.
'COMPILER
DESIGDL.

@
Eﬁcfg'r “2s
4

COMPILER
DESIGN

IN

C

Allen 1. Holub

Prentice Hall Software Series
Brian W. Kernighan, Editor

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Holub, Allen I.
Compiler design in C 7/ Allen I. Holub.
p. cm. -- (Prentice-Hall software series)
Includes bibliographical references.
ISBN 0-13-155045-4
1. Compilers (Computer programs) 2. C (Computer program language)
I. Tatle. 1II. Series.
QA76.76.C65H65 1990
005.4'53--dc20 89-38733
CIP

Editorial/Production supervision: Kathleen Schiaparelli
Cover design: Allen 1. Holub and Lundgren Graphics Ltd.
Manufacturing buyer: Margaret Rizzi

© 1990 by Allen 1. Holub.

Published by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All Rights Reserved. No part of the book may be reproduced in any form or by any means without
permission in writing from the author.

Trademark Acknowledgments: TgX is a Trademark of the American Mathematical Society. I5X,
because it is a visual pun on TgX is used with the kind permission of Donald Knuth. There is no
other connection between either Dr. Knuth or the AMS and the programs or text in this book. LFX,
occs, LLama, autopic, and arachne are all trademarks of Allen 1. Holub. UNIX is a trademark of
Bell Laboratories. Ms-pDOs, Microsoft, and QuickC are trademarks of Microsoft, Inc. Turbo-C is a
trademark of Borland, Inc. PostScript is a trademark of Adobe Systems. AutoCad and AutoSketch
are trademarks of AutoDesk, Inc. EROFF is a trademark of the Elan Computer Group. DEC, PDP,
and VAX are trademarks of Digital Equipment Corporation. Macintosh is a trademark of Apple
Computer, Inc.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY: The author and publisher
nave used their best efforts in preparing this book. These efforts include the development, research,
and testing of the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Printed in the United States of America
10 9 87 6 5 4

ISBN 0-13-155045-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A.. Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda, Rio de Janeiro

For Deirdre

errata follows page 924

Contents

Preface xiii
1.BasicConcepts.ooiuiiiii it e 1
1.1 ThePartsof aCompilero.i. ittt innenennnnnnennn 1
I.1.1 TheLexical Analyzer..........cuiiiiini i ennennenns 3
LI2TheParserttt ittt ittt eeeaneeeeennns 3
113 TheCode GENnerator . . « « v v v ittt tneteeeiensoennoneenneens 5

1.2 Representing Computer Languagesc.coviii i nnnnnenn 6
1.2.1 Grammarsand Parse Treesciii it iiiiinneennnn. 7
1.2.2 AnEXpression Grammar.o v v e ve v e e et oeenneeonsooesonssas 9
1.23SyntaxDiagrams i i e e e e e 12

1.3 A Recursive-Descent Expression Compilerot 13
1.3.1 TheLexical Analyzervvi ettt ine i iineeenneennnnnnns 13
1.32TheBasicParsercoiii ittt 17
1.3.3Improvingthe Parser ittt iiinnnennnn 21
1.34Code Generationo v ii e iin e iennennseonseneeeneeaneeas 24
TAEXEICISES « v vt vvvtieeieeeeeeeeeiieeeeeeeeenoneennnnnnnnnnns 30
2. Input and Lexical Analysis, 32
2.1 The Lexical Analyzer as PartofaCompiler*, 32
2.2 Error Recovery in Lexical Analysis*coiiiiiiinenn... 34
2.3 Input SystemS™t et et a e e e 35
2.3.1 AnExample Input System™ i i e 36
2.3.2 AnExample Input System—Implementation 39

2.4 Lexical Analysis® i e 50
241 Languages™®. . .o i ittt it et e e e e e e 52
242 Regular EXpressions™® ittt i et 54
2.4.3 Regular Definitions® 00ttt ennnnennnn 56
244 Finite Automata® e e et 56
2.4.5 State-Machine-Driven Lexical Analyzers* 60
2.4.6 Implementing a State-Machine-Driven Lexical Analyzer 63

vii

viii Contents

2.5 IEX—A Lexical-Analyzer Generator®cccouiuunnnn... 81
2.5.1 Thompson’s Construction: From a Regular Expression to an NFA* 81
2.5.2 Implementing Thompson’s Constructionot evvevennenennn. 83

2.52.1 DataStruCtures . ..o oo v evvii ittt e e 83
2.5.2.2 ARegular-Expression Grammaroouiuuuueeen.n. 87
2523FileHeadero it i e 87
2.5.2.4 Error-MessageProcessing oot 88
2.5.2.5MemoryManagement.ottt it et e 88
2.5.2.6 MacroSUPPOIt. . o v vttt it ittt i e e e e 93
252 7EX’sLexical Analyzer............0iiiiiiiiininnnnnn. 95
2.5 2.8 Parsing e e i e et e 101
2.5.3 Interpreting an NFA—Theory* e, 113
2.5.4 Interpreting an NFA—Implementation, 115
2.5.5 Subset Construction: Converting an NFA to a DFA—Theory* 122
2.5.6 Subset Construction: Converting an NFA to a DFA—Implementation . ..124
2.5.7 DFA Minimization—Theory* it iiiinnnnn.. 132
2.5.8 DFA Minimization—Implementation, 135
2.5.9 Compressing and Printing the Tables 140
2.5.9.1 UncompressedTables, 140
2.5.9.2 Pair-CompressedTables, 141
2.5.9.3 Redundant-Row-and-Column-Compressed Tables 146
2.5.10 TyingIt All Together reennnnnnnnns 152
20 EXEICISES « v v v vt ittt ittt ittt i e e e 162
3. Context-Free Grammars oouveenn.. 166

3.1 Sentences, Phrases, and Context-Free Grammars 166

3.2 Derivations and Sentential Forms L. 168
321 LLand LR Grammars« oo ittt ittt et 170

3.3 Parse Trees and Semantic Difficulties 170

34EProductionS . . o v v v it e e e i et e 173

3.5 The End-of-Input Marker i iiiiiiiinnnns 173

3.6 Right-Linear Grammarsc.c.itiiitneeenneenneeeeennnns 174

3.7 Lists, Recursion, and ASSOCIatiVitycveiiiin et neennnn. 175
3.7.18SimpleLists .. .ov i e e e e e 175
3.7.2 The Number of Elements inaListo, 178
373 Listswith Delimiterst 179

BB EXPIESSIONS « v v v v vttt vttt et e 180

3.9 Ambiguous Grammarso vttt ineteeeennnnneeeeeeeeenees 182

3.10 Syntax-Directed Translationciiiiie i eennnn. 183
3.10.1 Augmented Grammarsc.o.oeeitteeerennneennnnans 183
3.10.2 Attributed Grammarsottt it et e 186

3.11 Representing Generic Grammarsc.c.ccuuiiieneeeeeereann 192

B3 2 EXCICISES s v v et vttt ittt i e i e e 193

4. Top-DownParsing 195

4.1 Push-Down Automata™t iitiiiinineiennnnnnnnnns 195
4.1.1 Recursive-Descent Parsers as Push-Down Automata* 198

4.2 Using a PDA fora Top-Down Parse* 201

4.3 Error Recovery ina Top-DownParser*............................ 201

4.4 Augmented Grammars and Table-Driven Parsers* 202
4.4.1 Implementing Attributed GrammarsinaPDA* 203

4.5 Automating the Top-Down Parse Process* 208

4.5.1 Top-DownParse Tables*ot iiiiiiineeenn. 208

Contents
4.6 LL(1) Grammars and Their Limitations®ttt 211
4.7 Making the Parse Tables™* i, 213
4.7 L FIRS T Sets™ .« .ttt i ittt i ieaeeeianaanannan 213
472 FOLLOW Sets™ .« .ttt ittt ittt ettt ittt 215
473 LL(1)Selection Sets™ . ..o i ittt ittt it et e e e 217
4.8 Modifying Grammars™®ttt et it e 218
4.8.1 Unreachable Productions™® oottt ennns 219
4.82 LeftFactoring™®c.0iiiiiiiiii it i it 219
4.83 Corner Substitution®. it i e et 221
4.8.4 Singleton Substitution™®ttt i e e e e 223
4.8.5 Eliminating Ambiguity* i i 223
4.8.6 Eliminating Left Recursion® it unn... 226
4.9 Implementing LL(I) Parsersc.cuuueteneeeneeneeeneeenenns 229
4.9.1 Top-Down, Table-Driven Parsing—The LLama Output File 229
4.9.2 Occs and LLama Debugging Support—yydebug.c 242
4.10 LLama—Implementing an LL(1) Parser-Generator 270
4.10.1 LLama’sParser iiiiettinnnnetennnnneennnnnann 270
4.10.2Creating The Tablescoviiiiiiieinennerrneennennnns 304
4.10.2.1 Computing FIRST, FOLLOW, and SELECT Sets 304
4.103TheRestof LLama iiiiiiiiiiinenn. 304
L 8 25 =) (ot T 333
S.Bottom-UpParsing 337
5.1 How Bottom-Up Parsing Works* i, 338
5.2 Recursion in Bottom-Up Parsing* ceu... 340
5.3 Implementing the Parser as a State Machine* 343
5.4 ErrorRecovery inan LR Parser* 348
5.5 The Value Stack and Attribute Processing® 348
5.5.1 ANotation for Bottom-Up Attributes™ 353
5.5.2Imbedded Actions™®t it e 354
5.6 Creating LR Parse Tables—Theory*ciitiireinnennnnn 354
5.6.1 LR(O)Grammars® iuuitinnetneeneneneeneeneneannnns 354
5.6.2 SLR(1)Grammars™vvineneneeenenenneneenenenns 361
S5.6.3LR(1)Grammars™viitn et eneerenenenenraeenenes 361
5.6.4 LALR(1)Grammars™ i vttt ittt intererenenenennnnenns 365
5.7 Representing LR State Tables 368
5.8 Eliminating Single-Reduction States®t 373
5.9 Using Ambiguous Grammars™®ottt it nerennnnneennnn. 375
5.10 Implementing an LALR(1) Parser—The Occs Output File 381
5.11 Implementing an LALR(1) Parser Generator—Occs Internals 401
5.11.1 Modifying the Symbol Table for LALR(1) Grammars 401
S.12 Parser-File Generationc..iiiitinniennnennenn. 408
5.13 Generating LALR(1) Parse Tablesccviiiiinninennnn. 408
B 3 25 (T 442
6.CodeGeneration i i, 445
6.1 Intermediate Languagesttt et 446
6.2 C-code: An Intermediate Language and Virtual Machine 449
6.2.1 Namesand White Spacec.iiiirtirrinnnenennnnnnn 450
6.2, 2 BasiC Ty PeS . o v vttt it e e e e e e 450
6.2.3 The Virtual Machine: Registers, Stack, and Memory 451
6.2.4 Memory Organization: SEgMeNtsttt eeeeens 455

6.2.5 Variable Declarations: Storage Classes and Alignment 457

ix

Contents

6.2.6 AddressingModes i i e 462
6.2.7 Manipulatingthe Stackttt i i it 465
6.2.8SUbrOUtINES . . ¢ vttt e et e 466
6.2.9 Stack Frames: Subroutine Arguments and Automatic Variables 467
6.2.10 SubroutineReturn Valueso, 472
6.2. 11 OPEratOrs . . v v v vt ve e ine et enesenesonnsnnseennnnenennnns 473
6.2.12 Type CONVErSIONS « & o o v v vt ittt ettt eeeeee et eeanneeennnns 473
6.2.13 Labelsand Control Flow 474
6.2.14 Macros and Constant EXpressions . . .« .« oo v v vviiiinnnnneeeenans 475
6.2. 15 FileOrganizationccotteeetnnnennnrennnenennnnas 476
6.2. 16 Miscellanyttt it i it e e e e 476
L300 B 1. 1 478
6.3TheSymbolTableottt iiiiiniiennennns 478
6.3.1 Symbol-Table Requirements0vtetnnneneerennn 478
6.3.2 Symbol-Table Data-Base Data Structurescoovien.o.. 480
6.3.3 Implementing the Symbol Table.o, 485
6.3.4 Representing Types—Theoryooiiiiiiiiinnnnnnn.. 489
6.3.5 Representing Types—Implementation 490
6.3.6 Implementing the Symbol-Table Maintenance Layer 497
6.4 The Parser: Configurationoiitiniiinitiinnnnnnenennn 509
6.5TheLexical Analyzerc. ittt inrieenneneneenneennns 518
6.6Declarationsiiii i e e e e e e 522
6.6.1 Simple Variable Declarationsccovieunreenneennns 522
6.6.2 Structure and Union Declarationscoiiiiiiineen.. 543
6.6.3 Enumerated-Type Declarationscueuvuinneeeeeennn 550
6.6.4 FunctionDeclarationsottt eenennn 552
6.6.5 Compound Statements and Local Variables 559
6.6.6 Front-End/Back-End Considerationsvvveuennnnnnenn. 563
6. 7Thegen () SUbrOUtINE it it i et ie i ee it eeineennennennnns 564
O.8 EXPIESSIONS « & v v v vttt eite e ittt ittt e e 572
6.8.1 Temporary-Variable Allocationottt 572
6.82LvaluesandRvalues............ ... ittt 578
6.8.3 Implementing Values, Higher-Level Temporary-Variable Support 583
6.8.4UNary OPEratorsvevvvnvvemnneneeeennnnnenensnnnnns 593
6.8.5BINary Operatorso euvenoneneeeennnneeneennnnnns 617
6.9 Statementsand Control Flow e, 637
6.9.1 Simple Statements andiffelset 637
6.9.2 Loops,break,andcontinue it 642
693 TheswitchStatement.ttt iiiinnnnnnnn. 642

0. 10 EXCICISES . v v v v e v et eee e inesneesosetanee e 651
7. Optimization Strategies 657
7.1 Parser Optimizations vv v v oioi ittt iieeee e eeeennnns 657
7.2 Linear (Peephole) Optimizations ennnneeeen. 658
7.2.1StrengthReductiono oo v i ittt i i it e 658
7.2.2 Constant Folding and Constant Propagation.c.... 659
7.2.3 Dead Variablesand DeadCodet 660
7.2.4 Peephole Optimization: AnExample 665
7.3 Structural OptimIZationst v e vttt it eenesenossosonnnesnens 667
7.3.1 Postfix and Syntax Treeso v vt in it ie e iineeiinnnenennnns 667
7.3.2 Common-Subexpression Elimination 672

7.3.3Register AllOCation vvirennnennerenereennnanennnnns 673

Contents
734 Lifetime Analysis . . . oottt ittt e e e e 673
735LoopUnwinding i i 675
7.3.6 Replacing Indexes with Pointersc.0iiiiiineenn.. 675
7.3.7 Loop-InvariantCode Motioniiiiinnnnennn. 676
7.38LoopInduction 677
7.4 Aliasing Problems i i i e e e e 677
TS EXEICISES & v vttt it ittt ettt it et e 678
Appendix A. Support Functions 680
A.1 Miscellaneous Include Fileso i, 681
A.1.1 debug.h—Miscellaneous Macros . . .« oo v v it iee i ineveeennnnnnns 681
A.1.2 stack.h and yystack.h —Generic Stack Maintenance 686
Al3Lhand compilerhottt et e 689
A2SetManipulation oot e e 690
A.2.1 Usingthe Set Functions and Macroscieiueeennnnnn 690
A22 Setlmplementationoiiituuinnnnteennneneennnannn 695
A.3 Database Maintenance—Hashing: ittt 710
A.3.1 Hashing—Implementationcciiiurreneroneennennnnn 715
A32TwoHashFunctionst iiiiiiniinnnnnnn. 723
A.4 The ANSI Variable-Argument Mechanism 0., 724
A5 Conversion Functionsttt e e 726
AGPrintFunctionst e i e e 731
A.7 Sorting. e e e e 738
A7.1ShellSort—Theory covttin ittt e eeeeenennenannn 739
A.7.2 Shell Sort—Implementationcoiiurrenenenneeneennn 741
A.8 Miscellaneous Functions it 741
A.9 Low-Level Video I/O Functions forthe IBMPC 746
A9.1IBMVideo I/O—Overviewc.iiittinnnnrrnnennnn 749
A9.2 Video[/O—Implementation0t iieeennenann 753
A.10 Low-level-I/O,Glue Functionsottt ennnnnn 771
A.11 Window Management: CUrses oo v iettnenenennnennnenannns 774
A.11.1 Configuration and Compiling it 775
AdL2USINGCUISES . « v v vttt ittt ittt ettt e e 776
A.11.2.1 Initialization Functions 776
A.11.2.2 Configuration Functions it ernnnn. 776
A.11.2.3 Creating and Deleting Windowsc00iiueenn.. 777
A.11.2.4 Subroutines That Affect Entire Windows 779
A.11.2.5 CursorMovement and Character I/O 781
A.11.3 Curses—Implementationc.oiiiiiiiiieinnnnen. 783
Appendix B. Notes on Pascal Compilers 802
B.1 Subroutine Arguments i et 802
B2Return Valuesottt i it i i i et 803
B3StackFrames i i e, 803
Appendix C. AGrammarfor C 806
Appendix D. LIEX 812
D.1 UsingIEX and Occs Togethero viiiii i i ii i i it iiieeeneannnn 812
D.2 The IEX Input File: Organization.ouvuetetvinnnnneeennnns 814
D.3 The IEX Rules SeCtion inessenesnsnsannnnnnnnnns 816
D.3.1 IEX Regular EXpressionscoeiiiniierinnnneeeennnns 816
D.3.2 TheCode PartoftheRule. it 820

D.4 IEX Command-Line SWitches ittt iiineennnnnn 825

xi

xii Contents

DSLimitsand Bugsttt e i i e 826
D.6 Example: A Lexical AnalyzerforC0t einnenn 829
D7 EXEICISES & vttt vttt ittt tit it tine e enneeeneeennnssas 834
Appendix E. LLamaand Occs 836
E.1 Using The Compiler Compiler.ottt 836
E2ThelnputFile i i i e e i 837
E.3 The Definitions SECONttt nnnnennnn. 837
E.4TheRules Sectionottt ittt eneneennnenns 839
ESTheCode Sectionttt iiineeenenennennonnnnns 842
E.6OutputFilesottt ittt 842
E.7 Command-Line Switches o ittt iiiinnnnnn.. 843
E.8TheVisible Parserttt iiiiinnnnnnn. 845
E.9 Useful Subroutines and Variables 852
E.10 Using Your Own Lexical Analyzer.............. 855

S I 0 T 856
E.11.1 Using Ambiguous Grammars« oot vttt iiinnin e 856
E.11.2 Attributes and the Occs Value Stack, 858
E.11.3 Printingthe Value Stacko i, 863
E.11.4 Grammatical Transformations e, 865
E.11.5 Theyyout.sym File it it i i i 867
E.11.6 Theyyoutdoc File it iinennenns 868
E.11.7 Shift/Reduce and Reduce/Reduce Conflicts 871
E.11.8 ErmorRecoveryiiiiiiiniiiiiiiiniannnnnnnns 875
E.11.9 Putting the Parser and Actions in Different Files. 875
E.11.10 Shiftinga Token’s Attributes 877
E.11.11 SampleOccsInput Filet enn. 879
E.11.12 Hintsand Warningsuoiitiitenrronerennennnas 881

| 02 B 5 ' V- R 883
E.12.1 Percent Dir€Ctiveso vvvn st tiieee et etenaenanennnnnn 883
E.12.2 Top-DOWnAributesoiittiiiin i nnnneennnn 883
E.123 TheLLama Value Stack. oottt iineennnns 884
E.12.4 Thellout.sym Filettt innennnns 885
E.12.5SampleLLamaInputFile............. 0 iiiunnnn. 885
Appendix F. A C-code Summary 889
Bibliography 894
Index e 897

Preface

This book presents the subject of Compiler Design in a way that’s understandable to
a programmer, rather than a mathematician. My basic premise is that the best way to
learn how to write a compiler is to look at one in depth; the best way to understand the
theory is to build tools that use that theory for practical ends. So, this book is built
around working code that provides immediate practical examples of how given theories
are applied. I have deliberately avoided mathematical notation, foreign to many pro-
grammers, in favor of English descriptions of the theory and using the code itself to
explain a process. If a theoretical discussion isn’t clear, you can look at the code that
implements the theory. I make no claims that the code presented here is the only (or the
best) implementation of the concepts presented. I’ve found, however, that looking at an
implementation—at any implementation—can be a very useful adjunct to understanding
the theory, and the reader is well able to adapt the concepts presented here to alternate
implementations.

The disadvantage of my approach is that there is, by necessity, a tremendous amount
of low-level detail in this book. It is my belief, however, that this detail is both critically
important to understanding how to actually build a real compiler, and is missing from
virtually every other book on the subject. Similarly, a lot of the low-level details are
more related to program implementation in general than to compilers in particular. One
of the secondary reasons for learning how to build a compiler, however, is to learn how
to put together a large and complex program, and presenting complete programs, rather
than just the directly compiler-related portions of those programs, furthers this end. I've
resolved the too-many-details problem, to some extent, by isolating the theoretical
materials into their own sections, all marked with asterisks in the table of contents and in
the header on the top of the page. If you aren’t interested in the nuts and bolts, you can
just skip over the sections that discuss code.

In general, I've opted for clarity in the code rather than cleverness or theoretical
efficiency. That is, since the main purpose of this book is to teach compiler-design con-
cepts, it seemed reasonable always to go with a more understandable algorithm rather
than an efficient but opaque algorithm. For example, I’ve used Thompson’s Construction
to make DFA’s in LEX rather than the more direct approach recommended in Aho’s book,
because Thompson’s construction is more understandable (it also introduces certain key
concepts [like closure], in a relatively easy-to-understand context). My method for

xiii

Xiv

Prerequisites

Preface

computing LALR(1) lookaheads is also less efficient than it could be, but the algorithm is
understandable and fast enough. I usually point the reader to the source for the more
efficient algorithms, should he or she want to implement them.

In a sense, this book is really an in-depth presentation of several, very well docu-
mented programs: the complete sources for three compiler-generation tools are
presented, as is a complete C compiler. (A lexical-analyzer generator modeled after the
UNIX lex utility is presented along with two yacc-like compiler compilers.) As such, it is
more of a compiler-engineering book than are most texts—a strong emphasis is placed
on teaching you how to write a real compiler. On the other hand, a lot of theory is
covered on the way to understanding the practice, and this theory is central to the discus-
sion. Though I’ve presented complete implementations of the programs as an aid to
understanding, the implementation details aren’t nearly as important as the processes
that are used by those programs to do what they do. It’s important that you be able to
apply these processes to your own programs.

The utilities are designed to be used as a learning aid. For example, LLama and
occs (the two compiler compilers) can create an interactive window-oriented debugging
environment, incorporating a “visible parser” that lets you watch the parse process in
action. (One window shows the state and value stacks, others show the input, output,
and a running commentary of what the parser’s doing.) You can see the parse stack grow
and shrink, watch attributes being inherited and synthesized, set breakpoints on certain
conditions (a token being input, reduction by a particular production, a certain symbol
on the top of stack, and so forth), and if necessary, log the entire parse (including
snapshots of the stack) to a file. I’ve found that actually watching a bottom-up parse in
action helps considerably in understanding how the parse process works, and I regularly
use this visible parser in the classroom to good effect.

The C Compiler presented in Chapter Six implements an ANSI-compatible subset of
C—TI’ve left out a few things like floating point which would make the chapter even
larger than it is without adding any significant value. I have tried to cover all of the hard
implementation details that are usually omitted from books such as the present one. For
example, the complete declaration syntax of C is supported, including structures and
declarations of arbitrary complexity. Similarly, block nesting of declarations and the
more complex control structures, such as switches, are also covered.

All the source code presented here is ANSI C, and is all portable to UNIX as well. For
example, window management is done on the IBM-PC by emulating a standard UNIX
window-management package (curses). The complete source code for the emulator is
provided. All of the software is available electronically —versions are available for the
UNIX, MS-DOS, and Macintosh environments.

I’m assuming throughout this book that you will actually read the code as well as the
prose descriptions of the code. I don’t waste space in the text discussing implementation
details that are described adequately by the code itself. I do, however, use a lot of space
describing the nonobvious parts of the programs.

The primary prerequisite for using this book is a thorough knowledge of ANSI C in
particular and programming in general. You should be familiar both with the language
itself and with the standard library functions described in the ANSI standard.

I’ve used structured programming techniques throughout the book, and have made
heavy use of data abstraction and similar techniques, but I haven’t described what these
techniques are or why I'm using them. The more complicated data structures are
explained thoroughly in the text, but a previous knowledge of basic data structures like
stacks and binary trees is assumed throughout. Similarly, a knowledge of basic set
theory and a familiarity with graphs is also useful. Finally, familiarity with assembly-
language concepts (like how a subroutine-call works) is mandatory, but an in-depth
knowledge of a specific assembly language is not required (because I’ve used a C subset

Preface

for generated code rather than assembly language).

Though a knowledge of C is mandatory, a knowledge of UNIX or MS-DOS is not. This
book is UNIX oriented only in that several UNIX tools are constructed. The tools were all
developed on an IBM-PC and run nicely in that environment. By the same token,
several MS-DOS implementation details and portability concerns are discussed in depth
here, but I’ve been careful to make the code itself as portable as possible. The only
potential confusion for non-UNIX users is in Appendixes D and E, where differences
between my own programs and the UNIX versions are occasionally mentioned in foot-
notes. Just ignore these notes if you’re not going to use the UNIX tools.

The book is organized so that you can use it in two ways. If you have no interest in
theory and just want to build a compiler, an overview of compiler design in general is
presented in Chapter One, instructions for using the compiler construction tools (IEX and
occs) are in Appendixes D and E, and code generation is discussed in Chapter Six. With
these chapters behind you, you can get to the business of writing a compiler immedi-
ately, and go back later and absorb the theory.

A more rigorous approach goes through the book sequentially. You don’t have to
read every word of every chapter—if you’re not interested in the nuts-and-bolts, just skip
past those sections that describe the programs’ inner workings. I'd strongly suggest
reading the code, however, and reading Appendixes D and E before leaping into the text
that describes these programs.

Various support functions that are used internally by the programs are concentrated
in Appendix A. Covered functions do set manipulation, window management, and so
forth. I’ve put them in one place so that the rest of the book isn’t cluttered with function
descriptions that aren’t germane to the discussion at hand. This appendix shouldn’t be
viewed as an adjunct, however. The functions described in it are used heavily
throughout the rest of the book, and you should be familiar with them—or at least with
their calling syntax—before trying to read any of the other code.

One major organizational issue is the positioning of the theoretical and practical
parts of the book. It’s tempting to put all the theoretical material together at the head of
each chapter so that you can skip past implementation details if you’re not interested.
I’ve opted, however, to intermix theoretical material with actual code because an exami-
nation of the code can often clarify things on the theoretical side. As I mentioned ear-
lier, I’ve resolved the problem, somewhat, by isolating the theoretical material into indi-
vidual sections. I often discuss the theory in one section and put a practical implementa-
tion in the following section. The theoretical sections in chapters that mix theoretical
and practical material are marked with asterisks in the table of contents. This way you
can skip past the implementation-related material with little difficulty, should you desire
to do so.

A few compiler-related subjects are not covered here. Optimization is not discussed
beyond the overview presented in Chapter Seven—I discuss how various optimizations
move the code around, but I don’t discuss the mechanics of optimization itself beyond a
few, simple examples. Similarly, only the most common parse strategies are discussed
(operator-precedence parsing is not mentioned, for example). All the material usually
covered in an upper-division, undergraduate compiler-design course is covered here.

All the code in this book is written in ANSI C (I’ve used the Microsoft C compiler,
version 5.1, for development purposes). For the most part, the MS-DOS code can be con-
verted to the UNIX compiler by changing a few #defines before compiling. The disk
that contains the code (see below) is shipped with the source of a small UNIX preproces-
sor that handles other conversion details (it does string concatenation, token pasting,
etc.), and the output of this preprocessor can be submitted directly to UNIX cc. I'm
assuming that the UNIX compiler supports those ANSI features that are implemented in
most UNIX systems (like structure assignment).

XV

Organization

Source Code and
Portability

Xvi

Getting the Code

Bug Reports and
Electronic Mail

Preface

If you intend to use the code directly (without UNIX preprocessing), you’ll need an
ANSI-compatible compiler that supports function prototypes, and so forth. In particular:
o <stdarg.h> is used for variable-argument lists.
o white space around the # in a preprocessor directive must be permitted.
o structure assignment is used.
e unsigned char must be supported.
function prototypes are used heavily.
isdigit (), etc., may not have side effects.
e string concatenation is used in a few places.
o 16-character names must be permitted.
My only deviation from strict ANSI is in name lengths. In theory ANSI allows only six
characters in an external name but I’m assuming that 16 are supported. I am also using
the old, Kernighan & Ritchie style, subroutine-declaration syntax:

lorenzo(argl, arg2)
char *argl;
double *arg2;

rather than:

lorenzo(char *argl, double *arg2)

I’ve done this because many compilers do not yet support the new syntax, and the old
syntax is still legal in the standard (even though it’s declared obsolescent).

I’ve deliberately avoided using special features of the Microsoft compiler: I've
ignored things like the existence of the £ar keyword and huge pointers in favor of using
the compact model even though the foregoing would make some of the code more
efficient. By the same token, I haven’t used register variables because the Microsoft
compiler does a better job of assigning registers than I can do myself.

Unfortunately, the 8086 has an architecture that forces you to worry about the under-
lying machine on a regular basis, so the code has a certain amount of 8086-specific
details. All of these details are isolated into macros, however, so that it’s easy to port the
code to a different environment by changing the macros and recompiling. I do discuss
the foibles of the 8086 here and there; just skip over this material if you’re not interested.

All of the source code in this book—along with executable versions of IEX, LLama,
and occs—is available on disk from:

Software Engineering Consultants
P.O. Box 5679

Berkeley, California 94705
(415) 540-7954

The software is available right now for the IBM-PC and UNIX. (The UNIX version is
shipped on an IBM-PC, 5-1/4 disk, however. You’ll have to upload it using KERMIT or
some other file-transfer protocol. It has been tested under UNIX System V, BSD 4.3—I
can’t vouch for any other UNIX variant.) The cost is $60.00 by a check or money order
drawn on a U.S. bank. Please specify the disk size (5" or 3'4"). California residents
must add local sales tax. No purchase orders or credit cards (sorry). A Macintosh
version will be available eventually. Binary site licenses are available for educational
institutions.

The code in this book is bound to have a few bugs in it, though I’ve done my best to test
it as thoroughly as possible. The version distributed on disk will always be the most
recent. If you find a bug, please report it to me, either at the above address or electroni-
cally. My internet address is holub@violet.berkeley.edu CompuServe users can access
internet from the email system by prefixing this address with >INTERNET: —type
help internet forinformation. My UUCP address is .../ucbvax!violet!holub.

Preface

The UNIX USENET network is the official channel for bug fixes and general discussion
of the material in this book. The comp.compilers newsgroup should be used for this pur-
pose. USENET messages have a way of filtering over to other networks, like BIX, but
the best way to get up-to-date information is via USENET itself. Most universities are
connected to this network, and you can get access to it by getting an account on a
machine at a local university. (Most schools have a mechanism for people in the com-
munity to get such accounts.) I’d prefer for all postings to be sent to me—I’ll digest
them and post them to comp.compilers via its moderator. If you want to make a submis-
sion to comp.compilers directly, you have to mail it to the moderator, who will post it to
the network. Type help bboard usenet moderators to get his or her name.

This book was written largely because my students found the “standard” text—
Alfred Aho, Ravi Sethi, and Jeffrey Ullman’s excellent, but at times abstruse Compilers:
Principles, Techniques, and Tools—to be too theoretically oriented. The current volume
owes a lot to Aho et al, however. I’ve used many of their algorithms, and their insights
into the compiler-design practice are invaluable. I’m also indebted to Mike Lesk, Eric
Schmidt, and Steve Johnson, the creators of UNIX’s lex and yacec utilities, after which the
programs in this book are modeled. My neighbor, Bill Wong, provided invaluable com-
ments on the early drafts of this book, as did many of my students. Finally, I'm grateful
to Brian Kernighan, Johnson M. Hart, Andrew Appel, Norman C. Hutchinson, and N.H.
Madhavji (of Bell Labs, Boston University, Princeton University, The University of
Arizona, and McGill University respectively) all of whom reviewed this book before it
went to press. Their comments and suggestions have made this a much better book. I
am particularly indebted to Brian Kernighan, whose careful scrutiny of the entire
book—both the text and the code—caught many errors that otherwise would have made
it into print.

Allen Holub
Berkeley, California

This book was typeset on an IBM PC/AT using EROFF™, a version of the UNIX troff
typesetter ported to MS-DOS by the Elan Computer Group. PostScript Times Roman and
Italic were used for the text, Helvetica for chapter headings, and Courier, Courier Bold,
and Courier Italic for the listings. Page proofs were generated using an Apple Laser-
Writer, and the final typesetting was done on a Linotronic phototypesetter using
EROFF-generated PostScript. The following command line was used throughout:

arachne file... | autopic | tbl | troff -mm

The arachne preprocessor is a version of Knuth’s WEB documentation system that’s
tailored for C and troff (rather than Pascal and TgX). It runs under MS-DOS on an IBM-
PC. With it, you can put the code and documentation together in a single input file. Used
one way, it extracts the code and writes it out to the correct files for compilation. In a
second mode it processes the code for troff, performing the necessary font changes, and
so forth, needed to “pretty print”’ the code. It also automatically generates index entries
for subroutine declarations. It adds line numbers to the listings and lets you reference

Xvii

Acknowledgments

Typesetting Notes

xviii

Preface

these line numbers symbolically from the text (that is, you can add lines to the listings
and the line numbers in the text automatically adjust themselves). Finally, it lets you dis-
cuss global variables and so forth where they’re used, because it automatically moves
them to the top of the output C program.

The second preprocessor, autopic, translates drawings generated by two commer-
cially available drafting programs (AutoCad™ and AutoSketch™) into troff graphics
primitives. It is much more useful than pic in that you have both a WYSIWYG capability
and a much more powerful drawing system at your disposal. Since troff commands are
generated as autopic output, the drawings are readily portable to any troff system.

Autopic and arachne are both compilers, and as such serve as an example of how
you can apply the techniques presented in this book to applications other than writing
compilers for standard programming languages. MS-DOS versions of autopic and
arachne are available from Software Engineering at the address given earlier. Write for
details.

Basic Concepts

This chapter introduces the basic concepts of compiler design. I'll discuss the inter-
nal organization of a compiler, introduce formal grammars and parse trees, and build a
small recursive-descent expression compiler. Before leaping into the text, however, a
word of encouragement, both about this chapter and the book in general, seems in order.
Compilers are not particularly difficult programs to understand once you’re familiar with
the structure of a compiler in a general sort of way. The main problem is not that any
one part of a compiler is hard to understand; but, rather, that there are so many parts—
and you need to have absorbed most of these parts before any of them make sense. For
now, my advice is to forge ahead without trying to figure out how it all ties together.
You’ll find that you will eventually reach a “click point” where the system as a whole
suddenly makes sense.

1.1 The Parts of a Compiler

Compilers are complex programs. As a consequence, they’re often broken into
several distinct chunks, called passes, that communicate with one another via temporary
files. The passes themselves are only part of the compilation process, however. The pro-
cess of creating an executable image from a source-code file can involve several stages
other than compilation (preprocessing, assembly, linking, and so forth). In fact, some
operating systems (such as Microsoft’s OS/2) can delay the final creation of an execut-
able image until a program is actually loaded at run-time. The situation is muddled
further by driver programs like UNIX’s cc¢ or Microsoft C’s cl, which hide a good deal of
the compilation process from you. These driver programs act as executives, controlling
the various component programs that make up the compiler in such a way that you don’t
know that the components are being used. For the purposes of this book, I'll define a
compiler as a program or group of programs that translates one language into another—
in this case the source code of a high-level computer language is translated into assem-
bly language. The assembler, linker, and so forth are not considered to be part of the
compiler.

The structure of a typical four-pass compiler is shown in Figure 1.1. The preproces-
sor is the first pass. Preprocessors typically do macro substitutions, strip comments from
the source code, and handle various housekeeping tasks with which you don’t want to

1

Compiler passes.

‘Compiler defined.

Structure of a four-pass
compiler.

The back end.

Basic Concepts—Chapter 1

Figure 1.1. Structure of a Typical Four-Pass Compiler

source code

(pass 1)
preprocessor

(pass 2)
r— - -0 - - - - - - - - - — — = a
I I
I i I
| lexical analyzer parser |
| A |
I ' I

|

LNy I
| | symbol :<_ _____ code |
! | table ; generation !
e e I
L —_ e e - — - — — — = — N |

intermediate code

. (pass 3)
optimization

intermediate code

(pass 4)
back end

assembly language or binary

burden the compiler proper. The second pass is the heart of the compiler. It is made up
of a lexical analyzer, parser, and code generator, and it translates the source code into an
intermediate language that is much like assembly language. The third pass is the optim-
izer, which improves the quality of the generated intermediate code, and the fourth pass,
the back end, translates the optimized code to real assembly language or some form of
binary, executable code. Of course, there are many variations to this structure. Many
compilers don’t have preprocessors; others generate assembly language in the second
pass, optimize the assembly language directly, and don’t have a fourth pass; still others
generate binary instructions directly, without going through an ASCII intermediate
language like assembler.

This book concentrates on the second pass of our model. There are several opera-
tions here too, but they interact in more complicated ways than the higher-level passes,
and they share data structures (such as the symbol table) as well.

Section 1.1 —The Parts of a Compiler

1.1.1 The Lexical Analyzer

A phase is an independent task used in the compilation process. Typically, several
phases are combined into a single pass. The lexical analyzer phase of a compiler (often
called a scanner or tokenizer) translates the input into a form that’s more useable by the
rest of the compiler. The lexical analyzer looks at the input stream as a collection of
basic language elements called rokens. That is, a token is an indivisible lexical unit. In
C, keywords like while or for are tokens (you can’t say wh 1ile), symbols like >, >=,
>>, and >>= are tokens, names and numbers are tokens, and so forth. The original string
that comprises the token is called a lexeme. Note that there is not a one-to-one relation-
ship between lexemes and tokens. A name or number token, for example, can have
many possible lexemes associated with it; a while token always matches a single lexeme.
The situation is complicated by tokens that overlap (such as the >, >=, >>, and >>=, used
earlier). In general, a lexical analyzer recognizes the token that matches the longest
lexeme—many languages build this behavior into the language specification itself.
Given the input >>, a shift token is recognized rather than two greater-than tokens.

A lexical analyzer translates lexemes into tokens. The tokens are typically
represented internally as unique integers or an enumerated type. Both components are
always required—the token itself and the lexeme, which is needed in this example to
differentiate the various name or number tokens from one another.

One of the early design decisions that can affect the structure of the entire compiler is
the choice of a token set. You can have a token for every input symbol, or several sym-
bols can be merged into a single token—for example, the >, >=, >>, and >>=, can be
treated either as four tokens, or as a single comparison-operator token—the lexeme is
used to disambiguate the tokens. The former approach can sometimes make code gen-
eration easier to do. Too many tokens, however, can make the parser larger than neces-
sary and difficult to write. There’s no hard-and-fast rule as to which is better, but by the
time you’ve worked through this book, you’ll understand the design considerations and
will be able to make intelligent choices. In general, arithmetic operators with the same
precedence and associativity can be grouped together, type-declaration keywords (like
int and char) can be combined, and so forth.

The lexical analyzer is typically a self-contained unit that interfaces with the rest of
the compiler via a small number (typically one or two) of subroutines and global vari-
ables. The parser calls the lexical-analyzer every time it needs a new token, and the
analyzer returns that token and the associated lexeme. Since the actual input mechanism
is hidden from the parser, you can modify or replace the lexical analyzer without
affecting the rest of the compiler.

1.1.2 The Parser

Compilers are language translators—they translate a high-level language like C into
a low-level language like 8086 assembler. Consequently, a good deal of the theoretical
side of the subject is borrowed from linguistics. One such concept is the idea of parsing.
To parse an English sentence is to break it up into its component parts in order to
analyze it grammatically. For example, a sentence like this:

Jane sees Spot run.

is broken up into a subject (“Jane”) and a predicate (“sees Spot run”’). The predicate is
in turn broken up into a verb (‘“‘sees”), a direct object (“Spot”), and a participle that
modifies the direct object (“run’). Figure 1.2 shows how the sentence is represented by
a conventional sentence diagram like the ones you learned to make in the sixth grade.

A compiler performs this same process (of decomposing a sentence into its com-
ponent parts) in the parser phase, though it usually represents the parsed sentence in a

Phases.
Scanner, tokenizer.

Tokens.

Lexemes.

Lexemes are translated
to tokens.

Choosing a token set.

Scanner is self-contained
unit.

Parse, defined.

The parser phase.

Syntax diagrams and
trees.

Syntax trees.

Parse trees.

Sentence: formal
definition.

Basic Concepts—Chapter 1

Figure 1.2. A Sentence Diagram for Jane Sees Spot Run

Jane | sees Spot

| Nl

tree form rather than as sentence diagram. (In this case, the sentence is an entire pro-
gram.)

The sentence diagram itself shows the syntactic relationships between the parts of
the sentence, so this kind of graph is formally called a syntax diagram (or, if it’s in tree
form, a syntax tree). You can expand the syntax tree, however, to show the grammatical
structure as well as the syntactic structure. This second representation is called a parse
tree. A parse tree for our earlier sentence diagram is shown in Figure 1.3. Syntax and
parse trees for the expression A*B+C*D are shown in Figure 1.4. A tree structure is used
here primarily because it’s easy to represent in a computer program, unlike a sentence
diagram.

Figure 1.3. A Parse Tree for Jane Sees Spot Run

sentence
N
subject predicate

| T~
noun verb object

| | T
Jane sees noun participle

| |
Spot run

A sentence, by the way, is also a technical term, though it means the same thing as it
does in English. It’s a collection of tokens that follow a well-defined grammatical struc-
ture. In the case of a compiler, the sentence is typically an entire computer program.
The analogy is evident in a language like Pascal, which mirrors English punctuation as
well as its grammar. A Pascal program ends with a period, just like an English sentence.
Similarly, a semicolon is used as punctuation to separate two complete ideas, just as it
separates two independent clauses in English.

To summarize: A parser is a group of subroutines that converts a token stream into a
parse tree, and a parse tree is a structural representation of the sentence being parsed.
Looked at another way, the parse tree represents the sentence in a hierarchical fashion,
moving from a general description of the sentence (at the root of the tree) down to the
specific sentence being parsed (the actual tokens) at the leaves. Some compilers create a
physical parse tree, made up of structures, pointers, and so forth, but most represent the

Section 1.1.2—The Parser

Figure 1.4. Syntax and Parse Trees for A*B + C*D

expression

factor + factor

/ \

factor * factor factor * factor

A B C D

parse tree implicitly.! Other parse methods just keep track of where they are in the tree,
without creating a physical tree (we’ll see how this works shortly). The parse tree itself
is a very useful concept, however, for understanding how the parse process works.

1.1.3 The Code Generator

The last part of the compiler proper is the code generator. It’s somewhat misleading
to represent this phase as a separate component from the parser proper, because most
compilers generate code as the parse progresses. That is, the code is generated by the
same subroutines that are parsing the input stream. It is possible, however, for the parser
to create a parse tree for the entire input file, which is then traversed by a distinct code
generator, and some compilers work in this way. A third possibility is for the parser to
create an intermediate-language representation of the input from which a syntax tree can
be reconstructed by an optimization pass. Some optimizations are easier to perform on a
syntax tree than on a linear instruction stream. A final, code-generation pass can
traverse the optimizer-modified syntax tree to generate code.

Though compilers can generate object code directly, they often defer code genera-
tion to a second program. Instead of generating machine language directly, they create a
program in an intermediate language that is translated by the compiler’s back end into
actual machine language. You can look at an intermediate language as a sort-of super
assembly language that’s designed for performing specific tasks (such as optimization).
As you might expect, there are many flavors of intermediate languages, each useful in
different applications.

There are advantages and disadvantages to an intermediate-language approach to
compiler writing. The main disadvantage is lack of speed. A parser that goes straight
from tokens to binary object code will be very fast, since an extra stage to process the
intermediate code can often double the compile time. The advantages, however, are

1. A physical parse tree is useful for some kinds of optimizations, discussed further in Chapter Seven.

Intermediate languages,
back ends.

Advantages and disad-
vantages of intermediate
languages.

Interpreters.

C Code: The intermedi-
ate language used in this
book.

Anonymous temporaries.

Basic Concepts—Chapter 1

usually enough to justify the loss of speed. These are, in a nutshell, optimization and
flexibility. A few optimizations, such as simple constant folding—the evaluation of con-
stant expressions at compile time rather than run time—can be done in the parser. Most
optimizations, however, are difficult, if not impossible, for a parser to perform. Conse-
quently, parsers for optimizing compilers output an intermediate language that’s easy for
a second pass to optimize.

Intermediate languages give you flexibility as well. A single lexical-analyzer/parser
front end can be used to generate code for several different machines by providing
separate back ends that translate a common intermediate language to a machine-specific
assembly language. Conversely, you can write several front ends that parse several
different high-level languages, but which all output the same intermediate language.
This way, compilers for several languages can share a single optimizer and back end.

A final use of an intermediate language is found in incremental compilers or inter-
preters. These programs shorten the development cycle by executing intermediate code
directly, rather than translating it to binary first, thereby saving the time necessary for
assembling and linking a real program. An interpreter can also give you an improved
debugging environment because it can check for things like out-of-bounds array index-
ing at run time.

The compiler developed in Chapter Six uses an intermediate language for the output
code. The language itself is described in depth in that chapter, but some mention of it is
necessary here, because I’ll be using the language informally for code-generation exam-
ples throughout this book. Put simply, the intermediate language is a subset of C in
which most instructions translate directly to a small number of assembly-language
instructions on a typical machine (usually one or two). For example, an expression like
x=a+b*c+d is translated into something like this:

t0 = _a;
tl = b ;
tl *= ¢ ;
t0 += tl ;
t0 += d ;

The £0 and t1 in the foregoing code are temporary variables that the compiler allocates
to hold the result of the partially-evaluated expression. These are called anonymous tem-
poraries (often shortened to just temporaries) and are discussed in greater depth below.
The underscores are added to the names of declared variables by the compiler so that
they won’t be confused with variables generated by the compiler itself, such as t0, and
t1 (which don’t have underscores in their names).

Since the intermediate language is so C like, I’m going to just use it for now without
a formal language definition. Remember, though, that the intermediate language is not C
(there would be little point in a compiler that translated good C into bad C)—it is really
an assembly language with a C-like syntax.

1.2 Representing Computer Languages

A compiler is like every other program in that some sort of design abstraction is use-
ful when constructing the code. Flow charts, Warnier-Orr diagrams, and structure charts
are examples of a design abstraction. In compiler applications, the best abstraction is
one that describes the language being compiled in a way that reflects the internal struc-
ture of the compiler itself.

Section 1.2.1 —Grammars and Parse Trees

1.2.1 Grammars and Parse Trees

The most common method used to describe a programming language in a formal way
is also borrowed from linguistics. This method is a formal grammar, originally
developed by M.I.T.’s Noam Chomsky and applied to computer programs by J.W.
Backus for the first FORTRAN compilers.

Formal grammars are most often represented in a modified Backus-Naur Form (also
called Backus-Normal Form), BNF for short. A strict BNF representation starts with a
set of tokens, called ferminal symbols, and a set of definitions, called nonterminal sym-
bols. The definitions create a system in which every legal structure in the language can
be represented. One operator is supported, the ::= operator, translated by the phrase “is
defined as” or *“goes to.” For example, the following BNF rule might start a grammar for
an English sentence:

sentence ::= subject predicate

A sentence is defined as a subject followed by a predicate. You can also say “a sentence
goes to a subject followed by a predicate.” Each rule of this type is called a production.
The nonterminal to the left of the ::= is the left-hand side and everything to the right of
the ::= is the right-hand side of the production. In the grammars used in this book, the
left-hand side of a production always consists of a single, nonterminal symbol, and every
nonterminal that’s used on a right-hand side must also appear on a left-hand side. All
symbols that don’t appear on a left-hand side, such as the tokens in the input language,
are terminal symbols.

A real grammar continues with further definitions until all the terminal symbols are
accounted for. For example, the grammar could continue with:

noun
JANE

subject =
noun =

where JANE is a terminal symbol (a token that matches the string “Jane” in the input).

The strict BNF is usually modified to make a grammar easier to type, and I'll use a
modified BNF in this book. The first modification is the addition of an OR operator,
represented by a vertical bar (). For example,

noun = JANE
noun = DICK
noun = SPOT

is represented as follows:
noun ::= DICK | JANE | SPOT

Similarly, a — is often substituted for the ::= as in:
noun — DICK | JANE

I use the — in most of this book. I also consistently use italics for nonterminal symbols
and boldface for terminals (symbols such as + and * are also always terminals—they’ll
also be in boldface but sometimes it’s hard to tell.)

There’s one other important concept. Grammars must be as flexible as possible, and
one of the ways to get that flexibility is to make the application of certain rules optional.
A rule like this:

article - THE

says that THE is an article, and you can use that production like this:

Backus-Naur Form
(BNF).

Terminal and nonterminal
symbols.

The ::=and — opera-
tors.
Productions.

Left-hand and right-hand
sides (LHS and RHS).

Modified BNF: the |
operator.

— usedfor : :=

Terminals=boldface.
nonterminals=iralic.

Optional rules and «.

8 Basic Concepts—Chapter 1

object — article noun

In English, an object is an article followed by a noun. A rule like the foregoing requires

. that all nouns that comprise an object be preceded by a participle. But what if you want

Epsilon (¢) productions. the article to be optional? You can do this by saying that an article can either be the
noun ‘“the” or an empty string. The following is used to do this:

article - THE | ¢

The € (pronounced “‘epsilon”) represents an empty string. If the THE token is present in
the input, then the

article - THE

production is used. If it is not there, however, then the article matches an empty string,
and

article — ¢

is used. So, the parser determines which of the two productions to apply by examining
the next input symbol.
A grammar that recognizes a limited set of English sentences is shown below:

sentence — subject predicate
subject — noun
predicate — verb object
object — noun opt_participle
opt_participle — participle | €
noun — SPOT I JANE I DICK
participle — RUN
verb — SEES
Recognizing a sentence An input sentence can be recognized using this grammar, with a series of replace-

using the grammar. ments, as follows:

(1) Start out with the topmost symbol in the grammar, the goal symbol.
(2) Replace that symbol with one of its right-hand sides.
(3) Continue replacing nonterminals, always replacing the leftmost nonterminal with
its right-hand side, until there are no more nonterminals to replace.
For example, the grammar can be used to recognize “Jane sees Spot run” as follows:

sentence apply sentence—subject predicate to get:
subject predicate apply subject—noun to get:

noun predicate apply noun—JANE to get:

JANE predicate apply predicate—verb object to get:
JANE verb object apply verb—SEES to get:

JANE SEES object apply object—noun op_participle to get:

JANE SEES noun opt_participle apply noun—SPOT to get:

JANE SEES SPOT opt_participle apply opt_participle —>participle to get:

JANE SEES SPOT participle apply participle—RUN to get:

JANE SEES SPOT RUN done—there are no more nonterminals to replace

These replacements can be used to build the parse tree. For example, replacing sentence
with subject predicate is represented in tree form like this:

Section 1.2.1 —Grammars and Parse Trees

sentence
subject predicate

The second replacement, of subject with noun, would modify the tree like this:

sentence
subject predicate

noun
and so forth. The evolution of the entire parse tree is pictured in Figure 1.5.

A glance at the parse tree tells you where the terms terminal and nonterminal come
from. Terminal symbols are always leaves in the tree (they’re at the end of a branch),
and nonterminal symbols are always interior nodes.

1.2.2 An Expression Grammar

Table 1.1 shows a grammar that recognizes a list of one or more statements, each of
which is an arithmetic expression followed by a semicolon. Statements are made up of a
series of semicolon-delimited expressions, each comprising a series of numbers
separated either by asterisks (for multiplication) or plus signs (for addition).

Note that the grammar is recursive. For example, Production 2 has statements on
both the left- and right-hand sides. There’s also third-order recursion in Production 8§,
since it contains an expression, but the only way to get to it is through Production 3,
which has an expression on its left-hand side. This last recursion is made clear if you
make a few algebraic substitutions in the grammar. You can substitute the right-hand
side of Production 6 in place of the reference to term in Production 4, yielding

expression — factor
and then substitute the right-hand side of Production 8 in place of the factor:
expression — (expression)

Since the grammar itself is recursive, it stands to reason that recursion can also be used
to parse the grammar—1I’1l show how in a moment. The recursion is also important from
a structural perspective—it is the recursion that makes it possible for a finite grammar to
recognize an infinite number of sentences.

The strength of the foregoing grammar is that it is intuitive—its structure directly
reflects the way that an expression goes together. It has a major problem, however. The
leftmost symbol on the right-hand side of several of the productions is the same symbol
that appears on the left-hand side. In Production 3, for example, expression appears both
on the left-hand side and at the far left of the right-hand side. The property is called left
recursion, and certain parsers (such as the recursive-descent parser that I’ll discuss in a
moment) can’t handle left-recursive productions. They just loop forever, repetitively
replacing the leftmost symbol in the right-hand side with the entire right-hand side.

You can understand the problem by considering how the parser decides to apply a
particular production when it is replacing a nonterminal that has more than one right-
hand side. The simple case is evident in Productions 7 and 8. The parser can choose
which production to apply when it’s expanding a factor by looking at the next input sym-
bol. If this symbol is a number, then the compiler applies Production 7 and replaces the

Terminals are leaf nodes.
Nonterminals are interior
nodes.

Recursion in grammar.

Left recursion.

Why left recursion
causes problems—an ex-
ample.

10

Figure 1.5. Evolution of a Parse Tree

Basic Concepts—Chapter 1

(1) €)

sentence sentence sentence sentence
subje{ pr>icate subje{ @icate’ subje{ @icate
n0|un no|un
J a|ne
(5) sentence (6) sentence

N

subject predicate

| |

noun verb object

Jane

) sentence

OO

subject predicate

| N

noun verb object
Jane sees noun opt_particple
©) sentence

OO

subject predicate

| |

noun verb object

| | | T~

Jane sees noun opt_particple

Spot particple

“

OO

subject predicate

| | >

noun verb object

Jane sees

8) sentence

OO

subject predicate

| N

noun verb object
Jane sees noun opt_particple
Spot

(10) sentence

SN

subject predicate

| |

noun verb object

| | | ™~

Jane sees noun opt_particple

Spot particple

run

factor with a number. If the next input symbol was an open parenthesis, the parser
would use Production 8. The choice between Productions 5 and 6 cannot be solved in
this way, however. In the case of Production 6, the right-hand side of term starts with a
factor which, in turn, starts with either a number or left parenthesis. Consequently, the
parser would like to apply Production 6 when a term is being replaced and the next input
symbol is a number or left parenthesis. Production 5—the other right-hand side—starts
with a term, which can start with a factor, which can start with a number or left
parenthesis, and these are the same symbols that were used to choose Production 6. To

Section 1.2.2— An Expression Grammar

Table 1.1. A Simple Expression Grammar

1. | statements — expression ;
expression ; statements
expression + term
term

term * factor

factor

number

(expression)

expression
term

factor

NN R LD
—l-1-1-

summarize, the parser must be able to choose between one of several right-hand sides by
looking at the next input symbol. It could make this decision in Productions 7 and 8, but
it cannot make this decision in Productions 5 and 6, because both of the latter produc-
tions can start with the same set of terminal symbols.

The previous situation, where the parser can’t decide which production to apply, is
called a conflict, and one of the more difficult tasks of a compiler designer is creating a
grammar that has no conflicts in it. The next input symbol is called the lookahead sym-
bol because the parser looks ahead at it to resolve a conflict.

Unfortunately, for reasons that are discussed in Chapter Four, you can’t get rid of the
recursion by swapping the first and last production element, like this:

expression—term + expression

so the grammar must be modified in a very counterintuitive way in order to build a
recursive-descent parser for it. Several techniques can be used to modify grammars so
that a parser can handle them, and all of these are discussed in depth in Chapter Four.
I’ll use one of them now, however, without any real explanation of why it works. Take it
on faith that the grammar in Table 1.2 recognizes the same input as the one we’ve been
using. (I’ll discuss the - and € that appear in the grammar momentarily.) The modified
grammar is obviously an inferior grammar in terms of self-documentation—it is difficult
to look at it and see the language that’s represented. On the other hand, it works with a
recursive-descent parser, and the previous grammar doesn’t.

Table 1.2. Modified Simple-Expression Grammar

1. | statements -
2. I expression ; statements
3. | expression — term expression’
4. | expression’ — +term expression’
5. I €
6. | term - factor term’
7. | term’ — *factor term’
8. I €
9. | factor — number
10. | (expression)

The I symbol is an end-of-input marker. For the purposes of parsing, end of file is
treated as an input token, and I represents end of input in the grammar. In this grammar,
Production 1 is expanded if the current input symbol is end of input, otherwise Produc-
tion 2 is used. Note that an explicit end-of-input marker is often omitted from a

11

Conflicts and look-
aheads.

Modified expression
grammar.

End-of-input symbol (I-).

12

Applying &.

¢ is a terminal, but not a
token.

Translating grammars to
syntax diagrams.

Basic Concepts—Chapter 1

grammar, in which case - is implied as the rightmost symbol of the starting production
(the production whose left-hand side appears at the apex of the parse tree). Since elim-
inating the I symbol removes the entire right-hand side in the current grammar, you can
use the following as an alternate starting production:

statements — € | expression ; statements

In English: statements can go to an empty string followed by an implied end-of-input
marker.

The replacement of the left-hand side by € (the empty string) occurs whenever the
current input symbol doesn’t match a legal lookahead symbol. In the current grammar, a
term’ is replaced with the right-hand side *factor term’ if the lookahead symbol (the next
input symbol) is a *. The term’ is replaced with ¢ if the next input symbol isn’t a *. The
process is demonstrated in Figure 1.6, which shows a parse of 1+2 using the modified
grammar in Table 1.2. The € production stops things from going on forever.

Figure 1.6. A Parse of 1+2

statements
/ \
expression H
/ \
term expression’
factor term’ + term expression’
. o
1 € factor €
|
2

Note that € is a terminal symbol that is not a token. It always appears at the end of a
branch in the parse tree, so it is a terminal, but it does not represent a corresponding
token in the input stream (just the opposite in fact—it represents the absence of a partic-
ular token in the input stream).

1.2.3 Syntax Diagrams

You can prove to yourself that the grammar in Table 1.2 works as expected by
representing it in a different way—as a syntax diagram. We saw earlier that a syntax
diagram can represent the entire syntactic structure of a parse, but you can also use it in a
more limited sense to represent the syntax of a single production. Syntax diagrams are
useful in writing recursive-descent compilers because they translate directly into flow
charts (that’s the main reason we’re looking at them now). You can use them as a map
that describes the structure of the parser (more on this in a moment). They are also
somewhat more intuitive to an uninitiated reader, so they often make better documenta-
tion than does a formal grammar.

I’ll translate our grammar into a syntax diagram in two steps. First, several of the
productions can be merged together into a single diagram. Figure 1.7 represents Produc-
tions 3, 4, and 5 of the grammar in Table 1.2 on page 11. The € production is represented
by the uninterrupted line that doesn’t go through a box. You can combine these two

Section 1.2.3—Syntax Diagrams

graphs by substituting the bottom graph for the reference to it in the top graph, and the
same process can be applied to Productions 6, 7, and 8.

Figure 1.7. Syntax Diagram for Productions 3, 4, and 5

expression ————> term expression’ ———>

expression’

term

The entire grammar in Table 1.2 is represented as a syntax diagram in Figure 1.8. The
topmost diagram, for example, defines a statement as a list of one or more semicolon-
delimited expressions. The same thing is accomplished by

statements ~ — expression ;
| expression ; statements

but the BNF form is harder to understand.

The merged diagram also demonstrates graphically how the modified grammar
works. Just look at it like a flow chart, where each box is a subroutine, and each circle or
ellipse is the symbol that must be in the input when the subroutine returns. Passing
through the circled symbol removes a terminal from the input stream, and passing
through a box represents a subroutine call that evaluates a nonterminal.

1.3 A Recursive-Descent Expression Compiler

We now know enough to build a small compiler, using the expression grammar
we’ve been looking at (in Table 1.2 on page 11). Our goal is to take simple arithmetic
expressions as input and generate code that evaluates those expressions at run time. An
expression like a+b*c+d is translated to the following intermediate code:

t0 = _a;
tl = _b;
tl *= ¢ ;
t0 += tl ;
t0 += d ;

1.3.1 The Lexical Analyzer

The first order of business is defining a token set. With the exception of numbers and
identifiers, all the lexemes are single characters. (Remember, a token is an input symbol
taken as a unit, a lexeme is the string that represents that symbol.) A NUM_OR_ID
token is used both for numbers and identifiers; so, they are made up of a series of con-
tiguous characters in the range ' 0’—'9’, "a’—"z’, or 'A’—'Z’. The tokens them-
selves are defined with the macros at the top of lex.h, Listing 1.1. The lexical analyzer
translates a semicolon into a SEMI token, a series of digits into a NUM_OR_ID token,

13

Diagram shows how
modified grammar works.

Expression token set.

NUM_OR_ID

14

yytext, yyleng.

Simple, buffered, input
system.

Basic Concepts—Chapter 1

Figure 1.8. A Syntax Diagram

statement expression \/@)

’

expression

expression ———> term

term ——> factor

g
S
)
~

ber)

factor number

expression

and so on. The three external variables at the bottom of lex.h are used by the lexical
analyzer to pass information to the parser. yytext points at the current lexeme, which
is not ’\0’ terminated; yyleng is the number of characters in the lexeme; and
yylineno is the current input line number. (I’ve used these somewhat strange names
because both lex and IEX use the same names. Usually, I try to make global-variable
names begin with an upper-case letter and macro names are all caps. This way you can
distinguish these names from local-variable names, which are always made up of lower-
case letters only. It seemed best to retain UNIX compatibility in the current situation,
however.)

The lexical analyzer itself starts on line nine of /ex.c, Listing 1.2. It uses a simple,
buffered, input system, getting characters a line at a time from standard input, and then
isolating tokens, one at a time, from the line. Another input line is fetched only when the
entire line is exhausted. There are two main advantages to a buffered system (neither of
which are really exercised here, though the situation is different in the more sophisti-
cated input system discussed in Chapter Two). These are speed and speed. Computers
like to read data in large chunks. Generally, the larger the chunk the faster the
throughput. Though a 128-byte buffer isn’t really a large enough chunk to make a

Section 1.3.1—The Lexical Analyzer

Listing 1.1. /ex.h— Token Definitions and extern statements

15

1 #define EOI 0 /* end of input
2 j#define SEMI 1 /* ;

3 #define PLUS 2 /* +

4 {#define TIMES 3 /* *

5 #define LP 4 /* (

6 #define RP 5 /*)

7 #define NUM OR_ID 6 /* decimal number or identifier
8

9 extern char *yytext; /* in lex.c

10 extern int yyleng;

11 extern int yylineno;

difference, once the buffer size gets above the size of a disk cluster, the changes are more
noticeable, especially if you can use the unbuffered I/O functions to do your reading and
writing. The second speed issue has to do with lookahead and pushback. Lexical
analyzers often have to know what the next input character is going to be without actu-
ally reading past it. They must look ahead by some number of characters. Similarly,
they often need to read past the end of a lexeme in order to recognize it, and then push
back the unnecessary characters onto the input stream. Consequently, there are often
extra characters that must be handled specially. This special handling is both difficult
and slow when you’re using single-character input. Going backwards in a buffer, how-
ever, is simply a matter of moving a pointer.

Listing 1.2. /ex.c— A Simple Lexical Analyzer

Lookahead and push-
back.

1 #include "lex.h"

2 #include <stdio.h>

3 #include <ctype.h>

4

5 char *yytext = ""; /* Lexeme (not ’\0’ terminated) */

6 int yyleng = 0; /* Lexeme length. */

7 int yylineno = 0; /* Input line number */

8

9 lex()

10 {

11 static char input buffer([128];

12 char *current;

13

14 current = yytext + yyleng; /* Skip current lexeme */
15

16 while(1) /* Get the next one x/
17 {

18 while(!*current)

19 {

20 /* Get new lines, skipping any leading white space on the line,
21 * until a nonblank line is found.

22 */

23

24 current = input_buffer;

25 if(!gets(input_buffer))

26 {

27 *current = ‘\0’ ;

28 return EOI;

29 }

30

16

Basic Concepts—Chapter 1

Listing 1.2. continued. ..

31 ++yylineno;
32
33 while(isspace (*current))
34 ++current;
35 }
36
37 for(; *current ; ++current)
38 {
39 /* Get the next token */
40
41 yytext = current;
42 yyleng = 1;
43
44 switch(*current)
45 {
46 case EOF: return EOI ;
47 case ’;’: return SEMI ;
48 case ’'+’: return PLUS ;
49 case ’'*’: return TIMES ;
50 case ' (’: return LP ;
51 case ’')’: return RP ;
52
53 case '\n’:
54 case ’'\t’:
55 case ' ' : break;
56
57 default:
58 if (!isalnum(*current))
59 fprintf (stderr, "Ignoring illegal input <%c>\n", *current);
60 else
61 {
62 while(isalnum(*current))
63 ++current;
64
65 yyleng = current - yytext;
66 return NUM OR_ID;
67 }
68
69 break;
70 }
71 }
72 }
73}
Reading characters: The input buffer used by lex () is declared on line 11 of Listing 1.2. current (on
input_buffer, line 12) points at the current position in the buffer. On the first call, the increment on
current. . IR T . . . PO
line 14 initializes current to point at an empty string (yyleng is O at this juncture, and
yytext points at an empty string because of the initializer on line five). The while
statement on line 18 tests true as a consequence. This while loop has two purposes. It
gets lines (and increments the line number), and it skips past all blank lines (including
lines that contain only white space). The loop doesn’t terminate until input buffer
holds a nonblank line, and current will point at the first nonwhite character on that
line.
Tokenization. The £or loop starting on line 37 does the actual tokenization. Single-character lex-

emes are recognized on lines 46—51, white space is ignored by the cases on lines 53-55,
and the multiple-character NUM OR_ID token is handled in the else clause on lines

Section 1.3.1—The Lexical Analyzer

60—67. An error message is printed if an illegal character is found. When the loop ter-
minates, yytext points at the first character of the lexeme, and yyleng holds its length.

The next time lex () is called, the code on line 14 adjusts the current pointer to
point past the previous lexeme, and then, if the input buffer hasn’t been exhausted, the
while test on line 18 fails and you go straight to the token-isolation code. lex () won’t
get another input line until it reaches the end of the line—*current is * \0’ in this
case.

The remainder of lex.c (in Listing 1.3) addresses the problem of lookahead. The
parser must look at the next input token without actually reading it. Though a
read/pushback scheme similar to getc () /ungetc () could be used for this purpose, it’s
generally a good idea to avoid going backwards in the input, especially if you have to
push back entire lexemes rather than single characters. The problem is solved by using
two subroutines: match (token) evaluates to true if the next token in the input stream
matches its argument—it “looks ahead’ at the next input symbol without reading it.
advance () discards the current token and advances to the next one. This strategy elim-
inates the necessity of a push-back subroutine such as ungetc ().

Solving the lookahead
problem.

match (), advance ().

17

The Lookahead variable (on line 74) holds the lookahead token. It’s initialized Lookahead.
to —1, which is not used for any of the input tokens. It’s modified to hold a real token the
first time match () is called. Thereafter, the test on line 81 will become inoperative and
match () simply returns true if Lookahead matches its argument. This approach is
relatively foolproof—though the fool in this case is myself. I know that I’ll regularly
forget to call an initialization routine before calling match (), so I'll letmatch () ini-
tialize itself the first time it’s called. The advance () function just calls lex () to
assign a new value to Lookahead.

Listing 1.3. lex.c— Match and Advance Functions
74 static int Lookahead = -1; /* Lookahead token */
75
76 int match(token)
77 int token;
78 {
79 /* Return true 1if "token" matches the current lookahead symbol. */
80
81 if (Lookahead == -1)
82 Lookahead = lex():
83
84 return token == Lookahead;
85)}
86
87 wvoid advance ()
88 {
89 /* Advance the lookahead to the next input symbol. */
90
91 Lookahead = lex();
92)}

1.3.2 The Basic Parser

Moving on to the parser, since I’m planning to start with a naive implementation and
refine it, I’ve isolated main () into a small file (Listing 1.4) that I can compile once and
then link with the parser proper. The parser itself is called statements ().

The most naive parser for our grammar is shown in Listing 1.5. I’ve reproduced the
grammar here for convenience:

statements ().

18

Listing 1.4. main.c

Basic Concepts—Chapter 1

main ()

{
}

1
2
3 statements () ;
4

Subroutines correspond
to left-hand sides, imple-
ment right-hand sides.

€ recognized.

Subroutines advance
past recognized tokens.

1. | statements — expression ;-
2. I expression ; statement
3. | expression — term expression’
4. | expression” — +term expression’
S. I €
6. | term — factor term’
7. | term’ — *factor term’
8. I €
9. | factor — num_or_id
10. | (expression)

The parser generates no code, it just parses the input. Each subroutine corresponds to
the left-hand side in the original grammar that bears the same name. Similarly, the struc-
ture of each subroutine exactly matches the grammar. For example, the production

expression — term expression’

is implemented by the following subroutine (on line 23 of Listing 1.5):

expression ()

{
term();
expr_prime();

}
The € production in
expression’ — PLUS term expression’ | €

is implemented implicitly when the test on line 37 fails (if it’s not a PLUS, it’s an €).
Note that each subroutine is responsible for advancing past any tokens that are on the
equivalent production’s right-hand side.

Listing 1.5. plain.c— A Naive Recursive-Descent Expression Parser

1 /* Basic parser, shows the structure but there’s no code generation */
2

3 $#include <stdio.h>

4 #include "lex.h"

5

6 statements()

7 A

8 /* statements -> expression SEMI

9 * | expression SEMI statements
10 x/

11

12 expression();

13

14 if(match(SEMI))

15 advance () ;

Section 1.3.2—The Basic Parser

19

Listing 1.5. continued. ..

16 else

17 fprintf (stderr, "%d: Inserting missing semicolon\n", yylineno):
18

19 if(!'match(EOQI))

20 statements () ; /* Do another statement. */
21}

22

23 expression()

24 {

25 /* expression -> term expression’ */

26

27 term();

28 expr_prime();

29 1}

31 expr_prime()

32

33 /* expression’ -> PLUS term expression’
34 * | epsilon

35 */

37 if(match(PLUS))
38 {

39 advance () ;

40 term();

41 expr_prime();

43)

45 term()
46 |
47 /* term -> factor term’ */

49 factor();
50 term prime();
51)

53 term prime()

54 |

55 /* term’ -> TIMES factor term’
56 * | epsilon

57 */

59 if(match(TIMES))
60 {

61 advance () ;

62 factor () ;

63 term_prime();

65 |}

67 factor()

68 {

69 /* factor -> NUM_OR_ID

70 * | LP expression RP
71 */

20

Basic Concepts—Chapter 1

Listing 1.5. continued. ..

73 if (match(NUM OR_ID))

74 advance () ;

75

76 else if(match(LP))

77 {

78 advance () ;

79 expression () ;

80 if(match(RP))

81 advance () ;

82 else

83 fprintf (stderr, "$%$d: Mismatched parenthesis\n", yylineno);
84 }

85 else

86 fprintf(stderr, "%d Number or identifier expected\n", yylineno);
87 1}

The recursion in a

recursive-descent parser.

Subroutine calling se-
quence mirrors the parse

tree.

You can now see why a production like
expression — expression + term

can’t be used by a recursive-descent parser. You can implement the foregoing as fol-
lows:

expression()

{

expression() ;

if('match(PLUS))
error (),

else
advance () ;

term() ;

}

But the first thing that expression () does is call itself, the recursion never stops, and
the program never terminates—at least not until it runs out of stack space and is abnor-
mally terminated by the operating system.

At this point I'd suggest doing an exercise. Using a pencil and paper, trace what hap-
pens as the expression 1+2 is evaluated by the parser in Listing 1.5. Every time a sub-
routine is called, draw a downward pointing arrow and write the name of the called sub-
routine under the arrow; every time the subroutine returns, draw an arrow at the other
end of the same line. As the parser advances past tokens, write them down under the
name of the current subroutine. A partial subroutine trace for this expression is shown in
Figure 1.9. The diagram shows the condition of the parser when it is in subroutine
expr_prime () just before the term() call on line 40. It’s advanced past the 1 and
the current lookahead token is the plus sign. If you finish this diagram, an interesting
fact emerges. The subroutine trace is identical to the parse tree for the same expression
in Figure 1.6 on page 12. So, even though no physical parse tree is created, a parse tree
is implicit in the subroutine-calling sequence.

Section 1.3.2—The Basic Parser

Figure 1.9. A Partial Subroutine Trace for 1+2

statements

/

expression

term

N

factor term prime
1 €

expr_prime

1.3.3 Improving the Parser

The naive parser discussed in the previous section is useful for explaining things, but
is not much use in practice. The main difficulty is the tremendous amount of unneces-
sary recursion. Glancing at the syntax diagram for our grammar (in Figure 1.8 on page
14), two changes come to mind immediately. First, all the right recursion—productions
in which the left-hand side also appears at the far right of the right-hand side—can be
replaced by loops: If the last thing that a subroutine does is call itself, then that recursive
call can be replaced by a loop. Right recursion is often called tail recursion.

The second obvious improvement is that the same merging together of productions
that was done to make the second and third graphs in Figure 1.8 can be applied to the
subroutines that implement these productions. Both of these changes are made in Listing
1.6.

Listing 1.6. improved.c— An Improved Parser

21

Eliminate right recursion.

Merging productions into
a single subroutine.

1 /* Revised parser */

2

3 #include <stdio.h>

4 $#include "lex.h"

5

6 void factor (void);
7 wvoid term (void);
8 wvoid expression (void);
9

10 statements()
11 {

12 /* statements -> expression SEMI | expression SEMI statements */
13

14 while(!match (EOI))

15 {

16 expression () ;

17

18 if (match(SEMI))

19 advance () ;

20 else

21 fprintf (stderr, "% Inserting missing semicolon\n", yylineno):
22 }

23 1}

24

22

Basic Concepts— Chapter 1

25
26
27
28
29
30
31

Listing 1.6. continued. ..
void expression ()
{
/* expression -> term expression’
* expression’ -> PLUS term expression’ | epsilon
*/
if(!legal lookahead(NUM OR ID, LP, 0))
return;
term() ;
while(match(PLUS))
{
advance () ;
term() ;
}
}
void term ()
{
if (!legal lookahead(NUM OR_ID, LP, 0))
return;
factor():
while(match(TIMES))
{
advance () ;
factor () ;
}
}
void factor ()
{
if (!legal lookahead(NUM OR_ID, LP, 0))
return;
if(match(NUM OR ID))
advance () ;
else if(match(LP))
{
advance () ;
expression();
if (match(RP))
advance () ;
else
fprintf(stderr, "%$d: Mismatched parenthesis\n", yylineno);
}
else
fprintf(stderr, "%d: Number or identifier expected\n", yylineno);

Error recognition, FIRST

sets.

I’ve made one additional change here as well. I’ve introduced a little error recovery
by adding code to each subroutine that examines the current lookahead token before
doing anything else. It’s an error if that token cannot legitimately occur in the input. For
example, expressions all have to start with either a NUM_OR_ID or an LP. If the loo-
kahead character is a PLUS at the top of expression (), then something’s wrong.
This set of legitimate leading tokens is called a FIRST set, and every nonterminal

Section 1.3.3 —Improving the Parser

symbol has its own FIRST set. FIRST sets are discussed in depth in Chapter Three—the
informal definition will do for now, though.

The legal lookahead () subroutine in Listing 1.7 checks these FIRST sets, and
if the next input symbol is not legitimate, tries to recover from the error by discarding all
input symbols up to the first token that matches one of the arguments. The subroutine
takes a variable number of arguments, the last one of which must be zero. I've used the
ANSI variable-argument mechanism here, so the routine can take any number of argu-
ments as parameters, but the last one must be a 0. (This mechanism, and the <stdarg.h>
file, is described in Appendix A if you’re not already familiar with it.)

One final C style note is needed to head off the inevitable criticism of the goto state-
ment on line 118 of Listing 1.7. Though many programmers contend with almost reli-
gious fervor that the goto should be obliterated from all structured programs, I strongly
feel that there are a few situations where a judiciously used goto makes for better code.
Here, the goto branch to a single label is vastly preferable to multiple return state-
ments. A subroutine that has a single exit point is much more maintainable than one
with several exit points. You can put a single breakpoint or debugging diagnostic at the
end of the subroutine instead of having to sprinkle them all over the place. You also
minimize the possibility of accidentally falling off the bottom of the subroutine without
returning a valid value. My rules of thumb about gotos are as follows:

o Goto’s are appropriate in two situations: (1) to eliminate multiple return statements
and (2) to break out of nested loops. You can also do (2) with a flag of some sort
(while (!done)), but flags tend to make the code both larger and harder to read, so
should be avoided.

o Don’t use a goto unless it is the only solution to the problem. You can often elim-
inate the need for a goto by reorganizing the code.

» A subroutine should have at most one label.

» All goto branches should be in a downwards direction to that single label.

o The target of a goto branch should be in the same block or at a higher (more outer)
nesting level than the goto itself. Don’t do this:

{
goto label;

}
{

label:
}

Listing 1.7. improved.c— Error Recovery for the Improved Parser

Error recovery:
legal lookahead().

Style note: the goto.

23

75 #include <stdarg.h>
76

77 #define MAXFIRST 16
78 #define SYNCH SEMI

79

80 int legal lookahead(first arg)

81 int first_arg;

82

83 /* Simple error detection and recovery. Arguments are a O-terminated list of
84 * those tokens that can legitimately come next in the input. If the list is
85 * empty, the end of file must come next. Print an error message if

86 * necessary. Error recovery is performed by discarding all input symbols

87 * until one that’s in the input list is found

88 *

89 * Return true if there’s no error or if we recovered from the error,

90 * false if we can’t recover.

24

Basic Concepts—Chapter 1

Listing 1.7. continued. ..

91 */
92
93 va_list args;
94 int tok;
95 int lookaheads [MAXFIRST], *p = lookaheads, *current;
96 int error printed = 0;
97 int rval = 0;
98
99 va_start (args, first_arg);
100
101 if(!first_arg)
102 {
103 if (match (EOI))
104 rval = 1;
105 }
106 else
107 {
108 *p++ = first arg;
109 while((tok = va_arg(args, int)) && p < &lookaheads[MAXFIRST])
110 *++4p = tok;
111
112 while(!match(SYNCH))
113 {
114 for(current = lookaheads; current < p ; ++current)
115 if (match(*current))
116 {
117 rval = 1;
118 goto exit;
119 }
120
121 if (!error printed)
122 {
123 fprintf (stderr, "Line %d: Syntax error\n", yylineno);
124 error_printed = 1;
125 }
126
127 advance () ;
128 }
129 }
130
131 exit:
132 va_end(args)
133 return rval;
134}
1.3.4 Code Generation
Recogpnizers. The parsers that we just looked at are, strictly speaking, recognizer programs in that,

if they terminate without an error, the input sentence is a legal sentence in the grammar.
All they do is recognize legal input sentences. Our goal is to build a compiler, however,
and to do this, you need to add code generation to the bare-bones recognizer. Given the
input

1 +2 * 3+ 4

a typical compiler generates the following code:

Section 1.3.4—Code Generation

t0 = 1
tl = 2
t2 = 3
tl *= t2
t0 += tl
tl = 4
t0 += tl

An optimizer will clean up the unnecessary assignments. It’s useful, for now, to look at
the raw output, however. The temporary variables (t0, and so forth) are maintained
internally by the compiler. A real compiler typically uses registers or the run-time stack
for temporaries. Here, they’re just global variables. The expression is evaluated opera-
tor by operator, with each temporary holding the result of evaluating the current subex-
pression. Sometimes (as is the case in this example) several temporaries must exist
simultaneously in order to defer application of an operator because of precedence or
associativity problems. Here, t 0 holds the left operand of the addition operator until the
higher-precedence multiply is performed.

You can also look at the temporary-variable assignments in terms of a syntax tree.
The syntax tree for 1+2*3+4 is shown in Figure 1.10. The nodes are marked with the
names of the temporaries that hold the evaluated subexpression represented by the sub-
tree.

Figure 1.10. Syntax Tree for 1+2*3+4

+ t0
/\
+ w0 4
/\
1 o *a
/N
2 a 3

The first thing you need to generate code is a mechanism for allocating temporaries.
Ideally, they should be recycled—the temporaries should be reused after they are no
longer needed in the current subexpression. A simple, but effective, mechanism to do
this is shown in Listing 1.8. (We’ll look at a more elaborate system in Chapter Six.) A
stack of temporary-variable names is declared on line one. When a new name is
required, newname () pops one off the stack. When the temporary is no longer needed, a
freename () call pushes it back.

The next code-generation problem is determining the name of the temporary that
holds the partially-evaluated expression at any given moment. This information is
passed around between the subroutines in the normal way, using arguments and return
values.

To demonstrate the differences between the two methods, I'll show two parsers, one
that uses return values exclusively, and another that uses arguments exclusively. The
subroutine-calling tree for a parse of 1+2*3+4; (using the improved parser) is in Figure
1.11. The subroutines that generated this tree (and the earlier code) are in Listing 1.9.
The arrows are marked to show the flow of temporary-variable names during the parse.
Control flow goes counterclockwise around the drawing (the nodes are subscripted to
show the order in which they’re visited).

25

Temporary variables at
run time.

Temporaries on the syn-
tax tree.

Compile-time,
temporary-variable
management.

newname (),
freename ().

Using return values in
parser.

26 Basic Concepts— Chapter 1

Listing 1.8. name.c— Temporary-Variable Allocation Routines

1 char *Names[] = { "tO", "tl", "t2", "t3", "t4", "t5", "t6", LAl },.
2 char **Namep = Names;

3

4 char *newname ()

5 |

6 if (Namep >= &Names| sizeof (Names)/sizeof (*Names)])

7 {

8 fprintf(stderr, "%d: Expression too complex\n", yylineno);

9 exit(1);

10 }

11

12 return(*Namep++);

13}

14

15 freename (s)

16 char *s;

17 |

18 if (Namep > Names)

19 *~--Namep = s;

20 else

21 fprintf (stderr, "%d: (Internal error) Name stack underflow\n",
22 yylineno);
23}

Figure 1.11. A Subroutine Trace of 1+2 (Improved Parser)

Statements,

I

expression,
//T\L N
0 tl t
term , term term

LJ " LJ
t0 t1
- “t1 t2 -

factor , factor , factor , factor

1 2 3 4

Section 1.3.4—Code Generation

Listing 1.9. retval.c— Code Generation Using Return Values

27

#include <stdio.h>

1

2 #include "lex.h"

3

4 char *factor (void);

5 char *term (void);

6 char *expression (void);

7

8 extern char *newname(void);

9 extern void freename(char *name);
10

Il statements|()

12§

13 /* statements -> expression SEMI | expression SEMI statements */
14

15 char *tempvar;

16

17 while(!match (EOI))

18 {

19 tempvar = expression ()
20
21 if (match(SEMI))
22 advance () ;
23 else
24 fprintf(stderr, "%d: Inserting missing semicolon\n", yylineno);
25
26 freename (tempvar);

27 }

28}

29

30 char *expression ()
31 |
32 /* expression -> term expression’
33 * expression’ -> PLUS term expression’ | epsilon
34 */

35

36 char *tempvar, *tempvar2;

37

38 tempvar = term();

39 while(match(PLUS))
40 {
41 advance () ;
42 tempvar = term();
43 printf (" $s += %s\n", tempvar, tempvar2);
44 freename (tempvar2);

45 }

46

47 return tempvar;

48)

49

50 char *term()

51 |

52 char *tempvar, *tempvar? ;

53

54 tempvar = factor();

55 while(match(TIMES))

56 {

57 advance () ;

58 tempvar2 = factor();

59 printf (" $s *= %s\n", tempvar, tempvar2);

28

Basic Concepts—Chapter 1

Listing 1.9. continued. ..

60 freename (tempvar2);

61 }

62

63 return tempvar;

64)

65

66 char *factor ()

67 |

68 char *tempvar;

69

70 if (match(NUM OR_ID))

71 {

72 /* Print the assignment instruction. The $%0.*s conversion is a form of
73 * 8X.Ys, where X 1s the field width and Y 1Is the maximum number of
74 * characters that will be printed (even if the string is longer). I’m
75 * using the $0.*s to print the string because it’s not \0 terminated.
76 * The field has a default width of 0, but it will grow the size needed
77 * to print the string. The ".*" tells printf() to take the maximum-
78 * number-of-characters count from the next argument (yyleng).

79 */

80

81 printf (" $s = %$0.*s\n", tempvar = newname(), yyleng, yytext);

82 advance () ;

83 }

84 else if (match (LP))

85 {

86 advance () ;

87 tempvar = expression|();

88 if(match(RP))

89 advance () ;

90 else

91 fprintf (stderr, "%d: Mismatched parenthesis\n", yylineno);

92 }

93 else

94 fprintf(stderr, "%d: Number or identifier expected\n", yylineno);

95

96 return tempvar;

97 1}

Generate t 0=1. A likely place to generate instructions of the form t0=1 is in factor (), the subrou-
tine that reads the 1. factor () calls newname () to get an anonymous-temporary
name, generates the code to copy the input number into the temporary, and then returns

Generate arithmetic in- the name to its parent. Similarly, the best place to generate multiplication instructions is

structions. the place where the times signs are read: in term (). After the two factor () calls,
tempvar and tempvar?2 hold the names of the two temporaries. Code is generated to
do the multiplication, one of the temporaries is freed, and the other (which holds the
result of the multiply) is passed back up to the parent. So, this temporary, the one that
holds the result of the subexpression evaluation, is used in the next step. Addition is
handled the same way in expression ().

Just to make sure that you understand the process, I suggest taking a moment to run
through a parse of 1* (2+3) *4 by hand, creating a subroutine-calling graph as in the
previous example and watching how the code is generated.

Using subroutine argu- Listing 1.10 shows the parser, modified once more to use subroutine arguments rather

ments to pass informa- than return values. Here, instead of allocating the names when the instructions are gen-

tion.

erated, the temporary variables are allocated high up in the tree. Each subroutine passes

Section 1.3.4—Code Generation

to its child the name of the temporary in which it wants the subexpression result. That is,
the high level routine is saying: “Do what you must to evaluate any subexpressions, but
by the time you’re finished, I want the result to be in the temporary variable whose name
I’'m passing to you.” Recursive-descent compilers often use both of the methods just
discussed—neither is more or less desirable. The code can be easier to understand if you
restrict yourself to one or the other, though that’s not always possible.

Listing 1.10. args.c— Code Generation Using Subroutine Arguments

29

1 #include <stdio.h>

2 #include "lex.h"

3

4 wvoid factor (char *tempvar);

5 wvoid term (char *tempvar);

6 wvoid expression (char *tempvar);

7

8 extern char *newname (void);

9 extern void freename(char *name);

10

11 statements|()

12

13 /* statements -> expression SEMI | expression SEMI statements */
14

15 char *tempvar;

16

17 while(!match(EOI))

18 {

19 expression(tempvar = newname ());
20 freename (tempvar);
21
22 if(match(SEMI))
23 advance () ;
24 else
25 fprintf(stderr, "%d: Inserting missing semicolon\n", yylineno);
26 }

27 1}

28

29 void expression(tempvar)

30 char *tempvar;

31

32 /* expression -> term expression’

33 * expression’ -> PLUS term expression’ | epsilon
34 */

35

36 char *tempvar2;

37

38 term(tempvar);

39 while(match(PLUS))

40 {

41 advance () ;

42

43 term(tempvar2 = newname ());

44

45 printf (" %s += %s\n", tempvar, tempvar2);
46 freename (tempvar2);

47 }

48 }

49

30

Basic Concepts—Chapter 1

Listing 1.10. continued. ..

50 wvoid term(tempvar)

51 char *tempvar;

52 {

53 char *tempvar2 ;

54

55 factor (tempvar);:

56 while(match(TIMES))

57 {

58 advance () ;

59

60 factor (tempvar2 = newname());

61

62 printf (" $s *= %$s\n", tempvar, tempvar2);
63 freename (tempvar2);

64 }

65 }

66

67 wvoid factor (tempvar)

68 char *tempvar;

69 |

70 if (match (NUM OR_ID))

71 {

72 printf (" $s = %$0.*s\n", tempvar, yyleng, yytext);
73 advance () ;

74 }

75 else if (match(LP))

76 {

77 advance () ;

78 expression(tempvar);

79 if (match(RP))

80 advance () ;

81 else

82 fprintf(stderr, "%d: Mismatched parenthesis\n", yylineno);
83 }

84 else

85 fprintf(stderr, "%d: Number or identifier expected\n", yylineno);
86 }

1.4 Exercises

1.1.

Write a grammar that recognizes a C variable declaration made up of the follow-

ing keywords:

int

char long float double signed unsigned short

const volatile

and a variable name.

1.2. Write a grammar that recognizes a C variable declaration made up only of legal

combinations of the following keywords:

int char
const volatile

long float double signed unsigned short

and a variable name. The grammar should be able to accept all such legal
declarations. For example, all the following should be accepted:

Section 1.4 —Exercises

1.3.

1.4.

1.5.

1.6.

L.7.
1.8.

1.9.

1.10.

volatile unsigned long int x;
unsigned long volatile int x;
long unsigned volatile int x;
long volatile unsigned int x;

but something like

unsigned signed short long x;

should not be accepted. Remember that the int keyword is optional in a
declaration.

Modify your solution to the previous exercise so that declarations for arrays,
pointers, pointers to arrays, arrays of pointers, arrays of pointers to arrays, and so
on, are also recognized. That is, all legal combination of stars, brackets,
parentheses, and names should be recognized.

Write a grammar (and a recursive-descent compiler for that grammar) that
translates an English description of a C variable into a C-style variable declara-
tion. For example, the input:

31

x 1s a pointer to an array of 10 pointers to functions that return int.

y is an array of 10 floats.
z is a pointer to a struct of type a struct.

should be translated to:

int (*(*x) [10]) ()¢
float y([10];
struct a_struct *z;

Modify either of the expression compilers (in Figures 1.11 or 1.10) so that the C
++ and -- operators are supported.

LISP uses a prefix notation for arithmetic expressions. For example, 1+2 is
represented as (+ 1 2),and 1+2*3is (+ 1 (* 2 3)). Modify the expres-
sion compiler so that it translates infix expressions to prefix.

Write a LISP-to-infix translator.

Modify the expression compiler so that it translates expressions into postfix nota-
tion, such as that used by a Hewlett-Packard calculator. For example, the expres-
sion (1+2) * (3+4) should be translated to:

12+ 34+ *

Modify the expression compiler so that it prints the parse tree created by its input.
I suggest creating a physical parse tree (with structures and so forth) and then
printing the tree by traversing the physical parse tree.

(This is a very difficult problem.)

a. Try to write a context-free grammar that correctly parses both "time flies like
an arrow" and "fruit flies like a banana."

b. One of the things that defines context-free grammars is that the left-hand side
always consists of a single nonterminal symbol. How would the foregoing work
if you were permitted to use more than one terminal or nonterminal symbol on a
left-hand side? Try to write a parser for this sort of grammar.

Input and Lexical Analysis

This chapter looks at input strategies and at lexical analysis. I’ll discuss a set of
buffered input routines and construct IEX, a program modeled after the UNIX lex utility,
that translates regular expressions into a lexical analyzer. It’s worth understanding how
IEX works, even if you’re not going to build a version of your own. Various theoretical
concepts such as finite automata and € closure will crop up again when I discuss how
programs like occs and yacc generate bottom-up parse tables, and you need to be able to
understand how these tables are created in order to use these programs effectively. The
concepts are easier to understand in the context of IEX, however, so the theoretical
material in this chapter is actually an introduction to the concepts that you’ll need later.
I’m using a bootstrap approach in that IEX itself uses a hard-coded lexical analyzer and a
recursive-descent parser to do its work. As such, it’s a good example of a compiler built
by hand, without special tools.

The techniques used for lexical analysis are useful in many programming applica-
tions other than compilers. Efficient I/O is a concern in virtually every computer pro-
gram. Similarly, lexical analyzers are pattern-recognition engines—the concepts dis-
cussed here can be applied to many programs that need to recognize patterns: editors,
bibliographic data-base programs, and so forth. You can extend the techniques to do
things like assembly-line quality control and network-protocol processing.

If you intend to read the implementation parts of this chapter rather than just the
theory, you should read Appendix D, which contains a user’s manual for LIEX, before
proceeding. Also many of the support routines used by IEX are presented in Appendix A
(the set routines are used heavily in the code that follows, and the hash functions are
used as well).

2.1 The Lexical Analyzer as Part of a Compiler*

The main purpose of a lexical analyzer in a compiler application is to translate the

* An asterisk appended to a section heading is used throughout this and subsequent chapters to indicate
theoretical material. Implementation-oriented sections are not so marked.

32

Section 2.1 —The Lexical Analyzer as Part of a Compiler*

input stream into a form that is more manageable by the parser. It translates input strings
or lexemes, into tokens—arbitrary integer values that represent the lexemes. A token can
have a one-to-one relationship with a lexeme. For example, the keyword while is asso-
ciated with a single token. More generic tokens such as identifiers or numbers have
several lexemes associated with them. Lexical analyzers often have auxiliary functions
as well. For example, a lexical analyzer can discard comments and skip over white
space. Isolating this housekeeping from the parser can simplify the parser design (and
the grammar of the language). The analyzer can keep track of the current line number so
that intelligent error messages can be output by the parser. Program listings that show
the source code intermixed with error messages are usually created by the lexical
analyzer.

The lexical analyzer is an independent compilation phase that communicates with
the parser over a well-defined and simple interface. The relationship is pictured in Fig-
ure 2.1. The parser calls a single lexical-analyzer subroutine every time it needs a new
token, and that subroutine returns the token and associated lexeme.

Figure 2.1. Interaction Between the Lexical Analyzer and Parser

code
parser . —> output code
generation
N
token and request |
lexeme next token |
P Moo .
lexical | symbol \
analyzer <~ - > table ;
input
source text —> p
system

This organization has several things going for it. Since it’s an independent phase, the
lexical analyzer is easy to maintain because changes to the analyzer do not affect the
compiler as a whole, provided that the interface is not changed. Moreover, much of the
code that comprises the lexical analyzer is the same for every compiler, regardless of the
input language, so you can recycle much of the lexical analyzer’s code. The only things
that change from language to language in the table-driven lexical analyzers described
later in this chapter are the tables themselves. Other advantages include speed—an
independent lexical analyzer can optimize character-read times because it can read large
amounts of data at once, and portability—the peculiarities of reading the source code
under a particular operating system are all confined to the lexical analyzer itself. Notice
that the actual input system in Figure 2.1 is isolated completely from the parser, even
though it’s closely linked to the lexical analyzer.

Sometimes a more complex interaction between lexical analyzer and parser is
required. For example, the typedef statement in C effectively creates new keywords in
the language. After the parser has processed the statement:

typedef int alphonso;
the lexical analyzer must treat the input string alphonso as if it were a type token rather

than as an identifier token. This sort of high-level communication is usually done
through a shared data structure such as the symbol table. In this case, the parser can enter

33

Lexemes, tokens.

Interface to parser.

Advantages of indepen-
dent lexical analyzers.

Shared symbol table.

34

Attributes.

Discarding characters.

Input and Lexical Analysis —Chapter 2

alphonso into the symbol table, identifying it as a typedef name, and the lexical
analyzer can check the symbol table to determine if a string is a type or identifier token.

A lexical analyzer can also do work other than simple pattern recognition. For
example, when it reads a numeric constant, it can translate that constant into the associ-
ated number [in a manner similar to atoi ()] and return that number along with the
token and lexeme. When an identifier is read, the analyzer can look up the identifier in
the symbol table and return a pointer to a symbol-table entry along with the token.
These additional values associated with individual tokens are called attributes. (Note
that the lexeme is also an attribute of the token, because it’s a quantum of information
that is associated with the token.) In general, it’s best to restrict the lexical analyzer to
simple pattern-recognition tasks in order to make it easier to maintain. If the analyzer is
an independent module that performs only one task (pattern recognition), it’s a simple
matter to replace it if necessary.

There’s one final point to make. Lexical analysis is often complicated if a language is
not designed with ease-of-compilation in mind. For example,! PL/1 keywords are not
reserved—you can use them as identifiers—and the lexical analyzer has to determine
what it’s looking at based on surrounding context. You can say something like this in
PL/1:

if then then then = else; else else = then;

Separating the keyword then from the identifier then can be quite difficult.

2.2 Error Recovery in Lexical Analysis*

It’s possible, of course, for errors to occur in the lexical-analysis as well as the pars-
ing phase. For example, the at sign (@) and backquote (‘) are both illegal outside of a
string in a C program. The lexical analyzer can recover from these errors in several
ways, the simplest of which just discards the offending character and prints an appropri-
ate error message. Even here, there are some choices that are driven by the application,
however. If the last character of a multiple-character lexeme is incorrect, the analyzer
can discard the entire malformed lexeme or it can discard only the first character of the
lexeme and then try to rescan. Similarly, the lexical analyzer could try to correct the
error. Some operating systems have a “do what I mean” feature that works along these
lines. When faced with an error, the operating system’s command-line interpreter (which
is a compiler) tries to determine what the user meant to type and proceeds accordingly.
If a word has only one misspelled letter, it’s not too difficult to correct the problem by
simple inspection.’

1. This example (and the other PL/1 example, below) is borrowed from [Aho], p. 87 and p. 90.

2. There are other, more sophisticated techniques that can be used to determine the similarity of two words.
The most common technique is the “soundex” algorithm developed by Margaret Odell and Robert Russel,
and described in [Knuth], vol. 3, pp. 391-392. Also of interest is the RatclifffObershelp algorithm,
described in [Ratcliff], and Allen Bickel’s algorithm, described in [Bickel] and implemented in C in
[Howell].

Section 2.3 —Input Systems*

2.3 Input Systems*

Since the input system is usually an independent module, and since the concerns here
are divorced from the mechanics of recognizing tokens, I’ll look at input systems in
depth before moving on to the issues of lexical analysis per se.

The lowest-level layer of the lexical analyzer is the input system—the group of func-
tions that actually read data from the operating system. For the same reason that the
analyzer should be a distinct module, it’s useful for the input system itself to be an
independent module that communicates with the analyzer via well-defined function
calls. Since the analyzer itself can be isolated from the input mechanics, the resulting
code is more portable. Most of the system-dependent operations of the analyzer are con-
centrated into the input layer.

Issues of optimization aside, most compilers spend a good portion of their time in the
lexical analysis phase. Consequently, it’s worthwhile to optimize lexical analysis for
speed. The standard C buffered input system is actually a poor choice for several rea-
sons. First, most buffered systems copy the input characters at least three times before
your program can use them: from the disk to a buffer maintained by the operating sys-
tem, from that buffer to a second buffer that’s part of the FILE structure, and finally from
the FILE buffer to the string that holds the lexeme. All this copying takes both time and
buffer space. Moreover, the buffer size is not optimal. The more you can read from the
disk at one time, the faster your input routines tend to be (though this is operating-system
dependent—there’s not much advantage under UNIX in reading more than one block at a
time; MS-DOS, however, performs much better with very large reads).

The other issue is lookahead and pushback. The lexical analyzer may have to look
ahead several characters in the input to distinguish one token from another, and then it
must push the extra characters back into the input. Consider the earlier PL/1 expression:

if then then then = else; else else = then;

The lexical analyzer can distinguish the else keyword from the else identifier by look-
ing at the characters that follow the lexeme. The else must be an identifier if it is fol-
lowed by an equal sign, for example. Another example is a PL/1 declare statement
like this:

declare (argl, arg2, ..., argN)

The lexical analyzer can’t distinguish the declare keyword from an identifier (a sub-
routine name in this case) until it has read past the rightmost parenthesis. It must read
several characters past the end of the lexeme, and then push the extra characters back
into the input stream once a decision has been made, and this lookahead and pushback
must be done as efficiently as possible.

A final, admittedly contrived, example demonstrates that pushback is necessary even
in recognizing individual tokens. If a language has the three tokens xxyy, xx, and y, and
the lexical analyzer is given the input xxy it should return an xx token followed by a y
token. In order to distinguish, however, it must read at least four characters (to see if
xxyy is present) and then push the two y’s back into the input stream.

Most programming languages are designed so that problems such as the foregoing
are not issues. If the tokens don’t overlap, you can get by with only one character of
pushback. LEX however, can’t make assumptions about the structure of the lexemes, so
must assume the worst.

The pushback problem means that you can’t use the normal buffered input functions
because ungetc () gives you only one character of pushback. You can add a layer
around getc () that gives you more pushback by using a stack, as is demonstrated in
Listing 2.1. Push back a character by pushing it onto the stack, and get the next input

35

The input system is an
independent module.

Optimizing for speed.

Lookahead, pushback.

ungetc () inappropriate.
Stack-based pushback.

36

Input and Lexical Analysis —Chapter 2

character either from the stack (if it’s not empty) or from the real input stream (if it is).
UNIX lex uses this method. A better method is described in the remainder of this section.

Listing 2.1. Using a Stack for Multiple-Character Pushback

1 #include <stdio.h>
2 {#define SIZE 128 /* Maximum number of pushed-back characters */
3
4 /* Pbackbuf is the push-back stack.
5 * Pbackp is the stack pointer. The stack grows down, so a push is:
6 * *~-Pbackp=c and a pop 1is: c=*Pbackp++
7 * get () evaluates to the next input character, either popping it off the
8 * stack (if it’s not empty) or by calling getc().
9 * unget (c) pushes c back. It evaluates to c if successful, or to -1 if the
10 * pushback stack was full.
11 */
12
13 int Pbackbuf [SIZE];
14 int *Pbackp = &Pbackbuf[SIZE];
15
16 #define get (stream) (Pbackp < &Pbackbuf[SIZE] ? *Pbackp++ : getc(stream))
17 #define unget (c) (Pbackp <= Pbackbuf ? -1 : (*--Pbackp=(c)))
18
19 woid ungets (start, n)
20 char *start;
21 int n;
22
23 /* Push back the last n characters of the string by working backwards
24 * through the string.
25 */
26
27 char *p = start + strlen(start); /* Find the end of the string. */
28
29 while(--p >= start && --n >= 0)
30 if (unget (*p) == -1)
31 fprintf (stderr, "Pushback-stack overflow\n");
32
2.3.1 An Example Input System*
This section describes the input system used by a I[EX-generated lexical analyzer
(though not by IEX itself). This input system has many of the qualities that are desirable
in a compiler’s input system, and as such can be taken as characteristic. There are, of
course, other solutions to the input problem,* but the current one has proven quite work-
able and provides a good example of the sorts of problems that come up. Several design
Input-system design cri- criteria must be met:
teria.

o The routines should be as fast as possible, with little or no copying of the input
strings.

o Several characters of pushback and lookahead must be available.

o Lexemes of a reasonable length must be supported.

o Both the current and previous lexeme must be available.

3. Asystem that’s more appropriate in a Pascal environment is described in [Aho] pp. 88-92.

Section 2.3.1 — An Example Input System*

« Disk access should be efficient.

To meet the last criterion, consider how a disk is accessed by most operating systems.
All disks are organized into sectors which must be read as a unit. Disk reads must be
performed in sector-sized chunks. If your disk has 512-byte sectors, then you must read
512 bytes at a time. This limitation is imposed by the hardware. If you request one byte
from the disk, the operating system will read an entire sector into a buffer, and then
return a single byte from the buffer. Subsequent reads get characters from the buffer
until it is exhausted, and only then is a new sector read. Some operating systems (MS-
DOS is a case in point) impose further constraints in that a group of several sectors
(called a cluster or block) is the smallest possible unit that can be accessed directly, so
you have to read an entire cluster at once. The minimum number of bytes that can be
read is called an allocation unit, and, for the sake of efficiency, all reads must be done in
terms of allocation units. That is, the number of bytes read from the disk at any one time
should be a multiple of the allocation unit. Typically, the larger the buffer, the shorter
the read time. Many operating systems reward you for doing block-sized transfers by
not buffering the input themselves, as would be the case when an odd-sized block was
requested from a low-level read call. The operating system transfers the data directly
from the disk into your own buffer, thereby eliminating one level of copying and
decreasing the read time. For example, MS-DOS read and write times improve dramati-
cally when you read 32K bytes at a time.

The other design criteria are met by using a single input buffer and several pointers.
My system is pictured in Figure 2.2. The drawing on the top shows the condition of the
buffer just after it is loaded the first time. BUFSIZE is the actual buffer size. MAXLEX is
the maximum lexeme length, and the disk reads are always in multiples of this number.
Start_buf marks the physical start of the buffer, and END marks the physical end of the
buffer. End buf points at the logical end of buffer. (Since reads are in multiples of
MAXLEX, and since the buffer itself isn’t an even multiple of MAXLEX in length, there is
usually a scrap of wasted space at the end of the buffer. End buf points just past the
last valid character in the buffer.) Finally, Next points at the next input character. (I’ll
discuss DANGER and MAXLOOK momentarily.)

The middle picture in Figure 2.2 shows the buffer in its normal state, after the lexical
analyzer has processed several tokens. Various pointers have been set to mark the boun-
daries of various lexemes: pMark points at the beginning of the previous lexeme,
sMark points at the beginning of the current lexeme, and eMark points at the end of the
current lexeme. The lexical analyzer has scanned several characters past the end of the
current lexeme (Next is to the right of eMark). If the lexical analyzer finds a longer lex-
eme than the current one, all it need do is move the eMark to the current input position.
If, on the other hand, it finds that it has read too far in the input, it can push back all the
extra characters by setting Next back to the eMark.

Returning to MAXLOOK , this constant is the number of lookahead characters that are
supported. The DANGER marker tells the input routines when the Next pointer is getting
too close to the end of the buffer (there must be at least MAXLOOK characters to the right
of Next). When Next crosses the DANGER point, a buffer flush is triggered, giving us the
situation shown in the bottom picture in Figure 2.2. All characters between the pMark
and the last valid character (pointed to by End_buf) have been shifted to the far left of
the buffer. The input routines fill the remainder of the buffer from the disk, reading in as
many MAXLEX-sized chunks as will fit. The End_buf pointer is adjusted to mark the
new end of the buffer, and DANGER scales automatically: it’s positioned relative to the
new end of buffer. This may seem like a lot of copying, but in practice the lexemes are
not that large, especially in comparison to the buffer size. Consequently, flushes don’t
happen very often, and only a few characters are copied when they do happen.

Disk access, sectors.

Clusters, blocks.

Allocation u

Input system organiza-

nits.

37

tion: buffers and pointers.

Buffer pointers, BUF-
SIZE, MAXLEX, END,

Start_buf, End_buf.

Lexeme markers,
pMark, sMark, eMark.

MAXLOOK,

Buffer flush.

DANGER.

38

End_buf
Start_buf DANGER | END
Next
'3 After initial read
MAXLOOK —>
3 X MAXLEX

BUFSIZE

Start_buf DANGER END

Next
pMark sMark eMark End_buf
previous lexeme |current lexeme : Normally

BUFSIZE

Start_buf DANGER END

pMark Next
' sMark eMark J/ End buf
previous lexeme |current lexeme i : ! After flush
%I n X MAXLEX <—

BUFSIZE

Input and Lexical Analysis —Chapter 2

Figure 2.2. The Input Buffer

This approach has many advantages, the main one being a lack of copying. The lexi-
cal analyzer can just return the sMark as the pointer to the next lexeme, without having
to copy it anywhere. Similarly a pushback is a single assignment (Next=eMark) rather
than a series of pushes and pops. Finally, the disk reads themselves are reasonably
efficient because they’re done in block-sized chunks.

Section 2.3.2— An Example Input System—Implementation

2.3.2 An Example Input System—Implementation

The foregoing is all implemented by the variables and macros declared at the top of
input.c, in Listing 2.2. At this point we’ve looked at most of them, the others are dis-
cussed as they’re used in the code. The macro definitions on lines 15 to 19 take care of a

few system dependencies—COPY () is mapped to memmove () for the Microsoft C com-

Portability problems:

39

piler [because Microsoft’s memcpy () doesn’t support overlapping strings]. COPY ().
Listing 2.2. input.c— Macros and Data Structures

1 #include <stdio.h>

2 #include <stdlib.h>

3 $#include <fcntl.h>

4 $#include <tools/debug.h>

5

6 #include <tools/l.h> /* Needed only for prototypes */

7 #include <string.h> VARV

8

9 [e e

10 * INPUT.C: The input system used by LeX-generated lexical analyzers.

11 R e e e

12 * System-dependent defines.

13 */

14

15 #ifdef MSDOS

16 # define COPY (d,s,a) memmove (d,s,a)

17 #else

18 # define COPY (d,s,a) memcpy(d,s,a)

19 #endif
20
21 #define STDIN 0 /* standard input */
22
P I e et */
24
25 #define MAXLOOK 16 /* Maximum amount of lookahead */
26 #define MAXLEX 1024 /* Maximum lexeme sizes. */
27
28 {#define BUFSIZE ((MAXLEX * 3) + (2 * MAXLOOK)) /* Change the 3 only */
29

30 #define DANGER (End_buf - MAXLOOK) /* Flush buffer when Next */
31 /* passes this address *x/
32

33 #define END (&Start_buf [BUFSIZE]) /* Just past last char in buf */
34

35 #define NO MORE CHARS() (Eof read && Next >= End buf)

36

37 typedef unsigned char uchar;

38

39 PRIVATE uchar Start buf[BUFSIZE]; /* Input buffer */
40 PRIVATE wuchar *End buf = END; /* Just past last character */
41 PRIVATE uchar *Next = END; /* Next input character *x/
42 PRIVATE uchar *sMark = END; /* Start of current lexeme */
43 PRIVATE uchar *eMark = END; /* End of current lexeme x/

44 PRIVATE uchar *pMark = NULL; /* Start of previous lexeme */

45 PRIVATE int pLineno = 0; /* Line # of previous lexeme */

46 PRIVATE int pLength = 0; /* Length of previous lexeme */

47

48 PRIVATE int Inp file = STDIN; /* Input file handle */

49 PRIVATE int Lineno =1 ; /* Current line number */

50 PRIVATE int Mline =1 /* Line # when mark end() called *x/

51 PRIVATE int Termchar = 0; /* Holds the character that was *x/

40

Input and Lexical Analysis —Chapter 2

Listing 2.2. continued. ..

52 /* overwritten by a \0 when we */
53 /* null terminated the last */
54 /* lexeme. */
55 PRIVATE int Eof read = 0; /* End of file has been read. */
56 /* It’s possible for this to be */
57 /* true and for characters to */
58 /* still be in the input buffer. x/
59

60 extern int open(), close(), read():;

61

62 PRIVATE int (*Openp) () = open ; /* Pointer to open function x/
63 PRIVATE int (*Closep) () = close ; /* Pointer to close function */
64 PRIVATE int (*Readp) () = read ; /* Pointer to read function */

Change low-level input
routines, ii_io().

Open new input file,
ii_newfile().

Reassigning standard in-
put.

Binary (untranslated) in-
put.

First read is delayed until
first advance.

The actual code starts in Listing 2.3 with two initialization functions. The first,
ii_io() on line 65 of Listing 2.3, is used to change the low-level input functions that
are used to open files and fill the buffer. You may want to do this if you’re getting input
directly from the hardware, from a string, or doing something else that circumvents the
normal input mechanism. This way you can use a LIEX-generated lexical analyzer in an
unusual situation without having to rewrite the input system.

The ii newfile () routine on line 81 of Listing 2.3 is the normal mechanism for
opening a new input file. It is passed the file name and returns the file descriptor (not the
FILE pointer) for the opened file, or -1 if the file couldn’t be opened. The previous
input file is closed unless it was standard input. i1 _newfile () does not actually read
the first buffer; rather, it sets up the various pointers so that the buffer is loaded the first
time a character is requested. This way, programs that never call 1i newfile () will
work successfully, getting input from standard input. The problem with this approach is
that you must read at least one character before you can look ahead in the input (other-
wise the buffer won’t be initialized). If you need to look ahead before advancing, use:

ii_advance(); /* Read first bufferfull of input */
ii_pushback(l); /* but put back the first character */

The default input stream [used if ii newfile () is never called] is standard input.
You can reassign the input to standard input (say, after you get input from a file) by cal-
ling:

ii newfile (NULL);

It’s also okay to do a ii newfile("/dev/tty") (in both MS-DOS and UNIX), but
input is actually taken from the physical console in this case. Redirection won’t work.
Anii newfile (NULL) allows for redirected input, however.

Note that the indirect open () call on line 103 of Listing 2.3 uses the O BINARY
input mode in MS-DOS systems (it’s mapped to zero in UNIX systems). A CR-LF
(carriage-return, linefeed) pair is not translated into a single ’ \n’ when binary-mode
input is active. This behavior is desirable in most LEX applications, which treat both CR
and LF as white space. There’s no point wasting time doing the translation. The lack of
translation might cause problems if you’re looking for an explicit \n’ in the input,
though.

Note that the input buffer is not read by ii_newfile (); rather, the various pointers
are initialized to point at the end of the buffer on lines 111 to 114 of Listing 2.3. The
actual input routine (advance (), discussed below) treats this situation the same as it
would the Next pointer crossing the DANGER point. It shifts the buffer’s tail all the way
to the left (in this case the tail is empty so no characters are shifted, but the pointers are

Section 2.3.2— An Example Input System—Implementation 41

Listing 2.3. input.c— Initialization Routines

109
110
111
112
113
114
115
116
117
118
119

void
int
int
int

{

Op
Cl
Re

% 2% % % % % % % % % % X

int

MS (
MS (

if(

}
ret

ii_io(open_funct, close_funct, read_funct)
(*open_funct) () ;
(*close funct) ()
(*read funct) ()

This function lets you modify the open(), close(), and read() functions
used by the i/o system. Your own routines must work like the real open,
close, and read (at least in terms of the external interface. Open should
return a number that can’t be confused with standard input (not 0).

enp = open_funct;
osep = close funct;
adp = read funct;
__ */

ii newfile(name)

*name;
Prepare a new input file for reading. If newfile() isn’t called before
input () or input line() then stdin is used. The current input file is
closed after successfully opening the new one (but stdin isn’t closed).
Return -1 if the file can’t be opened; otherwise, return the file
descriptor returned from open(). Note that the old input file won’t be
closed unless the new file is opened successfully. The error code (errno)
generated by the bad open() will still be valid, so you can call perror ()
to find out what went wrong if you like. At least one free file
descriptor must be available when newfile() is called. Note in the open
call that O BINARY, which is needed in MS-DOS applications, is mapped
to 0 under UNIX (with a define in <tools/debug.h>).

fd; /* File descriptor */

if (strcmp (name, "/dev/tty") == 0))

name = "CON" ;)
(fd = !'name ? STDIN : (*Openp) (name, O RDONLY|O BINARY)) != -1)
if(Inp file != STDIN)
(*Closep) (Inp file);

Inp file = fd;

Eof read = 0;

Next = END;

sMark = END;

eMark = END;

End buf = END;

Lineno =1;

Mline =1;
urn fd;

42

Access functions.

Limiting scope,
PRIVATE.

Functions to access lex-
emes: ii text(),
ii_length(),
ii_lineno(),
ii_ptext(),
ii_plength(),
ii_plineno().
Functions to mark lex-
eme boundaries,

ii mark_start(),
ii_mark_end().

Move start marker,
ii move_ start().

Restore pointer to previ-
ous mark,
ii_to_mark().

Mark previous lexeme,
ii_mark_prev ().

Advance input pointer,
ii_advance().

Input and Lexical Analysis —Chapter 2

moved), and then loads the buffer from the disk. I’ve taken this approach because it’s
sometimes convenient to open a default input file at the top of a program, which is then
overridden by a command-line switch or the equivalent later on in the same program.
There’s no point in reading from a file that’s not going to be used, so the initial read is
delayed until a character is requested.

The input.c file continues in Listing 2.4 with several small access functions. For
maintenance reasons, it is desirable to limit external access of global variables, because
the linker assumes that two global variables with the same name are the same variable.
If you inadvertently declare two variables with the same name, one of them will seem to
magically change its value when a subroutine that accesses the other is called. You can
avoid this problem by declaring the variables static, thereby limiting their scope to
the current file. PRIVATE is mapped to static in debug.h, discussed in Appendix A.

It’s still necessary for external subroutines to access these variables however, and the
safest way to do so is through the small routines in Listing 2.4. These subroutines are
used for maintenance reasons only—two subroutines with the same name will result in
an error message from the linker, unlike two variables with the same name, which are
silently merged.

Theii text(),ii length(),andii lineno () routines (lines 120 to 122 of
Listing 2.4) return a pointer to the current lexeme, the lexeme’s length, and the line
number for the last character in the lexeme. The ii ptext (), ii plength(), and
ii plineno () routines (lines 123 to 125) do the same thing, but for the previous lex-
eme. The i1 mark start () routine (line 127) moves the sMark to the current input
position (pointed to by Next). It also makes sure that the end-of-lexeme marker
(eMark) is not to the left of the start marker. ii mark end() (line 134) does the
same for the end marker (eMark). It also saves the current line number in Mline,
because the lexical analyzer might sweep past a newline when it scans forward looking
for a new lexeme. The input line number must be restored to the condition it was in
before the extra newline was scanned when the analyzer returns to the previous end
marker.

The ii move start () routine on line 140 of Listing 2.4 lets you move the start
marker one space to the right. It returns the new start marker on success, NULL if you
tried to move past the end marker (sMark is not modified in this last case).
ii to mark () (line 148) restores the input pointer to the last end mark. Finally,
ii mark prev () modifies the previous-lexeme marker to reference the same lexeme
as the current-lexeme marker. Typically, 1i mark prev () is called by the lexical
analyzer just before calling i1 mark start () (thatis, just before it begins to search
for the next lexeme).

The next group of subroutines, in Listings 2.5 and 2.6, comprise the advance and
buffer-flush functions. ii advance (), on line 168 of Listing 2.5, returns the next
input character and advances past it. The code on lines 180 to 191 is provided for those
situations where you want an extra newline appended to the beginning of a file. IEX
needs this capability for processing the start-of-line anchor—a mechanism for recogniz-
ing strings only if they appear at the far left of a line. Such strings must be preceded by a
newline, so an extra newline has to be appended in front of the first line of the file; other-
wise, the anchored expression wouldn’t be recognized on the first line.*

4. IEX Usage Note: This pushback could conceivably cause problems if there is no regular expression in the
IEX input file to absorb the newline, and YYBADINP is also #defined (You'll get an error message in this
case). A regular expression that absorbs white space is usually present, however.

Section 2.3.2— An Example Input System—Implementation

Listing 2.4. input.c— Small Access Routines and Marker Movement

43

120 PUBLIC char *ii_text () { return(sMark)i}

121 PUBLIC int ii length () { return(eMark - sMark)i o}

122 PUBLIC int ii lineno () { return(Lineno)i o}

123 PUBLIC char *ii ptext () { return(pMark)i o}

124 PUBLIC int ii_plength () { return(pLength)i o}

125 PUBLIC int ii_plineno () { return(pLineno NF:

126

127 char *ii mark_start ()

128 {

129 Mline = Lineno;

130 eMark = sMark = Next;

131 return(sMark);

132}

133

134 PUBLIC char *ii mark_end()

135 {

136 Mline = Lineno ;

137 return(eMark = Next);

138}

139

140 PUBLIC char *ii move_start ()

141 {

142 if (sMark >= eMark)

143 return NULL;

144 else

145 return ++sMark ;

146 }

147

148 PUBLIC char *ii to mark()

149 {

150 Lineno = Mline ;

151 return(Next = eMark);

152}

153

154 char *ii mark_prev()

155 {

156 /* Set the pMark. Be careful with this routine. A buffer flush won’t go past
157 * pMark so, once you’ve set it, you must move it every time you move sMark.
158 * I’'m not doing this automatically because I might want to remember the
159 * token before last rather than the last one. If ii mark prev() 1s never
160 * called, pMark is just ignored and you don’t have to worry about it.
161 */

162

163 pMark = sMark;

164 pLineno = Lineno;

165 pLength = eMark - sMark;

166 return(pMark);

167 }

The NO_MORE_CHARS () macro is used on line 193 to detect end of file. It was
defined in the header as follows

#define NO MORE_CHARS ()

Eof_ read is set to true when end of file is encountered. You must use both Eof read

Detect end of file,
NO_MORE_CHARS ().

(Eof read && Next >= End buf)

Eof read.

and Next to detect end of input because EOF might have been read while the lexical
analyzer was looking ahead. In this case, characters may have been pushed back after

44

End of input.

Input and Lexical Analysis —Chapter 2

reading the EOF. You have to see both if end of file has been encountered and if the
buffer is empty. This is a case where end of input and end of file are different things,
because there still may be characters in the input buffer long after end of file has been
read. The ii_flush () call on line 196 flushes the buffer if necessary, and the line
number is advanced on line 199. The next input character is returned normally, O is
returned on end of file, and —1 is returned if the buffer couldn’t be flushed for some rea-
son.

Listing 2.5. input.c— The Advance Function

168 int ii_advance()

169 {

170 /* 1ii_advance() is the real input function. It returns the next character
171 * from input and advances past it. The buffer is flushed if the current
172 * character is within MAXLOOK characters of the end of the buffer. 0 is
173 * returned at end of file. -1 is returned if the buffer can’t be flushed
174 * because it’s too full. In this case you can call ii_flush(1l) to do a
175 * buffer flush but you’ll loose the current lexeme as a consequence.
176 x/

177

178 static int been called = 0;

179

180 if (!been called)

181 {

182 /* Push a newline into the empty buffer so that the LeX start-of-line
183 * anchor will work on the first input line.

184 */

185

186 Next = sMark = eMark = END - 1;

187 *Next = '\n’;

188 --Lineno ;

189 --Mline ;

190 been called = 1;

191 }

192

193 if (NO_MORE_CHARS())

194 return 0;

195

196 if (!Eof read && ii_flush(0) < 0)

197 return -1;

198

199 if(*Next == ’\n’)

200 Lineno++;

201

202 return(*Next++);

203}

Flush input buffer,
ii_flush().

force.

The actual buffer flush is done by ii flush (), which starts at the top of Listing
2.6. The test on line 248 checks to see that there will be enough room after the move to
load a new MAXLEX-sized bufferfull of characters—there might not be if the buffer con-
tains two abnormally long lexemes. The test evaluates true if there isn’t enough room.
Normally, the routine returns —1 if there’s no room, and 1 is returned if everything is
okay. If the force argument is true, however, the buffer is flushed even if there’s no
room, and 1 is returned. The flush is forced by setting the start marker to the current
input position and the left edge of the character to be shifted to the Next pointer,
effectively destroying the current lexeme. The code on lines 259 and 246 figures out

Section 2.3.2— An Example Input System—Implementation 45

how many characters have to be copied (copy amt) and the distance that they have to

be moved (shift _amt). The shift is done on line 260, and a new buffer is loaded by the copy_amt, shift amt.
ii fillbuf () call on line 262. COPY was defined earlier (on line 16 of Listing 2.2) to

map to either memmove () or memcpy (), depending on the compilation environment.

The rest of the routine adjusts the various markers to compensate for the move.

Listing 2.6. input.c— Buffer Flushing

204 int ii flush(force)
205 int force;
206
207 /* Flush the input buffer. Do nothing if the current input character isn’t
208 * in the danger zone, otherwise move all unread characters to the left end
209 * of the buffer and fill the remainder of the buffer. Note that input ()
210 * flushes the buffer willy-nilly if you read past the end of buffer.
211 * Similarly, input line() flushes the buffer at the beginning of each line.
212 *
213 * pMark DANGER
214 * | |
215 * Start _buf sMark eMark |Next End buf
216 * | I | [|
217 * v 4% v 4% v
218 * Fm e Fmmm Fmm————— +
219 * | this is already read | to be done yet | waste |
220 * e Fm e Fo—————— +
221 * | | | |
222 * | <===== shift _amt ----- >|<-- copy amt -->| |
223 * | |
224 * | <====mmmmmmmmm - BUFSIZE -——====—=========—— >|
225 *
226 * Either the pMark or sMark (whichever is smaller) is used as the leftmost
227 * edge of the buffer. None of the text to the right of the mark will be
228 * lost. Return 1 if everything’s ok, -1 if the buffer is so full that it
229 * can’t be flushed. 0 if we’re at end of file. If "force" is true, a buffer
230 * flush is forced and the characters already in it are discarded. Don’t
231 * call this function on a buffer that’s been terminated by ii term().
232 */
233
234 int copy amt, shift amt ;
235 uchar *left edge;
236
237 if (NO_MORE CHARS())
238 return 0;
239
240 if (Eof read) /* nothing more to read */
241 return 1;
242
243 if (Next >= DANGER || force)
244 {
245 left edge = pMark ? min(sMark, pMark) : sMark;
246 shift amt = left edge - Start buf ;
247
248 if (shift _amt < MAXLEX) /* 1if(not enough room) */
249 {
250 if(!force)
251 return -1;
252
253 left _edge = ii_mark start(); /* Reset start to current character */
254 ii mark prev();
255
-

46

Input and Lexical Analysis —Chapter 2

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

Listing 2.6. continued. ..

shift amt = left edge - Start buf ;
}

copy_amt = End_buf - left_ edge;
COPY (Start_buf, left edge, copy amt);

if (!ii_fillbuf(Start_buf + copy amt))
ferr ("INTERNAL ERROR, ii_ flush: Buffer full, can’t read.\n");

if (pMark)
pMark -= shift amt;
sMark -= shift_amt;
eMark -= shift_amt;
Next -= shift_amt;
}
return 1;
}
/* __ */
PRIVATE int ii fillbuf(starting at)
unsigned char *starting at;

{

/* Fill the input buffer from starting at to the end of the buffer.

The input file is not closed when EOF is reached. Buffers are read
in units of MAXLEX characters; it’s an error if that many characters
cannot be read (0 is returned in this case). For example, if MAXLEX
is 1024, then 1024 characters will be read at a time. The number of
characters read is returned. Eof read is true as soon as the last
buffer is read.

PORTABILITY NOTE: I’m assuming that the read function actually returns

the number of characters loaded into the buffer, and

that that number will be < need only when the last chunk of the file is

read. It’s possible for read() to always return fewer than the number of
requested characters in MS-DOS untranslated-input mode, however (if the
file is opened without the O BINARY flag). That’s not a problem here
because the file is opened in binary mode, but it could cause problems
if you change from binary to text mode at some point.

/

L S T T T R N T T T N Y

register unsigned need, /* Number of bytes required from input. */
got; /* Number of bytes actually read. */

need = ((END - starting at) / MAXLEX) * MAXLEX ;
D(printf("Reading %d bytes\n", need);)

if(need < 0)
ferr ("INTERNAL ERROR (ii_ fillbuf): Bad read-request starting addr.\n");

if(need == 0)
return 0;

if ((got = (*Readp) (Inp_file, starting at, need)) == -1)
ferr("Can’t read input file\n");

Section 2.3.2—An Example Input System—Implementation

47

Listing 2.6. continued. ..

315 End_buf = starting at + got ;

316

317 if(got < need)

318 Eof read = 1; /* At end of file */
319

320 return got;

321}

The final routine in Listing 2.6 is 11 fillbuf (), starting on line 278 . It is passed
a base address, and loads as many MAXLEX-sized chunks into the buffer as will fit. The
need variable, initialized on line 302, is the amount needed. The logical-end-of-bu ffer
marker is adjusted on line 315. Note that a single read () call does the actual read on
line 312. (Readp is initialized to point at read () when it is declared up at the top of
the file.) This can cause problems when a lexeme can span a line, and input is fetched
from a line-buffered input device (such as the console). You’ll have touse ii io () to
supply an alternate read function, in this case.

Listing 2.7 shows the lookahead function, ii look (). It returns the character at
the offset from the current character that’s specified in its argument. An ii_look (0)
returns the character that was returned by the most recent ii advance() call,
ii_look (1) is the following character, ii look (-1) is the character that precedes
the current one. MAXLOOK characters of lookahead are guaranteed, though fewer might
be available if you’re close to end of file. Similarly, lookback (with a negative offset) is
only guaranteed as far as the start of the buffer (the pMark or sMark, whichever is
smaller). Zero is returned if you try to look past end or start of the buffer, EOF if you try
to look past end of file.

Listing 2.7. input.c— Lookahead

Load input buffer,
ii fillbuf().

need.

Lookahead, ii_ look ().

322 int ii look(n)

323§

324 /* Return the nth character of lookahead, EOF if you try to look past
325 * end of file, or 0 if you try to look past either end of the buffer.
326 */

327

328 uchar *p;

329

330 p = Next + (n-1) ;

331

332 if (Eof read && p >= End buf)

333 return EOF;

334

335 return(p < Start buf || p >= End buf) 2 0 : *p ;

336}

Listing 2.8 contains the pushback function, 1i pushback (n). It is passed the
number of characters to push back. For example, ii pushback (5) pushes back the
five most recently read characters. If you try to push past the sMark, only the characters
as far as the sMark are pushed and O is returned (1 is returned on a successful push). If
you push past the eMark, the eMark is moved back to match the current character.
Unlike ungetc (), you can indeed push back characters after EOF has been reached.

The remainder of input.c, in Listing 2.9, provides support for ’ \ 0’ -terminated
strings. These routines are not—strictly speaking—necessary, because the lexeme

ii_pushback(n).

\ 0-terminated-string sup-
port.

48

Listing 2.8. input.c— Pushback

Input and Lexical Analysis —Chapter 2

however, push back characters after end of file has

337 int ii pushback(n)

338 ¢

339 /* Push n characters back into the input.
340 * sMark. You can,

341 * peen encountered.

342 */

343

344 while(--n >= 0 Next > sMark)
345 {

346 if(*--Next == ’'\n’ || !*Next)
347 --Lineno;

348 }

349

350 if (Next < eMark)

351 {

352 eMark = Next;

353 Mline = Lineno;

354 }

355

356 return(Next > sMark);

357)

You can’t push past the current

length is always available. It’s occasionally useful to have a terminator on the string,
however. Note that these functions should be used exclusively after the string has been
terminated—the other input functions will not work properly in this case.

Terminate/unterminate
current lexeme,
ii_term(),
ii_unterm().

Listing 2.9. input.c— Support for ’ \ 0’ -terminated Strings

The termination is done with acall to 11 term() (on line 358). It saves the char-
acter pointed to by Next in a variable called Termchar, and then overwrites the charac-
ter witha’\0’. Theii unterm() function (on line 366) puts everything back.

358 wvoid
359 {

ii term()

362}
363

365

366 void
367 |

368 if (Termchar)
369 {

371 Termchar =
372 }

373}

374

376

377 int
378 {
379

380 int rval;
381

ii_input ()

360 Termchar = *Next ;
361 *Next = "\0’

ii_unterm()

364 /* = = = = = = = = = m m m m m m m e e o m oo oo oo */

370 *Next = Termchar;

375 /% = = = = = = = = e e m m m m e e e mm oo oo oo */

Section 2.3.2— An Example Input System—Implementation

49

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Listing 2.9. continued. ..

if(Termchar)

{
ii_unterm();
rval = ii advance();
ii_mark_end();
ii_term();

}

else

{
rval = 1i_advance();
ii mark_end();

}

return rval;

void ii_unput(c)

if (Termchar)
{
ii_unterm();
if (ii_pushback (1))
*Next = c;
ii_term();
}

else

{
if (ii_pushback(1l))
*Next = c;

int ii_lookahead(n)

return (n == 1 && Termchar) ? Termchar : ii_look(n)

int ii_ flushbuf ()

if (Termchar)
ii_unterm();

return ii flush(1);

This approach is better than putting the i1 _unterm() code into i1 advance(),
because the latter approach slows down all ii_advance () calls. On the other hand,
you have to remember to call ii unterm() before calling ii advance (). For this
reason, an 1i_input () function has been provided (on line 377) to make sure that the
lexeme is unterminated and then reterminated correctly. That is, ii input () is a
well-behaved input function meant to be used directly by the user. The function also

50

ii_unput ().

ii_lookahead().

Ring buffers.

Why ring buffers are inap-
propriate here.

Lookup tables in hard-
coded scanners.

Hard-coded scanners:
advantages and disad-
vantages.

Input and Lexical Analysis —Chapter 2

moves the end marker, making the lexeme one character longer (moving the null termi-
nator if necessary), and it returns the new input character, or O at end of file. -1 is
returned if another character couldn’t be read because the buffer was full.

ii unput () (on line 400) is a reverse-input function. It backs up the input one
notch and then overwrites the character at that position with its argument.
ii unput () works correctly on both terminated and unterminated buffers, unlike
ii pushback (), which can’t handle the terminator.

The ii lookahead() function bears the same relation to ii look () that
ii input() bears to ii advance(). That is, ii lookahead (1) functions
correctly for strings that have been terminated with i1 term() calls, ii look () does
not. Similarly, ii flushbuf () flushes a terminated buffer by unterminating it before
calling ii flush ().

One final note on strategy. The buffer-flush approach that I've used here allows me to
take advantage of C’s pointer mechanism when scanning the input. This approach isn’t
appropriate in a language like FORTRAN, where arrays must be referenced using an
index. Here, you’re better off using a circular array or ring buffer. For example, the
input buffer would be declared with

char input buf[SIZE];

and the next character would be accessed with

Q

x = input_buf[current character % SIZE];

You would load a new chunk from the disk into the far left of the array when
current character was greater than or equal to SIZE, being careful not to overwrite
the current lexeme in the process.

The problem here is that a lexeme can span the buffer. That is, a situation may arise
where the first half of a lexeme is far right of input_buf and the other half is at the far
left. As long as you’re accessing all the characters with an array index modulus the array
size, this is not a problem. C, however, wants its strings in contiguous memory so that it
can scan through them using a pointer. Moreover, the array index and modulus operation
needed to access every character is inherently less efficient than a simple pointer access;
more inefficient, even, than the moves that are part of a buffer flush. Consequently, a
ring buffer isn’t particularly appropriate in a C implementation.

2.4 Lexical Analysis*

Now that we’ve developed a set of input routines, we need to apply them in a
lexical-analysis application. There are two approaches to lexical analysis, both useful.
First, you can hard code the analyzer, recognizing lexemes with nested if/else state-
ments, switches, and so forth. If the lexemes aren’t too long one effective approach uses
a series of lookup tables to recognize tokens. (Lookup tables tend to be faster than
switchs or if/else statements.) Listing 2.10 shows such a system for recognizing the
following tokens:

> >= < <= == =

The basic strategy is to vector from one table to another until a complete lexeme is
identified.

The hard-coded approach has its advantages—hard-coded lexical analyzers tend to
be very efficient, but hard-coded analyzers are difficult to maintain. When you’re
developing a new language, it’s handy to be able to add new tokens to the language or
take some away without too much work. This problem is solved by programs like lex

Section 2.4 —Lexical Analysis*

Listing 2.10. Using Lookup Tables for Character Recognition

51

O 001N B WN -

fdefine
fdefine
#define
#define
#define
#define
#define
f#define

LESS_THAN
GREATER_THAN

EQUAL

NOT

LESS_THAN OR_EQUAL
GREATER THAN OR_EQUAL
NOT OR_EQUAL

ASSIGN

O Joy U WN

#define
#define

ERROR -1
CONTINUE 0

#define SIZE OF CHARACTER SET 128
char first [SIZE OF CHARACTER_SET];
char second[SIZE_OF CHARACTER_ SET];
int s, f;

memset (

first, -1, SIZE OF_CHARACTER_SET); /* Initialize to error token.
memset (second, -1, SIZE_OF CHARACTER_SET); /* Note that there’s an implicit
/* conversion of -1 to 255 here
e /* (signed int to unsigend char).
first [>’] = GREATER_THAN;
first [<’] = LESS THAN;
first [7!’] = NOT;
first [="] = ASSIGN;
second[’=’] = EQUAL;
c = getchar();
if((f = first[c]) == ERROR) /* discard bad character */

return ERROR;

if((s = second[c]) == ERROR)
{
ungetchar () ;
return(f);
}
else
{
if(s == EQUAL)
switch(f)
{
case ASSIGN:
case LESS THAN:
case GREATER THAN:
case NOT:

}

return ERROR;

/* 1-character lexeme *x/

/* 2-character lexeme */

return EQUAL ;

return LESS THAN OR_EQUAL ;
return GREATER_THAN OR_EQUAL ;
return NOT EQUAL ;

/* discard both characters */

*/
*/
*/
*/

and IEX, which translate a description of a token set into a table-driven lexical analyzer.
(Hereafter, when I say IEX, I'm actually referring to both programs). IEX itself just
creates the tables, the remainder of the analyzer is the same for all LEX-generated source
code. The fact that a IEX-generated analyzer is typically slower than a hard-coded one
is, more often than not, a small price to pay for faster development time. Once the

52

Alphabets, strings,
words.

¢, the empty string.

Empty versus null strings

Languages, sentences,
grammars.

Input and Lexical Analysis —Chapter 2

language is stable, you can always go back and hard code a lexical analyzer if it’s really
necessary to speed up the front end.

2.4.1 Languages*

Before looking at IEX itself, we’ll need a little theory. First some definitions. An
alphabet is any finite set of symbols. For example, the ASCII character set is an alpha-
bet; the set {*0’,”1’} is a more-restricted, binary alphabet. A string or word is a
sequence of alphabetic symbols. In practical terms, a string is an array of characters.
There is also the special case of an empty string, represented by the symbol € (pro-
nounced epsilon). In C, the " \0’ is not part of the input alphabet. As a consequence, it
can be used as an end-of-string marker because it cannot be confused with any of the
characters in the string itself, all of which are part of the input alphabet. An empty string
in C can then be represented by an array containing a single / \0’ character. Note, here,
that there’s an important difference between €, an empty string, and a null string. The
former is an array containing the end-of-string marker. The latter is represented by a
NULL pointer—a pointer that doesn’t point anywhere. In other words, there is no array
associated with a null string.

A language is a set of strings that can be formed from the input alphabet. A sentence
is a sequence of the strings that comprise a language. A language can be as small as one
string and still be useful. (Zero-element languages are possible, but not of much utility.)
The ordering of strings within the sentence is defined by a collection of syntactic rules
called a grammar. Note that this definition does not attribute meaning to any of the
strings and this limitation has important practical consequences. The lexical analyzer
doesn’t understand meaning. It has to distinguish tokens solely on the basis of surround-
ing context—by looking at the characters that surround the current word, without regard
to the syntactic or semantic structure of the input sentence (the tokens that precede and
follow the current token). [Aho] introduces several other useful terms and definitions,
paraphrased here:’

prefix A prefix is a string composed of the characters remaining after zero or
more symbols have been deleted from the end of a string: "in" is a
prefix of "inconsequential™". Officially, € is a prefix of every string.

suffix A suffix is a string formed by deleting zero or more symbols from the
front of a string. "ible" is a suffix of "incomprehensible". The
suffix is what’s left after you’ve removed a prefix. € is a suffix of every
string.

substring A substring is what’s left when you remove both a suffix and prefix:
"age" is a substring of "unmanageable". Note that suffixes and
prefixes are substrings (but not the other way around). Also €, the empty
string, is a substring of every string.

proper X A proper prefix, suffix, or substring of the string x has at least one ele-
ment and it is not the same as x. That is, it can’t be €, and it can’t be
identical to the original string.

sub-sequence A sub-sequence of a string is formed by deleting zero or more symbols
from the string. The symbols don’t have to be contiguous, so "iiii"
and "ssss" are both sub-sequences of "Mississippi”.

5. [Aho), p. 93.

Section 2.4.1 —Languages*

Several useful operations can be performed on strings. The concatenation of two
strings is formed by appending all characters of one string to the end of another string.
The concatenation of "fire" and "water" is "firewater". The empty string, €, can
be concatenated to any other string without modifying it. (In set theory, € is the identity
element for the concatenation operation. An arithmetic analogy is found in multiplica-
tion: 1 is the identity element for multiplication because x=xx1.) The concatenation
operation is sometimes specified with an operator (typically a X or -), so you can say that

fire - water = firewater

If you look at concatenation as a sort of multiplication, then exponentiation makes
sense. An expression like x” represents x, repeated n times. You could define a language
consisting of the eight legal octal digits with the following:

L(octal)=1{0,1,2,3,4,5,6,7 }

and then you could specify a three-digit octal number with L(octal)’.

The exponentiation process can be generalized into the closure operations. If L is a
language, then the Kleene closure of L is L repeated zero or more times. This operation
is usually represented as L*. In the case of a language comprised of a single character,
L#* is that character repeated zero or more times. If the language elements are strings
rather than single characters, L* are the strings repeated zero or more times. For exam-
ple, L(octal)* is zero or more octal digits. If L(v/) is a language comprised of the string
Va and L(v2) is a language comprised of the string Voom, then

L(vl)* - L(v2)
describes all of the following strings:
Voom VaVoom VaVaVoom VaVaVaVoom etc.

The positive closure of L is L repeated one or more times, usually denoted L+. It’s other-
wise just like Kleene closure.

Since languages are sets of symbols, most of the standard set operations can be
applied to them. The most useful of these is union, denoted with the U operator. For
example, if letters is a language containing all 26 letters [denoted by L(letters)] and
digits is a set containing all 10 digits [denoted by L(digits)], then {L(letters)UL(digits)}
is the set of alphanumeric characters. Union is the equivalent of a logical OR operator.
(If x is an element of AUB, then it is a member of either A OR B.) Other set operations
(like intersection) are, of course possible, but have less practical application.

The foregoing can all be applied to build a language from an alphabet and to define
large languages (such as token sets) in terms of smaller languages (letters, digits, and so
forth). For example

L(digit)=1{1,2,3,4,5,6,7,8,9 }
L(alpha)={ a,b,c,...,z }

53

String concatenation.

¢ is the identity element.

String exponentiation.

Kleene Closure (*).

Positive closure (+).

Set operations on
languages, union (U).

you can say:
L(digit)+ is a decimal constant in C (one or more digits).
L(digit)* is an optional decimal constant (zero or more digits).
L(alpha) © L(digit) is the set of alphanumeric characters.
(L(alpha) © L(digit))* is any number of alphanumeric characters.

L(alpha) - (L(alpha) L L(digit))* is a C identifier.

54

Forming regular expres-
sions. Metacharacters.

Regular expression con-
catenation.

Wildcard character.

Start-of-line anchor.

End-of-line anchor.

Character classes.

Input and Lexical Analysis —Chapter 2

2.4.2 Regular Expressions*

Programs like IEX use the foregoing language theory to specify a token set for a lexi-
cal analyzer. The possible lexemes that correspond to individual tokens are all defined
using a series of set operations applied to previously defined languages, with a base
alphabet of the ASCII character set. The programs then translate that language
specification into the C source code for a computer program that recognizes strings in
the language.

Both programs use a notation called regular expressions for this purpose. Strictly
speaking, a regular expression is any well-formed formula over union, concatenation and
Kleene closure—as was the case with the examples in the previous section. A practical
implementation of regular expressions usually add other operations, however, to make
them easier to use. I’ll examine an extended regular-expression syntax in the current
section.

The simplest regular expression is just a series of letters that match a sequence of the
same letters in the input. Several special characters, called metacharacters, can be used
to describe more complex strings. Though there are variations in the notation used for
regular expressions, the following rules are used by IEX to form a regular expression and
can be taken as characteristic:®

c A single character that is not a metacharacter is a regular expression. The
character c forms a regular expression that matches the single character c.
ee Two regular expressions concatenated form a regular expression that recog-

nizes a match of the first expression followed by a match of the second. If a,
n, and d are regular expressions recognizing the characters a, n, and d, they
can be concatenated to form the expression and which matches the pattern
and in the input. Note that there’s no explicit concatenation operator here,
the two strings are just placed next to each other.
. A period (pronounced dot) matches any character except a newline. For
example, the expression a . y matches any, amy, and the agy inmagyar.
An up arrow anchors the pattern to the start of the line. The pattern ~and
matches the string and only if it comprises the first three characters on the
line (no preceding white space). Note that any newline character that pre-
cedes the and is not matched. That is, the newline is not part of the lexeme,
even though its presence (or a start-of-file marker) is required for a success-
ful match.
$ A dollar sign anchors the pattern to end of line. The pattern and$ matches
the string only if it is the last three characters on the line (no following
white space). Again, the newline character is not part of the lexeme. The
pattern ~and$ matches the word only if it’s the only thing on a line.
[...J["...] Brackets match any of the characters enclosed in the brackets. The [and]
metacharacter form a character class which matches any of the characters
listed. For example, [0123456789] matches any single decimal digit.
Ranges of characters can be abbreviated using a dash, so [0-9] also
matches a single decimal digit. [0-9A-Fa-f] matches a hexadecimal
digit. [a-zA-Z] matches an alphabetic character. If the first character fol-
lowing the bracket is an up arrow ("), a negative character class (which
matches any character except the ones specified) is formed. [~a-z]

6. Other UNIX utilities, like grep, vi, and sed, use a subset of these rules.

Section 2.4.2—Regular Expressions*

*+7

e{n,m}

ele

(e)

matches any character except a lower-case, alphabetic character. Only
seven characters have special meaning inside a character class:

{ Start of macro name.

} End of macro name.

] End of character class.

— Range of characters.

Indicates negative character class.

" Takes away special meaning of characters up to next quote mark.
\ Takes away special meaning of next character.

Use \1,\-,\\, and so forth, to put these into a class. Since other metachar-
acters such as *, ?, and + are not special here, the expression [*2+] matches
a star, question mark, or plus sign. Also, a negative character class does not
match a newline character. That is, ["a-z] actually matches anything
except a lower-case character or newline. Note that a negative character
class must match a character. That is, ["a-z]$ does not match an empty
line. The line must have at least one character, though it may not end in a
nonalphabetic character.

A regular expression followed by a * (pronounced star) matches that
expression repeated zero or more times, a + matches one or more repeti-
tions, a ? matches zero or one repetitions. These three metacharacters
represent closure operations. They are higher precedence than concatena-
tion. 11?ama matches two strings: llama and lama. The expression
l+ama matches lama, 1lama, and 111111111111ama. The expression
1*ama matches all of the above, but also matches ama. The expression -
0[xX] [0-9a-fA-f]+ matches a hexadecimal number in C syntax; [0-
71 [0-7] 2 matches one or two octal digits.

Matches n to m repetitions of the expression e. This operator is recognized
by lex, but not IEX.

Two regular expressions separated by a vertical bar recognize a match of
the first expression OR a match of the second. OR is lower precedence than
concatenation. The expression either | or matches either either oror.
Parentheses are used for grouping. The expression:

(frank|-john) ie
matches both frankie, and johnie. The expression
(frank| john) (ie)?

matches frank and john as well. You can add a newline to the characters
recognized by a negative character class with something like this:

(["a-z]I\en)

Surrounding a string that contains metacharacters with double quotes ("*") or
preceding a single metacharacter with a backslash (*) takes away its special meaning.
(A character preceded by a backslash is said to be escaped.) The operator precedence is
summarized in the Table 2.1. All operators associate left to right.

Note that regular expressions can only define sequences of characters. They cannot
do things like recognize any number of properly nested parentheses, something that can
be recognized grammatically (by the parser). This is one of the main reasons that the
lexical analyzer and parser are separate modules. The lexical analyzer is in charge of
recognizing simple sequences of characters, and the parser recognizes more complex
combinations.

55

Closure operators.

Multiple matches.

The OR operator.

Grouping .

Add '0 to negative char-
acter class.

Escaping metacharac-

ters, quotes marks.

Limitations of regular ex-
pressions.

56

Elementopt.

Recognizers.

Finite automata, state
machines.

States.
Transitions.

Start state.
Accepting states.

Transition diagram.

Input and Lexical Analysis —Chapter 2

Table 2.1. Regular-Expression Operator Precedence

operator description level
() parentheses for grouping 1 (highest)
[1] character classes 2
* + 02 closure: 0 or more, 1 or more, O or 1 3
cc concatenation 4
| OR 5
8 anchors to beginning and end of line | 6 (lowest)

2.4.3 Regular Definitions*

There is an alternate way of describing a language’s token set that takes a more
grammatical approach, and which is used in many language specifications. A regular
definition builds up a language specification using a combination of regular-expression
operators and production-like specifiers. For example:

digit_sequence? . digit sequence exponent_part?
digit_sequence exponent _part

keyword — long lint | double | while | ...

digit - 011121...19

digit_sequence - digit +

sign e

exponent_part — esign? digit sequence
I E sign? digit_sequence

floating _constant — digit_sequence . digit_sequence? exponent_part?
I
I

Occasionally you see an opt subscript used to denote an optional element, such as digit,,
rather than digit?. This grammatical approach to languages is discussed in greater depth

in the next chapter.

2.4.4 Finite Automata*

A recognizer program, such as a lexical analyzer, reads a string as input and outputs
yes if the string is a sentence in a language, no if it isn’t. A lexical analyzer has to do
more than say yes or no to be useful, so an extra layer is usually added around the recog-
nizer itself. When a certain string is recognized, the second layer performs an action
associated with that string. IFX takes an input file comprised of regular expressions and
associated actions (code). It then builds a recognizer program that executes the code in
the actions when a string is recognized. IEX builds the recognizer component of the
analyzer by translating regular expressions that represent the lexemes into a finite auto-
maton or finite state machine (usually abbreviated to ‘“‘state machine” or “FSM”).
Strictly speaking, an FSM consists of the following:

« A finite set of states.

o A set of transitions (or moves) from one state to another. Each transition is labeled
with a character from the input alphabet.

o A special start state.

o A set of final or accepting states.

State machines are best understood by looking at one. Figure 2.3 is a transition
diagram for a state machine that recognizes the four strings “he”, *“she”, “his”, and
“hers”.

Section 2.4.4 —Finite Automata*

Figure 2.3. A State Machine

@?@0@
oS0
DD

The circles are individual states, marked with the state number—an arbitrary number
that identifies the state. State O is the start state, and the machine is initially in this state.
The lines connecting the states represent the transitions, these lines are called edges and
the label on an edge represents characters that cause the transition from one state to
another (in the direction of the arrow). From the start state, reading an h from the input
causes a transition to State 1; from State 1, an e gets the machine to State 3, and an i
causes a transition to State 5; and so on. A transition from State N to state M on the char-
acter c is often represented with the notation: next(N,c)=M. This function is called the
move function by some authors, [Aho] among them, but I feel that next better describes
what the function is doing.

The states with double circles are called accepting states. Entering an accepting
state signifies recognition of a particular input string, and there is usually some sort of
action associated with the accepting state (in lexical-analyzer applications, a token is
returned). Unmarked edges (for example, there are no outgoing edges marked with an i,
s, r, or e from State 0) are all implied transitions to a special implicit error state.

State machines such as the foregoing can be modeled with two data structures: a sin-
gle variable holding the current state number and a two-dimensional array for computing
the next state. One axis is indexed by the input character, the other by the current state,
and the array holds the next state. For example, the previous machine can be represented
by the arrays in Table 2.2. Two arrays are used, one to hold the state transitions and
another to tell you whether a state is accepting or not. (You could also use a single, two-
dimensional array of structures, one element of which was the next state and the other of
which was the accepting-state marker, but that would waste space.) The next state is
determined from the current state and input character, by looking it up in the table as fol-
lows:

next_state = Transition_table[input_character][current_state];

if (Accepting[next state] == 1)
do_an_accepting action(next_ state);

This input character is usually called the lookahead character because it’s not removed
from the input until the next-state transition is made. The machine derives the next state
from the current state and lookahead character. If the next state is not the error state,
then set the current state to that state and advance past the lookahead character (typically
by reading, and discarding, it).

The machine we just looked at is called a deterministic finite automaton or DFA. A
DFA is “deterministic” in that the next state can always be determined by knowing the
current state and the current lookahead character. To be more specific, a DFA is a state

57

Edges.

next(N,c)=M.

Accepting states.

Modeling state machines
with arrays.

Lookahead character
used to compute next
state.

Deterministic finite
automata (DFA).

58

Nondeterministic finite
automaton (NFA).

€ transitions match empty
string.

Input and Lexical Analysis —Chapter 2

Table 2.2. Representing the State Machine

Transition Table
Lookahead Character || Accepting
e h i r s
o| -1]|-=-1=-17 0
1{2|-|5]|-1|- 0
20 - -1 - - 1
cur- |3 | - | —-|—-|—-1| 4 0
rent 4 | - - -1-1|- 1
state | S | - | - | - |- 1|6 0
6| —| -1 -1-1- 1
71 -18]|-1]-1- 0
819 | -|-|-|- 0
9| -1 -1-1-1- 1

machine in which all outgoing edges are labeled with an input character, and no two
edges leaving a given state have the same label. There is also a second, more general
type of state machine called a nondeterministic finite automaton or NFA, which is more
useful in many applications, including the current one. (All DFAs are also NFAs, but not
the other way around.) An NFA has no limitations on the number and type of edges:
Two outgoing edges can have the same label, and edges can be labeled with the empty
string, €. This last type of edge is called an epsilon edge or epsilon transition. Since an €
transition matches an empty string, it is taken without advancing the input and is always
taken—regardless of the input character. For example, how can the regular expression
(and/any) be represented as a state machine? A DFA for this expression looks like this:

OO0
TG

Unfortunately, DFA’s are difficult to construct directly from regular expressions’—
NFA’s are easy to construct. Two possibilities are:

(0
(O

and

7. Tt is possible to construct a DFA directly from a regular expression, though I won’t discuss how to do it
here. See both [McNaughton] and [Aho] pp. 135-141.

Section 2.4.4—Finite Automata*

Oan®
O

The second machine is preferable because it’s easier to represent in a computer program
(we’ll see how in a moment). As you can see, the NFA can be an awkward data structure
to use. It can have many more states than the equivalent DFA, and it’s difficult to write a
state-machine driver (a program that uses the state machine to do something, such as
recognize tokens) that can use it directly.® IEX solves the problem by creating the state
machine in a two-step process. It first makes an NFA representing the input regular
expressions, and it then converts that NFA to a DFA, which it in turn outputs. I’ll discuss
how LEX performs this feat later in this chapter.

The state-machine representations we’ve been looking at are, of course, just one of
many ways to represent them. You can generalize the definitions for NFAs and DFAs. A
nondeterministic finite automaton, or NFA, is a mathematical model consisting of:

(1) A set of states, S.

(2) A special state in S called the szart state. The machine is initially in this state.

(3) A setof states in S called accepting states, entry into which denotes recognition of
a string. Some sort of action is usually associated with each of the accepting states.

(4) A set of input symbols (an input alphabet).

(5) A next function that, when given a state and an input symbol, returns the set of
states to which control is transferred on that symbol from the indicated state. I'll
describe this next function in greater detail in a moment—note, however, that the
next function returns a set of states. The main implementation difference between
an NFA and a DFA is this next function. The next function for a DFA always
yields a single next state. The equivalent NFA function can yield several next
states.

A deterministic finite automaton or DFA is an NFA with the following restrictions:

(1) No state can have an outgoing € transition (an edge labeled with €, the empty
string).

(2) There may be no more than one outgoing transition from any state that is labeled
with the same character.

In practical terms, the foregoing definition describes only the data structures (the set
of states and the way that the transitions are represented) and the next function that
determines the next state from the current one. In other words, it tells us how to make a
transition matrix. There is no information here about how the state machine is used; and
automata can, in fact, be used in different ways depending on the application. The state
machine is itself distinct from the driver program—the program that uses that machine.

8. In fact, a theoretical NFA often has fewer states than an equivalent DFA because it can have more edges
leaving a single state than the DFA has. Nonetheless, this sort of NFA is difficult to represent in a
computer program because it has an indeterminate number of outgoing edges. The NFA’s discussed in the
current chapter all have more states than the equivalent DFA’s because the extra states help smooth over
these difficulties. I’'ll show how in a moment.

State-machine driver.

NFA: formal definition.

DFA: formal definition.

The state machine and
driver are distinct.

State-machine driver.

59

Using state machines for
lexical analysis.

Transition matrix.

The greedy algorithm
(matches longest string).

Input and Lexical Analysis —Chapter 2

2.4.5 State-Machine-Driven Lexical Analyzers*

This section demonstrates how state machines are used for lexical analysis by look-
ing, at a high level, at the method used by a IEX-generated lexical analyzer. I’ll describe
a simple table-driven lexical analyzer that recognizes decimal and floating-point con-
stants. The following regular expressions describe these constants:

[0-9]+ return ICON;
([0-91+[[0-9]1*\.[0-9]+|[0-9]1+\.[0-9]*) (e[0-9]+)? return FCON;

The code to the right of the regular expression is executed by the lexical analyzer when
an input string that matches that expression is recognized. The first expression recog-
nizes a simple sequence of one or more digits. The second expression recognizes a
floating-point constant. The (e [0-9]+) ? at the end of the second regular expression is
the optional engineering notation at the end of the number. I’ve simplified by not allow-
ing the usual + or — to follow the e, and only a lower-case e is recognized. The

([0-91+ | [0-91*\.[0-9])+ | [0-9]+\.[0-9]%*)

recognizes one of three patterns (I’ve added the spaces to clarify what’s going on—
they’re not really there): The [0-9]+ is a simple sequence of decimal digits. It’s for
numbers like 10e3. Because of the way that IEX works, the [0-9]+ on the previous
line of the input specification takes precedence over the current one—an ICON is
returned if a number does not have a trailing e, otherwise an FCON is returned. The
[0-9]*\. [0-9]+ recognizes numbers with at least one digit to the right of the decimal
point, the [0-9]+\. [0-9] * recognizes numbers with at least one digit to the left. You
can’t use [0-9]*\. [0-9]* because that pattern would accept a decimal point without
numbers on either side. All of the following numbers are accepted:

1.2 1. .1 1.2e3 23 1

and, of these, the last is an ICON and the others are FCONSs.

IEX uses a state-machine approach to recognize regular expressions, and a DFA that
recognizes the previous expressions is shown in Figure 2.4. The same machine is
represented as an array in Table 2.3. The next state is computed using that array with:

next state = array[current state][input]

A dash indicates a failure transition (no legal outgoing transition on the current input
character from the current state). This array is typically called a transition matrix or
transition table. There are three accepting states (states from which a token is recog-
nized) in the machine: 1, 2, and 4. State 1 accepts an integer constant, and the other two
recognize floating-point constants. The accepting states are recognized in an auxiliary
array that is also indexed by state number, and which indicates whether or not a state is
accepting.

As I mentioned earlier, the state machine itself and the driver program that uses that
machine are distinct from one another. Two algorithms are commonly used in lexical
analysis applications, and the same state machine (transition matrix) is used by both
algorithms. A greedy algorithm, shown in Table 2.4, is used by IEX (because that’s
what’s required by most programming-language specifications). This algorithm finds the
longest possible sequence of input characters that can form a token. The algorithm can
be stated informally as follows: If there’s an outgoing transition from the current state,
take it. If the new state is an accepting state, remember it along with the input position.
If there’s no outgoing transition (the table has a a dash in it), do the action associated
with the most-recently seen accepting state. If there is no such state, then an error has
occurred (LEX just ignores the partially-collected lexeme and starts over from State 0, in
this situation).

Section 2.4.5 —State-Machine-Driven Lexical Analyzers*

Figure 2.4. State Machine That Recognizes Floating-Point Constants

\ [0-9]

return ICON;

return FCON;

3)}10:9] +(s) [0-9]

[0-9] return FCON; [0- 9]

Table 2.3. State Machine in Figure 2.3 Represented as an Array

lookahead character . .

. 09 . accepting action
0 3 1 - | -

1 2 1 5 return ICON;

current 2 - 2 5 | return FCON;
state 3 - 2 - | =

4 - 4 return FCON
5 - 4 - | -

I’ll do two examples to show the workings of the machine, the first with the input
1.2e4. 1EX starts in State 0. The 1 causes a transition to State 1 and the input is
advanced. Since State 1 is a potential accepting state, the current input position and state
number is remembered. The dot now gets us to State 2 (and the input is advanced again).
Since State 2 is also an accepting state, the previously remembered input position and
state number are overwritten by the current ones. The next input character (the 2) causes
us to go from State 2 to itself. State 2 is still an accepting state, so the current input posi-
tion overwrites the previously saved one. The e now gets us to State 5, which isn’t an
accepting state, so no other action is performed; and the final 4 causes a transition to
State 4, which is an accepting state, so the current input position overwrites the previous
one. The next input character is the end-of-input marker. There is no legal transition out
of State 4 on end of input, so the machine enters the failure state. Here, the action asso-
ciated with the most-recently seen accepting state (4) is performed and the machine
returns FCON. The next time the subroutine is called, it returns zero immediately,
because the lookahead character is end of input.

The second example looks at the incorrect input /.2e, with no number following the
e. This input causes a failure transition from State 5, because there’s no legal outgoing
transition on end of input from State 5. When the failure occurs, the most recently seen
accepting state is State 2, so the input is backed up to the condition it was in in State 2
(the next input character is an e) and an FCON is returned. The next time the algorithm is
entered, there will be a failure transition from the start state, because an e can’t occur at
the beginning of the number. The e is discarded, and the algorithm goes to State O (and
terminates).

61

Example: 1.2e4.

Bad-input example: 1.2e.

62 Input and Lexical Analysis —Chapter 2

Table 2.4. Algorithm Used by the 1EX State-Machine Driver

current_state = 0;
previously_seen_accepting_state = none_seen;

if(lookahead character is end-of-input)
return O;

while(lookahead character is not end-of-input)
{
if(there is a transition from the current state on the current lookahead character)
{
current_state = that state;
advance the input;

if(the current state is an accepting state)
{
remember the current position in the input
and the action associated with the current state;

}

else
{
if(no accepting state has been seen)
{
There’s an error:
Discard the current lexeme and input character.
Current_state = 0;
}
else
{
back up the input to the position it was in when it saw the last accepting state
perform the action associated with that accepting state;

Disadvantages of greedy Note that the greedy algorithm does have its disadvantages: It’s tricky to implement

algorithm. and tends to be relatively slow. It can also cause the recognizer to behave in sometimes
unexpected ways. (The LEX input expression (\n|.) * tries to absorb the entire input
file, for example.) It is nonetheless the best (and sometimes the only) choice in most real
lexical-analysis applications.

The nongreedy algorithm The second type of algorithm (the nongreedy algorithm) is much simpler. Here, the

(matches first string). shortest possible input string is recognized, and the machine just accepts as soon as an
accepting state is entered. A nongreedy recognizer program is much simpler to imple-
ment than a greedy one, and is much faster as well. Nonetheless, this algorithm can be

Terminal nodes. used only when all the accepting states in the machine are terminal nodes—when they
have no outgoing transitions.

Section 2.4.6 —Implementing a State-Machine-Driven Lexical Analyzer

2.4.6 Implementing a State-Machine-Driven Lexical Analyzer

This section shows how the machine in the previous section is implemented by
analyzing a IEX output file in depth. You may want to skip over this section if you’re not
interested in this level of detail. You should read Appendixes A and D, in which various
support functions and LEX itself are described, before continuing. A LEX input file that
recognizes the floating-point constants we’ve been looking at is shown in Listing 2.11

Listing 2.11. numbers.lex— A IEX Input File to Recognize Floating-Point Constants

63

LEX input file for floating-
point constants.

%1
$#define FCON 1;
#define ICON 2;

—

oe

{D}+ return ICON;
({D}+|{D}*\.{D}+|{D}+\.{D}*) (e{D}+)? return FCON;

%3

OO0 IO W B WN—
oo O oe

[0-9] /* a single decimal digit */

The lex output file—Ilexyy.c—begins in Listing 2.12.° The first two lines are from the
header portion of the original IEX input file. They are followed by a comment that
describes the state machine that IEX created. If a state is an accepting state, the first few
characters of the equivalent code are printed (tabs are mapped to \t), along with the
input line number. The goto transitions are shown along with the characters that cause
the transitions. If several edges (outgoing transitions) all go to the same state, they are
represented like this:

goto 2 on 0123456789

The state goes to State 2 if the input character is a digit. The entire comment is sur-
rounded with an #ifdef _ _NEVER_ _in case a */ should accidentally come up in one
of these lists of transition characters.

The next part of the IEX output file is copied directly from the template file
(/libllex.par by default, but a different file can be specified with the -m command-line
switch). This template file is separated into three parts by formfeed (Ctrl-L) characters.
Everything from the beginning of the file up to the first formfeed is copied into the out-
put file at this juncture. The relevant code is shown in Listing 2.13.

The #ifndef directive on line 35 of Listing 2.13 lets you define YYPRIVATE in the
LEX-input-file header, without having to #undef it first. Most of the global variables in
the file are declared as YYPRIVATE, which normally translates to the keyword static.
Redefining this macro to an empty string makes these variables true globals, which can
be accessed from outside the current file. I’'m using the definition of NULL on line 39 to
determine if <stdio.h> was included previously, and including it if not. Finally, if
YYDEBUG is defined, various debugging diagnostics are activated. These are printed
only if the variable yydebug is also true, thus the if statement on line 45. It’s best to

9. Note that there are two kinds of text in lexyy.c: (1) text copied verbatim from the template file lex.par and
(2) text generated by IEX itself. The listings that describe those parts of lexyy.c that are copied from the
template file are labeled lex.par in the following discussion. IFX-generated text is in listings labeled
lexyy.c. Line numbers carry over from one listing to another because there’s really only a single output
file.

State-machine descrip-
tion in LEX output file.

__NEVER__.

Template-file organiza-
tion, lex.par

YYPRIVATE.

YY D, yydebug,
YYDEBUG

64

Listing 2.12. lexyy.c— State-Machine Description

Input and Lexical Analysis —Chapter 2

#define FCON 1
#define ICON 2

#ifdef NEVER

* DFA (start state is 0) is:
*

OO0 N WN -
~
*

* State 0 [nonaccepting]
* goto 3 on
10 * goto 1 on 0123456789
11 * State 1 [accepting, line 7 <return ICON;>]
12 * goto 2 on .
13 * goto 1 on 0123456789
14 * goto 5 on e
15 * State 2 [accepting, line 8 <return\tFCON;>]
16 * goto 2 on 0123456789
17 * goto 5 on e
18 * State 3 [nonaccepting]
19 * goto 2 on 0123456789
20 * State 4 [accepting, line 8 <return\tFCON;>]
21 * goto 4 on 0123456789
22 * State 5 [nonaccepting]
23 * goto 4 on 0123456789
24 *x/
25
26 #endif

see how the macro works by looking at an example; if YYDEBUG is defined, then a

debugging diagnostic like:
YY D(printf ("aaaaaghhhh!!!")

is expanded to:

if (yydebug){ printf ("aaaaaghhhh!!!™); } else;

Trailing elsein
multiple-statement
macro.

Note that the semicolon following the else comes from the original macro invocation
and the semicolon following the print f () follows the x in the macro definition. That
trailing else is important in order to make something like the following work correctly:

if (something)

YY D(printf ("aaaaaghhhh!!!"));
else

something else();

The foregoing expands to:

if (something)
if (yydebug)
{
printf ("aaaaaghhhh!!!");
}
else
else
something else();

If the else weren’t present in the macro definition, then the else
something else() clause in the original code would incorrectly bind to the

Section 2.4.6—Implementing a State-Machine-Driven Lexical Analyzer

Listing 2.13. lex.par— Various Definitions Copied Into lexyy.c

65

27 /* YY TTYPE is used for the DFA transition table: Yy nxt[], declared below.
28 * YYF marks failure transitions in the DFA transition table. There’s no failure
29 * state in the table itself, these transitions must be handled by the driver
30 * program. The DFA start state is State 0. YYPRIVATE is only defined here only
31 * if it hasn’t be #defined earlier. I’m assuming that if NULL is undefined,
32 * <stdio.h> hasn’t been included.

33 */

34

35 #ifndef YYPRIVATE

36 # define YYPRIVATE static

37 #endif

38

39 #ifndef NULL

40 # include <stdio.h>

41 #endif

42

43 #ifdef YYDEBUG

44 int yydebug = 0;

45 % define YY D(x) if(yydebug){ x; }else

46 #else

47 # define YY D (x)

48 f#endif

49

50 typedef unsigned char YY TTYPE;

51 #define YYF ((YY TTYPE) (-1))

52

53 unsigned char *ii text();

if (yydebug) rather than the if (something). If YYDEBUG isn’t defined in the
header, then the argument to YY D effectively disappears from the input (the macro
expands to an empty string). In this case, the printf () statements go away.

The code on lines 50 and 51 of Listing 2.13 are used to declare and access the
transition-matrix array. YY TYPE is the type of one array element, and YY F marks
failure transitions in the array. This latter value cannot be used as a state number. Note
that the cast to unsigned char effectively translates —1 to 255. Similarly, —1’s in the
tables are all silently converted to 255 as part of the initialization.

The next part of the IEX output file is the state-machine transition matrix. It is used
to compute the next state from the current state and lookahead symbols. This array can
take three forms. The first, uncompressed form is shown in in Figure 2.5 and Listing
2.14. I've simplified the picture by leaving all the error transitions blank. (They’re ini-
tialized to —1 in Listing 2.14.) An uncompressed array is generated by specifying a -f
(for fast) switch on the IEX command line. The next state is computed with:

Yy nxt[current_state]][lookahead character]

This operation is encapsulated into the yy next (state, c) macro on line 147 of List-
ing 2.14.

Notice that several columns in the uncompressed array are identical. All columns
not associated with a period, e, or digit are the same—they’re all error transitions. All
the columns for the digits are the same. By the same token, the rows associated with
States 4 and 5 are the same. (The states aren’t equivalent because one is an accepting
state and the other isn’t.) This situation holds with most state machines that recognize
real token sets. Taking C as a case in point, all the control characters and the space char-
acter are ignored, so the columns for these are identical. With a few exceptions like L

YY_TYPE, YYF.

Transition matrix
representations.

Uncompressed transition
matrix.

Compressed transition
matrix. Redundant row
and column elimination.

Input and Lexical Analysis —Chapter 2

66

Figure 2.5. The Uncompressed Transition Table

€

0123456789
1111111111
1111111111

Yy_nxt[][]

return ICON

return FCON

return FCON

3
2

5
5

2222222222
2222222222
4444444444
4444444444

Listing 2.14. lexyy.c— The Uncompressed Transition Table

6 1[128] =

YYPRIVATE YY TTYPE Yy nxt|

54

_1,
_l,

-1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1,

_1,

4

{

-1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1,
-1, -1, 3, -1, 1, 1,

-1,
-1,
-1,

1, l, l, 1, _1/ _11

1,

-1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1,
_11 _11 _11 -1, -1, —1I
-1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1,

_1,
_1,
_l,
_l,
_l,
_1,

-1, -1, -1, -1, -1

4

-1, -1, -1, -1, -1, -1, -1, -1,

-11

{

/* 01 */

-1, -1,
-1, -1,
-1, -1,

1, 1,
-1, -1,
_11 -1,
-1, -1,
_ll -1,
_ll -1,
-1, -1,
-1, -1,

_l,
_l,
_ll
_ll

1,
_ll
_ll
_ll
_ll
_1,
_1,

D N T T N NN
= AN A A A A A A
L | L |
D N T T N N NN
Lo B B R T B B o o B
LI I I | | N |
P T N N T NN
Lo B B R T B B o B B B
[| | N |
L N N N NN
Lo o B M B B B B T B B
[| I |
L N N NN
A A A A A A A A
[| [|
L N N NN
e B B B B B B B I TN
[T B | [R R | |
P NS ~

-1
-1
-1
-1
1,
-1,
-1
-1,
-1,
-1,
-1,

-1, -1, -1, -1, -1, -1,

-1,

{

-1,
-1,
-1,

-1,
-1,
-1,

_1’
_1’
_1’
_1’

_1,
_1’
_1’
_1’

_1,
_1,
_1,
_1,

_l,
_l,
_1,
_1,

_1’
_1,
_1,
_1,

_1’
_l,
_11
_l,

-11
_ll
_ll
-11

-11
_ll
_ll
_1I

2,
_1,
_1’
_1’
_1,
_1,
_1’
_1’

2,
_1,
_1,
_ll
_1,
_l,
_ll
_ll

2,
-1,
-1,
-1,
-1,
-1,
-1,
-1

2,
_1,
_.1,
_1’
_1’
_1,
_1,
_1,

2,
_1’
_1,
_11
_]_I
_.1,
_11
_l,

2,
_1’
_1’
_1’
_1,
_.1,
_1,
_ll

2,
_1’
_11
_1’
_1,
_11
_l,
_11

2,
_ll
-11
_ll
_1,
_ll
_l,
_ll

2,
_ll
_ll
_ll
_1,

2,
_1’
_1’
_1,

S,
_1,
_1,

-1,
-1,
-1,

67

Section 2.4.6—Implementing a State-Machine-Driven Lexical Analyzer

Listing 2.14. continued. ..

4

}
{

4

-1

-1,
-1,
-1,

_1,
_1,
_1,
_.1,

_1,
_1,
_l,
_1,
_1,

4

-1

-1,
-1,
-1,
-1,

_1,
_.1,
_1,
_1,
_1,

_1,
_.1,
_1’
_1,
_1,

4

-1

-1,
-1,
-1,
-1,

_1,
_1,
_1’
_1,
_1,

4

-1

-1,
-1,
-1,
-1,

-1,
-1,
-1,
-1,
-1

/* 03 */

2,
_1’
_1’
_1,
_1,
_1,
_ll
_ll

2,
_1’
_ll
_1,
_1,
_1,
_1,
_1,

4

2,
-1,
-1,
-1,
-1,
-1,
-1,
-1

2,
_1,
_ll
_1,
_1,
_1,
_1,
_1’

2,
_1,
_ll
_1,
_1,
_.1,
_1,
_1’

2,
_1,
_ll
_1,
_1,
_1,
_1,
_1’

2,
_1,
_ll
_1,
_1,
_1,
_1,
_1’

2,
_ll
_1’
_1,
_1,
_1,
_1,
_ll

2,
_1’
_1’
_1,
_.1,
_1,
_1,
_ll

2,
-1,

110
111
112

113

/* 04 */

114
115
116
117
118
119
120
121
122
123
124
125

_ll
_1’
_1,
_ll

_1,
_1,
_ll
_l’

4

-1

-1,
-1,
-1,
-1,

4

-1

-1,
-1,
-1,
-1,

_1,
_1,
_1’
_1’
_.1,

4

-1

-1,
-1,
-1,
-1,

_1,
_1,
_ll
_1’
_l’

_1,
_.1,
_1’
_1’
_1’

_1,
_1,
-11
_1’
-11

_1,
_.1,
_1’
_1’

/* 05 */ |

126

127
128
129

4,
_1,
_1,
_ll
_.1,
_1’
_ll
_ll

4,
_1,
_1,
_1,
_1,
_1,
_1,
_1,

130

131

4,
-1,
-1,
-1,
-1,
-1,
-1,
-1

4,
_.1,
_1,
_.1,
_1,
_1,
_1,
_ll

4,
_1,
_1,
_1,
_1,
_1,
_1,
_1’

4,
_.1,
_1,
_1,
_1,
_1,
_1,
_ll

4,
_1,
_1,
_1,
_1,
_1,
_1,
_ll

4,
_1,
_.1,
_1,
_.1,
_.1,
_1,
-11

4,
_1,
_1,
_1,
_1,
_1,
_1,
_ll

132
133
134
135
136
137
138
139

}i

140
141

/* ——————— -

142

* character and evaluates to the next state.

* yy next (state,c) 1is given the current state and input
*/

143
144

145

146
147

Yy nxt[state][c]

#define yy next (state, c¢)

Moreover, at least half of the states in a typical machine have no legal outgoing transi-

and x, all the columns for the letters are identical, as are most of the digit’s columns.
tions, so the rows associated with these states are identical—every cell holds —1.

IEX’s default compression technique takes advantage of this situation and eliminates
the redundant rows and columns by creating two supplemental arrays. The compressed

68

Yy cmap[], Yy nxt[]

Yy rmapl[].

Compression ratio.

Pair-compressed transi-
tion matrix.

Yy nxtN, Yy nxt[].

Input and Lexical Analysis —Chapter 2

Figure 2.6. Transition Table With Redundant Rows and Columns Eliminated

Yy cmap (] . 0123456789 e
0—010— 022222222220 030 0
/—v/ A\ a'a v \/‘\/—\/ \a'a]

Y

y_rmap (] Yy nxt (][]

00 -1 3 1 -11]0
1)1 -1 2 1 5§ 1
212 -1 -1 2 5 2
313 -1 -1 2 -1 (3
414 q -1 4 1|4
>[4 0 1 2 3

table is shown in Figure 2.6 and in Listing 2.15. The Yy cmap[] array is indexed by
lookahead character and holds the index of one of the columns in the Yy nxt [] array.
When several columns in the original array are equivalent, the matching entries in
Yy cmap [] hold the index of a single column in Yy nxt []. For example, the columns
associated with digits in the original table are all identical. Only one of these columns is
present in the compressed array (at Yy nxt [x] [2]), and all columns corresponding to
digits in Yy cmap hold a 2. The rows are compressed in the same way using
Yy rmap[]. Since rows 4 and 5 are identical in the uncompressed array, Yy rmap (4]
and Yy rmap (5] both hold a 4, and Yy nxt [4] [x] holds the original row from the
uncompressed table.
An array element is accessed using:

Yy nxt[Yy rmap[current state]][Yy cmap[lookahead character]]

rather than the

Yy nxt[current state]][lookahead character]

that’s used for the uncompressed table. The yy next macro for this type of table is
defined on line 102 of Listing 2.15.

Redundant-row-and-column elimination is usually the best practical compression
technique. The access time is fast, and the compression ratio is usually quite good. (In
this example, the ratio is about 4:1 — 154 bytes, as compared to 640 bytes. The C lexi-
cal analyzer presented in Appendix D does even better, with a compression ratio of
about 7:1 — 1,514 bytes versus 10,062 bytes.)

A second compression method yields better compression if the transition matrix is
particularly sparse, though the access time is slower. The rows are split into distinct
one-dimensional arrays, accessed indirectly through an array of pointers (see Figure 2.7).
The rows are all named Yy nxtN, where N is the original row index in the
uncompressed table (row 5 is in Yy nxt5[]), and the array of pointers is called
Yy nxt []. The current tables are compressed in this way in Listing 2.16.

If the first cell of the Yy nxtN array is zero, then the remainder of the array is
identical to the original row, and can be accessed directly using the lookahead character.
To simplify a little:

Section 2.4.6—Implementing a State-Machine-Driven Lexical Analyzer

Listing 2.15. lexyy.c— Transition Table With Redundant Rows and Columns Eliminated

69

55 * The Yy cmap[] and Yy rmap arrays are used as follows:

Character positions in the Yy cmap array are:

>

J
"z
*

>

>
+ ~ =
>

@ -
“p -

“Fn

>

TR NUNWUO

™o
QWO DN N~
Ko TwWN 0w
O n0hOOwixkkh O
SO QLo ql
S Hh<< Mo
TQITQNNTQ
X DX m ®~ X &
I S N S
NN G e
~ A~ XN
>
— AN —
>
~ B3 =R I I =X
>
= - VAR =
>
O v\l ©

o ol

EL

T

[o))
w
% % % % % % % % % % % % %

/

71 YYPRIVATE YY TTYPE Yy cmap[128] =
72 |

~
3

OO OO NOOO
S S S S S S S~ S
O O OO NOOO
S S S S S S S~
O OO ONOOO
S S S S S S S~ S
O OO ONOOO
S S S S S S s~
OO OONOOO
S S S S S S S~
O WO ONOOO
S S S S S S S S~
O OO ONOOO
S S S S S S s~
O OO ONOOO
S S S S S S S~
OO OONOOO
S S S S S S S~ O~
O O OONOOO
S S S S S S SN
[eNeoNeoNoNoNeoNeNe)
S S S S S S S~
O OO OO OO0oOo
S S S S S S s~
OO OO OO OoOo
S S S S S S s~
[eNeoNoNoNolNoNeoNol
S S S S S S S S
OO OO OH+H OO
S S S S S S S S
[eNeoNoNoNoNoNe Nl

S S S S S o~ N

81 };

83 YYPRIVATE YY TTYPE Yy rmap[6] =
84 {

85 o, 1, 2, 3, 4, 4
8 };

88 YYPRIVATE YY TTYPE Yy nxt[5][4]=
90 /* 00 */ -
91 /* 01 */
92 /*x 02 */
93 /* 03 */
94 /* 04 */

-1, 3[
-1, 2,
-1, -1,
_11 —ll
_11 —ll

»q»,ﬁ,pwﬁ
BNN
ST N N
[R

S S o~ o~

}
}
}
}
}

98 * yy _next (state,c) 1is given the current state number and input
99 * character and evaluates to the next state.

100 */

102 #define yy next (state,c) (Yy nxt[Yy rmap[state]][Yy cmaplc] 1)

next state= Yy nxt[Yy rmap[current state]][Yy cmap[input char]];

YY TTYPE *row;
row = Yy nxt[current_state];

if(*row == 0)
next state = (row + 1) [lookahead character];

If the first cell of the Yy nxtN array is nonzero, then the array holds a sequence of
character/next-state pairs and the first cell holds the number of pairs. For example,

70

Figure 2.7. Pair-Compressed Transition Table

Input and Lexical Analysis —Chapter 2

Yy nxt[]

o| e———{11]",3]0}1

11

2,1

‘31

415161

7,181

’Q]II Yy nxt0[]

Yy nxtl[]

1| e—>lo[-1-1..-1 2-1..-1 1111111111 -1 ..~1 5 -1 ...

2| 1[0 2 1221232425126, 2] 7,28, 2]9,2] ¢, 5| vy_nxt21)

3| e—>N10002] 122,232 4,2]5,2]6,2] 7,28 2] 9,2] Yy_nxt31[)
4| et—{1000 4 1142 43,4 44]54]6,4] 7,48 49 4] Yy_nxtd[]
5| 1000 4] 1421434445 46,4 7,48, 49,4] vy _nxtsD)

Listing 2.16. lexyy.c— Pair-Compressed Transition Table

YYPRIVATE YY TTYPE Yy nxtO [] = { 11,
1'1,3, IOI,l, r1r,1, 121’1, 131’1’
‘4,1, 5,1, '6",1, "7',1, '8',1,
"97,1};

YYPRIVATE YY TTYPE Yy nxtl [] = { O,
-1, -1, -1, -1, -1, -1, -1,
-1, -1, _11 _ll _ll _ll -1,
‘lp -11 _1/ _ll _ll _ll _ll
-1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, 2,

1, 1, 1, 1, 1, 1, 1,

-1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1,
-1, 5, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1,
-1, _ll _11 _ll _ll _ll _ll

YYPRIVATE YY TTYPE Yy nxt2 [] = { 11,
r0r,2, '17,2, '2',2, '3"',2, '4',2,
50,2, 6,2, '7',2, 8,2, '9',2,
,e,lS};

YYPRIVATE YY TTYPE Yy nxt3 [] = { 10,
'0r,2, '1°,2, '2',2, '3"',2, '4',2,
50,2, 6,2, "7"',2, 8,2, 97,2
}i

YYPRIVATE YY TTYPE Yy nxtd4 [] = { 10,
ro’,4, "1',4, '2',4, '3",4, "4’ ,4,
151141 16114’ I7I’4’ I8I’4’ ’9’[4
bi

YYPRIVATE YY TTYPE Yy nxt5 [] = { 10,
r0r,4, 17,4, "2',4, '3",4, "4',4,
50,4, "6 ,4, "77,4, 87,4, 97,4

}i

YYPRIVATE YY TTYPE
{

*Yy nxt[6] =

Yy nxt0 , Yy nxtl , Yy nxt2 , Yy nxt3 , Yy nxt4

-1, -1, -1,

-1, -1, -1,
-, -1, -1,
-1, -1, -1,

-1, 1, 1,

-1, -1, -1,
-1, -1, -1,
-1, -1, -1,
-1, -1, -1,
_11 —ll -1,
-1, -1, -1,
-1};
, Yy nxt5

Section 2.4.6 —Implementing a State-Machine-Driven Lexical Analyzer 7

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

Listing 2.16. continued. ..

}z

YYPRIVATE YY TTYPE vyy next(cur_state,
unsigned int c ;
int cur_state ;

{

c)

/* Given the current state and the current input character

* return the next state.

*/

YY TTYPE *p = Yy nxt[cur_state]
register int i;

if(p)
{
if((1 = *p++) == 0)
return p[c];

for(; -—-1i >= 0 ; p += 2)
if(¢ == p[0])
return p(l];
}

return YYF;

’

/* there are transitions */

/* row is uncompressed *x/

/* row is in in pairs */

Yy nxtO[] in Figure 2.7 contains 11 pairs (because 11 is in the first cell). The first pair
is [’’,3], which means that if the next input character is a dot, then the next state is
State 3. The next pair is [’0’, I |— if the lookahead character isa ’ 0’ go to State 1, and
so forth. If you get to the end of the list without finding the current lookahead character,
there is a failure transition on that character. Again, simplifying a little:

YY
row

if(
{

}

TTYPE *row;
= Yy nxt[current_state];
*row !'= 0)
for (num_pairs = *row++ ; --num pairs >= 0 ; row += 2)
if(row([0] == lookahead character)

{
next_state = row[l];
break;

The foregoing is implemented by the code on line 112 of Listing 2.16.
A third situation, unfortunately not illustrated in this example, occurs when a state
has no legal outgoing transitions. In this case, Yy nxt [state] is set to NULL, so:

if(

Yy nxt[current_state] == NULL)
next state = FAILURE ;

This transition is activated when the test on line 107 of Listing 2.16 fails.
Note that further compression can be achieved at the expense of error recovery by Using a default transition.
providing a default state other than the error state. Hitherto, an error was indicated when
you got to the end of the pair list. You can use the most common nonerror transition
instead of the error transition in this case, however. For example, Yy nxt2 contains

72

Setting pair-compression
threshold in LEX.

Pair compression,
compression ratio.

Accepting-state array,
Yyaccept [].

Input and Lexical Analysis —Chapter 2

these pairs:

[r07,2] (r1,2] 27,2 [3,2] [4',2]
["s’,2] ['67,21 [*77,2] ['8",2] ['9',2] ['e’,5]

All but one of the transitions are to State 2, so if you use the transition to State 2 as the
default (rather than a transition to the error state), the row could be compressed as fol-
lows

YYPRIVATE YY TTYPE Yy nxt2 [] = { 1, 2, 'e’,5 };

The first number (1) is the pair count, as before. The second number (2) is the default
next-state transition. If the next function gets through the entire list of pairs without
finding a match, it will go to this default next state. The remainder of the array is the one
pair that doesn’t go to the default state. This extreme compression isn’t very useful in a
lexical-analyzer application because you can’t really afford to discard all the error infor-
mation, but it’s sometimes useful in parser applications. The UNIX yacc utility uses a
variation on this method to compress its tables.'® Of course, if there are more transitions
to an explicit state than to the error state, you can put the error transitions into the pair
list and use the explicit state as the default state. This way you won’t loose any informa-
tion.

Pair compression is activated in IEX with a -cN command-line switch. N is the thres-
hold beyond which pairs are abandoned in favor of a simple array indexed by lookahead
character. The example we’ve been looking at had the threshold set at 11, so any state
with more than 11 outgoing transitions is handled with a simple array, and states with 11
or fewer outgoing transitions are represented with character/next-state pairs. The default
threshold—used when no N is given on the command line—is four.

The compression ratio here tends not to be as good as with redundant-row-and-
column elimination in programming-language applications. The current example uses
247 bytes, versus 154 for the other method. The C lexical analyzer uses 3,272 bytes for
the pair-compressed tables, versus 1,514 for the default method. It does do better when
the data in the matrix is both sparse and randomly distributed, however. The -v
command-line switch to IEX causes the final table sizes to be printed, so you can judge
which method is more appropriate for a given application.

You’ll note that the redundant-row-and-column elimination could be combined with
the pair-compression technique. For example, since the last two rows in the table shown
in Figure 2.7 are the same, you really need to store only one of them and keep two
pointers to it. I haven’t implemented this combined method.

The next part of 1lexyy . c is the accepting-state array, Yyaccept [], shown in List-
ing 2.17. The array is indexed by state number. It evaluates to O if the state is not an
accepting state. Other values set the conditions under which the lexeme is accepted. It
holds 1 if the string is anchored to the start of the line (a ~ was the leftmost symbol in the
original regular expression—an extra newline will be at the far left of the lexeme in this
case). It holds 2 if the string is anchored to the end of the line (a $ was the rightmost
symbol in the original regular expression—an extra newline will be at the far right of the
lexeme in this case). It holds 3 if the lexeme is anchored both to the beginning and the
end of the line, and 4 if the lexeme is always accepted—no anchors were present in the
original regular expression.

10. The method is described in [Aho], pp. 144-146. They use separate arrays for the pairs and the default
transitions, but the rationale is the same.

Section 2.4.6—Implementing a State-Machine-Driven Lexical Analyzer

Listing 2.17. lexyy.c— Accepting-State Identification Array

73

118 /* e

119 * The Yyaccept array has two purposes. If Yyaccept[i] is 0 then state
120 * i is nonaccepting. If it’s nonzero then the number determines whether
121 * the string is anchored, l=anchored at start of line, 2=at end of
122 *]line, 3=both, 4=line not anchored

123 x/

124

125 YYPRIVATE YY TTYPE Yyaccept[] =

126 |

127 o /* State 0 */

128 4 , /* State 1 */

129 4 , /* State 2 */

130 o /* State 3 */

131 4 , /* State 4 */

132 0 /* State 5 */

133 };

The remainder of lexyy.c file is the actual state-machine driver, shown in Listing
2.18. The first and last part of this listing are the second and third parts of the Ctrl-L-
delimited template file discussed earlier. The case statements in the middle (on lines 287
to 295 of Listing 2.18) correspond to the original code attached to the regular expres-
sions in the input file and are generated by LEX itself.

The various global variables that communicate with the parser are declared on lines
138 to 141. Note that yyout is provided for UNIX compatibility, but you shouldn’t use it
if you’re using occs (because it will mess up the windows in the debugging system).
Same goes for the output () and ECHO macros on lines 147 and 148. UNIX supports
them but they shouldn’t be used in an occs environment. It’s best to use the actual output
functions, or to supply similarly-named replacement functions that you can use to debug
your lexical analyzer (assuming that the functions you supply will eventually be
replaced by the occs versions). These replacement functions are shown in lex_io.c (List-
ing 2.18). Link this file to the lexical analyzer when you’re debugging a lex output file
without a parser. Use the versions of the routines that are in /./ib, and which support the
occs debugging environment, when you’re using an occs-generated parser.

The YYERROR () macro on line 151 of Listing 2.19 prints internal error messages.
There’s no UNIX equivalent because lex doesn’t print error messages. In the occs
environment, you should redefine YYERROR() to use yyerror () rather than
fprintf (). (Doitina’%{ %}’ block in the definitions section.)

The yymore () macro on line 154 of Listing 2.19 just sets a flag to true. It forces
the driver to continue processing the current lexeme, ignoring the current accepting
action. unput () and yyless () (on lines 156 and 157) are the two pushback func-
tions. They unterminate the current lexeme, push back any requested characters, and
then reterminate the lexeme. I've made extensive use of the comma operator here in
order to squeeze several instructions into a single macro. The comma operator just exe-
cutes the comma-delimited statements in sequence. It evaluates to the rightmost state-
ment in the list, but neither of these macros take advantage of this behavior—they’d be
declared void if they were functions. Braces can’t be used here because of the binding
problems discussed earlier. Note that the conditional on line 158 sets "yyleng’ to zero if
the i1 pushback () call fails, as it will if you try to push back too many characters;
otherwise, ’yyleng’ is just reduced by the number of pushed-back characters.

The input () function on line 162 of Listing 2.19 is complicated enough to be a
subroutine. It has to return a value, and the contortions necessary to do this with a

LEX state-machine driver.

yyout, output (),
ECHO.

YYERROR ().

yymore (), yyless(),
unput ().

input ().

74 Input and Lexical Analysis —Chapter 2

Listing 2.18. lex_io.c— Debugging Output Routines for IEX-Generated Analyzer

1 #include <stdio.h>

2 #include <stdarg.h>

3

4 /* This file contains two output routines that replace the ones in yydebug.c,
5 * found in 1.1ib and used by occs for output. Link this file to a LeX-

6 * generated lexical analyzer when an occs-generated parser 1s not present.

7 * Then use yycomment () for messages to stdout, yyerror() for messages to

8 * stderr.

9 x/

10

11 PUBLIC wvoid yycomment (fmt, ...)
12 char *fmt;

13 {

14 /* Works like printf(). */

15

16 va_list args;

17 va_start(args, fmt);

18 viprintf(stdout, fmt, args):
19 va_end (args);

20)

21

22 PUBLIC void yyerror(fmt, ...)
23 char *fmt;

24

25 /* Works like printf() but prints an error message along with the
26 * current line number and lexeme.

27 */

28

29 va_list args;

30 va_start(args, fmt);

31

32 fprintf (stderr, "ERROR on line %d, near <%$s>\n", yylineno, yytext);
33 viprintf(stderr, fmt, args):

34 va_end (args);

35 1}

comma operator are not worth the effort.

yylex (), yystate. The lexical analyzer itself, yylex () starts on line 177 of Listing 2.19. The current
state is held in yystate, which initially set to —1—a value that’s not used as a state
number. The code on lines 187 to 192 is executed only once because yystate is set to
—1 only the first time the subroutine is called. The

ii_advance();
ii_pushback (1) ;

forces an initial buffer load sothat i1 1look () can be used later on.

Control-flow in yylex (). The actual control flow through the program is unusual in that one branch of the
main loop exits the subroutine entirely and reenters the loop from the top. In other
words, if an action in the original input file contains a return statement, then control
passes out of the loop at that point, and passes back into the loop on the next call. A nor-
mal path through the loop is also available when no such return is executed. The
situation is illustrated in Figure 2.8. The initializations can’t be done at the top of the
loop because they’re performed only on accepting a lexeme, not on every iteration of the
loop.

Section 2.4.6—Implementing a State-Machine-Driven Lexical Analyzer

Figure 2.8. Flow of Control Within yylex ()

First call

Subsequent calls

I Normal initializations

while(1)
{

No return if (doing an accepting action)
in accepting {
action K

Normal Initializations

return
statement in
accepting action

The initializations on lines 194 to 198 of Listing 2.19 are executed every time the
loop is entered from the top, and these initializations are duplicated on lines 303 to 315
for those situations where an accepting action does not contain a return statement.
This code unterminates the previous lexeme (11 _unterm()), sets the start marker for
the current lexeme (11 mark start ()), and sets yylastaccept to zero to signify
that no accepting state has been seen (the start state, which is always State 0, cannot be
an accepting state). The 11 unterm() call does nothing if the string is not \0’ ter-
minated, as is initially the case.

Listing 2.19. lex.par— State-Machine Driver Copied to lexyy.c

75

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

* Global variables used by the parser.

x/

char *yytext; /* Pointer to lexeme.

int yyleng; /* Length of lexeme.

int yylineno; /* Input line number.

FILE *yyout = stdout;

2

* Macros that duplicate functions in UNIX 1

*/
#define output (c) putc (c,yyout)
#define ECHO fprintf (yyout, "%s", yyt

ex:

ext)

76

Input and Lexical Analysis —Chapter 2

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Listing 2.19. continued. ..

#ifndef YYERROR

define YYERROR(t) fprintf (stderr,"%s", t)
#fendif
f#idefine yymore () yymoreflg = 1

#define unput(c) (ii_unput(c), --yyleng)
#define yyless(n) (ii unterm(), \
(yyleng -= ii pushback(n) ? n : yyleng), \
ii term() \

int input () /* This is a macro in UNIX lex */
{
int c;
if((c = ii_input()) && (c != -1))
{
yytext = il _text ()
yylineno = ii lineno();
++yyleng;
}
return c;
}
2 */
yylex ()
{
int yymoreflg; /* Set when yymore () is executed */
static int yystate = -1; /* Current state. *x/
int yylastaccept; /* Most recently seen accept state */
int yyprev; /* State before yylastaccept */
int yynstate; /* Next state, given lookahead. *x/
int yylook; /* Lookahead character *x/
int yyanchor; /* Anchor point for most recently seen */
/* accepting state. */
if(yystate == -1)
{
yy_init lex(); /* One-time initializations */

ii_advance():
ii_pushback (1) ;
}

yystate = 0; /* Top-of-loop initializations */
yylastaccept = 0;
yymoreflg = 0;

ii_unterm();
ii mark_start();

while(1)
{
/* Check end of file. If there’s an unprocessed accepting state,
* yylastaccept will be nonzero. In this case, ignore EOF for now so
* that you can do the accepting action; otherwise, try to open another
*# file and return if you can’t.

*/

Section 2.4.6 —Implementing a State-Machine-Driven Lexical Analyzer

77

Listing 2.19. continued. ..

208 while(1)
209 {

210 if (
211 {
212

213

214 }
215 else
216 {
217 if(yylastaccept)
218 {
219

220

221 }
222 else if(yywrap())
223 {
224

225

226

227 }
228 else
229 {
230

231

232 }
233 }

234 }

235

236

237 if (yynstate
238 {
239

240

241

242 if(ii_advance() < 0)
243 {
244

245

246 }
247

248 if (yyanchor
249 {
250

251

252

253

254

255 }
256

257

258 }
259 else
260 {

261 if(
262 {
263 #ifdef YYBADINP
264 YYERROR("Ignoring bad input\n");
265
266
267 }

(yylook=ii look (1)) != EOF)
yynstate = yy next(yystate,
break;

/*

yynstate = YYF;
break;

/*
/*
yytext = "";

yyleng 0;

return 0;

ii advance(); /*

ii pushback(1l);

!'= YYF)

YY D(printf ("
YY D(printf(" to state %d on <%c>\n",

YYERROR ("Lexeme too long,
ii flush(1);

Yyaccept [yynstate])

= yystate ;
yynstate ;

yyprev
yylastaccept

ii_mark_end();

yystate yynstate;

'yylastaccept)

#fendif
ii advance();

Transition from state %d",

/* Mark input at current character.
/* A subsequent ii_to mark()
/* returns us to this position.

/* Skip char that caused failure.

yylook);

still something to do */

*/
*/

another file?
no

load a new buffer */

yystate)

)i
yynstate, yylook));

/* Buffer full */

discarding characters\n");

/* saw an accept state */

*/
*/
*/

/* illegal input */

*/

-

78

Input and Lexical Analysis —Chapter 2

Listing 2.19. continued. ..

268 else
269 {
270 ii to_mark(); /* Back up to previous accept state */
271 if (yyanchor & 2) /* If end anchor is active */
272 ii_ pushback (1) ; /* push back the CR or LF x/
273
274 if(yyanchor & 1) /* if start anchor is active */
275 ii_move_start(); /* skip the leading newline */
276
277 ii term(); /* Null-terminate the string */
278 yyleng = ii length ();
279 yytext = 1i text () :
280 yylineno = ii lineno ();
281
282 YY D(printf ("Accepting state %d, ", yylastaccept))
283 YY D(printf("line %d: <%s>\n", yylineno, yytext));
284
285 switch(yylastaccept)
286 {
287 case 1: /* State 1 */
288 return ICON;
289 break;
290 case 2: /* State 2 */
291 return FCON;
292 break;
293 case 4: /* State 4 */
294 return FCON;
295 break;
296
297 default:
298 YYERROR ("INTERNAL ERROR, yylex\n");
299 break;
300 }
301 }
302
303 ii unterm();
304 yylastaccept = 0;
305
306 if(!'yymoreflg)
307 {
308 yystate = 0;
309 ii mark_start():;
310 }
311 else
312 {
313 yystate = yyprev; /* Back up */
314 yymoreflg = 0;
315 }
316
317
318}
yymoreflg. The yymoreflg that is tested on line 306 of Listing 2.19 is set true by yymore ().

If yymoreflg is false, the machine behaves normally: the next state is State 0 and the
start-of-lexeme marker is reset so that the machine can collect a new lexeme (on lines
308 and 309). If yymoreflgq is true, the machine backs up one state rather than going to
State 0, and the start-of-lexeme marker isn’t modified, so additional characters are added

Section 2.4.6 —Implementing a State-Machine-Driven Lexical Analyzer

to the end of the current lexeme. The only use of yyprev is to remember the last state yvyprev
so that the machine can back up.
Generally, backing up is the correct action to take for yymore (). For example, the Problems with

naive string-processing algorithm discussed in Chapter Two looked like this: yymoze ().
A" [7\"]*\" 1f(yytext[yyleng-2] == "\\’)
yymore () ;
else

return STRING;

This expression creates the following machine:

CA=0

Anything but "

The problem is that the machine is in State 2 after the close quote is recognized. In order
to continue processing the string, it needs to back up to State 1 (so that another close
quote can get it back to State 2). The back up that’s initiated by yymore () can cause
problems (not very often, but, as Shiva says, to be four-armed is to be forewarned). One
of my original attempts to handle the escape-sequence-in-a-string problem looked like
this:

A" ["\"\\]* if(ii lookahead(l) == ’"\\’')

{
input () ; /* Skip the backslash */
input () ; /* and the character that follows. */
yymore () ;

}

else /* it’s a " */

{
input () ; /* Get the close guote */

return STRING;
}

The idea was to break out of the regular expression if either a backslash or quote was
encountered, look ahead to see which of the two possible characters were there, and then
absorb the escape sequence with input () calls. The state machine looks like this:

o - @, Anything but " or \

The problem arises when you try to handle a string like:

"\" "

The machine starts out in State 0, the quote puts it into State 1, and then the machine ter-
minates because there’s no outgoing transition from State 1 on a backslash. The code is
now activated and the if statement tests true. The two input () calls absorb the
backslash and the second quote, and yymore () backs us up to the previous state—State
0. Now the third quote is encountered, but the machine treats it as a start-of-string char-
acter, not as an end-of-string character. The code associated with State 1 won’t be exe-
cuted until a fourth quote or another backslash is encountered. The best solution to this
problem prevents the backup by using:

yyprev = yystate;
yymore () ;

rather than a simple yymore () invocation. To see what’s happening here, consider that
yyprev holds the number of the state to back up to—the previous state; yystate holds

80

Finding the next state.

End-of-file processing,
yywrap () -

Failure transitions in
yylex (),
yylastaccept.

YYBADINP

Input and Lexical Analysis —Chapter 2

the current state number. The assignment of the current state to the previous state means
that the machine will back up to the current state when yymore () is invoked. That is, it
won’t back up at all.

Alternately, you could use the following:

ii_unterm();
continue;

instead of yymore, but I think that this latter solution is more confusing. (Look at the
code to see what a continue will do here.) You don’t want to break out of the loop
because the existing lexeme is discarded in this case.

Returning to Listing 2.19, the while loop on lines 208 to 234 (page 77) gets the next
input character and puts it into yylook—the input is not advanced by ii look ().
The normal situation of not being at end of file is handled on line 212, where the next
state is computed. The else clause deals with end of file. If yylastaccept is true on
line 217, then the machine hasn’t executed the accepting action for the last lexeme in the
file, so end-of-file processing is delayed until the action is done. If it’s false, then
yywrap () is called to open a new input file. This user-supplied subroutine can be used
to chain together several input files. The default, library version just returns zero. If you
have several input files, you can replace the default version with one that opens the next
input file (and returns 1 until there are no more files to open). So, if yywrap () returns
false, it’s not time to wrap up and the code loops back up to line 208. The next state is
then recomputed using the first character in the new file (as if the EOF had not been
encountered). The code loops until a nonempty file is opened. There’s some potential
confusion here in that yywrap () returns true if the program should terminate, even
though a false return value would be more intuitive in this situation. Remember, the
name yywrap () stands for “go ahead and wrap up.”ll

When the loop terminates, yylook holds the current lookahead character, and the
potential next state is figured on line 212. The machine has not changed state yet
because yystate hasn’t been modified. The machine is looking ahead at what the next
state is going to be, given the current lookahead character.

If the next state is not a failure transition, the input is advanced (on line 242) and the
machine looks to see if the new state is an accepting state (on line 248). If so, the
accepting state is remembered in yylastaccept, and the state preceding the accepting
state is also remembered for yymore () processing. Finally, the driver switches to a
new state by modifying yystate on line 257.

The else clause that starts on line 259 handles failure transitions. In this case you
want to perform the accepting action associated with the most recently seen accepting
state (which you just remembered in yylastaccept). If yylastaccept is zero, then
no such accepting state was encountered and you’re looking at a bad lexeme (one that is
not described by any regular expression in the input file). An error message is printed if
YYBADINP istrue and 1i_advance () is called to skip the offending character.

If an accepting state had been encountered, the input is restored to the condition it
was in at that time by the ii_to_mark () call on line 270. The test on line 271 checks
for an end-of-line anchor, in which case the newline (which is part of the lexeme at this
point) must be pushed back into the input (in case it is needed to match a start-of-line
anchor in the next lexeme). The lexeme is terminated, and the global variables that com-
municate with the parser are initialized on lines 277 to 280. The if clause on the next

11. I've, perhaps wrongly, perpetuated the problem in order to keep UNIX compatibility.

Section 2.4.6 —Implementing a State-Machine-Driven Lexical Analyzer

line removes a newline that’s at the start of the lexeme as the result of a beginning-of-
line anchor.

The switch on line 285 contains all the accepting actions that were part of the origi-
nal input file. The case statements are all generated by IEX itself—the case values are
the state numbers of the associated accepting state. The default case on line 297
should never be executed. It’s here as insurance, in case an unknown bug in IEX gen-
erates a bad state number in the switch.

2.5 LEX—A Lexical-Analyzer Generator*

The remainder of this chapter presents the complete source code for IEX, along with
the underlying theory. You must read Appendix A if you intend to look at the implemen-
tation details. The set routines presented there are used heavily in this chapter, and a
familiarity with the calling conventions for these routines will be useful.

2.5.1 Thompson’s Construction: From a Regular Expression to an NFA*

IEX constructs NFA’s from regular expressions using a system called Thompson’s
Construction, developed by Ken Thompson at Bell Labs for the QED editor. It works as
follows:

The simplest possible regular expression is a single character, and this expression
can be represented by a correspondingly simple NFA. For example, a machine that
matches an a is shown below:

The concatenation of two regular expressions is also straightforward. The following

machine represents the expression ab by constructing individual machines for each
subexpression (the a and b), and then connecting the machines with an € edge:

a € b

This method needlessly wastes states, however. A better solution merges the ending
state of the first machine with the start state of the second one, like this:

O—=0O—=0
There are two situations in a I[EX application where an OR of two regular expressions is
required. The first is the input specification itself. That is, the [EX input contains many
regular expressions, but a single machine must be output that recognizes all of these
expressions. This means that all the input expressions are effectively ORed together to
create the output DFA. IEX does this high-level OR using the system shown in Figure
2.9. Each of the boxes is an NFA that represents an entire regular expression, and all of
these are connected together using several dummy states and € edges.

The second OR situation is the OR operator (the vertical bar) which can appear in the
regular expression itself (as in alb). IEX processes the OR operator by constructing the
machine shown in Figure 2.10. Again, the seemingly empty boxes in the pictures
represent machines for entire subexpressions. Figure 2.11 shows how the expression
((alb)lcd) would be represented. IEX starts out by making two machines to recognize the
a and b, and connects the two using the OR construction shown in Figure 2.10. IEX then
creates two more machines to recognize the ¢ and d, concatenating them together by
merging the end state of the first machine with the start state of the second. Finally, it

Accepting actions in
yylex ().

Simple expressions.

Concatenation.

Logical OR at the top
level.

OR operator (|).

81

82

Closure operators: * + ?

Evolution of a complex
regular expression.

Input and Lexical Analysis —Chapter 2

Figure 2.9. Connecting the Regular Expressions in a IEX Input File

€
o~ i
€ | I
| |
| |
€

to other machines

processes the second OR operator, applying the same construction that it used earlier,
but this time using the machines representing the more-complicated subexpressions (a/b)
and cd in place of the boxes in Figure 2.10.

Figure 2.10. Generic NFA for the OR operator

The machines to recognize the three closure operators are a little more complicated
looking. They are shown in Figure 2.12. Note that the machines that recognize + and ?
are special cases of the machine for the * operator.

Figure 2.13 shows the evolution of a machine that recognizes a subset of the
floating-point constants discussed earlier. The expression used is (D*\.D|D\.D*). It
recognizes numbers with one digit to the right of the point and zero or more digits
preceding it and it also recognizes the inverse—one digit to the left of the decimal point
and zero or more digits following the decimal point. LEX starts out constructing an
expression for the first D in the expression [in Figure 2.13(a)]. It then reads the leftmost
* and substitutes the first machine into the closure machine, yielding Figure 2.13(b). It
then reads the dot, and tacks it on to the right edge of the partially constructed machine
[Figure 2.13(c)], and it does the same for the next D [Figure 2.13(d)]. Encountering the |
operator, LEX holds onto the previously constructed expression for a moment, and then
constructs a second machine for the next subexpression (D\.D*), not shown in the
figure. Finally, it connects the two machines for the subexpressions together, using the
OR construction [Figure 2.13(e)].

Section 2.5.1 —Thompson’s Construction: From a Regular Expression to an NFA* 83

Figure 2.11. An NFA That Recognizes ((alb)lcd)

2.5.2 Implementing Thompson's Construction

This section presents a low-level implementation of the theory in the previous sec-
tion. Skip forward to Section 2.5.3 if you’re not interested in this level of detail.

2.5.2.1 Data Structures. A machine built with Thompson’s construction has several
useful characteristics: Characteristics of a
« All the machines that recognize subexpressions—no matter how complicated—have ~11ompson machine
a single start state and a single end state.
o No state has more than two outgoing edges.

84 Input and Lexical Analysis —Chapter 2

Figure 2.13. Constructing an NFA for (D*\.DID\.D#*)

()

(a)

o There are only three possibilities for the labels on the edges: (1) there is only one
outgoing edge labeled with a single input character, (2) there is only one outgoing
edge labeled with €, and (3) there are two outgoing edges labeled with €. There are
never two outgoing edges labeled with input characters, and there are never two
edges, one of which is labeled with an input character and the other of which is
labeled with €.

The NFA structure. The NFA data structure in Listing 2.20 uses these characteristics to implement an
NFA state. The next field either points at the next state, or is set to NULL if there are no

next, next2, and edge outgoing edges. The next?2 field is used only for states with two outgoing € edges. It is

fields of an NFA. set to NULL if there’s only one such transition. The edge field holds one of four values
that determine what the label looks like:

Section 2.5.2—Implementing Thompson’s Construction

85

o If there is a single outgoing edge labeled with an input character, edge holds that Single, non-¢ edge.

character.

« If the state has an outgoing € edge, then edge is set to EPSILON. € edges, EPSILON.
« If a transition is made on a character class, all characters in the class are elements of Character classes, cCL,

the SET pointed to by bitset, and edge holds the value CCL. The set elements are Pitset:
just the ASCII values of the characters. For example, if an ASCII ’ 0/, which has the
value 48, is in the character class, the number 48 will be in the set.
« If the state has no outgoing transitions, edge is set to EMPTY. Terminal states, EMPTY.

Listing 2.20. nfa.h— Data Structures and Macros

1

2 * Nfa s
3 * /

4

5 typedef
6 |

7 int
8

9 SET
10 stru
11 stru
12

13 char
14

15 int
16

17 '} NFA;
18

19 #define
20 #define
21 #define
22

23

24 {#define
25 {#define
26 {#define
27 #define

tate:

struct nfa
edge;

*bitset;

ct nfa *next;

ct nfa *next2;
*accept;
anchor;

EPSILON -1

CCL -2

EMPTY -3

NONE 0

START 1

END 2

BOTH (START | END)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Label for edge: character, CCL, EMPTY, or */
EPSILON. */
Set to store character classes. */
Next state (or NULL if none) *x/
Another next state 1f edge==EPSILON x/
NULL of this state isn’t used x/
NULL if not an accepting state, else */
a pointer to the action string *x/
Says whether pattern is anchored and, if */
so, where (uses #defines above). *x/

/* Non-character values of NFA.edge */

/*
/*
/*
/*
/*

Values of the anchor field: */

Not anchored */
Anchored at start of line */
Anchored at end of line *x/
Anchored in both places */

The accept field in the NFA structure is NULL for nonaccepting states; otherwise, it ~Storing accepting strings,

points at a string holding the action part of the original input rule—the code to be exe-

accept.

cuted when that state is accepted. The string itself is of variable length. The first int’s
worth of characters hold the line number and the remainder of the array holds the string.
For example, in a machine with a 16-bit int, the first two bytes of the string are the
line number (in binary) and the remainder of the string is the actual input text. The
pointer to the actual string is stored.

saved pointer

L

input line number

accepting string

— s

izeof (int) ké———

86

The anchor field.

NFA_MAX, STR_MAX

Input and Lexical Analysis —Chapter 2

If p is a pointer to an NFA structure, the actual string is accessed with p->accept, and
the line number can be accessed by casting accept into a pointer to int and backing up
one notch—Ilike this:

((int*) (p->accept)) [-1]

Because of various alignment problems, some care has to be taken to integrate the line
number into the string in this fashion—the mechanics are discussed shortly. The tech-
nique is useful, not only in the current application, but also for doing things like attach-
ing a precomputed string length to a string. The string can still be handled in the normal
way, but the count is there when you need it.

The macros on lines 24 to 27 of Listing 2.20 are possible values of the anchor field.
They describe whether a ~, $, or both were present in the regular expression.

The reminder of nfa.h, in Listing 2.21, holds other definitions needed to make the
machine. NFA MAX is the maximum number of NFA states that can be in the machine,
and STR_MAX is the total space available for all the accepting actions combined. The
rest of the file is just prototypes for the externally-accessible functions discussed below.

Listing 2.21. nfa.h— Other Definitions and Prototypes

36 NFA
37 wvoid

28 #define NFA MAX 768 /* Maximum number of NFA states in a x/
29 /* single machine. NFA MAX * sizeof (NFA) *x/
30 /* can’t exceed 64K. */
31 #define STR MAX (10 * 1024) /* Total space that can be used by the */
32 /* accept strings. */
33

34 wvoid new macro(char *definition); /* these three are in nfa.c */
35 wvoid printmacs (void);

*thompson (char *(*input_funct) (), int *max_state, NFA **start_state);
print nfa(NFA *nfa, int len, NFA *start); /* 1in printnfa.c */

Gilobal-variable
definitions: globals.h

crass and I (x)
macros, ALLOC.

The other file you need to look at before starting is globals.h, in Listing 2.22. This
file holds definitions for all the true global variables in the program (globals that are
shared between modules). All other globals are declared static, so their scope is lim-
ited to the file in which they are declared. For maintenance reasons, it’s desirable that
both the definition and declaration of a variable be in a single file. That way you don’t
have to worry about maintaining two files, one in which space is allocated and the other
containing extern statements describing the variables. The problem is solved in
globals.h using the CLASS and I (x) macros defined on lines three to seven of Listing
2.22. The following two lines are found in only one file [typically in the same file that
contains main () J:

#define ALLOC
#include "globals.h"

All other files include globals.h without the previous ALLOC definition. When ALLOC
exists, CLASS evaluates to an empty string and I (x) evaluates to its argument. So, the
input line:

CLASS char *Template I (="lex.par"):;
expands to

char *Template ="lex.par";

If ALLOC doesn’t exist, then CLASS expands to extern and I (x) expands to an empty
string. The earlier input line expands to:

Section 2.5.2 —Implementing Thompson’s Construction

extern char *Template;

The variables on lines 11 to 15 of globals.h are set by command-line switches; the ones
on lines 16 to 22 are used by the input routines to communicate with one another.

Listing 2.22. globals.h— Global-Variable Definitions

87

23 #undef CLASS
24 #undef I

1 /* GLOBALS.H: Global variables shared between modules */
2 #ifdef ALLOC

3 # define CLASS

4 # define I (x) x

5 {else

6 # define CLASS extern

7 # define I (x)

8 #endif

9 #define MAXINP 2048 /* Maximum rule size */
10

11 CLASS int Verbose I(=0); /* Print statistics */
12 CLASS int No_lines I(=0): /* Suppress #line directives */
13 CLASS int Unix I(=0); /* Use UNIX-style newlines x/
14 CLASS int Public I(=0); /* Make static symbols public */
15 CLASS char *Template I(="lex.par"); /* State-machine driver template */
16 CLASS int Actual lineno I(=1); /* Current input line number */
17 CLASS int Lineno I(=1); /* Line number of first line of */
18 /* a multiple-line rule. */
19 CLASS char Input buf [MAXINP]; /* Line buffer for input x/
20 CLASS char *Input_file name; /* Input file name (for #line) */
21 CLASS FILE *Ifile; /* Input stream. */
22 CLASS FILE *Ofile; /* Output stream. */

2.5.2.2 A Regular-Expression Grammar. The code innfa. c, which starts in List-
ing 2.23, reads a regular expression and converts it to an NFA using Thompson’s con-
struction. The file is really a small compiler, comprising a lexical analyzer, parser, and
code generator (though in this case, the generated code is a state-machine description,
not assembly language). The grammar used to recognize a IEX input specification is
summarized in Table 2.5. This is an informal grammar—it describes the input syntax in
a general sort of way. Clarity is more important here than strict accuracy. I'll fudge a
bit in the implementation in order to get the grammar to work. Precedence and associa-
tivity are built into the grammar (the mechanics are described in depth in the next
chapter). Concatenation is higher precedence than [; closure is higher precedence still;
everything associates left to right. The various left-recursive productions have not yet
been translated into an acceptable form, as was discussed in Chapter One—TI’ll do that as
I implement them.

2.5.2.3 File Header. The header portion of nfa.c is in Listing 2.23. The ENTER and
LEAVE macros on lines 21 to 28 are for debugging. They expand to empty strings when
DEBUG is not defined. When debugging, they print the current subroutine name (which is
passed in as an argument), the current lexeme and what’s left of the current input line.
An ENTER invocation is placed at the top of every subroutine of interest, and a LEAVE
macro is put at the bottom. The text is indented by an amount proportional to the
subroutine-nesting level—Lev is incremented by every ENTER invocation, and decre-
mented by every LEAVE. Levx4 spaces are printed to the left of every string using the
printf ()s * field-width capability. To simplify, the following printf () statement

Debugging: ENTER,
LEAVE.

88

Input and Lexical Analysis —Chapter 2

Table 2.5. A Grammar for IEX

Productions Notes
machine — rule machine A list of rules
| rule END_OF_INPUT
rule — expr EOS action A single regular expression followed by an accepting action.
| " expr EOS action Expression anchored to start of line.
| expr $ EOS action Expression anchored to end of line.
action — white_space string An optional accepting action.
| white_space
| €
expr — expr|cat_expr A list of expressions delimited by vertical bars.
| cat_expr
cat_expr — cat_expr factor A list of concatenated expressions.
I factor
factor - term* A subexpression followed by a *.
| term + A subexpression followed by a +.
| term ? A subexpression followed by a ?.
| term
term — [string] A character class.
| [* string] A negative character class.
| [1 (nonstandard) Matches white space.
| 1 (nonstandard) Matches everything but white space.
| . Matches any character except newline.
| character A single character.
| (expr) A parenthesized subexpression.
white_space — one or more tabs or spaces
character — any single ASCII character except white_space
string — one or more ASCII characters
outputs Lev spaces by printing an empty string in a field whose width is controlled by
Lev.
printf("%$*s", Lev, "");
2.5.2.4 Error-Message Processing. The next part of nfa.c is the error-message
routines in Listing 2.24. I've borrowed the method used by the C buffered I/O system:
possible error codes are defined in the enumerated type on lines 35 to 51, and a global
Error messages: variable is set to one of these values when an error occurs. The Errmsgs array on lines
Errmsgs,

parse_err ().

Managing NFA structures.

new (), discard().

Stack strategy,
Nfa_states|[].

53 to 68 is indexed by error code and evaluates to an appropriate error message. Finally,
the parse_err () subroutine on line 70 is passed an error code and prints an appropri-
ate message. The while loop on line 76 tries to highlight the point at which the error
occurred with a string like this:

The up arrow will (hopefully) be close to the point of error. parse err () does not
return.

2.5.2.5 Memory Management. Listing 2.25 contains the memory-management rou-
tines that allocate and free the NFA structures used for the states. Two routines are used
for this purpose: new (), on line 105, allocates a new node and discard(), on line
131, frees the node. I'm not using malloc () and free () because they’re too slow;
rather, a large array (pointed to by Nfa states) is allocated the first time new () is
called (on line 112 — the entire if statement is executed only once, during the first call).

A simple stack strategy is used for memory management: discard() pushes a
pointer to the discarded node onto a stack, and new () uses a node from the stack if one

Section 2.5.2 —Implementing Thompson’s Construction

Listing 2.23. nfa.c— File Header

89

#include <stdio.h>
#ifdef MSDOS

include <stdlib.h>
fielse

include <malloc.h>
#fendif

OO B WLWN —

10 #include <ctype.h>

11 #include <string.h>

12 #include <tools/debug.h>

13 #include <tools/set.h>

14 #include <tools/hash.h>

15 #include <tools/compiler.h>
16 #include <tools/stack.h>

/* NFA.C---Make an NFA from a LeX input file using Thompson’s construction */

17 #include "nfa.h" /* defines for NFA, EPSILON, CCL */
18 #include "globals.h" /* externs for Verbose, etc. */
19

20 #ifdef DEBUG

21 int Lev = 0;

22 # define ENTER(f) printf ("$*senter %s [%c][%1.10s] \n", \
23 Lev++ * 4, "", f, Lexeme, Input)
24 # define LEAVE (f) printf("$*sleave %s [%c][%1.10s]\n", \
25 --Lev * 4, "", f, Lexeme, Input)
26 jelse

27 # define ENTER (f)

28 # define LEAVE (f)

29 flendif

is available, otherwise it gets a new node from the Nfa states[] array (on line 124).
new () prints an error message and terminates the program if it can’t get the node. The
new node is initialized with NULL pointers [the memory is actually cleared in dis-
card () with the memset () call on line 136] and the edge field is set to EPSILON on
line 125. The stack pointer (Sp) is initialized at run time on line 116 because of a bug in
the Microsoft C compact model that’s discussed in Appendix A.

There’s an added advantage to the memory-management strategy used here. It’s con-
venient when constructing the NFA to create a physical machine with one node per state
and actual pointers to the next state. Later on, it will be convenient to have the NFA
represented as an array because you can use the array index as the state number. The
stack gives you both representations in a single data structure. The only disadvantage is
that any nodes that are still on the stack when the NFA construction is complete will be
holes in the array. It turns out that there is at most one hole, but there’s no way to know
in advance where it’s going to be.

The other memory-management function in nfa.c is the string-management function,
save (), also in Listing 2.25. This function is passed a pointer to a string, and returns a
pointer to a copy—in static memory—of that string. The pointer is preceded in memory
by an int-sized line number, as was discussed earlier on page 85. The array pointer
(Strings, on line 100) is declared as a pointer to int for portability reasons. Many
machines require ints to be aligned at more restrictive addresses than chars. For
example, an int might have to be at an address that is an even multiple of four, but a
char could be at any address. A run-time error would happen if you tried to put an int
into an illegal address (one that was not an even multiple of four). Making Strings an

edge initialized to
EPSILON.

The same data objects
form both an array and a
graph.

String management:
save ().

Alignment problems
caused by leading line
number in string.

90 Input and Lexical Analysis —Chapter 2

Listing 2.24. nfa.c— Error-Processing Routines

30 /e e
31 * Error processing stuff. Note that all errors are fatal.

32 K e e e e o — —————— — — —— — — — — — ——————_—_———— ———_——_——_——_——_————_——— e e
33 */

34

35 typedef enum err num_

36

37 E_MEM, /* Out of memory */
38 E BADEXPR, /* Malformed regular expression x/
39 E_PAREN, /* Missing close parenthesis *x/
40 E_STACK, /* Internal error: Discard stack full */
41 E_LENGTH, /* Too many regular expressions x/
42 E BRACKET, /* Missing [in character class */
43 E_BOL, /* ~ must be at start of expr or ccl *x/
44 E_CLOSE, /* + ? or * must follow expression */
45 E_STRINGS, /* Too many characters in accept actions *x/
46 E_NEWLINE, /* Newline in quoted string */
47 E_BADMAC, /* Missing } in macro expansion x/
48 E_NOMAC, /* Macro doesn’t exist */
49 E MACDEPTH /* Macro expansions nested too deeply. */
50

51 '} ERR_NUM;

52

53 PRIVATE char *Errmsgs|[] = /* Indexed by ERR _NUM */
54 {

55 "Not enough memory for NFA",

56 "Malformed regular expression",

57 "Missing close parenthesis",

58 "Internal error: Discard stack full",

59 "Too many regular expressions or expression too long",

60 "Missing [in character class",

61 "" must be at start of expression or after [",

62 "+ ? or * must follow an expression or subexpression",

63 "Too many characters in accept actions",

64 "Newline in quoted string, use \\n to get newline into expression",
65 "Missing } in macro expansion",

66 "Macro doesn’t exist",

67 "Macro expansions nested too deeply"

68 };

69

70 PRIVATE void parse_err(type)
71 ERR_NUM type;

72 {

73 fprintf (stderr, "ERROR (line %d) $%$s\n%s\n", Actual lineno,

74 Errmsgs|[(int)typel], S input);
75

76 while(++S_input <= Input)

77 putc(’_", stderr);

78

79 fprintf(stderr, "“\n");

80 exit (1):

Section 2.5.2 —Implementing Thompson’s Construction

int pointer takes care of the alignment problem at the cost of a little wasted space—the
size of the region used to store the string itself must be rounded up to an even multiple of
the int size. I'm assuming that a char will have less restrictive alignment rules than an
int—a pretty safe assumption.

A single large array that will hold all the strings is allocated the first time save () is
called on line 155 of Listing 2.25, thereby avoiding multiple inefficient malloc () calls
every time a new string is required. The line number is put into the string on line 164,
the pointer is incremented past the number, and the string itself is copied by the loop on
line 166. A char pointer (textp) is used for the purpose of copying the string com-
ponent. The test on line 161 is for lines starting with a vertical bar, which say that the
action for the next line should be used for the current rule. No strings are copied in this
situation—the same pointer is returned here as will be returned by the next save () call.
That is, when the input string is a " | "', several pointers to the same accepting string are
returned by consecutive save () calls. A pointer to the string itself (as compared to the
line number) is returned on line 182 in order to facilitate debugging—this way you can
examine the string directly without having to skip past the line number. The line number
can be accessed later on, using an expression like the following:

char *str =
line_number = (

save ("string");
(int *)str) [-1];

Listing 2.25. nfa.c— Memory Management—States and String

91

Getting the line number
from the left of the string.

82 PRIVATE NFA *Nfa states /* State-machine array */
83 PRIVATE int Nstates = 0 ; /* # of NFA states in machine */
84 PRIVATE int Next_alloc; /* Index of next element of the array */
85
86 #define SSIZE 32
87
88 PRIVATE NFA *Sstack[SSIZE]; /* Stack used by new() */
89 PRIVATE NFA **Sp = &Sstack[-1]; /* Stack pointer */
90
91 #define STACK OK() (INBOUNDS (Sstack, Sp)) /* true if stack not */
92 /* full or empty */
93 #define STACK USED() ((Sp-Stack) + 1) /* slots used */
94 #define CLEAR STACK() (Sp = Sstack - 1) /* reset the stack */
95 {#define PUSH (x) (*++Sp = (X)) /* put x on stack */
96 #define POP () (*Sp--) /* get x from stack */
97
98 /e ————————————————— */
99
100 PRIVATE int *Strings; /* Place to save accepting strings */
101 PRIVATE int *Savep; /* Current position in Strings array. */
102
103 /F e - */
104
105 PRIVATE NFA *new() /* NFA management functions */
106 {
107 NFA *p;
108 static int first time = 1;
109
110 if(first time)
111 {
112 if(! (Nfa_states = (NFA *) calloc(NFA MAX, sizeof (NFA))))
113 parse_err(E_MEM);
114

—

92 Input and Lexical Analysis —Chapter 2

Listing 2.25. continued...

115 first_time = 0;

116 Sp = &Sstack[-1 1;:

117 }

118

119 if (++Nstates >= NFA MAX)

120 parse_err(E_LENGTH);

121

122 /* If the stack is not ok, it’s empty */

123

124 p = !STACK _OK() ? &Nfa_states[Next alloc++] : POP();

125 p->edge = EPSILON;

126 return p;

127 1}

128

129 /%= = = = = = = = = = - = = = - - - - - - - - - - - - - - - - - */
130

131 PRIVATE void discard(nfa to_discard)

132 NFA *nfa_to_discard;

133 {

134 --Nstates;

135

136 memset (nfa to_discard, 0, sizeof (NFA));

137 nfa to discard->edge = EMPTY ;

138 PUSH(nfa_to discard):

139

140 if (!STACK OK())

141 parse_err(E_STACK);

142}

143

144 /% e */
145

146 PRIVATE char *save(str) /* String-management function. */
147 char *str;

148

149 char *textp, *startp;

150 int len;

151 static int first_time = 1;

152

153 if(first _time)

154 {

155 if (! (Savep = Strings = (int *) malloc(STR MAX)))

156 parse_err(E MEM);

157

158 first_time = 0;

159 }

160

161 if(*str == "|’)

162 return (char *) (Savep + 1);

163

164 *Savep++ = Lineno;

165

166 for(textp = (char *)Savep ; *str ; *textp++ = *str++)

167 if (textp >= (char *) (Strings + (STR_MAX-1)))

168 parse_err(E_STRINGS);

169

170 *textp++ = '\0’ ;

171

172 /* Increment Savep past the text. "len" is initialized to the string length.
173 * The "len/sizeof (int)" truncates the size down to an even multiple of the
174 * current int size. The "+(len % sizeof(int) != 0)" adds 1 to the truncated

—p

Section 2.5.2 —Implementing Thompson’s Construction

93

Listing 2.25. continued...

175 * size if the string length isn’t an even multiple of the int size (the !=
176 * operator evaluates to 1 or 0). Return a pointer to the string itself.

177 */

178

179 startp = (char *)Savep;

180 len = textp - startp:;

181 Savep += (len / sizeof(int)) + (len % sizeof (int) != 0);

182 return startp;

183 }

2.5.2.6 Macro Support. The next code segment (in Listing 2.26) comprises the
macro-support routines. new_macro () (on line 202) is passed a pointer to a line that
contains a macro definition and it files the macro in a small symbol table. The
expand macro (char **namep) routine on line 264 is passed a pointer to a charac-
ter pointer, which in turn points at a macro invocation. The routine advances *namep
past the invocation, and returns a string holding the macro’s contents. The print-

Macro substitution:
new_macro(),
expand_macro ().

macs () subroutine on line 300 of Listing 2.26 prints the macros. The various hash rou- printmacs()
tines and the HASH TAB structure that are used here are discussed in Appendix A.
Listing 2.26. nfa.c— Macro Support
184 /F e
185 * MACRO support:
186 */
187
188 #define MAC_NAME MAX 34 /* Maximum name length */
189 #define MAC TEXT MAX 80 /* Maximum amount of expansion text */
190
191 typedef struct
192 {
193 char name[MAC_NAME MAX];
194 char text[MAC_TEXT MAX];
195
196 } MACRO;
197
198 PRIVATE HASH TAB *Macros; /* Symbol table for macro definitions */
199
200 /e */
201
202 PUBLIC wvoid new_macro(def)
203 char *def;
204 |
205 /* Add a new macro to the table. If two macros have the same name, the
206 * second one takes precedence. A definition takes the form:
207 * name <whitespace> text [<whitespace>]
208 * whitespace at the end of the line is ignored.
209 */
210
211 unsigned hash_add():
212
213 char *name; /* Name component of macro definition */
214 char *text; /* text part of macro definition */
215 char *edef; /* pointer to end of text part */
216 MACRO *p;
217 static int first time = 1;
218

94

Input and Lexical Analysis —Chapter 2

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Listing 2.26. continued. ..

if (first_time)
{

first time = 0;

Macros = maketab(31, hash_add, strcmp);
}

for (name = def; *def && !isspace(*def) ; def++) /* Isolate name */

if (*def)
*def++ = '\0’ ;

/* Isolate the definition text. This process is complicated because you need
* to discard any trailing whitespace on the line. The first while loop
* skips the preceding whitespace. The for loop is looking for end of
* string. If you find a white character (and the \n at the end of string
* is white), remember the position as a potential end of string.

while(isspace(*def)) /* skip up to macro body *x/
++def;

text = def; /* Remember start of replacement text */

edef = NULL; /* strip trailing white space */

while(*def)
{
if(!isspace(*def))
++def;
else
for (edef = def++; isspace(*def) ; ++def)

’

}

if (edef)
*edef = '\0’;
/* Add the macro to the symbol table */

p = (MACRO *) newsym(sizeof (MACRO));
strncpy (p—>name, name, MAC_NAME MAX);
strncpy (p—>text, text, MAC TEXT MAX);
addsym(Macros, p);

/* ___________________________________ */
PRIVATE char *expand_macro (namep)
char **namep;

{

/* Return a pointer to the contents of a macro having the indicated
* name. Abort with a message if no macro exists. The macro name includes
* the brackets, which are destroyed by the expansion process. *namep
* is modified to point past the close brace.
x/

char *ps
MACRO *mac;

Section 2.5.2—Implementing Thompson’s Construction

95

Listing 2.26. continued. ..

276 if(! (p = strchr(++(*namep), "}’))) /* skip { and find } */
277 parse _err(E_BADMAC) /* print msg & abort */
278 else

279 {

281

282 if(! (mac = (MACRO *) findsym(Macros, *namep)))

283 parse_err(E NOMAC);

284

285 *namep = p ; /* Update name pointer. *x/
286 return mac->text;

287 }

288

290 }

291

P A T T */
293

294 PRIVATE print a macro(mac) /* Workhorse function needed by

296 |

297 printf("%$-16s--[%s]--\n", mac->name, mac->text);
298 }

299

300 PUBLIC void printmacs () /* Print all the macros to stdout */
301 {

302 if(!'Macros)

303 printf ("\tThere are no macros\n");

304 else

305 {

306 printf ("\nMACROS:\n") ;

307 ptab(Macros, print_a macro, NULL, 1);

308 }

309)

280 *p++ = "\0’; /* Overwrite close brace. */

289 return "ERROR"; /* If you get here, it’s a bug */

*/

295 MACRO *mac; /* ptab() call in printmacs(), below */

2.5.2.7 LEX’s Lexical Analyzer. The lowest-level input functions are in input.c,
Listing 2.27. get_expr () on line eight is the actual input function. It gets an entire get_expr()
rule—both the regular expression and any following code—from the input file (pointed

to by Ifile) and puts it into Input_buf []. Multiple-line rules are handled here in Input buffers: 1file,

that lines that start with white space are concatenated to the previous line. Two line- IPPut_buffer.

number variables are modified in this routine. They are Lineno, which holds the input

line number of the first line of the rule, and Actual lineno, which holds the current Multiple-line actions:

Lineno,

input line number. get expr () normally returns a pointer to the input string (in ,
e Actual_lineno

Input_buf []). It returns NULL either at end of file or when a line starting with a $% is
encountered. Since %% is treated as an end of file, the third part of the input file, which
contains C source code that is passed directly to the output, is ignored by the parser.

Listing 2.28 holds the lexical analyzer itself. The token set is defined in the LX's lexical analyzer.

enumerated type on lines 310 to 330. The L token (L for literal) is used for all characters

that aren’t represented by explicitly defined tokens. Escaped characters and characters Literal characters: the L

within quoted strings are also returned as L tokens, even if the lexeme would normally token, EOS.

be an explicit token. The EOS token is returned at end of the regular expression, but the
input buffer holds the entire rule, including a multiple-line accepting action. The parser
uses this fact to pick up the accepting action when an EOS is encountered. Note that end
of input is also treated as a token.

96 Input and Lexical Analysis —Chapter 2

Listing 2.27. input.c— Low-Level Input Functions

1 #include <stdio.h>

2 #include <ctype.h>

3 $#include <tools/debug.h>

4 #include "globals.h"

5

6 /* INPUT.C Lowest-level input functions. */

7

8 PUBLIC char *get expr ()

9

10 /* Input routine for nfa(). Gets a regular expression and the associated
11 * string from the input stream. Returns a pointer to the input string
12 * normally. Returns NULL on end of file or if a line beginning with % is
13 * encountered. All blank lines are discarded and all lines that start with
14 * whitespace are concatenated to the previous line. The global variable
15 * Lineno is set to the line number of the top line of a multiple-line
16 * block. Actual lineno holds the real line number.

17 */

18

19 static int lookahead = 0;

20 int space_left;

21 char *p;
22
23 P = Input_buf;
24 space_left = MAXINP;
25 if (Verbose > 1)
26 printf("b%d: ", Actual lineno);
27
28 if (lookahead == %’) /* next line starts with a % sign *x/
29 return NULL; /* return End-of-input marker */
30

31 Lineno = Actual_lineno ;

32

33 while((lookahead = getline(&p, space_left-1, Ifile)) != EOF)

34 {

35 if (lookahead == 0)

36 lerror(l, "Rule too long\n");

37

38 Actual lineno++;

39

40 if (!Input buf(0]) /* Ignore blank lines */
41 continue;

42

43 space left = MAXINP - (p-Input_buf);

44

45 if (!isspace(lookahead))

46 break;

47

48 *p++ = '\n’ ;

49 }

50

51 if (Verbose > 1)

52 printf("%$s\n", lookahead ? Input buf : "--EOF--");

53

54 return lookahead ? Input_buf : NULL ;

55)

56

ST /e */
58

-

Section 2.5.2 —Implementing Thompson’s Construction

97

Listing 2.27. continued. ..

59 PRIVATE int getline(stringp, n, stream)
60 char **stringp;

61 FILE *stream;

62 |

63 /* Gets a line of input. Gets at most n-1 characters. Updates *stringp
64 * to point at the ’\0’ at the end of the string. Return a lookahead
65 * character (the character that follows the \n in the input). The ’‘\n’
66 * is not put into the string.

67 *

68 * Return the character following the \n normally,

69 * EOF at end of file,

70 * 0 1f the line is too long.

71 x/

72

73 static int lookahead = 0;

74 char *str, *startstr;

75

76 startstr = str = *stringp;

77

78 if(lookahead == 0) /* initialize */
79 lookahead = getc(stream);

80

81 if(n > 0 && lookahead != EOF)

82 {

83 while(--n > 0)

84 {

85 *str = lookahead ;

86 lookahead = getc(stream);

87

88 if(*str == ’'\n’ || *str == EOF)

89 break;

90 ++str;

91 }

92 *str = '\0";

93 *stringp = str ;

94 }

95 return (n <= 0) ? 0 : lookahead ;

9%)

Listing 2.28. nfa.c— IEX’s own Lexical Analyzer

310 typedef enum token
311 |

312 EOS = 1, /* end of string */
313 ANY, VAN */
314 AT BOL, VA */
315 AT EOL, /* 8 */
316 CCL_END, /*] */
317 CCL_START, /* 0 */
318 CLOSE_CURLY, /*) */
319 CLOSE_PAREN, /*) */
320 CLOSURE, /x A */
321 DASH, /* = */
322 END OF INPUT, /* EOF */
323 L, /* literal character */
324 OPEN_CURLY, /* o */
325 OPEN_PAREN, /* A */

98 Input and Lexical Analysis —Chapter 2

Listing 2.28. continued...

326 OPTIONAL, /* ? *x/

327 OR, /x| x/

328 PLUS_CLOSE /* o+ */

329

330 '} TOKEN;

331

332 PRIVATE TOKEN Tokmap[] =

333 {

334 /% e A "B °C ‘D "E °"F °G °"H "I °J K "L "M °N */

335 L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,

336

337 /* "0 P °Q "R s T U "V "W "X "y °“z °["\] o*/

338 L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,

339

340 /* "t " SPACE ! " # S 2 & 4 */

341 L, L, L, L, L, L, AT EOL, L, L, L,

342

343 /x|«) * + , - . */

344 OPEN_PAREN, CLOSE PAREN, CLOSURE, PLUS CLOSE, L, DASH, ANY,

345

346 /* / 0 1 2 3 4 5 6 7 8 9 : ; < = x/

347 L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,

348

349 /x> ? x/

350 L, OPTIONAL,

351

352 /* @ A B c D E F G H I J K L M N *x/

353 L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,

354

355 /* O P Q R S T U v w X Y Z */

356 L, L, L., L, L, L, L, L, L, L, L, L,

357

358 /x| \] " */

359 CCL_START, L, CCL_END, AT BOL,

360

361/ _ ‘''a b ¢ d e f g h i Jj k 1 m */

362 L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,

363

364 /* n o p g r s t u v w X y z */

365 L, L, L, L, L, L, L, L, L, L, L, L, L,

366

367 /x| ! } DEL */

368 OPEN_ CURLY, OR, CLOSE CURLY, L

369 };

370

371 PRIVATE char * (*Ifunct) () ; /* Input function pointer */
372 PRIVATE char *Input = "" ; /* Current position in input string */
373 PRIVATE char *S_input ; /* Beginning of input string */
374 PRIVATE TOKEN Current_tok ; /* Current token */
375 PRIVATE int Lexeme ; /* Value associated with LITERAL */
376

377 #define MATCH (t) (Current_tok == (t))

378

379 e

380 * Lexical analyzer:

381 *

382 * Lexical analysis is trivial because all lexemes are single-character values.
383 * The only complications are escape sequences and quoted strings, both

384 * of which are handled by advance (), below. This routine advances past the
385 * current token, putting the new token into Current tok and the equivalent

-

Section 2.5.2 —Implementing Thompson’s Construction

99

Listing 2.28. continued...

386
387
388

lexeme into Lexeme.
value. For example,
character.

If the character was escaped, Lexeme holds the actual
if a "\s" is encountered, Lexeme will hold a space
The MATCH(x) macro returns true 1f x matches the current token.

389
390
391
392 PRIVATE int
393 {
394
395
396
397
398
399
400
401
402 if (
403 {
404

405

406 do

407 {

408 if(
409 {
410

411

412 }
413 while(isspace(*Input))
414 Input++;

415

416

417

418

419 }
420

421 while(*Input == ’\0’)
422 {

423 if (INBOUNDS (stack,
424 {
425

426

427 }
428

% % % %

/

advance ()
static int
int

static char

inquote = 0;
saw_esc;
*stack[SSIZE],
**sp = NULL;
if(!'sp)
sp = stack - 1;
Current_tok == EOS)
if (inquote)

parse_err(E NEWLINE);

! (Input = (*Ifunct) ())

Current_tok =
goto exit;

} while (!*Input);

S_input = Input;

sp))

Input = *sp-- ;
continue;

Current_tok =
Lexeme = '\0';
goto exit;

EOS;

if(!inquote)

while(*Input == ’{’)
437 {

*++sp
Input =

Input ;
expand macro(sp);

if (TOOHIGH (stack, sp))
parse_err (E_MACDEPTH) ;

Advance both modifies Current tok to the current token and returns it.

/*
/*
/*

*/
*/
*/
*/

Processing quoted string
Saw a backslash
Input-source stack

and stack pointer.

/*
/*

*/
*/

Initialize sp.
Necessary for large model

Get another line x/

/*

) /* End of file */

END_OF INPUT;

*/
*/

Ignore leading
white space...

and blank lines. *x/

*/
*/

Remember start of line
for error messages.

*/

/* Restore previous input source

/* No more input sources to restore */
/* ie. you’re at the real end of */
/* string. */

P/

Macro expansion required
Stack current input string */
and replace it with the macro */

body. */

Stack overflow */

100

Input and Lexical Analysis —Chapter 2

Listing 2.28. continued...

446 if(*Input == "'"’)

447 { /* At either start and end of a quoted */
448 inquote = “inquote; /* string. All characters are treated as x/
449 if(!*++Input) /* literals while inquote is true). */
450 {

451 Current_tok = EOS ;

452 Lexeme = "\0’;

453 goto exit;

454 }

455 }

456

457 saw_esc = (*Input == "\\’);

458

459 if(!inquote)

460 {

461 if(isspace (*Input))

462 {

463 Current_tok = EOS ;

464 Lexeme = "\0’;

465 goto exit;

466 }

467 Lexeme = esc(&Input);

468 }

469 else

470 {

471 if(saw_esc && Input[l] == """)

472 {

473 Input += 2;

474 Lexeme = '"’;

475 }

476 else

477 Lexeme = *Input++ ;

478 }

479

480 Current_tok = (inquote || saw_esc) ? L : Tokmap[Lexeme] ;
481 exit:

482 return Current_tok;

483 }

Ifunct, Input,
S_input, Current_tok,
Lexeme

MATCH (t)

advance ()

The translation problem is simplified by the fact that all lexemes are single charac-
ters. ([~, which starts a negative character class, is treated as a CCL_START/AT_BOL
pair). The Tokmap (] array on lines 332 to 369 is used to translate these single-
character lexemes into tokens. It is indexed by ASCII character, and evaluates to the
token value associated with that character.

Various other variables are needed by the lexical analyzer, all declared on lines 371
to 375 of Listing 2.28. Ifunct points at the current input function, which should work
like gets (), returning either the next input line or NULL at end of file. Input points at
the current input line, and S_input is the current position on that line. Current tok
holds the current token, and Lexeme holds the associated lexeme (which is only needed
for L tokens). The MATCH (t) macro on line 377 of Listing 2.29 evaluates true if t is the
current lookahead token.

The advance () function on lines 392 to 483 of Listing 2.28 advances the input by
one character, modifying Current tok and Lexeme as appropriate, and also returning
the current token. An END_OF_INPUT token is returned at end of file. This subroutine
is probably the most complicated routine in the parser, and is also a little long for my
taste, but it seemed best to keep the whole lexical analysis phase in a single subroutine

Section 2.5.2 —Implementing Thompson’s Construction

for maintenance reasons. A new line is fetched on lines 402 to 419 only if the end of the
previous line has been reached (Current_tok is EOS).

Lines 421 to 444 of Listing 2.28 handle macro expansion. Macros are delimited by
braces, and they are recognized in the while loop on line 436, which finds the leading
brace. It’s a loop because macro definitions might be nested—if the first character of the
macro body is also an open brace, the loop will expand this inner macro as well as the
current one. Nested macros are handled with a stack. When an inner macro is encoun-
tered, the current input buffer is pushed onto a stack, and Input is modified to point at
the macro-replacement text. The loop on line 421 is activated when you get to the end of
the replacement text. The previous input string is restored at the top of the loop by pop-
ping it off the stack. The code on lines 429 to 431 is activated only if the stack is empty
and no more characters are found in the current input source, in which case end of string
has been reached. The goto statement on line 431 is functioning as a return statement
here. I generally shun multiple return statements in favor of multiple goto branches
to a label that precedes a single return statement. This way, the subroutine has only a
single exit point so it’s easier to set up breakpoints and debugging diagnostics.

Quotes are recognized on line 446, and inquote is set to true when processing a
quoted string. Similarly, saw_escape is set to true on line 457 when a backslash is
encountered. The clause on lines 461 to 467 handles normal text. EOS, which marks
the end of the regular expression, is returned if any white space is encountered, and
escape sequences are expanded by the esc () call on line 467. The following else
clause handles quoted strings. The test on line 471 is looking for a ", which must be
treated as a literal quote mark. All other characters, including white space, are con-
sidered to be part of the regular expression and are just returned in the normal way.
Finally, the current token is put into Current tok on line 480. If you’re in a quoted
string or if the current character is preceded by a backslash, then the current character is
treated literally and an L token is returned; otherwise, the character is translated to a
token by looking it up in Tokmap[].

2.5.2.8 Parsing. LEX’s parser begins in Listing 2.29. The prototypes at the top of the
listing are necessary, both for debugging and because the parser itself is highly
recursive—there is no way to arrange the subroutines to avoid all forward references.
The parser is a straightforward implementation of the grammar presented earlier. The
topmost routine, machine () on line 508 of Listing 2.29, collects a series of rules and
chains them together using € transitions and dummy states (as was pictured in Figure 2.9
on page 82). The rule () calls on lines 516 and 522 return pointers to NFA’s that
represent each regular expression on the input line.

The rule () subroutine on line 531 of Listing 2.29 gets a single regular expression
and associated action. Most of the work is done by expr (), called on lines 554 and
557. The routine is passed two pointers to NFA pointers. When expr () returns, these
two pointers will have been modified to point at the first and last nodes in the machine
(there will be only one of each). That is, synthesized attributes are used here (and
throughout the rest of the parser), but I can’t use the actual return value (the argument to
a return statement) because there are two attributes. Consequently, I'm passing
pointers to variables to be modified. (Put another way, I'm doing a call by reference
here—passing pointers to the object to be modified).

Beginning- and end-of-line anchors are processed directly in rule () on lines 550 to
554 of Listing 2.29. An extra node is created with an outgoing transition on a newline so
that the ~ is treated as if it were a regular expression that matched a newline. The
anchor field is modified on line 552 to remember that this newline is there as the result
of an anchor, as compared to a specific match of a \n. The newline has to be discarded
in the former case; it remains in the lexeme if a specific match was requested, however.

101

Macro expansion.

Quotes in regular expres-
sions.

machine ()

rule ()

expr ()

Anchor processing.

102

Listing 2.29. nfa.c— Parser, Part 1: machine () and rule ()

Input and Lexical Analysis —Chapter 2

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

PRIVATE int advance (void) ;
PRIVATE wvoid cat_expr (NFA**, NFA**);
PRIVATE woid discard (NFA*) ;
PRIVATE void dodash (SET*) ;
PRIVATE void expr (NFA**, NFA**);
PRIVATE void factor (NFA**, NFA**);
PRIVATE int first in cat (TOKEN),
PRIVATE NFA *machine (void)
PRIVATE NFA *new (void)
PRIVATE void parse_err (ERR_NUM):
PRIVATE NFA *rule (void)2
PRIVATE char *save (char*)
PRIVATE void term (NFA**, NFA**);
K

*

% % % % % %

PR
{

PRIVATE NFA

{

The Parser:
A simple recursive descent parser that creates a Thompson NFA for
a regular expression. The access routine [thompson()] is at the
bottom. The NFA iIs created as a directed graph, with each node
containing pointer’s to the next node. Since the structures are
allocated from an array, the machine can also be considered
as an array where the state number is the array index.

/

IVATE NFA *machine ()

NFA *start;
NFA *p;

ENTER ("machine") ;

p = start =
p->next

new () ;
rule();

while (
{

!MATCH (END_OF INPUT))

p->next2

= new();

p

p->next2;

p->next rule();

}

LEAVE ("machine") ;
return start;

*rule ()

/ rule --> expr EOS action

“expr EOS action
expr$ EOS action
-—>

action <tabs> <string of characters>

*
*
*
*
*
* epsilon
*

Section 2.5.2—Implementing Thompson’s Construction

103

Listing 2.29. continued. ..

541 NFA *p;

542 NFA *start = NULL;

543 NFA *end = NULL;

544 int anchor = NONE;

545

546 ENTER ("rule") ;

547

548 if (MATCH (AT BOL))

549 {

550 start = new() ;
551 start->edge = ‘\n’ ;
552 anchor |= START ;
553 advance () ;

554 expr (&start->next, &end);
555 }

556 else

557 expr(&start, &end);

558

559

560 if (MATCH(AT EOL))

561 {

562 /* pattern followed by a carriage-return or linefeed (use a
563 * character class).

564 */

565

566 advance () ;

567 end->next = new() ;
568 end->edge = CCL ;
569

570 if(! (end->bitset = newset()))
571 parse _err(E _MEM);
572

573 ADD (end->bitset, ’'\n’);
574

575 if(!Unix)

576 ADD (end->bitset, ’'\r’);
577

578 end = end->next ;
579 anchor |= END H
580 }

581

582 while(isspace (*Input))

583 Input++ ;

584

585 end->accept = save(Input);
586 end->anchor = anchor;

587 advance () ; /* skip past EOS */
588

589 LEAVE ("rule") ;

590 return start;

591 }

This information is eventually output as a table that will be used by the IEX-generated
driver when it processes the newline at run time. The end-of-line anchor is handled in a
similar way on lines 566 to 579 of Listing 2.29, though the extra node is put at the end of
the machine rather than at the beginning.

104

ms-DOS, end-of-line prob-
lems in anchors.

OR and concatenation:
expr(),cat_expr().

Input and Lexical Analysis —Chapter 2

Anchors are recognized with a character class that matches either a carriage return or
linefeed (as compared to a literal match of a ’ \n’ character). You must recognize both
characters in MS-DOS “‘binary-mode” input, because all input lines are terminated with a
CR-LF pair (in that order). Lines are terminated by a single newline only in
“translated”” mode. Since I don’t want to worry about which of the two input modes are
used, I'm testing for both possibilities. When expr () returns, the input is positioned at
the start of the accepting action, which is saved on line 585 (remember, an entire
multiple-line action is collected into the input string).

Subroutines expr () and cat_expr () are in Listing 2.30. These routines handle the
binary operations: | (OR) and concatenation. I’ll show how expr () works by watching
it process the expression AlB. The cat _expr () call on line 621 creates a machine that
recognizes the A:

*startp and *endp are modified to point at Nodes 0 and 1, and the input is advanced
to the OR operator. The MATCH on line 623 succeeds and the OR is skipped by the subse-

quent advance () call. The second cat_expr () call (on line 625) creates a machine
that recognizes the B:

(3
and modifies e2_start and e2_end to point at nodes representing States 2 and 3. The
two machines are then joined together to create the following machine:

Node 4 is created on lines 628 to 630 and *startp is modified to point at Node 4 on
line 631. Node 5 is set up in a similar way on the next four lines.

Listing 2.30. nfa.c— Parser, Part 2: Binary Operators

592 PRIVATE void expr(startp, endp)
593 NFA **startp, **endp ;
594
595 /* Because a recursive descent compiler can’t handle left recursion,
596 * the productions:
597 *
598 * expr -> expr OR cat_expr
599 * | cat_expr
600 *
601 * must be translated into:
602 *
603 * expr -> cat_expr expr’
604 * expr’ -> OR cat_expr expr’
605 * epsilon
606 *
607 * which can be implemented with this loop:
608 *
609 * cat expr
~ —

Section 2.5.2 —Implementing Thompson’s Construction

105

Listing 2.30. continued. ..

610 * while(match(OR))

611 * cat_expr

612 * do the OR

613 */

614

615 NFA *e2 start = NULL; /* expression to right of |
616 NFA *e2 _end = NULL;

617 NFA *p;

618

619 ENTER ("expr") ;

620

621 cat_expr(startp, endp);

622

623 while(MATCH(OR))

624 {

625 advance () ;

626 cat_expr(&e2_start, &e2_end);
627

628 p = new();

629 p->next2 = e2 start ;

630 p->next = *startp

631 *startp = p;

632

633 p = new();

634 (*endp) ->next = p;

635 e2 end ->next = p;

636 *endp = p;

637 }

638 LEAVE ("expr") ;

639)}

640

641 /* = = = = = = = = = = = = = = - = - - - - - - - - - - - - - - -
642

643 PRIVATE void cat_expr(startp, endp)
644 NFA **startp, **endp ;

645 |

646 /* The same translations that were needed in the expr rules are needed again
647 * here:

648 *

649 * cat_expr -> cat_expr | factor
650 * factor

651 *

652 * is translated to:

653 *

654 * cat_expr -> factor cat_expr’
655 * cat_expr’ -> | factor cat_expr’
656 * epsilon

657 */

658

659 NFA *e2 start, *e2 end;

660

661 ENTER ("cat_expr");

662

663 if (first_in cat(Current tok))
664 factor(startp, endp):

665

666 while(first in cat(Current_tok))
667 {

668 factor(&e2_start, &e2_end);
669

*/

106

Input and Lexical Analysis —Chapter 2

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

Listing 2.30. continued. ..

memcpy (*endp, e2 start, sizeof (NFA));
discard(e2_start);

*endp

}

LEAVE ("cat_expr");

PRIVATE int
TOKEN tok;
{

switch(tok)

{

case CLOSE_PAREN:
case AT EOL:

case OR:

case EOS: return 0;

case CLOSURE:

case PLUS CLOSE:

case OPTIONAL: parse_err(E_CLOSE); return 0;
case CCL_END: parse_err(E_BRACKET); return 0;
case AT BOL: parse_err(E_BOL); return 0;
}

return 1;

= e2_end;

first_in_cat (tok)

Problems with implicit
concatenation operator,
first_in_cat().

Concatenation.

Concatenation is a somewhat harder problem because there’s no operator to look for.
The problem is solved by first in cat () on line 681 of Listing 2.30, which looks to
see if the next input token can reasonably be concatenated to the current one. That is,
there is a set of tokens that can not just be concatenated—such as the parenthesis that
terminates a parenthesized subexpression or an OR token—and the loop must terminate
when one of these is encountered. These symbols are identified by the case statements
on lines 686 to 689. The other cases test for obvious error conditions such as a close
bracket (CCL_END) without a preceding open bracket or one of the closure operators
without anything in front of it.

Concatenation is performed in a manner similar to OR. The first operand is fetched
with the factor () call on line 664 (which returns with *startp and *endp modified
to point at the endpoints of a machine that recognizes the operand). The second and sub-
sequent operands are fetched by the factor () call on line 668, and the two are con-
catenated by overwriting the contents of the end node of the first operand with the con-
tents of the starting node of the second operand (with the memcpy () call on the next
line). The now redundant start node of the second operand is then discarded.

As an example of the process, if the input expression is D*\ . D, the first factor ()
call processes the D*, modifying *startp and *endp to point at nodes representing
States 2 and 3 of the following machine:

Section 2.5.2 —Implementing Thompson’s Construction

The second call modifies e2_start and e2_end to point at Nodes 4 and 5 of the fol-
lowing machine:

They are concatenated together by overwriting Node 3 with Node 4, yielding:
€
8 & ()

€

Node 3 is then discarded. The factor () call in the next iteration of the loop modifies
e2 start ande2 end to point at the ends of:

OO
(The discarded Node 3 is picked up again here because it will be at the top of the push-
back stack.) This new machine is concatenated to the previous one by overwriting Node
5 with the contents of Node 3.

The unary closure operators are all handled by factor (), in Listing 2.31. It
behaves just like the earlier routines, except that it builds a closure machine like the ones
shown in Figure 2.12 on page 83. The code is simplified because the machines for + and
? are subsets of the one for *. The same number of extra nodes is created in all three
situations. The backwards-pointing € edge is created only if a ’*’ or a "+’ is being pro-
cessed; the forward-pointing edge is created only fora ’*’ ora’?’.

Single-character matches and parenthesized subexpressions are handled by term (),
in Listing 2.32. The actual NFA structures are allocated and connected to each other on
lines 761 and 762. The edge field is then initialized to the character or CCL, as appropri-
ate. A dot is treated as a character class that matches everything but a newline. Normal
character classes are assembled by dodash () '2 on line 811 of Listing 2.32. This rou-
tine converts the input tokens representing the class into a SET. A set can have one ele-
ment ([x]) or several elements—[a-zA-Z] and the following large character class are
equivalent:

[abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]

Note that the dash notation is expanded as sequential numbers. Since your machine
probably uses the ASCII character set, this means that [A-z] contains the entire alpha-
bet plus the following symbols:

12. Camptown ladies sing this song, dodash (),dodash (), Camptown race track five miles long. ..

107

Closure operators: fac-
tor ().

Single characters and
parenthesized subex-
pressions: term().

Character classes, do-
dash ().

108

Input and Lexical Analysis —Chapter 2

Listing 2.31. nfa.c— Parser, Part 3: Unary Operators (Closure)

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

PRIVATE wvoid factor(startp, endp)
NFA

{

/

*

NFA *start, *end;

ENTER (" factor") ;

te

if
{

}

LEAVE ("factor") ;

**startp, **endp;

* factor --> term* | term+ | term?

/

rm(startp, endp);
(MATCH (CLOSURE) || MATCH(PLUS_CLOSE) || MATCH(OPTIONAL))

start = new () ;
end = new() ;
start->next = *startp ;
(*endp) ->next = end ;

if (MATCH(CLOSURE) || MATCH(OPTIONAL)) /* * or ? */
start->next2 = end;

if (MATCH(CLOSURE) || MATCH(PLUS_CLOSE)) /* * or + */
(*endp) ->next2 = *startp;

*startp = start ;
*endp = end ;
advance () ;

N

You can get a dash into a character class with a \-, as in [_\-], which recognizes either
a dash or an underscore. Note that the only metacharacters recognized as such in a char-
acter class are a " that immediately follows the bracket, a dash, and a close bracket (]);
so [*?.] recognizes a star, question mark, or dot. The " and { that trigger a macro
expansion are also active in a character class, but they are handled by the input routines.
You can use \] to get a] into a class: [[\]] recognizes either an open or close bracket.

Listing 2.32. nfa.c— Parser, Part 4: Single Character Matches

733
734
735
736
737
738
739
740
741
742
743
744

PRIVATE void term(startp, endp)

NFA

{

* % % % % % % XF

~

**startp, **endp;

Process the term productions:

term --> [...] | ["...] | [] | [7] | . | (expr) | <character>
The [] is nonstandard. It matches a space, tab, formfeed, or newline,
but not a carriage return (\r). All of these are single nodes in the
NFA.

Section 2.5.2 —Implementing Thompson’s Construction

109

Listing 2.32. continued. ..

745
746
747
748
749
750 if (MATCH (OPEN_PAREN))
751 {
752

753

754

755

756

757

758 }
759 else
760 {

761

762

763

764 if (
765 {
766

767

768 }
769 else
770 {

771

772

773

774

775

776 if (MATCH(ANY))
777 {
778

779

780

781

782

783 }
784 else
785 {
786 advance () ;

787 if (MATCH (AT BOL))
788 {
789

790

791

792

793

794

795

796 }
797 if(
798

799

800

801

802 }
803 advance () ;
804 }

NFA *start;
int c;

ENTER ("term") ;

advance () ;

expr (startp, endp);

if (MATCH(CLOSE PAREN))
advance () ;

else
parse_err(E _PAREN);

start
start->next

new () ;
new () ;

*startp
*endp

!'(MATCH(ANY) || MATCH(CCL_START)))

start->edge
advance () ;

Lexeme;

start->edge CCL;

if(!'(start->bitset =

parse err(E MEM);

newset ()))

ADD (start->bitset, ‘\n’
if(!'Unix)

ADD (start->bitset,

)
‘\r’)

COMPLEMENT (start->bitset);

/*
advance () ;

ADD (start->bitset, ’\n’
if(!'Unix)

ADD (start->bitset,

)
’ \rl
COMPLEMENT (start->bitset);

! MATCH (CCL_END))

dodash(start->bitset);

else

for(c 0; c<=""1; ++c)
ADD (start->bitset, c);

/*

)

dot (.) */

Negative character class */

/* Don’t include \n in class */

[] or [7] */

110

Input and Lexical Analysis —Chapter 2

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

Listing 2.32. continued. ..

PRIVATE void dodash (set)

SET
{

}
LEAVE ("term") ;

set; / Pointer to ccl character set */
register int first;

for (; !MATCH(EOS) && !MATCH(CCL_END) ; advance())
{
if(! MATCH(DASH))
{
first = Lexeme;
ADD(set, Lexeme);
}
else
{
advance () ;
for(; first <= Lexeme ; first++)
ADD(set, first):;

The final workhorse function is printnfa (), starting on line 57 of Listing 2.33,
which is for debugging. It prints out the entire machine in human-readable form, show-
ing the various pointers, and so forth.

Access routine: thomp- Nfa.c finishes up with a high-level access routine, thompson (), in Listing 2.34.

son{().

(Everything else was declared PRIVATE, so was inaccessible from outside the current
file). It is passed a pointer to an input function, and it returns two things: a pointer to an
array of NFA structures that represents the state machine and the size of that array (the
number of states in use).

Listing 2.33. printnfa.c— Print NFA to Standard Output

O 00NN AW —

#include <stdio.h>

#include <tools/debug.h>
#include <tools/set.h>
#include <tools/hash.h>
#include <tools/compiler.h>
#include "nfa.h"

PRIVATE wvoid printccl (SET*);

PRIVATE char *plab (NFA*, NFA*);

PUBLIC void print_nfa (NFA*, int, NFA*);

2

*

*/

PRIVATE void printccl(set)

SET
{

PRINTNFA.C Routine to print out a NFA structure in human-readable form.

*set;

static int 1i;

Section 2.5.2 —Implementing Thompson’s Construction

111

Listing 2.33. continued...

21 putchar (' [’
22 for(i =0
23 {

24 if(TEST(set, 1))

25 {

26 if(i <)

27 printf("“%c", 1 + Q");
28 else

29 printf("%c", i);

)

1 <= 0x7f; i++)

31 }

33 putchar (1) :

38 PRIVATE char *plab(nfa, state)

39 NFA *nfa, *state ;

40 |

41 /* Return a pointer to a buffer containing the state number. The buffer is
42 * overwritten on each call so don’t put more than one plab() call in an
43 * argument to printf().

44 */

46 static char buf[32];

48 if(!nfa || !state)
49 return("--");

51 sprintf (buf, "%2d", state - nfa);
52 return (buf);

57 PUBLIC wvoid print nfa(nfa, len, start)
58 NFA *nfa, *start;

59 int len;

60 {

61 NFA *s = nfa ;

63 printf("\n--------------—-—— NFA --—--=-===————— \n");

65 for(; --len >= 0 ; nfa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>