · · · + a1A + a0I = 0.

Hence An = −(an−1An−1 + · · ·+ a1A+ a0I).

Suppose, there exists a vector u ∈ Cn such that B =
[
u, Au, A2u, . . . , An−1u

]
is an ordered

basis of Cn. Then, Anu = −(an−1An−1u + · · ·+ a1Au + a0u) and hence the matrix of A in the

basis B equals

A[B,B] =
[
[Au]B [A(Au)]B · · · [A(An−1u)]B

]
=
[
[Au]B [A2u]B · · · [Anu]B

]

=



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0

. . .
. . .

...
...

0 0 0 · · · 0 −an−2
0 0 0 1 −an−1


,

the companion matrix of A.
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Definition 7.2.3. Let A ∈Mn(C). Then, the polynomial P (t) is said to annihilate (destroy)

A if P (A) = 0.

Let P (x) be the characteristic polynomial of A. Then, by the Cayley-Hamilton Theorem,

P (A) = 0. So, if f(x) = P (x)g(x), for any multiple of g(x), then f(A) = P (A)g(A) = 0g(A) =

0. Thus, there are infinitely many polynomials which annihilate A. In this section, we will

concentrate on a monic polynomial of least positive degree that annihilates A.

Definition 7.2.4. Let A ∈Mn(C). Then, the minimal polynomial of A, denoted mA(x), is

a monic polynomial of least positive degree satisfying mA(A) = 0.

Theorem 7.2.5. Let A be the companion matrix of the monic polynomial P (t) = tn+an−1tn−1+

· · ·+ a0. Then, P (t) is both the characteristic and the minimal polynomial of A.

Proof. Expanding det(tIn −Companion(P )) along the first row, we have

det(tIn −A(n : a0, . . . , an−1)) = t det(tIn−1 −A(n− 1 : a1, . . . , an−1)) + (−1)n+1a0(−1)n−1

= t2 det(tIn−2 −A(n− 2 : a2, . . . , an−1)) + a0 + a1t

...

= P (t).

Thus, P (t) is the characteristic polynomial of A and hence P (A) = 0.

We will now show that P (t) is the minimal polynomial of A. To do so, we first observe that

Ae1 = e2, . . . , Aen−1 = en. Thus,

Ake1 = ek+1, for 1 ≤ k ≤ n− 1. (7.2.1)

Now, Suppose we have a monic polynomial Q(t) = tm + bm−1tm−1 + · · · + b0, with m < n,

such that Q(A) = 0. Then, using Equation (7.2.1), we get

0 = Q(A)e1 = Ame1 + bm−1Am−1e1 + · · ·+ b0Ie1 = em+1 + bm−1em + · · ·+ b0e1,

a contradiction to the linear independence of {e1, . . . , em+1} ⊆ {e1, . . . , en}.
The next result gives us the existence of such a polynomial for every matrix A. To do so,

recall that the well-ordering principle implies that if S is a subset of natural numbers then it

contains a least element.

Lemma 7.2.6. [Existence of the minimal polynomial] Let A ∈Mn(C). Then, there exists a

unique monic polynomial m(x) of minimum (positive) degree such that m(A) = 0. Further, if

f(x) is any polynomial with f(A) = 0 then m(x) divides f(x).

Proof. Let P (x) be the characteristic polynomial of A. Then, deg(P (x)) = n and by the

Cayley-Hamilton Theorem, P (A) = 0. So, consider the set

S = {deg(f(x)) : f(x) is a nonzero polynomial, f(A) = 0}.
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Then, S is a non-empty subset of N as n ∈ S. Thus, by well-ordering principle there ex-

ists a smallest positive integer, say M , and a corresponding polynomial, say m(x), such that

deg(m(x)) = M , m(A) = 0.

Also, without loss of generality, we can assume that m(x) is monic and unique (non-

uniqueness will lead to a polynomial of smaller degree in S).

Now, suppose there is a polynomial f(x) such that f(A) = 0. Then, by division algorithm,

there exist polynomials q(x) and r(x) such that f(x) = m(x)q(x) + r(x), where either r(x) is

identically the zero polynomial of deg(r(x)) < M = deg(m(x)). As

0 = f(A) = m(A)q(A) + r(A) = 0q(A) + r(A) = r(A),

we get r(A) = 0. But, m(x) was the least degree polynomial with m(A) = 0 and hence r(x) is

the zero polynomial. That is, m(x) divides f(x).

As an immediate corollary, we have the following result.

Corollary 7.2.7. [Minimal polynomial divides the characteristic polynomial] Let mA(x)

and PA(x) be, respectively, the minimal and the characteristic polynomials of A ∈Mn(C).

1. Then, mA(x) divides PA(x).

2. Further, if λ is an eigenvalue of A then mA(λ) = 0.

Proof. The first part following directly from Lemma 7.2.6. For the second part, let (λ,x) be an

eigen-pair. Then, f(A)x = f(λ)x, for any polynomial of f , implies that

mA(λ)x = mA(A)x = 0x = 0.

But, x 6= 0 and hence mA(λ) = 0. Thus, the required result follows.

we also have the following result.

Lemma 7.2.8. Let A and B be two similar matrices. Then, they have the same minimal

polynomial.

Proof. Since A and B are similar, there exists an invertible matrix S such that A = S−1BS.

Hence, f(A) = F (S−1BS) = S−1f(B)S, for any polynomial f . Hence, mA(A) = 0 if and only

if mA(B) = 0 and thus the required result follows.

Theorem 7.2.9. Let A ∈ Mn(C) and let λ1, . . . , λk be the distinct eigenvalues of A. If ni is

the size of the largest Jordan block for λi in J = Jordan CFA then

mA(x) =
k∏
i=1

(x− λi)ni .

Proof. Using 7.2.7, we see thatmA(x) =
k∏
i=1

(x−λi)αi , for some αi’s with 1 ≤ αi ≤ Alg.Mulλi(A).

As mA(A) = 0, using Lemma 7.2.8 we have mA(J) =
k∏
i=1

(J − λiI)αi = 0. But, observe that

for the Jordan block Jni(λi), one has

1. (Jni(λi)− λiI)αi = 0 if and only if αi ≥ ni, and
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2. (Jnm(λm)− λiI)αi is invertible, for all m 6= i.

Thus
k∏
i=1

(J − λiI)ni = 0 and
k∏
i=1

(x− λi)ni divides
k∏
i=1

(x− λi)αi = mA(x) and
k∏
i=1

(x− λi)ni

is a monic polynomial, the result follows.

As an immediate consequence, we also have the following result which corresponds to the

converse of the above theorem.

Theorem 7.2.10. Let A ∈ Mn(C) and let λ1, . . . , λk be the distinct eigenvalues of A. If the

minimal polynomial of A equals
k∏
i=1

(x− λi)ni then ni is the size of the largest Jordan block for

λi in J = Jordan CFA.

Proof. It directly follows from Theorem 7.2.9.

We now give equivalent conditions for a square matrix to be diagonalizable.

Theorem 7.2.11. Let A ∈Mn(C). Then, the following statements are equivalent.

1. A is diagonalizable.

2. Every zero of mA(x) has multiplicity 1.

3. Whenever mA(α) = 0, for some α, then
d

dx
mA(x)

∣∣
x=α
6= 0.

Proof. Part 1 ⇒ Part 2. If A is diagonalizable, then each Jordan block in J = Jordan CFA

has size 1. Hence, by Theorem 7.2.9, mA(x) =
k∏
i=1

(x−λi), where λi’s are the distinct eigenvalues

of A.

Part 2 ⇒ Part 3. Let mA(x) =
k∏
i=1

(x − λi), where λi’s are the distinct eigenvalues of A.

Then, mA(x) = 0 if and only if x = λi, for some i, 1 ≤ i ≤ k. In that case, it is easy to verify

that
d

dx
mA(x) 6= 0, for each λi.

Part 3 ⇒ Part 1. Suppose that for each α satisfying mA(α) = 0, one has
d

dx
mA(α) 6= 0.

Then, it follows that each zero of mA(x) has multiplicity 1. Also, using Corollary 7.2.7, each

zero of mA(x) is an eigenvalue of A and hence by Theorem 7.2.9, the size of each Jordan block

is 1. Thus, A is diagonalizable.

We now have the following remarks and observations.

Remark 7.2.12. 1. Let f(x) be a monic polynomial and A = Companion(f) be the com-

panion matrix of f . Then, by Theorem 7.2.5) f(A) = 0 and no monic polynomial of

smaller degree annihilates A. Thus PA(x) = mA(x) = f(x), where PA(x) is the charac-

teristic polynomial and mA(x), the minimal polynomial of A.

2. Let A ∈ Mn(C). Then, A is similar to Companion(f), for some monic polynomial f if

and only if mA(x) = f(x).

Proof. Let B = Companion (f). Then, using Lemma 7.2.8, we see that mA(x) = mB(x).

But, by Remark 7.2.12.1, we get mB(x) = f(x) and hence the required result follows.

Conversely, assume that mA(x) = f(x). But, by Remark 7.2.12.1, mB(x) = f(x) =

PB(x), the characteristic polynomial of B. Since mA(x) = mB(x), the matrices A and
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B have the same largest Jordan blocks for each eigenvalue λ. As PB = mB, we know

that for each λ, there is only one Jordan block in Jordan CFB. Thus, Jordan CFA =

Jordan CFB and hence A is similar to Companion (f).

Exercise 7.2.13. The following are some facts and questions.

1. Let A ∈Mn(C). If PA(x) is the minimal polynomial of A then A is similar to Companion (PA)

if and only if A is nonderogatory. T/F?

Ans: True.

2. Let A,B ∈M3(C) with eigenvalues 1, 2, 3. Is it necessary that A is similar to B?

Ans: Yes.

3. Let A,B ∈M3(C) with eigenvalues 1, 1, 3. Is it necessary that A is similar to B?

Ans: No. The readers are requested to create at least one example.

4. Let A,B ∈M4(C) with the same minimal polynomial. Is it necessary that A is similar to

B?

Ans: No. The readers are requested to create at least one example.

5. Let A,B ∈M3(C) with the same minimal polynomial. Is it necessary that A is similar to

B?

Ans: Yes.

6. Let A ∈ Mn(C) be idempotent and let J = Jordan CFA. Thus, J2 = J and hence con-

clude that J must be a diagonal matrix. Hence, every idempotent matrix is diagonalizable.

Ans: J2 = J implies that the minimal polynomial is x(x − 1), a product of distinct linear

factors. So, by Theorem 7.2.11, A is diagonalizable.

7. Let A ∈Mn(C). Suppose that mA(x)|x(x− 1)(x− 2)(x− 3). Must A be diagonalizable?

Ans: Yes. As, each zero of mA(x) has multiplicity 1, using Theorem 7.2.11, we see that A

is diagonalizable.

8. Let A ∈M9(C) be a nilpotent matrix such that A5 6= 0 but A6 = 0. Determine PA(x) and

mA(x).

Ans: As A is a 9× 9 nilpotent matrix, PA(x) = x9. And, using the given condition, we get

mA(x) = x6.

9. Recall that for A,B ∈Mn(C), the characteristic polynomial of AB and BA are the same.

That is, PAB(x) = PBA(x). However, they need not have the same minimal polynomial.

Take A =

[
0 1

0 0

]
and B =

[
0 0

0 1

]
to verify that mAB(x) 6= mBA(x).

10. Let A ∈ Mn(C) be an invertible matrix. Then prove that if the minimal polynomial of A

equals m(x, λ1, . . . , λk) then the minimal polynomial of A−1 equals m(x, 1/λ1, . . . , 1/λk).

11. Let λ an eigenvalue of A ∈Mn(C) with two linearly independent eigenvectors. Show that

there does not exist a vector u ∈ Cn such that LS
(
u, Au, A2u, . . .

)
= Cn.
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Ans: If such a vector u exists then by Remark 7.2.2 the characteristic polynomial of A equals

its minimal polynomial. This is NOT true as λ has two linearly independent eigenvectors and

hence by Remark 7.1.15(6) has at least Jordan blocks corresponding to the eigenvalue λ.

We end this section with a method to compute the minimal polynomial of a given matrix.

Example 7.2.14. [Computing the minimal polynomial] Let λ1, . . . , λk be the distinct eigen-

values of A ∈Mn(C).

Ans: One can use Remark 7.1.11 to first compute Jordan CFA and then compute mA(t)

using Theorem 7.2.9.

Alternate: We can use Gram-Schmidt orthogonalization process to directly compute the min-

imal polynomial. To do that consider the vector space Cn2
. Let us represent the matrix A by

η(A) =


a11
...

ann

 ∈ Cn2
. Then, it can easily be shown that the map η : Mn(C) → Cn2

is a vector

space isomorphism.

Now, use the Cayley-Hamilton theorem to deduce that the set of vectors {η(I), η(A), . . . , η(An)}
is linearly dependent. Hence, there is a smallest k such that {η(I), η(A), . . . , η(Ak)} is a linearly

independent set whereas the set {η(I), η(A), . . . , η(Ak+1)} is linearly dependent.

This k can be found by applying Gram-Schmidt orthogonalization process (or the idea of QR-

decomposition) on the set {η(I), η(A), . . . , η(An)}. In particular, the Gram-Schmidt process will

give us vectors, w1,w2, . . . ,wk,wk+1 = 0, · · · . This means that

η(Ak+1) = α0η(I) + α1η(A) + · · ·+ αkη(Ak).

That is, Ak+1−α0I−· · ·−αkAk = 0. Thus, the polynomial f(x) = xk+1−α0−α1x−· · ·−αkxk
annihilates A. To find αis, we may solve the linear system α0η(I) + α1η(A) + · · · + αkη(Ak) =

f(Ak+1) by Gauss-Jordan Elimination method.

The fact that η(I), . . . , η(Ak) are linearly independent, implies that f(x) is actually mA(x).

7.3 Applications of Jordan Canonical Form

In the last section, we say that the matrices if A is a square matrix then A and AT are similar.

In this section, we look at some more applications of the Jordan Canonical Form.

7.3.1 Coupled system of linear differential equations

Consider the first order Initial Value Problem (IVP) x′(t) =


x′1(t)
...

x′n(t)

 = A


x1(t)
...

xn(t)

 = Ax(t),

with x(0) = 0. If A is not a diagonal matrix then the system is called coupled and is hard

to solve. Note that if A can be transformed to a nearly diagonal matrix, then the amount of

coupling among xi’s can be reduced. So, let us look at J = Jordan CF(A) = S−1AS. Then,
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using S−1A = JS−1. verify that the initial problem x′(t) = Ax(t) is equivalent to the equation

S−1x′(t) = S−1Ax(t) which in turn is equivalent to y′(t) = Jy(t), where S−1x(t) = y(t) with

y(0) = S−1x(0) = 0. Therefore, if y is a solution to the second equation then x(t) = Sy is a

solution to the initial problem.

When J is diagonalizable then solving the second is as easy as solving y′i(t) = λiyi(t) for

which the required solution is given by yi(t) = yi(0)eλit.

If J is not diagonal, then for each Jordan block, the system reduces to

y′1(t) = λy1(t) + y2(t), · · · ,y′k−1(t) = λyk−1(t) + yk(t), y′k(t) = λyk(t).

This problem can also be solved as in this case the solution is given by yk = c0e
λt; yk−1 =

(c0t+ c1)e
λt and so on.

7.3.2 Commuting matrices

Let P (x) be a polynomial and A ∈Mn(C). Then, P (A)A = AP (A). What about the converse?

That is, suppose we are given that AB = BA for some B ∈ Mn(C). Does it necessarily imply

that B = P (A), for some nonzero polynomial P (x)? The answer is No as I commutes with A

for every A. We start with a set of remarks.

Theorem 7.3.1. Let A ∈Mn(C) and B ∈Mm(C). Then, the linear system AX −XB = 0, in

the variable matrix X of size n×m, has a unique solution, namely X = 0 (the trivial solution),

if and only if σ(A) and σ(B) are disjoint.

Proof. Let us assume that σ(A) and σ(B) are disjoint.

Since σ(A) and σ(B) are disjoint, the matrix PB(A) =

( ∏
λ∈σ(B)

[λI −A]

)
, obtained by

evaluating A at the characteristic polynomial, PB(t), of B, is invertible. So, let us look at

the implication of the condition AX = XB. This condition implies that A2X = AXB =

XBB = XB2 and hence, P (A)X = XP (B), for any polynomial P (t). In particular, PB(A)X =

XPB(B) = X0 = 0. As PB(A) is invertible, we get X = 0.

Now, conversely assume that AX −XB = 0 has only the trivial solution X = 0. Suppose

on the contrary λ is a common eigenvalue of both A and B. So, choose nonzero vectors x ∈ Cn

and y ∈ Cm such that (λ,x) is an eigen-pair of A and (λ,y) is a left eigen-pair of B. Now,

define X0 = xyT . Then, X0 is an n×m nonzero matrix and

AX −XB = AxyT − xyTB = λxyT − λxyT = 0.

Thus, we see that if λ is a common eigenvalue of A and B then the system AX −XB = 0 has

a nonzero solution X0, a contradiction. Hence, the required result follows.

Corollary 7.3.2. Let A ∈ Mn(C), B ∈ Mm(C) and C be an n×m matrix. Also, assume that

σ(A) and σ(B) are disjoint. Then, it can be easily verified that the system AX −XB = C, in

the variable matrix X of size n×m, has a unique solution, for any given C.
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Proof. Consider the linear transformation T : Mn,m(C) → Mn,m(C), defined by T (X) =

AX −XB. Then, by Theorem 7.3.1, Null(T ) = {0}. Hence, by the rank-nullity theorem, T

is a bijection and the required result follows.

Definition 7.3.3. A square matrix A is said to be of Toeplitz type if each (super/sub)-

diagonal of A consists of the same element. For example, A =


b1 b2 b3 b4

a1 b1 b2 b3

a2 a1 b1 b2

a3 a2 a1 b1

 is a 4 × 4

Toeplitz type matrix. and the matrix B =


b1 b2 b3 b4

0 b1 b2 b3

0 0 b1 b2

0 0 0 b1

 is an upper triangular Toeplitz

type matrix.

Exercise 7.3.4. Let Jn(0) ∈Mn(C) be the Jordan block with 0 on the diagonal.

1. Further, if A ∈Mn(C) such that AJn(0) = Jn(0)A then prove that A is an upper Toeplitz

type matrix.

2. Further, if A,B ∈Mn(C) are two upper Toeplitz type matrices then prove that

(a) there exists ai ∈ C, 1 ≤ i ≤ n, such that A = a0I + a1Jn(0) + · · ·+ anJn(0)n−1.

(b) P (A) is a Toeplitz matrix for any polynomial P (t).

(c) AB is a Toeplitz matrix.

(d) if A is invertible then A−1 is also an upper Toeplitz type matrix.

To proceed further, recall that a matrixA ∈Mn(C) is called non-derogatory if Geo.Mulα(A) =

1, for each α ∈ σ(A) (see Definition 6.3.9).

Theorem 7.3.5. Let A ∈ Mn(C) be a non-derogatory matrix. Then, the matrices A and B

commute if and only if B = P (A), for some polynomial P (t) of degree at most n− 1.

Proof. If B = P (A), for some polynomial P (t), then A and B commute. Conversely, suppose

that AB = BA, σ(A) = {λ1, . . . , λk} and let J = Jordan CFA = S−1AS be the Jordan matrix

of A. Then, J =


Jn1(λ1)

. . .

Jnk(λk)

. Now, write B = S−1BS =


B11 · · · B1k

...
. . .

...

Bk1 · · · Bkk

, where

B is partitioned conformally with J . Note that AB = BA gives JB = BJ . Thus, verify that

Jn1(λ1)B12 = [JB]12 = [BJ ]12 = B12Jn2(λ2),

and hence B12 = 0. A similar argument gives Bij = 0, for all i 6= j. Hence, JB = BJ implies

Jni(λi)Bii = BiiJni(λi), for 1 ≤ i ≤ k. Or equivalently, Jni(0)Bii = BiiJni(0), for 1 ≤ i ≤ k

(using Exercise 7.1.6.3). Now, using Exercise 7.3.4.1, we see that Bii is an upper triangular

Toeplitz type matrix.
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To proceed further, for 1 ≤ i ≤ k, define Fi(t) =
∏
j 6=i

(t− λj)nj . Then, Fi(t) is a polynomial

with deg(Fi(t)) = n − ni and Fi(Jnj (λj)) = 0 if j 6= i. Also, note that Fi(Jni(λi)) is a

nonsingular upper triangular Toeplitz type matrix. Hence, its inverse has the same form and

using Exercise 7.3.4.1, the matrix Fi(Jni(λi))
−1Bii is also a Toeplitz type upper triangular

matrix. Hence,

Fi(Jni(λi))
−1Bii = c1I + c2Jni(0) + · · ·+ cniJni(0)ni−1 = Ri(Jni(λi)), (say).

Thus, Bii = Fi(Jni(λi))Ri(Jni(λi)). Putting Pi(t) = Fi(t)Ri(t), for 1 ≤ i ≤ k, we see that Pi(t)

is a polynomial of degree at most n− 1 with Pi((Jnj (λj)) = 0, for j 6= i and Pi((Jnj (λi)) = Bii.

Taking, P = P1 + · · ·+ Pk, we have

P (J) = P1



Jn1(λ1)

. . .

Jnk(λk)


+ · · ·+ Pk



Jn1(λ1)

. . .

Jnk(λk)




=


B11

. . .

0

+ · · ·+


0

. . .

Bkk

 = B.

Hence, B = SBS−1 = SP (J)S−1 = P (SJS−1) = P (A) and the required result follows.
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Chapter 8

Advanced Topics on

Diagonalizability and

Triangularization∗

8.1 More on the Spectrum of a Matrix

We start this subsection with a few definitions and examples. So, it will be nice to recall the

notations used in Section 1.5 and a few results from Appendix 9.2.

Definition 8.1.1. [Principal Minor] Let A ∈Mn(C).

1. Also, let S ⊆ [n]. Then, det (A[S, S]) is called the Principal minor of A corresponding

to S.

2. By EMk(A), we denote the sum of all k × k principal minors of A.

Definition 8.1.2. [Elementary Symmetric Functions] Let k be a positive integer. Then,

the kth elementary symmetric function of the numbers r1, . . . , rn is Sk(r1, . . . , rn) and is

defined as

Sk(r1, . . . , rn) =
∑

i1<···<ik
ri1 · · · rik .

Example 8.1.3. Let A =


1 2 3 4

5 6 7 8

9 8 7 6

5 4 3 2

. Then, note that

1. EM1(A) = 1 + 6 + 7 + 2 = 16 and EM2(A) = detA({1, 2}, {1, 2}) + detA({1, 3}, {1, 3}) +

detA({1, 4}, {1, 4}) + detA({2, 3}, {2, 3}) + detA({2, 4}, {2, 4}) + detA({3, 4}, {3, 4}) =

−80.

2. S1(1, 2, 3, 4) = 10 and S2(1, 2, 3, 4) = 1 · (2 + 3 + 4) + 2 · (3 + 4) + 3 · 4 = 9 + 14 + 12 = 35.

Theorem 8.1.4. Let A ∈Mn(C) and let σ(A) = {λ1, . . . , λn}. Then,

225
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1. the coefficient of tn−k in PA(t) =
n∏
i=1

(t− λi), the characteristic polynomial of A, is

(−1)k
∑

i1<···<ik
λi1 · · ·λik = (−1)kSk(λ1, . . . , λn). (8.1.1)

2. EMk(A) = Sk(λ1, . . . , λn).

Proof. Note that by definition,

PA(t) =

n∏
i=1

(t− λi) = tn − S1(λ1, . . . , λn)tn−1

+S2(λ1, . . . , λn)tn−2 − · · ·+ (−1)nSn(λ1, . . . , λn) (8.1.2)

= tn − EM1(A)tn−1 + EM2(A)tn−2 − · · ·+ (−1)nEMn(A). (8.1.3)

As the second part is just a re-writing of the first, we will just prove the first part. To do so,

let B = tI −A =


t− a11 · · · −a1n

. . .

−an1 · · · t− ann

. Then, using Definition 9.2.2 in Appendix, note that

detB =
∑
σ

sgnσ
n∏
i=1

biσ(i) and hence each S ⊆ [n] with |S| = n − k has a contribution to the

coefficient of tn−k in the following way:

For all i ∈ S, consider all permutations σ such that σ(i) = i. Our idea is to select a ‘t’ from

these biσ(i). Since we do not want any more ‘t’, we set t = 0 for any other diagonal position. So

the contribution from S to the coefficient of tn−k is det[−A(S|S)] = (−1)k detA(S|S). Hence

the coefficient of tn−k in PA(t) is

(−1)k
∑

S⊆[n], |S|=n−k
detA(S|S) = (−1)k

∑
T⊆[n], |T |=k

detA[T, T ] = (−1)kEk(A).

The proof is complete in view of Equation (8.1.2).

As a direct application, we obtain Theorem 6.1.17 which we state again.

Corollary 8.1.5. Let A ∈ Mn(C) and let σ(A) = {λ1, . . . , λn}. Then tr(A) =
∑n

1 λi and

detA =
∏n

1 λi.

Let A and B be similar matrices. Then, by Theorem 6.2.3, we know that σ(A) = σ(B).

Thus, as a direct consequence of Part 2 of Theorem 8.1.4 gives the following result.

Corollary 8.1.6. Let A and B be two similar matrices of order n. Then, EMk(A) = EMk(B)

for 1 ≤ k ≤ n.

So, the sum of principal minors of similar matrices are equal. Or in other words, the sum

of principal minors are invariant under similarity.

Corollary 8.1.7. [Derivative of Characteristic Polynomial] Let A ∈Mn(C). Then

d

dt
PA(t) = P ′A(t) =

n∑
i=1

PA(i|i)(t).
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Proof. For 1 ≤ i ≤ n, let us denote A(i|i) by Ai. Then, using Equation (8.1.3), we have

n∑
i=1

PAi(t) =
∑
i

tn−1 −
∑
i

EM1(Ai)t
n−2 + · · ·+ (−1)n−1

∑
i

EMn−1(Ai)

= ntn−1 − (n− 1)EM1(A)tn−2 + (n− 2)EM2(A)tn−3 − · · ·+ (−1)n−1EMn−1(A)

= P ′A(t).

Which gives us the desired result.

Corollary 8.1.8. Let A ∈Mn(C). If Alg.Mulα(A) = 1 then Rank[A− λI] = n− 1.

Proof. As Alg.Mulα(A) = 1, PA(t) = (t − λ)q(t), where q(t) is a polynomial with q(λ) 6=
0. Thus P ′A(t) = q(t) + (t − λ)q′(t). Hence, P ′A(λ) = q(λ) 6= 0. Thus, by Corollary 8.1.7,∑

i PA(i|i)(λ) = P ′A(λ) 6= 0. Hence, there exists i, 1 ≤ i ≤ n such that PA(i|i)(λ) 6= 0. That is,

det[A(i|i)− λI] 6= 0 or Rank[A− λI] = n− 1.

Remark 8.1.9. Converse of Corollary 8.1.8 is false. Note that for the matrix A =

[
0 1

0 0

]
,

Rank[A− 0I] = 1 = 2− 1 = n− 1, but 0 has multiplicity 2 as a root of PA(t) = 0.

As an application of Corollary 8.1.7, we have the following result.

We now relate the multiplicity of an eigenvalue with the spectrum of a principal sub-matrix.

Theorem 8.1.10. [Multiplicity and Spectrum of a Principal Sub-Matrix] Let A ∈ Mn(C)

and k be a positive integer. Then 1 ⇒ 2 ⇒ 3, where

1. Geo.Mulλ(A) ≥ k.

2. If B is a principal sub-matrix of A of size m > n− k then λ ∈ σ(B).

3. Alg.Mulλ(A) ≥ k.

Proof. Part 1⇒ Part 2. Let {x1, . . . ,xk} be linearly independent eigenvectors for λ and let B

be a principal sub-matrix of A of size m > n − k. Without loss, we may write A =

[
B ∗
∗ ∗

]
.

Let us partition the xi’s , say xi =

[
xi1

xi2

]
, such that

[
B ∗
∗ ∗

][
xi1

xi2

]
= λ

[
xi1

xi2

]
, for 1 ≤ i ≤ k.

As m > n− k, the size of xi2 is less than k. Thus, the set {x12, . . . ,xk2} is linearly dependent

(see Corollary 3.3.9). So, there is a nonzero linear combination y =

[
y1

y2

]
of x1, . . . ,xk such

that y2 = 0. Notice that y1 6= 0 and By1 = λy1.

Part 2⇒ Part 3. By Corollary 8.1.7, we know that P ′A(t) =
n∑
i=1

PA(i|i)(t). As A(i|i) is of size

n − 1, we get PA(i|i)(λ) = 0, for all i = 1, 2, . . . , n. Thus, P ′A(λ) = 0. A similar argument now

applied to each of the A(i|i)’s, gives P
(2)
A (λ) = 0, where P

(2)
A (t) =

d

dt
P ′A(t). Proceeding on above

lines, we finally get P
(i)
A (λ) = 0, for i = 0, 1, . . . , k − 1. This implies that Alg.Mulλ(A) ≥ k.
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Definition 8.1.11. [Moments] Fix a positive integer n and let α1, . . . , αn be n complex

numbers. Then, for a positive integer k, the sum
n∑
i=1

αki is called the k-th moment of the

numbers α1, . . . , αn.

Theorem 8.1.12. [Newton’s identities] Let P (t) = tn + an−1tn−1 + · · · + a0 have zeros

λ1, . . . , λn, counted with multiplicities. Put µk =
n∑
i=1

λki . Then, for 1 ≤ k ≤ n,

k an−k + µ1an−k+1 + · · ·+ µk−1an−1 + µk = 0. (8.1.4)

That is, the first n moments of the zeros determine the coefficients of P (t).

Proof. For simplicity of expression, let an = 1. Then, using Equation (8.1.4), we see that

k = 1 gives us an−1 = −µ1. To compute an−2, put k = 2 in Equation (8.1.4) to verify that

an−2 =
−µ2+µ21

2 . This process can be continued to get all the coefficients of P (t). Now, let us

prove the n given equations.

Define f(t) =
∑
i

1
t−λi = P ′(t)

P (t) and take |t| > max
i
|λi|. Then, the left hand side can be

re-written as

f(t) =

n∑
i=1

1

t− λi
=

n∑
i=1

1

t

(
1− λi

t

) =

n∑
i=1

[1

t
+
λi
t2

+ · · ·
]

=
n

t
+
µ1
t2

+ · · · . (8.1.5)

Thus, using P ′(t) = f(t)P (t), we get

nant
n−1 + (n− 1)an−1tn−2 + · · ·+ a1 = P ′(t) =

[n
t

+
µ1
t2

+ · · ·
][
ant

n + · · ·+ a0

]
.

Now, equating the coefficient of tn−k−1 on both sides, we get

(n− k)an−k = nan−k + µ1an−k+1 + · · ·+ µkan, for 0 ≤ k ≤ n− 1

which is the required Newton’s identity.

Remark 8.1.13. Let P (t) = ant
n + · · ·+ a1t+ a0 with an = 1. Thus, we see that we need not

find the zeros of P (t) to find the k-th moments of the zeros of P (t). It can directly be computed

recursively using the Newton’s identities.

Exercise 8.1.14. Let A,B ∈Mn(C). Then, prove that A and B have the same eigenvalues if

and only if tr(Ak) = tr(Bk), for k = 1, . . . , n.

Ans: We have tr(Ak) =
∑

i λ
k
i = µk. Suppose that tr(Ak) = tr(Bk) for k = 1, . . . , n. Thus,

both the matrices have the same k-th moments µk of the eigenvalues. As these moments uniquely

determine the coefficients of the (characteristic) polynomial, we see that both A and B have the

same characteristic polynomial. Thus, they have the same eigenvalues.

Suppose that A and B have the same eigenvalues. Then, by definition, they have the same k-th

moment µk.
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8.2 Methods for Tridiagonalization and Diagonalization

Let G = {A ∈Mn(C) : A∗A = I}. Then, using Exercise 5.8.8, we see that

1. for every A,B ∈ G, AB ∈ G.

2. for every A,B,C ∈ G, (AB)C = A(BC).

3. In is the identity element of G. That is, for any A ∈ G, AIn = A = InA.

4. for every A ∈ G, A−1 ∈ G.

Thus, the set G forms a group with respect to multiplication. We now define this group.

Definition 8.2.1. [Unitary Group] Let G = {A ∈ Mn(C) : A∗A = I}. Then, G forms a

multiplicative group. This group is called the unitary group.

Proposition 8.2.2. [Selection Principle of Unitary Matrices] Let {Uk : k ≥ 1} be a sequence

of unitary matrices. Viewing them as elements of Cn2
, let us assume that “for any ε > 0, there

exists a positive integer N such that ‖Uk − U‖ < ε, for all k ≥ N”. That is, the matrices Uk’s

converge to U as elements in Cn2
. Then, U is also a unitary matrix.

Proof. Let A = [aij ] ∈Mn(C) be an unitary matrix. Then
n∑

i,j=1
|aij |2 = tr(A∗A) = n. Thus, the

set of unitary matrices is a compact subset of Cn2
. Hence, any sequence of unitary matrices has

a convergent subsequence (Bolzano-Weierstrass Theorem), whose limit is again unitary. Thus,

the required result follows.

For a unitary matrix U , we know that U−1 = U∗. Our next result gives a necessary and

sufficient condition on an invertible matrix A so that the matrix A−1 is similar to A∗.

Theorem 8.2.3. [Generalizing a Unitary Matrix] Let A be an invertible matrix. Then A−1

is similar to A∗ if and only if there exists an invertible matrix B such that A = B−1B∗.

Proof. Suppose A = B−1B∗, for some invertible matrix B. Then

A∗ = B(B−1)∗ = B(B−1)∗BB−1 = B(B−1B∗)−1B−1 = BA−1B−1.

Conversely, let A∗ = SA−1S−1, for some invertible matrix S. Need to show, A = S−1S∗.

We first show that there exists a nonsingular Hermitian Hθ such that A−1 = H−1θ A∗Hθ, for

some θ ∈ R.

Note that for any θ ∈ R, if we put Sθ = eiθS then

SθA
−1S−1θ = A∗ and Sθ = A∗SθA.

Now, define Hθ = Sθ + S∗θ . Then, Hθ is a Hermitian matrix and Hθ = A∗HθA. Furthermore,

there are infinitely many choices of θ ∈ R such that detHθ = 0. To see this, let us choose a

θ ∈ R such that Hθ is singular. Hence, there exists x 6= 0 such that Hθx = 0. So,

Sθx = −S∗θx = −e−iθS∗x. Or equivalently,− e2iθx = S−1S∗x.
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That is, −e2iθ ∈ σ(S−1S∗). Thus, if we choose θ0 ∈ R such that −e2i(θ0) 6∈ σ(S−1S∗) then H(θ0)

is nonsingular.

To get our result, we finally choose B = β(αI − A∗)H(θ0) such that β 6= 0 and α = eiγ /∈
σ(A∗).

Note that with α and β chosen as above, B is invertible. Furthermore,

BA = αβH(θ0)A− βA∗H(θ0)A = αβH(θ0)A− βH(θ0) = βH(θ0)(αA− I).

As we need, BA = B∗, we get βH(θ0)(αA− I) = βH(θ0)(αI −A) and thus, we need β = −βα,

which holds true if β = ei(π−γ)/2. Thus, the required result follows.

Exercise 8.2.4. Suppose that A is similar to a unitary matrix. Then, prove that A−1 is similar

to A∗.

8.2.1 Plane Rotations

Definition 8.2.5. [Plane Rotations] For a fixed positive integer n, consider the vector space

Rn with standard basis {e1, . . . , en}. Also, for 1 ≤ i, j ≤ n, let Ei,j = eie
T
j . Then, for θ ∈ R

and 1 ≤ i, j ≤ n, a plane rotation, denoted U(θ; i, j), is defined as

U(θ; i, j) = I − Ei,i − Ej,j + [Ei,i + Ej,j ] cos θ − Ei,j sin θ + Ej,i sin θ.

That is, U(θ; i, j) =



1

. . .

cos θ − sin θ

. . .

sin θ cos θ

. . .

1



← i-th row

← j-th row

, where the unmentioned

diagonal entries are 1 and the unmentioned off-diagonal entries are 0.

Remark 8.2.6. Note the following about the matrix U(θ; i, j), where θ ∈ R and 1 ≤ i, j ≤ n.

1. U(θ; i, j) are orthogonal.

2. Geometrically U(θ; i, j)x rotates x by the angle θ in the ij-plane.

3. Geometrically (U(θ; i, j))T x rotates x by the angle −θ in the ij-plane.

4. If y = U(θ; i, j)x then the coordinates of y are given by

(a) yi = xi cos θ − xj sin θ,

(b) yj = xi sin θ + xj cos θ, and

(c) for l 6= i, j, yl = xl.

5. Thus, for x ∈ Rn, the choice of θ for which yj = 0, where y = U(θ; i, j)x equals

(a) θ = 0, whenever xj = 0. That is, U(0; i, j) = I.

(b) θ = cot−1
(
− xi

xj

)
, whenever xj 6= 0.
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6. [Geometry] Imagine standing at 1 = (1, 1, 1)T ∈ R3. We want to apply a plane rotation

U , so that v = UT1 with v2 = 0. That is, the final point is on the xz-plane.

Then, we can either apply a plane rotation along the xy-plane or the yz-plane. For the

xy-plane, we need the plane z = 1 (xy plane lifted by 1). This plane contains the vector 1.

Imagine moving the tip of ~1 on this plane. Then this locus corresponds to a circle that lies

on the plane z = 1, has radius
√

2 and is centred at (0, 0, 1). That is, we draw the circle

x2+y2 = 1 on the xy-plane and then lifted it up by so that it lies on the plane z = 1. Thus,

note that the xz-plane cuts this circle at two points. These two points of intersections give

us the two choices for the vector v (see Figure 8.1). A similar calculation can be done for

the yz-plane.

(0,0,0)

Figure 8.1: Geometry of plane rotations in R3

.

7. In general, in Rn, suppose that we want to apply plane rotation to a along the x1x2-plane

so that the resulting vector has 0 in the 2-nd coordinate. In that case, our circle on x1x2-

plane has radius r =
√

a2
1 + a2

2 and it gets translated by
[
0, 0, a3, · · · an

]T
. So, there

are two points x on this circle with x2 = 0 and they are
[
±r, 0, a3, · · · an

]T
.

8. Consider three mutually orthogonal unit vectors, say x,y, z. Then, x can be brought to e1

by two plane rotations, namely by an appropriate U(θ1; 1, 3) and U(θ2; 1, 2). Thus,

U(θ2; 1, 2)U(θ1; 1, 3)x = e1.

In this process, the unit vectors y and z, get shifted to say,

ŷ = U(θ2; 1, 2)U(θ1; 1, 3)y and ẑ = U(θ2; 1, 2)U(θ1; 1, 3)z.

As unitary transformations preserve angles, note that ŷ(1) = ẑ(1) = 0. Now, we can apply

an appropriate plane rotation U(θ3; 2, 3) so that U(θ3; 2, 3)ŷ = e2. Since e3 is the only

unit vector in R3 orthogonal to both e1 and e2, it follows that U(θ3; 2, 3)ẑ = e3. Thus,

I =
[
e1 e2 e3

]
= U(θ3; 2, 3)U(θ2; 1, 2)U(θ1; 1, 3)

[
x y z

]
.
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Hence, any real orthogonal matrix A ∈M3(R) is a product of three plane rotations.

We are now ready to give another method to get the QR-decomposition of a square matrix

(see Theorem 4.6.1 that uses the Gram-Schmidt Orthonormalization Process).

Proposition 8.2.7. [QR Factorization Revisited: Square Matrix] Let A ∈ Mn(R). Then

there exists a real orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Proof. We start by applying the plane rotations to A so that the positions (2, 1), (3, 1), . . . , (n, 1)

of A become zero. This means, if a21 = 0, we multiply by I. Otherwise, we use the plane rotation

U(θ; 1, 2), where θ = cot−1(−a11/a21). Then, we apply a similar technique to A so that the

(3, 1) entry of A becomes 0. Note that this plane rotation doesn’t change the (2, 1) entry of A.

We continue this process till all the entry in the first column of A, except possibly the (1, 1)

entry, is zero.

We then apply the plane rotations to make positions (3, 2), (4, 2), . . . , (n, 2) zero. Observe

that this does not disturb the zeros in the first column. Thus, continuing the above process a

finite number of times give us the required result.

Lemma 8.2.8. [QR Factorization Revisited: Rectangular Matrix] Let A ∈Mm,n(R). Then

there exists a real orthogonal matrix Q and a matrix R ∈ Mm,n(R) in upper triangular form

such that A = QR.

Proof. If RankA < m, add some columns to A to get a matrix, say Ã such that RankÃ = m. Now

suppose that Ã has k columns. For 1 ≤ i ≤ k, let vi = Ã[:, i]. Now, apply the Gram-Schmidt

Orthonormalization Process to {v1, . . . ,vk}. For example, suppose the result is a sequence of k

vectors w1, 0,w2, 0, 0, . . . , 0,wm, 0, . . . , 0, where Q =
[
w1 · · · wm

]
is real orthogonal. Then

Ã[:, 1] is a linear combination of w1, Ã[:, 2] is also a linear combination of w1, Ã[:, 3] is a linear

combination of w1,w2 and so on. In general, for 1 ≤ s ≤ k, the column Ã[:, s] is a linear

combination of wi-s in the list that appear up to the s-th position. Thus, Ã[:, s] =
m∑
i=1

wiris,

where ris = 0 for all i > s. That is, Ã = QR, where R = [rij ]. Now, remove the extra columns

of Ã and the corresponding columns in R to get the required result.

Note that Proposition 8.2.7 is also valid for any complex matrix. In this case the matrix Q

will be unitary. This can also be seen from Theorem 4.6.1 as we need to apply the Gram-Schmidt

Orthonormalization Process to vectors in Cn.

To proceed further recall that a matrix A = [aij ] ∈ Mn(C) is called a tri-diagonal matrix

if aij = 0, whenever |i− j| > 1, 1 ≤ i, j ≤ n.

Proposition 8.2.9. [Tridiagonalization of a Real Symmetric Matrix: Given’s Method]

Let A be a real symmetric. Then, there exists a real orthogonal matrix Q such that QAQT is a

tri-diagonal matrix.

Proof. If a31 6= 0, then put U1 = U(θ1; 2, 3), where θ1 = cot−1(−a21/a31). Notice that UT1 [:

, 1] = e1 and so

(U1AU
T
1 )[:, 1] = (U1A)[:, 1].
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We already know that U1A[3, 1] = 0. Hence, U1AU
T
1 is a real symmetric matrix with (3, 1)-

th entry 0. Now, proceed to make the (4, 1)-th entry of U1A equal to 0. To do so, take

U2 = U(θ2; 2, 4). Notice that UT2 (:, 1) = e1 and so

(U2(U1AU
T
1 )UT2 )[:, 1) = (U2U1AU

T
1 )[:, 1].

But by our choice of the plane rotation U2, we have U2(U1AU
T
1 )(4, 1) = 0. Furthermore, as

U2[3, :] = eT3 , we have

(U2U1AU
T
1 )[3, 1] = U2[3, :](U1AU

T
1 )[:, 1] = (U1AU

T
1 )[3, 1] = 0.

That is, the previous zeros are preserved.

Continuing this way, we can find a real orthogonal matrix Q such that QAQT is tri-

diagonal.

Proposition 8.2.10. [Almost Diagonalization of a Real Symmetric Matrix: Jacobi method]

Let A ∈ Mn(R) be real symmetric. Then there exists a real orthogonal matrix S, a product of

plane rotations, such that SAST is almost a diagonal matrix.

Proof. The idea is to reduce the off-diagonal entries of A to 0 as much as possible. So, we start

with choosing i 6= j) such that i < j and |aij | is maximum. Now, put

θ =
1

2
cot−1

aii − ajj
2aij

, U = U(θ; i, j), and B = UTAU.

Then, for all l, k 6= i, j, we see that

blk = UT [l, :]AU [:, k] = eTl Aek = alk

bik = UT [i, :]AU [:, k] = (cos θeTi + sin θeTj )Aek = aik cos θ + ajk sin θ

blj = UT [l, :]AU [:, j] = eTl A(− sin θei + cos θej) = −ali sin θ + alj cos θ

bij = UT [i, :]AU [:, j] = (cos θeTi + sin θeTj )A(− sin θei + cos θej)

= sin(2θ)
ajj−aii

2 + aij cos(2θ) = 0

Thus, using the above, we see that whenever l, k 6= i, j, a2lk = b2lk and for l 6= i, j, we have

b2il + b2lj = a2il + a2lj .

As U is unitary and B = UTAU , we get
∑ |aij |2 =

∑ |bij |2. Further, bij = 0 implies that

a2ii + 2a2ij + a2jj = b2ii + 2b2ij + b2jj = b2ii + b2jj .

As the rest of the diagonal entries have not changed, we observe that the sum of the squares of

the off-diagonal entries have reduced by 2a2ij . Thus, a repeated application of the above process

makes the matrix “close to diagonal”.
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8.2.2 Householder Matrices

We will now look at another class of unitary matrices, commonly called the Householder matrices

(see Exercise 1.5.5.8).

Definition 8.2.11. [Householder Matrix] Let w ∈ Cn be a unit vector. Then, the matrix

Uw = I − 2ww∗ is called a Householder matrix.

Remark 8.2.12. We observe the following about the Householder matrix Uw.

1. Uw = I − 2ww∗ is the sum of two Hermitian matrices and hence is also Hermitian.

2. UwU
∗
w = (I − 2ww∗)(I − 2ww∗)T = I − 2ww∗ − 2ww∗ + 4ww∗ = I. Or equivalently,

verify that ‖Uwx‖ = ‖x‖, for all x ∈ Cn. So Uw is unitary.

3. If x ∈ w⊥ then Uwx = x.

4. If x = cw, for some c ∈ C, then Uwx = −x.

5. Thus, if v ∈ Cn then we know that v = x + y, where x ∈ w⊥ and y = cw, for some

c ∈ C. In this case, Uwv = Uw(x + y) = x− y.

6. Geometrically, Uwv reflects the vector v along the vector w⊥. Thus, Uw is a reflection

matrix along w⊥ (see Definition 1.4.1.7).

Example 8.2.13. In R2, let w = e2. Then w⊥ is the x-axis. The vector v =

[
1

2

]
= e1 + 2e2,

where e1 ∈ w⊥ and 2e2 ∈ LS(w). So

Uw (e1 + 2e2) = Uwv = Uw (x + y) = x− y = e1 − 2e2.

That is, the reflection of v along the x-axis (w⊥).

Recall that if x,y ∈ Rn with x 6= y and ‖x‖ = ‖y‖ then, (x + y) ⊥ (x − y). This is not

true in Cn as can be seen from the following example. Take x =

[
1

1

]
and y =

[
i

−1

]
. Then

〈
[

1 + i

0

]
,

[
1− i

2

]
〉 = (1 + i)2 6= 0. Thus, to pick the right choice for the matrix Uw, we need to

be observant of the choice of the inner product space.

Example 8.2.14. Let x,y ∈ Cn with x 6= y and ‖x‖ = ‖y‖. Then, which Uw should be used

to reflect y to x?

1. Solution in case of Rn: Imagine the line segment joining x and y. Now, place a mirror

at the midpoint and perpendicular to the line segment. Then, the reflection of y on that

mirror is x. So, take w = x−y
‖x−y‖ ∈ Rn. Then,

Uwy = (I − 2wwT )y = y − 2wwTy = y − 2
x− y

‖x− y‖2 (x− y)Ty

= y − 2
x− y

‖x− y‖2
−‖x− y‖2

2
= x.
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2. Solution in case of Cn: Suppose there is a unit vector w ∈ Cn such that (I−2ww∗)y =

x. Then y − x = 2ww∗y and hence w∗(y − x) = 2w∗ww∗y = 2w∗y. Thus,

w∗(y + x) = 0, that is, w ⊥ (y + x). (8.2.1)

Furthermore, again using w∗(y + x) = 0, we get y − x = 2ww∗y = −2ww∗x. So,

2(y − x) = 2ww∗(y − x) or y − x = ww∗(y − x).

On the other hand, using Equation (8.2.1), we get ww∗(y + x) = 0. So,

0 = [(y + x)∗ww∗](y − x) = (y + x)∗[ww∗(y − x)] = (y + x)∗(y − x).

Therefore, if such a w exists, then (y − x) ⊥ (y + x).

But, in that case, w = x−y
‖x−y‖ will work as using above ‖x− y‖2 = 2(y − x)∗y and

Uwy = (I − 2ww∗)y = y − 2ww∗y = y − 2
x− y

‖x− y‖2 (x− y)∗y

= y − 2
x− y

‖x− y‖2
−‖x− y‖2

2
= x.

Thus, in this case, if 〈x + y,x− y〉 6= 0 then we will not find a w such that Uwy = x.

For example, taking x =

[
1

1

]
and y =

[
i

−1

]
, we have 〈x + y,x− y〉 6= 0.

As an application, we now prove that any real symmetric matrix can be transformed into a

tri-diagonal matrix.

Proposition 8.2.15. [Householder’s Tri-Diagonalization] Let v ∈ Rn−1 and A =

[
a vT

v B

]
∈

Mn(R) be a real symmetric matrix. Then, there exists a real orthogonal matrix Q, a product of

Householder matrices, such that QTAQ is tri-diagonal.

Proof. If v = e1 then we proceed to apply our technique to the matrix B, a matrix of lower

order. So, without loss of generality, we assume that v 6= e1.

As we want QTAQ to be tri-diagonal, we need to find a vector w ∈ Rn−1 such that Uwv =

re1 ∈ Rn−1, where r = ‖v‖ = ‖Uwv‖. Thus, using Example 8.2.14, choose the required vector

w ∈ Rn−1. Then,

[
1 0

0 Uw

][
a vT

v B

][
1 0

0 UTw

]
=

[
a vTUTw

Uwv UwBU
T
w

]
=


a r 0

r ∗ ∗
0 ∗ ∗

 =

[
a reT1

re1 S

]
,

where S ∈ Mn−1(R) is a symmetric matrix. Now, use induction on the matrix S to get the

required result.
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8.2.3 Schur’s Upper Triangularization Revisited

Definition 8.2.16. Let s and t be two symbols. Then, an expression of the form

W (s, t) = sm1tn1 . . . smktnk where mi, ni are positive integers

is called a word in symbols s and t of degree
k∑
i=1

(mi + ni).

Remark 8.2.17. [More on Unitary Equivalence] Let s and t be two symbols and W (s, t) be

a word in symbols s and t.

1. Suppose U is a unitary matrix such that B = U∗AU . Then, W (A,A∗) = U∗W (B,B∗)U .

Thus, tr[W(A,A∗)] = tr[W(B,B∗)].

2. Let A and B be two matrices such that tr[W(A,A∗)] = tr[W(B,B∗)], for each word W .

Then, does it imply that A and B are unitarily equivalent? The answer is ‘yes’ as provided

by the following result. The proof is outside the scope of this book.

Theorem 8.2.18. [Specht-Pearcy] Let A,B ∈ Mn(C) and suppose that tr[W(A,A∗)] =

tr[W(B,B∗)] holds for all words of degree less than or equal to 2n2. Then B = U∗AU , for

some unitary matrix U .

Exercise 8.2.19. [Triangularization via Complex Orthogonal Matrix need not be Possi-

ble] Let A ∈ Mn(C) and A = QTQT , where Q is complex orthogonal matrix and T is upper

triangular. Then, prove that

1. A has an eigenvector x such that xTx 6= 0.

2. there is no orthogonal matrix Q such that QT

[
1 i

i −1

]
Q is upper triangular.

Ans: As QQT = I. Hence, AQ = QT and thus Q[:, 1], the first column of Q is an eigenvector

with corresponding eigenvalue t11. Observe that Q[:, 1]TQ[:, 1] = 1 6= 0.

For the second part, verify that σ(A) = {0, 0} and x =

[
i

−1

]
is the only eigenvector of

A =

[
1 i

i −1

]
corresponding to the eigenvalue 0. Moreover, notice that xTx = 0.

Proposition 8.2.20. [Matrices with Distinct Eigenvalues are Dense in Mn(C)] Let A ∈
Mn(C). Then, for each ε > 0, there exists a matrix A(ε) ∈Mn(C) such that A(ε) = [a(ε)ij ] has

distinct eigenvalues and
∑ |aij − a(ε)ij |2 < ε.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U

such that U∗AU = T , an upper triangular matrix. Now, choose αi’s such that tii + αi are

distinct and
∑ |αi|2 < ε. Now, consider the matrix A(ε) = U (T + diag(α1, . . . , αn))U∗. Then,

B = A(ε)−A = U diag(α1, . . . , αn)]U∗ with∑
i,j

|bij |2 = tr(B∗B) = trU diag(|α1|2, . . . , |αn|2)U∗ =
∑
i

|αi|2 < ε.
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Thus, the required result follows.

Before proceeding with our next result on almost diagonalizability, we look at the following

example.

Example 8.2.21. Let A =

[
1 2

0 3

]
and ε > 0 be given. Then, determine a diagonal matrix D

such that the non-diagonal entry of D−1AD is less than ε.

Solution: Choose α <
ε

2
and define D = diag(1, α). Then,

D−1AD =

[
1 0

0 1
α

][
1 2

0 3

][
1 0

0 α

]
=

[
1 2α

0 3

]
.

As α <
ε

2
, the required result follows.

Proposition 8.2.22. [A matrix is Almost Diagonalizable] Let A ∈ Mn(C) and ε > 0 be

given. Then, there exists an invertible matrix Sε such that S−1ε ASε = T , an upper triangular

matrix with |tij | < ε, for all i 6= j.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U

such that U∗AU = T , an upper triangular matrix. Now, take t = 2 + max
i<j
|tij | and choose α

such that 0 < α < ε/t. Then, if we take Dα = diag(1, α, α2, . . . , αn−1) and S = UDα, we have

S−1AS = D 1
α
TDα = F (say), an upper triangular. Furthermore, note that for i < j, we have

|fij | = |tij |αj−i ≤ ε. Thus, the required result follows.

8.3 Commuting Matrices and Simultaneous Diagonalization

Definition 8.3.1. [Simultaneously Diagonalizable] Let A,B ∈Mn(C). Then, they are said

to be simultaneously diagonalizable if there exists an invertible matrix S such that S−1AS

and S−1BS are both diagonal matrices.

Since diagonal matrices commute, we have our next result.

Proposition 8.3.2. Let A,B ∈ Mn(C). If A and B are simultaneously diagonalizable then

AB = BA.

Proof. By definition, there exists an invertible matrix S such that S−1AS = Λ1 and S−1BS =

Λ2. Hence,

AB = (SΛ1S
−1) · (SΛ2S

−1) = SΛ1Λ2S
−1 = SΛ2Λ1S

−1 = SΛ2S
−1SΛ1S

−1 = BA.

Thus, we have proved the required result.

Theorem 8.3.3. Let A,B ∈ Mn(C) be diagonalizable matrices. Then they are simultaneously

diagonalizable if and only if they commute.
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Proof. One part of this theorem has already been proved in Proposition 8.3.2. For the other

part, let us assume that AB = BA. Since A is diagonalizable, there exists an invertible matrix

S such that

S−1AS = Λ = λ1I ⊕ · · · ⊕ λkI, (8.3.1)

where λ1, . . . , λk are the distinct eigenvalues of A. We now use the sub-matrix structure of

S−1AS to decompose C = S−1BS as C =


C11 · · · C1k

. . .

Ck1 · · · Ckk

. Since AB = BA and S is

invertible, we have ΛC = CΛ. Thus,
λ1C11 · · · λ1C1k

. . .

λkCk1 · · · λkCkk

 =


λ1C11 · · · λkC1k

. . .

λ1Ck1 · · · λkCkk

.
Since λi 6= λj for 1 ≤ i 6= j ≤ k, we have Cij = 0, whenever i 6= j. Thus, the matrix

C = C11 ⊕ · · · ⊕ Ckk.
Since B is diagonalizable, the matrix C is also diagonalizable and hence the matrices Cii,

for 1 ≤ i]lek, are diagonalizable. So, for 1 ≤ i ≤ k, there exists invertible matrices Ti’s such

that T−1i CiiTi = Λi. Put T = T1 ⊕ · · · ⊕ Tk. Then,

T−1S−1AST =


T−11

. . .

T−1k



λ1I

. . .

λkI



T1

. . .

Tk

 =


λ1I

. . .

λkI


and

T−1S−1BST =


T−11

. . .

T−1k



C11

. . .

Ckk



T1

. . .

Tk

 =


Λ1

. . .

Λk

.
Thus A and B are simultaneously diagonalizable and the required result follows.

Definition 8.3.4. [Commuting Family of Matrices]

1. Let F ⊆ Mn(C). Then F is said to be a commuting family if each pair of matrices in

F commutes.

2. Let B ∈ Mn(C) and W be a subspace of Cn. Then, W is said to be a B-invariant

subspace if Bw ∈W , for all w ∈W (or equivalently, BW ⊆W ).

3. A subspace W of Cn is said to be F-invariant if W is B-invariant for each B ∈ F .

Example 8.3.5. Let A ∈ Mn(C) with (λ,x) as an eigenpair. Then, W = {cx : c ∈ C} is an

A-invariant subspace. Furthermore, if W is an A-invariant subspace with dim(W ) = 1 then

verify that any non-zero vector in W is an eigenvector of A.

Theorem 8.3.6. [An A-invariant Subspace Contains an Eigenvector of A] Let A ∈ Mn(C)

and W ⊆ Cn be an A-invariant subspace of dimension at least 1. Then W contains an eigen-

vector of A.
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Proof. Let B = {f1, . . . , fk} ⊆ Cn be an ordered basis for W . Define T : W → W as Tv = Av.

Then T [B,B] =
[
[T f1]B · · · [T fk]B

]
is a k × k matrix which satisfies [Tw]B = T [B,B] [w]B,

for all w ∈W . As T [B,B] ∈Mk(C), it has an eigenpair, say (λ, x̂) with x̂ ∈ Ck. That is,

T [B,B]x̂ = λx̂. (8.3.2)

Now, put x =
k∑
i=1

(x̂)i fi ∈ Cn. Then, verify that x ∈W and [x]B = x̂. Thus, Tx ∈W and now

using Equation (8.3.2), we get

Tx =
k∑
i=1

([Tx]B)i fi =
k∑
i=1

(T [B,B][x]B)i fi =
k∑
i=1

(T [B,B]x̂)i fi =
k∑
i=1

(λx̂)ifi = λ
k∑
i=1

(x̂)ifi = λx.

So, A has an eigenvector x ∈W corresponding to the eigenvalue λ.

Theorem 8.3.7. Let F ⊆ Mn(C) be a commuting family of matrices. Then, all the matrices

in F have a common eigenvector.

Proof. Note that Cn is F-invariant. Let W ⊆ Cn be F-invariant with minimum positive

dimension. Let y ∈W such that y 6= 0. We claim that y is an eigenvector, for each A ∈ F .

So, on the contrary assume y is not an eigenvector for some A ∈ F . Then, by Theorem 8.3.6,

W contains an eigenvector x of A for some eigenvalue, say λ. Define W0 = {z ∈W : Az = λz}.
So W0 is a proper subspace of W as y ∈ W \W0. Also, for z ∈ W0 and C ∈ F , we note that

A(Cz) = CAz = λ(Cz), so that Cz ∈ W0. So W0 is F-invariant and 1 ≤ dimW0 < dimW , a

contradiction.

Theorem 8.3.8. Let F ⊆Mn(C) be a family of diagonalizable matrices. Then F is commuting

if and only if F is simultaneously diagonalizable.

Proof. We prove the result by induction on n. The result is clearly true for n = 1. So, let us

assume the result to be valid for all n < m. Now, let us assume that F ⊆Mm(C) is a family of

diagonalizable matrices.

If F is simultaneously diagonalizable, then by Proposition 8.3.2, the family F is commuting.

Conversely, let F be a commuting family. If each A ∈ F is a scalar matrix then they are simul-

taneously diagonalizable via I. So, let A ∈ F be a non-scalar matrix. As A is diagonalizable,

there exists an invertible matrix S such that

S−1AS = λ1I ⊕ · · · ⊕ λkI, k ≥ 2,

where λi’s are distinct. Now, consider the family G = {X̂ = S−1XS | X ∈ F}. As F is

a commuting family, the set G is also a commuting family. So, each X̂ ∈ G has the form

X̂ = X1 ⊕ · · · ⊕ Xk. Note that Hi = {Xi | X̂ ∈ G} is a commuting family of diagonalizable

matrices of size < m. Thus, by induction hypothesis, Hi’s are simultaneously diagonalizable,

say by the invertible matrices Ti’s. That is, T−1i XiTi = Λi, a diagonal matrix, for 1 ≤ i ≤ k.

Thus, if T = T1 ⊕ · · · ⊕ Tk then

T−1S−1X̂ST = T−1(X1 ⊕ · · · ⊕Xk)T = T−11 X1T1 ⊕ · · · ⊕ T−1k XkTk = Λ1 ⊕ · · · ⊕ Λk,

a diagonal matrix, for all X ∈ F . Thus the result holds by induction.

We now give prove of some parts of Exercise 6.2.7.exe:eigen:1.
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Remark 8.3.9. [σ(AB) and σ(BA)] Let m ≤ n, A ∈ Mm×n(C), and B ∈ Mn×m(C). Then

σ(BA) = σ(AB) with n−m extra 0’s. In particular, if A,B ∈Mn(C) then, PAB(t) = PBA(t).

Proof. Note that [
AB 0

B 0

][
Im A

0 In

]
=

[
AB ABA

B BA

]
=

[
Im A

0 In

][
0 0

B BA

]
.

Thus, the matrices

[
AB 0

B 0

]
and

[
0 0

B BA

]
are similar. Hence, AB and BA have precisely

the same non-zero eigenvalues. Therefore, if they have the same size, they must have the same

characteristic polynomial.

Exercise 8.3.10. [Miscellaneous Exercises]

1. Let A be nonsingular. Then, verify that A−1(AB)A = BA. Hence, AB and BA are

similar. Thus, PAB(t) = PBA(t).

2. Fix a positive integer k, 0 ≤ k ≤ n. Now, define the function fk : Mn(C)→ C by f(A) =

coefficient of tk in PA(t). Prove that fk is a continuous function.

3. For any matrix A, prove that there exists an ε > 0 such that Aα = A + αI is invertible,

for all α ∈ (0, ε). Thus, use the first part to conclude that for any given B, we have

PAαB(t) = PBAα(t), for all α ∈ (0, ε).

4. Now, use continuity to argue that PAB(t) = lim
α→0+

PAαB(t) = lim
α→0+

PBAα(t) = PBA(t).

5. Let σ(A) = {λ1, . . . , λn}, σ(B) = {µ1, . . . , µn} and suppose that AB = BA. Then,

(a) prove that there is a permutation π such that σ(A+B) = {λ1+µπ(1), . . . , λn+µπ(n)}.
In particular, σ(A+B) ⊆ σ(A) + σ(B).

Ans: Use Simultaneous Triangularization.

(b) if we further assume that σ(A) ∩ σ(−B) = ∅ then the matrix A+B is nonsingular.

6. Let A and B be two non-commuting matrices. Then, give an example to show that it is

difficult to relate σ(A+B) with σ(A) and σ(B).

Ans: Take A =

[
0 0

1 0

]
and B =

[
0 1

0 0

]
. Here σ(A + B) = {1,−1} but σ(A) = σ(B) =

{0, 0}.

7. Are the matrices A =


0 1 0

0 0 −1

0 0 0

 and B =


0 0 0

1 0 0

0 1 0

 simultaneously triangularizable?

Ans: Suppose yes. Then there exists a unitary matrix U such that U∗AU = T1, U
∗BU = T2

such that T1 and T2 are strictly upper triangular matrices as 0 is the only eigenvalue of A and

B. Thus, the eigenvalues of A + B,AB and BA must all be 0. In this case, note that 0 is

the only eigenvalue of A+B =


0 1 0

1 0 −1

0 1 0

 but the eigenvalues of AB are 0, 1 and −1.
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8. Let F ⊆Mn(C) be a family of commuting normal matrices. Then, prove that each element

of F is simultaneously unitarily diagonalizable.

Ans: By Theorem 8.3.7, we know that all elements in F have a common eigenvector.

Hence, one can apply induction to show that all the elements of F are simultaneously unitarily

triangularizable. But, each elements is normal and hence each of these upper triangular

matrices will be diagonal.

9. Let A ∈ Mn(C) with A∗ = A and x∗Ax ≥ 0, for all x ∈ Cn. Then prove that σ(A) ⊆ R+

and if tr(A) = 0, then A = 0.

Ans: As A is Hermitian, by Theorem 6.4.10, each eigenvalue of A is real. Suppose (λ,x)

is an eigenpair of A. Then, for this choice of A, the condition

λx∗x = x∗(λx) = x∗(Ax) ≥ 0

implies that λ ≥ 0. Hence, σ(A) ⊆ R+. Then, the condition sum of eigenvalues= tr(A) = 0

implies that the sum of non-negative integers is 0 and hence each of them must be zero. That

is λi = 0, for each eigenvalue λ. Hence, the diagonal matrix D, containing the eigenvalues is

the zero matrix. Therefore, A = 0.

8.3.1 Diagonalization and Real Orthogonal Matrix

Proposition 8.3.11. [Triangularization: Real Matrix] Let A ∈ Mn(R). Then, there exists a

real orthogonal matrix Q such that QTAQ is block upper triangular, where each diagonal block

is of size either 1 or 2.

Proof. If all the eigenvalues of A are real then the corresponding eigenvectors have real entries

and hence, one can use induction to get the result in this case (see Lemma 6.4.1).

So, now let us assume that A has a complex eigenvalue, say λ = α + iβ with β 6= 0 and

x = u + iv as an eigenvector for λ. Thus, Ax = λx and hence Ax = λx. But, λ 6= λ as

β 6= 0. Thus, the eigenvectors x,x are linearly independent and therefore, {u,v} is a linearly

independent set. By Gram-Schmidt Orthonormalization process, we get an ordered basis, say

{w1,w2, . . . ,wn} of Rn, where LS(w1,w2) = LS(u,v). Also, using the eigen-condition Ax =

λx gives

Aw1 = aw1 + bβw2, Aw2 = cw1 + dw2,

for some real numbers a, b, c and d.

Now, form a matrix X = [w1,w2, . . . ,wn]. Then, X is a real orthogonal matrix and

X∗AX = X∗[Aw1, Aw2, . . . , Awn] =


w∗1
w∗2
...

w∗n

 [aw1 + bw2, cw1 + dw2, . . . , Awn]

=


a b

c d
∗

0 B

 (8.3.3)
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where B ∈Mn−2(R). Now, by induction hypothesis the required result follows.

The next result is a direct application of Proposition 8.3.11 and hence the proof is omitted.

Corollary 8.3.12. [Simultaneous Triangularization: Real Matrices] Let F ⊆ Mn(R) be a

commuting family. Then, there exists a real orthogonal matrix Q such that QTAQ is a block

upper triangular matrix, where each diagonal block is of size either 1 or 2, for all A ∈ F .

Proposition 8.3.13. Let A ∈Mn(R). Then the following statements are equivalent.

1. A is normal.

2. There exists a real orthogonal matrix Q such that QTAQ =
⊕

iAi, where Ai’s are real

normal matrices of size either 1 or 2.

Proof. 2 ⇒ 1 is trivial. To prove 1 ⇒ 2, recall that Proposition 8.3.11 gives the existence of

a real orthogonal matrix Q such that QTAQ is upper triangular with diagonal blocks of size

either 1 or 2. So, we can write

QTAQ =



λ1 ∗ ∗ ∗ ∗ ∗
0

. . . ∗ ∗ ∗ ∗
0 · · · λp ∗ ∗ ∗
0 · · · 0 A11 · · · A1k

0 · · · 0 0
. . . ∗

0 · · · 0 0 · · · Akk


=

[
R C

0 B

]
(say).

As A is normal,

[
R C

0 B

][
RT 0

CT BT

]
=

[
RT 0

CT BT

][
R C

0 B

]
. Thus, tr(CCT) = tr(RRT − RTR) =

0. Now, using Exercise 8.3.10.9, we get C = 0. Hence, RRT = RTR and therefore, R is a

diagonal matrix.

As BTB = BBT , we have
∑
A1iA

T
1i = A11A

T
11. So tr

( k∑
2

A1iA
T
1i

)
= 0. Now, using Exer-

cise 8.3.10.9 again, we have
k∑
2
A1iA

T
1i = 0 and so A1iA

T
1i = 0, for all i = 2, . . . , k. Thus, A1i = 0,

for all i = 2, . . . , k. Hence, the required result follows.

Exercise 8.3.14. Let A ∈Mn(R). Then the following are true.

1. A = −AT if and only if A is real orthogonally similar to [
⊕

j 0] ⊕ [
⊕

iAi], where Ai =[
0 ai

−ai 0

]
, for some real numbers ai’s.

2. AAT = I if and only if A is real orthogonally similar to [
⊕

i λi]⊕ [
⊕

j Aj ], where λi = ±1

and Aj =

[
cos θj sin θj

− sin θj cos θj

]
, for some real numbers θi’s.

8.3.2 Convergent and nilpotent matrices

Definition 8.3.15. [Convergent matrices] A matrix A is called a convergent matrix if

Am → 0 as m→∞.
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Remark 8.3.16. 1. Let A be a diagonalizable matrix with ρ(A) < 1. Then, A is a convergent

matrix.

Proof. Let A = U∗ diag(λ1, . . . , λn)U . As ρ(A) < 1, for each i, 1 ≤ i ≤ n, λmi → 0 as

m→∞. Thus, Am = U∗ diag(λm1 , . . . , λ
m
n )U → 0.

2. Even if the matrix A is not diagonalizable, the above result holds. That is, whenever

ρ(A) < 1, the matrix A is convergent. The converse is also true.

Proof. Let Jk(λ) = λIk + Nk be a Jordan block of J = Jordan CFA. Then as Nk
k = 0,

for each fixed k, we have

Jk(λ)m = λm + C(m, 1)λm−1Nk + · · ·+ C(m, k − 1)λm−k+1Nk−1
k → 0, as m→∞.

As λm → 0 as m→∞, the matrix Jk(λ)m → 0 and hence J is convergent. Thus, A is a

convergent matrix.

Conversely, if A is convergent, then J must be convergent. Thus each Jordan block Jk(λ)

must be convergent. Hence |λ| < 1.

Theorem 8.3.17. [Decomposition into Diagonalizable and Nilpotent Parts] Let A ∈Mn(C).

Then A = B + C, where B is diagonalizable matrix and C is nilpotent such that BC = CB.

Proof. Let J = Jordan CFA. Then, J = D + N , where D = diag(J) and N is clearly a

nilpotent matrix.

Now, note that DN = ND as for each Jordan block Jk(λ) = Dk+Nk, we have Dk = λI and

Nk = Jk(0) so that DkNk = NkDk. As J = Jordan CFA, there exists an invertible matrix

S, such that S−1AS = J . Hence, A = SJS−1 = SDS−1 + SNS−1 = B + C, which satisfy the

required conditions.
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Appendix

9.1 Uniqueness of RREF

Definition 9.1.1. Fix n ∈ N. Then, for each f ∈ Sn, we associate an n × n matrix, denoted

P f = [pij ], such that pij = 1, whenver f(j) = i and 0, otherwise. The matrix P f is called the

Permutation matrix corresponding to the permutation f . For example, I2, corresponding

to Id2, and

[
0 1

1 0

]
= E12, corresponding to the permutation (1, 2), are the two permutation

matrices of order 2× 2.

Remark 9.1.2. Recall that in Remark 9.2.16.1, it was observed that each permutation is a

product of n transpositions, (1, 2), . . . , (1, n).

1. Verify that the elementary matrix Eij is the permutation matrix corresponding to the

transposition (i, j) .

2. Thus, every permutation matrix is a product of elementary matrices E1j, 1 ≤ j ≤ n.

3. For n = 3, the permutation matrices are I3,


1 0 0

0 0 1

0 1 0

 = E23 = E12E13E12,


0 1 0

1 0 0

0 0 1

 =

E12,


0 1 0

0 0 1

1 0 0

 = E12E13,


0 0 1

1 0 0

0 1 0

 = E13E12 and


0 0 1

0 1 0

1 0 0

 = E13.

4. Let f ∈ Sn and P f = [pij ] be the corresponding permutation matrix. Since pij = δi,j and

{f(1), . . . , f(n)} = [n], each entry of P f is either 0 or 1. Furthermore, every row and

column of P f has exactly one nonzero entry. This nonzero entry is a 1 and appears at

the position pi,f(i).

5. By the previous paragraph, we see that when a permutation matrix is multiplied to A

(a) from left then it permutes the rows of A.

(b) from right then it permutes the columns of A.

6. P is a permutation matrix if and only if P has exactly one 1 in each row and column.

Solution: If P has exactly one 1 in each row and column, then P is a square matrix, say

245
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n × n. Now, apply GJE to P . The occurrence of exactly one 1 in each row and column

implies that these 1’s are the pivots in each column. We just need to interchange rows to

get it in RREF. So, we need to multiply by Eij. Thus, GJE of P is In and P is indeed a

product of Eij’s. The other part has already been explained earlier.

We are now ready to prove Theorem 2.4.6.

Theorem 9.1.3. Let A and B be two matrices in RREF. If they are row equivalent then A = B.

Proof. Note that the matrix A = 0 if and only if B = 0. So, let us assume that the matrices

A,B 6= 0. Also, the row-equivalence of A and B implies that there exists an invertible matrix

C such that A = CB, where C is product of elementary matrices.

Since B is in RREF, either B[:, 1] = 0T or B[:, 1] = (1, 0, . . . , 0)T . If B[:, 1] = 0T then

A[:, 1] = CB[:, 1] = C0 = 0. If B[:, 1] = (1, 0, . . . , 0)T then A[:, 1] = CB[:, 1] = C[:, 1]. As C is

invertible, the first column of C cannot be the zero vector. So, A[:, 1] cannot be the zero vector.

Further, A is in RREF implies that A[:, 1] = (1, 0, . . . , 0)T . So, we have shown that if A and B

are row-equivalent then their first columns must be the same.

Now, let us assume that the first k − 1 columns of A and B are equal and it contains r

pivotal columns. We will now show that the k-th column is also the same.

Define Ak = [A[:, 1], . . . , A[:, k]] and Bk = [B[:, 1], . . . , B[:, k]]. Then, our assumption implies

that A[:, i] = B[:, i], for 1 ≤ i ≤ k− 1. Since, the first k− 1 columns contain r pivotal columns,

there exists a permutation matrix P such that

AkP =

[
Ir W A[:, k]

0 0

]
and BkP =

[
Ir W B[:, k]

0 0

]
.

If the k-th columns of A and B are pivotal columns then by definition of RREF, A[:, k] =[
0

e1

]
= B[:, k], where 0 is a vector of size r and e1 = (1, 0, . . . , 0)T . So, we need to consider two

cases depending on whether both are non-pivotal or one is pivotal and the other is not.

As A = CB, we get Ak = CBk and[
Ir W A[:, k]

0 0

]
= AkP = CBkP =

[
C1 C2

C3 C4

][
Ir W B[:, k]

0 0

]
=

[
C1 C1W CB[:, k]

C3 C3W

]
.

So, we see that C1 = Ir, C3 = 0 and A[:, k] =

[
Ir C2

0 C4

]
B[:, k].

Case 1: Neither A[:, k] nor B[:, k] are pivotal. Then[
X

0

]
= A[:, k] =

[
Ir C2

0 C4

]
B[:, k] =

[
Ir C2

0 C4

][
Y

0

]
=

[
Y

0

]
.

Thus, X = Y and in this case the k-th columns are equal.

Case 2: A[:, k] is pivotal but B[:, k] in non-pivotal. Then[
0

e1

]
= A[:, k] =

[
Ir C2

0 C4

]
B[:, k] =

[
Ir C2

0 C4

][
Y

0

]
=

[
Y

0

]
,

a contradiction as e1 6= 0. Thus, this case cannot arise.

Therefore, combining both the cases, we get the required result.
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9.2 Permutation/Symmetric Groups

Definition 9.2.1. For a positive integer n, denote [n] = {1, 2, . . . , n}. A function f : A→ B is

called

1. one-one/injective if f(x) = f(y) for some x, y ∈ A necessarily implies that x = y.

2. onto/surjective if for each b ∈ B there exists a ∈ A such that f(a) = b.

3. a bijection if f is both one-one and onto.

Example 9.2.2. Let A = {1, 2, 3}, B = {a, b, c, d} and C = {α, β, γ}. Then, the function

1. j : A→ B defined by j(1) = a, j(2) = c and j(3) = c is neither one-one nor onto.

2. f : A→ B defined by f(1) = a, f(2) = c and f(3) = d is one-one but not onto.

3. g : B → C defined by g(a) = α, g(b) = β, g(c) = α and g(d) = γ is onto but not one-one.

4. h : B → A defined by h(a) = 2, h(b) = 2, h(c) = 3 and h(d) = 1 is onto.

5. h ◦ f : A→ A is a bijection.

6. g ◦ f : A→ C is neither one-one not onto.

Remark 9.2.3. Let f : A → B and g : B → C be functions. Then, the composition of

functions, denoted g ◦ f , is a function from A to C defined by (g ◦ f)(a) = g(f(a)). Also, if

1. f and g are one-one then g ◦ f is one-one.

2. f and g are onto then g ◦ f is onto.

Thus, if f and g are bijections then so is g ◦ f .

Definition 9.2.4. A function f : [n] → [n] is called a permutation on n elements if f is a

bijection. For example, f, g : [2]→ [2] defined by f(1) = 1, f(2) = 2 and g(1) = 2, g(2) = 1 are

permutations.

Exercise 9.2.5. Let S3 be the set consisting of all permutation on 3 elements. Then, prove

that S3 has 6 elements. Moreover, they are one of the 6 functions given below.

1. f1(1) = 1, f1(2) = 2 and f1(3) = 3.

2. f2(1) = 1, f2(2) = 3 and f2(3) = 2.

3. f3(1) = 2, f3(2) = 1 and f3(3) = 3.

4. f4(1) = 2, f4(2) = 3 and f4(3) = 1.

5. f5(1) = 3, f5(2) = 1 and f5(3) = 2.

6. f6(1) = 3, f6(2) = 2 and f6(3) = 1.

Remark 9.2.6. Let f : [n]→ [n] be a bijection. Then, the inverse of f , denote f−1, is defined

by f−1(m) = ` whenever f(`) = m for m ∈ [n] is well defined and f−1 is a bijection. For

example, in Exercise 9.2.5, note that f−1i = fi, for i = 1, 2, 3, 6 and f−14 = f5.

Remark 9.2.7. Let Sn = {f : [n]→ [n] : σ is a permutation}. Then, Sn has n! elements and

forms a group with respect to composition of functions, called product, due to the following.
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1. Let f ∈ Sn. Then,

(a) f can be written as f =

(
1 2 · · · n

f(1) f(2) · · · f(n)

)
, called a two row notation.

(b) f is one-one. Hence, {f(1), f(2), . . . , f(n)} = [n] and thus, f(1) ∈ [n], f(2) ∈ [n] \
{f(1)}, . . . and finally f(n) = [n]\{f(1), . . . , f(n−1)}. Therefore, there are n choices

for f(1), n − 1 choices for f(2) and so on. Hence, the number of elements in Sn
equals n(n− 1) · · · 2 · 1 = n!.

2. By Remark 9.2.3, f ◦ g ∈ Sn, for any f, g ∈ Sn.

3. Also associativity holds as f ◦ (g ◦ h) = (f ◦ g) ◦ h for all functions f, g and h.

4. Sn has a special permutation called the identity permutation, denoted Idn, such that

Idn(i) = i, for 1 ≤ i ≤ n.

5. For each f ∈ Sn, f−1 ∈ Sn and is called the inverse of f as f ◦ f−1 = f−1 ◦ f = Idn.

Lemma 9.2.8. Fix a positive integer n. Then, the group Sn satisfies the following:

1. Fix an element f ∈ Sn. Then, Sn = {f ◦ g : g ∈ Sn} = {g ◦ f : g ∈ Sn}.

2. Sn = {g−1 : g ∈ Sn}.

Proof. Part 1: Note that for each α ∈ Sn the functions f−1◦α, α◦f−1 ∈ Sn and α = f ◦(f−1◦α)

as well as α = (α ◦ f−1) ◦ f .

Part 2: Note that for each f ∈ Sn, by definition, (f−1)−1 = f . Hence the result holds.

Definition 9.2.9. Let f ∈ Sn. Then, the number of inversions of f , denoted n(f), equals

n(f) = | {(i, j) : i < j, f(i) > f(j) } |
= | {j : i+ 1 ≤ j ≤ n, f(j) < f(i)} | using two row notation. (9.2.1)

Example 9.2.10. 1. For f =

(
1 2 3 4

3 2 1 4

)
, n(f) = | {(1, 2), (1, 3), (2, 3)} | = 3.

2. In Exercise 9.2.5, n(f5) = 2 + 0 = 2.

3. Let f =

(
1 2 3 4 5 6 7 8 9

4 2 3 5 1 9 8 7 6

)
. Then, n(f) = 3 + 1 + 1 + 1 + 0 + 3 + 2 + 1 = 12.

Definition 9.2.11. [Cycle Notation] Let f ∈ Sn. Suppose there exist r, 2 ≤ r ≤ n and

i1, . . . , ir ∈ [n] such that f(i1) = i2, f(i2) = i3, . . . , f(ir) = i1 and f(j) = j for all j 6= i1, . . . , ir.

Then, we represent such a permutation by f = (i1, i2, . . . , ir) and call it an r-cycle. For

example, f =

(
1 2 3 4 5

4 2 3 5 1

)
= (1, 4, 5) and

(
1 2 3 4 5

1 3 2 4 5

)
= (2, 3).

Remark 9.2.12. 1. One also write the r-cycle (i1, i2, . . . , ir) as (i2, i3, . . . , ir, i1) and so on.

For example, (1, 4, 5) = (4, 5, 1) = (5, 1, 4).

2. The permutation f =

(
1 2 3 4 5

4 3 2 5 1

)
is not a cycle.
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3. Let f = (1, 3, 5, 4) and g = (2, 4, 1) be two cycles. Then, their product, denoted f ◦ g or

(1, 3, 5, 4)(2, 4, 1) equals (1, 2)(3, 5, 4). The calculation proceeds as (the arrows indicate the

images):

1→ 2. Note (f ◦ g)(1) = f(g(1)) = f(2) = 2.

2→ 4→ 1 as (f ◦ g)(2) = f(g(2)) = f(4) = 1. So, (1, 2) forms a cycle.

3→ 5 as (f ◦ g)(3) = f(g(3)) = f(3) = 5.

5→ 4 as (f ◦ g)(5) = f(g(5)) = f(5) = 4.

4→ 1→ 3 as (f ◦ g)(4) = f(g(4)) = f(1) = 3. So, the other cycle is (3, 5, 4).

4. Let f = (1, 4, 5) and g = (2, 4, 1) be two permutations. Then, (1, 4, 5)(2, 4, 1) = (1, 2, 5)(4) =

(1, 2, 5) as 1→ 2, 2→ 4→ 5, 5→ 1, 4→ 1→ 4 and

(2, 4, 1)(1, 4, 5) = (1)(2, 4, 5) = (2, 4, 5) as 1→ 4→ 1, 2→ 4, 4→ 5, 5→ 1→ 2.

5. Even though

(
1 2 3 4 5

4 3 2 5 1

)
is not a cycle, verify that it is a product of the cycles

(1, 4, 5) and (2, 3).

Definition 9.2.13. A permutation f ∈ Sn is called a transposition if there exist m, r ∈ [n]

such that f = (m, r).

Remark 9.2.14. Verify that

1. (2, 4, 5) = (2, 5)(2, 4) = (4, 2)(4, 5) = (5, 4)(5, 2) = (1, 2)(1, 5)(1, 4)(1, 2).

2. in general, the r-cycle (i1, . . . , ir) = (1, i1)(1, ir)(1, ir−1) · · · (1, i2)(1, i1).
3. So, every r-cycle can be written as product of transpositions. Furthermore, they can be

written using the n transpositions (1, 2), (1, 3), . . . , (1, n).

With the above definitions, we state and prove two important results.

Theorem 9.2.15. Let f ∈ Sn. Then, f can be written as product of transpositions.

Proof. Note that using use Remark 9.2.14, we just need to show that f can be written as

product of disjoint cycles.

Consider the set S = {1, f(1), f (2)(1) = (f ◦ f)(1), f (3)(1) = (f ◦ (f ◦ f))(1), . . .}. As S is an

infinite set and each f (i)(1) ∈ [n], there exist i, j with 0 ≤ i < j ≤ n such that f (i)(1) = f (j)(1).

Now, let j1 be the least positive integer such that f (i)(1) = f (j1)(1), for some i, 0 ≤ i < j1.

Then, we claim that i = 0.

For if, i− 1 ≥ 0 then j1 − 1 ≥ 1 and the condition that f is one-one gives

f (i−1)(1) = (f−1 ◦ f (i))(1) = f−1
(
f (i)(1)

)
= f−1

(
f (j1)(1)

)
= (f−1 ◦ f (j1))(1) = f (j1−1)(1).

Thus, we see that the repetition has occurred at the (j1 − 1)-th instant, contradicting the

assumption that j1 was the least such positive integer. Hence, we conclude that i = 0. Thus,

(1, f(1), f (2)(1), . . . , f (j1−1)(1)) is one of the cycles in f .

Now, choose i1 ∈ [n] \ {1, f(1), f (2)(1), . . . , f (j1−1)(1)} and proceed as above to get another

cycle. Let the new cycle by (i1, f(i1), . . . , f
(j2−1)(i1)). Then, using f is one-one follows that{

1, f(1), f (2)(1), . . . , f (j1−1)(1)
}
∩
{
i1, f(i1), . . . , f

(j2−1)(i1)
}

= ∅.
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So, the above process needs to be repeated at most n times to get all the disjoint cycles. Thus,

the required result follows.

Remark 9.2.16. Note that when one writes a permutation as product of disjoint cycles, cycles

of length 1 are suppressed so as to match Definition 9.2.11. For example, the algorithm in the

proof of Theorem 9.2.15 implies

1. Using Remark 9.2.14.3, we see that every permutation can be written as product of the n

transpositions (1, 2), (1, 3), . . . , (1, n).

2.

(
1 2 3 4 5

1 4 3 5 2

)
= (1)(2, 4, 5)(3) = (2, 4, 5).

3.

(
1 2 3 4 5 6 7 8 9

4 2 3 5 1 9 8 7 6

)
= (1, 4, 5)(2)(3)(6, 9)(7, 8) = (1, 4, 5)(6, 9)(7, 8).

Note that Id3 = (1, 2)(1, 2) = (1, 2)(2, 3)(1, 2)(1, 3), as well. The question arises, is it

possible to write Idn as a product of odd number of transpositions? The next lemma answers

this question in negative.

Lemma 9.2.17. Suppose there exist transpositions fi, 1 ≤ i ≤ t, such that

Idn = f1 ◦ f2 ◦ · · · ◦ ft,

then t is even.

Proof. We will prove the result by mathematical induction. Observe that t 6= 1 as Idn is not a

transposition. Hence, t ≥ 2. If t = 2, we are done. So, let us assume that the result holds for

all expressions in which the number of transpositions t ≤ k. Now, let t = k + 1.

Suppose f1 = (m, r) and let `, s ∈ [n] \ {m, r}. Then, the possible choices for the com-

position f1 ◦ f2 are (m, r)(m, r) = Idn, (m, r)(m, `) = (r, `)(r,m), (m, r)(r, `) = (`, r)(`,m)

and (m, r)(`, s) = (`, s)(m, r). In the first case, f1 and f2 can be removed to obtain Idn =

f3 ◦ f4 ◦ · · · ◦ ft, where the number of transpositions is t− 2 = k − 1 < k. So, by mathematical

induction, t− 2 is even and hence t is also even.

In the remaining cases, the expression for f1 ◦ f2 is replaced by their counterparts to obtain

another expression for Idn. But in the new expression for Idn, m doesn’t appear in the first

transposition, but appears in the second transposition. The shifting of m to the right can

continue till the number of transpositions reduces by 2 (which in turn gives the result by

mathematical induction). For if, the shifting of m to the right doesn’t reduce the number

of transpositions then m will get shifted to the right and will appear only in the right most

transposition. Then, this expression for Idn does not fix m whereas Idn(m) = m. So, the later

case leads us to a contradiction. Hence, the shifting of m to the right will surely lead to an

expression in which the number of transpositions at some stage is t− 2 = k − 1. At this stage,

one applies mathematical induction to get the required result.

Theorem 9.2.18. Let f ∈ Sn. If there exist transpositions g1, . . . , gk and h1, . . . , h` with

f = g1 ◦ g2 ◦ · · · ◦ gk = h1 ◦ h2 ◦ · · · ◦ h`

then, either k and ` are both even or both odd.
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Proof. As g1 ◦ · · · ◦ gk = h1 ◦ · · · ◦ h` and h−1 = h for any transposition h ∈ Sn, we have

Idn = g1 ◦ g2 ◦ · · · ◦ gk ◦ h` ◦ h`−1 ◦ · · · ◦ h1.

Hence by Lemma 9.2.17, k + ` is even. Thus, either k and ` are both even or both odd.

Definition 9.2.19. [Even and Odd Permutation] A permutation f ∈ Sn is called an

1. even permutation if f can be written as product of even number of transpositions.

2. odd permutation if f can be written as a product of odd number of transpositions.

Definition 9.2.20. Observe that if f and g are both even or both odd permutations, then f ◦g
and g ◦ f are both even. Whereas, if one of them is odd and the other even then f ◦ g and g ◦ f
are both odd. We use this to define a function sgn : Sn → {1,−1}, called the signature of a

permutation, by

sgn(f) =

{
1 if f is an even permutation

−1 if f is an odd permutation
.

Example 9.2.21. Consider the set Sn. Then,

1. by Lemma 9.2.17, Idn is an even permutation and sgn(Idn) = 1.

2. a transposition, say f , is an odd permutation and hence sgn(f) = −1

3. using Remark 9.2.20, sgn(f ◦ g) = sgn(f) · sgn(g) for any two permutations f, g ∈ Sn.

We are now ready to define determinant of a square matrix A.

Definition 9.2.22. Let A = [aij ] be an n× n matrix with complex entries. Then, the deter-

minant of A, denoted det(A), is defined as

det(A) =
∑
g∈Sn

sgn(g)a1g(1)a2g(2) . . . ang(n) =
∑
σ∈Sn

sgn(g)
n∏
i=1

aig(i). (9.2.2)

For example, if S2 = {Id, f = (1, 2)} then for A =

[
1 2

2 1

]
, det(A) = sgn(Id) · a1Id(1)a2Id(2) +

sgn(f) · a1f(1)a2f(2) = 1 · a11a22 + (−1)a12a21 = 1− 4 = −3.

Observe that det(A) is a scalar quantity. Even though the expression for det(A) seems

complicated at first glance, it is very helpful in proving the results related with “properties of

determinant”. We will do so in the next section. As another examples, we verify that this

definition also matches for 3 × 3 matrices. So, let A = [aij ] be a 3 × 3 matrix. Then, using

Equation (9.2.2),

det(A) =
∑
σ∈Sn

sgn(σ)

3∏
i=1

aiσ(i)

= sgn(f1)

3∏
i=1

aif1(i) + sgn(f2)

3∏
i=1

aif2(i) + sgn(f3)

3∏
i=1

aif3(i) +

sgn(f4)
3∏
i=1

aif4(i) + sgn(f5)
3∏
i=1

aif5(i) + sgn(f6)
3∏
i=1

aif6(i)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.
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9.3 Properties of Determinant

Theorem 9.3.1 (Properties of Determinant). Let A = [aij ] be an n× n matrix.

1. If A[i, :] = 0T for some i then det(A) = 0.

2. If B = Ei(c)A, for some c 6= 0 and i ∈ [n] then det(B) = cdet(A).

3. If B = EijA, for some i 6= j then det(B) = −det(A).

4. If A[i, :] = A[j, :] for some i 6= j then det(A) = 0.

5. Let B and C be two n×n matrices. If there exists m ∈ [n] such that B[i, :] = C[i, :] = A[i, :]

for all i 6= m and C[m, :] = A[m, :] +B[m, :] then det(C) = det(A) + det(B).

6. If B = Eij(c), for c 6= 0 then det(B) = det(A).

7. If A is a triangular matrix then det(A) = a11 · · · ann, the product of the diagonal entries.

8. If E is an n× n elementary matrix then det(EA) = det(E) det(A).

9. A is invertible if and only if det(A) 6= 0.

10. If B is an n× n matrix then det(AB) = det(A) det(B).

11. If AT denotes the transpose of the matrix A then det(A) = det(AT ).

Proof. Part 1: Note that each sum in det(A) contains one entry from each row. So, each sum

has an entry from A[i, :] = 0T . Hence, each sum in itself is zero. Thus, det(A) = 0.

Part 2: By assumption, B[k, :] = A[k, :] for k 6= i and B[i, :] = cA[i, :]. So,

det(B) =
∑
σ∈Sn

sgn(σ)

∏
k 6=i

bkσ(k)

 biσ(i) =
∑
σ∈Sn

sgn(σ)

∏
k 6=i

akσ(k)

 caiσ(i)

= c
∑
σ∈Sn

sgn(σ)

n∏
k=1

akσ(k) = c det(A).

Part 3: Let τ = (i, j). Then, sgn(τ) = −1, by Lemma 9.2.8, Sn = {σ ◦ τ : σ ∈ Sn} and

det(B) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

biσ(i) =
∑

σ◦τ∈Sn
sgn(σ ◦ τ)

n∏
i=1

bi,(σ◦τ)(i)

=
∑

σ◦τ∈Sn
sgn(τ) · sgn(σ)

∏
k 6=i,j

bkσ(k)

 bi(σ◦τ)(i)bj(σ◦τ)(j)

= sgn(τ)
∑
σ∈Sn

sgn(σ)

∏
k 6=i,j

bkσ(k)

 biσ(j)bjσ(i) = −
∑
σ∈Sn

sgn(σ)
n∏
k=1

akσ(k)

= −det(A).

Part 4: As A[i, :] = A[j, :], A = EijA. Hence, by Part 3, det(A) = −det(A). Thus, det(A) = 0.
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Part 5: By assumption, C[i, :] = B[i, :] = A[i, :] for i 6= m and C[m, :] = B[m, :] +A[m, :]. So,

det(C) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ciσ(i) =
∑
σ∈Sn

sgn(σ)

∏
i 6=m

ciσ(i)

 cmσ(m)

=
∑
σ∈Sn

sgn(σ)

∏
i 6=m

ciσ(i)

 (amσ(m) + bmσ(m))

=
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i) +
∑
σ∈Sn

sgn(σ)
n∏
i=1

biσ(i) = det(A) + det(B).

Part 6: By assumption, B[k, :] = A[k, :] for k 6= i and B[i, :] = A[i, :] + cA[j, :]. So,

det(B) =
∑
σ∈Sn

sgn(σ)

n∏
k=1

bkσ(k) =
∑
σ∈Sn

sgn(σ)

∏
k 6=i

bkσ(k)

 biσ(i)

=
∑
σ∈Sn

sgn(σ)

∏
k 6=i

akσ(k)

 (aiσ(i) + cajσ(j))

=
∑
σ∈Sn

sgn(σ)

∏
k 6=i

akσ(k)

 aiσ(i) + c
∑
σ∈Sn

sgn(σ)

∏
k 6=i

akσ(k)

 ajσ(j))

=
∑
σ∈Sn

sgn(σ)
n∏
k=1

akσ(k) + c · 0 = det(A). UsePart 4

Part 7: Observe that if σ ∈ Sn and σ 6= Idn then n(σ) ≥ 1. Thus, for every σ 6= Idn, there

exists m ∈ [n] (depending on σ) such that m > σ(m) or m < σ(m). So, if A is triangular,

amσ(m) = 0. So, for each σ 6= Idn,
∏n
i=1 aiσ(i) = 0. Hence, det(A) =

∏n
i=1 aii. the result follows.

Part 8: Using Part 7, det(In) = 1. By definition Eij = EijIn and Ei(c) = Ei(c)In and

Eij(c) = Eij(c)In, for c 6= 0. Thus, using Parts 2, 3 and 6, we get det(Ei(c)) = c,det(Eij) = −1

and det(Eij(k)) = 1. Also, again using Parts 2, 3 and 6, we get det(EA) = det(E) det(A).

Part 9: Suppose A is invertible. Then, by Theorem 2.7.1, A = E1 · · ·Ek, for some elementary

matrices E1, . . . , Ek. So, a repeated application of Part 8 implies det(A) = det(E1) · · · det(Ek) 6=
0 as det(Ei) 6= 0 for 1 ≤ i ≤ k.

Now, suppose that det(A) 6= 0. We need to show that A is invertible. On the contrary, as-

sume that A is not invertible. Then, by Theorem 2.7.1, Rank(A) < n. So, by Proposition 2.4.9,

there exist elementary matrices E1, . . . , Ek such that E1 · · ·EkA =

[
B

0

]
. Therefore, by Part 1

and a repeated application of Part 8 gives

det(E1) · · · det(Ek) det(A) = det(E1 · · ·EkA) = det

([
B

0

])
= 0.

As det(Ei) 6= 0, for 1 ≤ i ≤ k, we have det(A) = 0, a contradiction. Thus, A is invertible.

Part 10: Let A be invertible. Then, by Theorem 2.7.1, A = E1 · · ·Ek, for some elementary

matrices E1, . . . , Ek. So, applying Part 8 repeatedly gives det(A) = det(E1) · · · det(Ek) and

det(AB) = det(E1 · · ·EkB) = det(E1) · · · det(Ek) det(B) = det(A) det(B).
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In case A is not invertible, by Part 9, det(A) = 0. Also, AB is not invertible (AB is invertible

will imply A is invertible using the rank argument). So, again by Part 9, det(AB) = 0. Thus,

det(AB) = det(A) det(B).

Part 11: Let B = [bij ] = AT . Then, bij = aji, for 1 ≤ i, j ≤ n. By Lemma 9.2.8, we know that

Sn = {σ−1 : σ ∈ Sn}. As σ ◦ σ−1 = Idn, sgn(σ) = sgn(σ−1). Hence,

det(B) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

biσ(i) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i),i =
∑

σ−1∈Sn
sgn(σ−1)

n∏
i=1

aiσ−1(i)

= det(A).

Remark 9.3.2. 1. As det(A) = det(AT ), we observe that in Theorem 9.3.1, the condition

on “row” can be replaced by the condition on “column”.

2. Let A = [aij ] be a matrix satisfying a1j = 0, for 2 ≤ j ≤ n. Let B = A(1 | 1), the submatrix

of A obtained by removing the first row and the first column. Then det(A) = a11 det(B).

Proof: Let σ ∈ Sn with σ(1) = 1. Then, σ has a cycle (1). So, a disjoint cycle represen-

tation of σ only has numbers {2, 3, . . . , n}. That is, we can think of σ as an element of

Sn−1. Hence,

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i) =
∑

σ∈Sn,σ(1)=1

sgn(σ)

n∏
i=1

aiσ(i)

= a11
∑

σ∈Sn,σ(1)=1

sgn(σ)

n∏
i=2

aiσ(i) = a11
∑

σ∈Sn−1

sgn(σ)

n−1∏
i=1

biσ(i) = a11 det(B).

We now relate this definition of determinant with the one given in Definition 2.8.1.

Theorem 9.3.3. Let A be an n×n matrix. Then, det(A) =
n∑
j=1

(−1)1+ja1j det
(
A(1 | j)

)
, where

recall that A(1 | j) is the submatrix of A obtained by removing the 1st row and the jth column.

Proof. For 1 ≤ j ≤ n, define an n× n matrix Bj =


0 0 · · · a1j · · · 0

a21 a22 · · · a2j · · · a2n
...

...
. . .

...
...

an1 an2 · · · anj · · · ann

 . Also, for

each matrix Bj , we define the n× n matrix Cj by

1. Cj [:, 1] = Bj [:, j],

2. Cj [:, i] = Bj [:, i− 1], for 2 ≤ i ≤ j and

3. Cj [:, k] = Bj [:, k] for k ≥ j + 1.

Also, observe that Bj ’s have been defined to satisfy B1[1, :] + · · · + Bn[1, :] = A[1, :] and

Bj [i, :] = A[i, :] for all i ≥ 2 and 1 ≤ j ≤ n. Thus, by Theorem 9.3.1.5,

det(A) =

n∑
j=1

det(Bj). (9.3.1)
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Let us now compute det(Bj), for 1 ≤ j ≤ n. Note that Cj = E12E23 · · ·Ej−1,jBj , for 1 ≤ j ≤ n.

Then, by Theorem 9.3.1.3, we get det(Bj) = (−1)j−1 det(Cj). So, using Remark 9.3.2.2 and

Theorem 9.3.1.2 and Equation (9.3.1), we have

det(A) =
n∑
j=1

(−1)j−1 det(Cj) =
n∑
j=1

(−1)j+1a1j det
(
A(1 | j)

)
.

Thus, we have shown that the determinant defined in Definition 2.8.1 is valid.

9.4 Dimension of W1 +W2

Theorem 9.4.1. Let V be a finite dimensional vector space over F and let W1 and W2 be two

subspaces of V. Then,

dim(W1) + dim(W2) = dim(W1 + W2) + dim(W1 ∩W2). (9.4.1)

Proof. Since W1 ∩W2 is a vector subspace of V , let B = {u1, . . . ,ur} be a basis of W1 ∩W2.

As, W1 ∩W2 is a subspace of both W1 and W2, let us extend the basis B to form a basis

B1 = {u1, . . . ,ur,v1, . . . ,vs} of W1 and a basis B2 = {u1, . . . ,ur,w1, . . . ,wt} of W2.

We now prove that D = {u1, . . . ,ur,w1, . . . ,ws,v1,v2, . . . ,vt} is a basis of W1 + W2. To

do this, we show that

1. D is linearly independent subset of V and

2. LS(D) = W1 + W2.

The second part can be easily verified. For the first part, consider the linear system

α1u1 + · · ·+ αrur + β1w1 + · · ·+ βsws + γ1v1 + · · ·+ γtvt = 0 (9.4.2)

in the variables αi’s, βj ’s and γk’s. We re-write the system as

α1u1 + · · ·+ αrur + β1w1 + · · ·+ βsws = −(γ1v1 + · · ·+ γtvt).

Then, v = −
s∑
i=1

γivi ∈ LS(B1) = W1. Also, v =
r∑
j=1

αrur +
T∑
k=1

βkwk. So, v ∈ LS(B2) = W2.

Hence, v ∈W1 ∩W2 and therefore, there exists scalars δ1, . . . , δk such that v =
r∑
j=1

δjuj .

Substituting this representation of v in Equation (9.4.2), we get

(α1 − δ1)u1 + · · ·+ (αr − δr)ur + β1w1 + · · ·+ βtwt = 0.

So, using Exercise 3.4.16.1, αi − δi = 0, for 1 ≤ i ≤ r and βj = 0, for 1 ≤ j ≤ t. Thus, the

system (9.4.2) reduces to

α1u1 + · · ·+ αkuk + γ1v1 + · · ·+ γrvr = 0

which has αi = 0 for 1 ≤ i ≤ r and γj = 0 for 1 ≤ j ≤ s as the only solution. Hence, we see that

the linear system of Equations (9.4.2) has no nonzero solution. Therefore, the set D is linearly

independent and the set D is indeed a basis of W1 + W2. We now count the vectors in the sets

B,B1,B2 and D to get the required result.
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9.5 When does Norm imply Inner Product

In this section, we prove the following result. A generalization of this result to complex vector

space is left as an exercise for the reader as it requires similar ideas.

Theorem 9.5.1. Let V be a real vector space. A norm ‖ · ‖ is induced by an inner product if

and only if, for all x,y ∈ V, the norm satisfies

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (parallelogram law). (9.5.1)

Proof. Suppose that ‖ · ‖ is indeed induced by an inner product. Then, by Exercise 4.2.7.3 the

result follows.

So, let us assume that ‖ · ‖ satisfies the parallelogram law. So, we need to define an inner

product. We claim that the function f : V× V→ R defined by

f(x,y) =
1

4

(
‖x + y‖2 − ‖x− y‖2

)
, for all x,y ∈ V

satisfies the required conditions for an inner product. So, let us proceed to do so.

Step 1: Clearly, for each x ∈ V, f(x,0) = 0 and f(x,x) =
1

4
‖x + x‖2 = ‖x‖2. Thus,

f(x,x) ≥ 0. Further, f(x,x) = 0 if and only if x = 0.

Step 2: By definition f(x,y) = f(y,x) for all x,y ∈ V.

Step 3: Now note that ‖x + y‖2 − ‖x− y‖2 = 2
(
‖x + y‖2 − ‖x‖2 − ‖y‖2

)
. Or equivalently,

2f(x,y) = ‖x + y‖2 − ‖x‖2 − ‖y‖2, for x,y ∈ V. (9.5.2)

Thus, for x,y, z ∈ V, we have

4 (f(x,y) + f(z,y)) = ‖x + y‖2 − ‖x− y‖2 + ‖z + y‖2 − ‖z− y‖2

= 2
(
‖x + y‖2 + ‖z + y‖2 − ‖x‖2 − ‖z‖2 − 2‖y‖2

)
= ‖x + z + 2y‖2 + ‖x− z‖2 −

(
‖x + z‖2 + ‖x− z‖2

)
− 4‖y‖2

= ‖x + z + 2y‖2 − ‖x + z‖2 − ‖2y‖2

= 2f(x + z, 2y) using Equation (9.5.2). (9.5.3)

Now, substituting z = 0 in Equation (9.5.3) and using Equation (9.5.2), we get 2f(x,y) =

f(x, 2y) and hence 4f(x + z,y) = 2f(x + z, 2y) = 4 (f(x,y) + f(z,y)). Thus,

f(x + z,y) = f(x,y) + f(z,y), for all x,y ∈ V. (9.5.4)

Step 4: Using Equation (9.5.4), f(x,y) = f(y,x) and the principle of mathematical induction,

it follows that nf(x,y) = f(nx,y), for all x,y ∈ V and n ∈ N. Another application of

Equation (9.5.4) with f(0,y) = 0 implies that nf(x,y) = f(nx,y), for all x,y ∈ V and

n ∈ Z. Also, for m 6= 0,

mf
( n
m

x,y
)

= f(m
n

m
x,y) = f(nx,y) = nf(x,y).

Hence, we see that for all x,y ∈ V and a ∈ Q, f (ax,y) = af(x,y).
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Step 5: Fix u,v ∈ V and define a function g : R→ R by

g(x) = f(xu,v)− xf(u,v)

=
1

2

(
‖xu + v‖2 − ‖xu‖2 − ‖v‖2

)
− x

2

(
‖u + v‖2 − ‖u‖2 − ‖v‖2

)
.

Then, by previous step g(x) = 0, for all x ∈ Q. So, if g is a continuous function then

continuity implies g(x) = 0, for all x ∈ R. Hence, f(xu,v) = xf(u,v), for all x ∈ R.

Note that the second term of g(x) is a constant multiple of x and hence continuous. Using

a similar reason, it is enough to show that g1(x) = ‖xu + v‖, for certain fixed vectors

u,v ∈ V, is continuous. To do so, note that

‖x1u + v‖ = ‖(x1 − x2)u + x2u + v‖ ≤ ‖(x1 − x2)u‖+ ‖x2u + v‖.

Thus,
∣∣∣‖x1u + v‖ − ‖x2u + v‖

∣∣∣ ≤ ‖(x1 − x2)u‖. Hence, taking the limit as x1 → x2, we

get lim
x1→x2

‖x1u + v‖ = ‖x2u + v‖.

Thus, we have proved the continuity of g and hence the prove of the required result.

9.6 Roots of a Polynomials

The main aim of this subsection is to prove the continuous dependence of the zeros of a poly-

nomial on its coefficients and to recall Descartes’s rule of signs.

Definition 9.6.1. [Jordan Curves] A curve in C is a continuous function f : [a, b] → C,

where [a, b] ⊆ R.

1. If the function f is one-one on [a, b) and also on (a, b], then it is called a simple curve.

2. If f(b) = f(a), then it is called a closed curve.

3. A closed simple curve is called a Jordan curve.

4. The derivative (integral) of a curve f = u+iv is defined component wise. If f ′ is continuous

on [a, b], we say f is a C1-curve (at end points we consider one sided derivatives and

continuity).

5. A C1-curve on [a, b] is called a smooth curve, if f ′ is never zero on (a, b).

6. A piecewise smooth curve is called a contour.

7. A positively oriented simple closed curve is called a simple closed curve such that

while traveling on it the interior of the curve always stays to the left. (Camille Jordan

has proved that such a curve always divides the plane into two connected regions, one of

which is called the bounded region and the other is called the unbounded region. The

one which is bounded is considered as the interior of the curve.)

We state the famous Rouche Theorem of complex analysis without proof.

Theorem 9.6.2. [Rouche’s Theorem] Let C be a positively oriented simple closed contour.

Also, let f and g be two analytic functions on RC , the union of the interior of C and the curve

C itself. Assume also that |f(x)| > |g(x)|, for all x ∈ C. Then, f and f + g have the same

number of zeros in the interior of C.
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Corollary 9.6.3. [Alen Alexanderian, The University of Texas at Austin, USA.] Let P (t) =

tn+an−1tn−1+· · ·+a0 have distinct roots λ1, . . . , λm with multiplicities α1, . . . , αm, respectively.

Take any ε > 0 for which the balls Bε(λi) are disjoint. Then, there exists a δ > 0 such that the

polynomial q(t) = tn + a′n−1t
n−1 + · · ·+ a′0 has exactly αi roots (counting with multiplicities) in

Bε(λi), whenever |aj − a′j | < δ.

Proof. For an ε > 0 and 1 ≤ i ≤ m, let Ci = {z ∈ C : |z − λi| = ε}. Now, for each i, 1 ≤ i ≤ m,

take νi = min
z∈Ci
|p(z)|, ρi = max

z∈Ci
[1 + |z|+ · · ·+ |z|n−1] and choose δ > 0 such that ρiδ < νi. Then,

for a fixed j and z ∈ Cj , we have

|q(z)− P (z)| = |(a′n−1 − an−1)zn−1 + · · ·+ (a′0 − a0)| ≤ δρj < νj ≤ |p(z)|.

Hence, by Rouche’s theorem, p(z) and q(z) have the same number of zeros inside Cj , for each

j = 1, . . . ,m. That is, the zeros of q(t) are within the ε-neighborhood of the zeros of P (t).

As a direct application, we obtain the following corollary.

Corollary 9.6.4. Eigenvalues of a matrix are continuous functions of its entries.

Proof. Follows from Corollary 9.6.3.

Remark 9.6.5. 1. [Sign changes in a polynomial] Let P (x) =
∑n

0 aix
n−i be a real polyno-

mial, with a0 6= 0. Read the coefficient from the left a0, a1, . . .. We say the sign changes

of ai occur at m1 < m2 < · · · < mk to mean that am1 is the first after a0 with sign

opposite to a0; am2 is the first after am1 with sign opposite to am1; and so on.

2. [Descartes’ Rule of Signs] Let P (x) =
∑n

0 aix
n−i be a real polynomial. Then, the

maximum number of positive roots of P (x) = 0 is the number of changes in sign of the

coefficients and that the maximum number of negative roots is the number of sign changes

in P (−x) = 0.

Proof. Assume that a0, a1, · · · , an has k > 0 sign changes. Let b > 0. Then, the coeffi-

cients of (x− b)P (x) are

a0, a1 − ba0, a2 − ba1, · · · , an − ban−1,−ban.

This list has at least k + 1 changes of signs. To see this, assume that a0 > 0 and an 6= 0.

Let the sign changes of ai occur at m1 < m2 < · · · < mk. Then, setting

c0 = a0, c1 = am1 − bam1−1, c2 = am2 − bam2−1, · · · , ck = amk − bamk−1, ck+1 = −ban,

we see that ci > 0 when i is even and ci < 0, when i is odd. That proves the claim.

Now, assume that P (x) = 0 has k positive roots b1, b2, · · · , bk. Then,

P (x) = (x− b1)(x− b2) · · · (x− bk)Q(x),

where Q(x) is a real polynomial. By the previous observation, the coefficients of (x −
bk)Q(x) has at least one change of signs, coefficients of (x−bk−1)(x−bk)Q(x) has at least

two, and so on. Thus coefficients of P (x) has at least k change of signs. The rest of the

proof is similar.
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9.7 Variational characterizations of Hermitian Matrices

Let A ∈ Mn(C) be a Hermitian matrix. Then, by Theorem 6.4.10, we know that all the

eigenvalues of A are real. So, we write λi(A) to mean the i-th smallest eigenvalue of A. That

is, the i-th from the left in the list λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

Lemma 9.7.1. [Rayleigh-Ritz Ratio] Let A ∈Mn(C) be a Hermitian matrix. Then,

1. λ1(A)x∗x ≤ x∗Ax ≤ λn(A)x∗x, for each x ∈ Cn.

2. λ1(A) = min
x 6=0

x∗Ax
x∗x = min

‖x‖=1
x∗Ax.

3. λn(A) = max
x 6=0

x∗Ax
x∗x = max

‖x‖=1
x∗Ax.

Proof. Proof of Part 1: By spectral theorem (see Theorem 6.4.10, there exists a unitary matrix

U such that A = UDU∗, where D = diag(λ1(A), . . . , λn(A)) is a real diagonal matrix. Thus,

the set {U [:, 1], . . . , U [:, n]} is a basis of Cn. Hence, for each x ∈ Cn, there exists Ans :i’s

(scalar) such that x =
∑
αiU [:, i]. So, note that x∗x = |αi|2 and

λ1(A)x∗x = λ1(A)
∑
|αi|2 ≤

∑
|αi|2λi(A) = x∗Ax ≤ λn

∑
|αi|2 = λnx

∗x.

For Part 2 and Part 3, take x = U [:, 1] and x = U(:, n), respectively.

As an immediate corollary, we state the following result.

Corollary 9.7.2. Let A ∈ Mn(C) be a Hermitian matrix and α =
x∗Ax

x∗x
. Then, A has an

eigenvalue in the interval (−∞, α] and has an eigenvalue in the interval [α,∞).

We now generalize the second and third parts of Theorem 9.7.2.

Proposition 9.7.3. Let A ∈ Mn(C) be a Hermitian matrix with A = UDU∗, where U is a

unitary matrix and D is a diagonal matrix consisting of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

Then, for any positive integer k, 1 ≤ k ≤ n,

λk = min
‖x‖=1

x⊥U [:,1],...,U [:,k−1]

x∗Ax = max
‖x‖=1

x⊥U [:,n],...,U [:,k+1]

x∗Ax.

Proof. Let x ∈ Cn such that x is orthogonal to U [, 1], . . . , U [:, k − 1]. Then, we can write

x =
n∑
i=k

αiU [:, i], for some scalars αi’s. In that case,

λkx
∗x = λk

n∑
i=k

|αi|2 ≤
n∑
i=k

|αi|2λi = x∗Ax

and the equality occurs for x = U [:, k]. Thus, the required result follows.

Theorem 9.7.4. [Courant-Fischer] Let A ∈ Mn(C) be a Hermitian matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn. Then,

λk = max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

x∗Ax = min
wn,...,wk+1

max
‖x‖=1

x⊥wn,...,wk+1

x∗Ax.



D
RA
FT

260 CHAPTER 9. APPENDIX

Proof. Let A = UDU∗, where U is a unitary matrix and D = diag(λ1, . . . , λn). Now, choose a

set of k − 1 linearly independent vectors from Cn, say S = {w1, . . . ,wk−1}. Then, some of the

eigenvectors {U [:, 1], . . . , U [:, k − 1]} may be an element of S⊥. Thus, using Proposition 9.7.3,

we see that

λk = min
‖x‖=1,

x⊥U [:,1],...,U [:,k−1]

x∗Ax ≥ min
‖x‖=1

x∈S⊥

x∗Ax.

Hence, λk ≥ max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

x∗Ax, for each choice of k − 1 linearly independent vectors.

But, by Proposition 9.7.3, the equality holds for the linearly independent set {U [:, 1], . . . , U [:

, k−1]} which proves the first equality. A similar argument gives the second equality and hence

the proof is omitted.

Theorem 9.7.5. [Weyl Interlacing Theorem] Let A,B ∈ Mn(C) be a Hermitian matrices.

Then, λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B). In particular, if B = P ∗P , for some

matrix P , then λk(A+B) ≥ λk(A). In particular, for z ∈ Cn, λk(A+ zz∗) ≤ λk+1(A).

Proof. As A and B are Hermitian matrices, the matrix A + B is also Hermitian. Hence, by

Courant-Fischer theorem and Lemma 9.7.1.1,

λk(A+B) = max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

x∗(A+B)x

≤ max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

[x∗Ax + λn(B)] = λk(A) + λn(B)

and

λk(A+B) = max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

x∗(A+B)x

≥ max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

[x∗Ax + λ1(B)] = λk(A) + λ1(B).

If B = P ∗P , then λ1(B) = min
‖x‖=1

x∗(P ∗P )x = min
‖x‖=1

‖Px‖2 ≥ 0. Thus,

λk(A+B) ≥ λk(A) + λ1(B) ≥ λk(A).

In particular, for z ∈ Cn, we have

λk(A+ zz∗) = max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1

[x∗Ax + |x∗z|2]

≤ max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1,z

[x∗Ax + |x∗z|2]

= max
w1,...,wk−1

min
‖x‖=1

x⊥w1,...,wk−1,z

x∗Ax

≤ max
w1,...,wk−1,wk

min
‖x‖=1

x⊥w1,...,wk−1,wk

x∗Ax = λk+1(A).
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Theorem 9.7.6. [Cauchy Interlacing Theorem] Let A ∈ Mn(C) be a Hermitian matrix.

Define Â =

[
A y

y∗ a

]
, for some a ∈ R and y ∈ Cn. Then,

λk(Â) ≤ λk(A) ≤ λk+1(Â).

Proof. Note that

λk+1(Â) = max
w1,...,wk∈Cn+1

min
‖x‖=1

x⊥w1,...,wk

x∗Âx ≤ max
w1,...,wk∈Cn+1

min
‖x‖=1

x⊥w1,...,wk
xn+1=0

x∗Âx

= max
w1,...,wk∈Cn

min
‖x‖=1

x⊥w1,...,wk

x∗Ax = λk+1(A)

and

λk+1(Â) = min
w1,...,wn−k∈Cn+1

max
‖x‖=1

x⊥w1,...,wn−k

x∗Âx ≥ min
w1,...,wn−k∈Cn+1

max
‖x‖=1

x⊥w1,...,wn−k
xn+1=0

x∗Âx

= min
w1,...,wn−k∈Cn

max
‖x‖=1

x⊥w1,...,wn−k

x∗Ax = λk(A)

As an immediate corollary, one has the following result.

Corollary 9.7.7. [Inclusion principle] Let A ∈ Mn(C) be a Hermitian matrix and r be a

positive integer with 1 ≤ r ≤ n. If Br×r is a principal submatrix of A then, λk(A) ≤ λk(B) ≤
λk+n−r(A).

Theorem 9.7.8. [Poincare Separation Theorem] Let A ∈Mn(C) be a Hermitian matrix and

{u1, . . . ,ur} ⊆ Cn be an orthonormal set for some positive integer r, 1 ≤ r ≤ n. If further

B = [bij ] is an r × r matrix with bij = u∗iAuj , 1 ≤ i, j ≤ r then, λk(A) ≤ λk(B) ≤ λk+n−r(A).

Proof. Let us extend the orthonormal set {u1, . . . ,ur} to an orthonormal basis, say {u1, . . . ,un}
of Cn and write U =

[
u1 · · · un

]
. Then, B is a r× r principal submatrix of U∗AU . Thus, by

inclusion principle, λk(U
∗AU) ≤ λk(B) ≤ λk+n−r(U∗AU). But, we know that σ(U∗AU) = σ(A)

and hence the required result follows.

The proof of the next result is left for the reader.

Corollary 9.7.9. Let A ∈ Mn(C) be a Hermitian matrix and r be a positive integer with

1 ≤ r ≤ n. Then,

λ1(A) + · · ·+ λr(A) = min
U∗U=Ir

trU∗AU and λn−r+1(A) + · · ·+ λn(A) = max
U∗U=Ir

trU∗AU.

Corollary 9.7.10. Let A ∈Mn(C) be a Hermitian matrix and W be a k-dimensional subspace

of Cn. Suppose, there exists a real number c such that x∗Ax ≥ cx∗x, for each x ∈ W . Then,

λn−k+1(A) ≥ c. In particular, if x∗Ax > 0, for each nonzero x ∈ W , then λn−k+1 > 0.

(
Note

that, a k-dimensional subspace need not contain an eigenvector of A. For example, the line

y = 2x does not contain an eigenvector of

[
1 0

0 2

]
.

)
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Proof. Let {x1, . . . ,xn−k} be a basis of W⊥. Then,

λn−k+1(A) = max
w1,...,wn−k

min
‖x‖=1

x⊥w1,...,wn−k

x∗Ax ≥ min
‖x‖=1

x⊥x1,...,xn−k

x∗Ax ≥ c.

Now assume that x∗Ax > 0 holds for each nonzero x ∈ W and that λn−k+1 = 0. Then, it

follows that min
‖x‖=1

x⊥x1,...,xn−k

x∗Ax = 0. Now, define f : Cn → C by f(x) = x∗Ax.

Then, f is a continuous function and min
‖x‖=1
x∈W

f(x) = 0. Thus, f must attain its bound on the

unit sphere. That is, there exists y ∈ W with ‖y‖ = 1 such that y∗Ay = 0, a contradiction.

Thus, the required result follows.
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Characteristic Polynomial, 170

Derivative, 226

Characteristic Root, 170
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Characteristic Vector, 170

Characteristic-pair, 170

Closed Curve, 257

Cofactor Matrix, 63

Column vector, 9

Commuting Family of Matrices, 238

Companion Matrix, 215

Complex Vector Space, 72

Contour, 257

Convergent Matrix, 242

convex hull, 154

Coordinate Matrix, 147

Coordinate Vector, 144

Curves, 257

Defective Matrix, 182

Definition

Conjugate Transpose of a Matrix, 11

Equality of two Matrices, 10

Matrix, 9

Transpose of a Matrix, 11

Descartes’ Rule of Signs, 258

Determinant

Properties, 252

Determinant of a Square Matrix, 61, 251

Diagonal matrix, 10

Diagonalizable Matrices, 179

Double Dual Space, 163

Dual Space, 163

Eigen-Condition, 170

Eigen-pair, 170

Eigen-space, 170

Eigenvalue, 170

Eigenvalues

Linear Operator, 174

Eigenvector, 170

Left, 174

Elementary Matrix, 37

Elementary Row Operations, 37

Elementary Symmetric Functions, 225

Equality of Linear Transformations, 127

Finite Dimensional Vector Space, 79
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Hermitian, 194

Linear, 195

Quadratic, 194

Sesquilinear, 194

Free Variables, 54

Function

bijective, 247

injective, 247

Inverse, 141
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Left Inverse, 141

one-one, 247

onto, 247

Right Inverse, 141

surjective, 247

Fundamental Theorem of Linear Algebra, 101

Generalized Schur’s Theorem, 207

Geometric Multiplicity, 176

Given’s Method, 232

Gram-Schmidt Orthogonalization Process, 119

Hamel basis, 92

Hermitian Form, 194

Inertial degree, 196

Householder matrix, 28, 234

Identity matrix, 10

Identity Operator, 127

Identity Transformation, 127

Index of an Eigenvalue, 209

Inertia of a matrix, 195

Inertial degree, 196

Inner Product, 107

Inner Product Space, 107

Invariant Subspace, 238

Inverse of a Linear Transformation, 141

Inverse of a Matrix, 19

Isometry, 159

Jacobi Method, 233

Jordan Block, 208

Jordan Canonical Form, 212

Jordan Curve, 257

Jordan Matrix, 208

Latent Roots, 170

Leading Entry, 34

Left Eigenvector, 174

Linear Algebra

Fundamental Theorem, 101

Linear Combination of Vectors, 78

Linear Dependence, 84

Linear forms, 195

Linear Functional, 162

linear Independence, 84

Linear Operator, 127

Eigenvalues, 174

Linear Space

Norm, 111

Linear Span of Vectors, 79

Linear System, 32

Associated Homogeneous System, 33

Augmented Matrix, 33

Coefficient Matrix, 33

Equivalent Systems, 39

Homogeneous, 32

Non-Homogeneous, 32

Non-trivial Solution, 33

Solution, 33

Solution Set, 33

Trivial Solution, 33

Linear Transformation, 127

Composition, 151

Equality, 127

Inverse, 141, 152

Isomorphism, 142

Kernel, 136

Matrix, 147

Matrix Product, 151

Non-Singular, 142

Null Space, 136

Range Space, 136

Scalar Product, 139

Singular, 142

Sum, 139

Lower Triangular Matrix, 10

Matrix, 9

Addition, 11

Additive Identity, 12

Additive Inverse, 12

Adjoint, 63

Adjugate, 63

Change of Basis, 145, 153
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Cofactor, 63

Column, 9

Commuting Family, 238

Companion, 215

Defective, 182

Determinant, 61

Diagonal, 10

Diagonalization, 179

Eigen-pair, 170

Eigenvalue, 170

Eigenvector, 170

Elementary, 37

Generalized Inverse, 28

Hermitian, 21

Householder, 28, 234

Idempotent, 22

Identity, 10

Inverse, 19

Jordan, 208

Linear Transformation, 147

Lower triangular, 10

Minimal Polynomial, 216

Negative definite, 193

Negative semi-definite, 193

Nilpotent, 22

Non-derogatory, 182

Non-Singular, 62

Normal, 21

Order, 9

Orthogonal, 21

Permutation, 21, 245

Positive definite, 193

Positive semi-definite, 193

Principal Diagonal, 10

Principal Minor, 225

Principal Submatrix, 24

Product of Matrices, 13

Projection, 22

Pseudo, 28

Quadratic Form, 197

Reflection, 22, 158

Row, 9

Row Echelon Form, 35

Row Equivalence, 39

Row-Reduced Echelon Form, 43

Scalar, 10

Scalar Multiplication, 11

Singular, 62

Size, 9

Skew-Hermitian, 21

Skew-Symmetric, 21

Spectral Radius, 170

Spectrum, 170

Square, 10

Submatrix, 24

Symmetric, 21

Toeplitz, 222

Trace, 27

triangular, 10

Unitary, 21

Upper triangular, 10

Zero, 10

Matrix Equality, 10

Matrix Multiplication, 13

Matrix of a Linear Transformation, 147

Maximal linearly independent set, 91

Maximal subset, 91

Minimal Polynomial, 216

Non-derogatory Matrix, 182

Non-Singular Matrix, 62

Notation

A(S | T ), 24

A[S, T ], 24

[k], k a positive integer, 24

Operator

Identity, 127

Zero, 127

Order of Nilpotency, 22

Ordered Basis, 144

Orthogonal Complement, 114

Orthogonal Operators, 159
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Orthogonal Projection, 155

Orthogonal Vectors, 113

Orthogonally Congruent, 160

Orthonormal Basis, 115

Orthonormal Vectors, 115

Parseval’s formula, 117

Permutation, 247

Cycle notation, 248

Even, 251

Odd, 251

Sgn function, 251

Signature, 251

Permutation Matrix, 21

Pivot Entry, 34

Pivotal Column, 34

Plane Rotations, 230

Polynomial

Sign Changes, 258

Principal Minor, 225

Principal Submatrix, 24

Properties of Determinant, 252

QR Decomposition, 122

Generalized, 123

Quadratic Form, 194, 197

Rank-Nullity Theorem, 137

Real Vector Space, 72

Reflection Operator, 158

Reisz Representation Theorem, 131

Rigid Motion, 159

Row Equivalent Matrices, 39

Row Operations

Elementary, 37

Row vector, 9

Row-Reduced Echelon Form, 43

Scalar matrix, 10

Schur’s generalized theorem, 207

Selection Principle of Unitary Matrices, 229

Sesquilinear Form, 194

Signature of a matrix, 195

Similar Matrices, 153

Simple Closed Curve, 257

Simple Curve, 257

Simultaneously Diagonalizable, 237

Singular Matrix, 62

singular values, 204

Solution Set of a Linear System, 33

Space

Column Space, 97

Linear, 72

Normed Linear, 111

Null Space, 97

Range, 97

Row Space, 97

Spectrum of a matrix, 170

Square Matrix

Determinant, 251

Square matrix, 10

Standard basis

Cn, 11

Mm,n(C), 21

Mn,1(C), 11

Standard unit vectors, 11

Star congruence, 196

Submatrix of a Matrix, 24

Subset

Maximal, 91

Maximal linear independent, 91

Sum, 82

Subspace

Linear Span, 81

Orthogonal Complement, 113

Sum, 82

Sum of Principal Minors, 225

Sum of two Matrices, 11

Sylvester’s law of inertia, 196

System of Linear Equations, 32

Toeplitz Matrix, 222

Trace of a Matrix, 27

Transformation

Zero, 128
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Triangular Matrix, 10

Trivial Subspace, 75

Unit Vector, 21, 109

Unitarily Congruent, 160

Unitary Equivalence, 185

Unitary Group, 229

Unitary Similar, 185

Upper triangular form, 11

Upper triangular matrix, 10

Vector

Column, 9

Coordinate, 144

Row, 9

Unit, 21

Vector Space, 72

Basis, 92

Complex, 72

Complex n-tuple, 73

Dimension of M +N , 255

Dual Basis, 163

Finite Dimensional, 79

Infinite Dimensional, 79

Inner Product, 107

Isomorphic, 142

Minimal spanning set, 93

Real, 72

Real n-tuple, 73

Subspace, 75

Vector Subspace, 75

Vectors

Angle, 110

Length, 109

Linear Combination, 78

Linear Dependence, 84

Linear Independence, 84

Linear Span, 79

Mutually Orthogonal, 115

Norm, 109

Orthogonal, 113

Orthonormal, 115

Word in Symbols s and t, 236

Zero matrix, 10

Zero Operator, 127

Zero Transformation, 128


