Cucumber

For Tava
Book } .}

Behaviour-Driven .
Development for \
Testers and ’
Developers

Seb Rose, Matt Wynne, |
and Aslak Hellesgy %

edited by Jacquelyn Carter - & B

Prepared exclusively for Aaron Evans

What Readers Are Saying About
The Cucumber for Java Book

This book is not just for programmers but for testers as well. It goes beyond using
Cucumber; it gives testing guidelines as well and hints and tips to avoid bad tests.
>» Janet Gregory

Author, Agile Testing: A Practical Guide for Testers (with Lisa Crispin)

If you read this book in the morning, then find a stakeholder quickly enough,
you’'ll be writing effective scenarios with that person in the afternoon. Start today.
>» J.B. Rainsberger

Author, JUnit Recipes

The best thing about this book: it will help you identify WHY you may want to use
Cucumber, and it will guide you to good ways to do it in collaboration with your
whole team.
» Lisa Crispin

Author, Agile Testing: A Practical Guide for Testers (with Janet Gregory)

This is an excellent introduction to using Cucumber on the JVM that guides the
reader clearly through the complexities of the API and away from common pitfalls
in its application to real projects.
» Nat Pryce

Author, Growing OO Software Guided By Tests (with Steve Freeman)

Not only does [this book] go deep on the technical details of using Cucumber ef-
fectively in a Java environment, it also covers the broader issues of how to succeed
in driving software implementation through readable examples of system behavior,
and as such it will be a valuable reference for the whole team.
» David Evans

Author, Fifty Quick Ideas to Improve Your User Stories (with Gojko Adzi¢)

[If you] implement an application in a test-first manner, taking small and careful
steps and alternating implementation and refactoring phases, your tests will tell
you what to do next. So listen to your tests and listen to this book!
» Gaspar Nagy

Creator of SpecFlow - Cucumber for .NET

This book will teach you all you need to know to get started with Cucumber on
the Java platform...although the authors make sure that nonprogrammers can
follow along. It will find its place on my bookshelf and in the book recommendations
I give out in my training classes.
» Markus Gaertner

Author, ATDD by Example

This is a great reference guide for software project builds maintainers, because
the authors carefully address the integration of Cucumber with other Java platform
favorites such as JDBC, databases, dependency injection containers such as CDI
and Spring Framework, and REST server-side endpoints.
» Peter Pilgrim

Author, The Java EE 7 Developer Handbook

The Cucumber for Java Book meets an important need—the large Java community
has a great tool in Cucumber but very limited documentation on how to use it
effectively. This is the book I'll recommend to my Java clients who want to hit the
ground running with Cucumber.
» Richard Lawrence

BDD Trainer and Coach, Agile for All

A gentle yet complete introduction to Cucumber on the JVM. An excellent step-
by-step guide with attention to detail.

» Paul Grenyer
Founder of Naked Element and NorDevCon

The material [in this book] is built on real-life experiences with appreciation for
the everyday problems we as testers/software architects/managers face both in-
ternally and externally.
» Marton Mészaros

Founder of Tailored Tunes and Test Automation Specialist

The authors get the combination of technical and nontechnical lessons across
very well. A very good read for the novice and experienced BDD follower alike.
» Craig Harrison

Software Engineer

The Cucumber for Java Book

Behaviour-Driven Development
for Testers and Developers

Seb Rose
Matt Wynne
Aslak Hellesgy

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)

Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-29-4

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

Contents

Fgg@yg{q xi
é_(_:.lf_;_l_.(_)_w_l_(-;.q_g.ly_qgt_s_ xiii
Preface b:q'4

Part | — Cucumber Fundamentals

Why Cucumber?

N O oA w

(0]

11
12
17
19
20
21
23
25
28

31
31
34
35
36

Contents ® viii

Comments 40
41
42

45
46
51
55
56
58
66

69
69
72
79
84
86
87
90

91
92
95
102
110
112

Part Il — A Worked Example

Step Definitions: On the Inside 117
118
123
127
134
137
138

141
142
149

10.

11.

12.

13.

Making the Switch

Contents ® ix

151
156
160
166

169
169
170
172
179
184

185
185
188
194
199
202
204

205
205
207
213
214
218
221
223

225
225
228
233
235
242

245
245
248
250
253
256

14.

15.

16.

Al.

A2,

A3.

Part lll — More Techniques

Controlling Cucumber

Contents ® x

259
259
265
266
272

273
274
275
276
280
283

285
286
288
289
291
292

293
293
295
296

297
298
302
303

307

309

Foreword

OK, before we do anything else, let’s be sure we're talking about the testing
tool. Right? Cucumber. The acceptance testing tool. I mean, you wouldn’t
have picked this book up if you didn’t know something about it already. Right?
I mean, you're a software person, right?

So, you're probably wondering, since Cucumber is so simple to use and all,
just how much this book could possibly teach you. I mean, you’'ve probably
seen, or even written, some Gherkin scenarios, and you’ve probably seen
some Cucumber tests run. You've probably watched a video or two, so you
know what Cucumber is like. So perhaps you're looking at the page count,
or just looking at how thick the book is, and youre wondering: “Is there
really that much to talk about?” You might be suspicious that this book is
like all those early SOA books: full of fluffy descriptions, vacuous advice, and
tedious repetition just to fill up space and make it look thick and important.

Well, put those thoughts out of your mind—because, trust me, this book may
be thick, but it's also dense. (Uh...This just isn’t coming out right...But you
know what I mean.)

What you're looking at here is a book about acceptance testing—a deep book
about acceptance testing. It happens to use Cucumber as the tool, and
Gherkin as the language for writing those acceptance tests—and make no
mistake you'll learn every nook and cranny of that tool and that language.
However, Cucumber and Gherkin is the least that you’ll learn. Even if you
never intend to use Cucumber and Gherkin, this book has a lot to teach you.

The first few chapters might not convince you of this, because theyre mostly
about the syntax and semantics of the tool and language. They walk you
through setting up simple acceptance tests, features, and scenarios. They
show you how to construct step files and where to put them. They show you
how to execute the tests, and how to deal with the error messages. Think of
these early chapters as the appetizer—a light and tasty tease with just a hint
of the meat that is to come.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Foreword * xii

And then, hold on to your hats, because when the meat comes, it comes! 1
mean, these authors put you in the passenger seat, take you on a nice gentle
ride once or twice around the track, and then, just when you're thinking that
the ride should be over, they look at you, smile with an evil grin, and floor it.

And what a dizzying ride it is! You'll learn what acceptance tests are, what
they’re good for, who should write them, who should read them, what can go
wrong, how to fix what can go wrong, how to avoid making it go wrong—and
(pant, pant) that’s just the first lap.

The next laps include things like how to deal with race conditions, how to
test and manage concurrent operations, and what to do with intermittently
flickering tests. They talk about how to write tests that use databases, and
why and when that’s a good idea, and why and when it’s not. They talk about
complex configurations, dependency injection, continuous integration, and
(get this) legacy code!

And, just to prove that no topic is out of bound for these guys, they talk about
organizational structure, team structure, and the sociology of programmers,
testers, managers, customers, and product owners.

And every time you think that they're about to slow down for their last lap so
you can get out of this crazy ride, you turn the page and there’s another
whirlwind lap full of deep knowledge, genuine experience, and solid advice.

For those of you who are experienced in acceptance testing, you might find
parts in the middle of the book a bit annoying because they seem to break
all the rules you thought were golden. But they're just teasing you, because
as you read on you find not only that they’'ve got those bases covered but that
they have a better set of solutions and a better perspective than you thought
—maybe better even than your own.

So, here’s my advice. Get ready to study! Get ready for a really meaty meal
that will take a long time to eat, and an even longer time to digest. You won’t
be disappointed. This one is worth the time and effort.

Robert C. Martin (Uncle Bob)

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Acknowledgments

The first people we want to thank are the hundreds of you who contribute to
the Cucumber community. Whether you're sharing ideas, experiences, and
opinions on the mailing list, helping people in the IRC channel, or contributing
new features and bug fixes to the codebase, it all helps. Without your contri-
bution, there would be no Cucumber and therefore no book.

Writing this book has taken much more effort than any of us had anticipated.
Throughout it all, our editor Jackie Carter has patiently been there at our
side, cajoling us when we needed it, chiding us when we deserved it, and
giving us thoughtful feedback at every opportunity. Jackie has made a massive
contribution to the quality of what you're reading, and her name fully deserves
its place on the cover.

Thanks to our reviewers:

Nat Pryce Marton Meszaros Tim Pizey
Roberto Lo Giacco Gaspar Nagy Craig Harrison
Kev McCabe Paolo Ambrosio Simon Spencer
Leslie Brooks Jim Speakman Sten Aksel Heien

Your suggestions and encouragement were greatly appreciated.

Special thanks go to Paolo Ambrosio and Krzysztof Jelski, for their help coping
with the evolving Spring integration, and to Ulises Cervinio Beresi, for his
timely Clojure-fu.

Thanks to all the beta readers who left us feedback, helping us iron out the
little mistakes we would never have seen ourselves.

We're hugely grateful to Uncle Bob for his powerful (and hilarious) foreword.
You might think, given the glowing nature of what he’s written, that we've
influenced him with payment or threats of blackmail—but we haven’t. Honest.
We're very proud that he likes our book almost as much as we like his.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Acknowledgments ® xiv

From Seb: To Claire, Megan, and Angus, thank you for putting up with my
constant absences over the past year—this might not be the end of the
absences, but I'll need a new excuse from now on. Without the success of
The Cucumber Book there would have been nothing to rewrite for Java, so
thanks to Matt and Aslak for that. And without the port of Cucumber from
Ruby to the JVM there would have been no need for this book at all, so extra
thanks to Aslak and the whole Cucumber-JVM team.

From Matt: | want to thank the team at Songkick, especially Sabrina Leandro,
Niko Felger, Dan Lucraft, Phil Cowans, and Matt Johnson. Many of the lessons
in this book I learned with you. Greatest thanks go to my wonderful wife
Anna, for believing in this project and giving me the support I needed to
actually get it done. Imagine all the things we’ll be able to do now that it's
finished!

From Aslak: Dad, thanks for having the foresight to buy me a Commodore
64 in 1981. Patricia, my dear wife—thank you for the countless hours of
patience and encouragement. And for coming up with the silly but catchy
name Cucumber!

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Preface

Companies often have huge issues with trust—the customer doesn’t trust
the supplier, the business doesn’t trust the developers, the developers don’t
trust the testers, and the testers don’t trust anyone. Cucumber gives the
business, developers, and testers a way to collaborate and specify, in plain
English, how the system should work. We've seen how these conversations
over a simple Cucumber specification can begin the process of recuperation.

Out of these conversations grow a set of specifications that all stakeholders
could understand. Cucumber enables the direct automation of the specifica-
tion, which means that anyone can see, at a glance, what functionality has
been implemented and what hasn’t. It also gives the development team a
safety net so that they get early feedback if a change they’re working on has
broken any existing functionality. And it frees your testers up to do interesting,
creative work instead of regularly running through a repetitive, manual
regression pack.

Cucumber has now been used by thousands of teams who have derived
benefit from it in different ways. Those of us who were drawn to Cucumber
from the beginning instinctively realized that it's more than a test automation
tool; it’s a collaboration tool. Let’s be clear about this—Cucumber can be used
for test automation—but this was not the intent of its creators, and some of
our design choices reflect this. By writing this book, we hope to show you not
just how to use Cucumber but how to use it well.

Cucumber was originally written in Ruby. Over the years it has become
incredibly popular and has been ported to plenty of other languages. This
book is a Java version of The Cucumber Book, containing the same great
advice about how to deliver rock-solid applications collaboratively, but with
all code completely rewritten in Java and new chapters that cover features
unique to the Java version of Cucumber.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Preface ® xvi

Who This Book Is For

Cucumber is designed to help build bridges between the technical and non-
technical members of a software team, and we've tried to consider both of
those readers. The majority of the book is written to the technical reader,
someone who is interested in test automation and already has some program-
ming skill. However, several of the chapters—especially in the first part of the
book where we explain how to write specifications—are written with the
nontechnical reader very much in mind. Specifically, those chapters are:

e Chapter 1, Why Cucumber?, on page 3

As the book develops, we’ll look at more complex testing situations, and the
level of technical know-how required to read the chapters will increase.

You Don’t Need to Be a Java Expert

Java' is a programming language that can be installed and run on all major
operating systems. Cucumber has been ported to many programming lan-
guages, but this book is about the version written in Java.

That doesn’t mean the system you're testing has to be written in Java. Java
has many libraries that enable it to talk to other languages and platforms,
and we’ll show you how to use them to test web-based systems that could be
written in any language. Additionally, since the Java Virtual Machine (JVM)
supports many programming languages, the Java version of Cucumber works
well with programs written in other JVM languages (such as Groovy, Scala,
and Clojure).

To follow along with the coding examples in the technical chapters, it will
help if you're familiar with Java. Java is not the easiest language to learn,
but neither is it the hardest, and the Java examples we’ll use are deliberately
simple.

It’s OK if You're Not Test-Driven

We've had our greatest success with Cucumber as part of an outside-in
approach, starting with a failing Cucumber test and using that to drive our

1. http://java.com

http://java.com
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Why You Should Listen to Us ® xvii

development work on the application code. As developers, this way of working
helps us stay honest and avoid the temptation to build in functionality that
nobody asked us for, just in case it might be needed one day in the future.

Cucumber is a tool that facilitates this way of working, but it doesn’t force it
on you. Some teams use Cucumber to automate tests for the work that
developers have already done. This can often be a first step toward adopting
an outside-in approach, as Cucumber’s readable tests start to attract the
attention of the team’s nontechnical stakeholders, drawing them into the
process. Even if you're using Cucumber to write tests against existing code,
you'll still get a great deal of benefit from Cucumber over alternatives like
QTP and Selenium IDE, and we think you’ll still get a lot out of this book.
We're not here to preach to you about process, but we will share our insights
about what has worked for us and why.

Why You Should Listen to Us

All the authors have been building software for a living for a very long time,
and using automated tests for the last ten years. Aslak created Cucumber in
2008, Matt has been one of its most active users from day one, and Seb came
to the party a little later, while Cucumber was being ported to Java.

We've used Cucumber to test all kinds of systems: from Ruby on Rails web
applications, through Flash games, to enterprise Java web services. We've
also trained hundreds of developers in how to use Cucumber, teaching the
material in this book at events and companies around the world.

The Cucumber community is full of lively debate, and we've spent many hours
of our spare time having our ideas challenged and honed in discussions with
other users. We hope we've distilled as much of that knowledge and experience
as possible in this book.

How This Book Is Organized

The book is in three parts. In Part I, we’ll take you through the core concepts
you need to know in order to make use of Cucumber. Novice readers will learn
everything they need to know to get up and running, and readers already
experienced with Cucumber should pick up plenty of useful detail too.

Part II works through a practical example of developing a new application
using Cucumber. Youll pair with us as we build a simple application from
scratch, giving you a chance to experience how we like to build software using
Cucumber and to consolidate what you've learned in Part I. We'll also teach

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Preface ® xviii

you some advanced features of Cucumber that are easier to learn in the
context of an example.

In Part III, you'll learn techniques for using Cucumber in situations that
weren’t covered in the previous worked example, as well as looking in more
detail at how to configure Cucumber for Java.

What Is Not in This Book

Although it is possible to test Flash and mobile applications using Cucumber,
the details are sadly beyond the scope of this edition. This book covers the
Java version of Cucumber that runs natively on the JVM, but using it with
other JVM languages will not be covered. Cucumber’s wire protocol (a protocol
for driving remote systems over a TCP socket) is also out of scope.

Running the Code Examples

This book is full of practical examples, and we encourage you to follow along
with them to get the most out of the book. You'll learn the most if you type
them in by hand as you read along, but if you'd prefer, you can always
download the code examples from the book’s website.” To run the examples,
you’ll need to install the Java language itself as well as the Maven software
project management tool. You can find the full instructions in Appendix 1,
Installing Cucumber, on page 293.

Windows Users

Most of the code examples work just the same on Windows and *nix operating
systems. On the rare occasions that they differ, you’ll find the Windows version
in a sidebar nearby, with a note in the body of the text pointing you there.

You'll soon notice that we've used the $ symbol for the command prompt.
This is familiar to Linux or Mac users but might feel a little unfamiliar to
Windows users. So, when you're looking at something like this:

$ mvn clean test
try to imagine you're seeing this instead:
C:\> mvn clean test

Other than that, everything should work just the same for everyone.

2. http://pragprog.com/titles/srjcuc/source_code

http://pragprog.com/titles/srjcuc/source_code
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Online Resources ® xix

Online Resources

The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.’ You'll also find the community forum,
for help if you're stuck on one of the exercises in this book, and the errata-
submission form, where you can report problems with the text or make sug-
gestions for future versions.

If you have a general question about Cucumber, the Cucumber community
will welcome you to their mailing list.* Cucumber is an open source tool,
which means that everyone contributing to the group is volunteering their
time, so please make sure you've researched your question as thoroughly as
you can before you ask for help on the mailing list. People will be much more
likely to help you if they can see you're trying to help yourself.

Seb Rose, Matt Wynne, and Aslak Hellesgy
February 2015

3. http://pragprog.com/book/sjrcuc

4. https://groups.google.com/forum/#!forum/cukes

http://pragprog.com/book/sjrcuc
https://groups.google.com/forum/#!forum/cukes
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Part I

Cucumber Fundamentals

In this first part of the book, we start by talking about behaviour-driven development
(BDD) and why organizations all over the world find it helps them deliver more value
to their customers. There will be a few simple examples to introduce you to how Cu-
cumber helps teams work in a behavior-driven way, but nothing too technical. In fact,
this part of the book is ideal for the whole team—including product owners, managers,
designers, and customers.

It’s important to understand that BDD is not a “silver bullet” solution, so we’ll also
spend some time looking at how things can go wrong. We've seen BDD help all sorts
of organizations and, once you're able to recognize (and correct) the common symptoms
that teams new to Cucumber suffer from, we’re confident that it will help your team
too.

CHAPTER 1

Why Cucumber?

Software starts as an idea.

Let's assume it’'s a good idea—an idea that could make the world a better
place, or at least make someone a bit of money. The challenge of the software
developer is to take the idea and make it real, into something that actually
delivers that benefit.

The original idea is perfect, beautiful. If the person who has the idea happens
to be a talented software developer, then we might be in luck: the idea could
be turned into working software without ever needing to be explained to
anyone else. More often, though, the person with the original idea doesn’t
have the necessary programming skill to make it real. Now the idea has to
travel from that person’s mind into other people’s. It needs to be communicated.

Most software projects involve teams of several people working collaboratively
together, so high-quality communication is critical to their success. As you
probably know, good communication isn’'t just about eloquently describing
your ideas to others; you also need to solicit feedback to ensure you've been
understood correctly. This is why Agile software teams have learned to work
in small increments, using the software that’s built incrementally as the
feedback that says to the stakeholders, “Is this what you mean?”

Even this is not enough. If the team spends a two-week iteration implementing
a misunderstanding, not only have they wasted two weeks of effort, but they've
corrupted the integrity of the codebase with concepts and functionality that
do not reflect the original idea. Other developers may have already innocently
started to build more code on top of those bad ideas, making it unlikely that
the codebase will ever reflect the business domain correctly.

We need a kind of filter to protect our codebase from these misunderstood
ideas.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 1. Why Cucumber? * 4

Automated Acceptance Tests

The idea of automated acceptance tests originates in extreme programming'
(XP), specifically in the practice of test-driven development2 (TDD).

Instead of a business stakeholder passing requirements to the development
team without much opportunity for feedback, the developer and stakeholder
collaborate to write automated tests that express the outcome that the
stakeholder wants. We call them acceptance tests because they express what
the software needs to do in order for the stakeholder to find it acceptable. The
test fails at the time of writing, because no code has been written yet, but it
captures what the stakeholder cares about and gives everyone a clear signal
as to what it will take to be done.

These tests are different from unit tests, which are aimed at developers and
help them to drive out and check their software designs. It's sometimes said
that unit tests ensure you build the thing right, whereas acceptance tests
ensure you build the right thing.

Automated acceptance testing has been an established practice among good
XP teams for years, but many less experienced Agile teams seem to see TDD
as being a programmer activity only. As Lisa Crispin and Janet Gregory point
out in Agile Testing: A Practical Guide for Testers and Agile Teams [CGOS],
without the business-facing automated acceptance tests, it's hard for the
programmers to know which unit tests they need to write. Automated accep-
tance tests help your team to focus, ensuring the work you do each iteration
is the most valuable thing you could possibly be doing. You'll still make mis-
takes—but you’ll make a lot less of them—meaning you can go home on time

and enjoy the rest of your life.

Behaviour-Driven Development

Behaviour-driven development® (BDD) builds upon test-driven development
(TDD) by formalizing the good habits of the best TDD practitioners. The best
TDD practitioners work from the outside-in, starting with a failing customer
acceptance test that describes the behavior of the system from the customer’s
point of view. As BDD practitioners, we take care to write the acceptance tests
as examples that anyone on the team can read. We make use of the process
of writing those examples to get feedback from the business stakeholders

1. Extreme Programming Explained: Embrace Change [BecOO]

2. Test Driven Development: By Example [BecO2]

3. http://behaviour-driven.org/

http://behaviour-driven.org/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Behaviour-Driven Development ¢ 5

about whether we're setting out to build the right thing before we get started.
As we do so, we make a deliberate effort to develop a shared, ubiquitous lan-
guage for talking about the system.

Ubiquitous Language

As Eric Evans describes in his book DomamDrwenDe&gn[EvaOB] many

software projects suffer from low-quality communication between the domain
experts and programmers on the team:

“A project faces serious problems when its language is fractured. Domain experts
use their jargon while technical team members have their own language tuned
for discussing the domain in terms of design...Across this linguistic divide, the
domain experts vaguely describe what they want. Developers, struggling to
understand a domain new to them, vaguely understand.”

With a conscious effort by the team, a ubiquitous language can emerge that
is used and understood by everyone involved in the project. When the team
uses this language consistently in their conversations, documentation, and
code, the friction of translating between everyone’s different little dialects is
gone, and the chances of misunderstandings are greatly reduced.

Cucumber helps facilitate the discovery and use of a ubiquitous language
within the team by giving the two sides of the linguistic divide a place where
they can meet. Cucumber tests interact directly with the developers’ code,
but they’re written in a medium and language that business stakeholders
can understand. By working together to write these tests—specifying collabo-
ratively—not only do the team members decide what behavior they need to
implement next, but they learn how to describe that behavior in a common
language that everyone understands.

When we write these tests before development starts, we can explore and
eradicate many misunderstandings long before they ooze their way into the
codebase.

Examples

What makes Cucumber stand out from the crowd of other tools is that it has
been designed specifically to ensure the acceptance tests can easily be read
—and written—by anyone on the team. This reveals the true value of accep-
tance tests as a communication and collaboration tool. The easy readability
of Cucumber acceptance tests draws business stakeholders into the process,
helping you explore and understand their requirements.

Here’s an example of a Cucumber acceptance test:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 1. Why Cucumber? * 6

Feature: Sign-up
Sign-up should be quick and friendly.
Scenario: Successful sign-up

New users should get a confirmation email and be greeted
personally by the site once signed in.

Given I have chosen to sign up

When I sign up with valid details

Then I should receive a confirmation email

And I should see a personalized greeting message

Scenario: Duplicate email

Where someone tries to create an account for an email address
that already exists.

Given I have chosen to sign up

When I sign up with an email address that has already registered
Then I should be told that the email is already registered

And I should be offered the option to recover my password

Notice how the test is specified as examples of the way we want the system
to behave in particular scenarios. Using examples like this has an unexpect-
edly powerful effect in enabling people to visualize the system before it has
been built. All the team members can read a test like this and tell you whether
it reflects their understanding of what the system should do, and it may well
spark their imagination into thinking of other scenarios that you’ll need to
consider too. Gojko Adzic's book Specification by Example [Ad 11] contains

many case studies of teams who have discovered this and used it to their
advantage.

Acceptance tests written in this style become more than just tests; they become
executable specifications.

Living Documentation

Cucumber feature files share the benefit of traditional specification documents
in that they can be written and read by business stakeholders, but they have
a distinct advantage in that a computer can understand them too. In practice,
this means that your documentation, rather than being something that’s
written once and then gradually goes out of date, becomes a living thing that
reflects the true state of the project.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

How Cucumber Works ® 7

Source of Truth

For many teams, the Cucumber feature files become the definitive source of
truth as to what the system does. Having a single place to go for this informa-
tion saves a lot of time that is often wasted trying to keep requirements doc-
uments, tests, and code all in sync. Having a single source of truth also helps
to build trust within the team, because different parts of the team no longer
have their own personal versions of the truth.

How Cucumber Works

Before we dive into the meat of the book, let’s give you some context with a
high-level overview of a typical Cucumber test suitel. This structure, from
features down to automation library, is illustrated in the figure.

Cucumber was originally created as a
command-line tool by members of the
Ruby community. It has since been
translated into several development

Your Project

Features

environments, including Java, to allow _
more of us to enjoy its benefits. When Business .

i . Facing Scenarios
you run Cucumber, it reads in your
specifications from plain-language text
files called features, examines them steps
for scenarios to test, and runs the
scenarios against your system. Each Step Definitions
scenario is a list of steps for Cucum-
ber to work through. So that Cucum- Technology
ber can understand these feature files, Facing Support Code
they must follow some basic syntax
rules. The name for this set of rules Automation Library
is Gherkin.
Along with the features, you give Your System

Cucumber a set of step definitions,

which map the business-readable language of each step into code (written in
Java throughout this book) to carry out whatever action is being described
by the step. In a mature test suite, the step definition itself will probably just
be one or two lines of code that delegate to a library of support code, specific
to the domain of your application, that knows how to carry out common tasks
on the system. Sometimes that may involve using an automation library, like
the browser automation library Selenium, to interact with the system itself.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Chapter 1. Why Cucumber? * 8

If the code in the step definition executes without error, Cucumber proceeds
to the next step in the scenario. If it gets to the end of the scenario without
any of the steps raising an error, it marks the scenario as having passed. If
any of the steps in the scenario fail, however, Cucumber marks the scenario
as having failed and moves on to the next one. As the scenarios run,
Cucumber prints out the results showing you exactly what is working and
what isn’t.

That’s it in a nutshell. There are many other advantages to Cucumber that
make it an excellent choice: you can write your specifications in more than
forty different spoken languages, you can use tags|to organize and group your
scenarios, and you can easily integrate with a host of high-quality automation
libraries to drive almost any kind of application. All that and more will become
clear as you read the rest of this book.

What We Just Learned

Let’s review what we've covered so far.

Software teams work best when the developers and business stakeholders
are communicating clearly with one another. A great way to do that is to col-
laboratively specify the work that’s about to be done using automated
acceptance tests.

When the acceptance tests are written as [examples|, they stimulate people’s
imaginations and help them see other scenarios they hadn’t previously con-
sidered.

When the team members write their acceptance tests collaboratively, they
can develop their own ubiquitous language for talking about their problem
domain. This helps them avoid misunderstandings.

Cucumber was designed specifically to help business stakeholders get involved
in writing acceptance tests.

Each test case in Cucumber is called a scenario, and scenarios are grouped
into features. Each scenario contains several steps.

The business-facing parts of a Cucumber test suite, stored in feature files,
must be written according to syntax rules—known as Gherkin—so that
Cucumber can read them.

Under the hood, step definitions translate from the business-facing language
of steps into code.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

What We Just Learned ¢ 9

To illustrate these concepts, in the next chapter we're going to dive right in
and build a very simple application, using Cucumber to drive the development.

Try This

Cucumber has its own ubiquitous language. Can you list the terms about
Cucumber’s domain you've learned in this chapter and describe what you
think each of them means?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 2

First Taste

We figured you’d be eager to start playing with your shiny new toy right away,
so we're going to work through a simple example that will give you a feel for
what it’s like to work with Cucumber. You might not quite understand
everything that happens here just yet, but try not to let that worry you. We’'ll
come back and fill in the details over the next few chapters.

We're going to build a simple class from the outside-in, driving our develop-
ment with Cucumber. Watch how we proceed in baby steps, going back to
run Cucumber after we make each change. This patient rhythm is an
important characteristic of working effectively with Cucumber, but it’'s much
easier to demonstrate than to explain.

Assuming you want to follow along with the action in this chapter (it'll be a
lot more fun if you do), you'll need to have Cucumber installed.' Eventually
we’ll end up using build and dependency management tools (such as Maven,
Ant, Gradle, or Ivy) as described in Appendix 1, Installing Cucumber, on page

so that you can see exactly what’'s going on.

Right...shall we get started then?

Understanding Our Goal

Our goal is to write a Java library that calculates the cost of your groceries
at the supermarket. Some people might call this a checkout.

We have an incredible vision of what this checkout will one day power: a
traditional checkout till, a portable scanner that you carry around while you
shop, or even a cloud-based service that uses the camera on your mobile

1. http://cukes.info/install-cucumber-jvm.html

http://cukes.info/install-cucumber-jvm.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 12

phone to scan the barcodes. We're pragmatic business people, though, so the
first release of our library has to be as simple as possible. The first release
will be a Java library. It will take two inputs: the prices of available items and
the notification of items as they are scanned at the checkout.

The checkout will keep track of the total cost. So, for example, if the prices
of available items looks like this:

banana 40c
apple 25c

and the only item you scan at the checkout is this:
1 banana

then the output will be 40c.

Similarly, if you scan multiple items:

3 apple

then the output will be 75c.

You get the idea.

Creating a Feature

Cucumber tests are grouped into features. We use this name because we
want them to describe the features that a user will be able to enjoy when
using our program. The first thing we need to do is make a directory where
we’ll store our new program along with the features we’ll be writing for it.

$ mkdir checkout
$ cd checkout

The next thing we need is to get a couple of JARs that contain the bare mini-
mum for running Cucumber. Create a new folder to place them in:

$ mkdir jars

Download the latest versions of the following JARs from the public Maven
repository” and copy them into the jars folder. This is enough for us to use
Cucumber with Java.

e cucumber-core ¢ cucumber-java e cucumber-jvm-deps e gherkin

2. http://repol.maven.org/maven2/info/cukes/

http://repo1.maven.org/maven2/info/cukes/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Creating a Feature ® 13

We're going to let Cucumber guide us through the development of our
checkout program, so let’s start right away by running cucumber from the
checkout folder:

$ java -cp "jars/*" cucumber.api.cli.Main -p pretty .
No features found at [.]

0 Scenarios
0 Steps
0m0.000s

There’s a lot going on here, so let’'s take a closer look at the command line.
First off, we invoke the java interpreter, with a specified classpath to execute the
entry point contained within the cucumber.api.cliMain class. This class contains
the code that implements the Cucumber command-line interface (CLI), which
allows us to control how Cucumber searches for tests to run. In this case,
we're passing two things to Cucumber:

e -ppretty tells cucumber to use the pretty formatter plugin (you’ll see why later)
¢ a path that points to where our feature files are located

We haven'’t written any feature files yet, which is why, when we run Cucumber,
it gives us the helpful error message No features found at [.].

This is also quite a lot to type, so let’s put it into a shell file. In the project
root (called /checkout), use your favorite text editor to create a file called cucumber
(or cucumber.bat if you're using Windows). Enter the following text:

first_taste/00/cucumber
java -cp "jars/*" cucumber.api.cli.Main -p pretty .

If you're working on a Unix-style operating system, you may need to make
the cucumber file executable before running the new shell script:

$ chmod u+x cucumber
$./cucumber

If you're working on Windows, then simply run the batch file (from now on
use this command whenever you see ./cucumber in the text):

C:\checkout> cucumber.bat

Whichever operating system you are using, you should get exactly the same
output as we did the first time:

No features found at [.]

0 Scenarios
0 Steps
Om0.000s

http://media.pragprog.com/titles/srjcuc/code/first_taste/00/cucumber
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 14

Now it’s time to create our first feature. We could create it in the current
folder, but that would quickly get confusing, so let’s create a folder:

$ mkdir features

Now let’s create an empty feature file in the features folder. If you're running
Windows, you can use these commands:

C:\checkout> cd features
C:\checkout\features> type nul > checkout.feature

On other operating systems, issue these commands:

$ cd features
$ touch checkout.feature

Then we modify our shell file to tell Cucumber where to find our feature files:

first_taste/01/cucumber
java -cp "jars/*" cucumber.api.cli.Main -p pretty features

Now, let’s run cucumber again:

$./cucumber
No features found at [features]

0 Scenarios
0 Steps
OmO.000s

Each Cucumber test is called a scenario, and each scenario contains steps
that tell Cucumber what to do. This output means that Cucumber is happily
scanning the features directory, but it didn’t find any scenarios to run. Let’s
create one.

Our user research has shown us 67 percent of all shoppers buy bananas, so
that’s what we’ll start with. In your favorite editor, edit the empty feature file
that you just created, checkout.feature:

first_taste/02/features/checkout.feature
Feature: Checkout
Scenario: Checkout a banana
Given the price of a "banana" is 40c
When I checkout 1 "banana"
Then the total price should be 40c

This .feature file contains the first scenario for our checkout class. We've trans-
lated one of the examples we were given at the beginning of the chapter into
a Cucumber scenario that we can ask the computer to run, over and over
again. You can probably see that Cucumber expects a bit of structure in this

http://media.pragprog.com/titles/srjcuc/code/first_taste/01/cucumber
http://media.pragprog.com/titles/srjcuc/code/first_taste/02/features/checkout.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Creating a Feature ® 15

file. The keywords Feature, Scenario, Given, When, and Then are the structure, and
everything else is documentation. Although some of the keywords are
highlighted here in the book—and they may be in your editor too—it’s just a
plain-text file. The structure is called Gherkin.

When you save this file and run cucumber, you should see a great deal more
output than the last time:

$./cucumber
Feature: Checkout

Scenario: Checkout a banana # checkout.feature:2
Given the price of a "banana" is 40c
When I checkout 1 "banana"
Then the total price should be 40c

1 Scenarios (1 undefined)
3 Steps (3 undefined)
Om0.000s

You can implement missing steps with the snippets below:

@Given("~the price of a \"(.*?)\" is (\\d+)c$")

public void the price of a is c(String argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@when("~I checkout (\\d+) \"(.*?)\"$")

public void i checkout(int argl, String arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("~the total price should be (\\d+)c$")

public void the total price should be c(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Wow, that’s a lot of output all of a sudden! Let’s take a look at what's going
on here. First, we can see that Cucumber has found our feature and is trying
to run it. We can tell this because Cucumber has repeated the content of the
feature back to us. You might also have noticed that the summary output 0
scenarios has changed to 1 scenario (undefined). This means that Cucumber has
read the scenario in our feature but doesn’t know how to run it yet.

Second, Cucumber has printed out three code snippets. These are sample
code for step definitions, written in Java, which tell Cucumber how to translate

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 16

If you're working in Windows, then you’ll probably be seeing strange control characters
in the output. That’s because Cucumber is using ANSI control sequences to print
colored text in the console. Windows doesn’t recognize these automatically, so you’'ll
need to install a small application to render them correctly. See Appendix 1, Installing

Cucumber, on page 293 for further details.

the plain English steps in the feature into actions against our application.
Our next step will be to put these snippets into a Java file where we can start
to flesh them out. But first, since we're following Java coding standards we
notice that these step definitions are using snake case’ rather than camel
case. Don’t worry—we don’t need to edit them by hand; we just need to tell
Cucumber that’s what we want:

first_taste/03/cucumber
java -cp "jars/*" cucumber.api.cli.Main -p pretty --snippets camelcase features

Now when we run ./cucumber it generates snippets with method names that
conform to the Java standard:

You can implement missing steps with the snippets below:

@Given("~the price of a \"(.*?)\" is (\\d+)c$")

public void thePriceOfAIsC(String argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@when("~I checkout (\\d+) \"(.*?)\"$")

public void iCheckout(int argl, String arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("~the total price should be (\\d+)c$")

public void theTotalPriceShouldBeC(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

3. http://en.wikipedia.org/wiki/Snake case

...

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/first_taste/03/cucumber
http://en.wikipedia.org/wiki/Snake_case
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Creating Step Definitions ® 17

Before we explore beneath the
layer of business-facing
Gherkin features, it’s worth
taking a quick look at the map
in case anyone is feeling lost.
The figure reminds us how
things fit together. We start
with features, which contain
our scenarios and steps. The
steps of our scenarios call step
definitions that provide the
link between the Gherkin fea-
tures and the application
being built.

Now we’ll implement some step
definitions so that our sce-
nario is no longer undefined. Figure 1—The main layers of a Cucumber test suite

Creating Step
Definitions

Without thinking too much about what they mean, let’s just copy and paste
the snippets from Cucumber’s last output into a new Java file. Let’s create a
new folder to keep our step definitions in:

$ mkdir step_definitions

Now create a Java file called CheckoutSteps.java in step_definitions. Cucumber won’t
mind what you call it as long as it’s a Java file, but this is a good name to
use. Open it in your text editor and enter the following class definition:

first_taste/04/step_definitions/CheckoutSteps.java
package step definitions;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class CheckoutSteps {
}

Now paste in those snippets:

Prepared exclusively for Aaron Evans report erratum « discuss

http://media.pragprog.com/titles/srjcuc/code/first_taste/04/step_definitions/CheckoutSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 18

first_taste/04/step_definitions/CheckoutSteps.java
package step definitions;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class CheckoutSteps {
@Given("~the price of a \"(.*?)\" is (\\d+)c$")
public void thePriceOfAIsC(String argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@When("~I checkout (\\d+) \"(.*?)\"$")

public void iCheckout(int argl, String arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then(""~the total price should be (\\d+)c$")

public void theTotalPriceShouldBeC(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

What we’d like to do now is run Cucumber so that it can tell us what to do
next, but before we can do that we have to compile the new CheckoutSteps class
and add it to our classpath. This is work that we normally don’t bother with
when working in our favorite IDE, but since we're doing this from the com-
mand line, we’ll now edit our cucumber shell file so that it compiles our Java
code as well as invoking Cucumber.

first_taste/04/cucumber

javac -cp "jars/*" step definitions/CheckoutSteps.java

java -cp "jars/*:." cucumber.api.cli.Main -p pretty --snippets camelcase \
-g step definitions features

Line 1 compiles the CheckoutSteps class that we've just created. Then line 2
invokes Cucumber. There are two slight additions to Cucumber’s invocation:

“

1. We've added the current directory “.” to the classpath.

2. We've added the -g step_definitions command-line argument to tell Cucumber
where to look for the step definitions that it will need to “glue” the steps
in the feature file to the checkout application (which we haven’'t written
yet).

Now, let’s execute ./cucumber again and see what we need to do next:

http://media.pragprog.com/titles/srjcuc/code/first_taste/04/step_definitions/CheckoutSteps.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/04/cucumber
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Implementing Our First Step Definition ¢ 19

The syntax of the Java classpath is dependent on the underlying operating system.
For *nix operating systems the separator is a colon () whereas for Windows operating
systems the separator is a semicolon (;).

We're showing the cucumber script in this chapter, which is for *nix users. You'll also
find the cucumber.bat batch file in the downloadable code, which contains exactly the
same operations but formatted for Windows.

Feature: Checkout

Scenario: Checkout a banana # checkout.feature:2
Given the price of a "banana" is 40c # CheckoutSteps.thePriceOfAIsC(String,int)
cucumber.api.PendingException: TODO: implement me
at step definitions.CheckoutSteps.thePrice0fAIsC(CheckoutSteps.java:12)
at *.Given the price of a "banana" is 40c(checkout.feature:3)
When I checkout 1 "banana" # CheckoutSteps.iCheckout(int,String)
Then the total price should be 40c # CheckoutSteps.theTotalPriceShouldBeC(int)

1 Scenarios (1 pending)
3 Steps (2 skipped, 1 pending)
0m0O.138s

cucumber.api.PendingException: TODO: implement me
at step definitions.CheckoutSteps.thePriceOfAIsC(CheckoutSteps.java:12)
at *.Given the price of a "banana" is 40c(checkout.feature:3)

The scenario has graduated from undefined to pending. This is good news, because
it means Cucumber is now running the first step, but as it did so, it hit the
call to throw new PendingException() inside our copied-and-pasted step definition
code, which tells Cucumber that this scenario is still a work in progress. We
need to replace throwing this exception with a real implementation.

Notice that Cucumber reports the two other steps as skipped. As soon as it
encounters a failed or pending step, Cucumber will stop running the scenario
and skip the remaining steps.

Let’s implement the first step definition.

Implementing Our First Step Definition

We've decided this first release of our checkout is going to be a class that
takes the price list and the items being bought as arguments to a method.
So, our job in the step definition for Given the price of a banana is 40c is just to

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 20

remember the price of bananas. In the step_definitions folder, edit the Checkout-
Steps.java file so that the first step definition looks like this:

first_taste/05/step_definitions/CheckoutSteps.java

@Given("~the price of a \"(.*?)\" is (\\d+)c$")

public void thePriceOfAIsC(String name, int price) throws Throwable {
int bananaPrice = price;

}

Great, that was easy. Now, where were we again? Well, we've written some
Java code so we’ll need to compile the CheckoutSteps class and run Cucumber
again by running ./cucumber.

Feature: Checkout

Scenario: Checkout a banana # checkout.feature:2
Given the price of a "banana" is 40c # CheckoutSteps.thePrice0OfAIsC(String,int)
When I checkout 1 "banana" # CheckoutSteps.iCheckout(int,String)

cucumber.api.PendingException: TODO: implement me
at step definitions.CheckoutSteps.iCheckout(CheckoutSteps.java:17)
at *.When I checkout 1 "banana"(checkout.feature:4)
Then the total price should be 40c # CheckoutSteps.theTotalPriceShouldBeC(int)

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
0mo.126s

cucumber.api.PendingException: TODO: implement me
at step definitions.CheckoutSteps.iCheckout(CheckoutSteps.java:17)
at *.When I checkout 1 "banana"(checkout.feature:4)

Yay! Our first step passed! The scenario is still marked as pending, of course,
because we still have the other two steps to implement, but we're starting to
get somewhere.

Changing Cucumber’s Output

It can be distracting to look at the whole content of the feature in Cucumber’s
output each time we run it. Let’s switch to use the progress plugin to get a
more focused output. Edit cucumber so that the line that runs Cucumber looks
like this:

first_taste/06/cucumber

java -cp "jars/*:." cucumber.api.cli.Main -p progress --snippets camelcase \
-g step definitions features

Now when you run ./cucumber you should see the following output:

http://media.pragprog.com/titles/srjcuc/code/first_taste/05/step_definitions/CheckoutSteps.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/06/cucumber
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Testing Our Checkout Class ® 21

.P-

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
Omo.081s

cucumber.api.PendingException: TODO: implement me
at step definitions.CheckoutSteps.iCheckout(CheckoutSteps.java:17)
at *.When I checkout 1 "banana"(checkout.feature:4)

Instead of printing the whole feature, the progress plugin has printed three
characters in the output, one for each step. The first . character means the
step passed. The P character means the second step, as we know, is pending.
The final - character means that the last step has been skipped. Cucumber
has several different plugins that produce output in different formats; you’'ll
learn more about them through the course of the book.

Cucumber plugins allow you to customize how the tool behaves. The plugins that
ship with Cucumber produce various output formats that record what happened in
a test run. There are plugins that produce HTML reports, plugins that produce JUnit
XML for continuous integration servers like Jenkins, and many more. Use this com-
mand to see the different plugins that are available and try some out for yourself:

java -cp "jars/*" cucumber.api.cli.Main --help

We'll explain more about plugins in Chapter 14, Controlling Cucumber, on page 259.

That was an interesting little diversion, but let’s get back to work. We have a
pending test to fix!

Testing Our Checkout Class

To implement the next step, edit step definitions/CheckoutSteps.java so that the
second step definition looks like this:

first_taste/07/step_definitions/CheckoutSteps.java

@when("~I checkout (\\d+) \"(.*?)\"$")

public void iCheckout(int itemCount, String itemName) throws Throwable {
Checkout checkout = new Checkout();
checkout.add(itemCount, bananaPrice);

}

This code attempts to call an add() on an instance of our Checkout class, passing
it the number of items being bought and their price.

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/first_taste/07/step_definitions/CheckoutSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 22

This time when we run ./cucumber, we should get a compile error because we
haven’t created a Checkout class yet:

step definitions/CheckoutSteps.java:15: error: cannot find symbol
Checkout checkout = new Checkout();

N

symbol: class Checkout
location: class CheckoutSteps

Our step is failing, because we don’t have a Checkout class to use yet.

You might well think it’s a bit odd that we’ve written and run code that tries
to run our Checkout class, knowing perfectly well that the Checkout class doesn’t
even exist yet. We do this deliberately, because we want to make sure we have
a fully functioning test in place before we drop down to working on the solu-
tion. Having the discipline to do this means we can trust our tests, because
we've seen them fail, and this gives us confidence that when the tests pass,
we're really done. This gentle rhythm is a big part of what we call outside-in
development, and though it might seem strange at first, we hope to show you
throughout the book that it has some great benefits.

Another benefit of working from the outside-in is that we've had a chance to
think about the command-line interface to our checkout class from the point
of view of a user, without having made any effort to implement it yet. At this
stage, if we realize there’s something we don’t like about the interface, it’s
very easy for us to change it.

Now we create a folder to hold our implementation:

$ mkdir implementation

Now create a Java file in implementation, called Checkout.java. Open it in your
text editor and enter the following class definition:

first_taste/08/implementation/Checkout.java
package implementation;

public class Checkout {
public void add(int count, int price) {
}

}

We'll need to add this to our compile step in our script cucumber, as well as
modify the classpath to include the root of the project:

first_taste/08/cucumber
javac -cp "jars/*:.

step definitions/CheckoutSteps.java \
implementation/Checkout. java

http://media.pragprog.com/titles/srjcuc/code/first_taste/08/implementation/Checkout.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/08/cucumber
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding an Assertion ¢ 23

We import the Checkout class into CheckoutSteps:

first_taste/08/step_definitions/CheckoutSteps.java
import implementation.Checkout;

And we run Cucumber again:
step definitions/CheckoutSteps.java:19: error: cannot find symbol

checkout.add(itemCount, bananaPrice);

~

symbol: variable bananaPrice
location: class CheckoutSteps
1 error

We still have a syntax error. The variable bananaPrice is local to thePriceOfAlsC(),
but we're trying to use it in iCheckout(). Let’s move it to be an instance variable
so that it can be shared by all step definitions in CheckoutSteps:

first_taste/09/step_definitions/CheckoutSteps.java
public class CheckoutSteps {
int bananaPrice = 0;

@Given("~the price of a \"(.*?)\" is (\\d+)cs$")

public void thePrice0fAIsC(String name, int price) throws Throwable {
bananaPrice = price;

}

We now have two passing steps and a skeleton implementation of Checkout.

Adding an Assertion

To get the last step working, change the last step definition in step_definitions/Check-
outSteps.java to look like this:

first_taste/10/step_definitions/CheckoutSteps.java

@Then("~the total price should be (\\d+)c$")

public void theTotalPriceShouldBeC(int total) throws Throwable {
assertEquals(total, checkout.total());

}

We're using a JUnit assertion to check that the expected total specified in the
feature matches the total from our checkout. If it doesn’t, JUnit will raise an
error. Before this can compile, we’ll need to add an import statement to
step_definitions/CheckoutSteps.java:

first_taste/10/step_definitions/CheckoutSteps.java
import static org.junit.Assert.*;

We'll also need to download the latest JUnit JAR* and put it in the jars folder.

4. https://github.com/junit-team/junit/wiki/Download-and-Install

http://media.pragprog.com/titles/srjcuc/code/first_taste/08/step_definitions/CheckoutSteps.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/09/step_definitions/CheckoutSteps.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/10/step_definitions/CheckoutSteps.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/10/step_definitions/CheckoutSteps.java
https://github.com/junit-team/junit/wiki/Download-and-Install
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 24

Now add an implementation of total() to Checkout:

first_taste/10/implementation/Checkout.java
public int total() {
return 0;

}
When we run ./cucumber, we get another compile error:
step definitions/CheckoutSteps.java:31: error: cannot find symbol

assertEquals(total, checkout.total());

A

symbol: variable checkout
location: class CheckoutSteps
1 error

The local variable checkout that we created in iCheckout() has gone out of scope
by the time we get to call total() later in theTotalPriceShouldBeC(). What we need to
do is make it an instance variable of CheckoutSteps:

first_taste/11/step_definitions/CheckoutSteps.java
public class CheckoutSteps {
Checkout checkout;
@hen("~I checkout (\\d+) \"(.*?)\"$")
public void iCheckout(int itemCount, String itemName) throws Throwable {
checkout = new Checkout();
checkout.add(itemCount, bananaPrice);

}

This is a common way we share information between different step definitions
that are implemented in the same Java class. Later, you'll see other ways to
do this, but this is a simple approach that you’ll use often.

Now when we run ./cucumber, we have ourselves a genuine failing test:

..F

1 Scenarios (1 failed)
3 Steps (1 failed, 2 passed)
Omo.099s

java.lang.AssertionError: expected:<40> but was:<0>
at org.junit.Assert.fail(Assert.java:92)
at org.junit.Assert.failNotEquals(Assert.java:646)
at org.junit.Assert.assertEquals(Assert.java:127)
at org.junit.Assert.assertEquals(Assert.java:471)
at org.junit.Assert.assertEquals(Assert.java:455)
at step definitions.CheckoutSteps.theTotalPriceShouldBeC
at *.Then the total price should be 40c(checkout.feature:5)

http://media.pragprog.com/titles/srjcuc/code/first_taste/10/implementation/Checkout.java
http://media.pragprog.com/titles/srjcuc/code/first_taste/11/step_definitions/CheckoutSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Making It Pass ® 25

Great! Now our test is failing for exactly the right reason: it's using Checkout,
examining the total, and telling us just what the total should look like. This
is a natural point to pause for a break. We've done the hard work for this
release: when we come back to this code, Cucumber will be telling us exactly
what we need to do to our program to make it work. If only all our require-
ments came ready-rolled with a failing test like this, building software would
be easy!

Try This

Can you write an implementation of Checkout.java that makes the scenario pass?
Remember, at this stage we have only a single scenario to satisfy, so you
might be able to get away with a simple solution.

We’ll show you our solution in the next section.

We've implemented a step that uses the Checkout class and passes, even though the
“class” just contains method implementations that don’t do anything useful. What’s
going on here?

Remember that a step isn’t a test in itself. The test is the whole scenario, and that
isn’t going to pass until all of its steps do. By the time we've implemented all of the
step definitions, there’s going to be only one way to make the whole scenario pass,
and that’s to build a checkout that can total items!

When we work outside-in like this, we often use temporary stubs like the empty
Checkout class as placeholders for details we need to fill in later. We know that we can’t
get away with leaving that as an empty file forever, because eventually Cucumber is
going to tell us to come back and make it do something useful in order to get the
whole scenario to pass.

This principle, deliberately doing the minimum useful work the tests will let us get
away with, might seem lazy, but in fact it’s a discipline. It ensures that we make our
tests thorough: if the test doesn’t drive us to write the right thing, then we need a
better test.

.
Making It Pass

So, now that we have our solid failing Cucumber scenario in place, it’s time
to let that scenario drive out a solution.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 26

There is a very simple solution that will make the test pass, but it’s not going
to get us very far. Let’s try it anyway, for fun:

first_taste/12/implementation/Checkout.java
package implementation;

public class Checkout {
public void add(int count, int price) {

}

public int total() {
return 40;
}
}

Try it. You should see the scenario pass at last:

1 Scenarios (1 passed)
3 Steps (3 passed)
Om0.116s

Hooray! So, what’s wrong with this solution? After all, we already said that
we want to do the minimum work that the tests will let us get away with,
right?

Actually, that’s not quite what we said. We said we want to do the minimum
useful work that the tests will let us get away with. What we've done here
might have made the test pass, but it isn’t very useful. Apart from the fact
that it certainly isn’t going to function as a checkout yet, let’s look at what
we’'ve missed out on testing with our smarty-pants one-liner solution:

e We haven’t used either of the inputs.
e We haven't tried to total anything up.

In Crystal Clear: A Human-Powered Methodology for Small Teams [Coc04],
Alistair Cockburn advocates building a walking skeleton as early as possible
in a project to try to flush out any potential problems with your technology
choices. Obviously, our checkout is trivially simple, but it’s still worth consid-
ering this principle: why don’t we build something more useful that passes

this scenario and helps us learn more about our planned implementation?

If you're unconvinced by that argument, try looking at it as a problem of
duplication. We have a hard-coded value of 40 in two places: once in our
scenario and once in our Checkout. In a more complex system, this kind of
duplication might go unnoticed, and we’d have a brittle scenario.

http://media.pragprog.com/titles/srjcuc/code/first_taste/12/implementation/Checkout.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Making It Pass ® 27

Let’s force ourselves to fix this, using what Kent Beck calls triangulation (Test

feature, using a new keyword called a Scenario Outline:

first_taste/13/features/checkout.feature
Feature: Checkout

Scenario Outline: Checkout bananas
Given the price of a "banana" is 40c
When I checkout <count> "banana"
Then the total price should be <total>c

Examples:

count	total
1	40
2	80

We've turned our scenario into a Scenario Outline, which lets us specify multiple
scenarios using a table. We could have copied and pasted the whole scenario
and just changed the values, but we think this is a more readable way of
expressing the examples, and we want to give you a taste of what’s possible
with Gherkin’s syntax. Let’s see what the output looks like now:

$./cucumber

2 Scenarios (1 failed, 1 passed)
6 Steps (1 failed, 5 passed)
OmoO.155s

java.lang.AssertionError: expected:<80> but was:<40>
at org.junit.Assert.fail(Assert.java:92)

at step_definitions.CheckoutSteps.theTotalPriceShouldBeC
at *.Then the total price should be 80c(checkout.feature:6)

We can see from the summary 2 scenarios (1 failed, 1 passed) that Cucumber has
run two scenarios. Each row in the Examples table is expanded into a scenario
when Cucumber runs the scenario outline. The first example—where the
result is 40—still passes, but the second example is failing.

Now it definitely makes sense to reimplement our program with a more real-
istic solution:

first_taste/14/implementation/Checkout.java
package implementation;

public class Checkout {
private int runningTotal = 0;

http://media.pragprog.com/titles/srjcuc/code/first_taste/13/features/checkout.feature
http://media.pragprog.com/titles/srjcuc/code/first_taste/14/implementation/Checkout.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 2. First Taste ® 28

public void add(int count, int price) {
runningTotal += (count * price);

}

public int total() {
return runningTotal;
}
}

First we create an instance variable, runningTotal, to keep track of the running
total. Then we increment this in the add. Finally, we return the runningTotal in
the total method.

Try that. Do both scenarios pass? Great! You've just built your first program
with Cucumber.

What We Just Learned

We've taken a quick skim over a lot of different things in this chapter, all of
which will be covered again in more detail later. Let’s recap and highlight
some of the most important points.

Directory Structure

Cucumber needs you to specify where your features and step definition are
kept.

Baby Steps

As we progressed through the example, did you notice how often we ran
.Jcucumber?

One of the things we love about working outside-in with Cucumber is how it
helps us to stay focused. We can let Cucumber guide us through the work to
be done, leaving us free to concentrate on creating an elegant solution. By
running Cucumber every time we make a change, any mistakes we make are
found and resolved quickly, and we get plenty of feedback and encouragement
about our progress.

Gherkin

Cucumber tests are expressed using a syntax called Gherkin. Gherkin files
are plain text and have a .feature extension. We'll talk more about Gherkin in
Chapter 3, Gherkin Basics, on page 31.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 29

Step Definitions

Step definitions are the glue that binds your Cucumber tests to the application
you're testing. When the whole thing plays together, it looks a bit like Figure
1,The main layers of a Cucumber test suite, on page 17.

After that whistle-stop tour of Cucumber’s features, we're going to slow down
and get into a bit more depth. We’ll work our way in through the layers over
the next few chapters, starting with a look at Gherkin, the language we use
to write Cucumber features.

Try This

See whether you can add more scenarios to drive out a more complete
implementation.

For instance, what if we were to checkout a banana twice?

first_taste/15/features/checkout.feature

Scenario: Two bananas scanned separately
Given the price of a "banana" is 40c
When I checkout 1 "banana"
And I checkout 1 "banana"
Then the total price should be 80c

And then we should think about selling apples too:

first_taste/15/features/checkout.feature
Scenario: A banana and an apple
Given the price of a "banana" is 40c
And the price of a "apple" is 25c
When I checkout 1 "banana"
And I checkout 1 "apple"
Then the total price should be 65c

http://media.pragprog.com/titles/srjcuc/code/first_taste/15/features/checkout.feature
http://media.pragprog.com/titles/srjcuc/code/first_taste/15/features/checkout.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 3

Gherkin Basics

Now that you've gained some confidence with how Cucumber works, it’s worth
stepping back for a few moments and doing a little studying. We're going to
look at Gherkin, the language we use for writing Cucumber features.

By the end of this chapter you’ll understand how to write specifications for
your software that can be both read by your stakeholders and tested by
Cucumber. You'll learn what each of the Gherkin keywords does and how
they all fit together to make readable, executable Cucumber specifications.

What’'s Gherkin For?

When we build software for people (let’s call them stakeholders), it’s notori-
ously difficult to figure out exactly what they want us to build. In his famous
essay, No Silver Bullet [Bro95], Fred Brooks says:

“The hardest single part of building a software system is deciding precisely what
to build.”

We've all worked on projects where, because of a misunderstanding, code
that we’d worked hard on for several days or more had to be thrown away.
Better communication between developers and stakeholders is essential to
help avoid this kind of wasted time. One technique that really helps facilitate
this communication is the use of concrete examples to illustrate what we want
the software to do.

Concrete Examples

By using real-world examples to describe the desired behavior of the system
we want to build, we stay grounded in language and terminology that makes
sense to our stakeholders: we’re speaking their language. When we talk in
terms of these examples, they can really imagine themselves using the system,

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 3. Gherkin Basics ® 32

and that means they can start to give us useful feedback and ideas before a
single line of code has been written.

To illustrate this, let’s imagine you're building a credit card payment system.
One of the requirements is to make sure users can’t enter bad data. Here’s
one way of expressing that:

Customers should be prevented from entering invalid credit card details.

This is an example of what Agile teams often call acceptance criteria or condi-
tions of satisfaction." We use the word acceptance because they tell us what
the system must be able to do in order for our stakeholders to find it accept-
able.

The previous requirements statement is useful, but it leaves far too much
room for ambiguity and misunderstanding. It lacks precision. What exactly
makes a set of details invalid? How exactly should the user be prevented from
entering them? We've seen too many projects get dragged into the tar pit® by
these kind of worthy but vague statements. Let's try illustrating this
requirement with a concrete example:

If a customer enters a credit card number that isn’t exactly 16 digits long, when
they try to submit the form, it should be redisplayed with an error message advising
them of the correct number of digits.

Can you see how much more specific this second statement is? As a developer
implementing this feature, we know almost everything we need to be able to
sit down and start working on the code. As a stakeholder, we have a much
clearer idea of what the developer is going to build.

In fact, a stakeholder reading this might point out that there are certain types
of cards that are valid with fewer than 16 digits and give us another example.
This is the real power of examples: they stimulate our imagination, enabling
us to explore and discover edge cases we might otherwise not have found
until much later.

By giving an example to illustrate our requirement, we've turned an acceptance
criterion into an acceptance test. Now we have something unambiguous that
we can use to test the behavior of the system, either manually or by using
an automated test script.

1. Agile Estimating and Planning [Coh05]

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What's Gherkin For? ® 33

Try This

Think about a feature youre working on right now or have worked on
recently. Can you write down three concrete examples of the behavior needed
for that feature to be acceptable?

Executable Specifications

Another advantage of using concrete examples is that they’re much easier to
validate against the running system than vague requirement statements. In
fact, if we're neat and tidy about how we express them, we can get the com-
puter to check them for us. We call this automated acceptance testing.’

The challenge with writing good automated acceptance tests is that, for them
to be really effective, they need to be readable by not only the computer but
also by our stakeholders. It’s this human readability that allows us to get
feedback about what we're building while we’re building it. This is where
Gherkin comes in.

Gherkin gives us a lightweight structure for documenting examples of the
behavior our stakeholders want, in a way that can be easily understood both
by the stakeholders and by Cucumber. Although we can call Gherkin a pro-
gramming language,” its primary design goal is human readability, meaning
you can write automated tests that read like documentation. Here’s an
example:

gherkin_basics/sample.feature
Feature: Feedback when entering invalid credit card details

In user testing we've seen a lot of people who made mistakes
entering their credit card. We need to be as helpful as possible
here to avoid losing users at this crucial stage of the
transaction.

Background:
Given I have chosen some items to buy
And I am about to enter my credit card details

Scenario: Credit card number too short
When I enter a card number that's only 15 digits long
And all the other details are correct
And I submit the form
Then the form should be redisplayed
And I should see a message advising me of the correct number of digits

3. Extreme Programming Explained: Embrace Change [BecOO]

4. A note for the pedantic reader: The Gherkin language does have a grammar enforced
by a parser, but the language is not Turing Complete.

http://media.pragprog.com/titles/srjcuc/code/gherkin_basics/sample.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 3. Gherkin Basics ® 34

Scenario: Expiry date must not be in the past
When I enter a card expiry date that's in the past
And all the other details are correct
And I submit the form
Then the form should be redisplayed
And I should see a message telling me the expiry date must be wrong

One interesting feature of Gherkin’s syntax is that it is not tied down to one
particular spoken language. Each of Gherkin’s keywords has been translated
into more than forty different spoken languages, and it is perfectly valid to
use any of them to write your Gherkin features. No matter if your users speak
Norwegian or Spanish, med Gherkin kan du beskrive funksjonalitet i et sprak
de vil forsta. (Gherkin lets you to write your features in a language they will
understand.) Tocino grueso! (Chunky Bacon!) More on that later.

Format and Syntax

Gherkin files use the .feature file extension. They're saved as plain text,
meaning they can be read and edited with simple tools. In this respect,
Gherkin is very similar to file formats like Markdown, Textile, and YAML.

Keywords

A Gherkin file is given its structure and meaning using a set of special key-
words. There’s an equivalent set of these keywords in each of the supported
spoken languages, but for now let’s take a look at the English ones:

e Feature

e Background
® Scenario

e Given

e When

e Then

e And

e But

o X

e Scenario Outline
e Examples

We'll spend the rest of this chapter exploring how to use the most common
of these keywords, which will be enough to get you started writing your own
Cucumber features. We’ll come back to look at the remaining keywords later
in Chapter 5, Expressive Scenarios, on page 69.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Feature ® 35

Dry Run

All of the examples in this chapter are valid Gherkin and can be parsed by
Cucumber. If you want to play around with them as we go through the
chapter, just create a features/test.feature working file. Then run it with the fol-
lowing:

$ java -cp ".:jars/*" cucumber.api.cli.Main -g step_definitions --dry-run features

The --dry-run switch tells Cucumber to parse the file without executing it. It
will tell you if your Gherkin isn’t valid.

Feature

Each Gherkin file begins with the Feature keyword. This keyword doesn’t really
affect the behavior of your Cucumber tests at all; it just gives you a convenient
place to put some summary documentation about the group of tests that
follow.

Here’s an example:

Feature: This is the feature title
This is the description of the feature, which can
span multiple lines.
You can even include empty lines, like this one:

In fact, everything until the next Gherkin keyword is included
in the description.

The text immediately following on the same line as the Feature keyword is the
name of the feature, and the remaining lines are its description. You can
include any text you like in the description except a line beginning with one
of the words Scenario, Background, or Scenario Outline. The description can span
multiple lines. It's a great place to wax lyrical with details about who will use
the feature, and why, or to put links to supporting documentation such as
wireframes or user research surveys.

It's conventional to name the feature file by converting the feature’s name to
lowercase characters and replacing the spaces with underscores. So, for
example, the feature named User logs in would be stored in user_logs_in.feature.

In valid Gherkin, a Feature must be followed by one of the following:

e Scenario
e Background
e Scenario Outline

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 3. Gherkin Basics ® 36

Although Background is a handy keyword to know once you've written a few
scenarios, we don’t need to worry about it just yet. It's covered later in
Chapter 5, Expressive Scenarios, on page 69. Right now all we need is the

Scenario.

Although feature descriptions are often helpful documentation, they’re not mandatory.
If you're struggling to work out what to say, the following template can be a great
place to start:

In order to <meet some goal>
As a <type of stakeholder>
I want <a feature>

By starting with the goal or value that the feature provides, you're making it explicit
to everyone who ever works on this feature why they're giving up their precious time.
You're also offering people an opportunity to think about other ways that the goal
could be met. Maybe you don’t actually need to build this feature at all, or you could
deliver the same value in a much simpler way.

This template is known as a Feature Injection template, and we are grateful to Chris
Matts and Liz Keogh for sharing it with us.

U
Scenario

To actually express the behavior we want, each feature contains several sce-
narios/Each seenario is a single concrete example of how the system should
behave in a particular situation. If you add together the behavior defined by
all of the scenarios, that’s the expected behavior of the feature itself.

When Cucumber runs a scenario, if the system behaves as described in the
scenario, then the scenario will pass; if not, it will fail. Each time you add a
new scenario to your Cucumber test suite and make it pass, you've added
some new functionality to the system, and that’s time for a high-five.

Each feature typically has somewhere between five and twenty scenarios,
each describing different examples of how that feature should behave in dif-
ferent circumstances. We use scenarios to explore edge cases and different
paths through a feature.

Scenarios all follow the same pattern:

1. Get the system into a particular state.
2. Poke it (or tickle it, or...).
3. Examine the new state.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Scenario * 37

So, we start with a context, go on to describe an action, and then finally check
that the outcome was what we expected. Each scenario tells a little story
describing something that the system should be able to do.

Given, When, Then

In Gherkin, we use the keywords Given, When, and Then to identify those three
different parts of the scenario:

Scenario: Successful withdrawal from an account in credit
Given I have $100 in my account # the context
When I request $20 # the event(s)
Then $20 should be dispensed # the outcome(s)

So, we use Given to set up the context where the scenario happens, When to
interact with the system somehow, and Then to check that the outcome of that
interaction was what we expected.

And, But

Each of the lines in a scenario is known as a step. We can add more steps to
each Given, When, or Then section of the scenario using the keywords And and
But:

Scenario: Attempt withdrawal using stolen card
Given I have $100 in my account
But my card is invalid
When I request $50
Then my card should not be returned
And I should be told to contact the bank

Cucumber doesn’t actually care which of these keywords you use; the choice
is simply there to help you create the most readable scenario. If you don’t
want to use And or But, you could write the previous scenario like this, and it
would still work exactly the same way:

Scenario: Attempt withdrawal using stolen card
Given I have $100 in my account
Given my card is invalid
When I request $50
Then my card should not be returned
Then I should be told to contact the bank

But that doesn’t read as nicely, does it?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 3. Gherkin Basics ® 38

Replacing Given/When/Then with Bullets

Some people find Given, When, Then, And, and But a little verbose. There is an
additional keyword you can use to start a step: * (an asterisk). We could have
written the previous scenario like this:

Scenario: Attempt withdrawal using stolen card
* I have $100 in my account

my card is invalid

I request $50

my card should not be returned

I should be told to contact the bank

*
*
*
*
To Cucumber, this is exactly the same scenario. Do you find this version
easier to read? Maybe. Did some of the meaning get lost? Maybe. It's up to
you and your team how you want to word things. The only thing that matters

is that everybody understands what’s communicated.

Stateless

When writing scenarios, here’s a really important concept you need to grasp:

Each scenario must make sense and be able to be executed independently of
any other scenario.

That means you can’t put some money into the account in one scenario and
then expect that money to be there in the next scenario. Cucumber won’t
stop you from doing this, but it’s extremely bad practice: you'll end up with
scenarios that fail unexpectedly and are harder to understand.

This might seem a little dogmatic, but trust us, it really helps keep your sce-
narios simple to work with. It avoids building up brittle dependencies between
scenarios and also gives you the flexibility to run just the scenarios you need
to when you're working on a particular part of the system, without having to
worry about getting the right test data set up. We explain these problems in
depth in Chapter 6, Keeping Your Cucumbers Sweet, on page 91.

When writing a scenario, always assume that it will run against the system
in a default, blank state. Tell the story from the beginning, using Given steps
to set up all the state you need for that particular scenario.

Name and Description

Just like a Feature, a Scenario keyword can be followed by a name and descrip-
tion. Normally you’ll probably just use the name, but it's valid Gherkin to
follow the name with a multiline description—everything up until the first
Given, When, or Then will be slurped up into the description of the scenario.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Scenario ® 39

Stale scenario names can cause confusion. When modifying existing scenarios
(or copying and pasting them), take care to check that the name still makes
sense. Since the scenario name is just documentation, Cucumber won't fail
the scenario even if its name no longer has anything to do with what’s actu-
ally going on in the steps. This can be really confusing for anyone reading
the scenario later.

Even though they can’t make your tests pass or fail, scenario names are surprisingly
important to get right. Here are some reasons why it's a good idea to pay attention
to them:

e When your tests break, it’s the failing scenario’s name that will give you the
headline news on what's broken. A concise, expressive name here can save
everyone a lot of time.

¢ Once you have a few scenarios in a feature file, you don’t want to have to read
the detail of the steps unless you really need to do so. If you're a programmer,
think of it a bit like method naming. If you name the method well, you won’t
need to read the code inside it to work out what it does.

¢ As your system evolves, your stakeholders will quite often ask you to change the
expected behavior in an existing scenario. A well-composed scenario name will
still make sense even if you add an extra Then step or two.

A good tip is to avoid putting anything about the outcome (the Then part) of the scenario
into the name and concentrate on summarizing the context and event (Given and When)
of the scenario.

Try This

¢ Now that you understand how to write Gherkin scenarios, try converting
some of the concrete examples you wrote down earlier for your own project

into Gherkin.

¢ Show them to someone who knows nothing about your project, and ask

them what they think your application does.

¢ Practice describing what you're doing with Given/When/Then while you're
doing everyday things such as starting your car, cooking breakfast, or

switching channels on the TV. You'll be surprised how well it fits.

report erratum - discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 3. Gherkin Basics ® 40

Comments

As well as the description fields that follow Feature and Scenario keywords,
Cucumber allows you to precede these keywords with comments.

Comments start with a # character and have to be the first and only thing
on a line (well, apart from whitespace).

Here’s an example:

gherkin_basics/comments_example.feature
This feature covers the account transaction and hardware-driver modules
Feature: Withdraw Cash

In order to buy beer

As an account holder

I want to withdraw cash from the ATM

Can't figure out how to integrate with magic wand interface
Scenario: Withdraw too much from an account in credit

Given I have $50 in my account

When I wave my magic wand

And I withdraw $100

Then I should receive $100

You can also put comments within a scenario. The most common use for this
is to comment out a [step, as we've shown in the previous example.

As in any programming language, comments can quickly go stale and become
meaningless or downright confusing. When this happens, the comment
causes more harm than good. We advise you to use them as sparingly as you
can and put the important stuff into scenarios where it can be tested.

Here’s how we think about this: the description, which you can put after each
keyword, is part of the structured Gherkin document and is the right place
to put documentation for your stakeholders.

Comments, on the other hand, can be used more to leave notes for testers
and programmers who are working with the features. Think of a comment as
something more temporary, a bit like a sticky note.

Don'’t forget that programmers and testers need documentation too. If there
are technical details that need to be documented with the feature, you should
feel free to put them into the description too, provided that the business-facing
members of your team are comfortable with them being there.

http://media.pragprog.com/titles/srjcuc/code/gherkin_basics/comments_example.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Spoken Languages ® 41

Spoken Languages

Remember earlier we said that you can write your Gherkin features in the
spoken language of your stakeholders? Here’s how.

Putting a # language: comment on the first line of a feature file tells Cucumber
which spoken language that feature is written in. If you omit this header,
Cucumber will default to English, as you've already seen.

Here’s an example of a feature written in Norwegian:

language: no
Egenskap: Summering
For & unngd at firmaet gar konkurs
Ma regnskapsfgrerere bruke en regnemaskin for & legge sammen tall

Scenario: to tall
Gitt at jeg har tastet inn 5
0g at jeg har tastet inn 7
Nar jeg summerer
Sa skal resultatet vare 12

If you're wondering whether Cucumber knows how to speak your language,
you can ask it for the list of all valid languages with this command:

$./cucumber --il8n help

When you’re working with a particular language, you can discover the key-
words by passing the language code (as listed by the previous command) to
the --i18n switch. Here’s Japanese, for example:

$./cucumber --il8n ja

The --i18n option only became available in Cucumber-JVM 1.2.0. Prior to that,
the easiest way to find out what languages were supported was to look in the
Gherkin project at lib/i18n.json.’

One of the greatest benefits of working with a tool like Cucumber is the con-
versations you have with your stakeholders as you write the scenarios. These
conversations can help you find gaps and misunderstandings that otherwise
might have emerged only after you'd spent days or even weeks working on
the code. So, even if you never run the tests, just writing them can help make
you go faster.

5. https://github.com/cucumber/gherkin/blob/master/lib/gherkin/i18n.json

https://github.com/cucumber/gherkin/blob/master/lib/gherkin/i18n.json
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Chapter 3. Gherkin Basics ® 42

A project can have a mix of features that use different spoken languages, yes. However,
remember that the setting is for a feature, so all the scenarios in a feature have to
use the same spoken language.

A4
What We Just Learned

Let’s review what we've talked about in this chapter:

e We saw how the core Gherkin keywords Feature, Scenario, Given, When, and
Then can be used to describe the behavior your stakeholders want as

* There is a fundamental pattern to each Gherkin scenario, with a context

e Each scenario must be capable of being run on its own and should not
depend on data set up by other scenarios. This means every scenario has
to include enough Given steps to set up all the data it needs.

¢ You can add descriptions and comments to your .feature files to turn them
into useful documentation of your system.

e Using the #language: header, you can write your features in different spoken
languages.

At this point you have all the knowledge you need to get started writing your
own Gherkin features. Even though there are some keywords we haven't
covered yet, there’s a huge amount of value in what you already know. Just
pretend you have a machine that can turn your Cucumber scenarios into
perfect working code, and play the game of working with your team to create
the best descriptions you can of what you want the software to do.

In the next chapter, we’ll start to explore step definitions, the layer beneath
the Gherkin features where you interact with your application, and bring
your scenarios to life.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

What We Just Learned ® 43

Try This

Here are some exercises for you to try.

Practice Given/When/Then

Let’s build a robot! Here’s a scenario:

Scenario: Tickle a happy robot
Given I am in a good mood
When you tickle me
Then I will giggle

What happens if you change the context in which this scenario happens?
Write another scenario where the first step puts the robot into a bad mood.
Leave the action the same. What will be the outcome when you tickle a grumpy
robot?

Now try changing the action:

Scenario: Attack a happy robot
Given I am in a good mood
When you kick me in the shins
Then I will ...

What will the outcome be now?

Your First Scenario

Write the first formal Gherkin scenario for your project. Pick a feature you're
working on right now, and try to describe the way the system should behave
when you're done. Notice when you have questions about the precise language
you should use, or the precise behavior, and write down those questions. Try
to get some time with the right people on your team to answer those questions.
Show them the scenario: does it make sense to them? How would they have
worded it?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER4

Step Definitions: From the Qutside

Now that you know how to use Gherkin to describe what you want your tests
to do, the next task is to tell them how to do it. Whether you choose to drive
your acceptance tests from Cucumber scenarios or simple JUnit tests, there’s
no escaping the fact that you're going to need to write some code eventually.
It’s about that time.

Step definitions sit right on the boundary between the business’s domain and
the programmer’s domain. You can write them in many JVM languages (for
now we’ll show examples in Java) and their responsibility is to translate each
plain-language step in your Gherkin scenarios into concrete actions in your
code. As an example, take this step from the ATM scenario in the previous
chapter:

Given I have $100 in my Account
This step definition needs to make the following things happen:

e Create an account for the protagonist in the scenario (if there isn’t one
already).

¢ Set the balance of that account to be $100.

How exactly those two goals are achieved depends a great deal on your spe-
cific application. Automated acceptance tests generally try to simulate user
interactions with the system, and the step definitions are where you’ll tell
Cucumber how you want it to poke around with your system. That might
involve clicking buttons on a user interface or reaching beneath the covers
and directly inserting data into a database, writing to files, or even calling a
web service. We think of step definitions themselves as distinct from the
automation code that does the actual poking so that the layers separate out,
as shown in the following figure:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 46

There are two sides to a step definition. On the outside,
it translates from plain language into code, and on the
| inside it tells your system what to do using automation

Gherkin Features

What to do code. The JVM has an incredibly rich set of libraries for
automating a whole variety of systems, from JavaScript-

Step Definitions heavy web applications to REST web services. We're not
going to show you how to use all of those libraries in this

How to do it chapter; that will come later in the book. Here we're going

to concentrate on the main responsibility of this layer of
Java Automation | your Cucumber tests, which is to interpret a plain-lan-
Code guage Gherkin step and decide what to do.

Do this now! We're going to start by explaining some of the mechanics

of how step definitions match up to plain-language steps

System Under Test | and then work through an example of how to write a single

step definition that can handle many different steps. We'll

finish by explaining how Cucumber executes step defini-

tions and deals with their results. When we’re done, you should understand
enough to start writing and running your own step definitions.

Steps and Step Definitions
Let’s start by clarifying the distinction between a step and a step definition.

Each Gherkin scenario is made up of a series of steps, written in plain lan-
guage. On its own, a step is just documentation; it needs a step definition to
bring it to life. A step definition is a piece of code that says to Cucumber, “If
you see a step that looks like this..., then here’s what I want you to do....”

When Cucumber tries to execute each step, it looks for a matching step defi-
nition to execute. So, how does Cucumber match a step definition to a step?

Matching a Step

Gherkin steps are expressed in plain text. Cucumber scans the text of each
step for patterns that it recognizes, which you define using a [regular expres-
sion. If you haven’t used regular expressions before, then just think of them
like a slightly more sophisticated version of the wildcards you’d use to search
for a file. Although they can look intimidating at first, you need only a small
number of patterns to get a great deal of mileage out of them. All of those
patterns will be covered in this chapter; if you're already well familiar with
regular expressions, you might want to skim over the next few sections, up
until Returning Results, on page 58.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Steps and Step Definitions ¢ 47

Let’s take the ATM example from the previous chapter:

step_definitions/intro/features/cash_withdrawal.feature
Feature: Cash withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have $100 in my account
When I request $20
Then $20 should be dispensed

As Cucumber executes this feature, it will come to the first step of the scenario,
Given | have $100 in my Account and say to itself, Now, do I have any step definitions
that match the phrase | have $100 in my Account?

A simple regular expression that will match this step would look like this:

"I have \\$100 in my Account"

Notice that we've had toescape the dollar sign with a/double backslash. That’s
because the dollar sign can have a special meaning in a regular expression,
but in this case we want to interpret it literally. To make life even more com-
plicated, the backslash has a special meaning within a Java string, so we
need to use a double backslash. We’ll come back to these special characters
a bit later in the chapter.

If Cucumber sees a step definition with this regular expression, it will execute
it when it comes to the first step of our scenario. So, how do we create a step
definition?

Creating a Step Definition

Step definitions live in ordinary files. To create a step definition in Java, you
use a special Cucumber annotation, such as @Given, like this:

@Given("I have \\$100 in my Account")
public void iHave$100InMyAccount() throws Throwable {

// TODO: code that puts $100 into User's Account goes here
}

You'll typically put several step definitions like this together in the same
source file. Since you have to tell Cucumber where to find your step definitions
it's really up to you how exactly you want to organize them. We suggest
keeping a separate file per domain entity so that step definitions that work
with similar parts of the system are kept together. (For more details on how
Cucumber knows where to find your step definitions, see How Cucumber
Finds Our Step Definitions, on page 260.)

Let’s examine the step definition in detail. This is a Java file, and we’re using
the special Cucumber annotation @Given, which tells Cucumber that we want

http://media.pragprog.com/titles/srjcuc/code/step_definitions/intro/features/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

Chapter 4. Step Definitions: From the Outside ® 48

So far, we've been running Cucumber using a small shell script. As we continue, we’ll
see the complexity of this script grow as our examples start using more components.
Rather than manage these dependencies by hand, it's time to start using one of the
dependency management tools provided by the development community. We're going
to use Maven® from the Apache Foundation.

Maven is incredibly powerful, but we’re only going to use a small subset to help
manage the dependencies in our examples. At the heart of Maven is a configuration
file, called pom.xml by default. The main contents of our POM file simply express the
dependencies that were described in our cucumber script in XML format:

expressive_scenarios/01/pom.xml

<properties>
<cucumber.version>1.2.0</cucumber.version>
<junit.version>4.11</junit.version>

</properties>

<dependencies>
<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-java</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-junit</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>
</dependency>
</dependencies>

to Fégister a step definition. We pass the @Given annotation a regular expression
to match one or more steps (the bit between the double quotes), and we define
a Java method that will execute when it does match. Cuctimber stores a

PP pIng beteen regular expression and themetiiod; so it can call the method

later if it comes across a matching step.

You can also use the annotations @When or @Then to create a step definition
in just the same way.

Given, When, Then Are the Same

It doesn’t actually matter which of the three methods you use to register a
step definition, because Cucumber ignores the keyword when matching a

step. Under the hood, alliGf the aniotations are aliases for SepDefAmiottr.

report erratum - discuss

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/01/pom.xml
http://maven.apache.org
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Steps and Step Definitions ® 49

An extra section needs to be added to include the Surefire plugin,® which contains
the code necessary to allow Maven to find and run our JUnit tests:

expressive_scenarios/01/pom.xml
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.12.2</version>
<configuration>
<arglLine>-Duser.language=en</arglLine>
<argLine>-Xmx1024m</argLine>
<arglLine>-XX:MaxPermSize=256m</argLine>
<arglLine>-Dfile.encoding=UTF-8</argLine>
<useFile>false</useFile>
</configuration>
</plugin>

From now on, when we want to build our projects and run our tests, we’ll use Maven:
mvn clean test

The first time you run this command it may take quite a while to download the
dependencies from the Internet to a local repository. The next time you use Maven
to build your project it will use the copies in the repository.

a. http://maven.apache.org/surefire

The annotations are really just there for extra documentation to help you
express the intent of each step or step definition.

This means that, whether it was created with the method @Given, @When, or
@Then, a step definition will match any Gherkin step as long as the regular
expression matches the main text of the step. This figure highlights what
Cucumber sees when it scans a scenario for matching step definitions.

This flexibili n r v han Feature: Cash Withdrawal
s flexib tyca be ealy a dy’ as Scenario: Attempt withdrawal using stolen card

we’ll show you later, but there is one Given I have $100 in my account
. But my card is invalid
gotcha to watch out for. Let’s take a When T request $50
look at an example_ Then my card should not be returned

And I should be told to contact the bank

Imagine you have already implement-

ed your ATM withdrawal scenario, including writing a step definition for Given
| have $100 in my Account. So, you have a step definition that matches the text |
have $100 in my Account and creates an account with $100 in it. A few weeks later
that scenario is a dim and distant memory, and you get a new requirement
to give all new accounts a $1 gift. You sit down with your domain expert and
write the following scenario:

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/01/pom.xml
http://maven.apache.org/surefire
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 50

Scenario: New accounts get a $1 gift
Given I have a brand new Account
And I deposit $99
Then I have $100 in my Account

That looks reasonable, doesn’t it? We set up the new account, deposit some
money, and then check that the new balance is what we’d expect it to be. But
can you see what'’s going to happen if we run this new scenario together with
our original ATM withdrawal scenario?

Let’s look at our original step definition again:

@Given("I have \\1$100 in my Account")
void iHave$100InMyAccount() {

// TODO: code that puts $100 into User's Account goes here
}

Now that we've learned that Cucumber ignores the @Given/@When/@Then
annotation when matching a step, we can see that this original step definition
is also going to match the last step of our new scenario, Then | have $100 in my
Account. Surprise! We expected that step to check the balance of the account,
but instead it’s going to put $100 into the account!

We obviously need to be careful in this situation, because we could easily
have had a scenario that was giving us a _false positive: passing when it should
have been failing. It might not seem like it, but Cucumber’s flexibility has
actually helped us here by exposing some quite subtle ambiguity in the lan-
guage used in each of the steps. The best way we've found to avoid this kind
of problem is to pay careful attention to the precise wording in your steps.
You could change both steps to be less ambiguous:

Given I have deposited $100 in my Account
Then the balance of my Account should be $100

By rewording the steps like this, you’ve made them better at communicating
exactly what they will do when executed. Learning to spot and remove this
kind of ambiguity is something that takes practice. Paying attention to the
distinction in wording between two steps like this can also give you hints
about concepts that may not be expressed in your code but need to be. It
might seem pedantic, but we've found that teams who pay this much careful
attention to detail write much better software, faster.

Speaking in Tongues

If you're using a different spoken language than English in your features, you
can still use the same language when registering step definitions. Cucumber

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Capturing Arguments ® 51

creates an alias of each annotation for every spoken language, so a team
working in Spain, for example, could use the following:

@bado("tengo \1$100 en mi Cuenta")
public void tengo$l@OEnMiCuenta() {

// TODO: code that puts $100 into User's Account goes here
}

Capturing Arguments

You'll notice that in the step we've been using as an example, we've talked
about the sum of $100 the whole time. What if we had another scenario where
we needed to deposit a different amount of money into the account? Would
we need another step definition, like this?

@Given("I have deposited \\$100 in my Account")

public void iHaveDeposited$100InMyAccount() {
// TODO: code goes here

}

@Given("I have deposited \1$250 in my Account")

public void iHaveDeposited$250InMyAccount() {
// TODO: code goes here

}

Happily, we don’t. This is where the flexibility of regular expressions comes
into play. We can use two of regular expressions’ most useful features here
to capture any dollar amount as an argument to the step definition. Those
features are capture groups and wildcards.

Capture Groups

When you surround part of a regular expression with parentheses, it becomes
a capture group. Capture groups are used to highlight particular parts of a
pattern that you want to lift out of the matching text and use. In a Cucumber
step definition, the text matched within each capture group is passed to the
code block as an argument:

@Given("I have deposited \\$(100) in my Account")

public void iHaveDeposited$100InMyAccount(int amount) {
// TODO: code goes here

}

Here the method argument amount will receive the string value 100 when this
step definition matches. The previous example is a bit silly, because this
regular expression is still only ever going to match steps that talk about the

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ¢ 52

amount of $100. We need to use a wildcard inside the capture group to open
it up to other values.

Alternation

We can specify a wildcard in a regular expression using a few different
approaches. One of the simplest is alternation, where we express different
options separated by a pipe character |, like this:

@Given("I have deposited \1$(100|250) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {
// TODO: code goes here

}

This step definition will now match a step with either of the two values 100 or
250 in it, and the number will be captured and passed to the method as an
argument. Alternation can be useful if there are a fixed set of values that you
want to accept in your step definition, but normally you’ll want something a
little looser.

The Dot

The dot is a metacharacter, meaning it has magical powers in a regular
expression. Literally, a dot means match any|single character. So, we can try
this instead:

@Given("I have deposited \\$(...) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {
// TODO: code goes here

}

That will now match a step with any three-figure dollar sum and send the
matched amount into the method. This is definitely a step in the right direc-
tion, but there are a couple of problems with what we've done. For one,
remember that the dot matches any character, so we could end up capturing
letters in here instead of numbers. More importantly, what if we wanted a
step that deposits just $10 in the account, or $1,000? This step definition
won’'t match those steps because it’s always looking for three characters. We
can fix this by using a [/modifier.

The Star Modifier

In regular expressions, a repetition modifier takes a character (or metacharac-
ter) and tells us how many times over it can appear. The most flexible modifier
is the star:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

Capturing Arguments ¢ 53

Any of the metacharacters like the dot can be escaped by preceding them with a
backslash. So, if you wanted to specifically match, say 3.14, you could use "3\\.14".

You might have noticed that there’s a backslash in front of the dollar amount in the
step definition we're using. That’s because $ itself is a metacharacter (it's an anchor,
which we’ll explain later), so we need to escape to make it match a normal dollar sign.

@Given("I have deposited \\$(.*) in my Account")
public void iHaveDeposited$InMyAccount(int amount) {
// TODO: code goes here

}

The star modifier means any number of times. So, with .* we're capturing any
character, any number of times. Now we're getting somewhere—this will allow
us to capture all those different amounts. But there’s still a problem.

The star modifier is a bit of a blunt instrument. Because we're using it with
the dot that matches any character, it will gobble up any text at all up until
the phrase in my Account. This is why, in regex terminology, the star modifier
is known as a greedy operator. For example, it would happily match this step:

Given I have deposited $1 and a cucumber in my Account

The amount captured by our regular expression in this case would be 1 and a
cucumber. We need to be more specific about the characters we want to match
and just capture numbers. Instead of a dot, we can use something else.

Character Classes

Character classes allow you to tell the regular expression engine to match
one of a range of characters. You just place all of the characters you would
accept inside square brackets:

@Given("I have deposited \\$([01234567890]*) in my Account")
public void iHaveDeposited$InMyAccount(int amount) {

// TODO: code goes here
}

For a continuous range of characters like we have, you can use a hyphen:

@Given("I have deposited \\$([0-9]*) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {
// TODO: code goes here

}

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 54

Now we've restricted the character we’ll accept to be numeric. We're still
modifying the character with the star to accept any number of them, but we're
now being specific that we’ll accept only a continuous string of numbers.

Shorthand Character Classes

For common patterns of characters like [0-9], there are a few shorthand char-
acter classes that you can use instead. You may find this just makes your
regular expressions more cryptic, but there are only a few to learn. For a
digit, you can use \d as a shorthand for [0-9]:

@Given("I have deposited \\$(\\d*) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {

// TODO: code goes here
}

Here are the most useful shorthand character classes:

\d stands for digit, or [0-9].

\w stands for word character, specifically [A-Za-z0-9_]. Notice that underscores
and digits are included but not hyphens.

\s stands for whitespace character, specifically [\t\r\n]. That means a space,
a tab, or a line break.

\b stands for word boundary, which is a lot like \s but actually means the
opposite of \w. Anything that is not a word character is a word boundary.

You can also negate shorthand character classes by capitalizing them, so for
example, \D means any character except a digit.

Back to matching our amount. It looks like we're done, but there’s one last
problem to fix. Can you see what it is?

The Plus Modifier

The star is one example of a repetition modifier, but there are others. A subtle
problem with the star is that any number of times can mean zero.

So, this step would match:

Given I have deposited $ in my Account

That’s no good. To fix this, we can use the + modifier, which means at least
once:

@Given("I have deposited \\$(\\d+) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {
// TODO: code goes here

}

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Multiple Captures ® 55

There we go. We took a rambling route to get to the answer, but on the way
we've visited almost every one of the features of regular expressions that are
useful to us when building Cucumber step definitions. We have only a couple
more to cover.

Try This

Imagine you're building a system for airport departure lounge screens. You
need to be able to capture examples of flight codes from the Cucumber sce-
narios. Can you write a single step definition that can capture the flight codes
from all of these steps?

Given the flight EZY4567 is leaving today
Given the flight C038 is leaving today

Given a flight BA01618 is leaving today

Start by writing a step definition that works for the first step, and then make
it more and more generic so that it works with the other steps too.

Multiple Captures

You don't have to stop at capturing just a single argument. Cucumber will
pass an argument to your method for every capture group in your regular
expression, so you can grab as many details as you like from a step.

Here’s an example. Let’'s imagine our bank wants to start offering its customers
savings accounts as well as their regular checking account. Customers can
use the ATM to transfer money between their accounts. Here’s one of the
scenarios for this new feature:

Scenario: Transfer funds from savings into checking account
Given I have deposited $10 in my Checking Account
And I have deposited $500 in my Savings Account
When I transfer $500 from my Savings Account into my Checking Account
Then the balance of the Checking Account should be $510
And the balance of the Savings Account should be $0

Let’s try to write a step definition that can handle the first two steps. As well
as the amount deposited, we need to capture the type of account so that we
know where to put it.

We can use a modified version of the regular expression we used previously
to capture the type of account:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 56

@Given("I have deposited \\$(\\d+) in my (\\w+) Account")

public void iHaveDeposited$InMyAccount(int amount, String accountType) {
// TODO: code goes here

}

We use the shorthand character class \w, modified with the plus to mean any
word character, at least once, effectively capturing a single word. That word
is then passed to the method we named accountType in the second argument.

Try This

Write a step definition for the next step in the scenario, When | transfer $500 from
my Savings Account into my Checking Account. The step definition should capture three
arguments:

e The amount of money being transferred
e The type of account being debited in the transfer
e The type of account that receives the credit in the transfer

Test it by writing simple System.out.println statements in your step definition to
print the value captured in each argument to the console.

Flexibility

The readability of Cucumber features helps teams learn to use a ubiquitous
language when talking about the system they're building. This is a really
important benefit, because that consistent use of terminology helps reduce
misunderstandings and allow communication to flow more smoothly between
everyone on the team.

So, we want to encourage our feature authors to be consistent about the
[iGHig and F8iBS they use in the Cucumber features, because it helps make
features that can be readily understood by anyone on the team. Equally, we
also want feature authors to be able to express themselves as naturally as
possible, which means they may often use slightly different phrasing to mean
exactly the same thing. This is fine; in fact, it’s to be encouraged. Cucumber
features are all about communicating with business users in their language,
and it’s important that we don’t force them to sound like robots.

To keep the features readable and natural, it’s useful to develop the skill to
make your step definitions flexible enough to match the different ways
something might be expressed by a feature author. This isn’t as hard as you
might think.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Flexibility ® 57

The Question Mark Modifier

When matching business-facing Gherkin text, you'll often want to indicate
that you don’t care about the odd character in your match, such as when a
word could be singular or plural:

Given I have 1 cucumber in my basket
Given I have 256 cucumbers in my basket

Like the star and the plus, the question mark modifies the character that
precedes it, specifying how many times it can be repeated. The question mark
modifier means zero or one times; in other words, it makes the preceding
character optional. In step definitions, it’s particularly useful for plurals:
@Given("I have (\\d+) cucumbers? in my basket")

public void iHaveCucumbersInMyBasket(int number) {

// TODO: code goes here
}

By putting a question mark after the s in cucumbers, we’re saying that we don’t
care whether the word is singular or plural. So, this step definition will match
both of the previous steps.

Another useful technique is to use a noncapturing group.

Noncapturing Groups

Remember back in Alternation, on page 52 we showed how you can list a set
of possible values forpart ofaregularexpressmn separated by a pipe symbol.
We can use this same technique to add flexibility to our step definitions, letting
feature authors say the same thing in slightly different ways. There’s one little

change we’ll need to make, but we’ll get to that in a minute.

Take this extremely common step for a web application:

When I visit the homepage

Suppose someone comes along and writes another step that looks like this:

When I go to the homepage

Both of these steps have identical meaning to the reader, but unfortunately
a step definition for the first one won’t match the second one without some
modification. It would be helpful to have a step definition to recognize both
phrases, because it really doesn’t matter whether you say visit or go to—they
both mean the same thing. We can use an alternate to relax the step definition
to accept this slightly different phrasing:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Chapter 4. Step Definitions: From the Outside ® 58

@when("I (?:visit|go to) the homepage")
public void iVisitTheHomepage() {

// TODO: code goes here
}

Notice that we've had to prefix the list of alternates with another bit of regular
expression magic. The ?: at the start of the group marks it as noncapturing,
meaning Cucumber won'’t pass it as an argument to our block.

Anchors

You might have noticed that the step definition snippets that Cucumber prints
for undefined steps start with a ~ and end with a $. Perhaps you’ve become
so used to seeing them that you've stopped noticing them altogether. These
two metacharacters are called anchors, because they’re used to tie down each
end of the regular expression to the beginning and end of the string that they
match on.

You don’t have to use them, and we deliberately left them out of the example
up to this point because we wanted to wait until we’d explained what they
do. If you omit one or both of them, you’ll find you end up with a much more
flexible step definition—perhaps too flexible. As a silly example, suppose we
add the ~ anchor to the beginning but omit the $ at the end of our bank
account step definition:

@Given("~I have deposited \\$(\\d+) in my Account")

public void iHaveDeposited$InMyAccount(int amount) {

// TODO: code goes here
}

This allows a particularly creative feature author to write something like:

Given I have deposited $100 in my Account from a check my Grandma gave to me

Generally, it’s best to keep your regular expressions as tight as you can so
that there’s less chance of two step definitions clashing with each other. That’s
why the snippets that Cucumber generates for undefined steps always include
the anchors. Still, leaving off the anchors is a trick worth knowing about that
can sometimes come in handy.

Returning Results

Cucumber is a testing tool, and it’s in the Java code of a step definition where
our tests find out whether a step has succeeded in whatever it set out to do.
So, how does a step definition tell Cucumber whether it passed or failed?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Returning Results ® 59

Execute
Scenario

Read first
step

Do we have a
matching step
definition?

No

Yes

Execute step
definition's code
block

Read next
step

A l
Was an

exception
thrown?

Yes

No
* Pending?

Any more

Yes steps?

No

* \ 4

Passed Failed Pending Undefined
Scenario Scenario Scenario Scenario

Figure 2—How Cucumber executes a scenario

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 60

Like most other testing tools, Cucumber uses exceptions to communicate the
failure of a test. As it executes a scenario, one step at a time, Cucumber
assumes that a step has passed unless its step definition throws an exception.
If the exception thrown is a PendingException, then the step is marked as pending
—all other exceptions cause the step tofail. If a step passes, Cucumber moves
on to the next step. Figure 2,How Cucumber executes a scenario, on page 59

shows how this plays out.

In Cucumber, results are a little more sophisticated than a simple pass or
fail. A scenario that’s been executed can end up in any of the following states:

e Failed

e Pending
Undefined
Skipped

e Passed

These states are designed to help indicate the progress that you make as you
develop your tests. Let's run through an example of automating the ATM
withdrawal scenario to illustrate what we mean.

Undefined Steps

When Cucumber can't find a step definition that matches a step, it marks
the step as undefined (yellow) and stops the scenario. The rest of the steps
in the scenario will be either skipped or marked as undefined too if they don’t
have a matching step definition themselves.

To show you how this works, we can run our ATM withdrawal scenario. Create
a file called resources/cash_withdrawal.feature, and put the following into it:

step_definitions/00/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
Then $20 should be dispensed

We haven’t written any step definitions yet, so when we run this feature, we
should see the steps all come up as undefined:

Running RunCukesTest
Feature: Cash Withdrawal

http://media.pragprog.com/titles/srjcuc/code/step_definitions/00/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Returning Results ¢ 61

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
Then $20 should be dispensed

1 Scenarios (1 undefined)
3 Steps (3 undefined)
0m0.000s

You can implement missing steps with the snippets below:

@Given(""I have deposited \\$(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@when("~I request \\$(\\d+)$")

public void iRequest$(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then(""\\$(\\d+) should be dispensed$")

public void $ShouldBeDispensed(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Tests run: 5, Failures: 0, Errors: 0, Skipped: 4, Time elapsed: 0.382 sec

You should see each step is yellow, indicating that it’s neither failing (red)
nor passing (green) but somewhere in between. Notice also that Cucumber
has printed out a snippet for each missing step definition. We can use these
as a starting point for implementing our own step definitions.

Pending Steps

When Cucumber discovers a step definition that’s halfway through being
implemented, it marks the step as pending (yellow). Again, the scenario will
be stopped, and the rest of the steps will be skipped or marked as undefined.

How does Cucumber know whether a step definition has been implemented?
Of course, you have to tell it, by throwing a PendingException.

When you throw a PendingException from within a step definition, this tells
Cucumber’s runtime that the step has failed but in a particular way: the step
definition is still being worked on. You'll probably have noticed that the

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Chapter 4. Step Definitions: From the Outside ® 62

Even if youre used to using a testing library like JUnit, you might not have realized
that the assertions in those libraries work by raising exceptions.

You can prove this to yourself by writing a little Java program that runs a failing
assertion:

step_definitions/assertions_sidebar/AssertionExample.java
import org.junit.*;
import static org.junit.Assert.*;

public class AssertionExample {

public static void main(String[] args) {

try {
assertTrue(false);

} catch (AssertionError e) {
System.out.print("Exception was raised was ");
System.out.println(e.getClass().getName());

}

}
}

When you run it, you should find that this program raises an exception of type
java.lang.AssertionError.

snippets Cucumber generates for undefined steps throw a PendingException in
them; now you understand why.

Let’s get back to our ATM withdrawal scenario to show you what we mean.
Create a file called step_definitions/Steps.java and paste in this step definition:

step_definitions/01/src/test/java/nicebank/Steps.java
package nicebank;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class Steps {

@Given(""~I have deposited \\$(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();
}
}

Now when we run mvn clean test, we’ll see that it has only tried to execute the
first step and has marked it as pending. All the rest are still undefined:

report erratum - discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions/assertions_sidebar/AssertionExample.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions/01/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Returning Results ® 63

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iHaveDeposited$InMyAccount (Steps.java:1ll)
at *.Given I have deposited $100 in my account(cash withdrawal.feature:3)
When I request $20
Then $20 should be dispensed

1 Scenarios (1 undefined)
3 Steps (1 pending, 2 undefined)
0mo.121s

cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iHaveDeposited$InMyAccount(Steps.java:11)
at *.Given I have deposited $100 in my account(cash withdrawal.feature:3)

The pending status is a bit like those under construction signs you used to
see all over the Internet in the 1990s. You can use it as a temporary signpost
to your teammates that you're in the middle of working on something.

When we're developing a new scenario from the outside-in like this, we’ll tend
to work right across the same layer before diving into the next one. Right now
we're concentrating on adding step definitions, so let’s do that for each of the
other steps and add a pending call in each one:

step_definitions/02/src/test/java/nicebank/Steps.java
package nicebank;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class Steps {

@Given(""I have deposited \\$(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@when("~I request \\$(\\d+)$")

public void iRequest$(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

http://media.pragprog.com/titles/srjcuc/code/step_definitions/02/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 64

@Then("~\\$(\\d+) should be dispensed$")

public void $ShouldBeDispensed(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

As we do this, we can check to see whether there are any existing step defini-
tions we could use and, if not, just create a new one that throws a PendingEx-
ception. The pending scenarios become our to-do list for the work we’ll do when
we drop down to the next layer and start implementing the step definitions.

If you use the --strict command-line option in your shell script, ./cucumber, then it will
return an exit code of 1 (to indicate an error) if there are any undefined or pending
steps.

This can be useful in a continuous integration build to spot any half-finished features
that have been accidentally checked in or when you've refactored your step definitions
and some of your steps are no longer matching.

Failing Steps

If the block of code executed by a step definition raises an exception,
Cucumber will mark that step as failed (red) and stop the scenario. The-

In practice, a step definition will fail for one of two reasons:

e The scenario couldn't finish because you have a bug in your step definition
code, or in the system under test, that has caused it to throw an error.
You'll get used to seeing these failures all the time during development if
you use Cucumber to drive your development from the outside-in. Each
failure message tells you what you need to do next.

e The step definition has used an assertion to check something about the
state of the system, and the check didn’t pass. You'll typically get these
errors right at the end of your outside-in cycle or long after the feature
has been implemented if someone accidentally introduces a bug.

An assertion is a check in your tests that describes some condition that you
expect to be satisfied. Failures because of assertions tend to happen in Then
steps, whose job is to check things about the state of the system. These are

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Returning Results ® 65

the alarm bells you're fitting to the system that will go off if it starts to behave
in unexpected ways. Either way, Cucumber will show you the exception
message and backtrace in its output, so it’s up to you to investigate.

We're almost done with this chapter, but we want to show you an example
of a failing step first. We're at the point where we need to start designing the
interface between our tests and our system. Let’s start with something simple
and imagine an Account class that we can use to create a bank account for the
actor in our scenario. We can modify the step definition like this:

step_definitions/03/src/test/java/nicebank/Steps.java

@Given(""~I have deposited \\$(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
new Account(amount);

}

What's going to happen when we run this? We don’t actually have an Account
class yet, so it's going to fail during compilation. So, let’s create a skeleton
Account class inside our Steps.java. Notice that we're defining the class right here
in our steps file. Don’t worry—it’s not going to stay here forever, but it’s most
convenient for us to create it right here where we’re working. Once we have
a clear idea of how we're going to work with the class, then we can refactor
and move it to a more permanent home.

step_definitions/04/src/test/java/nicebank/Steps.java
class Account {
public Account(int openingBalance) {
}
}

Now when we run mvn clean test we get the following failure:

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:24)
at *.When I request $20(cash withdrawal.feature:4)
Then $20 should be dispensed

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
Om0.100s

http://media.pragprog.com/titles/srjcuc/code/step_definitions/03/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions/04/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 4. Step Definitions: From the Outside ® 66

cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:24)
at *.When I request $20(cash withdrawal.feature:4)

Tests run: 5, Failures: 0, Errors: 0, Skipped: 3, Time elapsed: 0.739 sec

As you've seen, our first step definition is now succeeding. Cucumber has
caught the PendingException thrown by the second step definition and displayed
it to us just beneath the step. In the summary at the bottom we can see that
one step passed, one step failed, and one was skipped.

What We Just Learned

It’s useful to think of a step definition as being a special kind of method.
Unlike a regular method, whose name has to match exactly, a step definition
can be invoked by any step that matches its regular expression. Because
regular expressions can contain wildcards, this means you have the flexibility
to make the Gherkin steps nice and readable, while keeping your Java step
definition code clean and free of duplication.

e Step definitions provide a mapping from the Gherkin scenarios’ plain-
language descriptions of user actions into Java code, which simulates
those actions.

e Step definitions are registered with Cucumber by using @Given, @When,
@Then, or one of the aliases for your spoken language.

* Step definitions use regular expressions to declare the steps that they
can handle. Because regular expressions can contain wildcards, |[one step
definition can handle several different steps.

* A step definition communicates its result to Cucumber by raising, or not
raising, an exception.

Now that you've seen how Gherkin and step definitions fit together, you're
ready to start using Cucumber to test your own applications. To get your step
definitions talking to the application, you'll need to learn how to use one of
Java’s automation libraries, many of which are covered in the recipes part of
this book If you’re testing a web application, for example see Chapter 12,

Chapter 15, W

Over here in the fundamentals part, we're going to start putting some more
flesh on the bones of your Cucumber knowledge. There’s much more to

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

What We Just Learned ® 67

Gherkin than the basic keywords we taught you in the previous chapter, and
that’s what we’ll explore next.

Try This

At the end of the previous chapter, we suggested that you write some scenarios
for your own project. Now try running them with Cucumber and use the
snippets to create your first step definitions. Think about which domain
entity each step is working with, and use that to decide which file to put the
step definition into. Look for places you can use what you've learned about
regular expressions to make the step definitions more flexible.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

CHAPTER 5

Expressive Scenarios

In Chapter 3, Gherkin Basics, on page 31, we deliberately didn't give you the
whole story and showed you just a core set of keywords instead. They're the
fundamental building blocks you need to get started working with Cucumber,
and we wanted to get you started as quickly as possible. Now it’s time to refine

your skills.

When you're writing Cucumber features, make readability your main goal.
Otherwise, a reader can easily feel more like they’re reading a computer pro-
gram than a specification document, which is something we want you to try
to avoid at all costs. After all, if your features aren’t easy for nonprogrammers
to read, you might as well just be writing your tests in plain old code.

The real key to expressive scenarios is having a healthy vocabulary of domain
language to use to express your requirements. That said, using only the basic
set of Gherkin keywords can often make your features repetitive, making
them cluttered and awkward to read. By the end of this chapter you’ll know
everything there is to know about Gherkin’s syntax, giving you all the tools
you need to write clear, readable Cucumber acceptance tests. We’'ll also show
you how to use tags and folders to stay organized as you write more features
for your project.

First we want to concentrate on helping you remove that repetitive clutter.
We're going to show you how to use scenario outlines and data tables to help
make your Gherkin scenarios more readable, but we’ll start with a new key-
word called Background.

Background

A background section in a feature file allows you to specify a set of steps that
are common to every scenario in the file. Instead of having to repeat those

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

majian

Chapter 5. Expressive Scenarios ¢ 70

steps over and over for each scenario, you move them up into a Background
element. Here are a couple of advantages to doing this:

e If you ever need to change those steps, you have to change them in only
one place.

e The importance of those steps fades into the background so that when
you're reading each individual scenario, you can focus on what is unique
and important about that scenario.

To show you what we mean, let’s take an existing scenario that uses only the
basic Gherkin Scenario element and improve its readability by refactoring it to
use a Background. Here’s our feature before the refactoring starts:

Feature: Change PIN

Customers being issued new cards are supplied with a Personal
Identification Number (PIN) that is randomly generated by the
system.

In order to be able to change it to something they can easily
remember, customers with new bank cards need to be able to
change their PIN using the ATM.

Scenario: Change PIN successfully
Given I have been issued a new card
And I insert the card, entering the correct PIN
When I choose "Change PIN" from the menu
And I change the PIN to 9876
Then the system should remember my PIN is now 9876

Scenario: Try to change PIN to the same as before
Given I have been issued a new card
And I insert the card, entering the correct PIN
When I choose "Change PIN" from the menu
And I try to change the PIN to the original PIN number
Then I should see a warning message
And the system should not have changed my PIN

You can see that there are two scenarios here, but without reading them
carefully, it’s quite hard to see what exactly is going on in each one. The first
three steps in each scenario, while necessary to clarify the context of the
scenario, are completely repeated in both scenarios. That repetition is distract-
ing, making it harder to see the essence of what each scenario is testing.

Let’s factor out the three repeated steps into a Background, like this:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Background ¢ 71

Feature: Change PIN

As soon as the bank issues new cards to customers, they are
supplied with a Personal Identification Number (PIN) that
is randomly generated by the system.

In order to be able to change it to something they can easily
remember, customers with new bank cards need to be able to
change their PIN using the ATM.

Background:
Given I have been issued a new card
And I insert the card, entering the correct PIN
And I choose "Change PIN" from the menu

Scenario: Change PIN successfully
When I change the PIN to 9876
Then the system should remember my PIN is now 9876

Scenario: Try to change PIN to the same as before
When I try to change the PIN to the original PIN number
Then I should see a warning message
And the system should not have changed my PIN

Our refactoring hasn’t changed the behavior of the tests at all: at runtime,
the steps in the background are executed at the begifining of [gach scenario,
just as they were before. What we have done is made each individual scenario
much easier to read.

You can have a single Background element per feature file, and it must appear
before any of the Scenario or Scenario Outline elements. Just like all the other
Gherkin elements, you can give it a name, and you have space to put a mul-
tiline description before the first step. For example:

Feature: Change PIN

In order to be able to change it to something they can easily
remember, customers with new bank cards need to be able to
change their PIN using the ATM.

Background: Insert a newly issued card and sign in
Whenever the bank issues new cards to customers, they are supplied
with a Personal Identification Number (PIN) that is randomly

generated by the system.

Given I have been issued a new card
And I insert the card, entering the correct PIN

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

Chapter 5. Expressive Scenarios ® 72

Using a Background element isn’'t always necessary, but it’s often useful to
improve the readability of your features by removing repetitive steps from
individual scenarios. Here are some tips for using it well:

e Don’t use Background to set up complicated state unless that state is
something the reader actually needs to know. For example, we didn’t
mention the actual digits of the system-generated PIN in the previous
example, because that detail wasn'’t relevant to any of the scenarios.

e Keep your Background section short. After all, you're expecting the user to
actually remember this stuff when reading your scenarios. If the back-
ground is more than four lines long, can you find a way to express that
action in just one or two steps?

e Make your Background section vivid. Use colorful names and try to tell a
story, because your readers can keep track of stories much better than
they can keep track of dull names like User A, User B, Site 1, and so on.
If it’s worth mentioning at all, make it really stand out.

¢ Keep your scenarios short, and don’t have too many. If the Background is
more than three or four steps long, think about using higher-level steps
or splitting the feature file in two. You can use a background as a good
indicator of when a feature is getting too long: if the new scenarios you
want to add don’t fit with the existing background, consider splitting the
feature.

e Avoid putting technical details such as clearing queues, starting back-
end services, or opening browsers in a background. Most of these things
will be assumed by the reader, and there are ways to push those actions
down into your support code that we’ll explain later in the book, such as
in Tagged Hooks, on page 157.

Backgrounds are useful for taking [Given (and sometimes When) steps that are
repeated in each scenario and moving them to a single place. This helps keep
your scenarios clear and concise.

Data Tables

Sometimes steps in a scenario need to describe data that doesn’t easily fit on
a single line of Given, When, or Then. Gherkin allows us to place these details in
a table right underneath a step. Data tables give you a way to extend a Gherkin
step beyond a single line to include a larger piece of data.

For example, consider these steps:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Data Tables ¢ 73

Refactoring® is the process of changing code to improve its readability or design
without changing its behavior. This technique applies to Gherkin features just as
well as it does to the rest of your codebase. As your understanding of your domain
grows through the course of the project, you'll want to reflect that learning by
updating your features.

Often you don’t see a background immediately. You might start out by writing one
or two scenarios, and it’s only as you write the third that you notice some common
steps. When you spot a feature where the same or similar steps are repeated in sev-
eral scenarios, see whether you can refactor to extract those steps into a background.
It can take a little bit of courage to do this, because there’s a risk you might make a
mistake and break something, but this is a pretty safe refactoring. Once you're done,
you should end up with the feature doing exactly the same thing as it did before you
started but easier to read.

a. Refactoring: Improving the Design of Existing Code [FBBO99]

Given a User "Michael Jackson" born on August 29, 1958
And a User "Elvis" born on January 8, 1935
And a User "John Lennon" born on October 9, 1940

Boring! We wouldn’t tolerate this kind of repetitive stuff in a traditional
specification document, and we don’t have to tolerate it in a Cucumber
specification either. We can collect those steps together into a single step that
uses a table to express the data:

Given these Users:

Michael Jackson	August 29, 1958
Elvis	January 8, 1935
John Lennon	October 9, 1940

That’s much clearer. The table starts on the line immediately following the
step, and its cells are separated using the pipe character: |. You can line up
the pipes using whitespace to make the table look tidy, although Cucumber
doesn’t mind whether you do; it will strip out the values in each cell, ignoring
the surrounding whitespace.

In the previous table, we've used a heading for each column in the table, but
that’s only because it made sense for that particular step. You have the free-
dom to specify data in different ways, such as putting the headings down the
side:

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Chapter 5. Expressive Scenarios ¢ 74

Then I should see a vehicle that matches the following description:
Wheels	2
Max Speed	60 mph
/Accessories	lights, shopping basket

Or just to specify a list:

Then my shopping list should contain:
| Onions |
| Potatoes |
| Sausages |
| Apples |
| Relish |
To explain how to work with these different shaped tables, we need to take a
short dive down into the step definition layer. If you're not interested in writing

Java step definition code, feel free to skip this bit.

Working with Data Tables in Step Definitions

We'll illustrate how to use a data table in your step definitions with a quick
game of tic-tac-toe. Let’s imagine we're building a tic-tac-toe game and we've
started working on the basic feature for making moves on the board. We start
with a scenario like this:

expressive_scenarios/01/src/test/resources/tic_tac_toe/tic_tac_toe.feature

Feature:
Scenario:
Given a board like this
[11 12]3]
I N
21 | 1 |
31 | 1 |

When player x plays in row 2, column 1
Then the board should look like this:
111213
[
21 x1 | |
F3 1 1 1
We’ll show you how to grab the table from the first step, manipulate it in the
second, and finally compare the expected board from the scenario with the

actual one.

Run ./cucumber to generate the step definition snippets, and paste them into
step_definitions/BoardSteps.java:

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/01/src/test/resources/tic_tac_toe/tic_tac_toe.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Data Tables ® 75

expressive_scenarios/01/src/test/java/tic_tac_toe/BoardSteps.java
package tic tac toe;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;
import cucumber.api.DataTable;

public class BoardSteps {

@Given(""a board like this:$")

public void aBoardLikeThis(DataTable argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
// For automatic transformation, change DataTable to one of
// List<YourType>, List<List<E>>, List<Map<K,V>> or Map<K,V>.
// E,K,V must be a scalar (String, Integer, Date, enum etc)
throw new PendingException();

}

@when("~player x plays in row (\\d+), column (\\d+)$")

public void playerXPlaysInRowColumn(int argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("~the board should look like this:$")

public void theBoardShouldLookLikeThis(DataTable argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
// For automatic transformation, change DataTable to one of
// List<YourType>, List<List<E>>, List<Map<K,V>> or Map<K,V>.
// E,K,V must be a scalar (String, Integer, Date, enum etc)
throw new PendingException();

}

Notice that the snippets for the two step definitions where we’re going to
receive a table are a little different. There’s a comment telling you about
automatic conversion of the DataTable argument you're being passed, but we’ll
ignore that for now (don’t worry—we’ll talk a lot about automatic conversion
later). The cucumber.api.DataTable is a really rich object with lots of methods for
interacting with its data. We’ll show you some of the most useful ones now.

Let’s start fleshing out those step definitions.

Turning the Table into a List of Lists

Under the hood, the table is just a List of Lists of Strings: List<List<String>>. Often
we’ll want to work with it in that raw form, so we can call the raw method on
it to do just that. Let’s get the raw data from the table and store it in an
instance variable board, which we can manipulate in our second step when
we want to make a move.

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/01/src/test/java/tic_tac_toe/BoardSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

Chapter 5. Expressive Scenarios ® 76

As an experiment, add an implementation for the second step definition that
just prints the raw board out so we can see what it looks like:

expressive_scenarios/02/src/test/java/tic_tac_toe/BoardSteps.java
package tic tac_ toe;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;
import cucumber.api.DataTable;

import java.util.List;

public class BoardSteps {
private List<List<String>> board;

@Given(""a board like this:$")
public void aBoardLikeThis(DataTable table) throws Throwable {
this.board = table.raw();

}

@when("~player x plays in row (\\d+), column (\\d+)$")
public void playerXPlaysInRowColumn(int argl, int arg2) throws Throwable {
System.out.println(board.toString());

throw new PendingException();

}

@Then("~the board should look like this:$")

public void theBoardShouldLookLikeThis(DataTable argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
// For automatic transformation, change DataTable to one of
// List<YourType>, List<List<E>>, List<Map<K,V>> or Map<K, V>.
// E,K,V must be a scalar (String, Integer, Date, enum etc)
throw new PendingException();

}

When you run ./cucumber, you should see the two-dimensional array printed.
$./cucumber

Running RunCukesTest

Feature:
(e, 1, 2,31, 11, , , 1,12, ,, 1,03, ,,1]
Scenario: # tic tac toe/tic tac toe.feature:2

Given a board like this:
When player x plays in row 2, column 1

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/02/src/test/java/tic_tac_toe/BoardSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Data Tables ® 77

cucumber.api.PendingException: TODO: implement me
at tic tac toe.BoardSteps.playerXPlaysInRowColumn(BoardSteps.java:21)
at *.When player x plays in row 2, column 1(tic tac toe.feature:8)
Then the board should look like this:

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)

Notice that the raw table includes the column and row headings.

Comparing Tables with Diff

So that we can start out with a failing test, we’ll skip doing any manipulation
of the board in this step for now. So, remove the body of the second step
definition and make the following implementation in the last step definition:

expressive_scenarios/03/src/test/java/tic_tac_toe/BoardSteps.java

@hen("~player x plays in row (\\d+), column (\\d+)$")

public void playerXPlaysInRowColumn(int argl, int arg2) throws Throwable {
}

@Then("~the board should look like this:$")

public void theBoardShouldLookLikeThis(DataTable expectedTable) throws Throwable {
expectedTable.diff(board);

}

We've used the diff method on the table that describes how things should look,
passing it the actual board as we see it in our application. When you run mvn
clean test again, you should see that the step has failed because the tables were
not identical:

$ mvn clean test

Running RunCukesTest
Feature:

Scenario: # tic_tac_toe/tic_tac_toe.feature:2
Given a board like this:
When player x plays in row 2, column 1
Then the board should look like this:
cucumber.runtime.table.TableDiffException: Tables were not identical:
111271 3]
[

X
+

W NN =

at cucumber.runtime.table.TableDiffer.calculateDiffs(TableDiffer.java:37)

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/03/src/test/java/tic_tac_toe/BoardSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 5. Expressive Scenarios ® 78

at cucumber.api.DataTable.diff(DataTable.java:169)

at cucumber.api.DataTable.diff(DataTable.java:159)

at tic tac toe.BoardSteps.theBoardShouldLookLikeThis (BoardSteps.java:24)
at *.Then the board should look like this:(tic tac toe.feature:9)

1 Scenarios (1 failed)
3 Steps (1 failed, 2 passed)

Rows that differ from what was expected will be printed twice—the first (pre-

“ 9

ceded by a “-”) is what was expected, followed by another (preceded by a “+”)
which is what was actually returned.

Let’s fix the @When step to make the scenario pass. Add this implementation
to the second step definition:

expressive_scenarios/04/src/test/java/tic_tac_toe/BoardSteps.java

@when("~player x plays in row (\\d+), column (\\d+)$")

public void playerXPlaysInRowColumn(int row, int col) throws Throwable {
board.get(row).set(col, "x");

}
Run the scenario, and unfortunately you will now see a runtime error:

java.lang.UnsupportedOperationException
at java.util.Collections$UnmodifiableList.set(Collections.java:1311)
at tic tac toe.BoardSteps.playerXPlaysInRowColumn(BoardSteps.java:20)
at *.When player x plays in row 2, column 1(tic tac toe.feature:8)

The error happens because the DataTable is unmodifiable. We’ll explain why
Cucumber works this way later, but for now, let’'s make a modifiable copy of
the raw data by modifying the first step definition:

expressive_scenarios/05/src/test/java/tic_tac_toe/BoardSteps.java
@Given(""a board like this:$")
public void aBoardLikeThis(DataTable table) throws Throwable {
this.board = new ArrayList<List<String>>();
for (List<String> row : table.raw()) {
this.board.add(new ArrayList<String>(row));
}
}

Run the scenario, and now you should see it pass.

This is just a taste of what you can do with data tables in Cucumber. We
encourage you to read the documentation' for cucumber.api.DataTable and play
around with it yourself.

1. http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/DataTable.html

http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/04/src/test/java/tic_tac_toe/BoardSteps.java
http://media.pragprog.com/titles/srjcuc/code/expressive_scenarios/05/src/test/java/tic_tac_toe/BoardSteps.java
http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/DataTable.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Scenario Outline ® 79

Data tables are a great feature of Gherkin. They're really versatile, and they
help you express data concisely, as you’d want to in a normal specification
document. With backgrounds and data tables, you can do a lot to reduce the
noise and clutter in your scenarios. Even when you use these tools, you'll
still sometimes see a pattern where one scenario looks a lot like the one that
came before it and the one after it. This is where a scenario outline can help.

Scenario Outline

Sometimes you have several scenarios that follow exactly the same pattern
of steps, just with different input values or expected outcomes. For example,
suppose we're testing each of the fixed amount withdrawal buttons on the
ATM:

Feature: Withdraw Fixed Amount

The "Withdraw Cash" menu contains several fixed amounts to
speed up transactions for users.

Scenario: Withdraw fixed amount of $50
Given I have $500 in my account
When I choose to withdraw the fixed amount of $50
Then I should receive $50 cash
And the balance of my account should be $450

Scenario: Withdraw fixed amount of $100
Given I have $500 in my account
When I choose to withdraw the fixed amount of $100
Then I should receive $100 cash
And the balance of my account should be $400

Scenario: Withdraw fixed amount of $200
Given I have $500 in my account
When I choose to withdraw the fixed amount of $200
Then I should receive $200 cash
And the balance of my account should be $300

Once again, all the repetition in this feature makes it boring to read. It’s hard
to see the [essence of each scenario, which is the amount of money involved
in each transaction. We can use a scenario outline to specify the steps once
and then play multiple sets of values through them. Here’s that scenario
again, refactored to use a scenario outline:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

Chapter 5. Expressive Scenarios ® 80

Feature: Withdraw Fixed Amount

The "Withdraw Cash" menu contains several fixed amounts to
speed up transactions for users.

Scenario Outline: Withdraw fixed amount
Given I have <Balance> in my account
When I choose to withdraw the fixed amount of <Withdrawal>
Then I should receive <Received> cash
And the balance of my account should be <Remaining>

Examples:
| Balance | Withdrawal | Received | Remaining |
| $500 | $50 | $50 | $450 [
| $500 | $100 | $100 | $400 |
| $500 | $200 | $200 | $300 |

We indicate placeholders within the scenario outline using angle brackets
(<..>) where we want real values to be substituted. The scenario outline itself
is useless without an Examples table, which lists rows of values to be substituted
for each placeholder.

You can have any number of Scenario Outline elements in a feature and any
number of Examples tables under each scenario outline. Behind the scenes,
Cucumber converts each row in the Examples table into a scenario before exe-
cuting it.

One of the advantages of using a scenario outline is that you can clearly see
gaps in your examples. In our example, we haven't tested any edge cases,
such as when you try to withdraw more money than you have available. This
becomes much more obvious when you can see all the values lined up
together in a table.

Remember that although the syntax for writing them in Gherkin is the same,
these tables are totally different from the data tables we described earlier in
this chapter. Data tables just describe a lump of data to attach to a single
step of a single scenario. In a scenario outline, each row of an Examples table
represents a whole scenario to be executed by Cucumber. In fact, you might
want to use the keyword Scenarios (note the extra s) in place of Examples if you
find that more readable.

Bigger Placeholders

It’s easy to imagine that you can use scenario outline placeholders only where
there’s a piece of data in the step. In fact, when Cucumber compiles a scenario
outline’s table of examples down into scenarios ready to execute, it doesn’t

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

Scenario Outline © 81

care where the placeholders are. So, you can substitute as much or as little
as you like from any step’s text.

Let’s illustrate this by testing the edge case where we try to withdraw more
money than we have. What should we do in this case? Give users as much
as we can, given their remaining balance, or just show them an error message?
We ask our stakeholders for clarification, and they're happy for us to show
them an error message. Here’s how we write the scenario first:

Scenario: Try to withdraw too much
Given I have $100 in my account
When I choose to withdraw the fixed amount of $200
Then I should see an error message
And the balance of my account should be $100

There’s still a good deal of duplication here with the flow of the scenarios
above it, but because the Then step is so different, we can’t put this one into
the scenario outline. Or can we?

Let’s change the scenario outline, replacing the <Received> placeholder with a
more abstract <Outcome>:

Scenario Outline: Withdraw fixed amount
Given I have <Balance> in my account
When I choose to withdraw the fixed amount of <Withdrawal>
Then I should <Outcome>
And the balance of my account should be <Remaining>

Examples:
Balance	Withdrawal	Remaining	Outcome
$500	$50	$450	receive $50 cash
$500	$100	$400	receive $100 cash
$500	$200	$300	receive $200 cash

Now we can simply add our failure case to the bottom of that table:

Scenario Outline: Withdraw fixed amount
Given I have <Balance> in my account
When I choose to withdraw the fixed amount of <Withdrawal>
Then I should <Outcome>
And the balance of my account should be <Remaining>

Examples:
Balance	Withdrawal	Remaining	Outcome
$500	$50	$450	receive $50 cash
$500	$100	$400	receive $100 cash
$500	$200	$300	receive $200 cash
$100	$200	$100	see an error message

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 5. Expressive Scenarios ® 82

We can use a placeholder to replace any of the téxt we like in a step. Notice
that it doesn’t matter what - the placeholders appear in the table; what
counts is that the column header matches the text in the placeholder in the
scenario outline.

Once you have a scenario outline with a few examples, it's very easy to think of more
examples, and even easier to add them. Before you know it, you have a huge, very
comprehensive table of examples—and a problem.

Why?

On a system of any serious complexity, you can quite quickly start to experience what
mathematicians call combinatorial explosion, where the number of different combina-
tions of inputs and expected outputs becomes unmanageable. In trying to cover every
possible eventuality, you end up with rows and rows of example data for Cucumber
to execute. Remember that each of those little rows represents a whole scenario that
might take several seconds to execute, and that can quickly start to add up. When
your tests take longer to run, you slow down your feedback loop, making the whole
team less productive as a result.

A really long table is also very hard to read. It's better to aim to make your examples
illustrative or representative than exhaustive. Try to stick to what Gojko Adzic calls
the key examples.? If you study the code you're testing, you'll often find that some
rows of your examples table cover the same logic as another row in the table. You
might also find that the test cases in your table are already covered by unit tests of
the underlying code. If they’re not, consider whether they should be.

Remember that readability is what’s most important. If your stakeholders feel com-
forted by exhaustive tests, perhaps because your software operates in a safety-critical
environment, then by all means put them in. Just remember that you’ll never be able
to prove there are no bugs. As logicians say, absence of proof is not proof of absence.

a. Specification by Example [Ad 11]

Although this is a useful technique, be careful that your programmer’s instinct
to reduce duplication at all costs doesn’t take over here.” If you move too
much of the text of a step into the examples table, it can be very hard to read
the flow of the scenario. Remember your goal is readability, so don’t take this
too far, and always test your features by getting other people to regularly read
them and give you feedback.

2. See this point explained in detail by David Chelimsky: http://confreaks.net/videos/434.

report erratum -« discuss

http://confreaks.net/videos/434
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

Scenario Outline © 83

Multiple Tables of Examples

Cucumber will happily handle any number of Examples elements beneath a
Scenario Outline, meaning you can group different kinds of examples together,
if you want. For example:

Scenario Outline: Withdraw fixed amount
Given I have <Balance> in my account
When I choose to withdraw the fixed amount of <Withdrawal>
Then I should <Outcome>
And the balance of my account should be <Remaining>

Examples: Successful withdrawal

Balance	Withdrawal	Outcome	Remaining
$500	$50	receive $50 cash	$450
$500	$100	receive $100 cash	$400

Examples: Attempt to withdraw too much

Balance	Withdrawal	Outcome	Remaining
$100	$200	see an error message	$100
$0	$50	see an error message	$0

As usual, you have the option of a name and description for each Examples
table. When you have a large set of examples, splitting it into multiple tables
can make it easier for a reader to understand.

Explain Yourself

You’'ll normally be using a scenario outline and examples table to help specify
the implementation of a business rule. Remember to include a plain-language
description of the underlying rule that the examples are supposed to illustrate!
It's amazing how often people forget to do this.

For example, look at this feature:

Feature: Account Creation

Scenario Outline: Password validation
Given I try to create an account with password "<Password>"
Then I should see that the password is <Valid or Invalid>

Examples:
Password	Valid or Invalid
abc	invalid
abl	invalid
abcl	valid
abcd	invalid
abcdl	valid

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 5. Expressive Scenarios ® 84

If you have to implement the code to make this feature pass, can you tell
what the underlying rule is?

Not very easily. So, let’s modify the feature to make it more self-explanatory,
like this:

Feature: Account Creation

Scenario Outline: Password validation
Given I try to create an account with password "<Password>"
Then I should see that the password is <Valid or Invalid>

Examples: Too Short
Passwords are invalid if less than 4 characters

Password	Valid or Invalid
abc	invalid
abl	invalid

Examples: Letters and Numbers
Passwords need both letters and numbers to be valid

Password | Valid or Invalid |

I

abcl	valid
abcd	invalid
abcdl	valid

By separating the examples into two sets and giving each one a name and
description, we've explained the rule and given examples of the rule at the
same time.

Too Much Information

Finding the right level of detail, or abstraction, to use in your scenarios is a
skill that takes some time to master. What many people don’t realize is that
different levels of detail are appropriate for different scenarios in the same
system—sometimes in the same feature—depending on what it is they're
describing.

As an example, here’s a scenario for the user of our ATM authenticating with
their PIN:

Scenario: Successful login with PIN
Given I have pushed my card in the slot
When I enter my PIN
And I press "OK"

Then I should see the main menu

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Too Much Information ® 85

It’s entirely appropriate to go into this much detail about the authentication
process in this scenario, because that’s where our focus is. Now consider our
cash withdrawal scenario from earlier, which has a different focus but still
needs to be authenticated. Does it make sense to express the PIN authentica-
tion steps of this scenario at the same level of detail? Let’s try it:

Scenario: Withdraw fixed amount of $50
Given I have $500 in my account
And I have pushed my card into the slot
And I enter my PIN
And I press "OK"
When I choose to withdraw the fixed amount of $50
Then I should receive $50 cash
And the balance of my account should be $450

That's awful! There’s so much noise about authentication that we hardly
notice the important part: the part about withdrawing cash. That detail was
useful in the PIN scenario where it was relevant, but now it’s just distracting.
We'll talk more about the dangers of overly detailed or imperative scenarios
in Chapter 6, Keeping Your Cucumbers Sweet, on page 91; right now we want

to encourage you to extract these details into a separate step definition so
our scenario stays easy to read.

Extract the Details

Let’s take the three authentication steps and summarize what they do with
a single high-level step:

Given I have authenticated with the correct PIN

Delete those three lines from the scenario, and replace them with that single
step. Now run ./cucumber to generate the step definition snippet for your new
high-level step. It should look like this:

@Given(""I have authenticated with the correct PIN$")

public void iHaveAuthenticatedWithTheCorrectPIN() throws Throwable {
// Express the Regexp above with the code you wish you had
throw new PendingException();

}

Now, create a method in your step definition file called authenticateWithPIN that
does whatever is necessary to authenticate with a PIN, and modify your step
definition to look like this:

@Given("~I have authenticated with the correct PIN$")

public void iHaveAuthenticatedWithTheCorrectPIN() throws Throwable {
authenticateWithPIN();

}

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 5. Expressive Scenarios ® 86

Your authenticateWithPIN may make exactly the same calls as the three step def-
initions it is replacing, or there may be another way to get the ATM into an
authenticated state. Either way, the scenario is now much more readable:

Scenario: Withdraw fixed amount of $50
Given I have $500 in my account
And I have authenticated with the correct PIN
When I choose to withdraw the fixed amount of $50
Then I should receive $50 cash
And the balance of my account should be $450

Doc Strings

Doc strings allow you to specify a larger piece of text than you could fit on a
single line. For example, if you need to describe the precise content of an
email message, you could do it like this:

Scenario: Ban Unscrupulous Users
When I behave unscrupulously
Then I should receive an email containing:

Dear Sir,
Your account privileges have been revoked due to your unscrupulous behavior.

Sincerely,
The Management

And my account should be locked

Just like a data table, the entire string between the """ triple quotes is attached
to the step above it. The [indentation of the opening "" is not important,
although common practice is to indent two spaces from the enclosing step,
as we've shown. The indentation inside the triple quotes, however, is signifi-
cant: imagine the left margin running down from the start of the first "". If
you want to include indentation within your string, you need to indent it
within this margin.

Doc strings open up all kinds of possibilities for specifying data in your steps.
We've seen teams use these arguments to specify snippets of JSON or XML
data when writing features for an API, for example. There’s an example of
how to do this in Chapter 15, Working with a REST Web Service, on page 273.
You do need to be cautious when including this much detail in a scenario.
It's easy to create a lot of clutter with a large piece of data, making it hard to
read the scenario as a whole. You can also easily create brittle scenarios,

where the slightest change to the system causes the scenario to fail because

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

Staying Organized with Tags and Subfolders ¢ 87

it'’s behaving slightly differently than the way it was described in the doc
string.

OK, we've covered the more advanced features of Gherkin you can use to
express your business requirements. The last thing we want to talk about in
this chapter is keeping things organized.

Staying Organized with Tags and Subfolders

It’s easy to be organized when you have only a couple of features, but as your
test suite starts to grow, you'll want to keep things tidy so that the documen-
tation is easy to read and navigate. One simple way to do this is to start using
subfolders to categorize your features. This gives you only one axis for orga-
nization, though, so you can also use tags to attach a label to any scenario,
allowing you to have as many different ways of slicing your features as you
like.

Subfolders

This is the easiest way to organize your features. You may find yourself torn
as to how to choose a category, though: do you organize by user type, with a
features/admins folder, a features/logged in_users folder, and a features/visitors folder,
for example? Or do you organize them by |[domain entity or something else?

Of course, this is a decision for you and your team to make, but we can offer
a bit of advice. We've had most success using subfolders to represent different
high-level tasks that a user might try to do. So, if we were building an intranet
reporting system, we might organize it like this:
features/

reading reports/

report building/

user _administration/

Don’t get too hung up about getting your folder structure right the first time.
Make a decision to try a structure, reorganize all the existing feature files,
and then stick to it for a while as you add new features. Put a note in the
calendar to take some time out in a couple of weeks and reflect on whether
the new structure is working.

If you [think about your features as a book that describes what your system
does, then the subfolders are like the chapters in that book. So, as you tell
the story of your system, what do you want the reader to see when they scan
the table of contents?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

majian

Chapter 5. Expressive Scenarios ¢ 88

Long ago, Cucumber started life as a tool called the RSpec Story Runner. In those
days, the plain-language tests used a .story extension. When I created Cucumber, I
made a deliberate decision to name the files features rather than stories. Why did I
do that?

User stories are a great tool for planning. Each story contains a little bit of function-
ality that you can prioritize, build, test, and release. Once a story has been released,
we don’t want it to leave a trace in the code. We use refactoring to clean up the design
so that the code absorbs the new behavior specified by the user story, leaving it
looking as though that behavior had always been there.

We want the same thing to happen with our Cucumber features. The features should
describe how the system behaves today, but they don’t need to document the history
of how it was built; that’s what a version control system is for!

We've seen teams whose features directory looks like this:

features/
story 38971 generate new report.feature
story 38986 run_report.feature
story 39004 log in.feature

We strongly encourage you not to do this. You’'ll end up with fragmented features that
just don't work as documentation for your system. One user story might map to one
feature, but another user story might cause you to go and add or modify scenarios
in several existing features—if the story changes the way users have to authenticate,
for example. It's unlikely that there will always be a one-to-one mapping from each
user story to each feature, so don't try to force it. If you need to keep a story identifier
for a scenario, use a tag instead.

Tags

If subfolders are the chapters in your book of features, then tags are the sticky
notes you've put on pages you want to be able to find easily. You tag a scenario
by putting a word prefixed with the @ character on the line [BElSHg the SESario

keyword, like this:

@widgets
Scenario: Generate report

Given I am logged in
And there is a report "Best selling widgets"

report erratum - discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

Staying Organized with Tags and Subfolders ¢ 89

In fact, you can attach multiple tags to the same scenario, separated with
spaces:

@slow @widgets @nightly

Scenario: Generate overnight report

Given I am logged in
And there is a report "Total widget sales history"

If you want to tag all the scenarios in a feature at once, just tag the Feature
element at the top, and all the scenarios will inherit the tag. You can still tag
individual scenarios as well.

@nightly @slow
Feature: Nightly Reports

@widgets
Scenario: Generate overnight widgets report

@doofers
Scenario: Generate overnight doofers report

In the previous example, the scenario called Generate overnight widgets report will
have three tags: @nightly, @slow, and @widgets, whereas the scenario called Gen-
erate overnight doofers report will have the tags @nightly, @slow, and @doofers. You can
also tag Scenario Outline elements and the individual Examples tables under them.

There are three main reasons for tagging scenarios:

* Documentatiorn: You want to use a tag to attach a label to certain scenarios,
for example to label them with an ID from a project management tool.

¢ Filtering: Cucumber allows you to use tags as a filter to pick out specific
scenarios to run or report on. You can even have Cucumber fail your test
run if a certain tag appears too many times.

¢ [Hooks: Run a block of code whenever a scenario with a particular tag is
about to start or has just finished.

We'll cover hooks later in Tagged Hooks, on page 157, and we’ll explain how

you can’t wait until then, here’s a quick example of how to run Cucumber,
selecting just scenarios with a certain tag:

$./cucumber --tags @nightly

That will select and run only the scenarios tagged with @nightly.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc
majian

majian

majian

majian

Chapter 5. Expressive Scenarios ® 90

What We Just Learned

Congratulations, you've graduated from Gherkin school! Let’s look back over
what we've learned in this chapter.

e Readability should be your number-one goal when writing Gherkin fea-
tures. Always try to sit together with a stakeholder when you write your
scenarios, or at the very least pass them over for feedback once you've
written them. Keep fine-tuning the language in your scenarios to make
them more readable.

e Use a Background to factor out repeated steps from a feature and to help
tell a story.

¢ Repetitive scenarios can be collapsed into a Scenario Outline.
e Steps can be extended with multiline strings or data tables.
* You can organize features into subfolders, like chapters in a book.

e Tags allow you to mark up scenarios and features so you select particular
sets to run or report on.

Have you noticed that we're going outside-in as we work through this part of
the book? We started with an overview, then looked at the most useful bits
of Gherkin, and then did the same for step definitions. Now that you've learned
about the more advanced features of Gherkin, you're almost ready to dive
deep into step definition code. In the next part of the book, that’s exactly what
we’ll do, with a worked example that will give you a chance to practice
everything you've learned, and more. First, though, we're going to take a step
back and examine some of the common problems you and your team might
encounter as you start to use Cucumber and what to do about them.

Try This

Review the scenarios that you've written for your system, and see whether
you can find an opportunity to use a Background, a Scenario Outline, or a data
table. Refactor the feature to make use of the new keyword and compare the
new version of the feature with the old one. Which one do you think is more
readable? Show it to someone else on your team; what does that person think?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 6

Keeping Your Cucumbers Sweet

When your team first starts to use Cucumber, it won't be long before you
begin to notice that you seem to be creating code with fewer bugs than you
did before. You might find yourself bravely refactoring code that previously
you would have been too scared to touch. You might continue adding feature
after feature, inspired by the delight you felt on seeing your first passing
scenario.

After a while, however, things start to turn sour. Suddenly it dawns on you
that the tests take a really long time to run. Or perhaps you've started to
notice a couple of scenarios that seem to fail at random, usually just when
you're up against a tight deadline. Perhaps the nontechnical stakeholders
have lost interest in the process, and only developers are reading the features
anymore. People might even start to ask this:

Is Cucumber holding us back?

The good news is, you don’t have to live with these problems. In our coaching
and consulting work, we've seen all kinds of problems experienced by all
kinds of teams as they learn to use Cucumber. In this chapter, we’ll describe
the most common problems we've seen. We'll help you understand their root
causes, and we’ll make suggestions for tackling them or, ideally, avoiding
them in the first place. There won’t be much code in this chapter, but you’ll
find lots of useful advice.

We'll start where it hurts, by describing four different symptoms your team
might be experiencing. Then we’ll dig down into the underlying causes of
these before finally looking at solutions. By the end of the chapter, you should
feel much more confident about how to help your team stay successful with
Cucumber in the long run.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 92

Feeling the Pain

We've identified four main types of pain that your team might start to feel if
their Cucumber goes bad. Take a look and see whether you recognize any:

Symptom Problem

Some of our tests fail randomly. Flickering scenarios
We keep breaking tests unintentionally. Brittle features

Our features take too long to run. Slow features

Our stakeholders don’t read our features. Bored stakeholders

Let’s take a closer look at each of these symptoms.

Flickering Scenarios

When a scenario that was passing yesterday is failing today, with the same
source code running in the same environment, you have what we call a
Sflickering scenario—one that fails occasionally and at random. The same
scenario, run on the same codebase in the same environment, will mostly
pass but sometimes fail. These apparently uncontrollable failures cause the
team to lose confidence in their tests, in their code, and in themselves.

The worst thing about a flickering scenario is that as soon as you try to
reproduce it so that you can fix it, it refuses to fail. Fixing a flickering scenario
is one of the hardest tasks you can take on, yet it's also one of the most
important. For a suite of automated tests to be useful, the team must have
absolute trust in it. When even just a single test is compromising that trust,
it has a corrosive effect on how everyone feels about the whole test suite.

To fix a flickering scenario, you have to study the code and try to understand
why it might be happening. This is a scientific process of making a hypothesis
about the cause of the failure, creating an experiment to prove or disprove
that hypothesis, and then running the experiment to see whether you were
right. You might need to go around this loop several times before you crack
the problem, and it might take several days to run an experiment if the
flickering scenario fails only intermittently. If you run out of ideas, consider
simply deleting the test altogether rather than have it come back and fail on
you at a time of its own choosing.

Flickering scenarios are normally caused by one of the following problems:

e Shared Environments, on page 105

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Feeling the Pain * 93

Brittle Features

When you feel like you can hardly move in the test suite without making an
apparently unrelated test fail for no good reason, you have what we call brittle
features. A brittle feature is easy to break. When features are brittle, a neces-
sary change in one part of the test suite or main codebase causes apparently
unrelated scenarios to break.

When you encounter a brittle scenario, it’s usually when you'’re in the middle
of doing something else. You're interrupted by the unexpected failure and
waste time dashing over to fix the unexpected broken test. On a bad day, this
can happen several times before you emerge from the rabbit warren. Brittle
features are self-fulfilling: when developers perceive their tests to be brittle,
they tend to be less courageous about refactoring and cleaning up test code
and instead try to get in and out as quickly as they can, leaving the tests and
production codebase in an increasingly hard-to-maintain state.

Brittle features are normally caused by one of the following:

¢ Fixture Data, on page 107

Slow Features

Each time you add a new scenario to your test suite, you're adding a few
seconds to the total test runtime. For a successful application whose users
continue to demand new features, that test runtime is only going to get longer.
A long test run creeps up on you: first five minutes seems like an eternity to
wait, then fifteen minutes seems bad, but you get used to going to grab a
coffee while it runs. Pretty soon, you come back from your coffee and it still
hasn’t finished, and fifteen minutes becomes twenty-five minutes. Before you
know it, your features are taking more than an hour or even longer.

Once a new scenario is passing, the main reason to keep running it is for
feedback: you want that scenario to warn you if you somehow accidentally
break the functionality that it checks for. The value of that feedback dimin-
ishes as your test run starts taking longer and longer. When the build is slow,
developers don’t run all the tests before committing code and will rely on the
continuous integration server to give them feedback instead. If a few developers
do this at the same time, the chances of all of their changes integrating suc-
cessfully are slim, and a broken build becomes the norm.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ® 94

Long test runs also mean people are scared to refactor and do other general
maintenance on the Cucumber tests themselves. Refactoring the code in a
step definition that’s used in 340 scenarios is scary, because you’ll need to
run all 340 scenarios to tell you for certain whether your change broke
anything.

A slow feature run is normally caused by a combination of the following:

* Race Conditions and Sleepy Steps, on page 104

If you're stuck with a slow set of features, a pragmatic option can be to run them in
parallel. The simplest approach to this is to partition your features using tags or
folders and then run each of those partitioned sets at the same time. Many continuous
integration tools like Jenkins® allow you to delegate builds to slave machines so you
can ensure that each partitioned set of features gets its own dedicated environment.

a. http://jenkins-ci.org/

Bored Stakeholders

“Our stakeholders don’t read our features.” This is a common complaint from
teams that have tried Cucumber but failed to make it stick as anything other
than a tool for automating their test scripts. Yet many other teams attest to
the transformative effect Cucumber has had, helping development teams to
collaborate much more effectively with their business stakeholders. What
could be the difference between these two experiences?

The answer lies partly in starting with the right kind of collaborative relation-
ship with those business stakeholders. If they think they’re too busy to help
you understand exactly what they want, then you have a deeper team problem
that Cucumber can’t help you solve. On the other hand, many teams who
start out with keen and interested stakeholders waste the opportunity
Cucumber gives them to build that collaborative relationship. When features
are written by testers or developers working alone, they inevitably use technical
terms that make the stakeholders feel marginalized when they read them.
This becomes a vicious circle: as stakeholders lose interest, they spend less
time helping write the features in a language that makes sense to them. Before
you know it, the features have become nothing more than a testing tool.

report erratum -« discuss

http://jenkins-ci.org/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Working Together ® 95

This painful symptom is normally caused by a combination of the following
underlying problems:

¢ Incidental Details, on page 95

Once you've spotted any of these symptoms in your team, you need to know
what to do. It's time to look at the underlying problems that are at work and
what you can do about them.

Working Together

Cucumber features are what Gojko Adzic' calls living documentation. That
term neatly sums up the two main benefits of using Cucumber:

e Living: It tests the system automatically so you can work on it safely.

* Documentation: It facilitates good communication about the current or
planned behavior of the system.

When your team is struggling with Cucumber, the problems you’re having
will hit you in one of these two places. Either they’ll result in Cucumber sce-
narios that provide poor feedback for the developers or they’ll mean Cucumber
fails to help your team communicate. We'll start by looking at what might be
holding you back from making the features work as a communication tool.

Incidental Details
Consider the following scenario for an online email client:

Scenario: Check inbox
Given a User "Dave" with password "password"
And a User "Sue" with password "secret"
And an email to "Dave" from "Sue"
When I sign in as "Dave" with password "password"
Then I should see 1 email from "Sue" in my inbox

There is a lot of detail in this scenario: we have the username and password
of the main actor, Dave, and we also have the username and password of
another user, Sue. The usernames are quite useful, because they help tell
the story of the scenario, but the passwords are just noise; the passwords of
the users have nothing to do with what’s being tested and in fact are making

1. Specification by Example [Ad 11]

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ® 96

it harder to read. For example, Sue has a different password than Dave. As
you read the scenario, wondering whether this is relevant, you're distracted
from the main point of the scenario: to check that Dave can see Sue’s email.

We call details like the passwords incidental details,” which are details that
are mentioned in the scenario but that actually have no relevance to the
purpose of the scenario. This kind of irrelevant detail makes the scenario
harder to read, which in turn can cause your stakeholders to lose interest in
reading them. Let’s rewrite the scenario without the passwords:

Scenario: Check inbox
Given a User "Dave"
And a User "Sue"
And an email to "Dave" from "Sue"
When I sign in as "Dave"
Then I should see 1 email from "Sue" in my inbox

This is definitely an improvement, making it easier to read and understand
the essence of the scenario. Let’s try stripping away some more of the noise:

Scenario: Check inbox
Given I have received an email from "Sue"
When I sign in
Then I should see 1 email from "Sue" in my inbox

Now we have a simple three-step scenario that’s clear and concise. It’s also
more maintainable: if our product owner wants us to change the authentica-
tion mechanism, we can just rewrite the underlying step definition code
without having to touch the features.

Avoiding Incidental Details

If you're a programmer, you're probably practiced at filtering out irrelevant
details as you read code each day. Bear that in mind when you write scenarios,
because you may not even notice these incidental details slipping in.

Try to avoid being guided by existing step definitions when you write your
scenarios and just write down exactly what you want to happen, in plain
English. In fact, try to avoid programmers or testers writing scenarios on their
own. Instead, get nontechnical stakeholders or analysts to write the first draft
of each scenario from a purely business-focused perspective or ideally in a
pair with a programmer to help them share their mental model. With a well-
engineered support layer, you can confidently and quickly write new step
definitions to match the way the scenario has been expressed.

2. This term comes from the excellent paper “Writing Maintainable Acceptance Tests” by

http://dhemery.com/pdf/writing_maintainable_automated_acceptance_tests.pdf
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Working Together ¢ 97

Imperative Steps

In computer programming, there are two contrasting styles for expressing
the instructions you give to a computer to make it do something for you.
These styles are called imperative programming and declarative programming.

Imperative programming means using a sequence of commands for the com-
puter to perform in a particular order. Java is an example of an imperative
language: you write a program as a series of statements that Java runs one
at a time, in order. A declarative program tells the computer what it should
do without prescribing precisely how to do it. CSS is an example of a declar-
ative language: you tell the computer what you want the various elements on
a web page to look like, and you leave it to take care of the rest.

Gherkin is, of course, an imperative language. Cucumber executes each of
the steps in a scenario, one at a time, in the sequence you've written them
in. However, that doesn’t mean those steps need to be read like the instruc-
tions for assembling a piece of flat-pack furniture. Let’s take a look at a typical
example written in an imperative style:

Scenario: Redirect user to originally requested page after logging in
Given a User "dave" exists with password "secret"
And I am not logged in
When I navigate to the home page
Then I am redirected to the login form
When I fill in "Username" with "dave"
And I fill in "Password" with "secret"
And I press "Login"
Then I should be on the home page

What'’s good about this scenario? Well, it uses very generic step definitions,
like "~1ill in \"(¥)\" with \"(.*)\"$", which means you can write lots of scenarios like
this without having to create much step definition code. You could also
probably just about make the argument that it acts as a guide to what the
user interface will look like, since it names the fields and buttons that will
be used in the login form.

However, when a team uses such an imperative style for their step definitions,
it won’t be long before they're experiencing the pain of brittle tests and bored
stakeholders. Scenarios written in this style are not only noisy, long, and
boring to read, but theyre easy to break: if the user-experience people
decided to change the wording on the submit button from Login to Log in, the
scenario will fail, for no good reason at all.

Worst of all, scenarios that use generic step definitions like this are failing to
create their own domain language. The language of this scenario, using words

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 98

and phrases like fill in and press, is expressed in the domain of user interface
widgets, a generic and relatively low-level domain.

Use a Declarative Style Instead

Let’s raise the level of abstraction in this scenario and rewrite it using a more
declarative style:

Scenario: Redirect user to originally requested page after logging in
Given I am an unauthenticated User
When I attempt to view some restricted content
Then I am shown a login form
When I authenticate with valid credentials
Then I should be shown the restricted content

The beauty of this style is that it is not coupled to any specific implementation
of the user interface. This same scenario could apply to a thick-client or
mobile application. The words it uses aren’t technical and are instead written
in a language (unauthenticated, restricted, credentials) that any stakeholder
interested in security should be able to clearly understand. It’s by expressing
every scenario at this level of abstraction that you discover your team’s
ubiquitous language.

It's true that using declarative style will mean you have to write more step
definitions, but you can keep the code in those step definitions short and
easy to maintain by pushing the actual work off into helper methods in your
support code. We’ll show you how to do this in Chapter 8, Support Code, on

Duplication

All good computer programmers understand how destructive duplication is
to the maintainability of their code. Yet we often see duplication rife in teams’
Cucumber features. Duplication obviously makes your scenarios brittle, but
it also makes them boring.

Gherkin has the Background and Scenario Outline keywords you can use to reduce
duplication, as we showed you in Chapter 5, Expressive Scenarios, on page

written at too low a level of abstraction. If you have steps that are too imper-
ative, any amount of moving them into Backgrounds or Scenario Outlines won’t help
you. Work with nontechnical members of your team to get their feedback
about the kind of duplication they can accept and the kinds that make their
eyes glaze over.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Working Together ® 99

The Spectrum from Imperative to Declarative

In Gherkin features, there isn’t a clear line between imperative and declarative styles.
Instead, there’s a spectrum, and the right place on that spectrum for each step in
each scenario depends on lots of things: the area of the system you're describing, the
kind of application you're building, the domain expertise of the programmers, and
the level of trust that the nontechnical stakeholders have in the programmers. If your
stakeholders want to see a lot of detail in the features, it may indicate that you need
to work on that trust, but it may just mean you're working on the kind of system that
needs to be specified in lots of detail.

You can take declarative style too far, removing so much of the detail from a scenario
that it loses its ability to tell a story:

Scenario: The whole system
Given the system exists
When I use it
Then it should work, perfectly

This scenario is ridiculous, of course, but it illustrates what can happen when you
raise the level of abstraction so high that your scenario doesn't tell the reader anything
interesting at all. A team that used this scenario would need an incredibly high level
of trust in their programmers. We're encouraging you to push your team toward the
more abstract, declarative end of the spectrum, but as always, the most important
thing is to work with your nontechnical stakeholders to get the level right for them.

Let Your Examples Flow
by: Dan North

The DRY principle3 (Don’'t Repeat Yourself) says that the definition of any concept should appear
once and only once in your code. This is an admirable aim in that if you have to change the
behavior of the system, you want to be able to change it in one place and be confident that your
change will apply consistently across the codebase. If there are multiple definitions of that
behavior scattered around the code, the chances are that not only will you not catch them all
but someone before you didn’t catch them all and the multiple definitions are already inconsistent,
and who wants that?

However, when you are using examples to drive your code, there is another principle in play
that | believe trumps the DRY principle: the examples should tell a good story. They are the docu-
mentation narrative that will guide future programmers (including you when you come back to
change this code in three months time and you've forgotten what it does). In this case, clarity
of intent is found in the quality of the narrative, not necessarily in minimizing duplication.

Some years ago | had my first experience of pair programming with Martin Fowler. That is, | had
done quite a bit of pair programming, just not with Martin before. We were looking at some
Ruby code | had written test-first, and Martin asked to see the tests “to find out what the code
does.” Then he did a rather odd thing. He started moving the tests around. | had a few helper

The Pragmatic Programmer: From Journeyman to Master [HTOO]

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 100

classes and utility methods in the source file, neatly at the end out of the way. He moved them
up and dropped them inline just ahead of the first test that used them.

Madness! | thought—now the supporting code is all over the place! It really offended my sense
of tidiness. But then | saw a pattern beginning to emerge: the test code was starting to read like
a story. He would introduce these little methods and classes just before their one walk-on line
in the narrative. It was quite an eye-opener for me. The test code flowed and unfolded the story
of the class under test.

The a-ha! moment for me was when | imagined reading a book where the plot and characters
had been DRYed out. Everything would be in footnotes or appendixes. All the character
descriptions, plot elements, subtexts, and so on, would be carefully extracted into fully cross-
referenced paragraphs. That is great if you are reading an encyclopedia but not so appropriate
if you want to get into the flow and find out what happens. You would be forever flicking back
and forth in the book, and you would very quickly forget where you even were in the story. In
the words of the old joke, dictionaries have lousy plots, but at least they explain all the words as
they go.

Some people refer to this as the DAMP principle: Descriptive and Meaningful Phrases. When
you're writing examples, readability is paramount, and DAMP trumps DRY.

Ubiquitous What?

The ubiquitous language your team uses will be driven by the domain you're
working in. If you're building a system for live-music fans, your ubiquitous
language will include words like concert, performance, artist, and venue. If
you're building a catalog of TV shows, you’ll have words like broadcaster,
genre, duration, and transmission date in your ubiquitous language.

The point is for everyone on the team to use the same words, everywhere. It's
not OK to have a database table called tbl Performer if the rows in that table
represent things that most of the team refers to as artists. Wherever you see
schism like this, stop, decide which is the right word to use, make the
appropriate correction, and then stick with it.

We talk about developing a ubiquitous language because it's an ongoing
process. That development takes work. It takes effort to really listen to one
another and agree on the words you’ll use, and it takes discipline to stick to
those commitments.

The rewards are great. Teams that use a ubiquitous language make fewer
mistakes and enjoy their work more because they can communicate effectively
about the work. When a team doesn’t appreciate the value of a ubiquitous
language, they’ll be careless with the wording of their scenarios, missing a
valuable opportunity to build strong bridges between the technical and

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Working Together ¢ 101

business-focused sides of the team. When you try to correct people or clarify
terminology, you might end up feeling like you're just being picky.

Take time to explain the concept of a ubiquitous language to your team and
what its benefits are. Once everyone understands why it’s important, you’ll
find they’re much more willing to help make the effort to discuss and decide
on the right words to use.

Used correctly, Cucumber helps a team to develop their ubiquitous language.
When programmers and businesspeople work together to write scenarios,
you’ll find all kinds of arguments breaking out about how precisely to word
things. Great! Each of those disagreements has exposed a potential misunder-
standing between the two groups—in other words, a bug magnet. For a new
team, these sessions can be hard at first, but as the language develops, they
get easier and easier. Three Amigos, on page 101 is a good way to structure
these meetings.

Three Amigos

The best Gherkin scenarios are created when the three amigos come together,
bringing three very different perspectives:

¢ The first amigo is a tester, who thinks about how to break things. The tester will
typically come up with lots of scenarios, sometimes covering obscure edge cases
and sometimes covering very important ones that no one else had thought of.

¢ The second amigo is a programmer, who thinks about how to make things. The
programmer will typically add steps to scenarios, as he asks clarifying questions
about what exactly should happen.

e The third amigo is the product owner, who cares about scope. When the tester
thinks of scenarios that hit edge cases the product owner doesn’t care about,
she can tell the team to drop that scenario out of scope altogether, or the group
can decide to test it with unit tests only. When the programmer explains that
implementing a particular scenario will be complicated, the product owner has
the authority to help decide on alternatives or to drop it altogether.

Many teams practicing BDD have found the three amigos make a great partnership
for thrashing out Gherkin scenarios that the whole team believes in. You don’t have
to stop at three amigos, though: invite your team’s user experience specialists or
operations staff, for example, if the feature being discussed will affect them.

Siloed Features

Cucumber can feel like a very technical tool. It’s run from the command line,
and the feature files are designed to be checked into source control along

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 102

with the code that they test. Yet it’s supposed to help the business stakehold-
ers on your team feel more in control of the development process. When testers
and developers tuck their features away in source control, the rest of the team
can feel as though their documentation has been locked away in a cupboard
to which they don’t have the keys.

Your features act as a design tool for specifying new features, but they also
act as a great reference document for what the system already does today.
For a system of any significant size, no one person will remember exactly
what it will do in every situation, so when you get a bug report from a user
or are considering adding new functionality to some part of the system, you
want this reference right at your side.

Cucumber itself has only limited support for sharing features in a way that’s
accessible for nontechnical audiences, but there are plenty of plug-ins and
tools springing up around it that do. For example, if you use GitHub for source
control, the pages for your project will have syntax-highlighted features that
people can even comment on.

Relish® is a service that was created by members of the Cucumber and RSpec
teams to provide an easy way to publish Cucumber features as documentation.
The RSpec project now uses its Relish documentation as its home page, and
your team can use it too.

You can achieve well over half of the benefit of Cucumber just by having the
discipline to sit down with your business stakeholders and write scenarios
collaboratively. The conversations sparked by that process will uncover so
many potential bugs or schedule overruns that you’ll already have made a
huge win, even if you choose to never automate your features.

Assuming you do want to automate them, however, read on to find out how
to do it well.

Caring for Your Tests

The benefit of automating your features is that you’ll be able to trust them
as living documentation in the long run, because you’ll be checking each
scenario against the production code to make sure it’s still valid. For the
programmers working on the code, there’s another benefit too: those tests
act as a safety net when they’re working on the system, alerting them to any
mistakes they make that break existing behavior.

4. http://relishapp.com

http://relishapp.com
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Caring for Your Tests ® 103

So, your features work as a feedback mechanism to the whole team about
the behavior of the system and to the programmers about whether they've
broken anything. For these feedback loops to be useful, the tests need to be
fast and they need to be reliable. Let’s start by looking at problems that affect
the reliability of your tests.

Leaky Scenarios

Cucumber scenarios are basically state-transition tests: you put the system
into a Given state A, you perform action X (When), and Then you check that it
has moved into expected state B. So, each scenario needs the system to be
in a certain state before it begins, and yet each scenario also leaves the system
in a new, dirty state when it’s finished.

When the state of the system is not reset between tests, we say that they
allow state to leak between them. This is a major cause of brittle tests.

When one scenario depends upon state left behind by another earlier scenario
in order for it to pass, you've created a dependency between the two scenarios.
When you have a chain of several scenarios depending on each other like
this, it’s only a matter of time before you end up with a train wreck.

If that first scenario—the one that happens to leave the system in just the
right state for the next one to pick it up—is ever changed, the next scenario
will suddenly start to fail. Even if you don’t change that earlier scenario, what
happens if you want to run only the second scenario on its own? Without the
state leaked out by the earlier scenario, it will fail.

The opposite of this, independent scenarios, ensures they put the system into
a clean state and then add their own data on top of it. This makes them able
to stand on their own, rather than being coupled to the data left behind by
other tests or shared fixture data. Investing in building up a good reliable
library of Test Data Builders, on page 104 makes this much easier to achieve.

We can’t stress enough how fundamental independent scenarios are to suc-
cessful automated testing. Apart from the added reliability of scenarios that
independently set up their own data, they’re also clearer to read and debug.
When you can see precisely what data is used by a scenario just by reading
it, rather than having to root around in a fixture data script or, worse, in the
database itself, you'll be able to understand and diagnose a failure much
more easily.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 104

You may already know the Test Data Builder® pattern (a specialization of the Builder
pattern—see Design Patterns: Elements of Reusable Object-Oriented Software [GHJVI5)).

For the uninitiated, here’s a quick summary of its benefits.

Suppose you're testing a payroll system and you need to create a PayCheck record as
part of a scenario. The way your domain model is structured, a PayCheck needs an
Employee, and the Employee in turn needs an Address. Each of them also has a few
mandatory fields. Instead of having to create all these objects individually in your
step definition code or having a big fat set of fixture data, you can simply say this:

@Given("~I have been paid$")
public void i have been paid() {

PayCheck paycheck = new PayCheckBuilder().build();
}

Once you've created a PayCheckBuilder, all you need to do is ask it for a PayCheck, and it’ll
create not only the PayCheck object but all the dependent objects as well, setting the
mandatory fields with reasonable default values. If you care about a field having a
specific value, you provide a method to override the default:

@Given("~I have been paid 50 dollars$")
public void i have been paid 50 dollars() {
PayCheck paycheck = new PayCheckBuilder()
.dollarAmount(50)
.build();
}

When it’s this easy to create data, you no longer need to carry around the baggage
of big fixture data sets. There’s a small amount of up-front investment in creating
these builders, of course, but it quickly pays off in reliable, readable scenarios and
step definition code.

a. http://www.natpryce.com/articles/000714.html

Race Conditions and Sleepy Steps

If you write full-stack integration tests for a reasonably complex system, you’ll
eventually encounter this problem. Race conditions occur when two or more
parts of the system are running in parallel, but success depends on a partic-
ular one of them finishing first. In the case of a Cucumber test, your When
step might cause the system to start some work that it runs in the back-
ground, such as generating a PDF or updating a search index. If this back-
ground task happens to finish before Cucumber runs your Then step, the
scenario will pass. If Cucumber wins the race and the Then step executes
before the background task is finished, the scenario will fail.

report erratum -« discuss

http://www.natpryce.com/articles/000714.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Caring for Your Tests ® 105

When it’s a close race, you'll have a flickering scenario, where the scenario
will pass and fail intermittently. If there’s a clear winner, a race condition can
go unnoticed for a long time, until a new change to the system evens up the
stakes and the scenario starts to fail at random.

A crude solution to this problem is to introduce a fixed-length pause, or sleep,
into the scenario to give the system time to finish processing the background
task. Although this is definitely a useful technique in the very short term to
diagnose a race condition, you should resist the temptation to leave a sleep
in your tests once you understand the cause of the problem. Introducing
sleepy steps won'’t solve the flickering problem but just make it less likely to
happen. In the meantime, you've added a few extra seconds to your total test
runtime, swapping one set of problems for another.

If we really had to choose, we’'d choose slow, reliable tests over faster unreliable
ones, but there’s no need to make this compromise. When testers and pro-
grammers pair up to automate scenarios, they can craft tests that are built
with knowledge of how the system works. This means they can make use of
cues from the system to let the tests know when it’s safe to proceed, so instead
of using crude fixed-length sleeps, the tests can proceed as quickly as possible.
For an example of working with asynchronous code and further detail, see
Chapter 9, Message Queues and Asynchronous Components, on page 169.

Shared Environments

This is a problem that we've often found in teams that are transitioning from
a manual acceptance testing regime to using automated acceptance tests.
Traditionally, the manual testers on the team would have a special environ-
ment, often called system test, where a recent build of the system would be
deployed. They’'d run their manual tests in that environment, reporting bugs
back to the development team. If more than one team member needed to run
tests in that same environment, they’d communicate between each other to
make sure they didn’t tread on each other’s toes.

If it’s even slightly awkward to install the system in a new environment, the
likelihood is that when the team starts to automate their tests, they’ll follow
the path of least resistance and point their test scripts at this existing system
test environment. Now the environment is shared between not only the human
members of the team but the test scripts too. Suppose a developer gets a bug
report and wants to reproduce it for himself. He logs in to the system test
environment and clicks a few buttons, but he doesn’t realize the automated
tests are running at the same time. As part of the steps to reproduce the bug,
the developer unwittingly deletes a database record that the automated test

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ® 106

The word fixture has at least three meanings in the domain of automated testing,
which can cause confusion. We've used the term fixture data in this chapter to mean
data that’s used to set up the context for a scenario or test case. This is the common
meaning of the term as used in various xUnit testing tools.?

There is a long tradition (coming from the hardware world, where test fixtures origi-
nated) of calling the link between the test system and the system under test a fixture.
This is the “glue code” role that we've referred to in this book as automation code. The
FIT testing framework” uses this meaning of the term.

Some unit testing tools (such as NUnit) have further confused the issue by referring
to the test case class itself as a fixture. So much for a ubiquitous language!

xUnit Test Patterns [Mes07]

relied on, and the automated test fails. This kind of situation is a classic
cause of flickering scenarios.

The shared use of a single environment can also contribute to unreliable tests
by causing heavy and inconsistent load on in-demand resources like
databases. When the shared database is under excessive load, normally reli-
able tests will time out and fail.

To deal with this problem, it needs to be so easy to spin up the system in a
new environment that you can do it for fun. You need a One-Click System
Setup, on page 107.

Tester Apartheid

Testers are too often unfairly regarded as second-class citizens on a software
team. As we’ll explain in Chapter 8, Support Code, on page 141, developing a
healthy suite of Cucumber features requires not only testing skill but program-
ming skill too. When testers are left alone to build their own Cucumber tests,
they may lack the software engineering skill to keep their step definition and
support code well organized. Before you know it, the tests are a brittle muddle

that people are scared to change.

Combat this problem by encouraging programmers and testers to work
together when writing step definition and support code. The programmers
can show the tester how to keep the code organized and factor out reusable
components or libraries that other teams can use. By pairing with testers like

report erratum -« discuss

http://fit.c2.com/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Caring for Your Tests ® 107

One-Click System Setup

To avoid flickering scenarios that result from using shared environments, the team
needs a setup script that will create a new instance of the system from scratch, at
the click of a button.

If the system has a database, the database generated by the script should contain
the latest schema, as well as any stored procedures, views, functions, and so on. It
should contain just the very minimum baseline data necessary for the system to be
able to function, such as configuration data. Any more should be left for the indepen-
dent scenarios to create for themselves.

If there are message queues, or memcache daemons, the setup script should start
them too, with the minimal configuration that you'd expect to be there on the running
system.

this, programmers also develop a better understanding of what it takes to
make their code testable.

When Cucumber is being used to good effect on a team, testers should be
able to delegate the work of running basic checks to Cucumber. This frees
them up to do the much more interesting, creative work of exploratory testing,
as explained in Agile Testing: A Practical Guide for Testers and Agile Teams
[CGO8].

Fixture Data

When manually testing a system, it’s useful to populate it with realistic data
so that you can wander around the system just like you would in the live
application. When your team transitions from manual to automated tests,
you can often be tempted to just port over a subset of production data so that
the automated tests have a functioning system to work with right away.

The alternative, having each test set up its own data, might seem like it’s just
too hard. In a legacy system—especially one where the design has evolved
organically—where creating the single object actually needed for the test
you're working on means you need to create a huge tree of other dependent
objects, you'll feel like the easiest option is just to create this tree once in the
fixture data and then share it with all the other tests.

This approach has a couple of significant problems. A set of fixture data, even
if it starts out relatively lean, will only tend to grow in size over time. As more
and more scenarios come to rely on the data, each needing their own specific
little tweaks, the size and complexity of the fixture data grows and grows.
You'll start to feel the pain of brittle features when you make a change to the

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ¢ 108

data for one scenario, but that change causes other scenarios to fail. Because
you have so many different scenarios depending on the fixture data, you'll
tend to plaster on more data because it's safer than changing the existing
data. When a scenario does fail, it’s hard to know which of the masses of data
in the system could be relevant to the failure, making diagnosis much more
difficult.

When you have a large set of fixture data, it can be slow to set it up between
each test. This puts pressure on you to write leaky scenarios that don’t reset
the state of the system between each scenario, because it’s quicker not to do
so. We've already explained where this can lead.

We consider fixture data to be an antipattern. We much prefer using Test

itself, rather than being buried away in a big tangled set of fixture data.

Lots of Scenarios

It might seem like stating the obvious, but having a lot of scenarios is by far
the easiest way to give yourself a slow overall feature run. We're not trying to
suggest you give up on BDD and go back to cowboy coding, but we do suggest
you treat a slow feature run as a red flag. Having lots of tests has other dis-
advantages than just waiting a long time for feedback. It's hard to keep a
large set of features organized, making them awkward for readers to navigate
around. Maintenance is also harder on the underlying step definitions and
support code.

We find that teams that have a single humongous build also tend to have an
architecture that could best be described as a big ball of mud. Because all of
the behavior in the system is implemented in one place, all the tests have to
live in one place, too, and have to all be run together as one big lump. This
is a classic ailment of long-lived applications, which have grown organically
without obvious interfaces between their subsystems.

We'll talk more about what to do with big balls of mud in the next section.
It’s really important to face up to this problem and tackle it once you realize
it’s happening, but it isn’t a problem you’ll be able to solve overnight.

In the meantime, you can keep your features organized using subfolders and
tags (see Chapter 5, Expressive Scenarios, on page 69). Tagging is especially
helpful, because you can use tags to partition your tests. You can choose to
run partitioned sets of tests in parallel or even demote some of them to run

in a Nightly Build, on page 109.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Caring for Your Tests ® 109

Nightly Build

When you have Slow Features, on page 93, caused by Lots of Scenarios, on page 108,

it's worth considering splitting your build in two. Use tags to annotate the scenarios
that should be run on every check-in, and demote the rest to a nightly build.

Use of this pattern depends on your team’s appetite for risk, as well as their tendency
to make mistakes. The scenarios that should be demoted to a nightly build are the
ones that rarely, if ever, fail. They’re the scenarios for functionality that hasn’t changed
for months, and they cover stable code that isn’t being worked on. They’re the scenar-
ios that if you had to, you’'d be prepared to delete altogether.

There’s a maintenance overhead in keeping the tags for the check-in build on the
right scenarios. Over time, some of those scenarios will stabilize and should be
demoted to the nightly build, to be replaced by newer scenarios.

Although a nightly build can be a good way to get you out of a hole, usually the right
long-term solution is to break up your Big Ball of Mud, on page 109.

It's also worth thinking about whether some of the behavior you've specified
in Cucumber scenarios could be pushed down and expressed in fast unit
tests instead. Teams that enthusiastically embrace Cucumber sometimes
forget to write unit tests as well and rely too much on slow integration tests
for feedback. Try to think of your Cucumber scenarios as broad brush strokes
that communicate the general behavior of the code to the business but still
try to get as good a coverage as you can from fast unit tests. Help make this
happen by having testers and programmers work in pairs when implementing
Cucumber scenarios. This pair can make good decisions about whether a
piece of behavior necessarily needs to be implemented in a slow, full-stack
Cucumber scenario and drive out the behavior using a fast unit test instead.

Big Ball of Mud

The “Big Ball of Mud™® is an ironic name given to the type of software design
you see when nobody has made much effort to do any software design. In
other words, it’s a big, tangled mess.

We've explained where a big ball of mud will manifest itself as problems in
your Cucumber tests: slow features, fixture data, and shared environments
are all examples of the trouble it can cause. Look out for these signals and
be brave about making changes to your system'’s design to make it easier to
test.

5. http://www.laputan.org/mud/

http://www.laputan.org/mud/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ® 110

We suggest Alistair Cockburn’s ports and adapters architecture® as a way of
designing your system to be testable. Michael Feathers’s Working Effectively

systems that weren’t designed to be tested.

Hold regular sessions with your team to talk about your architecture: what
you like, what you don’t like, and where you’d like to take it. It's easy to get
carried away with ambitious ideas that evaporate into thin air soon after you
get back to your desks, so make sure you try to leave these sessions with
realistic, practical steps that will move you in the right direction.

That covers the most common problems you're likely to hit as you adopt
Cucumber into your team. However, it's one thing to understand these
problems, but it’'s quite another to get the time to do anything about them.
Next we’ll talk about an important technique for making that time.

Stop the Line and Defect Prevention

Of all the activities that your team does, which do you think is the most
important? Writing code for new features? Fixing bugs found in testing? Fixing
bugs found in production? Speeding up your features?

Sadly, test maintenance does not come near the top of most software teams’
list of priorities. If the elevators are broken in your office building, you can
be sure that someone will be on the phone to the facilities team right away.
When your tests are slow or brittle, the problem is invisible to everyone but
the programmers and testers who rely on them. If you do test maintenance
at all, you generally do it when things have gotten so bad that you can’t stand
it any longer, or you simply can’t get a release out because the tests are so
broken. There just always seems to be something more important to do.

Team members who think in this way about their tests have got it all wrong.
The automated tests are the heartbeat of the team that relies on them, and
they need meticulous care and attention to keep them healthy.

Stop the Line at Toyota

In Toyota’s manufacturing plants, every shop-floor worker has the authority and the responsibil-
ity to stop an entire production line whenever a problem arises. The problem is then given
immediate and focused attention by experienced staff, and the line is restarted only once the
problem has been resolved. Once the line has restarted, a team is tasked with performing a root-
cause analysis on the problem to understand why it happened so that the source of the problem
can be resolved.

6. http://alistair.cockburn.us/Hexagonal+architecture

http://alistair.cockburn.us/Hexagonal+architecture
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Stop the Line and Defect Prevention ® 111

When Taiichi Ohno first introduced this idea, his managers thought he was crazy. At the time,
it was taken for granted within the manufacturing industry that the most important thing you
could do was keep your assembly lines running, day and night if necessary.

When Ohno first told his managers to implement this new system, some of them listened and
some of them didn’t. At first, the managers who had implemented the policy saw their produc-
tivity drop. Stopping to deal with each problem immediately was slowing them down, and when
they compared their output numbers with the managers who had ignored their boss, it looked
like the boss had got it wrong.

Gradually, however, those managers who allowed their lines to stop and deal with every problem
started to see their lines stopping less frequently. Because each problem was being dealt with
using defect prevention, those lines had been investing in continuously improving the quality
of the machines and processes that ran the line. That investment started to pay off, and their
lines started to get faster and faster. Soon their output was much greater than that of the lines
controlled by the managers who had ignored their apparently crazy boss. Their production lines
were still clunking along at the same old rate, suffering the same old problems.

Defect Prevention

Toyota’s counterintuitive but hugely successful policy of stopping the line
works because it’s part of a wider process, known as defect prevention, that
focuses on continuously improving the manufacturing system. Without this
wider process, stop the line itself would have very little effect. There are four
steps to this process:

1. Detect the abnormality.

2. Stop what you're doing.

3. Fix or correct the immediate problem.

4. Investigate the root cause and install a countermeasure.

This fourth step is crucial because it seizes the opportunity offered by the
problem at hand to understand something more fundamental about your
process. It also means that fixing things becomes a habit, rather than some-
thing you put off to do someday later when you're not in such a hurry.

For example, suppose the build has broken with a failing test. It turns out
that the guy who pushed the commit with the failing test didn’t run all the
tests before he pushed. Why not? Well, it turns out that he thinks the tests
take too long to run, so he ran just what he thought were the ones covering
the change he made and then crossed his fingers and pushed his commit
anyway. So, the underlying cause is that the features are slow. Now that we
understand the root cause, we can work to fix it.

7. Toyota Production System: Beyond Large Scale Production [Ohn88]

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 6. Keeping Your Cucumbers Sweet ® 112

Some teams keep a log of build failures, recording the root cause each time.
When they have sufficient evidence that a particular root cause is worth
tackling, they can put some concentrated effort into tackling it properly.

Imagine your team as a production line, cranking out valuable features for
your users. If you spot a problem that’s slowing the production line down,
stop the line and fix the problem for good. Implementing stop the line means
you've decided to make a fast, high-quality, reliable test run your whole team’s
top priority, second only to dealing with production issues that are affecting
your customers. When there’s a problem with the tests—whether that's an
urgent problem like a failing test or a nagging annoyance like a flickering
scenario—put your best people on it, and fix it forever.

What We Just Learned

Cucumber features are a valuable asset to your company. We've seen teams
that have ripped out and rewritten big parts of their systems, safe in the
knowledge that they had a set of accurate, executable specifications to ensure
the new solution worked just as well as the original. To those teams, the
features were more valuable than the production code itself. If you're going
to invest in writing Cucumber features, you need to protect that investment
by caring for them so that they're as useful as possible to the whole team.
Don't settle for features that are slow, that fail intermittently, or that are read
by only half the team: iron out problems as they happen, and use each
problem as a reason to make the tests even better than they were before.

Cucumber might just seem like a testing tool, but at its heart it’s really a
collaboration tool. If you make a genuine effort to write features that work as
documentation for the nontechnical stakeholders on your team, you’ll find
you are forced to talk with them about details that you might never have
otherwise made the time to talk about. Those conversations reveal insights
about their understanding of the problem, insights that will help you build
a much better solution than you would have otherwise. This is Cucumber’s
big secret: the tests and documentation are just a happy side effect; the real
value lies in the knowledge you discover during those conversations.

Try This

Here are some exercises for you to try for yourself.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 113

Defect Prevention on Your Team

Think of three things that are slowing down your team’s production line. What
is the root cause of each of them? What could you do to change them for the
better?

Incidental Details Practice
Here is a scenario, written in a hideously imperative style, riddled with inci-
dental details:

Scenario: Create an invoice
Given I am a signed-in user with role: admin
And a client "Test Client" exists with name: "Test Client"
And a project "Test Project" exists with:
| name | "Test Project" |
| client | client "Test Client"
And an issue "Test Issue" exists with:
| project | project "Test Project" |

| name | "Test Issue" |
And a work unit "Test Work Unit" exists with:
issue	issue "Test Issue"
completed on	"2011-08-24"
hours	"7.5"

And I am on the admin invoices page
Then I should see "Test Client"

And I follow "Test Client"

And I fill in "invoice id" with "abc"
And I press "Submit"

Then I am on the admin invoices page
And I should not see "Test Client"

Start by just trying to work out what's going on: what do you think this system
does? What is the purpose of the scenario? What behavior is it trying to test?
Notice how the incidental details are like overgrown weeds, getting in the way
of you figuring out what the test is actually trying to do.

Now that you understand the essence of the scenario, rewrite it in your own
words. You should need much fewer steps, but you might want to consider
using more than one scenario.

Now that you've rewritten the scenario in a more declarative style, can you
spot the crucial Then step that was missing from the original scenario?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Part II

A Worked Example

The next few chapters are going to take you through a worked example. Although it
will probably be smaller and simpler than the applications you normally work on, it
uses real-world tools and solves real-world problems. Not only will you quickly learn
how to turn your specifications into automated acceptance tests using Cucumber, but
you'll soon be finding out how to deal with complex problems, such as asynchronous
processes and database transactions.

And because we know that you're dealing with real-world problems we’ll also show
you powerful techniques for keeping your automated acceptance tests easy to maintain
and fast to run.

CHAPTER 7

Step Definitions: On the Inside

It’s time to pull together everything that you've learned in the first part of the
book and use it in practice. There are a few advanced concepts left about
Cucumber that we want to explain to you, and they’ll be much easier to
demonstrate with an example. A lot of what we’ll do in this part of the book
will blur the line between testing and development. If you're more of a tester
than a developer, don't let that worry you: the Java code we’ll build is just
about as simple as it gets. By following along, you'll get a good sense of how
we like to work, as well as pick up some new knowledge about working with
Cucumber.

At the end of Returning Results, on page 58, we'd just started work on a
greenfield project to build the software for an ATM. We had a single scenario
for the most important behavior of the system: letting someone walk up to

the machine and withdraw cash.

step_definitions_inside/01/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
Then $20 should be dispensed

Now we’re going to pick up this scenario and work outside-in, designing the
system as we go, just as we would on a real project. In this chapter, we’ll get
the scenario to pass by driving out a simple domain model for our ATM. Then,
in the next chapter, we’ll get a nasty surprise when we discover that there’s
a missing step in our scenario. Finally, we’ll demonstrate the benefits of well-
engineered test code by introducing a user interface around the domain
model.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/01/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 118

By the end of this chapter, you’ll have learned about how you can manage
state that’s shared between step definitions. We’ll write some custom helper
methods that will introduce a layer of decoupling between our step definitions
and the application we're building. We’ll show you how to use transforms to
reduce duplication in your step definitions and make it easier to work with
meaningful datatypes. Finally, we’ll show you how we like to organize the files
in our projects so that they're easy to work with and maintain.

Sketching Out the Domain Model

The heart of any object-oriented program is the domain model. When we start
to build a new system, we like to work directly with the domain model. This
allows us to iterate and learn quickly about the problem we’re working on
without getting distracted by user interface gizmos. Once we have a domain
model that really reflects our understanding of the system, it's easy to wrap
it in a pretty skin.

We're going to let Cucumber drive our work, building the domain model
classes directly in the step definitions. As usual, we start by running mvn clean
test on our scenario to remind us what to do next:

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:22)
at *.When I request $20(cash withdrawal.feature:4)
Then $20 should be dispensed

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
Omo.090s

cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:22)
at *.When I request $20(cash withdrawal.feature:4)

When we last worked on this scenario, we’'d just reached the point where we
had written the regular expressions for each of our step definitions and
implemented the first one. Here’s how our steps file looks:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Sketching Out the Domain Model ® 119

step_definitions_inside/01/src/test/java/nicebank/Steps.java
package nicebank;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class Steps {

class Account {
public Account(int openingBalance) {
}

}

@Given("~I have deposited \\$(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
new Account(amount);

}

@hen("~I request \\$(\\d+)$")

public void iRequest$(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("~\\$(\\d+) should be dispensed$")
public void $ShouldBeDispensed(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();
}
}

In that first step definition, we create an instance of our new Account class.
Cucumber then tells us that we need to work on our second step definition,
which is still marked as Pending. Before we do that, let’s review the code in
our step definition and see what we think. There are a few things we're not
happy about:

e Some inconsistent language is creeping in; the step talks about depositing
funds, but the code passes funds to the Account constructor.

¢ The step is lying to us! It says Given | have deposited $100 in my account, and it’s
passed. Yet we know from our implementation that nothing has been
deposited anywhere.

e Bank balances don’t always contain whole numbers of dollars, but our
step definition uses an int. We should be able to deposit dollars and cents.

We'll work through each of these points before we move on to the next step
in the scenario.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/01/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ¢ 120

Getting the Words Right

We want to clarify the wording before we do anything else, so let’s think about
how we could make the code in the step definition read more like the text in
the step. We could go back and reword the step to say something like Given an
Account with a balance of $100. In reality, though, the only way that an account
would have a balance is if someone deposited funds into it. So, let’s change
the way we talk to the domain model inside our step definition to reflect that:

step_definitions_inside/02/src/test/java/nicebank/Steps.java
class Account {
public void deposit(int amount) {

}
}

step_definitions_inside/02/src/test/java/nicebank/Steps.java

@Given("~I have deposited \\$(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
Account myAccount = new Account();
myAccount.deposit(amount);

}
That seems better.

There’s something else in the wording that bothers us. In the step, we talk
about my account, which implies the existence of a protagonist in the scenario
who has a relationship to the account, perhaps a Customer. This is a sign that
we’re probably missing a domain concept. However, until we get to a scenario
where we have to deal with more than one customer, we’d prefer to keep
things simple and focus on designing the fewest classes we need to get this
scenario running. So, we’ll park this concern for now.

Telling the Truth

Now that we’'re happier with the interface to our Account class, we can resolve
the next issue from our code review. After we've deposited the funds in the
account, we can check its balance with an assertion:

step_definitions_inside/03/src/test/java/nicebank/Steps.java

@Given("~I have deposited \\$(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int amount) throws Throwable {
Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/02/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/02/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/03/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Sketching Out the Domain Model ¢ 121

We've used a JUnit assertion here, but if you prefer another assertion library,
feel free to use that. It might seem odd to put an assertion in a Given step, but
it communicates to future readers of this code what state we expect the system
to be in once the step has run. We’ll need to add a balance method to the Account
so that we can run this code:

step_definitions_inside/03/src/test/java/nicebank/Steps.java
class Account {
public void deposit(int amount) {

}

public int getBalance() {
return 0;
}
}

Notice that we're just sketching out the interface to the class, rather than
adding any implementation to it. This way of working is fundamental to out-
side-in development. We try not to think about how the Account is going to
work yet but concentrate on what it should be able to do.

Now when we run the test, we get a nice helpful failure message:

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
java.lang.AssertionError: Incorrect account balance
- expected:<100> but was:<0>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at nicebank.Steps.iHaveDeposited$InMyAccount(Steps.java:29)
at *.Given I have deposited $100 in my account(cash withdrawal.feature:3)
When I request $20
Then $20 should be dispensed

1 Scenarios (1 failed)
3 Steps (1 failed, 2 skipped)
Om0.076s

java.lang.AssertionError: Incorrect account balance
- expected:<100> but was:<0>

Now our step definition is much more robust, because we know it will sound
an alarm bell if it isn’t able to deposit the funds into the account as we've
asked it to do. Adding assertions to Given and When steps like this means that
if there’s ever a regression later in the project, it's much easier to diagnose
because the scenario will fail right where the problem occurs. This technique

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/03/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 122

is most useful when you're sketching things out; eventually, we’ll probably
move this check further down the testing stack into a unit test for the Account
class and take it out of the step definition.

Doing the Simplest Thing

We're at a decision point here. We've effectively finished implementing our
first step definition, but we can’t move on to the next one until we've made
some changes to the implementation of the Account class so that the step
passes.

You are Implement
next step
here definition
Features
System
Write unit
tests for
Account

It's tempting to pause here, move the Account class into a separate file, and
start driving out the behavior we want using unit tests. We're going to try to
resist that temptation for now and stay on the outside of the Account class. If
we can get a full tour through the scenario from this perspective, we’ll be
more confident in the design of the class’s interface once we do step inside
and start implementing it.

So, we’ll keep working on our very simple implementation of the Account class
that’s obviously incomplete but just right enough to make this first step pass.
Think of this like putting up scaffolding on a construction site: we're going
to take it down eventually, but it will help things to stand up in the meantime.

Change Account to look like this, and now the first step should pass:

step_definitions_inside/04/src/test/java/nicebank/Steps.java
class Account {
private int balance;

public void deposit(int amount) {
balance += amount;

}

public int getBalance() {
return balance;

}

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/04/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Staying Honest with Transforms ® 123

Good. We still have one issue left on our list, which is our use of int as our
balance. Now that our step is passing, we can do that refactoring with confi-
dence.

Staying Honest with Transforms

Another issue we have with the first step definition is that our regular
expression is capturing an integer, but we would expect to be able to deposit
dollars and cents into the account. So let’s change the feature to demonstrate
this:
step_definitions_inside/05/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit

Given I have deposited $100.00 in my account

When I request $20
Then $20 should be dispensed

Now when we run mvn clean test it reports that we have an undefined step defi-
nition and tells us what regular expression we now need to use to match our
feature:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I request $20
Then $20 should be dispensed

1 Scenarios (1 undefined)
3 Steps (2 skipped, 1 undefined)
Omo.000s

You can implement missing steps with the snippets below:

@Given("~I have deposited \\$(\\d+)\\.(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Tests run: 5, Failures: 0, Errors: 0, Skipped: 4, Time elapsed: 0.458 sec

Cucumber has recognized two numbers in the step and has generated a reg-
ular expression that is capturing each separately and passing them as two
integers to our step definition. Rather than pass two integers around, we're
going to use a Money class written specially for this example, which you can
find in src/main/java/nicebank.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/05/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 124

You might think that a language like Java would have its own money class, but as
of this writing it doesn’t. There are a number of classes available, such as Joda
Money, but we're still waiting for JSR 354 (which will define a Java Money class) to
be released.

In our step definition we can now create an instance of the Money class:

step_definitions_inside/06/src/test/java/nicebank/Steps.java

@Given("~I have deposited \\$(\\d+)\\.(\\d+) in my account$")

public void iHaveDeposited$InMyAccount(int dollars, int cents) throws Throwable {
Account myAccount = new Account();
Money amount = new Money(dollars, cents);
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}
And we change our implementation of Account to handle deposits of Money:

step_definitions_inside/06/src/test/java/nicebank/Steps.java
class Account {
private Money balance = new Money();

public void deposit(Money amount) {
balance = balance.add(amount);

}

public Money getBalance() {
return balance;
}
}

This is fine, but it still means that we have to create an instance of Money in
every step definition that works with dollars and cents. It would be much
nicer if Cucumber could just pass a Money object directly to the step definition.

The first thing we need to do to make this happen is to change the step defi-
nition so that:

¢ the regular expression captures the whole amount in a single capture
group

* its signature expects a Money parameter

report erratum

« discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/06/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/06/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Staying Honest with Transforms ¢ 125

Have you wondered how Cucumber knows what arguments to use in the step definition
snippets it generates? First, it generates one argument per capture group in the reg-
ular expression. Then, for each capture group, if it matches only numbers it creates
an int parameter; otherwise it creates a String parameter. For example:

@Given("~a (\\w+) amount \\$(\\d+)$")
public void aDollarAmount$(String argl, int arg2) throws Throwable {
}

What if you wanted to manipulate digits as a String? No problem—these snippets are
just a hint from Cucumber to you. If you'd like to work with a different type, then
just change the signature of the step definition, like so:

@Given("~a (\\w+) amount \\$(\\d+)$")
public void aDollarAmount$(String argl, String arg2) throws Throwable {
}

Under the hood, Cucumber represents each capture group in the regular expression
as a String. Then, when calling the step definition it converts the String into the type
expected. If it can’t perform the conversion, it throws a cucumber.runtime.CucumberException,
but otherwise the conversion happens automatically—as if by magic.

step_definitions_inside/07/src/test/java/nicebank/Steps.java

@Given(""I have deposited \\$(\\d+\\.\\d+) in my accounts$")

public void iHaveDeposited$InMyAccount(Money amount) throws Throwable {
Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

Now all we need to do is tell Cucumber how to convert a String object into a
Money object. One approach would be to give our Money class a single argument
constructor that takes a String. Cucumber would then automatically invoke
this constructor when calling the step definition, passing in the original String
that matched the regular expression in our capture group.

step_definitions_inside/07/src/main/java/nicebank/Money.java

public Money(String amount) {
Pattern pattern = Pattern.compile("~[~\\d]*([\\d]+)\\.([\\d][\\d])$");
Matcher matcher = pattern.matcher(amount);

matcher.find();

this.dollars = Integer.parselnt(matcher.group(l));
this.cents = Integer.parseInt(matcher.group(2));

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/07/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/07/src/main/java/nicebank/Money.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 126

But what if the Money didn’t have a String constructor and wasn’t ours to
modify? In that case, we're going to need to learn about another Cucumber
feature, the Transformer class, which allows us to create the instances of Money
that we want without giving it a new constructor.

Transformers work on captured arguments. Each transform is responsible
for converting a captured String into something more meaningful. For example,
we can use a Transformer to take a String argument that contains a monetary
amount and turn it into an instance of our Money class. Let’s create a MoneyCon-
verter transformer and put it in a new folder, test/transforms:

step_definitions_inside/08/src/test/java/transforms/MoneyConverter.java
package transforms;

import cucumber.api.Transformer;
import nicebank.Money;

public class MoneyConverter extends Transformer<Money> {
public Money transform(String amount) {
String[] numbers = amount.split("\\.");

int dollars = Integer.parseInt(numbers[0]);
int cents = Integer.parseInt(numbers[1]);

return new Money(dollars, cents);

}

Then we annotate the parameter in the step definition to tell Cucumber which
Transformer to use:

step_definitions_inside/08/src/test/java/nicebank/Steps.java
@Given("~I have deposited \\$(\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount (
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}
Great! That code looks much cleaner and easier to read.

We can tidy this up a little further by moving the dollar sign into the capture
group. This makes the code more cohesive, because we're bringing together

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/08/src/test/java/transforms/MoneyConverter.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/08/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding Custom Helper Methods ® 127

the whole regular expression statement for capturing the amount of funds
deposited. It also gives us the option to capture other currencies in the future.

step_definitions_inside/09/src/test/java/nicebank/Steps.java
@Given("~I have deposited (\\$\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

Of course we have to make a corresponding change to MoneyConverter to ensure
it handles the currency sign correctly. For the time being (since we're not
handling multiple currencies) we’ll just discard the dollar sign:

step_definitions_inside/09/src/test/java/transforms/MoneyConverter.java
String[] numbers = amount.substring(1l).split("\l.");

Let’s take another look at our to-do list. Using the transform has cleared up
the final point from the initial code review. As we went along, we collected a
new to-do list item: that we need to implement the Account properly, with unit
tests. Let’s leave that one on the list for now and move on to the next step of
the scenario.

Adding Custom Helper Methods

We've implemented the first step of our scenario to set up an account with a
sufficient balance that the withdrawal should work. After all that talking
about transforms, it’s hard to remember exactly what we need to do next, but
we can always rely on cucumber to remind us where we are:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I request $20
cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:44)
at *.When I request $20(cash withdrawal.feature:4)
Then $20 should be dispensed

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
Omo.099s

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/09/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/09/src/test/java/transforms/MoneyConverter.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ¢ 128

cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:44)
at *.When I request $20(cash withdrawal.feature:4)

Tests run: 5, Failures: 0, Errors: 0, Skipped: 3, Time elapsed: 0.509 sec

The first step is passing as we'd expect, and the second one is failing with a
pending message. So, our next task is to implement the step to simulate a
customer withdrawing cash from the ATM. Here’s the empty step definition:

step_definitions_inside/09/src/test/java/nicebank/Steps.java

@when("~I request \\$(\\d+)$")

public void iRequest$(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

We need somewhere to withdraw the cash from, which means we need to
bring a new actor into this scenario. This new class is going to handle our
request to withdraw cash from our account. If we walked into a bank in real
life, that role would be played by a teller. Thinking outside-in again, let’'s
sketch out the code we’'d like:

@when("~I request \\$(\\d+)$")

public void iRequest$(int amount) throws Throwable {
Teller teller = new Teller();
teller.withdrawFrom(myAccount, amount);

}

That looks pretty good. The teller will need to know which account to take
the cash from and how much to take. There’s a little inconsistency creeping
into the language again, though: the step definition talks about requesting
the cash, but in the code we're withdrawing it. Withdraw is the term we use
most often, so let’s change the text in the scenario to match.

step_definitions_inside/10/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I withdraw $20
Then $20 should be dispensed

step_definitions_inside/10/src/test/java/nicebank/Steps.java

@When("~I withdraw \\$(\\d+)$")

public void iWithdraw$(int argl) throws Throwable {
Teller teller = new Teller();
teller.withdrawFrom(myAccount, amount);

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/09/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/10/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/10/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding Custom Helper Methods ® 129

That’s better. Now the language in the scenario more closely reflects what'’s
going on in the code beneath it. Run mvn clean test again, and you should be
prompted to create a Teller class. Let’s create one:

step_definitions_inside/11/src/test/java/nicebank/Steps.java
class Teller {
public void withdrawFrom(Account account, int dollars) {

}
}

Again, we've just sketched out the interface for now, without adding any
implementation. With that in place, try running mvn clean test again:

[INFO] - - - mmmmm i mm e m e m e e e e e oo
[ERROR] COMPILATION ERROR :

[INFO] - mm o s m s oo e o
[ERROR] src/test/java/nicebank/Steps.java:[52,28] error: cannot find symbol
[INFO] 1 error

A-ha. We defined myAccount in the first step definition, but when we try to use
it in the second step definition, Java can’t see it. How can we make myAccount
available to both step definitions? The answer lies in understanding something
fundamental about how Cucumber executes step definitions.

Sharing State Between Steps

Before Cucumber can execute a step definition, it creates an instance of the
class that defines the step definition. Only one instance of each step definition
class is created while executing a scenario. And once the scenario has finished,
Cucumber throws away all those step definition instances to ensure that each
scenario runs in isolation from all the others.

Just like methods on a regular Java class, we can use instance variables to
pass state between step definitions that are defined in the same class. Here’s
how the code looks with myAccount stored as an instance variable in the step
definition:

private Account myAccount;

@Given(""~I have deposited (\\$\\d+\\.\\d\\d) in my account$")
public void iHaveDeposited$InMyAccount(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -", amount, myAccount.balance());

}

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/11/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ¢ 130

@when ("~I withdraw \\$(\\d+)$")

public void iWithdraw$(int dollars) throws Throwable {
Teller teller = new Teller();
teller.withdrawFrom(helper.getMyAccount(), dollars);

}

Try it. It works!

This solution is OK, but we don’t like leaving instance variables in step defi-
nitions. The problem with instance variables is that if you don’t set them they
just stay null. We hate nulls, because they creep around your system, causing
weird bugs that are hard to track down. For example, if someone were to
later come along and use the second step definition in another scenario that
hadn’t already set myAccount, a null would get passed into Teller.withdrawFrom.

Cucumber uses dependency injection to facilitate sharing state between steps.
(We talk about this later in the chapter, in Dependency Injection, on page 137.)

For now we’ll create a helper class to share our state between steps.

Creating a Custom Helper Class

In a regular class we might avoid nulls by putting the instance variables behind
an accessor method, like this:

private Account myAccount;

public Account getMyAccount() {
if (myAccount == null){
myAccount = new Account();
}
return myAccount;

}

We can do the same in Cucumber. Let’s define a new helper class and then
use it in our step definitions. Here’s what we could do:

step_definitions_inside/12/src/test/java/nicebank/Steps.java
class KnowsMyAccount {
private Account myAccount;

public Account getMyAccount() {
if (myAccount == null){
myAccount = new Account();

}

return myAccount;

}

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/12/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding Custom Helper Methods ® 131

We've defined getMyAccount on a class KnowsMyAccount. We then create a step
definition constructor where we create an instance of this helper class:

step_definitions_inside/12/src/test/java/nicebank/Steps.java
KnowsMyAccount helper;

public Steps() {
helper = new KnowsMyAccount();

}

This means we can get rid of the code that initializes the Account from the first
step definition, and we can get rid of the Account instance variable, so the step
definitions can use the getMyAccount method instead:

step_definitions_inside/12/src/test/java/nicebank/Steps.java
@Given("~I have deposited (\\$\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
helper.getMyAccount().deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, helper.getMyAccount().getBalance());
}

@when("~I withdraw \\$(\\d+)$")

public void iWithdraw$(int dollars) throws Throwable {
Teller teller = new Teller();
teller.withdrawFrom(helper.getMyAccount(), dollars);

}

With this change in place, run mvn clean test, and the first two steps should
now be passing.

Designing Our Way to the Finish Line

Now let’s try to get our final step to pass. We can see that the first two steps
are passing and the final one is pending. Almost there! Let’s take a look at
that last step definition:

step_definitions_inside/12/src/test/java/nicebank/Steps.java

@Then("~\\$(\\d+) should be dispensed$")

public void $ShouldBeDispensed(int argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

The big question here is: where will the cash be dispensed? Which part of the
system can we examine for evidence of whether it doled out the money? It

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/12/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/12/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/12/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 132

seems as if we're missing a domain concept. In the physical ATM, the cash
will end up poking out of a slot on the ATM, something like this:

step_definitions_inside/13/src/test/java/nicebank/Steps.java
@Then("~\\$(\\d+) should be dispensed$")
public void $ShouldBeDispensed(int dollars) throws Throwable {
Assert.assertEquals("Incorrect amount dispensed -",
dollars, helper.getCashSlot().contents());

}

That looks good. When we hook our code up to the real hardware, we're going
to need some way of talking to it, and this object will work fine as a test double
in the meantime. Let’s start running mvn clean test to drive this out. First it tells
us that we need to define the getCashSlot method, of course. Let’s add another
method to our helper class and rename it to reflect its new role.

step_definitions_inside/13/src/test/java/nicebank/Steps.java
class KnowsTheDomain {

private Account myAccount;

private CashSlot cashSlot;

public Account getMyAccount() {
if (myAccount == null){
myAccount = new Account();

}

return myAccount;

}

public CashSlot getCashSlot() {
if (cashSlot == null){
cashSlot = new CashSlot();
}

return cashSlot;
}
}

We run mvn clean test again, and this time it wants us to define the CashSlot class,
so let’'s go ahead and do as we're told. Again, we just build a sketch of the
interface we want to use, with minimal implementation:

step_definitions_inside/14/src/test/java/nicebank/Steps.java
class CashSlot {
public int getContents() {
return 0;

}

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/13/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/13/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/14/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding Custom Helper Methods ® 133

Now when you run mvn clean test, you'll see we’ve moved closer to our goal: all
the classes and methods are wired up, and our final step is failing just because
there’s no cash coming out of the CashSlot:

java.lang.AssertionError: Incorrect amount dispensed
- expected:<20> but was:<0>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at nicebank.Steps.$ShouldBeDispensed(Steps.java:95)
at *.Then $20 should be dispensed(cash withdrawal.feature:5)

To get this last step to pass, someone needs to tell the CashSlot to dispense the
cash when the customer makes a withdrawal. It’s the Teller who’s in charge
of the transaction, but at the moment it doesn’t know anything about the
CashSlot. We'll use dependency injection to pass the CashSlot in to Teller's construc-
tor. Now we can imagine a new CashSlot method that the Teller can use to tell
it to dispense the cash:

step_definitions_inside/15/src/test/java/nicebank/Steps.java
class Teller {
private CashSlot cashSlot;

public Teller(CashSlot cashSlot) {
this.cashSlot = cashSlot;
}

public void withdrawFrom(Account account, int dollars) {
cashSlot.dispense(dollars);
}
}

This seems like the simplest implementation of Teller that we need to get the
scenario to pass. It’s odd that when we designed this method from the outside
we thought we’d need the account parameter, but now we don’t seem to need
it. Let’s stay focused, though; we’ll make a note on our to-do list to look into
this later and carry on getting this step to pass.

There are two changes we need to make now. We need to add the new dispense
method to CashSlot, and we have to change the second step definition to create
the Teller correctly:

@when("~I withdraw $(\\d+)$")
public void iWithdraw$(int dollars) {
Teller teller = new Teller(helper.getCashSlot());
teller.withdrawFrom(helper.getMyAccount(), dollars);
}

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/15/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 134

This call to new Teller() seems out of place in a step definition now. All our
other classes are created inside our helper class, so let’s do the same with
Teller. This means our step definition becomes a lot less cluttered:

step_definitions_inside/15/src/test/java/nicebank/Steps.java

@When("~I withdraw \\$(\\d+)$")

public void iWithdraw$(int dollars) throws Throwable {
helper.getTeller().withdrawFrom(helper.getMyAccount(), dollars);

}

The step definition code all reads very nicely now. Pushing some of the details
down into our helper class means the step definition code is at a higher level
of abstraction. This makes it less of a mental leap when you come into the
step definitions from a business-facing scenario, because the code doesn’t
contain too much detail.

This scenario isn’t going to pass until we do some work on our CashSlot, though.
Our new class is still missing the dispense method. A simple implementation
should get this working:

step_definitions_inside/15/src/test/java/nicebank/Steps.java
class CashSlot {
private int contents;

public int getContents() {
return contents;

}

public void dispense(int dollars){
contents = dollars;
}
}

Run mvn clean test one last time, and you should see the scenario pass.

Excellent! Go and grab a drink—then we can sit down, review the code, and
do some refactoring.

Organizing the Code

Before we finish this session, let’s be kind to our future selves and tidy up a
little. As we worked, we just created everything we needed inline in our
src/test/java/nicebank/Steps.java file. We’ll move most of that stuff out of there, and
put it into a more conventional place. Here’s a list of what we’d like to fix:

e The application’s domain model classes should move into the src/main/java
tree.

¢ The KnowsTheDomain class can move into its own file.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/15/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/15/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Organizing the Code ® 135

* The Steps file can be split to organize the step definitions better. This is
arguably unnecessary for a project with only three step definitions, but
we’ll do it anyway to illustrate how we’d do this on a bigger project.

Separating the Application Code

It’s conventional in Java projects to store the system’s code in an src folder in
the root of the project. Normally your production code would be created in a
relevantly named package. Our company is trying to stand out from the crowd
with the brand name NiceBank, so we’ll put our production code into the
folder src/mainfjava/nicebank alongside the Money class that has already been
written.

Let’s move the three classes, Account, Teller, and CashSlot, into the files Account.java,
Teller.java, and CashSlot.java in the src/main/java/nicebank folder. As we do this, we’ll
need to specify that the classes are in the nicebank package and make them
public.

Since Steps is also in the nicebank package, no imports are needed.

Save the files and run mvn clean test.

Dry Run

As we start to move files around, it’s useful to test that everything still
matches using Cucumber’s “dry run” feature. A dry run aims to parse your
features and step definitions but not actually run any of them.

step_definitions_inside/16/src/test/java/RunCukesTest.java
import cucumber.api.junit.Cucumber;

import cucumber.api.CucumberOptions;
import cucumber.api.SnippetType;

import org.junit.runner.RunWith;

@RunWith(Cucumber.class)

@CucumberOptions(plugin="pretty", snippets=SnippetType.CAMELCASE, dryRun=true)
public class RunCukesTest {

}

This is much faster than a real test run if you just want to check for undefined
steps and to make sure that all your paths are set up correctly. Get used to
using dryRun to help refactor your scenarios and step definitions, but remember
that since no calls are actually made to your step definitions this doesn’t test
your conversions or transforms.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/16/src/test/java/RunCukesTest.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ¢ 136

Separating the Support Code

We should also tidy away the helper class. This is what we call support code,
so we’ll put it in a new folder, src/test/java/support. Take the KnowsTheDomain class
and move it into a new file, called src/test/java/support/KnowsTheDomain.java. As we
add more methods to our KnowsTheDomain, we will split it into multiple classes;
however, this is fine for now.

Since KnowsTheDomain is in the support package, we’ll need import statements for
the domain classes Account, CashSlot, and Teller.

step_definitions_inside/17/src/test/java/support/KnowsTheDomain.java
import nicebank.Account;

import nicebank.CashSlot;

import nicebank.Teller;

Organizing Our Step Definitions

We've managed to get this far with a single file of step definitions called
Steps.java, and for a project of this size, we might as well stick with a single file
for a while longer. As the number of step definitions starts to grow, we’ll want
to split up the files so that the code is more cohesive. We've found that our
favorite way to organize step definition files is to organize them with one file
per domain entity. So, in our example, we’d have three files:

src/test/nicebank/AccountSteps.java
src/test/nicebank/TellerSteps.java
src/test/nicebank/CashSlotSteps.java

In our first attempt at doing this refactor, we give each of the step classes its
own constructor that creates an instance of KnowsTheDomain:

step_definitions_inside/18/src/test/java/nicebank/AccountSteps.java
KnowsTheDomain helper;

public AccountSteps() {
helper = new KnowsTheDomain();

}
Let’s run mvn clean test and see what happens:

java.lang.AssertionError: Incorrect amount dispensed
- expected:<20> but was:<0>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at nicebank.Steps.$ShouldBeDispensed(Steps.java:95)
at *.Then $20 should be dispensed(cash withdrawal.feature:5)

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/17/src/test/java/support/KnowsTheDomain.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/18/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Dependency Injection ® 137

Our final step is failing again. Can you see why?

Previously, we were sharing state by using a local instance of the KnowsTheDomain
class created in the Steps constructor, but now we have three separate step
definition classes and three separate instances of KnowsTheDomain. We only
want a single instance of KnowsTheDomain and this is where Cucumber’s
dependency injection functionality comes to the rescue.

Dependency Injection

Dependency injection (DI) is a technique that allows us to isolate a class from
its concrete dependencies until runtime.' Often this is used to defer the
decision about which actual implementation of an interface were going to
use. On this occasion, however, Cucumber uses a dependency injection
framework to create a single instance of a class and share that instance
between all the step definition classes that need to use it. (We’ll talk about
Cucumber’s use of DI much more in Chapter 11, Simplifying Design with
Dependency Injection, on page 205.)

Cucumber ships with integrations to several popular DI frameworks to choose
from. We'll use PicoContainer” which is probably the most lightweight and is
also available under the BSD license. Let’s modify our pom.xml to add PicoCon-
tainer as a dependency:

step_definitions_inside/19/pom.xml

<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-picocontainer</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.picocontainer</groupId>
<artifactId>picocontainer</artifactId>
<version>${picocontainer.version}</version>
<scope>test</scope>

</dependency>

Now all we need to do is change the constructor in each of our step definitions.
The following is an example:

1. http://www.martinfowler.com/articles/injection.html
2. http://picocontainer.codehaus.org

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/19/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 7. Step Definitions: On the Inside ® 138

step_definitions_inside/19/src/test/java/nicebank/AccountSteps.java
KnowsTheDomain helper;

public AccountSteps(KnowsTheDomain helper) {
this.helper = helper;
}

Now when we run mvn clean test all the steps pass again. Try it!

What We Just Learned

It might seem like the system we've been building here is just a toy. There
aren’t any concrete components that a user could interact with yet: our CashSlot
is just a plain old Java class, and there aren’t any buttons for the user to
push. What we do have, though, are the beginnings of a domain model and
a greater understanding of the problem. Outside-in doesn’t always mean
starting with the user interface; it means starting with the outside of whatever
you want to discover.

We know it isn’t always possible to work like this. You'll often be adding tests
to a legacy system or working on a project where the user interface is already
well defined by the time you're asked to develop the code. Even in these situ-
ations, modeling your domain in Java classes will help your own understand-
ing and also make the test code more maintainable in the long term.

Here are some of the more concrete subjects we've covered in this chapter:

e Transforms help with maintainability by removing annoying duplicate
code to process captured arguments from steps.

e Java code that supports the step definitions can be factored out into
separate classes.

* It's good practice to organize step definition files with one file per domain
entity.

e You can pass state between steps using helper classes that are instanti-
ated and managed by Cucumber’s integration with one of several depen-
dency injection frameworks.

By adding our own KnowsTheDomain class, we've made the step definition code
easier to read, and we've started to decouple the step definitions from the
system. The benefit of this decoupling will come later as the system itself
evolves. In fact, in the next chapter, we’ll show you how we can introduce a
web user interface for withdrawing the cash without having to change a line
in the step definitions.

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/19/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 139

Try This

There are lots of places you could take this example now that we have it up
and running. Let’s look at one idea for you to try.

The Big Rewrite

Now that we've discovered the domain model together, why not see whether
you can do it again, for practice? Delete everything except the feature, the
transform, and the step definitions. Then delete the body of each step defini-
tion, and change it back to pending. Close the book, run mvn clean test, and off
you go!

Try to forget about what we did and enjoy the process of discovering a domain
model for yourself.

Bug Hunt

There’s one remaining item on our to-do list, reminding us that we need to
investigate why we originally designed the TellerwithdrawFrom() method to take
two parameters, but we're using only one of them.

See whether you can figure out what this inconsistency means, and think
about what changes you’d like to make in order to resolve it. Play with the
code and try some solutions. We’ll work on this issue at the beginning of the
next chapter, so you won't have long to wait if you're not sure of the answer.

Edge Cases

We have a single scenario here for the happy path through the process of
withdrawing cash. Can you think of some simple variations on the scenario
that would cause a different outcome? For example, what would happen if
your account had a lower balance?

Write your new scenarios out in the same cash_withdrawal.feature file, and if you're
up for the challenge, have a go at automating them.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 8

Support Code

In the previous chapter, we started working through an example of how to
use Cucumber to build a real application, outside-in. The system we're
building is an automated teller machine (ATM) for a bank, and we used
Cucumber to help us design a simple domain model that satisfied this sce-
nario:

support_code/01/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I withdraw $20
Then $20 should be dispensed

The code we've written makes the scenario pass, but the system isn’t really
of any use yet: there’s no external interface for a user to interact with, just a
handful of Java classes. Now we’re going to fix that by wrapping the domain
model with a user interface where the user can request the amount of cash
they want to withdraw.

In this chapter, we're going to focus mostly on the code in the src/test/java/support
folder. This is the lowest level of your test code, where it connects, or couples,
to your actual application. If this coupling is well engineered, your tests will
be a pleasure to modify as your project grows. If the coupling is too tight,
your tests will be brittle and break any time anything moves. That’s why we
created a separation layer between the step definitions and the system using
helper classes like KnowsTheDomain. This separation layer provides just the
decoupling we’ll need as we start to introduce a user interface.

Before we get started with the user interface, we have one item left on our
to-do list we need to check off first.

http://media.pragprog.com/titles/srjcuc/code/support_code/01/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 142

Fixing the Bug

Sometimes the signals you’ll get from the code that something is wrong are
pretty faint. We always try to keep a to-do list handy and write down everything
that concerns us as we go. That way, we can stay focused on the task at hand
but know that we’ll get a chance to check over and clean up any inconsisten-
cies before we move on to the next task.

As we were finishing off the last scenario, we noticed that Teller.withdraw_from()
takes two arguments, but only one of them was used in the method to make
the scenario pass. This inconsistency means that something is wrong, but
we need to investigate further to know what we need to do about it. Let’s take
a look at the code that uses the method:

support_code/01/src/test/java/nicebank/TellerSteps.java
package nicebank;

import cucumber.api.java.en.*;

import support.KnowsTheDomain;

public class TellerSteps {
KnowsTheDomain helper;

public TellerSteps(KnowsTheDomain helper) {
this.helper = helper;
}

@When("~I withdraw \\$(\\d+)$")
public void iWithdraw$(int amount) throws Throwable {
helper.getTeller().withdrawFrom(helper.getMyAccount(), amount);
}
}

It seems pretty obvious what we intended to happen here. The Teller should
take the specified amount of money out of the account and hand it to the CashSlot.
So, how did we manage to make the scenario pass without having to do any-
thing to the account when we implemented that method? Let’s take another
look at the scenario:

support_code/01/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I withdraw $20
Then $20 should be dispensed

http://media.pragprog.com/titles/srjcuc/code/support_code/01/src/test/java/nicebank/TellerSteps.java
http://media.pragprog.com/titles/srjcuc/code/support_code/01/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

vy

Fixing the Bug * 143

A-ha! There’s nothing here that actually checks that the balance of the account
has been reduced to $80. It’s a good thing we caught this now—our code
would have been handing out cash to customers for free!

Let’s tack on this extra outcome as another Then step:

support_code/02/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

Run mvn clean test and paste the snippet for the new step definition into the
file AccountSteps.java:

support_code/02/src/test/java/nicebank/AccountSteps.java

@Then("~the balance of my account should be \\$(\\d+)\\.(\\d+)$")

public void theBalanceOfMyAccountShouldBe$(int argl, int arg2) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

We can write the new snippet using the transform we created in the previous
chapter and duplicating the assertion from the previous step definition:

support_code/03/src/test/java/nicebank/AccountSteps.java
@Then("~the balance of my account should be (\\$\ld+\\.\ld+)$")
public void theBalanceOfMyAccountShouldBe$(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
Assert.assertEquals("Incorrect account balance -",

amount, helper.getMyAccount().getBalance());

}

We want to carry on and fix the bug, so we’ll make a note on our to-do list to
tidy up the duplication that we have just introduced. Run mvn clean test now
to see whether we have it trapped:

And the balance of my account should be $80.00
java.lang.AssertionError: Incorrect account balance
- expected:<$80.00> but was:<$100.00>
at org.junit.Assert.fail(Assert.java:88)

at nicebank.AccountSteps.theBalanceOfMyAccountShouldBe$
(AccountSteps.java:36)
at *.And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 3 passed)

http://media.pragprog.com/titles/srjcuc/code/support_code/02/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/support_code/02/src/test/java/nicebank/AccountSteps.java
http://media.pragprog.com/titles/srjcuc/code/support_code/03/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 144

One of the wonderful things I discovered when I first used Cucumber to build a
complete application from the outside-in was when we started manual exploratory
testing and discovered some bugs. Almost without exception, every one of those bugs
could be traced back to a gap in the Cucumber scenarios we'd written for that part
of the system. Because we’d written the scenarios collaboratively, with businesspeople
and developers working together to get them right, it wasn’t anybody’s fault that there
was a bug. It was just an edge case we hadn’t originally anticipated.

In my experience, bugs are a big source of friction and unhappiness in software teams.
Businesspeople blame them on careless developers, and developers blame them on
inadequate requirements from the businesspeople. Actually they're just a natural
consequence of software development being a complex endeavor. Using Cucumber
helped the team see that closing these gaps is everyone’s job. The blaming just didn’t
happen, and we were a much happier team as a result.

Great—the bug has been caught by our scenario. Just as we suspected, the
account’s balance remains untouched by the withdrawal. But not for long!
Crack open Tellerjava, and take a look at our Teller class:

support_code/03/src/main/java/nicebank/Teller.java
public void withdrawFrom(Account account, int dollars) {
cashSlot.dispense(dollars);

}
Change the withdrawFrom method to tell the account what to do:

support_code/04/src/main/java/nicebank/Teller.java

public void withdrawFrom(Account account, int dollars) {
account.debit(dollars);
cashSlot.dispense(dollars);

}

Now when we run mvn clean test, we have a compilation failure, which tells us
that we need to create this new debit method on the Account. On a real project,
we’d drop down a gear at this point and start writing unit tests for the Account
class to drive out that method. We don’t mind sketching out interfaces to
classes with a few basic method stubs with only Cucumber to back us up,
but as soon as we start adding interesting behavior to a class, we like to make
sure that behavior has been specified in a unit test. The RSpec Book [CADHO09]

job of explaining this balance with plenty of examples, but since this book is
focused on Cucumber, we're going to gloss over this step and carry on.

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/support_code/03/src/main/java/nicebank/Teller.java
http://media.pragprog.com/titles/srjcuc/code/support_code/04/src/main/java/nicebank/Teller.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Fixing the Bug ® 145

Add the debit to the Account class:

support_code/05/src/main/java/nicebank/Account.java
public void debit(int dollars) {
balance = balance.minus(new Money(dollars, 0));

}

We've implemented a new method called debit that decrements the balance by
the given amount. Let’s run mvn clean test and see whether we've managed to
fix the bug:

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

1 Scenarios (1 passed)
4 Steps (4 passed)
Om0.079s

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.513 sec

Hooray, we did it! Now it’s time for some refactoring before we move on.

Reviewing and Refactoring

In Extreme Programming Explained [BecOO], Kent Beck gives four criteria for

a 51rnpled651gnlnordermth themostlrnportant first, they are as follows:
Passes all the tests

Reveals all the intention

Contains no duplication

Uses the fewest number of classes or methods

e

Let’s review our current code against those four criteria. It’s been driven from
a single test made from a single Cucumber scenario that is passing, so that’s
rule 1 taken care of. How about rule 2? Revealing intention is essentially
about how things are named, which matters to us a great deal. Let’s take a
look at the methods on our Account class:

support_code/05/src/main/java/nicebank/Account.java
package nicebank;

public class Account {
private Money balance = new Money();

http://media.pragprog.com/titles/srjcuc/code/support_code/05/src/main/java/nicebank/Account.java
http://media.pragprog.com/titles/srjcuc/code/support_code/05/src/main/java/nicebank/Account.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 146

public void deposit(Money amount) {
balance = balance.add(amount);

}

public void debit(int dollars) {
balance = balance.minus(new Money(dollars, 0));

}

public Money getBalance() {
return balance;
}
}

Reflecting on it, it’s confusing that we've used the two method names deposit
and debit. Really, we’'d like to see either deposit and withdraw or credit and debit,
but not a combination of the two. Which pair is more appropriate for our
Account class?

We spend a bit of time chatting with one of our domain experts, and it becomes
clear that credit and debit are the right names for the methods on Account. In
fact, deposit is something you’d more likely ask a Teller to do for you. These
conversations happen all the time as you start to establish a ubiquitous lan-
guage, and you’ll find they become easier and easier as your knowledge of
the domain, and the ubiquitous language you all use to discuss it, grows.

We're going to rename the Account.deposit method to Account.credit. Since our test
is nice and fast, we can just rename the method and see what breaks. (Of
course you could invoke the Rename refactoring in your favorite IDE, but we
want to show how you could do this with only a text editor and a compiler):

test/step definitions/AccountSteps.java:26: error: cannot find symbol
helper.getMyAccount().deposit(amount);

~

symbol: method deposit(Money)
location: class Account
1 error

In Refactoring: Improving the Design of Existing Code [FBBO99). this technique
(make the change, see what breaks) is called leaning on the compiler. From
the compilation failure, it looks like we need to change line 26 of

AccountSteps.java. Go ahead and change that, and run mvn clean test again.

Our scenario is passing, but we're not quite done yet! The language in the
step is now inconsistent with the code inside the step definition we've just
changed:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Fixing the Bug * 147

support_code/07/src/test/java/nicebank/AccountSteps.java
@Given("~I have deposited (\\$\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
helper.getMyAccount().credit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, helper.getMyAccount().getBalance());
}

In the step, we're still using the term deposited, but now we're crediting the
account in the Java code underneath. How much does this matter? Perhaps
not much, but we’d prefer our test code to be as transparent as possible. After
another discussion with our domain expert, we decide to reword the step to
read Given my account has been credited with $100.00. We’ll change the feature and the
underlying step definition:
support_code/08/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20

Then $20 should be dispensed
And the balance of my account should be $80.00

support_code/08/src/test/java/nicebank/AccountSteps.java
@Given("™my account has been credited with (\\$\\d+\\.\\d+)$")
public void myAccountHasBeenCreditedWith$(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
helper.getMyAccount().credit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, helper.getMyAccount().getBalance());
}

Looking at this step definition now, it doesn’t make sense to check that the
balance is the same as the amount credited. If this step definition were used
in another scenario that involved other credit or debit transactions before
this one, the balance might not be the same as the amount credited, and that
would be quite all right. So, we don’t want this assertion here any more.

That gives us an easy way to cross off the last item on our to-do list: removing
the duplication of the balance assertion in the two-step definitions for the
account. We can simply delete the first one, because it’s no longer relevant:

http://media.pragprog.com/titles/srjcuc/code/support_code/07/src/test/java/nicebank/AccountSteps.java
http://media.pragprog.com/titles/srjcuc/code/support_code/08/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/support_code/08/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 148

You'll have noticed the painstaking care with which we've moved back and forth
between the features, the step definitions, and the system itself, keeping everything
as clean and consistent as we can. You might be wondering whether we honestly
work this way in our everyday practice. We certainly try to do so. We've alluded to
this earlier in the book, but we feel like it's time to make the point clearly: if you're
writing automated tests, you're developing software. If you value those tests enough
to have written them in the first place, you’ll want to be able to come back and change
them in the future. That means that all the same good habits we normally use to
write maintainable software apply to the test code we write too.

This important point is often missed, especially in a company where testing has
traditionally been done manually. People who specialize in testing sometimes aren’t
the best people to be automating tests if they lack the necessary experience in software
design. Without support from people who do understand how to write maintainable
code, the team can end up with messy test code that's hard to change. It's around
this point that people start to realize their automated tests are actually making it
harder to change the software, not easier, and consider giving up on Cucumber
altogether. The following diagram shows how software development skill becomes
increasingly important as you move down the stack from Gherkin features to support
code.

Gherkin
Features

Step
Definitions

______________ Software

Automation Des.ign
Libraries Skill

Testing and software design are complementary skills, and a strong team needs a
mix of both specialties. Different people will sit at different points on this spectrum:
some people will be great testers but not at all interested in automation or program-
ming, and some will just want to write code without thinking about how to break it.
That’s fine, but the team needs to recognize that there isn’t a clear division of
responsibility when you're working with automated tests. Everyone needs to work
together to create and maintain high-quality tests.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Bootstrapping the User Interface ¢ 149

support_code/09/src/test/java/nicebank/AccountSteps.java
@Given("~my account has been credited with (\\$\\d+\\.\\d+)$")
public void myAccountHasBeenCreditedWith$(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
helper.getMyAccount().credit(amount);
}

@Then("~the balance of my account should be (\\$\ld+\\.\ld+)$")
public void theBalanceOfMyAccountShouldBe$(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
Assert.assertEquals("Incorrect account balance -",
amount, helper.getMyAccount().getBalance());
}

That completes our refactoring. The code is now as clear and communicative
and free of duplication as we can imagine at this stage. We're ready to add
some new functionality.

Bootstrapping the User Interface

Now that we have a model we're happy with, we're going to wrap it in a simple
user interface that allows users to specify how much cash they want to
withdraw. Even though it might not be a typical choice for a real ATM, we're
going to use a web form. We'll use the Jetty' web server to serve our user
interface, and we’ll use Selenium WebDriver” to automate it. We won't go into
much detail about how Selenium works here, but you'll learn much more in
Chapter 12, Working with Web Applications, on page 225.

We'll start by bringing the necessary dependencies into our project to get the
web server up and running.

Creating a Website with Jetty

We're going to use Jetty to build a very simple Ul for our ATM. We'll start by
adding a dependency on Embedded Jetty to our pom.xml:

support_code/10/pom.xml

<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>${jetty.version}</version>

</dependency>

1. http://www.eclipse.org/jetty/

2. http://www.seleniumhg.org/projects/webdriver/

http://media.pragprog.com/titles/srjcuc/code/support_code/09/src/test/java/nicebank/AccountSteps.java
http://media.pragprog.com/titles/srjcuc/code/support_code/10/pom.xml
http://www.eclipse.org/jetty/
http://www.seleniumhq.org/projects/webdriver/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 150

Now we’ll create a simple servlet to render a static page:

support_code/10/src/main/java/nicebank/AtmServlet.java
package nicebank;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AtmServlet extends HttpServlet

{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
response.setStatus(HttpServletResponse.SC 0K);
response.getWriter().println(
"<html><head><title>Nice Bank ATM</title></head>"
+ "<body><hl>Welcome to our nice bank!</hl></body></html>");
}
}

Finally, we’ll create AtmServer to wire our web app together:

support_code/10/src/main/java/nicebank/AtmServer.java
package nicebank;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHolder;

public class AtmServer

{

private final Server server;

public AtmServer(int port) {
server = new Server(9988);

ServletContextHandler context =

new ServletContextHandler(ServletContextHandler.SESSIONS);
context.setContextPath("/");
server.setHandler(context);

context.addServlet(new ServletHolder(new AtmServlet()),"/*");

}

public void start() throws Exception {
server.start();

http://media.pragprog.com/titles/srjcuc/code/support_code/10/src/main/java/nicebank/AtmServlet.java
http://media.pragprog.com/titles/srjcuc/code/support_code/10/src/main/java/nicebank/AtmServer.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Making the Switch ® 151

System.out.println("Listening on " + server.getURI());

}

public void stop() throws Exception {
server.stop();

}

public static void main(String[] args) throws Exception {
new AtmServer(9988).start();
}
}

Starting Our Server

To start the server by starting AtmServer, type mvn exec:java -Dexec.mainClass="nice-
bank.AtmServer". Once you see the message “Listening on
http://127.0.0.1:9988/”, open your favorite browser and navigate to

Making the Switch

Our goal is to introduce a user
interface for requesting the
cash withdrawal. We want

Cukes Cukes

Cucumber to cover us as we
make these changes, so we
need to change how our test
code interacts with the applica- User

tion. Up until now, all our step Interface
definitions were talking direct-
ly to the domain model. We're
going to change that so that
some of them hit the new user
interface instead. This is

shown in the adjacent figure. Domain Domain

Model Model

But, which steps need to
change?

Before After
I 4

http://localhost:9988
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 152

Let’s take a look at our scenario again:

support_code/10/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

We haven'’t specified anything about how we do the cash withdrawal, so there’s
nothing we need to change about the scenario at all. Great! Let’'s jump down
into the step definition for withdrawing cash and see what needs to change
there:

support_code/10/src/test/java/nicebank/TellerSteps.java
package nicebank;

import cucumber.api.java.en.*;

import support.KnowsTheDomain;

public class TellerSteps {
KnowsTheDomain helper;

public TellerSteps(KnowsTheDomain helper) {
this.helper = helper;
}

@When("~I withdraw \\$(\\d+)$")
public void iWithdraw$(int amount) throws Throwable {
helper.getTeller().withdrawFrom(helper.getMyAccount(), amount);
}
}

All we're doing here is calling withdrawFfrom on something. Right now that
something is an instance of the Teller class in our domain model. But what if
we made getTeller return something else, like an interface that offers the behaviors
we need to interact with a teller? That's the beauty of object-oriented program-
ming—as long as the object understands the withdrawFrom method, this step
definition is going to be happy. What we need to do is create an interface that
describes the responsibilities of a teller, and make our existing Teller implement
it.

http://media.pragprog.com/titles/srjcuc/code/support_code/10/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/support_code/10/src/test/java/nicebank/TellerSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Making the Switch ® 153

We now have one of the hardest problems in programming to solve:® what
should we call the interface? The best name for the interface is Teller, so we
need to rename our existing class to give it a properly descriptive name, like
AutomatedTeller:

support_code/11/src/main/java/nicebank/Teller.java
package nicebank;

public interface Teller {
void withdrawFrom(Account account, int dollars);

}

support_code/11/src/main/java/nicebank/AutomatedTeller.java
package nicebank;

public class AutomatedTeller implements Teller {
private CashSlot cashSlot;

public AutomatedTeller(CashSlot cashSlot) {
this.cashSlot = cashSlot;
}

public void withdrawFrom(Account account, int dollars) {
account.debit(dollars);
cashSlot.dispense(dollars);

}

Now let’s drop down into our KnowsTheDomain class. We need to reimplement
the getTeller method to return a class that implements the Teller interface but
that knows how to interact with the user interface. For now, just build an
empty class that implements the Teller interface and change getTeller to return
an instance of the new class:

support_code/11/src/test/java/support/AtmUserInterface.java
package support;

import nicebank.Account;
import nicebank.Teller;

class AtmUserInterface implements Teller {

public void withdrawFrom(Account account, int dollars) {

}

3. http://martinfowler.com/bliki/TwoHardThings.html

http://media.pragprog.com/titles/srjcuc/code/support_code/11/src/main/java/nicebank/Teller.java
http://media.pragprog.com/titles/srjcuc/code/support_code/11/src/main/java/nicebank/AutomatedTeller.java
http://media.pragprog.com/titles/srjcuc/code/support_code/11/src/test/java/support/AtmUserInterface.java
http://martinfowler.com/bliki/TwoHardThings.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 154

support_code/11/src/test/java/support/KnowsTheDomain.java
public Teller getTeller() {
if (teller == null){
teller = new AtmUserInterface();

}

return teller;

}

Now we've disconnected the action-invoking When step in our scenario from
the domain model and connected it to this new AtmUserinterface class. If you
run mvn clean test now, you should see the scenario fail:

Then $20 should be dispensed
java.lang.AssertionError: Incorrect amount dispensed
- expected:<20> but was:<0>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at nicebank.CashSlotSteps.$ShouldBeDispensed(CashSlotSteps.java:21)
at *.Then $20 should be dispensed(cash withdrawal.feature:5)
And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 1 skipped, 2 passed)

The scenario failed because our new support module hasn’t been wired up
to the system yet, so nothing was found in the cash slot. Now we have a goal:
get that scenario to pass again, but this time, through the user interface.

Designing the User Interface Amount:

So, what should this shiny new user interface look 500
like? We gathered around the whiteboard with our

user experience team and sketched out a wireframe
for the first iteration of the cash withdrawal form. _

The plan is for it to look roughly like this.

Let’s flesh out our AtmUserinterface class to talk to that form:

support_code/12/src/test/java/support/AtmUserInterface.java
class AtmUserInterface implements Teller {

private final EventFiringWebDriver webDriver;
public AtmUserInterface(){

this.webDriver = new EventFiringWebDriver(new FirefoxDriver());

}

http://media.pragprog.com/titles/srjcuc/code/support_code/11/src/test/java/support/KnowsTheDomain.java
http://media.pragprog.com/titles/srjcuc/code/support_code/12/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Making the Switch ® 155

public void withdrawFrom(Account account, int dollars) {
try {
webDriver.get("http://localhost:9988");
webDriver.findElement(By.id("Amount"))
.sendKeys (String.valueOf(dollars));
webDriver.findElement (By.id("Withdraw")).click();

}

finally {
webDriver.close();

}

}

We're using Selenium WebDriver in the AtmUserinterface class to interact with
the web user interface. First we get the home page, then we find the text field
labeled Amount and fill it with the amount to withdraw, and finally we click
the Withdraw button. This is the design we just looked at on the wireframe,
formalized in code.

Since we're using Selenium, we’ll add the necessary dependencies in our
pom.xml:

support_code/12/pom.xml

<dependency>
<groupId>org.seleniumhqg.selenium</groupId>
<artifactId>selenium-server</artifactId>
<version>${selenium.version}</version>

</dependency>

When we run mvn clean test against this, it's going to fail of course, for these
reasons:

1. We haven't started the server yet. (If you've been following along, your
server may still be running from when we tested it earlier in Starting Our

2. We haven’t built the form yet.
Let’s run mvn clean test anyway just to check we’re on track:

When I withdraw $20
org.openga.selenium.NoSuchElementException:
Unable to locate element: {"method":"id", "selector":"Amount"}
Command duration or timeout: 14 milliseconds

OK, so Selenium is telling us that it hasn’t found an Amount field to fill in.
First, we need to ensure that the server is up and running. To do this, we
need to take some time out to learn about a new feature of Cucumber.

http://media.pragprog.com/titles/srjcuc/code/support_code/12/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 156

If you start seeing strange errors when using your Selenium web driver, it may be
caused by incompatibilities between their versions. New versions of browsers are
released regularly and this often means that you'll need to update your Selenium
version too.

This book was prepared using Firefox 28.0 and Selenium 2.41.0.

U
Using Hooks

Cucumber supports hooks, which are methods that run before or after each
scenario. You can define them anywhere in your support or step definition
layers, using the annotations @Before and @After.

To test them, add a file src/test/java/hooks/SomeTestHooks.java that looks like this:

support_code/13/src/test/java/hooks/SomeTestHooks.java
package hooks;

import cucumber.api.java.After;
import cucumber.api.java.Before;
import cucumber.api.Scenario;

public class SomeTestHooks {
@Before
public void beforeCallingScenario() {
System.out.println("¥*x¥¥¥xxxx*x Apoyt to start the scenario.");

}

@After
public void afterRunningScenario(Scenario scenario) {
System.out.println("*¥*¥*tkkikx Jyst finished running scenario:
+ scenario.getStatus());

}

If you run mvn clean test, you’ll see the two messages printed in the output at
the beginning and end of the scenario. Cucumber’s @Before and @After hooks
are a lot like the SetUp and TearDown methods in the xUnit family of testing
tools.

The most common use of @Before and @After hooks is to clear up any residual
state left in external systems like databases so that each scenario starts with

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/support_code/13/src/test/java/hooks/SomeTestHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Using Hooks ¢ 157

the system in a known state. We'll explain this in detail in Chapter 10,
Databases, on page 185.

Hooks are global by default, meaning they run for every scenario in your
features. If you want them to run for just certain scenarios, you need to tag
those scenarios and then use a tagged hook.

Tagged Hooks

Both @Before and @After accept a tag expression, which you can use to selec-
tively add the hook to only certain scenarios. For example, suppose you're
writing features for the administrative area of a website. Each of the adminis-
trator features starts with the following background:

Feature: Delete Widgets

Background:
Given I am logged in as an administrator

An alternative is to tag the feature and then use a @Before hook to run this
same code to log in as an administrator.

@admin
Feature: Delete Widgets

@Before("@admin")
public void logInAsAdmin() {
// Log in as admin user

}

Now, to run a scenario logged in as an administrator, you just have to tag
the scenario with @admin, and this code will automatically run before the steps
of the scenario. In Filtering with Tag Expressions, on page 261, we will explain

more complex tag expressions using logical operations, but a simple tag will
do for now.

Tagged hooks can be useful for ensuring technical things like external services
are started, without making too much fuss about them in the text of the
scenario itself.

Examining the Scenario

If we want it to, our hook can accept a single argument that represents the
scenario. For example, we can ask a scenario for its status:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 158

When you define a step definition, it is defined globally. There is no way to reduce
the scope of a step definition to certain scenarios like you can do with tagged hooks.

People occasionally ask for a way to scope step definitions in a similar way to tagged
hooks, such as making When I turn it off invoke one step definition for some scenarios
and another one for others.

This is a feature that would be easy to add to Cucumber, and one day I actually
implemented it to get some feedback from the nice people on the Cukes mailing list.
My question was, Can anyone think of how people might misuse this? Richard
Lawrence, an old-timer on the list, answered:

Feature-coupled steps is the extreme. The more subtle issue is that the beneficial
pressure to grow a ubiquitous language goes away when it becomes too easy to say,
“Oh, that’s just another context, I'll use the same words to mean something different
here.” Thinking about some of the conversations I've had coaching teams to learn
ubiquitous language, I would expect this to happen a lot.

The term “feature-coupled steps” is a term I came up with in the early days of
Cucumber when I was documenting good and bad Cucumber practices in the wiki.
I consider feature-coupled steps to be a code smell since they quickly cause a lot of
duplication and do nothing to promote a ubiquitous language.

When Dan North—the originator of BDD—wrote his first BDD framework, step defi-
nitions were coupled to features. He told me the ability to have global step definitions
shared across features was one of the improvements Cucumber brought on.

In retrospect, it's rather amusing to observe the clones and spinoffs of Cucumber
reintroducing mechanisms that we deliberately got rid of.

In Cucumber, the same sentence can mean only one thing.

@After
public void afterCallingScenario(Scenario scenario) {
System.out.println("The scenario completed with a status of "
+ scenario.getStatus());

}

For more details on the Scenario object, look at the documentation for cucum-
ber.api.Scenario.*

4. http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/Scenario.html

report erratum - discuss

http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/Scenario.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Using Hooks ® 159

Hooks That Run at Other Times

If you want to run code before all of your features start, the way to do that is
to use Java language features, such as static fields.

If you want to run code after all of your features have finished, you can use
Java’s built-in addShutdownHook, which will be run just before the Cucumber
process exits. You'll typically use this mechanism to tear down some external
system that you've started from your support code.

Sometimes people also ask about running specific setup and cleanup code
once for a particular feature, not for each scenario within the feature. There
are a number of ways to achieve this without needing Cucumber to provide
any additional functionality, one of which was described in detail by Paolo
Ambrosio.”

Armed with this new knowledge about hooks, let’s get back to work on our
ATM.

Sometimes it's important to be able to specify the exact order that your hooks run
in. The @Before and @After annotations have an order parameter that you can set. The
default value is 10000 for any hook that doesn’t have a specific order set.

@Before(order=5)

public void oneHook() {
/7 ...

}

@After(order = 200)

public void anotherHook() {
I cao

}

Cucumber runs @Before hooks from low to high. A @Before hook with an order of 10 will
run before one with an order of 20. @After hooks run in the opposite direction—from
high to low—so an @After hook with an order of 20 will run before one with an order of
10.

If you need to use order on a tagged hook, you have to use the value parameter:

@Before(value="myTag", order=5)
public void oneHook() {

/] ...
}

5. https://groups.google.com/d/msg/cukes/Z2mWgk0rSgs/4F2H85PcmRs)

report erratum -« discuss

https://groups.google.com/d/msg/cukes/Z2mWgk0rSgs/4F2H85PcmRsJ
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 160

Getting to Green

Where were we? We were just trying to get our scenario to talk to the Ul when
we realized that we needed to learn about how to get Cucumber to start and
stop the web server. Once we get that working, we’ll need to design and build
a Ul And finally we’ll have to wire our shiny new Ul up to our existing domain
model.

Let’s get started!

Starting the Server

We want to start our server before each scenario runs and stop the server
after each scenario completes. This is exactly what the @Before and @After hooks
are intended for. Let’s create a new file, src/test/java/hooks/ServerHooks.java, where
we'll create our hooks.

support_code/14/src/test/java/hooks/ServerHooks.java
package hooks;

import cucumber.api.java.After;
import cucumber.api.java.Before;
import cucumber.api.Scenario;

import nicebank.AtmServer;

public class ServerHooks {
public static final int PORT = 8887;

private AtmServer server;

@Before

public void startServer() throws Exception {
server = new AtmServer (PORT);
server.start();

}

@After
public void stopServer() throws Exception {
server.stop();
}
}

We'll also want to use the constant PORT that we've just introduced in our
class that drives the Teller through the user interface:

http://media.pragprog.com/titles/srjcuc/code/support_code/14/src/test/java/hooks/ServerHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Getting to Green ® 161

support_code/14/src/test/java/support/AtmUserInterface.java
public void withdrawFrom(Account account, int dollars) {
try {
webDriver.get("http://localhost:" + ServerHooks.PORT);
webDriver.findElement (By.id("Amount"))
.sendKeys (String.valueOf(dollars));
webDriver.findElement(By.id("Withdraw")).click();

}

finally {
webDriver.close();

}

}

Now when we run mvn clean test we see the browser fire up and display our web
page with the message “Welcome to our nice bank.” The scenario still fails,
because the Ul that our step expects hasn’t been implemented yet.

Building the User Interface

Even though we can see the page that’s failing in the browser, it would be
useful to learn how to save exactly what’s visible in the browser when a test
fails. That way, when our feature file contains lots of scenarios we’ll still be
able to find out what went wrong. Let’s add a debugging hook to show us
what’s going on in our failing scenario. Let’s start by creating WebDriverHooks
and fleshing out what we want to do:

support_code/15/src/test/java/hooks/WebDriverHooks.java

@After
public void finish(Scenario scenario) {
try {

byte[] screenshot =
helper.getWebDriver().getScreenshotAs (OutputType.BYTES);
scenario.embed(screenshot, "image/png");
} catch (WebDriverException somePlatformsDontSupportScreenshots) {
System.err.println(somePlatformsDontSupportScreenshots.getMessage());

}

finally {
helper.getWebDriver().close();

}

}

The method embed is provided by Cucumber’s Scenario class. It only saves an
image when we use Cucumber’'s HTML formatter, so we’ll need to make a
change to the Options in RunCukesTest.java to request HTML output:

http://media.pragprog.com/titles/srjcuc/code/support_code/14/src/test/java/support/AtmUserInterface.java
http://media.pragprog.com/titles/srjcuc/code/support_code/15/src/test/java/hooks/WebDriverHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 162

support_code/15/src/test/java/RunCukesTest.java

@RunWith(Cucumber.class)

@CucumberOptions(plugin={"pretty", "html:out"}, snippets=SnippetType.CAMELCASE)
public class RunCukesTest {

}

We have to share the same instance of the Selenium web driver between
WebDriverHooks and AtmUserlnterface. So, we use KnowsTheDomain to manage the
shared web driver in just the same way we use it to manage the shared
account, cash slot, and teller:

support_code/15/src/test/java/support/KnowsTheDomain.java
public EventFiringWebDriver getWebDriver() {
if (webDriver == null){
webDriver = new EventFiringWebDriver(new FirefoxDriver());

}

return webDriver;

}

Now, after you have run mvn clean test, the web page that Cucumber can see
should be saved to disk. Open up out/index.html in your browser and take a
look. This can be a very helpful debugging tool. What it's shown us is the
simple greeting message we added earlier when we created our Jetty servlet
AtmServlet.java.

Now let’s hard-code the HTML for the ATM withdrawal form we want right
into the Jetty servlet AtmServletjava so that you can easily see what’s going on.
The form contains a single field with a label and a submit button that posts
back to the server.

support_code/16/src/main/java/nicebank/AtmServlet.java
package nicebank;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AtmServlet extends HttpServlet
{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
response.setStatus (HttpServletResponse.SC 0K);
response.getWriter().println(
"<html><head><title>ATM</title></head>" +

http://media.pragprog.com/titles/srjcuc/code/support_code/15/src/test/java/RunCukesTest.java
http://media.pragprog.com/titles/srjcuc/code/support_code/15/src/test/java/support/KnowsTheDomain.java
http://media.pragprog.com/titles/srjcuc/code/support_code/16/src/main/java/nicebank/AtmServlet.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Getting to Green ® 163

"<body><form action=\"/withdraw\" method=\"post\">" +

"<label for=\"amount\">Amount</label>" +

"<input type=\"text\" id=\"amount\" name=\"amount\|">" +
"<button type=\"submit\" id=\"withdraw\">Withdraw</button>" +
"</form></body></html>") ;

}

We'll also create a new post request handler so that the form has somewhere
to post back to, although it’s just a stub that will raise an error if it’s called:

support_code/16/src/main/java/nicebank/WithdrawalServlet.java
package nicebank;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class WithdrawalServlet extends HttpServlet

{
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
response.setStatus (HttpServletResponse.SC 0K);
response.getWriter().println(
"<html><head><title>Nice Bank ATM</title></head>" +
"<body>I don't know how to withdraw money yet, sorry</body>" +
"</html>");
}
}

Finally we add the WithdrawalServlet to the AtmServer:

support_code/16/src/main/java/nicebank/AtmServer.java
package nicebank;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHolder;

public class AtmServer

{

private final Server server;

public AtmServer(int port) {
server = new Server(port);

http://media.pragprog.com/titles/srjcuc/code/support_code/16/src/main/java/nicebank/WithdrawalServlet.java
http://media.pragprog.com/titles/srjcuc/code/support_code/16/src/main/java/nicebank/AtmServer.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code * 164

ServletContextHandler context =

new ServletContextHandler(ServletContextHandler.SESSIONS);
context.setContextPath("/");
server.setHandler(context);

context.addServlet(new ServletHolder(new WithdrawalServlet()),"/withdraw");
context.addServlet(new ServletHolder(new AtmServlet()),"/");
}

public void start() throws Exception {
server.start();
System.out.println("Listening on " + server.getURI());

}

public void stop() throws Exception {
server.stop();
System.out.println("Server shutdown");

}
public static void main(String[] args) throws Exception
{
new AtmServer(9988).start();
}

}

Try running mvn clean test now. If everything has gone according to plan, you’ll
see the error | don't know how to withdraw yet, sorry displayed in Cucumber’s output.
Our next step is to implement the right code in the WithdrawalServlet request
handler to actually withdraw the cash.

Dispensing the Cash

We've already built a domain model, so we have a significant head start. The
class that knows how to carry out the withdrawal is Teller, so we’ll need to
create an instance of that class when we receive the posted form data on the
web server. To create an instance of the Teller, we need a CashSlot to pass to the
constructor. The slightly tricky thing about this is that we need to make sure
that the step definitions are also looking at the same instance of CashSlot;
otherwise, they won’t be able to see the cash we've dispensed.

And if we want to call withdrawFrom on the teller, we’ll also need an Account. As
our project progresses, we’ll probably end up determining the Account by
reading the user’s card, but at the moment our domain model doesn’t go that
far. For the time being, we need a way for the step definitions to be able to
say to the web application look, just trust me and use this account.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

vy

Getting to Green ® 165

The simplest way to do this is to pass shared instances of CashSlot and Account
into the server when we create it. It simply passes them on to the Withdrawal-
Handler:

support_code/17/src/main/java/nicebank/AtmServer.java
public AtmServer(int port, CashSlot cashSlot, Account account) {
server = new Server(port);

ServletContextHandler context =

new ServletContextHandler(ServletContextHandler.SESSIONS);
context.setContextPath("/");
server.setHandler(context);

context.addServlet(new ServletHolder(
new WithdrawalServlet(cashSlot, account)),"/withdraw");
context.addServlet(new ServletHolder(new AtmServlet()),"/");
}

We now need to update our server hook so that it makes use of these two
touchpoints for sharing the CashSlot and Account when we start the server:

support_code/17/src/test/java/hooks/ServerHooks.java

@Before

public void startServer() throws Exception {
server = new AtmServer(PORT, helper.getCashSlot(), helper.getMyAccount());
server.start();

}

Supplying the account like this is a temporary shortcut around the process
of authenticating the user with their physical card and PIN, because we don’t
want to worry about that part of the process yet.

Then the last thing to do is modify the WithdrawalServlet to actually request the
withdrawal and inform the user that the money has been dispensed:

support_code/17/src/main/java/nicebank/WithdrawalServlet.java
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
Teller teller = new AutomatedTeller(cashSlot);
int amount = Integer.parselnt(request.getParameter("amount"));
teller.withdrawFrom(account, amount);

response.setContentType("text/html");
response.setStatus(HttpServletResponse.SC 0K);
response.getWriter().println(
"<html><head><title>ATM</title></head>" +
"<body>Please take your $" + amount + "</body></html>");

http://media.pragprog.com/titles/srjcuc/code/support_code/17/src/main/java/nicebank/AtmServer.java
http://media.pragprog.com/titles/srjcuc/code/support_code/17/src/test/java/hooks/ServerHooks.java
http://media.pragprog.com/titles/srjcuc/code/support_code/17/src/main/java/nicebank/WithdrawalServlet.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 8. Support Code ® 166

Run mvn clean test now, and the scenario should be passing:

Running RunCukesTest

Feature: Cash Withdrawal

Listening on http://192.168.1.11:8887/
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

1 Scenarios (1 passed)
4 Steps (4 passed)

Phew! We've managed to convert our tests to run against a web interface,
without changing the Cucumber scenario or the production domain code. If
we wanted, we could set up our tests to switch between the two, giving us
fast tests that go directly to the domain model and slower, more thorough
tests that go right through the user interface.

What We Just Learned

Working outside-in with Cucumber blurs the lines between testing and
development. Always be ready to learn something new about the problem
domain, whether you're deciding on the wording in a Cucumber scenario or
choosing the parameters for a method. By taking care to craft a clean interface
between your tests and the system underneath, you’ll end up with tests that
can easily evolve with the system’s changing requirements.

In this chapter, we showed you how to use Cucumber to trap a bug. In
Chapter 16, Working with Legacy Applications, on page 285, we'll talk much

more about this.

We covered the basics of creating Jetty applications and testing them using
Selenium. Jetty is a lightweight, well-used, standards-compliant servlet engine
and HTTP server. Our usage barely scratched the surface of its functionality.

We also showed you how to use Cucumber’s hooks to invoke Java code before
and after each scenario or to run them before specific scenarios using tags.

Next we’ll introduce a new problem by changing the architecture to make the
system asynchronous.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 167

Try This

Here are some exercises for you to try for yourself.

Redesign

Our user experience aficionados have reconsidered. Early reports from user
testing are that most users don’t want to have to type in a precise amount of
money; they want to click a button with a fixed amount. Without changing
the Cucumber scenario, can you change the support code and then the user
interface itself so that users have to click only a single button to get their
$207?

Can you add some more scenarios (and some more buttons) for other fixed
amounts?

Preventing Overdraws

We need to help our customers not to overdraw. Add a new scenario that
looks like this:

Feature: Prevent users from going overdrawn

Scenario: User tries to withdraw more than their balance
Given my account has been credited with $100
When I withdraw $200
Then nothing should be dispensed
And I should be told that I have insufficient funds in my account

Can you implement it?

Balancing Act

Our users would like to be able to check their balance from the ATM. Decide
how you’d like the user interface to be—perhaps you’ll show a menu from
which they can choose to make a withdrawal or check their balance—and
then implement this scenario:

Feature: Display balance

Scenario: User checks the balance of an account in credit
Given my account has been credited with $100
When I check my balance
Then I should see that my balance is $100

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 9

Message Queues and
Asynchronous Components

Our worked example has been pretty simplistic so far. We're testing a single
web server process that doesn’t even have a database, and we've used only
a single scenario to test it. The real systems you have to work on when you
put this book down are probably much more complicated than that, with
several services interacting to deliver the behavior you've described in your
Cucumber features.

In this chapter, we're going to make our system more enterprisey, splitting
the architecture into a front-end and back-end so that we can show you how
to test these kinds of systems. On the way, we’ll get the chance to explain
some fundamental concepts about testing asynchronous systems.

Our New Asynchronous Architecture

In a real banking system, the ATM isn’t the only thing making debits on your
account. You might use your debit card in a restaurant or supermarket, or
you might walk into a bank and withdraw cash over the counter. You might
have written a check that gets cashed a few days later. You'll also get credits
into your account, like when you deposit checks at the bank. The bank treats
each of these events as a transaction, which it processes some time after the
actual event has happened. Note that this kind of transaction is completely
different from a database transaction, which we’ll talk about in the next
chapter.

We're going to change our architecture so that when the customer makes a
withdrawal from the ATM, it posts a message about the debit transaction into
a message queue. We’'ll move the responsibility for processing this queue into

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 170

a separate back-end service. As the back-end service works through the queue
of transactions, it will store the updated account balance in a database so
that the ATM (and our tests) can access it.

The following figure shows how the new architecture looks.

ATM

Transaction

Balance Store
Queue

Transaction
Processor

Figure 3—Enterprise messaging architecture

The ATM posts messages about transactions into the Transaction Queue. The
Transaction Processor reads messages off that queue, reads the existing balance
from the Balance Store, and then stores the updated balance back in the Balance
Store. The ATM reads the account balance from the Balance Store.

Let’s look at the implications this new architecture will have on how we test

the system.

How to Synchronize

In our current implementation, the debit and credit transactions are processed
synchronously by our simplistic Account class:

support_code/17/src/main/java/nicebank/Account.java
package nicebank;

public class Account {
private Money balance = new Money();

public void credit(Money amount) {
balance = balance.add(amount);

}

http://media.pragprog.com/titles/srjcuc/code/support_code/17/src/main/java/nicebank/Account.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

How to Synchronize ¢ 171

public void debit(int dollars) {
balance = balance.minus(new Money(dollars, 0));

}

public Money getBalance() {
return balance;
}
}

This implementation, where the balance is updated during the method call
to credit or debit, means that we can be certain the balance will have been
updated by the time Cucumber checks the account balance in the final Then
step of our scenario.

support_code/17/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal
Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

When we change to our new architecture, however, the transactions will be
processed by a separate back-end service. Because the tests and back-end
service are running in separate processes, it’s quite possible that Cucumber
will run the Then step before the transaction processor has finished its work.
If that happened, the test would fail even though the system is actually
working as expected: if only Cucumber had waited a few more moments, it
would have seen the right balance. This is what we call a flickering scenario,
as described in Chapter 6, Keeping Your Cucumbers Sweet, on page 91. How

can we tell when it’s safe to check the account balance?

Adding asynchronous components into a system introduces a degree of ran-
domness, but for our tests to be reliable, we need to ensure that the behavior
is completely deterministic. To do that, we need to understand how we can
synchronize our tests with the system so that we make our checks only when
the system is ready. In Growing Object-Oriented Software, Guided by Tests

tests with an asynchronous system: sampling and listening.

Synchronizing by Listening

Listening for events is the fastest and most reliable way to synchronize your
tests with an asynchronous system. For this technique to work, the system
under test has to be designed to fire events when certain things happen. The

http://media.pragprog.com/titles/srjcuc/code/support_code/17/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 172

tests subscribe to these events and can use them to create synchronization
points in the scenario.

For example, if the Transaction Processor were emitting BalanceUpdated events into
a publish-subscribe message channel, we could wait at the top of our Then
step until we heard that event. Once we’d received that event, we’d know it
was safe to proceed and check the balance. We would use a timeout to ensure
the tests didn’t wait forever if something was wrong with the system.

Using events like this involves a sophisticated coordination of your testing
and development efforts, but it results in fast tests because they don’t waste
any time waiting for the system: as soon as they're notified of the right event,
they spring back into action and carry on.

Synchronization by Sampling

When it isn’t possible to listen to events from the system, the next best option
is to repeatedly poll the system for the state change you're expecting. If it
doesn’t appear within a certain timeout, you give up and fail the test.

Sampling can result in tests that are a little bit slower than listening, because
of the polling interval. The more often you poll the system for changes, the
quicker the tests can react and carry on when the system is working as
expected. If you poll too frequently, however, you could put excessive load on
the system.

Sampling is usually the pragmatic choice when you don’t have the option to
receive events from the system under test. In the rest of this chapter, we’ll
show you how to use sampling to make our tests work reliably with the new
architecture.

Implementing the New Architecture

So that we can show you what it’s like to have a flickering scenario, we’ll start
by changing the architecture underneath the same test code. We’ll demonstrate
the flickering scenario and, in a final flourish, fix it by changing the tests to
use sampling to synchronize with the system.

Driving Out the Interfaces

The Account class is where the ATM is going to interface with our new back-
end services. As shown in Figure 3, Enterprise messaging architecture, on page

the interfaces to those objects by changing our Account class to use two imag-
inary objects that can talk to these services:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

Implementing the New Architecture ® 173

message_queues/01/src/main/java/nicebank/Account.java
package nicebank;

public class Account {
private TransactionQueue queue = new TransactionQueue();

public void credit(Money amount) {
queue.write("+" + amount.toString());

}

public void debit(int dollars) {
Money amount = new Money(dollars, 0);
queue.write("-" + amount.toString());

}

public Money getBalance() {
return BalanceStore.getBalance();
}
}

Getting the balance is a simple matter of delegating to the BalanceStore. In a
more realistic system, we’d need to tell the BalanceStore which account we
wanted the balance for, but in our simple example we're dealing only with a
single account, so we don’t need to worry about that.

For debits and credits, we're serializing the transaction as a string, using a
+ or - to indicate whether the amount is a credit or a debit, and then writing
it to the queue.

Building the TransactionQueue

Let’s build our transaction queue. We want to keep the technology simple for
this example, so we're going to use the file system as our message store, with
each message stored as a file in a messages directory. As a message is read
from the queue, we’ll delete the file. Here’s the code:

message_queues/01/src/main/java/nicebank/TransactionQueue.java
package nicebank;

import org.apache.commons.io.FileUtils;

import java.io.*;

import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

10 public class TransactionQueue {

private static String MESSAGES FOLDER = "./messages";
private static String MESSAGE_FILE PATH = "%s5/%03d";

http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/main/java/nicebank/Account.java
http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/main/java/nicebank/TransactionQueue.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 174

private int nextId = 1;

public static void clear() {
try {
FileUtils.deleteDirectory(new File(MESSAGES FOLDER));
} catch (IOException e) {
e.printStackTrace();
}
new File(MESSAGES FOLDER).mkdirs();
}

public void write(String transaction){
String messageFilePath
= String.format(MESSAGE FILE PATH, MESSAGES FOLDER, nextId);

PrintWriter writer = null;

try {
writer = new PrintWriter(messageFilePath, "UTF-8");

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (UnsupportedEncodingException e) {
e.printStackTrace();

}

writer.println(transaction);
writer.close();

nextId++;

}

public String read() {
// Get files in 'messages'
File messagesFolder = new File(MESSAGES FOLDER);
File[] messages = messagesFolder.listFiles();

String message = "";

// If message file found

if (messages != null && messages.length > 0){
Arrays.sort(messages, new Comparator<File>() {
@Override

public int compare(File f1l, File f2) {
return Integer.parselnt(fl.getName())
- Integer.parseInt(f2.getName());
}
1}

// Open it
Scanner scanner = null;
try {

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

65

70

75

80

-}

Implementing the New Architecture ® 175

scanner = new Scanner(messages[0]);

if (scanner.hasNextLine()) {
message = scanner.nextlLine();
scanner.close();

// Delete it
messages[0].delete();

}

else {
scanner.close();

}

} catch (FileNotFoundException e) {
// File has gone away!
}
}

return message;

This is fairly simple Java code, but it’s the most complicated we've had in the
book so far, so let’s run through how it works. First we have a static method,
TransactionQueue.clear starting on line 15, which we’ll use to ensure the queue
is cleaned up between scenarios. When we initialize the TransactionQueue, we
create an instance variable nextld on line 13, which will be used to give each
new message a unique filename. When we're asked to write a message (line
24), we create a new file in the messages directory (line 30), write the contents
of the message into the file (line 37), and then increment nextld (line 40) ready
for naming the next message’s file.

When we're asked to read a message (line 43), we get a listing of all the files
in the messages directory (line 46). If the directory is empty, we just return an
empty message from the method (line 81). If the directory is not empty, then
we sort the list of messages by message ID (line 52). We open the first message
(line 63), read the message (line 66), delete the message from the queue (line
70), and return the contents to the caller (line 81).

Building the BalanceStore

The BalanceStore is a database where the latest account balance is stored. Again,
we want to keep the technology simple for this example, so we’ll use a very
simple kind of database: a text file on disk. Here’s the code:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

20

25

30

35

40

45

Chapter 9. Message Queues and Asynchronous Components ® 176

message_queues/01/src/main/java/nicebank/BalanceStore.java
package nicebank;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;
import java.util.Scanner;

public class BalanceStore {
private static String BALANCE FILE PATH = "./balance";

public static void clear() {
new File(BALANCE FILE PATH).delete();

setBalance(new Money(0,0));

}

public static Money getBalance() {

File balanceFile = new File(BALANCE FILE PATH);

Scanner scanner = null;

try {
scanner = new Scanner(balanceFile);

} catch (FileNotFoundException e) {
e.printStackTrace();

}

// Probably need regex here

Money balance = new Money(scanner.nextlLine());

scanner.close();

return balance;

}
public static void setBalance(Money newBalance){

PrintWriter writer = null;
try {
writer = new PrintWriter (BALANCE_FILE_PATH, "UTF-8");
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
writer.println(newBalance.toString());
writer.close();

http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/main/java/nicebank/BalanceStore.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Implementing the New Architecture ® 177

We have two methods, one that reads the balance (line 18) and another that
sets it (line 33). They both work with a file in the root of our project called
balance (line 10). When asked for the balance, the BalanceStore opens the balance
file (line 19), reads the contents (line 22), and converts them to a number
(line 27). When it’s asked to set the balance, the BalanceStore opens the balance
file (line 37) and writes the new balance into it (line 43). Simple!

Now that we’re persisting state to disk in our TransactionQueue and BalanceStore,
we need to be careful that we don’t leak any state out of our scenario. Even
though we have only a single scenario in our features at the moment, we need
to clean up each time it runs so that balances and messages don’t leak from
one test run into the next.

Adding Hooks to Reset State

We have two places where state will need to be cleaned up before our scenario
runs. We need to set the user’s account balance to zero, and we need to
remove any messages that have been left in the transaction queue. Add a file
src/test/java/hooks/ResetHooks.java with the following code in it:

message_queues/01/src/test/java/hooks/ResetHooks.java
package hooks;

import cucumber.api.java.Before;

import nicebank.TransactionQueue;
import nicebank.BalanceStore;

public class ResetHooks {
@Before
public void reset() {
TransactionQueue.clear();
BalanceStore.clear();

}

We've created a new instance of the BalanceStore directly so that we can tell it
to set the balance to zero. Then we use the TransactionQueue.clear method we
created earlier to empty any messages out of the transaction queue.

Let’s put the last piece in the puzzle by writing our TransactionProcessor.

Building the TransactionProcessor

The TransactionProcessor is some code that will run in the background, deep in
the bowels of our bank’s server room. Here’s the code:

http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/test/java/hooks/ResetHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 178

message_queues/01/src/main/java/nicebank/TransactionProcessor.java
package nicebank;

public class TransactionProcessor {
private TransactionQueue queue = new TransactionQueue();

public void process() {
do {
String message = queue.read();

try {
Thread.sleep(1000);
} catch (InterruptedException e) {

}

if (message.length() > 0) {
Money balance = BalanceStore.getBalance();
Money transactionAmount = new Money(message);

if (isCreditTransaction(message)){
BalanceStore.setBalance(balance.add(transactionAmount));
} else {
BalanceStore.setBalance(balance.minus(transactionAmount));
}
}

} while (true);

}

private boolean isCreditTransaction(String message) {
return !message.startsWith("-");
}
}

The transaction processor starts by creating an instance of the TransactionQueue
and BalanceStore classes. Once it’s started up, it then enters a loop that tries
to read a message off the transaction queue. If it finds one, it pauses for a
second, calculates the new balance, and then stores it on the BalanceStore.
We've introduced the pause to demonstrate the effects of working with an
asynchronous component in our system; this delay should mean the test will
fail consistently because the back-end will take so long to update the balance
that Cucumber will have already finished the scenario.

That should complete the implementation of our new architecture. Now it’s
time to test it.

http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/main/java/nicebank/TransactionProcessor.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Fixing the Flickering Scenario ® 179

Fixing the Flickering Scenario

We're almost ready to run our scenario again, but before we do, there’s one
thing we need to change in our tests. Right now, when we run mvn clean test,
we rely on Selenium to control the web server part of our architecture, but
we need a way to start up the back-end transaction processor too. To do that,
we’ll use another hook.

Starting and Stopping the Transaction Processor

Let’s create a new file src/test/java/hooks/BackgroundProcessHooks.java, which contains
the following code:

message_queues/01/src/test/java/hooks/BackgroundProcessHooks.java
package hooks;

import cucumber.api.java.After;
import cucumber.api.java.Before;

import nicebank.TransactionProcessor;

public class BackgroundProcessHooks {
private Thread transactionProcessorThread;

@Before
public void startBackgroundThread() {
transactionProcessorThread = new Thread() {
public void run() {
TransactionProcessor processor = new TransactionProcessor();
processor.process();

}
}
transactionProcessorThread.start();
}
@After

public void stopBackgroundThread() {
transactionProcessorThread.interrupt();
}
}

These hooks start a TransactionProcessor in a separate thread before each scenario
and stop it once the scenario has finished.

http://media.pragprog.com/titles/srjcuc/code/message_queues/01/src/test/java/hooks/BackgroundProcessHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 180

Investigating the Flickering

Our tests are all hooked up to our new architecture, so we're ready to run
them and do some investigation into our flickering tests. Run mvn clean test
and give it a try:

Running RunCukesTest

Feature: Cash Withdrawal

Listening on http://192.168.1.11:8887/
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00
java.lang.AssertionError: Incorrect account balance
- expected:<$80.00> but was:<$100.00>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at nicebank.AccountSteps.theBalanceOfMyAccountShouldBe$
(AccountSteps.java:32)
at *.And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 3 passed)

The test has failed and the cause is timing: Cucumber looked in the balance
store and found that the balance was zero when it expected it to be 80. That’s
because we introduced the one-second pause into the transaction processor,
meaning it loses its race with Cucumber every time. It didn’t get a chance to
update the balance before Cucumber checked it and failed the scenario.

Let’s swap things around and give the handicap to Cucumber instead of the
transaction processor. Remove the sleep 1 line from the transaction processor
and put it into Cucumber’s Then step instead. Your files should now look like
this:

message_queues/02/src/main/java/nicebank/TransactionProcessor.java

public void process() {

do {
String message = queue.read();

if (message.length() > 0) {
Money balance = BalanceStore.getBalance();

http://media.pragprog.com/titles/srjcuc/code/message_queues/02/src/main/java/nicebank/TransactionProcessor.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Fixing the Flickering Scenario ® 181

Money transactionAmount = new Money(message);

if (isCreditTransaction(message)){
BalanceStore.setBalance(balance.add(transactionAmount));

} else {
BalanceStore.setBalance(balance.minus(transactionAmount));

}

)
} while (true);

}

message_queues/02/src/test/java/nicebank/AccountSteps.java
@Then("~the balance of my account should be (\\$\ld+\\.\ld+)$")
public void theBalanceOfMyAccountShouldBe$(
@Transform(MoneyConverter.class) Money amount)
throws Throwable {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

}

Assert.assertEquals("Incorrect account balance -",
amount, helper.getMyAccount().getBalance());

When you run the code you're testing in the same JVM process that Cucumber is
running in, any exception thrown by the code being tested will be caught by
Cucumber and displayed in the console. When the error occurs in an out-of-process
component, however, Cucumber can’t see the error and won’t report it to you. This
can be confusing because your test fails but you have no idea why.

An easy way to handle this is to write the errors to a log file and then check that log
file from your Cucumber tests, perhaps in an After block.

We've moved the sleeps around so that Cucumber loses the race every time,
meaning the back-end processor will always finish first. Run mvn clean test now,
and you should see the scenario pass.

This illustrates just how fragile tests for asynchronous systems can be to
timing issues. We could just leave it like this, but for one thing, it's unneces-
sarily slow. Even though the transaction processor takes much less than a
second to update the balance, our step will always pause for the full second.
Also, if we make a change in the future to the transaction processor that
means it takes more than one second, the test will start to fail again.

report erratum

« discuss

http://media.pragprog.com/titles/srjcuc/code/message_queues/02/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 182

In this chapter, we've used the JUnit AssertionError method to introduce an implicit
synchronization point into our scenario without changing the Gherkin itself. This
means that the fact that the behavior is asynchronous remains hidden from anyone
reading the scenario. In many situations, asynchronous behavior is a technical detail
that doesn’t need to be surfaced in the features, but sometimes it's something your
readers will want to see in the scenarios.

The key question is whether the nontechnical stakeholders on your project care about
the asynchronous behavior of the system. Ask them. Perhaps they would prefer to
read this:

Given my account has been credited with $100

When I withdraw $20

Then $20 should be dispensed

> When I wait for all the transactions to be processed
Then the balance of my account should be $80

Remember, writing Cucumber features is about communicating the behavior of the
system. The right amount of detail will be different for every team and every project,
so ask the people on your team what they think.

Using Sampling to Fix the Flickering

Now that you've seen a flickering test firsthand, let’s fix it properly. We need
to change the way our Then step behaves so that rather than simply checking
the balance once, it checks the balance repeatedly until it reaches the value
we expect. Let’'s write some code that loops until one of the following is true:

e The value is what we expect.
¢ A time limit is reached.
Here’s how we could implement it:

message_queues/03/src/test/java/nicebank/AccountSteps.java
@Then("~the balance of my account should be (\\$\\d+\\|.\\d+)$")
public void theBalanceOfMyAccountShouldBe$(
@Transform(MoneyConverter.class) Money amount) throws Throwable {
int timeoutMilliSecs = 3000;
int pollIntervalMilliSecs = 100;

while ('helper.getMyAccount().getBalance().equals(amount)
&& timeoutMilliSecs > 0){
Thread.sleep(pollIntervalMilliSecs);

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/message_queues/03/src/test/java/nicebank/AccountSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Fixing the Flickering Scenario ® 183

timeoutMilliSecs -= pollIntervalMilliSecs;

}

Assert.assertEquals(
"Incorrect account balance -",
amount,
helper.getMyAccount().getBalance());
}

To test this, put the Thread.sleep(1000) line back into the transaction processor
and run mvn clean test. You should see the scenario pause for a second as our
eventually method waits for the system to update the balance and then pass.

Rolling your own sampling (as we've done in this chapter) is fine, but it has left us
with some boilerplate code that we’'d rather not have to duplicate. If you need to do
sampling like this in your application, think about creating your own version of the
Assert that provides retries and timeouts. Take a look at the UlSpecAssert in the uispec4j®
project. This project is designed for Swing projects, however, so it isn’t directly suitable
for our ATM example.

a. http://www.uispecd;.org

Try This
To satisfy yourself that our new method would fail if there were a problem
with the transaction processor, try putting the sleep in the transaction pro-

cessor up to four seconds. Because the timeout in our polling is only three
seconds, the scenario should fail.

Testing That Nothing Happens

One last thing to consider: Suppose you have a scenario where you credit the
account with $100, withdraw $100, and then check that the balance is zero.
If the test passes, how can you be sure that the tests have seen the balance
after the transactions have been processed? It’s possible that the transaction
processor might not have started processing the transactions or even failed
altogether. You'd never know, because the outcome youre looking for to
indicate success looks just like the state of the system when you started the
scenario.

report erratum -« discuss

http://www.uispec4j.org
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 9. Message Queues and Asynchronous Components ® 184

This kind of problem illustrates the disadvantage of using sampling to syn-
chronize. If you could listen for events from the transaction processor, you
could wait until you were sure it had finished its work before checking the
balance. Using sampling, you're still left with a potential timing problem.

In these circumstances, you need to introduce an intermediate synchronization
point into the scenario to make sure that the system has moved away from
the default state. After crediting the account with $100, you need to wait for
that credit to have an effect, sampling for the changed balance, before pro-
ceeding with the next step.

What We Just Learned

When you add asynchronous behavior to a system, you need to make a con-
certed effort to tame the random effects that it can have on your tests. Build
your tests with a knowledge of how the system works and introduce synchro-
nization points where timing issues are likely to arise.

Using sleeps in your steps is not a good way to tackle these timing issues,
because it makes your tests slow and doesn’t solve the reliability problem: if
the system changes and becomes slower, your sleep may not be long enough
and the test will start to break again. The best solution is to listen for events
broadcast by the system and pause at the appropriate points in the scenario
until those events have been received. That way, you minimize the amount
of time the tests waste waiting for the system.

The next best solution is to use sampling to repeatedly poll the system,
looking for an expected change of state. This approach works in most circum-
stances, but you need to take care, especially when the outcome you’re
looking for at the end of the scenario looks just the same as at an earlier time
in the scenario.

Try This

Do some more experiments with this code, adding sleeps into the code in
different places to make sure you understand how the timing issues affect
the reliability of the scenario. Try to draw a sequence diagram' of what’s going
on as the scenario runs.

Think about your own system. Are there any places where there is asyn-
chronous behavior? How do you work around that in the tests at the moment?
Could you improve on that using what you've learned in this chapter?

1. http://en.wikipedia.org/wiki/Sequence_diagram

http://en.wikipedia.org/wiki/Sequence_diagram
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

cHAPTER 10

Databases

Back in Chapter 6, Keeping Your Cucumbers Sweet, on page 91 we described
the risks associated with leaky scenarios, where data left behind by one sce-
nario affects the results of the next. In this chapter we're going to illustrate
this problem with an example, and we’ll describe the two methods for dealing

with it, along with their advantages and disadvantages.

For this final installment of the worked example, we're going to introduce a
relational database into our ATM system. Right now, our file-based database
can only store the balance of a single customer’s account. Let’s introduce the
capacity to store the balance for several different accounts, using a database
table to store each customer’s account balance in a separate row.

We'll use a MySql database,' although the choice of database is not all that
important to this example. That's because we’ll be talking to it through an
object relational mapper (ORM). Almost every system you’ll write Cucumber
tests for will have a database of some kind, and it helps to know how to talk
to it directly from your test code.

Iterative Database Development

Many ORMs are available to connect your data model to a database, or you
could roll your own using JDBC, JPA, or something similar. In this chapter
we're going to use ActiveJDBC,” which allows us to connect to an existing
database with just a few lines of Java code. ActiveJDBC provides the same,
consistent interface to every relational database that it talks to and (as of this
writing) has drivers for MySQL, PostgreSQL, Oracle, H2, and Microsoft SQL
Server databases.

1. http://www.mysgl.com

2. http://code.google.com/p/activejdbc/wiki/GettingStarted

http://www.mysql.com
http://code.google.com/p/activejdbc/wiki/GettingStarted
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 186

Because we develop our applications iteratively, we also develop our database
schemas iteratively. In this chapter we’ll use a popular tool called Liquibase®
to help us manage our database as it evolves. This type of tool becomes par-
ticularly useful as your product gets more complicated.

It’'s useful to have a basic understanding of these database tools, so we’ll start
with a quick introduction before we plug it into our example.

Introducing the ActiveJDBC ORM

The ActiveJDBC library is inspired by an implementation found in the Ruby
on Rails framework, which is in turn based on the Active Record design pat-
tern.* ActiveJDBC is easy to use from Java code to talk to many existing
databases. For example, if we had an accounts table with the following data:

id number balance

1 1765 "80.00"
2 2214 "250.00"

then we could query that database table using the following Java code:

Account account = Account.findFirst("number = 2214");
System.out.println(account.getString("balance"));

Similarly, to add a new row to the table, we could do this:

Account newAccount = new Account();
newAccount.setInteger("number", 2134);
newAccount.setString("amount", "0.00");
newAccount.savelt();

We still need to define this Account class, but the clever thing is, we don’t need
to define the database columns in the code. Here’s how the class is defined:

import activejdbc.Model;

public class Account extends Model {}

That’s it! ActiveJDBC examines the database schema and sprinkles a little
bit of Java magic to retrieve the Account class attributes from the database
table, providing methods to get and set them by column name. There are also
special class methods like where and findFirst for searching for rows by a partic-
ular field. All we have to do is inherit from activejdbc.Model, and ActiveJDBC
does the rest.

3. http://www.liquibase.org
4. : ki/Active_record_pattern

http://www.liquibase.org
http://en.wikipedia.org/wiki/Active_record_pattern
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Iterative Database Development ® 187

How does it know which table to look at? ActiveJDBC espouses a principle
of convention over configuration. This means that the expected name for the
database table represented by the Account ActiveJDBC class is accounts; if the
table were named widgets, we’d call the class Widget. As long as we stick to those
conventions, we get a lot of very useful behavior for very little code.

Tweaking ActiveJDBC for Nonconventional Databases

ActiveJDBC’s default conventions are great if you're building a database from scratch,
but what if you're working with a legacy system? If your database doesn't fit Active-
JDBC'’s conventions, you can override the default conventions:

@Table("tblAccounts™")
class Account extends Model {
int getNumber() {
return getInteger("intNumber");

}

void setNumber(int number){
setInteger("intNumber", number);
}
}

The @Table annotation tells ActiveJDBC the name of the table you want to use.

Managing the Schema with Liquibase

It’s not enough to have a simple way of connecting your code to your database;
you’ll also want to control the evolution of your database schema. Several
frameworks are available for managing your schema from within the JVM,
and we’ll use one of the most popular ones, Liquibase.

We define each incremental change to the schema as a changeset within a
changelog. The changelog is a plain XML file, so it can easily be committed
to your source control system (along with the code) and managed using normal
diff tools. Each changeset is uniquely identified by a combination of ID and
author. Liquibase keeps track of which changesets have been applied to your
database in a special table (databasechangelog), meaning it can always tell which
changesets need to be applied to bring a schema up to date.

Using a Liquibase changelog you can easily create a database from scratch,
upgrade a database to the latest schema version, or roll back to a previous
version. It's a powerful, well-documented tool, so if you do start using it take
some time to read through the features that it provides. For the rest of this
chapter we’ll use it to create our very simple banking schema, and the
examples should be self-explanatory.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 188

Now you have some grounding in ActiveJDBC and Liquibase, let’s get our
hands dirty and start adding it to our banking system.

Refactoring to Use a Database

In our current system, the balance of the single account is stored in a file
and read and written by the BalanceStore class. In our new design, we will make
the Account responsible for reading the balance straight out of a database
instead. It’s refactoring time again!

Creating the Database

Once you have installed MySQL® you will need to create a database and user.
This can be done simply, using the setup-bank.sql script:

databases/00/setup-bank.sql

CREATE DATABASE bank;

CREATE USER 'teller'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON bank.* TO 'teller'@'localhost';

As you can see, this script creates a database called bank. It then adds a user
teller with password password and grants that user full permissions over the
bank database. You can run this script like this:

$ mysql -h localhost -u root -p < setup-bank.sql
Enter password:

If you set a root password when installing MySQL, enter it when prompted.
If you didn’t set up a password, remove the -p from the command line and try
again.

Now let’s configure Liquibase to talk to our new database.

Configuring Liquibase
To configure Liquibase, we start by adding another plugin to our pom.xml:

databases/00/pom.xml
<plugin>
<groupId>org.liquibase</groupId>
<artifactId>liquibase-maven-plugin</artifactId>
<version>3.0.5</version>
<configuration>
<changeLogFile>src/main/resources/bank_schema.xml</changeLogFile>
<driver>com.mysql.jdbc.Driver</driver>
<url>jdbc:mysql://localhost/bank</url>
<username>teller</username>

5. http://dev.mysgl.com/doc/refman/5.7/enfinstalling.html

http://media.pragprog.com/titles/srjcuc/code/databases/00/setup-bank.sql
http://media.pragprog.com/titles/srjcuc/code/databases/00/pom.xml
http://dev.mysql.com/doc/refman/5.7/en/installing.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Refactoring to Use a Database ® 189

<password>password</password>
</configuration>
<executions>
<execution>
<phase>process-resources</phase>
<goals>
<goal>update</goal>
</goals>
</execution>
</executions>
</plugin>

Notice that we tell the plugin the name of the database in the url, the user we
want to use (username), and the user’s password (password). These have to match
those created by the setup-bank.sql script.

We also point the plugin at our schema, which we’ll create next, in
src/main/resources/bank_schema.xml. Liquibase will compare the schema defined by
this XML file to the actual schema of the database and perform the necessary
actions to ensure that our database is up to date.

We'll create an accounts table shortly with three columns:

id The primary key, which should be generated automatically.

number The account number, which serves as a secondary key. This has
to be unique.

balance The current balance of the account.
ActiveJDBC will make all three fields available to each Account instance.

Next, we’ll make the Account class an ActiveJDBC class by inheriting from
Active]DBC::Model. Now it will act on the accounts table we're about to create:

databases/00/src/main/java/nicebank/Account.java
package nicebank;

import org.javalite.activejdbc.Model;

public class Account extends Model {
private TransactionQueue queue = new TransactionQueue();

public void credit(Money amount) {
queue.write("+" + amount.toString() + "," + getNumber());

}

public void debit(int dollars) {
Money amount = new Money(dollars, 0);
queue.write("-" + amount.toString() + "," + getNumber());

http://media.pragprog.com/titles/srjcuc/code/databases/00/src/main/java/nicebank/Account.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

vy

Chapter 10. Databases ® 190

public int getNumber() {
return getInteger("number");

}

public Money getBalance() {
return new Money(getString("balance"));

}

public void setBalance(Money amount) {
setString("balance", amount.toString().substring(1l));
savelt();
}
}

Notice that we've changed the getBalance and setBalance methods to use the
ActiveJDBC field methods getString and setString. In setBalance we also call the
ActiveJDBC method savelt to commit the balance change to the database.

We've also changed the credit and debit methods to write out the account number
as well as the amount so that the TransactionProcessor will know what account a
message refers to.

Now let’s create our first Liquibase changeset that will create the accounts table
if it doesn’t exist:

databases/00/src/main/resources/bank_schema.xml
<?xml version="1.0" encoding="UTF-8"?7>

<databaseChangelog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www. liquibase.org/xml/ns/dbchangelog
http://www. liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd">

<changeSet id="1" author="seb">
<createTable tableName="accounts">
<column name="id" type="int" autoIncrement="true">
<constraints primaryKey="true" nullable="false"/>
</column>
<column name="number" type="int">
<constraints nullable="false" unique="true" />
</column>
<column name="balance" type="decimal(13,2)" defaultValueNumeric="0.00">
<constraints nullable="false" />
</column>
</createTable>
</changeSet>

</databaseChangelLog>

http://media.pragprog.com/titles/srjcuc/code/databases/00/src/main/resources/bank_schema.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Yvy

Refactoring to Use a Database ® 191

You'll notice that all the fields are marked nullable="false" because all of them
should be set at all times. The id field is marked with autolncrement="true" (so
that the database automatically generates a new id for each account added)
and has a primaryKey constraint (to ensure that it is unique and indexed). The
number field has a unique="true" constraint (also to ensure uniqueness) and the
balance field is a decimal with a default value of 0.00.

Connecting to the Database

When we run our application we need to get a connection to the database so
that we can read and update account balances. We’ll do this in the main method
of our AtmServer class where we use the Base class to ask ActiveJDBC to open
a connection to our MySQL database called bank. Once the call to open com-
pletes successfully, the connection is available to all code running on this
thread.

databases/00/src/main/java/nicebank/AtmServer.java
public static void main(String[] args) throws Exception {
Base.open(
"com.mysql. jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");
new AtmServer (9988, new CashSlot(), new Account()).start();
}

Now we have an Account that can persist itself along with the balance, let’s get
rid of the BalanceStore class, so we will simply delete the src/main/java/nicebank/Bal-
anceStore.java file. Of course, we now need to modify TransactionProcessor so that
it uses the database instead of BalanceStore to access the balance:

databases/00/src/main/java/nicebank/TransactionProcessor.java
public void process() {
do {
String message = queue.read();

if (message.length() > 0) {
String[] parts = message.split(",");
Account account = Account.findFirst("number = ?", parts[l]);
Money transactionAmount = new Money(parts[0]);

if (isCreditTransaction(message)){
account.setBalance(account.getBalance().add(transactionAmount));
} else {
account.setBalance(account.getBalance().minus(transactionAmount));
}
}
} while (true);

http://media.pragprog.com/titles/srjcuc/code/databases/00/src/main/java/nicebank/AtmServer.java
http://media.pragprog.com/titles/srjcuc/code/databases/00/src/main/java/nicebank/TransactionProcessor.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ¢ 192

We also need to modify src/test/java/hooks/ResetHooks.java, which no longer needs

to reference BalanceStore:

databases/00/src/test/java/hooks/ResetHooks.java
package hooks;

import cucumber.api.java.Before;
import nicebank.TransactionQueue;
public class ResetHooks {
@Before
public void reset() {

TransactionQueue.clear();

}

Before we run Cucumber again, we’ll add the Active)DBC and MySQL dependencies

and configuration to our pom.xml:

databases/00/pom.xml
<dependency>
<groupId>org.javalite</groupId>
<artifactId>activejdbc</artifactId>
<version>1.4.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>

databases/00/pom.xml
<plugin>
<groupId>org.javalite</groupId>
<artifactId>activejdbc-instrumentation</artifactId>
<version>1.4.1</version>
<executions>
<execution>
<phase>process-classes</phase>
<goals>
<goal>instrument</goal>
</goals>
</execution>
</executions>
</plugin>

http://media.pragprog.com/titles/srjcuc/code/databases/00/src/test/java/hooks/ResetHooks.java
http://media.pragprog.com/titles/srjcuc/code/databases/00/pom.xml
http://media.pragprog.com/titles/srjcuc/code/databases/00/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

0 N O U A W N

40
41
42
43

Refactoring to Use a Database ® 193

Now let’s run mvn clean test:

[INFO] --- liquibase-maven-plugin:3.0.5:update (default) @ atm-example ---
[INFO] - - m o m o m i m e e e e e e e oo
[INFO] Executing on Database: jdbc:mysql://localhost/bank
INFO 02/01/14 17:16:1liquibase: null: null: Successfully acquired change log lock
INFO 02/01/14 17:16:1liquibase: null: null: Reading from DATABASECHANGELOG
INFO 02/01/14 17:16:1liquibase: null: null: Reading from DATABASECHANGELOG
INFO 02/01/14 17:16:liquibase: src/main/resources/bank_schema.xml:
src/main/resources/bank schema.xml::1::seb: Table accounts created
INFO 02/01/14 17:16:1liquibase: src/main/resources/bank schema.xml:
src/main/resources/bank schema.xml::1::seb:
ChangeSet src/main/resources/bank schema.xml::1::seb
ran successfully in 13ms
INFO 02/01/14 17:16:1liquibase: src/main/resources/bank schema.xml: null:
Successfully released change log lock

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
org.javalite.activejdbc.DBException:
Failed to retrieve metadata from DB, connection:
"default’ is not available

at org.javalite.activejdbc.Registry.init(Registry.java:134)
at org.javalite.activejdbc.Model.getMetaModel (Model. java:58)
at org.javalite.activejdbc.Model.getMetaModellLocal(Model.java:946)
at org.javalite.activejdbc.Model.get(Model.java:1021)
at nicebank.Account.get(Account.java)
at org.javalite.activejdbc.Model.getInteger(Model.java:1099)
at nicebank.Account.getInteger(Account.java)
at nicebank.Account.getNumber(Account.java:23)
at nicebank.Account.credit(Account.java:11)
at nicebank.AccountSteps.myAccountHasBeenCreditedWith$
at *.Given my account has been credited with $100.00

When I withdraw $20

Then $20 should be dispensed

And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 3 skipped)

The first thing we see is that the database is automatically migrated—the
accounts table is created (at line 8). This technique of letting the application
automatically migrate the database when it starts is a handy trick. But then
we get a failure further down (at line 24).

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 194

It looks like we have some more work to do. Not to worry—the error tells us
that we have some sort of problem with our database connection. There’s no
default connection available when we try to set the initial balance of the account,
and we’ll work out why in the next section.

Reading and Writing to the Database

Remember that we opened the connection to the database in Connecting to

code running on this thread. The code is failing when our AccountSteps definition
tries to set the initial balance of the account directly (without going through
the Ul or the server). Once you think about it, you'll realize that Cucumber
and the server are running on different threads, so we need to open a connec-
tion to the database from the Cucumber thread as well.

We'll need to access the database when we set up (or check) the state of our
domain entities, so the logical place to open the connection is in KnowsTheDomain:

databases/01/src/test/java/support/KnowsTheDomain.java
public KnowsTheDomain() {
if (!Base.hasConnection()){
Base.open(
"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

}
Now when we run mvn clean test we get a different error:

Given my account has been credited with $100.00
java.lang.NullPointerException
at nicebank.Account.getNumber(Account.java:23)
at nicebank.Account.credit(Account.java:11)
at nicebank.AccountSteps.myAccountHasBeenCreditedWith$
(AccountSteps.java:23)
at *.Given my account has been credited with $100.00
(cash withdrawal.feature:3)

This is a problem with our use of ActiveJDBC. We've created an Account instance
without setting any values. When we try to access the account number we
get a null returned to us, which the ActiveJDBC getinteger method tries to convert
to an integer. No wonder it’s complaining!

This is actually good news because if we could create an account without an
account number, what would the Account write out in the transaction message

http://media.pragprog.com/titles/srjcuc/code/databases/01/src/test/java/support/KnowsTheDomain.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Reading and Writing to the Database ® 195

amount,account_number? Without an account number, how would the Transaction-
Processor find the right account in the database to update its balance?

So, let’s provide a constructor on the Account class that takes an account
number and for good measure, we’ll set the balance of a new account to "0.00"
too. We need to create a default constructor too, so that ActiveJDBC has a
way to create Account instances itself:

databases/02/src/main/java/nicebank/Account.java
public Account() {}

public Account(int number){
setInteger("number", number);
setString("balance", "0.00");
}

Now we use the non-default constructor when we create the account in
KnowsTheDomain:

databases/02/src/test/java/support/KnowsTheDomain.java
public Account getMyAccount() {
if (myAccount == null){
myAccount = new Account(1234);

}

return myAccount;

}

When we run mvn clean test again we get yet another error, which is again due
to a thread trying to access the database without having a connection to the
database:

Running RunCukesTest
Feature: Cash Withdrawal
Listening on http://192.168.1.11:8887/
Exception in thread "Thread-9" org.javalite.activejdbc.DBException:
org.javalite.activejdbc.DBException:
there is no connection 'default' on this thread, are you sure you opened it?,
Query: SELECT * FROM accounts WHERE number = ? LIMIT 1, params: 1234
at org.javalite.activejdbc.DB.connection(DB.java:604)
at org.javalite.activejdbc.DB.find(DB. java:402)
at org.javalite.activejdbc.lLazylList.hydrate(LazyList.java:302)
at org.javalite.activejdbc.LazylList.size(LazylList.java:528)
at org.javalite.activejdbc.Model.findFirst(Model.java:1674)
at nicebank.Account.findFirst(Account.java)
at nicebank.TransactionProcessor.process(TransactionProcessor.java:14)
at hooks.BackgroundProcessHooks$1l. run(BackgroundProcessHooks.java:16)

http://media.pragprog.com/titles/srjcuc/code/databases/02/src/main/java/nicebank/Account.java
http://media.pragprog.com/titles/srjcuc/code/databases/02/src/test/java/support/KnowsTheDomain.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 196

Caused by: org.javalite.activejdbc.DBException:
there is no connection 'default' on this thread, are you sure you opened it?
. 8 more
Server shutdown

This time it’s the thread running the TransactionProcessor that needs a connection
to the database, so let’s open a connection in its process method:

databases/03/src/main/java/nicebank/TransactionProcessor.java
public void process() {
if (!Base.hasConnection()){
Base.open(
"com.mysql. jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

do {
String message = queue.read();

if (message.length() > 0) {
String[] parts = message.split(",");
Account account = Account.findFirst("number = ?", parts[1]);
Money transactionAmount = new Money(parts[0]);

if (isCreditTransaction(message)){
account.setBalance(account.getBalance().add(transactionAmount));

} else {
account.setBalance(account.getBalance().minus(transactionAmount));

}

}
} while (true);
}

Run mvn clean test again and we now have two errors:

Running RunCukesTest
Feature: Cash Withdrawal
Listening on http://192.168.1.11:8887/
Exception in thread "Thread-0" java.lang.NullPointerException
at nicebank.TransactionProcessor.process(TransactionProcessor.java:27)
at hooks.BackgroundProcessHooks$1l. run(BackgroundProcessHooks.java:16)
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed

http://media.pragprog.com/titles/srjcuc/code/databases/03/src/main/java/nicebank/TransactionProcessor.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

16
17
18
19
20
21
22
23
24
25
26

Reading and Writing to the Database ® 197

And the balance of my account should be $80.00
java.lang.AssertionError: Incorrect account balance
- expected:<$80.00> but was:<$0.00>

at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at nicebank.AccountSteps.theBalanceOfMyAccountShouldBe$
at *.And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 3 passed)

We’'ll deal with the first error, which is a NullPointerException. Looking at the stack
trace at line 8 we can see this is thrown in the TransactionProcessor class. What’s
going on here?

databases/03/src/main/java/nicebank/TransactionProcessor.java
account.setBalance(account.getBalance().add(transactionAmount));

It looks like our Account object is null, so let’s take a look in the database to see
if there are any clues:

$ mysql -h localhost -u teller -p bank
Enter password: password

mysql> select * from accounts;

Empty set (0.00 sec)

There’s nothing in the accounts table at all. This is because, although we created
an instance of the Account class, we never actually told ActiveJDBC to save it
to the database. We’'ll add a call to savelt to the getMyAccount method of KnowsThe-
Domain:

databases/04/src/test/java/support/KnowsTheDomain.java
public Account getMyAccount() {
if (myAccount == null){
myAccount = new Account(1234);
myAccount.savelt();

}

return myAccount;

}

Running mvn clean test one more time shows that we still have to work out why
our scenario’s assertion is failing:

Running RunCukesTest
Feature: Cash Withdrawal
Listening on http://127.0.0.1:8887/

http://media.pragprog.com/titles/srjcuc/code/databases/03/src/main/java/nicebank/TransactionProcessor.java
http://media.pragprog.com/titles/srjcuc/code/databases/04/src/test/java/support/KnowsTheDomain.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 198

Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00
java.lang.AssertionError: Incorrect account balance
- expected:<$80.00> but was:<$0.00>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at nicebank.AccountSteps.theBalanceOfMyAccountShouldBe$
at *.And the balance of my account should be $80.00

1 Scenarios (1 failed)
4 Steps (1 failed, 3 passed)

We expected the balance to be $80, but it looks like it's still $0. Where did
the money go? Let’s look in the database:

mysql> select * from accounts;

B T L +
| id | number | balance |
e R +
| 1 1234 | 80.00 |
B T Fommmm e +

1 row in set (0.00 sec)

Phew! The money is safe in our account. It turns out the step failed because
we are still looking at the original instance of the account record—stored in
myAccount—from when we created it with a zero balance. Even though the
underlying database row has been modified by the TransactionProcessor, Active-
JDBC doesn’t know that the record we have is out-of-date, so we need to tell
it to reload the record from the database, using the refresh method:

databases/05/src/main/java/nicebank/Account.java
public Money getBalance() {

refresh();

return new Money(getString("balance"));

}
Let’s run the scenario again:

org.javalite.activejdbc.DBException:
com.mysql.jdbc.exceptions. jdbc4.MySQLIntegrityConstraintViolationException:
Duplicate entry '1234' for key 'number', Query:
INSERT INTO accounts (balance, number) VALUES (?, ?), params: 0.00,1234

http://media.pragprog.com/titles/srjcuc/code/databases/05/src/main/java/nicebank/Account.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Cleaning the Database with Transactions ® 199

at nicebank.Account.savelIt(Account.java)
at support.KnowsTheDomain.getMyAccount (KnowsTheDomain.java:34)

This time when we run mvn clean test our scenario—which previously only failed
because of an incorrect balance—is failing during the first call to KnowsTheDo-
main.getMyAccount. We have stumbled upon one of the most common problems
of automated tests for a system using a database. The previous test run left
data in the database, and running it again makes it fail. We can’t create an
account because the Account number has to be unique, and a row for that
Account was left behind by the previous test run. We have a leaky scenario!

The good thing about common problems is that there often is a common
solution. We have to make sure each scenario starts with a clean database.
There are two strategies to achieve this—transaction and truncation. We'll
explore both, starting with transactions.

Cleaning the Database with Transactions

This is a clever approach that uses the database’s transaction support in a
somewhat unusual way. Before the scenario starts, we start a new database
transaction in a @Before hook. Then, our step definitions and application insert
and modify data in the database. However, since this is happening in an
uncommitted transaction, nothing gets changed in the database until the
transaction is committed. Then, when the scenario is over (in an @After hook),
we do the opposite. We roll the transaction back! All the data that was modified
during the scenario gets lost, and the database is back in its original state.
You can see how this works in Figure 4,Database transactions, on page 200.

This is actually what we want. It means that the next scenario that comes
along starts with a blank slate, and we don’t need to worry about leftovers
from the previous scenario.

Unfortunately, the transaction approach doesn’t work for our application.
Understanding why this doesn’t work is essential, so we are going to try it
anyway. Seeing it fail and understanding why will save you hours of problem
solving in the future. It will also help you understand when to use transactions
and when not to use them.

Our previous run would have left a row in the accounts table, so let’s remove
that before we try to run with transactions:

$ mysql -h localhost -u teller -p bank
Enter password: password

mysql> delete from accounts;

mysql> exit

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ¢ 200

[Cucumber] [Database] [Application]
: : :
| | |
- - :

|

begin txn l
> |

|

insert data :
> |

|

|

do something

read data

rollback txn

D delete all
inserted data

Figure 4—Database transactions

Now that we have a clean database, let’s configure Cucumber to begin and
roll back a transaction. ActiveJDBC is a thin wrapper on top of Java’s own
JDBC implementation, so we’ll turn off transaction auto-completion when we
open the connection, and roll back the transaction in an @After hook:

databases/06/src/test/java/support/KnowsTheDomain.java
public KnowsTheDomain() {
if (!Base.hasConnection()){
Base.open(
"com.mysql. jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

try {
Base.connection().setAutoCommit(false);
} catch (Exception se){
// Ignore
}

http://media.pragprog.com/titles/srjcuc/code/databases/06/src/test/java/support/KnowsTheDomain.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Cleaning the Database with Transactions ¢ 201

databases/06/src/test/java/hooks/ResetHooks.java

@After

public void rollback() {
Base.rollbackTransaction();

}

That’s all you need to start a transaction at the beginning of each scenario
and roll it back at the end.

We'll also add a bit of helpful diagnostic to the TransactionProcessor:

databases/06/src/main/java/nicebank/TransactionProcessor.java
Account account = Account.findFirst("number = ?", parts[1l]);
if (account == null) {
throw new RuntimeException("Account number not found: " + parts[l]);

}

Let’s see how that works:

Running RunCukesTest
Listening on http://sebsairl3.lan:8887/
Exception in thread "Thread-0" java.lang.RuntimeException:
Account number not found: 1234
at nicebank.TransactionProcessor.process(TransactionProcessor.java:26)
at nicebank.BackgroundProcessHooks$1. run(BackgroundProcessHooks.java:16)

We told you it wasn’t going to work. It’s time to find out why. The Transaction-
Processor can’t find the account we created in our first step, and our scenario
fails. Why can’t the TransactionProcessor find the account?

One of the properties of database transactions is that they are isolated. This
means that whatever database activity happens inside a transaction cannot
be seen by any other database connections. Don’t forget that we have several
database connections.

The first database connection is made by the process that runs Cucumber.
Cucumber begins a database transaction and creates an account.

The second database connection is made by the TransactionProcessor, which is
started in a separate process by BackgroundProcessHooks. The TransactionProcessor
pops credit and debit messages off a queue, looks up accounts, and updates
the balance. However, since the database transaction that Cucumber started
never gets committed, the TransactionProcessor can’t see the account we created
in our first step.

http://media.pragprog.com/titles/srjcuc/code/databases/06/src/test/java/hooks/ResetHooks.java
http://media.pragprog.com/titles/srjcuc/code/databases/06/src/main/java/nicebank/TransactionProcessor.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 202

The problem with transactional cleaning and multiple database connections often
occurs when we test web applications. This happens when the web application has
a different database connection than Cucumber. The problem typically manifests
itself in two situations:

e Cucumber inserts some data, but it isn’t displayed in the browser.
¢ A browser action causes some data to be inserted, but Cucumber can’t see it.

If this happens, you need to make sure you are not starting a transaction anywhere.
You have to use the truncation cleaning strategy instead. If you're logging your
database calls, reading the logs can be very useful when diagnosing a problem like
this.

In Chapter 12, Working with Web Applications, on page 225, you will learn how to drive

a browser from Cucumber. Cucumber will start up the web server in a separate
thread, so you might think Cucumber and the web server share the same database
connection. In fact, they don't—each thread also gets its own database connection,
which means transactional cleaning won’'t work. It obscures data from the other
connection.

Of course, we could have committed the transaction after creating the account,
but that would defeat our goal of rolling back to get a clean database when
the scenario is done. We can’t roll back a committed transaction. The rule is
simple: when the application has a different database connection than
Cucumber, we cannot use transactions to clean the database. We have to
use the other strategy instead: truncation.

Cleaning the Database with Truncation

Truncating the database before each scenario is a brute-force technique, and
the main drawback is that it’s generally slower than rolling back a transaction.
This is why the transactional approach is typically preferable if you can get
away with it. The advantage of truncation is that it’s a cleaning strategy that
works reliably when we have more than one database connection, since no
transactions are used. Let’'s modify our cleaning strategy and see how it
compares. This is a simple change in our KnowsTheDomain class, shown in the
following code.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Cleaning the Database with Truncation ¢ 203

Truncating the database in an @After hook usually works just as well as doing it before
the scenario executes, but there is a subtle difference.

First, if the process gets killed before it has time to clean up in the @After hook, it
might cause the next test run to fail.

Second, when a scenario fails it might not be evident why it failed, and having the
ability to peek inside the database as a postmortem often helps us understand why
a scenario is failing.

databases/07/src/test/java/support/KnowsTheDomain.java
public KnowsTheDomain() {
if (!Base.hasConnection()){
Base.open(
"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

}

Account.deleteAll();
}

Running Cucumber again makes the scenario pass again:

Running RunCukesTest

Feature: Cash Withdrawal

Listening on http://192.168.1.11:8887/
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with $100.00
When I withdraw $20
Then $20 should be dispensed
And the balance of my account should be $80.00

1 Scenarios (1 passed)
4 Steps (4 passed)

That brings us to the end of the worked example. The next part is a series of
recipes for using Cucumber in the wild. Good luck out there!

Prepared exclusively for Aaron Evans report erratum « discuss

http://media.pragprog.com/titles/srjcuc/code/databases/07/src/test/java/support/KnowsTheDomain.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 10. Databases ® 204

What We Just Learned

Testing applications that use databases can be difficult. You have to make
sure each scenario starts with a clean slate, but cleaning the slate can have
its own pitfalls. In this chapter, we learned about the benefits and drawbacks
of two strategies—transaction and truncation. To sum it up:

e Liquibase is great for creating and evolving database schema.
e ActiveJDBC is a useful library for quickly connecting to SQL databases.
* Resetting state between scenarios is vital; otherwise, you get weird failures.

e Transaction-based cleaning is preferred because it is fast, but it works
only when there is one single-threaded process.

e Truncation-based cleaning is a slower, brute-force technique that works
in multiprocess and multithreaded environments.

Try This

Find an existing database, perhaps somewhere on your network at work, and
see if you can connect ActiveJDBC to it. It should only take you a few lines
of Java code to set up a Model subclass that can talk to one of the tables in
the schema. Read up on ActiveJDBC’s API documentation® and try running
some queries against the database. See how much easier it is to use Active-
JDBC to talk to any database!

6. http://javalite.io

http://javalite.io
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 11

Simplifying Design with
Dependency Injection

In _Q?P_ql__c_lggggulfg"e_gtjgg_,_ on page 137 we saw how Cucumber uses dependency
injection (DI) to share an instance of KnowsTheDomain between our step defini-
tions, but we really only scratched the surface. Now it’s time to dig a little bit

deeper.

In this chapter we’ll discuss how DI can help improve the design of your test
code and the various DI containers that are integrated with Cucumber. Then
we’ll dive in and refactor our ATM example to use DI more effectively, showing
you how to do it with four of the popular DI containers.

DIl and Cucumber

You don’t need to use a DI container when you use Cucumber. When you
use Cucumber without one of the DI integrations, it manages the creation of
all your hooks and step definitions itself. Cucumber creates fresh instances
of each step definition or hook class for each scenario. Of course that means
that these classes need to have a default constructor; otherwise Cucumber
won’t know how to create them. This makes it hard to share state safely
between several step definition classes.

DI can make some of your everyday work less tedious and error prone. As
soon as you add one of the DI integrations, the DI container takes over the
responsibility for creating the hooks and step definitions. All the DI containers
can also inject objects into our hooks and step definitions when it creates
them. Even better, the DI container will create instances of any object that
needs to be created so you can easily build networks of dependent objects,
leaving the hard work of wiring them all together to the DI container.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 206

The two common ways that DI containers inject objects are constructor injection
and field injection. In the following sections, we’ll mainly be using constructor
injection, but we’ll also show you field injection in action.

Letting DI Manage Shared State

A DI container is just a tool that creates and manages instances of some
classes for us. If you look back at the code we wrote to share a single instance
of KnowsTheDomain among all our step definition classes, you'll see that we
never create an instance of KnowsTheDomain using new. That’s because our DI
container, PicoContainer, has been doing it for us. What’s more, PicoContainer
created a new instance of KnowsTheDomain for each scenario and injected that
instance into every step definition class that needed it. This made it easy for
us to create a focused step definition class for each domain entity in our
application, relying on PicoContainer to share state between them.

If we had done this without DI, it would have meant much more work for us.
We could have shared state by creating a static instance of KnowsTheDomain, but
that instance would then be shared by all our scenarios. Since we want each
scenario to have its own fresh copy of KnowsTheDomain, we would have to add
a @Before hook to reset the shared instance. But we don’t need to do any of
this, because a DI container will do it for us.

Cucumber’s use of DI makes our lives much simpler by taking care of the
creation of our hook and step definition classes, as well as all the shared state
that they depend on. For each step definition that needs access to a scenario’s
shared state, we define a constructor that takes the shared class as a
parameter. If a scenario needs access to instances of several different classes,
we simply provide a constructor that has a parameter for each of them:
public SomeStepDefinitionOrHooks(Foo sharedFoo, Bar sharedBar) {

// Store sharedFoo and sharedBar for later use

}

You’'ll want to use DI in most of your Cucumber projects, because it makes
sharing state between step definition classes so much simpler. Cucumber
has integrations with several DI containers, which we’ll take a brief look at
next.

DI Container Integrations

Cucumber ships with integrations to several of the more popular DI containers
(as well as some unfamiliar to most people), shown in the following list. The
code you write will look slightly different depending on which DI container
you choose.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Improving Our Design Using DI ® 207

e cucumber-picocontainer—PicoContainer:' A lightweight DI container from Aslak
Hellesgy, Paul Hammant, and Jon Tirsen

e cucumberguice—Guice:” A lightweight DI container from Google

e cucumber-spring—Spring:® A popular framework that includes DI and much
more

e cucumberweld—CDI/Weld:* The reference implementation of the CDI (Context
and Dependency Injection Framework for the Java EE platform)

e cucumber-openejp—OpenEJB:®> A stand-alone EJB server from Apache,
including a CDI implementation

You choose which framework to use by including the relevant Cucumber JAR
in your classpath, but only one Cucumber DI JAR should ever be on the
classpath. As soon as you put one of these JARs on your classpath, Cucumber
will delegate the creation and management of your hooks and step definitions
to the DI container you chose. The Cucumber JARs contain only the code to
integrate the DI container—you’ll also need to add a dependency on the DI
container itself.

Which DI Container Should | Choose?

The various DI containers provide almost exactly the same functionality. Each
needs slightly different configuration, but the choice mostly depends on what
DI container you're already using in your application. If your application uses
Spring, then choose cucumber-spring. If your application uses Guice, then choose
cucumber-guice.

If your app isn’'t using DI at all, PicoContainer is a great choice because it’s
so simple to use.

Let’s to go back to our ATM example and see how DI can improve the structure
of our test code. You'll be surprised what a big difference it can make.

Improving Our Design Using DI

As we've seen, DI can make our lives simpler by doing some of our work for
us. At the moment our application is using DI to share some state, but code
in KnowsTheDomain is managing the creation of quite a few domain entities. As

http://picocontainer.codehaus.org

oLk N

http://picocontainer.codehaus.org
https://github.com/google/guice
http://projects.spring.io/spring-framework/
http://weld.cdi-spec.org
http://openejb.apache.org/index.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ¢ 208

our application grows, we're likely to find more domain entities that need to
be shared between our step definitions. The temptation would be to put all
our shared domain entities into KnowsTheDomain, but this would soon grow
huge, exhibiting the Monster Object antipattern.®

To keep our step definitions maintainable, it’s a good idea to create a step
definition class for each domain entity. It’s clear that the Cash Slot step defi-
nition is going to need to interact with the Cash Slot domain entity, but will
it ever need to know about a Customer entity? Probably not, so why would
we pass it a helper that has access to the Customer?

Starting with the code from the end of Chapter 10, Databases, on page 185,
we're going to refactor our ATM exampletouseDImoreeffectlvelyWelltake
small steps,” looking at the result of each refactoring to see if there is another
refactoring that could improve the design further. At the end you’ll see a much

cleaner application with fewer classes and a clearer architecture.

Decomposing KnowsTheDomain

We'll start by splitting KnowsTheDomain into several, smaller, cohesive helper
classes—one for each domain entity—as as shown in the figure. Then we can
make sure that a step definition only has access to entities that it should
need to interact with by passing them in at construction time.

()] KnowsTheDomain CashSlotSteps

B Account getMyAccount() public void CashSlotSteps(KnowsTheDomain helper) {
(T Teller getTeller() /...

g CashSlot getCashSlot() }

— KnowsTheAccount CashSlotSteps

3 Account getMyAccount() public void CashSlotSteps(KnowsTheCashSlot helper) {
] /

<<

KnowsTheTeller }

Teller getTeller()

KnowsTheCashSlot
CashSlot getCashSlot()

6. http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/

http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/
http://c2.com/cgi/wiki?RefactoringInVerySmallSteps
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Improving Our Design Using DI ® 209

We'll move the functionality that’s specific to each domain entity into a sepa-
rate helper class. Take a look at KnowsTheCashSlot, for example:

dependency_injection/pico/02/src/test/java/support/KnowsTheCashSlot.java
package support;
import nicebank.CashSlot;

public class KnowsTheCashSlot {
private CashSlot cashSlot;

public CashSlot getCashSlot() {
if (cashSlot == null){
cashSlot = new CashSlot();
}

return cashSlot;

}
Similarly, we can create the KnowsTheTeller and KnowsTheAccount helper classes.
Next we have to change references to KnowsTheDomain, such as in CashSlotSteps:

dependency_injection/pico/02/src/test/java/nicebank/CashSlotSteps.java
import support.KnowsTheCashSlot;

public class CashSlotSteps {
KnowsTheCashSlot cashSlotHelper;

public CashSlotSteps(KnowsTheCashSlot cashSlotHelper) {
this.cashSlotHelper = cashSlotHelper;
}
}

Not all changes are quite so simple. Our TellerSteps, for example, interacts with
KnowsTheAccount as well as KnowsTheTeller, so we have to pass both in to the con-
structor. The DI framework can handle multiple parameters, and calls the
constructor correctly without any extra work on our part:

dependency_injection/pico/02/src/test/java/nicebank/TellerSteps.java

public TellerSteps(KnowsTheTeller tellerHelper, KnowsTheAccount accountHelper) {
this.tellerHelper = tellerHelper;
this.accountHelper = accountHelper;

}

Once we finish moving functionality into the new helper classes, we notice
that there’s still some code in KnowsTheDomain that’s concerned with creating
a shared EventFiringWebDriver. Since this is specific to the technology driving the
user interface, it’s not logically a concern of any of the KnowsTheXxx classes, so
we need to decide where to put it, which we’ll do next.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/KnowsTheCashSlot.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/nicebank/TellerSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ¢ 210

Extracting a Web Driver

Both AtmUserinterface and WebDriverHooks are dependent on a shared EventFiringWeb-
Driver. This used to be managed by KnowsTheDomain but really has nothing to do
with the domain. Instead, let’s extract a new MyWebDriver class:

dependency_injection/pico/02/src/test/java/support/MyWebDriver.java
package support;

import org.openga.selenium.firefox.FirefoxDriver;
import org.openga.selenium.support.events.EventFiringWebDriver;

public class MyWebDriver extends EventFiringWebDriver{
public MyWebDriver() {
super(new FirefoxDriver());
}
}

There’s no code left in KnowsTheDomain, so we can delete it. However, we still
have to inject the shared MyWebDriver instance into AtmUserinterface and WebDriver-
Hooks by changing their constructors:

dependency_injection/pico/02/src/test/java/support/AtmUserInterface.java
private final EventFiringWebDriver webDriver;

public AtmUserInterface(MyWebDriver webDriver) {
this.webDriver = webDriver;

}
(The WebDriverHooks constructor looks the same.)
Now we run mvn clean test to make sure we haven’t introduced any defects.

We've improved our design by decoupling the UI from the domain entities.
Our DI container now has the responsibility of managing a shared instance
of MyWebDriver and injecting it into any constructor that needs it. In the next
step, we'll see that most of the helper classes are doing nothing (or very little)
that our DI container can’t do for us, so we’ll refactor them away entirely.

Replacing the Helper Classes

At this point, we've created smaller, more cohesive helper classes, so now
let’s take a good look at each of them to see if we're happy with the structure
of our test code. Now that we have smaller helper classes it’s easier to see
exactly what each one does and decide, armed with our deeper understanding
of DI, if we could do it better. And if we think that we could improve things
further, we still have the safety net of a passing scenario to ensure that we
don’t break anything while we continue the refactoring.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Improving Our Design Using DI ® 211

KnowsTheCashSlot

Taking a look at the class KnowsTheCashSlot, we can see that all it’s doing is
managing the creation of the domain entity CashSlot. The reason we're using
DI in the first place is to manage the creation of shared objects, so it seems
strange that we’'ve ended up with our own class that does just that! What has
happened is that by refactoring KnowsTheDomain, and with our new knowledge
of how DI works, we can now see that we don’t need KnowsTheCashSlot at all. So,
let’s simplify our codebase by deleting KnowsTheCashSlot and injecting the CashSlot
directly into our step definition:

dependency_injection/pico/03/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;

public CashSlotSteps(CashSlot cashSlot) {
this.cashSlot = cashSlot;
}

We also need to inject CashSlot into our ServerHooks:

dependency_injection/pico/03/src/test/java/hooks/ServerHooks.java
private KnowsTheAccount accountHelper;
private CashSlot cashSlot;

public ServerHooks(KnowsTheAccount accountHelper, CashSlot cashSlot) {
this.accountHelper = accountHelper;
this.cashSlot = cashSlot;

}

Run mvn clean test to make sure we're still green!

KnowsTheTeller

KnowsTheTeller also only manages the creation of a Teller. If we make exactly the
same changes to delete the class, we’ll get a runtime error when trying to
create TellerSteps. That's because the DI container doesn’t know which imple-
mentation of the Teller interface to instantiate. We tell it which concrete class
to instantiate by changing the signature of the TellerSteps constructor:

dependency_injection/pico/04/src/test/java/nicebank/TellerSteps.java
KnowsTheAccount accountHelper;
Teller teller;

public TellerSteps(AtmUserInterface teller, KnowsTheAccount accountHelper) {
this.teller = teller;
this.accountHelper = accountHelper;

}

Run mvn clean test again.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/03/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/03/src/test/java/hooks/ServerHooks.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/04/src/test/java/nicebank/TellerSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 212

KnowsTheAccount

Removing KnowsTheAccount is more complicated, because (as is now clear) it has
several responsibilities. It does the following:

e Opens a database connection (if necessary)
¢ Deletes any existing accounts
¢ Creates an account with a specified account number

Let’s start by moving the database connection and account deletion into
ResetHooks. We need to ensure that this runs before any other hook that needs
a database connection, so we specify a low order number:

dependency_injection/pico/05/src/test/java/hooks/ResetHooks.java
public class ResetHooks {
@Before(order = 1)
public void reset() {
if (!Base.hasConnection()) {
Base.open(
"com.mysql. jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

}
Account.deleteAll();

TransactionQueue.clear();

}

Now KnowsTheAccount’s only responsibility is to store a test account in the
database, so the name no longer makes sense. Rename it TestAccount and have
it extend Account:

dependency_injection/pico/05/src/test/java/support/TestAccount.java

package support;
import nicebank.Account;

public class TestAccount extends Account {
public TestAccount() {
super(1234);
savelt();

}

Now when we inject a TestAccount directly into our steps, PicoContainer will
ensure that they all get a reference to the same, newly created Account object.
Try it—it still works fine.

We could have done everything in this section without using DI at all, but
you can see how things are made so much simpler when the DI container

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/05/src/test/java/hooks/ResetHooks.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/05/src/test/java/support/TestAccount.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

PicoContainer Is Almost Invisible ® 213

takes care of managing the creation of our shared entities for us. It's a bit
like the way garbage collection in the JVM frees us from having to worry too
much about creating and deleting object instances.

So far we've been using PicoContainer as our DI container. Next, let’s take a
look at how we've integrated it with our application.

PicoContainer Is Almost Invisible

PicoContainer is probably the simplest DI container on the JVM, which is
why we’ve been using it. It's certainly the simplest to integrate with Cucumber.
Some of the other containers have more options, but PicoContainer is sufficient
for most applications. The most likely reason to not use PicoContainer is that
your application is already using another DI container.

Our use of PicoContainer is so unobtrusive that you may well have forgotten
all about it by now. The only evidence that we're even using it at all are two
dependencies in our pom.xml:

dependency_injection/pico/01/pom.xml

<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-picocontainer</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

This dependency puts the cucumber-picocontainer JAR on the classpath, which tells
Cucumber to let PicoContainer handle creation of the hooks and step defini-
tions.

dependency_injection/pico/01/pom.xml

<dependency>
<groupId>org.picocontainer</groupId>
<artifactId>picocontainer</artifactId>
<version>${picocontainer.version}</version>
<scope>test</scope>

</dependency>

This second dependency puts the PicoContainer implementation JAR on the
classpath. Without this Cucumber would be unable to find PicoContainer
and wouldn’t be able to delegate to it.

Apart from adding these dependencies, you can use PicoContainer without
adding any code or annotations at all. In the following sections we’ll port the
example to other DI containers, and we’ll see that PicoContainer is the only
one that requires so little configuration by us.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/01/pom.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/01/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 214

Moving to Guice

Guice is a DI container from Google with many of the same features as Pico-
Container. In our opinion it’s not as easy to use as PicoContainer, but it does
have some extra possibilities, as we’ll see. Also, since it’s part of the popular
Google toolset, you may already be familiar with it.

We'll quickly modify our existing ATM solution to run with Guice, pointing
out the differences as we go. Further details can be found on the Guice web-
site.® Note that as of this writing Guice 4.0 is in beta, but this example uses
Guice 3.0 and cucumber-guice-1.2.0.

Switching the DI Container

We'll start with the refactored code that we produced at the end of the previous
section. The first thing to do is replace the dependencies on cucumber-picocontainer
and PicoContainer in pom.xml:

dependency_injection/guice/01/pom.xml

<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-guice</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>com.google.inject</groupId>
<artifactId>guice</artifactId>
<version>3.0</version>

</dependency>

If you run mvn clean test now you’ll see a number of errors like this:

Running RunCukesTest

Feature: Cash Withdrawal

Failure in before hook:ServerHooks.startServer()

Message: com.google.inject.ConfigurationException: Guice configuration errors:

1) Could not find a suitable constructor in hooks.ServerHooks.
Classes must have either one (and only one) constructor annotated with
@Inject or a zero-argument constructor that is not private.
at hooks.ServerHooks.class(ServerHooks.java:19)
while locating hooks.ServerHooks

8. https://github.com/google/guice

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/01/pom.xml
https://github.com/google/guice
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Moving to Guice ® 215

What this is telling us is that Guice is trying to instantiate an instance of one
of our glue classes, but it doesn’t know which constructor to use (even though
they each have only one constructor).

@Inject Annotation

To tell Guice which constructor to use, we add the @Inject annotation to the
constructor that we want to inject objects into:

dependency_injection/guice/02/src/test/java/nicebank/CashSlotSteps.java

CashSlot cashSlot;

@Inject

public CashSlotSteps(CashSlot cashSlot) {
this.cashSlot = cashSlot;

}

We also have to annotate the constructors in AtmUserinterface, AccountSteps,
ServerHooks, TellerSteps, and WebDriverHooks. When we run mvn clean test both of our
scenarios fail but with a different error:

Running RunCukesTest

Feature: Cash Withdrawal

Listening on http://10.101.1.77:8887/

Failure in after hook:ServerHooks.stopServer()

Message: com.google.inject.ProvisionException: Guice provision errors:

1) Error injecting constructor, org.javalite.activejdbc.DBException:
com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException:
Duplicate entry ’'1234’ for key ’'number’, Query:

INSERT INTO accounts (number, balance) VALUES (?, ?), params: 1234,0.00
at support.TestAccount.<init>(TestAccount.java:8)
while locating support.TestAccount

for parameter 0 at hooks.ServerHooks.<init>(ServerHooks.java:22)
while locating hooks.ServerHooks

What's going on here? The error being reported is a MySQLIntegrityConstraintViola-
tionException, which is being thrown because we're trying to create more than
one account with the same account number. The unique constraint we put on
the database won'’t allow this and that’s the cause of the error.

The root cause of this problem is scope. We've hit a significant difference
between PicoContainer and Guice, which we’ll look at next.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/02/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 216

@ScenarioScoped Annotation
The Cucumber-Guice documentation says:

It is not recommended to leave your step definition classes with no scope as it
means that Cucumber will instantiate a new instance of the class for each step
within a scenario that uses that step definition.’

We have two potential scopes to choose from: @ScenarioScoped and @Singleton.
In general we will use @ScenarioScoped, because this ensures that state is reset
before each scenario starts to run.

Let’s annotate our step definitions and hooks to indicate that we want to
create them fresh for each scenario. The classes that need to be annotated
are AccountSteps, CashSlotSteps, TellerSteps, BackgroundProcessHooks, ResetHooks, ServerHooks,
and WebDriverHooks:

dependency_injection/guice/03/src/test/java/nicebank/AccountSteps.java
import cucumber.runtime.java.guice.ScenarioScoped;

@ScenarioScoped
public class AccountSteps {
}

When we run mvn clean test we get:

Running RunCukesTest

Feature: Cash Withdrawal

Listening on http://10.101.1.77:8887/
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with 1m$100.00
com.google.inject.ProvisionException: Guice provision errors:

1) Error injecting constructor, org.javalite.activejdbc.DBException:
com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException:
Duplicate entry ’'1234’ for key ’'number’, Query:

INSERT INTO accounts (number, balance) VALUES (?, ?), params: 1234,0.00
at support.TestAccount.<init>(TestAccount.java:8)
while locating support.TestAccount

for parameter 0 at nicebank.AccountSteps.<init>(AccountSteps.java:24)
at nicebank.AccountSteps.class(AccountSteps.java:24)
while locating nicebank.AccountSteps

9. http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/guice/package-summary.html

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/03/src/test/java/nicebank/AccountSteps.java
http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/guice/package-summary.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Moving to Guice ® 217

We've fixed the failure in shutdownServer, but we're still trying to create a
duplicate account. That’s because, although we've annotated the glue code
with @ScenarioScoped, Guice is still creating a new instance of every injected
class each time it needs to be injected. Since we are using injection to share
the same instance between several objects, we need to annotate these classes
as well. The classes that need to be annotated are AtmUserinterface, CashSlot,
MyWebDriver, and TestAccount.

The only class that presents a problem is CashSlot, because it is part of our
production code, and we may not want to add an annotation just to keep our
test framework happy. One alternative is to create a TestCashSlot that extends
CashSlot, which keeps Guice annotations confined to our test code:

dependency_injection/guice/04/src/test/java/support/TestCashSlot.java
package support;

import cucumber.runtime.java.guice.ScenarioScoped;
import nicebank.CashSlot;

@ScenarioScoped
public class TestCashSlot extends CashSlot {
}

However, now we need to tell Guice to create an instance of TestCashSlot, not
CashSlot. We can do this by changing the signatures of the @Inject-annotated
constructors that currently take a CashSlot:

dependency_injection/guice/04/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;

@Inject

public CashSlotSteps(TestCashSlot cashSlot) {
this.cashSlot = cashSlot;

}

Now the test passes!

@Singleton Annotation

In the previous section we applied the @ScenarioScoped annotation indiscrimi-
nately to every class that is being managed by Guice. This means that a new
instance will be created for every scenario run. That’s not a problem for us
at the moment because we have only one scenario, but this approach can be
wasteful, especially if the objects are expensive to construct.

The other supported scope, @Singleton, tells Cucumber to construct only a
single instance for all scenarios that will be run. This strategy should be used

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/04/src/test/java/support/TestCashSlot.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/04/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 218

only when you're sure that the object stores no state that could allow one
scenario to affect the outcome of another scenario. In our case we could apply
this to our web driver, MyWebDriver:

dependency_injection/guice/05/src/test/java/support/MyWebDriver.java
import javax.inject.Singleton;

@Singleton
public class MyWebDriver extends EventFiringWebDriver{
public MyWebDriver() {
super(new FirefoxDriver());
}
}

The test continues to pass, and now when we add more features they’ll share
the same browser instance.

There are lots more clever things that you can do with Guice, so take a look
at the documentation online.

Spring in Your Steps

Spring is a popular and (very) large framework. Cucumber ships with an
integration to Spring for handling step creation and DI, which doesn’t require
the whole Spring framework on the classpath. The current version of cucumber-
spring is built against Spring 4 and is still under active development, so check
the release notes online to see the changes in future releases of cucumber-spring.

Switching the DI Container

We'll start with the code as it was at the end of PicoContainer Is Almost

dependency on Spring, our chosen DI framework:

dependency_injection/spring/01/pom.xml

<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-spring</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring.version}</version>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/05/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Spring in Your Steps ¢ 219

<version>${spring.version}</version>
<scope>test</scope>
</dependency>

We'll also add a configuration file, cucumberxml, as a test resource:

dependency_injection/spring/01/src/test/resources/cucumber.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">
<context:annotation-config/>
<context:component-scan base-package="hooks, nicebank, support" />
</beans>

Here, we're telling Spring which of the base packages to scan for the classes
that we’re going to inject using the context:component-scan element. For this
example we're interested in the hooks, nicebank, and support packages.

Some Spring Annotations

Spring uses the annotation @Autowired to identify what should be injected,
rather than the @Inject annotation that other DI containers use. Unfortunately,
the current cucumber-spring integration only supports no-argument constructors
for step definition and hook classes. That means we’ll have to use field injection
instead of the constructor injection that we used in PicoContainer and Guice.
Instead of having an annotated constructor that stores the injected objects
that are passed to it, the DI container will inject the object directly into the
annotated fields:

dependency_injection/spring/01/src/test/java/nicebank/CashSlotSteps.java
@Autowired
TestCashSlot cashSlot;

Now we just need to tell Spring which of our classes are candidates for
injection by marking them with @Component and associating them with the
correct scope. The cucumber-spring integration automatically associates all hooks
and step definitions with a scope called cucumber-glue, but we’ll need to associate
any objects that we've created to share state with that scope too:

dependency_injection/spring/01/src/test/java/support/AtmUserInterface.java
@Component

@Scope("cucumber-glue")

public class AtmUserInterface implements Teller {

}

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ¢ 220

Now that we've done that, all our support classes are identified as beans, and
Spring will happily instantiate and inject them on demand.

Run mvn clean test to check it’s all working.

Some Spring Configuration Magic

The Spring configuration file is very powerful. In this section we’ll see how
we can use the configuration file to specify that a class is a bean without
having to modify the Java code at all.

Beans with No-arg Constructors

Spring provides an alternative way to specify which classes are candidates
for injection by configuring them as beans in the configuration file, in our
case cucumber.xml. Since we're not saying anything about constructor arguments,
these classes need to have a default (or no-arg) constructor:
dependency_injection/spring/02/src/test/resources/cucumber.xml

<bean class="support.AtmUserInterface" scope="cucumber-glue" />

<bean class="support.MyWebDriver" scope="cucumber-glue" />
<bean class="nicebank.CashSlot" scope="cucumber-glue" />

Now we can remove the annotations from AtmUserinterface and MyWebDriver, and
delete TestCashSlot entirely (because we only created it to avoid having to edit
the production code). We need to do a bit more to remove TestAccount, though,
because we have to pass an account number to its constructor. One solution
is to create AccountFactory and configure Spring to use that:

dependency_injection/spring/02/src/test/resources/cucumber.xml
<bean class="support.AccountFactory" factory-method="createTestAccount"
lazy-init="true" scope="cucumber-glue" />

dependency_injection/spring/02/src/test/java/support/AccountFactory.java
package support;

import nicebank.Account;
public class AccountFactory {
public static Account createTestAccount() {
Account account = new Account(1234);
account.savelt();

return account;

}

Run mvn clean test and the scenario passes as before.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/java/support/AccountFactory.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CDI with Weld © 221

Bean Constructors with Arguments

In the previous section we saw how we could configure a class as a bean in
the cucumber.xml file. That was fine for classes that had default, no-arg construc-
tors. When we needed to call a constructor with an argument for Account we
had to create an AccountFactory. Let’s see if there’s another way to do it. Take a
look at MyWebDriver:

dependency_injection/spring/02/src/test/java/support/MyWebDriver.java
package support;

import org.openga.selenium.firefox.FirefoxDriver;
import org.openga.selenium.support.events.EventFiringWebDriver;

public class MyWebDriver extends EventFiringWebDriver{
public MyWebDriver() {
super(new FirefoxDriver());
}
}

As you can see, its only difference from Selenium’s EventFiringWebDriver is that
the constructor is wired to use a Firefox browser. As a last example, let’s use
Spring to allow us to get rid of MyWebDriver entirely. We'll start by telling Spring
how to create an EventFiringWebDriver for our scenarios to use:

dependency_injection/spring/03/src/test/resources/cucumber.xml
<bean class="org.openga.selenium.support.events.EventFiringWebDriver"
scope="cucumber-glue" destroy-method="close">
<constructor-arg>
<bean class="org.openqga.selenium. firefox.FirefoxDriver"
scope="cucumber-glue"/>
</constructor-arg>
</bean>

Now we need to replace all references to MyWebDriver in our test code with ref-
erences to EventFiringWebDriver. Here’s an example from WebDriverHooks:

dependency_injection/spring/03/src/test/java/hooks/WebDriverHooks.java
@Autowired
private EventFiringWebDriver webDriver;

Another run of mvn clean test will verify that our scenario still passes.

We'll see more uses of Spring in Chapter 12, Working with Web Applications,
on page 225.

CDI with Weld

The Java community have been working on a standardized approach to many
of the challenges that software developers have to deal with. One of these is

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/03/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/03/src/test/java/hooks/WebDriverHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 11. Simplifying Design with Dependency Injection ® 222

the Contexts and Dependency Injection for Java EE (CDI) standard, of which
there are several implementations. Weld and OpenEJB are the two implemen-
tations that Cucumber is integrated with, but since they are so similar we’ll
only show an example using Weld.

Again, we’ll start with the code as it was at the end of PicoContainer Is Almost

dependency on our chosen DI framework:

dependency_injection/weld/01/pom.xml

<dependency>
<groupId>info.cukes</groupIld>
<artifactId>cucumber-weld</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>javax.enterprise</groupId>
<artifactId>cdi-api</artifactId>
<version>${cdi-api.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.weld.se</groupId>
<artifactId>weld-se</artifactId>
<version>${weld.version}</version>

</dependency>

In the same way as we have seen with the preceding DI containers, we need
to tell Weld/CDI how and where to inject our objects. We show where we want
our objects injected using the @Inject annotation and we indicate that we want
to share a single instance of each object using the @Singleton annotation.
Examples of this can be seen in CashSlotSteps:

dependency_injection/weld/01/src/test/java/nicebank/CashSlotSteps.java

CashSlot cashSlot;

@Inject

public CashSlotSteps(TestCashSlot cashSlot) {
this.cashSlot = cashSlot;

}

Both of these annotations come from the javax.inject package, so this code is
identical to the Guice version. What is different, however, is that we now need
tell the container about the classes that need injected. Guice used the class-
path to find candidates for injection, but for Weld/CDI we need to create
bean.xml:

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/pom.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 223

dependency_injection/weld/01/src/test/resources/META-INF/beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans 1 0.xsd">

</beans>

You'll notice that our bean.xml has almost nothing in it. We could use it to
configure our beans in much the same way that we did in Some Spring Con-

Weld/CDI, we're leaving that as an exercise for the reader.

What We Just Learned

Congratulations, you're ready to inject dependencies!

In this chapter we've seen how Cucumber’s use of dependency injection
simplifies the management of the graph of objects needed to run our scenarios.
We looked at most of the DI containers that Cucumber is integrated with and
saw that PicoContainer is probably the simplest to use, if you aren’t already
using one of the others in your project. Most of the other DI containers require
some form of annotation and configuration. Once we choose a DI container,
no matter which one, it takes over responsibility for creating all our step
definition and hook objects.

As we applied DI to our example we pushed more of the responsibilities for
creating and initializing our objects onto the container. That left us with
fewer, smaller, more cohesive objects. This style takes a bit of getting used
to, but leads to a more composable architecture that can be easier to maintain
and extend.

Try This
Using your DI container of choice, try the following:

¢ If we had more than one scenario, the browser would start up for each
one, which takes time. How would you share a single browser session
across all scenarios?

e Most of our examples used constructor injection. Change them to use
field injection—you should then be able to delete the constructor entirely.

e Choose a DI container and browse its documentation. Experiment with
different ways of creating the objects that need to be injected.

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/src/test/resources/META-INF/beans.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 12

Working with Web Applications

Our ATM example is a simple web application that has a single feature—
withdrawing cash—but even that isn’t fully implemented. In this chapter we're
going to extend this feature to handle some simple error situations that our
stakeholders are concerned about. Along the way we’ll learn some techniques
for injecting errors into our system and a lot more about how to use Selenium
to exercise web applications.

It doesn’t take very long to run the single scenario we've written for our ATM
example, but as we add more scenarios the time it takes to run Cucumber
will get longer. We've already talked about some of the ways to handle slow
features in Chapter 6, Keeping Your Cucumbers Sweet, on page 91, but in
this chapter, after we've added some extra scenarios, we'll take some time to
talk about one simple technical approach to managing the problem—browser

reuse.

We're also going to discover a user requirement to update our ATM web page
while the user types. This will lead us into the realm of JavaScript and Ajax,
which are common technologies in almost all modern web applications. We'll
learn how to use Cucumber and Selenium to drive out this feature and see
that everything is not as simple as we might have hoped.

Before we begin to flesh out some more scenarios, let’'s take a deeper look at
some of the functionality that Selenium provides for interacting with web
apps and see how Cucumber fits into the picture.

Selenium WebDriver

One of the most popular ways to use Cucumber is to automate the develop-
ment of web applications. Here is a dirty little secret:

Cucumber has no idea how to talk to a web application!

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ® 226

That’s right—it’s completely useless for that. Still, people keep using it to
develop web applications. How come?

Remember, Cucumber isn’t much more than a tool that can parse Gherkin
feature files and execute step definitions. It doesn’'t know how to talk to
databases, web apps, or any external system. People install other libraries
for this and use them in their step definitions and support code to connect
to those external systems.

As of this writing, the most popular Java library for programmatically inter-
acting with a web application is Selenium WebDriver. It provides an API for
accessing web pages and interacting with them in a way that is similar to
how a real user would—entering text in text fields and text areas, checking
check boxes, clicking links and buttons, and so on. Selenium WebDriver
allows you to plug in different drivers that run those interactions in several
different browsers—such as Firefox, Internet Explorer, and Chrome.

We've been using a few pieces of Selenium WebDriver functionality already
in the book, but this chapter is going to need more. Therefore, it’s time to give
you a brief overview of the full power of Selenium so that you're ready for the
step definitions we're going to be writing later on. Make sure you consult
Selenium’s own documentation for more comprehensive details."

Navigation, WebElements, and Locators

The most basic way of using a web browser is to access a specific URL. Sele-
nium provides the get method, which we've already used earlier, to issue a
GET request to the specified URL: driver.get(String path). However, you cannot
assume that Selenium will wait for the page to load before returning from
this method call.

Once you've loaded a web page, you'll want to do things like enter text into
text boxes or click buttons. Selenium calls the components that make up a
web page WebElements and provides a number of methods to help you discover
them. Most of these methods take a Selenium locator as an argument that
specifies which element you are interested in, and the simplest is findElement.
If more than one element matches the locator you supply, findElement returns
the first element that matches the locator. You can also retrieve a list of all
elements that match your locator by using findElements.

1. http://docs.seleniumhq.org/projects/webdriver/

http://docs.seleniumhq.org/projects/webdriver/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Selenium WebDriver ® 227

To construct a locator you'll use one of Selenium’s factory methods in the By
class. An easy way to find a web control is by its ID, so an example of how
you might find a WebElement with the ID dateOfBirth is:

driver.findElement(By.id("dateOfBirth"))

This makes for a very fluent’ interface that reads like an English sentence:
“find element by ID dateOfBirth.”

The id factory method is only one of many provided. Others include xpath, link-
Text, name, cssSelector, className, and inputFieldName—check the Selenium docu-
mentation for more. All the method names are self-explanatory and help to
keep your steps easy to read (and maintain).

Once you've got hold of the WebElement that you're interested in, you'll want to
do things with it. You have plenty of methods to choose from, all with
descriptive, self-explanatory names like click, sendKeys, and submit. The actual
behavior of the HTML control behind a WebElement instance depends on what
type of control it is. For example, calling click on a check box will change its
selected state, whereas calling it on a button will cause a button press to
occur.

Switching Windows

Of course not all web apps have a single browser window, so you may need
to switch between windows or frames. Selenium provides the switchTo method
for this purpose. For example, you can switch to another window by name:
driver.switchTo().window("myOtherWindow"). Once this method has been called, the
driver will direct all further Selenium calls to the named window.

As well as the window methods, frame and alert are available to direct calls to a
specified iFrame or alert box, respectively.

Cookie Management

The Selenium driver also has the manage method to give you direct access to
the current browser session. You'll need to use this to manage cookies if your
web app uses them. Selenium provides methods with descriptive names, such
as addCookie, deleteAllCookies, and getCookieNamed, which you use like this: driver.man-
age().getCookieNamed("my-cookie");

2. http://en.wikipedia.org/wiki/Fluent_interface

http://en.wikipedia.org/wiki/Fluent_interface
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ¢ 228

Selenium also provides the Cookie class as a wrapper to make working with
cookies easy. If you want to add a cookie to your browser session, it's as
simple as this:

Cookie cookie = new Cookie("name", "value");
driver.addCookie(cookie);

Even if our web application used cookies, we probably wouldn’t have needed
to manage them yet, because our browser restarts for each scenario and we
only have a single scenario anyway. By the end of this chapter we’ll have
several scenarios running in a single browser session, so if our application
used cookies we would need to start managing them carefully.

Managing Timeouts

Another useful piece of functionality available through the Selenium driver’s
manage interface is the timeout, which is used to alter the various timeouts that
Selenium will wait for before signaling an error. This can be used, for example,
to ensure a page has time to load before looking for a specific WebElement on
it: drivermanage().timeout().pageLoadTimeout(10, TimeUnit. SECONDS).

You can also tell the driver to poll the DOM for a certain period of time while
looking for a particular WebElement—for example: driver.manage().timeout().implicitly-
Wait(10, TimeUnit.MILLISECONDS). This can help when some of the elements on the
page may take a certain amount of time to be rendered and is Selenium’s
own implementation of exactly what we did in Synchronization by Sampling,
onpage 172, e

The downside of using these timeouts is that they apply globally to all Seleni-
um calls, which can make failing scenarios fail very slowly. You'll learn a
more focused approach later in Synchronization in Selenium, on page 242.

This section has given you more of a taste of the automation possibilities that
Selenium has to offer. We'll use some of these features when we write step
definitions in the following sections. We'll be particularly grateful for the
timeout functionality when we begin using Ajax toward the end of the chapter.
We've got a lot to do, so let’s get started.

Handling Failure

We've delivered a working scenario and shown it to our stakeholders. They're
happy with what we’ve done so far, but they want to discuss how we’re going
to handle some common error cases. Once we've had these discussions, it'll
be time to extend our web app, and we’ll see some examples of how to write

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Handling Failure ® 229

scenarios that force an error to happen so that we can drive out our error
handling functionality.

Our running scenario describes the situation where a customer who has
money in his account successfully withdraws some of it using the ATM. What
happens if the mechanism that counts and dispenses the money malfunctions?
Or if the ATM doesn’t contain enough money to fulfill the customer’s request?
We're sure you can think up plenty of other situations that need to be consid-
ered, but that’s enough to give you an idea.

Now we’ll implement the scenarios that you captured while working with your
stakeholders. Since Spring is such a popular DI container, we’ll start from
the code that we wrote in Spring in Your Steps, on page 218. We won’t spend
a lot of time describing thecodebecauseyoulearnedmost of this earlier in
the book, but we will describe new Selenium functionality as we use it. You
can always jump ahead to Reusing the Browser, on page 233 if you want to

skip the development phase.

A Faulty ATM

The first scenario we decide to handle is where the ATM develops a fault after
the user tries to withdraw money but before that money is dispensed. Working
with our stakeholders, we capture this scenario as follows:

fast/01/src/test/resources/cash_withdrawal.feature
Scenario: Unsuccessful withdrawal due to technical fault
Given my account has been credited with $100.00
But the cash slot has developed a fault
When I withdraw $20
Then I should see an out-of-order message
And $0 should be dispensed
And the balance of my account should be $100.00

There are two new steps in this scenario: one that injects a fault into the cash
slot and another that checks that the correct error message is displayed to
the user. We'll look at both of these before seeing if we can do anything to
improve how the scenario reads.

Injecting a Fault

We'd like to make sure that our software behaves correctly when something
goes wrong with the ATM mechanism, represented by our CashSlot. We wouldn’t
want to change our production code, so instead we create a TestCashSlot (that
extends CashSlot) to allow us to simulate a fault:

http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ¢ 230

fast/01/src/test/java/support/TestCashSlot.java
package support;

import nicebank.CashSlot;

public class TestCashSlot extends CashSlot {
private boolean faulty;

public void injectFault() {
faulty = true;
}

public void dispense(int dollars){
if (faulty) {
throw new RuntimeException("Out of order");
} else {
super.dispense(dollars);

}
}

Since we're using Spring, we can make a simple change to the configuration
file cucumber.xml to inject our test class into our application:

fast/01/src/test/resources/cucumber.xml
<bean class="support.AtmUserInterface" scope="cucumber-glue" />
<bean class="support.TestCashSlot" scope="cucumber-glue" />

Now when our scenarios run, Spring will create a single instance of TestCashSlot
and inject it anywhere that we need a TestCashSlot or CashSlot. When we try to
withdraw cash from a faulty ATM, dispense will throw an exception. For the
time being we’re using Java’s RuntimeException, but we’d want to replace this
with something more meaningful if this was more than an example.

We can inject a fault into our TestCashSlot at any time using the injectFault method.
We call this from our new step “But the cash slot has developed a fault”:

fast/01/src/test/java/nicebank/CashSlotSteps.java

@Given("~the cash slot has developed a fault$")

public void theCashSlotHasDevelopedAFault() throws Throwable {
cashSlot.injectFault();

}

Remember that by the time this step definition gets executed, the TestCashSlot
will already have been created by Spring and wired into our application. We're
simply changing a flag to indicate that for all future calls we want it to behave
as if it was faulty.

http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/java/support/TestCashSlot.java
http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Handling Failure ® 231

Checking for Text

If the ATM develops a fault, we want a helpful message to be displayed to the
user. We'll use Selenium WebDriver to check that the correct message is being
displayed. To do this we add the following step definition:

fast/01/src/test/java/nicebank/TellerSteps.java
@Then("~I should see an out-of-order message$")
public void iShouldSeeAnOutOfOrderMessage() throws Throwable {
Assert.assertTrue(
"Expected error message not displayed",
teller.isDisplaying("Out of order"));
}

All this step definition is doing is delegating responsibility to the Teller imple-
mentation to check that the required “Out of order” message is being displayed.
We don’t do any complicated work in the step definition itself, because as
we've already explained we want to keep this layer of glue code as thin as
possible. We do the actual work of checking the text displayed on the Ul in
AtmUserinterface:

fast/01/src/test/java/support/AtmUserInterface.java
public boolean isDisplaying(String message) {
List<WebElement> list = webDriver
.findElements(By.xpath("//*[contains(text(),'" + message + "')]"));
return (list.size() > 0);

}

Of course, the first time we run this it’ll fail, because we haven't made any
change to our production code yet. To handle the exception thrown when we
try to use a faulty CashSlot, we've modified the doPost on WithdrawalServlet. It now
extracts the message from the caught exception and displays it to the user:

fast/01/src/main/java/nicebank/WithdrawalServlet.java
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
Teller teller = new AutomatedTeller(cashSlot);
int amount = Integer.parselnt(request.getParameter("amount"));

try {
teller.withdrawFrom(account, amount);

response.setContentType("text/html");
response.setStatus (HttpServletResponse.SC 0K);
response.getWriter().println(
"<html><head><title>ATM</title></head>" +
"<body>Please take your $" + amount + "</body></html>");
}

catch (RuntimeException e) {

http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/java/nicebank/TellerSteps.java
http://media.pragprog.com/titles/srjcuc/code/fast/01/src/test/java/support/AtmUserInterface.java
http://media.pragprog.com/titles/srjcuc/code/fast/01/src/main/java/nicebank/WithdrawalServlet.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ® 232

response.setContentType("text/html");

response.setStatus (HttpServletResponse.SC 0K);

response.getWriter().println(
"<html><head><title>ATM</title></head>" +
"<body>" + e.getMessage() + "</body></html>");

}

At this point we can run mvn clean test and our new scenario will pass.

Rewriting the Scenario

Take a look at our new scenario. Does it read well to you? Are there any details
in it that are incidental to the behavior being described? Remember, this
scenario is about handling a technical fault. We aren’t interested in how much
money is in the account to start with, how much money the customer is trying
to withdraw, or what the balance is after the fault occurs. What we want to
be sure of is that the correct error message is displayed, that no money is
dispensed, and that the customer’s balance is not affected.

After we discuss this with our stakeholders, we rewrite the scenario as:

fast/02/src/test/resources/cash_withdrawal.feature
Scenario: Unsuccessful withdrawal due to technical fault
Given my account is in credit
But the cash slot has developed a fault
When I request some of my money
Then I should see an out-of-order message
And $0 should be dispensed
And the balance of my account should be unchanged

This scenario has been stripped of several incidental details, allowing us to
use natural language to focus our attention on the things that are really
important.

Insufficient Funds in ATM

The next scenario we’ll tackle is where the ATM contains less cash than the
user tries to withdraw. Working with our stakeholders, we capture this sce-
nario as follows:

fast/03/src/test/resources/cash_withdrawal.feature
Scenario: Unsuccessful withdrawal due to insufficient ATM funds
Given my account is in credit
And the ATM contains $10
When I withdraw $20
Then I should see an ask-for-less-money message
And $0 should be dispensed
And the balance of my account should be unchanged

http://media.pragprog.com/titles/srjcuc/code/fast/02/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/fast/03/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Reusing the Browser ® 233

This scenario introduces the idea that an ATM contains a limited amount of
money. We'll need to implement a way to specify how much money to load
into the ATM, and check that we have sufficient funds before we attempt to
dispense money to the customer:

fast/03/src/main/java/nicebank/CashSlot.java
public void load(int dollars){
available = dollars;

}

public void dispense(int requested){
if (available >= requested) {
contents = requested;
available -= requested;
} else {
throw new RuntimeException("Insufficient ATM funds");
}
}

We also need to make sure that our original, successful withdrawal scenario
keeps working. We could do this by adding an extra step to it to load the ATM,
but this would be an incidental detail. Instead we add a constructor to our
TestCashSlot that makes sure there’s plenty of cash available for any scenarios
that aren’t specifically interested in how much money is in the machine:

fast/03/src/test/java/support/TestCashSlot.java

public TestCashSlot() {
super.load(1000);

}

We can now run mvn clean test and see all three scenarios pass.

We added only two extra scenarios, but already our feature takes longer to
run. If we don’t do something, it won’t be long before the team stops running
the scenarios. Next we’ll take a look at the simplest way to speed things up.

Reusing the Browser

Each of our scenarios is exercising our application through our web Ul and
so needs to use a browser. At the moment we start a new instance of Firefox
for each scenario, which takes a fair amount of time. Is it really necessary,
or could our scenarios all use the same instance of Firefox?

It's important that each scenario is isolated from all other scenarios, but the
browser itself holds very little context. In most situations it is quite safe to
reuse the same browser instance for all your scenarios as long as you clear
out any cookies. In this example it's even simpler—we have no cookies.

http://media.pragprog.com/titles/srjcuc/code/fast/03/src/main/java/nicebank/CashSlot.java
http://media.pragprog.com/titles/srjcuc/code/fast/03/src/test/java/support/TestCashSlot.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

Chapter 12. Working with Web Applications ¢ 234

Sharing a Browser Using Spring

We're using a Spring configuration file, cucumber.xml, to define our EventFiringWeb-
Driver. It just takes a tiny modification to keep the browser instance alive for
the whole run of Cucumber. In the XML that follows, we've simply removed
the attribute scope="cucumber-glue" from the definition of the bean:

fast/04/src/test/resources/cucumber.xml
<bean class="org.openga.selenium.support.events.EventFiringWebDriver"
destroy-method="quit">
<constructor-arg>
<bean class="org.openqa.selenium.firefox.FirefoxDriver" />
</constructor-arg>
</bean>

Now when Spring creates an instance of the web driver, it's associated with
the default scope that lives for the entire Cucumber run. Try running mvn clean
test and you’ll see that this makes the feature run much quicker overall,
because we don’t have to wait for the browser to start up for each scenario.

If you needed to delete cookies as well, you’d need to write a hook that does
this programmatically, which we’ll see next.

Using a Shutdown Hook

There’s a more general way to do some cleanup when a JVM is closing down

that doesn’t rely on Spring: using Java’s addShutdownHook. The following code

comes from the Webbit-Websockets-Selenium example in the Cucumber
. 3

project:

public class SharedDriver extends EventFiringWebDriver {
private static final WebDriver REAL DRIVER = new FirefoxDriver();
private static final Thread CLOSE THREAD = new Thread() {
@Ooverride
public void run() {
REAL DRIVER.close();

}
b
static {
Runtime.getRuntime().addShutdownHook (CLOSE THREAD) ;
}

public SharedDriver() {
super (REAL_DRIVER);

}

3. https://github.com/cucumber/cucumber-jvm/blob/master/examples/java-webbit-websockets-selenium/src/test/

http://media.pragprog.com/titles/srjcuc/code/fast/04/src/test/resources/cucumber.xml
https://github.com/cucumber/cucumber-jvm/blob/master/examples/java-webbit-websockets-selenium/src/test/java/cucumber/examples/java/websockets/SharedDriver.java
https://github.com/cucumber/cucumber-jvm/blob/master/examples/java-webbit-websockets-selenium/src/test/java/cucumber/examples/java/websockets/SharedDriver.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

20

25

30

-}

Ajax ® 235

@Override
public void close() {
if (Thread.currentThread() != CLOSE THREAD) {

throw new UnsupportedOperationException(
"You shouldn't close this WebDriver. " +
" It's shared and will close when the JVM exits.");

)
super.close();
}
@Before

public void deleteAllCookies() {
manage() .deleteAllCookies();
}

We create a single driver instance and store it in a static variable (line 2). This
will be shared by all instances of SharedDriver. We also create a static Thread (line
3) and add it to the JVM’s list of hooks that should be called when the JVM
is shutting down (line 11).

If you try to close the driver manually, SharedDriver will check whether the call
is coming from the registered CLOSE_THREAD (line 20). If it isn’t, SharedDriver will
report the error through an exception. This protects you from inadvertently
closing the browser midway through executing your Cucumber features.

This example also shows how you can use a hook to clear cookies before each
scenario runs (line 29). The method manage is part of the EventFiringWebDriver API
provided by Selenium.

While driving out some fault handling features in our ATM, we've learned a
general way to call cleanup code at the end of a Cucumber run. We've also
used Selenium to ensure that each scenario cleans up any cookies that the
previous scenario might have saved. Now we need to show what we've done
to our users and see whether they like it!

Ajax

During usability testing sessions, we discover that users don’t like being told
that the amount of money they request isn’t available. They’'d prefer it if we
could display a message that the ATM has insufficient funds while they are

typing the amount into the ATM before they press the Submit button. This is
described by a new scenario:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ® 236

fast/05/src/test/resources/cash_withdrawal.feature
Scenario: Unsuccessful withdrawal due to insufficient ATM funds
Given my account is in credit
And the ATM contains $10
When I type $20
Then I should see an ask-for-less-money message

There is a subtle but essential difference in our When step here. We're only
typing text, and unlike the When step in our previous scenario, we are not
submitting the form by clicking the button or pressing the Enter/Return key.
We have an idea about how to implement this feature—we’ll issue an Ajax
request whenever the user types a character, and when the response comes
back, we’ll display a message on the same page without doing a submit.

Entering an Amount

When we run mvn clean test, Cucumber exits with a missing step definition. We
need to tell it how to enter text in a field without submitting the form. That’s
easy! We'll implement the undefined step definition almost like the one we
used in our previous scenario, except this time we won't press the Submit
button—we are only going to fill in the field:

fast/05/src/test/java/support/AtmUserInterface.java

public void type(int amount) {
webDriver.get("http://localhost:" + hooks.ServerHooks.PORT);
WebElement input = webDriver.findElement(By.id("amount"));
String amountString = String.valueOf (amount);
input.sendKeys (amountString);

}

If you run the feature again and look carefully, you’ll see that the amount
field is populated with the amount requested from our Gherkin scenario before
the browser is closed when the scenario is done. Neat! This leaves us with
only one more failing step—the one where we need to verify that the error
message is being displayed. It’s time to take a little break and think about
how we are going to implement this with Ajax and dynamic HTML.

Designing Our Live Messages

When the user types in the amount field and waits a short time, the browser
will issue an Ajax GET request to ask if the ATM contains sufficient funds.
There’s one important difference about this request—it will have an additional
Accepts HTTP header, indicating to the server that we want the response as
JSON (instead of HTML). When the response comes back to the browser, we’ll
iterate over the JSON we get back and create the notification message (if
necessary) dynamically with JavaScript.

http://media.pragprog.com/titles/srjcuc/code/fast/05/src/test/resources/cash_withdrawal.feature
http://media.pragprog.com/titles/srjcuc/code/fast/05/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Ajax ® 237

Implementing this in JavaScript, even with the help of jQuery, will require
somewhere between twenty and sixty lines of code, depending on your style.
This is not an insurmountable amount of code, but running Cucumber every
time you make a small change to this code is something we recommend
against because the feedback loop will be too slow. So, how do we proceed
now? There are two main directions you can take from here: TDD or not.

JavaScript TDD

Developing JavaScript with TDD used to be hard to do because of a lack of
good tools, but this is a thing of the past. Unfortunately, Cucumber is not
one of those tools—it’s too high level. Low-level TDD with JavaScript is beyond
the scope of this book, but if you want to give it a try, we can recommend
QUnit" or Jasmine.® Test-Driven JavaScript Development [Joh10] is an excellent

book that treats the topic really well. It’s also well worth having a look at Jim
Shore’s “Let’s code JavaScript” screencasts.’

Without JavaScript TDD

This is how we all started programming. Write the code; test it manually!
Since JavaScript TDD is a big topic that we are not going to cover in this
book, we're going to cheat a little and “just write the code.” We'll start up the
web server with a limited amount of cash in the ATM and code until we have
something that works, testing it manually in the browser. When we think we
have something that works, we can run Cucumber to get a final verification.

This approach is not ideal—on real projects we would use TDD for our Java-
Script as well. Still, our Cucumber scenario will serve as validation and will
protect us against regressions should someone change the JavaScript in the
future. So, without further ado, we’ll just give you some JavaScript code that
we developed exactly this way. Create a new file in src/main/webapp/js called noti-
fications.js with the following content:

fast/06/src/main/webapp/js/notifications.js
function Validate(form) {
this.form = form;

}

Validate.prototype.queue = function (amount) {
if (this.timer) {
clearTimeout (this.timer);

}

4. http://docs.jquery.com/QUnit/

http://media.pragprog.com/titles/srjcuc/code/fast/06/src/main/webapp/js/notifications.js
http://docs.jquery.com/QUnit/
http://pivotal.github.com/jasmine/
http://www.letscodejavascript.com/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ¢ 238

var self = this;
this.timer = setTimeout(function () {
self.checkAmount (amount);
}, 150);
b

Validate.prototype.checkAmount = function (amount) {

var self = this;

jQuery.ajax({
url: '/validate',
type: 'GET',
data: {'amount': amount},
success: function(results) {self.render(results)},
contentType: 'application/json',
dataType: 'json',

1)
}
Validate.prototype.render = function (notifications) {
var html ="";
if (notifications.content.length > 0) {
html = "" + notifications.content + "</1i>";
}

jQuery(this.form).find('ol.notifications').html(html);
}

jQuery.fn.setupValidation = function () {
this.each(function () {
var validator = new Validate(this);
var input = jQuery(this).find("input[type=text]");
input.bind('keyup', function () {
validator.queue(this.value);
s
1)
b

jQuery(function() { jQuery('#withdrawalForm').setupValidation();});

This code defines a jQuery checkAmount plug-in and activates it on the input
element with a DOM ID of withdrawalForm. Whenever a user (or Selenium!) enters
a character, the browser fires the keyup event, and this starts a timer. If a
delay of 150ms elapses without any more characters being typed, it issues
an Ajax request with the amount. We use the delay so that we don’t hammer
our server with search requests if the user is a really fast typist. This request
also indicates that it would like to have the response back as JSON. When
the response successfully comes back with the search results in a JSON
array, we iterate over them and render any notifications we've received.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Ajax ® 239

Making the Web App Return JSON

As we mentioned earlier, we want the response from the search request to
contain JSON when the client explicitly says it wants JSON. To do this, we
create a new ValidationServlet that returns a JSON payload that contains any
notifications we want to show to the user:

fast/06/src/main/java/nicebank/ValidationServlet.java
package nicebank;

import
import
import
import
import

public
{

java.io.IOException;
javax.servlet.ServletException;
javax.servlet.http.HttpServlet;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse;

class ValidationServlet extends HttpServlet

private CashSlot cashSlot;

public ValidationServlet(CashSlot cashSlot) {

}

this.cashSlot = cashSlot;

protected void doGet(HttpServletRequest request, HttpServletResponse response)

{

}

throws ServletException, IOException

response.setContentType("application/json");
response.setStatus(HttpServletResponse.SC 0K);

int amount = Integer.parselnt(request.getParameter("amount"));

if (cashSlot.canDispense(amount)) {
response.getWriter().println("{\"content\":\"\"}");
} else {
response.getWriter().println(
"{\"content\":\"Insufficient ATM funds\"}");

Now, not only do we need to wire in our ValidationServlet to our server, we also
need to arrange to serve our static JavaScript resources. We use Jetty’s
ResourceHandler to serve the JavaScript and ContextHandlerCollection to allow us to
serve both static resources and servlets. The ResourceHandler gets first option

to serve the request—if it doesn’t know how to, then the request passes to
our ServletContext.

http://media.pragprog.com/titles/srjcuc/code/fast/06/src/main/java/nicebank/ValidationServlet.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ¢ 240

Finally, we've also added an autocomplete="off" attribute to our input field in
AtmServlet to prevent the browser itself from suggesting values as we type.

That’s a lot of code all of a sudden, and it’s high time we ran Cucumber again!

Scenario: Unsuccessful withdrawal due to insufficient ATM funds

Given my account is in credit

And the ATM contains $10

When I type $20

Then I should see an ask-for-less-money message

java.lang.AssertionError: Expected error message not displayed

at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.assertTrue(Assert.java:41)
at nicebank.TellerSteps.iShouldSeeAnAskForLessMoneyMessage
at *.Then I should see an ask-for-less-money message

Our other features are still passing, but our new one testing the Ajax isn't.
The output indicates that the expected notification did not show up on the
page. This is going to take a bit of detective work, which we’ll dive into next.

Selenium sendKeys Misbehavior

We debug our Jetty server and find that our ValidationServlet isn’t receiving any
requests at all. Investigating further, we discover that our JavaScript method
queue is never being called either, which means that our ATM web page is
never receiving any keyup events. What’s going on?

A quick search on the Internet turns up the little known fact that the Selenium
sendKeys method doesn’t result in keyup or keydown events if you pass it a string,”
but it does if you pass it members of the Keys enumeration.

So, we do the simplest thing, which is to convert our integer amount into a
sequence of keystrokes:

fast/07/src/test/java/support/AtmUserInterface.java
public void type(int amount) {
webDriver.get("http://localhost:" + hooks.ServerHooks.PORT);
WebElement input = webDriver.findElement(By.id("amount"));
String amountString = String.valueOf (amount);
for (int i = 0; i<amountString.length(); i++) {
input.sendKeys(convertToKey(amountString.charAt(i)));

}

7. https://code.google.com/p/selenium/issues/detail?id=5786

http://media.pragprog.com/titles/srjcuc/code/fast/07/src/test/java/support/AtmUserInterface.java
https://code.google.com/p/selenium/issues/detail?id=5786
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Ajax © 241

private Keys convertToKey(char digit) {
switch (digit){
case '0': return Keys.NUMPADO;
case '1': return Keys.NUMPAD1;
case '2': return Keys.NUMPAD2;
case '3': return Keys.NUMPAD3;
case '4': return Keys.NUMPAD4;
case '5': return Keys.NUMPADS5;
case '6': return Keys.NUMPADG6;
case '7': return Keys.NUMPAD7;
case '8': return Keys.NUMPADS;
case '9': return Keys.NUMPAD9;
default: throw new RuntimeException("Invalid keypress in test");

}

Sadly the scenario still fails when we run mvn clean test, but our ValidationServlet
is now receiving requests. It looks like we’ll need to dig even deeper.

Pausing Selenium

It can often be quite frustrating watching Selenium’s browser flash past
something that you want to take a closer look at. This feels like it might be
one of those situations, so we’d like to find a way to slow things down. One
easy trick to get Cucumber, and therefore Selenium, to pause during a step
is to bring up a Java Swing JOptionPane in the step definition.

To do this, we add the following code to AtmUserinterface:

fast/08/src/test/java/support/AtmUserInterface.java
public void type(int amount) {
webDriver.get("http://localhost:" + hooks.ServerHooks.PORT);
WebElement input = webDriver.findElement(By.id("amount"));
String amountString = String.valueOf (amount);
for (int i = 0; i<amountString.length(); i++) {
input.sendKeys(convertToKey(amountString.charAt(i)));

}

ask("Ready to continue");

}

public void ask(String question) {
JOoptionPane.showMessageDialog(
null,
question,
"Ask for response",
JOoptionPane.PLAIN MESSAGE);

http://media.pragprog.com/titles/srjcuc/code/fast/08/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 12. Working with Web Applications ® 242

Now when we run mvn clean test the ask method puts up a dialog box when we
expect the notification method to be visible. And sure enough, there it is:
“Insufficient ATM funds”! It looks like we have yet another issue to sort out
in the next section.

Synchronization in Selenium

What’'s missing? It can be a little hard to tell at this point. Pausing the scenario
using ask has helped us understand that the notification we expect is being
displayed—eventually.

In our step, we are typing the amount to be withdrawn and then verifying
that we have the expected notification on the page. The problem is—we are
looking for the results too soon, before the Ajax query has a chance to com-
plete! As we discussed in Chapter 9, Message Queues and Asynchronous

we can be sure the validation request has completed before we proceed in
checking what it has returned.

Luckily, Selenium has a number of different ways to deal with this situation
in a simple way.® In this case we’ll use the helper class WebDriverWait to poll
the page every 30 milliseconds for up to 2 seconds:

fast/09/src/test/java/support/AtmUserInterface.java
public boolean isDisplaying(String message) {
By locator = By.xpath("//*[contains(text(),'" + message + "')]");

WebDriverWait wait = new WebDriverWait(webDriver, 2, 30);
WebElement element = wait.until(
ExpectedConditions.presenceOfElementLocated(locator));

List<WebElement> list = webDriver.findElements(locator);
return (list.size() > 0);

}

This will make the scenario pass, and what’s more, we have covered the
essential parts of the Selenium API. Selenium has more to offer, but it's
mostly variations of what we have already seen.

What We Just Learned

We've covered a lot of ground in this chapter. We started by taking a quick
tour of some of the most useful parts of the Selenium WebDriver API, and we
used some of them when we came to implement basic fault handling in our

8. http://assertselenium.com/2013/01/29/webdriver-wait-commands/

http://media.pragprog.com/titles/srjcuc/code/fast/09/src/test/java/support/AtmUserInterface.java
http://assertselenium.com/2013/01/29/webdriver-wait-commands/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 243

ATM. When we added the fault handling scenarios, we saw the feature runtime
start to get longer, so we applied a simple technique to reduce it by sharing
a single browser session among all our scenarios. And then we extended our
ATM using Ajax to give live feedback to our customer, which taught us
another way to provide synchronization using Selenium.

There are a lot more features that we would want to implement in our ATM,
and that would lead to lots more scenarios. Sharing a single browser session
between them all will certainly help control the runtime, but we’ll need to
consider other techniques as well if we want to be able to run hundreds (or
thousands) of scenarios in an acceptable amount of time. This is what we’ll
be looking at in the next chapter.

Try This

Selenium can be used outside of Cucumber too. A handy way to get to grips
with Selenium is to automate some dull, repetitive task that you have to do
on the Web, such as filling in timesheets or downloading your bank statement.

We've provided a plain old Java project that you can flesh out with whatever
you’d like it to automate. The heart of it is this simple Java class:

robot/01/src/main/java/WebRobot.java

import javax.swing.JOptionPane;

import org.openga.selenium.firefox.FirefoxDriver;

import org.openga.selenium.support.events.EventFiringWebDriver;

public class WebRobot {
public static void main(String[] args){
FirefoxDriver firefoxDriver = new FirefoxDriver();
EventFiringWebDriver webDriver = new EventFiringWebDriver(firefoxDriver);

webDriver.get("http://www.google.com");
// etc

ask("Click to finish");
webDriver.quit();

}

private static void ask(String question) {
JOptionPane.showMessageDialog(null, question, "Ask for response",
JOptionPane.PLAIN MESSAGE);

}

Once you've downloaded the project, you can run it by typing mvn clean compile
exec:java -Dexec.mainClass="WebRobot".

Now flesh out the robot to do your bidding!

http://media.pragprog.com/titles/srjcuc/code/robot/01/src/main/java/WebRobot.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 13

Keeping Your Features Fast

We've driven out some new functionality in our CashSlot to handle errors that
might arise when the ATM tries to dispense money to the customer. We also
implemented functionality that lets users know if the ATM doesn’t hold enough
money to satisfy their request before they even press the Submit button. The
scenarios are all running through the ATM UI in a single browser session,
which seems fast enough at the moment.

However, we’ll want to develop hundreds, if not thousands, more scenarios
before we ship our application so the runtime of our features will continue
to increase. Many of the scenarios that we write will exercise the same parts
of the Ul over and over again, not because it gives us any extra confidence in
the application, but because that’s the only way we are able to demonstrate
the behaviors we're interested in. Before you know it, you’ll be waiting hours
rather than minutes for feedback. This is what we refer to in Chapter 6,

In this chapter you’ll learn a new way to think about your specifications and
what they test. By the end of this chapter, you’ll be able to maintain compre-
hensive living documentation in your feature files without sacrificing the quick
feedback that is so valuable while developing and maintaining your application.
But first we're going to show you a very simple technique that you can use
as first-aid to help control the growing runtime of your test suite.

Partitioning Features and Scenarios

One of the simplest ways to reduce your Cucumber runtime is to run fewer
scenarios. Tag your scenarios, and you can choose a subset of the scenarios
to run, covering the area that you're currently working on. Once the work is
checked in, a larger, but still reduced, subset of faster tests might run in our
continuous integration (CI) server. Larger subsets might run in subsequent

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 246

steps of a continuous delivery pipeline, or at scheduled intervals (such as
overnight or weekly). Finally, the full set of scenarios could run on demand
as part of a release or QA process.

Possible Classifications

To facilitate this way of working, we need to agree on a set of tags to be applied
to our scenarios. Here are some typical tags that we've seen used:

Partitioning Description Examples
Type
Speed An arbitrary classification of the time @fast, @slow, @glacial

the scenario takes to run. Lets us to
exclude slower scenarios.

Release Execute scenarios that only apply to @release_1_04, @hot-
particular releases. fix 2014 3 27, @version 2

Defect Execute scenarios that verify defects. @defect, @defect 10983

Purpose A categorization of where the testis @regression, @smoke_test

most useful.

Risk An arbitrary grouping of the risk mit- @High, @Medium, @Low,
igated by the scenario, so we canrun @CurrentSprint, @WIP
scenarios with certain risk profiles.

Remember that tags are just free-form text, so Cucumber can’t know, and
won’t warn us, if we misspell one.

Tag Expressions

As we explained in Running a Subset of Scenarios, on page 261, we can build

logical expressions of tags to specify which scenarios we want Cucumber to
execute. We can put tags on features, scenarios, scenario outlines, or example
blocks, and we can have as many tags as we like on each. For example, take
a look at the following feature file:

@high risk
@first released 2 0
Feature: Retain card when instructed by authentication system

@fast

@regression

Scenario: Dispenser retains cancelled card
Given a cancelled bank card
When authentication is sought
Then the card is retained

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Partitioning Features and Scenarios ® 247

@slow

@smoke_test

Scenario: Incorrect credentials submitted too many times
Given a valid bank card
When invalid credentials are submitted repeatedly
Then the card is retained

@slow

Scenario Outline: Customer uses ATM with bank card
Given a valid bank card
When the customer is <customer-action>
Then the card is <card-action>

@regression

Examples: Common customer behaviors
| customer-action | card-action |
| does nothing for 30 seconds | retained [
| presses cancel | returned |
| enters PIN | authorized |

@defect

@defect 12345

Examples: Unexpected behavior
| customer-action | card-action |
| inserts card incorrectly | returned |

Tags on the feature apply to every scenario and scenario outline within the
feature. Tags on a scenario outline apply to every example that is associated
with it (in addition to any tags applied to the feature). And tags on an example
block apply to all examples in that block (in addition to any tags applied to
the feature and the scenario outline).

If we run this feature file without any tag expression, six scenarios will be
run (two scenarios + a scenario outline with four examples). If we wanted to
run just the regression or defect scenarios, we’d tell Cucumber to run
@regression or @defect, and only five scenarios from this feature would be run.
If instead we specified that we wanted to run scenarios that were high-risk
regressions, we’'d use @high_risk and @regression and four scenarios from this
feature would be run. That’s because the whole feature is tagged with @high_risk,
but only one scenario and three examples are tagged with @regression. Finally,
if we run only scenarios that are not marked as @slow, only one scenario would
be run. The syntax for combining tags is explained in Running a Subset of
Scenarios, on page 261.

Using tags, we can build subsets of scenarios that we can run at different
times in our development process to control how long it takes before the
development team gets feedback. As our application evolves, we can add or

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 248

remove tags from our feature file. For example, a feature that is classified as
high risk today might be seen as less risky in six months once we’ve ironed
out all the technical problems.

Now that we've explored this simple technique, it’s time to tackle the problem
of slow tests from another angle. To do this, we’ll need to go back to the fun-
damental question of what we’re testing and why.

What Sort of Tests?

Both BDD and TDD ask us to write examples before we write the code to help
us drive out just the functionality that our customers want, and no more.
When we write these scenarios and tests, they guide our emerging design.
Once the functionality has been implemented, their purpose is to give us
confidence when we refactor or add new behavior to protect us from regres-
sions.

Many people assume that when using a tool like Cucumber—where the test
is a business-readable acceptance test—we must exercise all layers of the
solution. That’s not the case! The choice between using a natural language
tool or a more technical tool, such as JUnit, to run the tests depends on who
is interested in reading the specification. How much of the application that
the test should exercise is a completely separate decision.

We're going to introduce a new model to help you think about this, but let’s
start by looking at a recognized model used in the Agile community.

The Testing Pyramid
In his book, Succeeding with Agile: Software Development Using Scrum [Coh09],

Mike Cohn introduced the concept of the testing pyramid to emphasize that
you should have more unit tests than full-stack tests. The figure that follows
is inspired by his ideas and shows that unit tests are the foundation of your
automated test suite. They help drive out the implementation and specify the
precise behavior of individual components. Integration or component tests
validate the interactions between subsystems or units. Finally, the full-stack

tests ensure that the whole application “hangs together.”

Unit tests are preferable to full-stack tests because they are faster, and when
they fail, they give us a clear indication of where we need to go to fix the
problem. Additionally, unit tests are often less brittle and easier to understand
than full-stack tests.

Using BDD, we encourage the team to specify the application’s behavior in
business language. When thinking about the application from a user’s per-

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What Sort of Tests? ® 249

End-to-end
tests
How much of the
application the Integration tests
test exercises
Unit tests

Number of tests

spective, we often write a large number of full-stack tests, exercising the
application the same way a user would—through the UI. In the extreme case,
you end up with an inverted pyramid (known as the Ice Cream Cone
antipatternl) .

One of the solutions that has been proposed when features take too long to
run is to push some scenarios down into the unit test suite. This can work,
but because less behavior is now specified in the features, it can make our
living documentation less complete and less useful. We need a new way to
think about this problem.

The pyramid image is often drawn with a cloud around the summit labeled
“Manual and exploratory testing” to emphasize that we still need human
testers to apply their skill, experience, and intuition. Automated testing is
ideal for repetitious, scriptable behaviors, but is, by its very nature, less
useful for discovering the more unlikely ways in which an application can
fail. Liz Keogh captured this idea perfectly in her talk,” which describes the
value that a tester (wearing the Evil Hat) brings to the team.

The Testing Iceberg

The decision about whether or not a behavior should be specified in the feature
files should be based on whether your business stakeholders are interested
in it, not on how long it takes to run or how much of the application it exer-
cises. Imagine the Testing Pyramid became a Testing Iceberg floating in water.

1. http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/
http://www.infoq.com/presentations/Learning-and-Perverse-Incentives
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 250

Above the water are all the tests that are business readable. Below the water
are all the tests that only the technical people on the team can read.

4 .
& @b . Business
9 g ,@,@ Readable
3, &L
S SIY
AQ’ %O
" KN
SN &\ Technical
S &3
&S F &
G $.8
2L

As the iceberg settles in the water, it tilts to one side. Some of the unit tests
appear above the waterline, becoming business readable. Some full-stack
tests disappear beneath the water, as they are specifying behavior that only
a technical audience would be interested in.

With this understanding of the distribution of tests between business-readable
and technical, we are in a position to modify many of our step definitions to
exercise components directly through their Java API, rather than through
the UL Our step definitions could also work with test doubles® (mocks, fakes,
stubs) of some components—the database or file system, for example.

The testers and the business often find this difficult to accept, especially if
code quality has, historically, not been very good. So let’s look at three tech-
niques for trying to keep our living documentation complete and our feedback
fast while building trust between developers, testers, and the business.

Environment-Specific Step Definitions

A common request is to run the scenarios differently depending on the envi-
ronment they're running in. For example, we may not have access to external
web services or production databases from our CI environment, so we’ll want
to use test doubles when we run our scenarios there. On the other hand, we’ll

3. http://xunitpatterns.com/Test%20Double.html

http://xunitpatterns.com/Test%20Double.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Environment-Specific Step Definitions ® 251

use the real systems when we run our scenarios in system integration test
(SIT) or user acceptance test (UAT) environments.

We'll pass Cucumber an environment variable to let our step definitions know
how to behave. It’'s up to us to build the conditional logic that implements
that behavior, using standard software development techniques.

Creating the Seam

Michael Feathers introduces the concept of a seam in his seminal book
Working Effectively with Legacy Code [Fea0O4]. He defines a seam like this:

A seam is a place where you can alter behavior in your program without editing
in that place.

One way of introducing a seam is to create a factory that creates different
implementations of an interface depending on the environment. The first thing
we do is extract an Atminterface that offers the functionality that our TellerSteps
depends on:

fast/10/src/test/java/support/Atminterface.java

package support;

import nicebank.Teller;

public interface AtmInterface extends Teller {
void type(int amount);
boolean isDisplaying(String message);

}

We then modify AtmUserinterface to implement Atminterface and change TellerSteps
to use Atminterface:

fast/10/src/test/java/nicebank/TellerSteps.java
@Autowired
private AtmInterface teller;

Now we need to tell Spring to use a factory to create an instance of AtmUserln-
terface whenever an implementation of Atminterface is needed:

fast/10/src/test/resources/cucumber.xml
<bean class="support.AtmInterfaceFactory" factory-method="createAtmInterface"
lazy-init="true" scope="cucumber-glue" />

Finally we create a factory that creates the object we need:

fast/10/src/test/java/support/AtminterfaceFactory.java
package support;
public class AtmInterfaceFactory {
public static AtmInterface createAtmInterface() {
return new AtmUserInterface();

}

http://media.pragprog.com/titles/srjcuc/code/fast/10/src/test/java/support/AtmInterface.java
http://media.pragprog.com/titles/srjcuc/code/fast/10/src/test/java/nicebank/TellerSteps.java
http://media.pragprog.com/titles/srjcuc/code/fast/10/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/fast/10/src/test/java/support/AtmInterfaceFactory.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 252

What we’ve done is create a seam where we can make a decision about what
sort of Atminterface we want to create. At the moment we're just creating a
AtmUserinterface as before, but we can add logic to the factory to make a decision
to use a different implementation.

Varying the Implementation

Now let’s create a new implementation of Atminterface. This one won't go through
the UI but will interact directly with Teller, CashSlot, and Account:

fast/11/src/test/java/support/AtmProgrammaticinterface.java
package support;

import java.util.List;

import nicebank.Account;
import nicebank.AutomatedTeller;
import nicebank.CashSlot;

import org.springframework.beans.factory.annotation.Autowired;

public class AtmProgrammaticInterface implements AtmInterface {
@Autowired
private CashSlot cashSlot;

RuntimeException runtimeException;

public void withdrawFrom(Account account, int amount) {
try {
AutomatedTeller.withdrawFrom(cashSlot, account, amount);
} catch (RuntimeException e){
runtimeException = e;
}
}

public void type(int amount) {
// NOTHING TO BE DONE
}

public boolean isDisplaying(String message) {
// SHOULD THIS BE true OR false OR throw new NotImplementedException();?
return true;

}

We decide that when the test runs in an environment that has the variable
CUCUMBER_ENVIRONMENT defined with the value DEVELOPMENT, we want the factory
to create an instance of AtmProgrammaticinterface. If the variable has a different
value, or is not set, it will create an instance of AtmUserinterface:

http://media.pragprog.com/titles/srjcuc/code/fast/11/src/test/java/support/AtmProgrammaticInterface.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Changing Step Definitions Using Tags ® 253

fast/11/src/test/java/support/AtminterfaceFactory.java
package support;

public class AtmInterfaceFactory {

public static AtmInterface createAtmInterface() {
String cucumberEnvironment = System.getenv("CUCUMBER ENVIRONMENT");

if (cucumberEnvironment != null
&& cucumberEnvironment.equalsIgnoreCase("DEVELOPMENT")) {
return new AtmProgrammaticInterface();
} else {
return new AtmUserInterface();

}
}

Now we can modify the behavior of our steps, depending on what environment
variables we've set:

¢ *nix: export CUCUMBER_ENVIRONMENT=DEVELOPMENT
e Windows: set CUCUMBER_ENVIRONMENT=DEVELOPMENT

When we run the feature now, we’ll see that the steps don’t exercise the UI.
This technique allows us to vary the behavior of our steps depending on the
environment they’re running in, which can be useful in a CI pipeline. We can
even use our CI tool to control the behavior of our scenarios.

Changing Step Definitions Using Tags

This section builds on the techniques of the previous section to use Gherkin
tags to modify the behavior of our step definitions. The advantage of using
tags, rather than environment variables, is that the number of layers exercised
by the test is documented in the feature file for the whole team to see.

Using Tagged Hooks

In the previous sections we put a seam in place that allowed AtminterfaceFactory
to decide whether our step definitions were going to interact with the Teller
through the web Ul or its Java API. We're going to reuse that seam in this
section, but we’ll use Gherkin tags to modify the factory’s behavior, instead
of the environment variable that we used previously.

The Cucumber feature that we're going to use is tagged hooks, which we saw
in Tagged Hooks, on page 157. We'll use the tag @bypass_teller_ui to mark scenarios

that we want to run directly against the Java API, and write a tagged hook to
record that we've made this decision:

http://media.pragprog.com/titles/srjcuc/code/fast/11/src/test/java/support/AtmInterfaceFactory.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 254

fast/12/src/test/java/hooks/TaggedHooks.java
@ContextConfiguration("classpath:cucumber.xml")
public class TaggedHooks {
@Before("@bypass_teller _ui")
public void bypassTellerUI() {
AtmInterfaceFactory.bypassTellerUI();
}
}

We'll modify our factory to take account of this tag:

fast/12/src/test/java/support/AtminterfaceFactory.java
package support;

public class AtmInterfaceFactory {
private static boolean bypassTellerUI = false;

public static void reset() {
bypassTellerUI = false;

}

public static void bypassTellerUI() {
bypassTellerUI = true;
}

public static AtmInterface createAtmInterface() {
if (bypassTellerUI) {
return new AtmProgrammaticInterface();
} else {
return new AtmUserInterface();

}

And, because the factory flag is static, we need to remember to reset the flag
before we run each scenario:

fast/12/src/test/java/hooks/ResetHooks.java
public class ResetHooks {
@Before(order = 1)
public void reset() {
AtmInterfaceFactory.reset();

}
}

Now we can simply annotate selected features with our @bypass_teller_ui tag and
they will run directly against the Java API, rather than through the web UI.
We're now in a position to choose how much of the application stack each
scenario exercises just by adding tags to our feature file, without modifying

http://media.pragprog.com/titles/srjcuc/code/fast/12/src/test/java/hooks/TaggedHooks.java
http://media.pragprog.com/titles/srjcuc/code/fast/12/src/test/java/support/AtmInterfaceFactory.java
http://media.pragprog.com/titles/srjcuc/code/fast/12/src/test/java/hooks/ResetHooks.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Changing Step Definitions Using Tags ® 255

the text of the scenarios or the Java implementation of our step definitions.
This technique is a powerful tool that allows us to control the runtime of our
features while preserving their comprehensive nature and helps us build trust
that our software does what the customer expects.

Remember that Gherkin tags are simply free-form text. You can use any text
you like, so you should choose words that convey meaning to your team. In
this example we’ve used the string bypass_teller_ui, but there’s nothing magic
about these words. You may choose to use NO-Ul, DirectToTeller, or something
entirely different. It’s up to you.

Building Trust

As we saw in Three Amigos, on page 101 , the tester, the programmer, and the
product owner collaborate to discover examples that illustrate how the
application should work. These examples become scenarios, and the develop-
ment team uses them to drive out the implementation. Meanwhile, because
they are written using business domain language, they are also used by testers
and business stakeholders as automated acceptance tests. We want to run
them regularly to assure ourselves that the application still delivers the
functionality that our customers require. This helps build trust between

customers, developers, and testers that we understand each other’s needs.

We also want our scenarios to run relatively quickly so that we can run them
often and get feedback quickly. We can use the technique presented in the
previous section to focus in and exercise the part of the application where
the behavior specified by the scenario is implemented. Since the scenarios
started out exercising the whole application stack, we win the trust of our
customers. Using tags in this way makes it a better test without compromising
the specification.

Lots of scenarios will exercise the same Ul elements as others, because that’s
the only way that we can vary the paths through our application’s business
logic. So we can introduce tags to reduce the amount of application being
exercised without seeing a reduction in the coverage of our scenarios. We just
have to leave enough scenarios untagged so that every Ul element is exercised,
but this will be a fraction of all our scenarios.

By exercising the whole application when we first write our scenarios, we
build the trust that the application is correct. Once this trust has been
established, we can use tags and unit test techniques to minimize the cost
of running all our scenarios. Without trust this wouldn’t be possible, so it’s
important to remember how easy it is to lose the trust of other parts of the

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 13. Keeping Your Features Fast ® 256

organization and remain focused on delivering software that reliably delivers
value to our customers.

In this chapter, we've seen techniques that can help you control the runtime
of your scenarios. The example that we have used focused on bypassing the
UI to reduce the amount of web automation required. These techniques are
not limited to our Ul and can be used anywhere in our application. Instead
of calling a service over the network, we could use these techniques to switch
to using a local test double that could return canned data to speed up the
scenarios. Or we could switch between using a real database for our persistent
store and an in-memory data structure. The possibilities are endless. Our
executable specifications remain comprehensive and our scenarios deliver
consistently high coverage, but they continue to run quickly and deliver fast,
reliable feedback.

What We Just Learned

We began this chapter by reviewing the recommended distribution of test
depth as described by the Testing Pyramid. We then looked at the separate
concern of who the tests should be readable by, as captured by the Testing
Iceberg. This led us into a discussion of how we can keep our scenarios run-
ning quickly, while still keeping their documentation of our application com-
plete. Finally, we looked at concrete techniques that allow us to vary the
amount of the application that our steps exercise without changing the sce-
narios themselves.

Try This

The example in this chapter focused on switching between the web UI and
the business logic. Try to introduce a similar choice somewhere else in our
application. For instance, you could implement a switch that lets you replace
the asynchronous processing of the message file and TransactionProcessor with
a synchronous, in-memory test double. Or you could try to switch between
using the database and using an in-memory account balance.

When you try this, consider how the design decisions that we made earlier
affect the ease of the change. Have some of them made the introduction of a
seam harder? Would it have been better to implement the seam from the
start?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Part III

More Techniques

In this final part of the book, we’ll show you how to fine-tune your control of Cucumber.
This material will be of use whether you're running Cucumber from the command line
or through one of the many continuous integration (CI) servers.

You'll also learn techniques for using Cucumber in situations that weren’t covered in
the previous worked example. We’ll work through a simple REST web service example
that will let you practice interacting with an application that doesn’t have a user inter-
Jace. And to finish off, we’ll give you advice about how to use BDD and Cucumber
with legacy applications.

CHAPTER 14

Controlling Cucumber

We have done our best to make Cucumber work out of the box without com-
plex configuration. It doesn’t require us to provide a configuration file or pass
a lot of complex command-line options to work. However, there are times
when we want to tweak how Cucumber behaves.

Sometimes the default output can be too verbose, or perhaps we need it in a
format that’s easier to share with others. We might want to run just a subset
of scenarios or perhaps organize the location of our Gherkin features and
step definitions a little differently. In this chapter, we're going to take a closer
look at what options Cucumber has to offer and how they can help us achieve
some of these goals.

The most basic way of running Cucumber is by using the cucumber.api.cli.Main
class. We started using this class in the examples in Part I of the book. We
can control some aspects of how Cucumber behaves by passing arguments
to Main.main. We've seen some of these already, but let’s take a look at what's
available.

Cucumber’s Runtime Options

Let’s start by exploring the runtime options. Cucumber provides a --help option,
which you can invoke from the command line (you’ll need to have cucumber-
core.jar and gherkin.jar on your classpath):

$ java cucumber.api.cli.Main --help
Usage: java cucumber.api.cli.Main [options] [[FILE|DIR][:LINE[:LINE]*]]+
Options:

-g, --glue PATH
Where glue code is loaded from.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ¢ 260

-p, --plugin PLUGIN[:PATH OR_URL]
Register a plugin.
Built-in PLUGIN types: junit, html, pretty, progress, json, usage,
rerun. PLUGIN can also be a fully qualified class name, allowing
registration of 3rd party plugins.
-f, --format FORMAT[:PATH OR URL]
Deprecated. Use --plugin instead.
-t, --tags TAG_EXPRESSION
Only run scenarios tagged with tags matching TAG_EXPRESSION.
-n, --name REGEXP
Only run scenarios whose names match REGEXP.
-d, --[no-]-dry-run
Skip execution of glue code.
-m, --[no-]-monochrome
Don't colour terminal output.
-s, --[no-]-strict
Treat undefined and pending steps as errors.
--snippets
Snippet name: underscore, camelcase
-v, --version
Print version.
-h, --help
You're looking at it.
--118n LANG
List keywords for in a particular language
Run with "--118n help" to see all languages

That’s quite a few options, and it may not be obvious when each one is useful.
Let’s look at situations when you’d use some of them.

How Cucumber Finds Our Step Definitions

Cucumber calls our step definitions glue code, because they glue the feature
to the application. Hooks (@Before and @After hooks and all our tagged hooks)
are also considered to be glue code.

We use the --glue option to tell Cucumber which package(s) our glue code is
in, and if there are step definitions in them (or hooks), they get loaded. It’s
important to understand that Cucumber treats the packages you specify as
aroot from which to scan for glue code. Once you understand this, you’ll save
yourself from a common source of confusion and frustration. Let’s illustrate
that with an example. Assume we've organized our features and step defini-
tions as follows:

— features

] L— stuff.feature
L step definitions
L— widgets
L MyWidgetSteps.java

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Cucumber’s Runtime Options ® 261

We can run all the scenarios in our feature with this:

$ java cucumber.api.cli.Main -g step_definitions.widgets features

Then, one day we add a new scenario to our stuff.feature and find that we need
to create a hook:

|— features

L— stuff.feature
step_definitions

— hooks

| L MyHooks.java
L widgets
L MyWidgetSteps.java

Now when we run the same command, Cucumber tells us that all our hook
definitions are undefined. We could add the new package, step_definitions.hooks,
to our command line:

$ java cucumber.api.cli.Main -g step_definitions.widgets
-g step definitions.hooks features

That would work fine, but the command line is getting long and there’s a
more compact way of getting the same result:

$ java cucumber.api.cli.Main -g step_definitions features

Now Cucumber will search the classpath for all glue code beneath the root
package step_definitions. And if we need to add more packages beneath step_defi-
nitions, we won’'t have to change the glue option when we run Cucumber.

Running a Subset of Scenarios

As the number of features and scenarios grows, we’ll frequently run into sit-
uations where we want to run only a single (or maybe a couple) of scenarios
to get faster feedback. This might be the case if we're working on a new sce-
nario or if we've broken an existing one. Let’s take a closer look at how this
works.

Filtering with Tag Expressions
The simplest way to use the --tags option is to give it a single tag to run. Here’s
an example:

$ java cucumber.api.cli.Main --tags @focus features

This would cause Cucumber to run just the scenarios tagged with @focus. It's
quite common to temporarily tag a scenario or feature with a unique tag like
this for filtering purposes.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ® 262

In some situations, we may want a little more control over the tag filtering.
Imagine that we've made some changes to a piece of our application that
sends out emails. What if we want to run all scenarios tagged with @focus or
@email? Here’s how:

$ java cucumber.api.cli.Main --tags @focus,@email features

The comma is interpreted as a logical OR statement. It's not uncommon to
have scenarios that run fast and others that run slowly. If we've applied a tag
to the fast scenarios or features, such as @fast, we can apply a logical AND to
say we want to run scenarios that are tagged as @fast and either @focus or
@email:

$ java cucumber.api.cli.Main --tags @fast --tags @focus,@email features

Here we're using --tags twice. Each of them will be logically ANDed together.
Ideally, most of our scenarios are fast, and only a few are slow. So, instead
of tagging most of our scenarios with @fast, it makes more sense to tag the

few that are slow with @slow. If we want to run the scenarios that are not slow
(and at the same time @focus or @email), we can use negation (the tilde):

$ java cucumber.api.cli.Main --tags ~@slow --tags @focus,@email features

Let’s look at another way to run a subset of scenarios—line numbers.

Filtering on Lines

You don’t need to tag your scenarios or features to run just a subset of them.
Cucumber also provides a convenient way to specify the line number of the
scenario you want to run. As you've probably noticed, Cucumber prints out
the location of a feature file with the line number in error messages.

If you want to rerun the scenario that failed, just select the text and paste it:
$ java cucumber.api.cli.Main features/something.feature:45

If the feature file has more than one scenario, it will run only the one on line
45. The line number can be anywhere in the feature, ranging from a comment
line to the last step (including a step table or doc string).

The colon notation also lets you specify several line numbers, allowing you
to specify several scenarios to run:

$ cucumber features/something.feature:45:89:107

Filtering on Names

If tag filtering doesn’t meet your needs, you can filter scenarios based on
name. Say, you want to run all scenarios that have the text logout in their

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Cucumber’s Runtime Options ® 263

name and that they’re scattered around several feature files without a partic-
ular tag to identify them. Running them is just a matter of the following:

$ java cucumber.api.cli.Main --name logout

The argument to the --name option is a regular expression, so you can use the
usual special characters.

Changing Cucumber’s Output

Cucumber’s default behavior is to output results using the progress plugin,
which produces a minimal report with a single character per step (as we've
seen already):

$ java cucumber.api.cli.Main features
U--..F..

Each character represents the status of each step:

* . means passing.

¢ U means undefined.

e - means skipped (or a Scenario Outline step).
e F means failing.

Cucumber can also produce a more verbose report that’s similar to the
Gherkin source text—with a little extra information such as colors, locations
of matched step definitions, highlighting of arguments, and so on—using the
pretty plugin:

$ java cucumber.api.cli.Main --plugin pretty features

Cucumber also has built-in plugins that output html, json, and junit. The latter
is handy if you're running Cucumber in a CI environment since most CI
servers know how to interpret JUnit reports. More on that in a minute.

Other Plugins

In addition to the plugins we've seen so far, Cucumber bundles a few that
create output that isn’t meant to be read as a report of the run. These plugins
serve as a development aid.

The usage plugin lists all the step definitions in our project, as well as the
steps that are using it. It shows you unused step definitions, and it sorts the
step definitions by their average execution time. The output from the usage
plugin is useful for quickly finding slow parts in your code but also a great
way to get an overview of your step definitions.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ® 264

Finally, there’s the rerun plugin. This is a special plugin that creates output
like this:

$ java cucumber.api.cli.Main --plugin rerun features
features/one.feature:367 features/another.feature:91:117

Does this look familiar? This is the same kind of information that you give to
Cucumber when you want to run a subset of your scenarios using line filtering
(which we described earlier).

If all scenarios are passing, the rerun plugin doesn’t output anything at all.
However, if one or more scenarios fail, it will output their location so that you
can copy and paste the output to rerun just those scenarios. Being able to
do this saves you a lot of time when fixing broken scenarios.

Outputting to File and Using Multiple Output Plugins

By default, all bundled plugins will print their output to STDOUT. So, what do
you do if you want to see the usual pretty output but also have an html and
rerun report? This is where you have to tell Cucumber to direct the output to
a file instead of STDOUT. Here’s an example:

$ java cucumber.api.cli.Main -p pretty -p html:cukes.html
-p rerun:rerun.txt features

This tells Cucumber to write the HTML report to the file cukes.html and the
rerun output to rerun.txt, and display the pretty plugin’s output in the console.

Miscellaneous Options

There are a couple of other options that we feel are worth mentioning.

Snippet Name Format

The format of your variable names can cause a lot of friction in some develop-
ment teams, so Cucumber allows you to choose whether it generates snippets
with CamelCase’ or underscores® method names (the default is underscores):

snake case
$ java cucumber.api.cli.Main --snippets underscore features

CamelCase
$ java cucumber.api.cli.Main --snippets camelcase features

1. http://en.wikipedia.org/wiki/CamelCase

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/Snake_case
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Overriding Cucumber Options ® 265

Color or Monochrome Output

By default, the bundled plugins will produce colored output to help emphasize
the outcome of each step. This is done by inserting control characters into
the output, but sometimes this is not what you want. Simply supply the
--monochrome option and the output will be plain text.

Overriding Cucumber Options

There are several ways you can set the options used to control how Cucumber
runs your features. Learning how they interact is useful if you want Cucumber
to behave differently depending on how you invoke it. Let’s look at the various
ways you can supply options to Cucumber and how they interact.

How Cucumber Overrides

Cucumber options initially get set by the arguments you provide to your
runner—either directly on the command line for cucumber.api.cli.Main or using a
@CucumberOptions annotation for the JUnit or TestNG runners.

Cucumber then looks to see if any option overrides have been provided. It
looks in the following three places:

1. The OS environment variable CUCUMBER_OPTIONS
2. The Java system property cucumber.options
3. The Java resource bundle cucumber.properties with a cucumber.options property

Overrides are provided in a variable (or property) called cucumber.options or
CUCUMBER_OPTIONS. Cucumber searches for this variable in the order shown
here and uses the first value it finds. It will not continue to search other
locations once it has found an override.

Except for the plugin argument, values found in the override replace any values
already set. Arguments not mentioned in the override will not affect any value
already supplied for that argument.

The plugin option is handled slightly differently. The list of plugins specified
by the override is combined with any plugins already specified. This can cause
a problem if Cucumber ends up with more than one plugin trying to output
to STDOUT, in which case you’ll get this error: Only one plugin can use STDOUT.

The plugin option is also the only one for which Cucumber provides a default.
If no plugin is specified, then Cucumber will always use the progress plugin to
output to STDOUT.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ® 266

Formatting the Override

When overriding Cucumber’s options, use exactly the same format as you
did on the command line in Cucumber’s Runtime Options, on page 259. For

example:

$ java cucumber.api.cli.Main -g step_definitions features

can be rewritten as a Java system property:

$ java -Dcucumber.options="-g step_definitions features" cucumber.api.cli.Main

This could also be set in an OS environment variable:

export CUCUMBER OPTIONS="-g step definitions features"

Or you might choose to place it in the cucumber.properties resource bundle:
cucumber.options=-g step definitions features

As you can see, to override options simply copy what you would have written
on the command line.

Automating Cucumber

Throughout this book we've been running Cucumber from the command line
using Maven and JUnit. Although this is very common, you may use other
unit test or build frameworks. In the following sections, we’ll look at some of
the most popular alternatives. Even if you choose to use another framework
entirely, the examples will give you the understanding you’ll need to integrate
Cucumber with your environment.

Cucumber Integration with Unit Test Frameworks

We've seen how to invoke Cucumber from the command line, but most of us
will be using an existing framework to run our automated unit tests.
Cucumber integrates with JUnit® and TestNG* so that we can run our scenar-
ios using the same tooling as our unit tests. Let's take a look at how
Cucumber integrates with each framework.

Running Cucumber from JUnit

Cucumber ships with a JUnit runner cucumber.api.junit.Cucumber. To get JUnit to
run our scenarios, we'll create a simple JUnit test class like this (of course
the name of the class is irrelevant):

3. http://junit.org

g/doc/index.html

http://junit.org
http://testng.org/doc/index.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Automating Cucumber ® 267

import cucumber.api.junit.Cucumber;
import org.junit.runner.RunWith;

@RunWith(Cucumber.class)
public class RunCukesTest {
}

This class should not contain any code. All it does is tell JUnit to invoke the
Cucumber JUnit runner. It will search for feature files and run them, providing
the output back to JUnit in a format that it understands. As always, we can
control how Cucumber runs by annotating the test class with the options
that we've been discussing. For example:

import cucumber.api.CucumberOptions;

import cucumber.api.junit.Cucumber;
import org.junit.runner.RunWith;

@RunWith(Cucumber.class)

@CucumberOptions(plugin={"pretty", "html:out.html"}, glue="nicebank",
features ="src/test/resources/nicebank")

public class RunCukesTest {

}

Remember that the options provided in the @CucumberOptions annotation may
be overridden in all the ways described previously in this chapter.

Running Cucumber from TestNG

TestNG support was added to the Cucumber project in 2013, and it’s very
similar to JUnit integration:

import cucumber.api.CucumberOptions;
import cucumber.api.testng.AbstractTestNGCucumberTests;

@CucumberOptions(plugin = "json:target/cucumber-report.json")
public class RunCukesTest extends AbstractTestNGCucumberTests {
}

The TestNG runner uses the same @CucumberOptions annotation as the JUnit
runner to control Cucumber.

Using the @CucumberOptions Annotation

Often, you'll be running Cucumber using JUnit or TestNG, so you'll want to
supply your options to the runner classes using an @CucumberOptions annotation.
Although the options that you can set are exactly the same, the structure is
different and could do with some explanation.

The simple example that we've been using so far is easy to put into a
@CucumberOptions annotation:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ® 268

@CucumberOptions(glue="step definitions", features="features")

Supplying Multiple Values for a Property
If you want to specify multiple values for a property, you can use a list. Here
we're specifying a list of two plugins we want to use:

@CucumberOptions(glue="step definitions", features="features",
plugin={"pretty", "html:out"})

You can use lists of strings for features, glue, plugin, and tags.
Snippets

The snippets option is typed, so you’'ll need to use one of the constants provided,
SnippetType.CAMELCASE or SnippetType.UNDERSCORE:

@CucumberOptions(glue="step definitions", features ="features",
snippets=SnippetType.CAMELCASE)

Remember: You must add import cucumber.api.SnippetType; to your class.

Tag Expressions

To run all scenarios tagged with a specific tag, use the following:
@CucumberOptions(tags="@TagA", glue="step definitions", features ="features")

Tag terms can still be combined to form logical expressions as described
earlier. So, to run all our scenarios tagged with either @TagA or @TagB, we’d
write:

@CucumberOptions(tags="@TagA,@TagB", glue="step definitions", features ="features")

To run all scenarios tagged with both @TagA and @TagB, we’d write:

@CucumberOptions(tags={"@TagA", "@TagB"},
glue="step definitions", features ="features")

We can use the negation (NOT) operator (~) as well.

Running Cucumber from Build Tools

As part of your development environment you’ll have set up an automated
build script of some sort. In the old days, people might have used make,’ but
JVM developers are more likely to be using Ant,® Maven,” or Gradle.® We'll
take a look at how Ant and Maven integrate with Cucumber.

http://www.gnu.org/software/make/

0N o O
=
=
[=
O
=
QU
>
o
QU
=
QU
(@]
=
©
<)
=
0

http://www.gnu.org/software/make/
http://ant.apache.org
http://maven.apache.org
http://www.gradle.org
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Automating Cucumber ® 269

Running Cucumber from Maven

The simplest way for Maven to run your scenarios is to run them at the same
time as your unit tests. You'll have already created an empty test class as
shown in Cucumber Integration with Unit Test Frameworks, on page 266. If you

were already running unit tests, there’s nothing more to do—your scenarios
would be run by the Surefire’ plugin that ships with Maven.

Of course, the trouble with running your scenarios as unit tests is that they
may become indistinguishable from unit tests. Occasionally you'll want to
run scenarios independently of your unit tests. There are ways of doing this
with Maven, one of which (using the Maven Failsafe'® plugin) is described in
detail in a blog by Sébastien Le Callonnec.''

Another way of separating your unit tests from your scenarios is to run them
explicitly using cucumber.api.cli.Main. To do this within Maven, you'd use the exec-
maven-plugin'® (an example of which was posted in the Cucumber mailing
list"®).

<build>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<phase>integration-test</phase>
<goals>
<goal>java</goal>
</goals>
<configuration>
<classpathScope>test</classpathScope>
<mainClass>cucumber.cli.Main</mainClass>
<arguments>
<argument>--plugin</argument>
<argument>pretty</argument>
<argument>--glue</argument>
<argument>nicebank</argument>
<argument>src/test/resources/nicebank</argument>
</arguments>
</configuration>

9. http://maven.apache.org/surefire/maven-surefire-plugin/

10. http://maven.apache.org/surefire/maven-failsafe-plugin/

11. http://www.weblogism.com/item/334/integration-tests-with-cucumber-selenium-and-maven

12. http://mojo.codehaus.org/exec-maven-plugin/

13. https://groups.google.com/forum/#!topic/cukes/ye5]JoTFgfs

http://maven.apache.org/surefire/maven-surefire-plugin/
http://maven.apache.org/surefire/maven-failsafe-plugin/
http://www.weblogism.com/item/334/integration-tests-with-cucumber-selenium-and-maven
http://mojo.codehaus.org/exec-maven-plugin/
https://groups.google.com/forum/#!topic/cukes/ye5JJoTFqfs
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ¢ 270

</execution>
</executions>
</plugin>
</plugins>
</build>

Maven is a powerful piece of software, and fully describing its functionality
is beyond the scope of this book. The examples in this section demonstrated
some approaches for using Cucumber from Maven, but there are other ways
of achieving similar results.

Running Cucumber from Ant

Ant is an older build tool, but it’s still very common. It doesn’t ship with
dependency management tooling, so many people use it in conjunction with
Ivy,'* which can use the Maven infrastructure to manage dependencies.

Using Test Runners
JUnit" and TestNG'® Ant tasks are available that will run your scenarios via
the test runners described in Cucumber Integration with Unit Test Frameworles,

options that are defined as annotations on the test class or passed to the Ant
task as system properties (using the nested sysproperty tag). Here’s an example:
<junit>

<sysproperty key="cucumber.options" value="plugin='pretty'" />
</junit>

Using cucumber.api.cli.Main
You can also run the scenarios using the java task and the cucumber.api.cli.Main
runner, passing the options directly as command-line arguments:

<target name="runcukes" depends="compile-test">
<java classname="cucumber.cli.Main" fork="true"
failonerror="false"
resultproperty="cucumber.exitstatus">
<classpath refid="classpath"/>

<arg value="--plugin"/>
<arg value="pretty"/>
<arg value="--glue"/>

<arg value="nicebank"/>
<arg value="src/test/resources"/>
</java>

14. http://ant.apache.org/ivy/

http://ant.apache.org/ivy/
https://ant.apache.org/manual/Tasks/junit.html
http://testng.org/doc/ant.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Automating Cucumber ¢ 271

<fail message="Cucumber failed">
<condition>
<not>
<equals argl="${cucumber.exitstatus}" arg2="0"/>
</not>
</condition>
</fail>
</target>

Now that you know how to run Cucumber both by hand and from Ant and
Maven, you can also make your CI server run it. Cucumber exits with a status
code of 1 if any scenarios fail, so your CI server can properly detect failure.

Running Cucumber in Continuous Integration

Many teams set up their continuous integration'” (CI) server to run Cucumber
every time someone shares changes with the rest of the team. Since it’s a
command-line tool, you don’t have to do anything fancy—just plop the build
command you're using into the CI project’s configuration.

You may want to use slightly different command-line options for CI than you
use on your own workstation. You can do this by providing different options,
as described earlier.

Being Strict
It's common to have missing or pending steps while we're working on a new

scenario. Some teams strive to keep the mainline (trunk) of the source
repository pristine, without any pending or missing steps.

CI systems detect failure by inspecting the exit status of the processes they
are running, and by default Cucumber exits with an error status (a nonzero
value) only if there are one or more failing steps. If you're running Cucumber
in a CI environment, you may want to set it up to fail if anyone checks in
missing or pending steps.

If you pass the --strict option to cucumber, it will exit with a nonzero value if there
are any missing or pending steps as well as failing ones. You can inspect the
exit status after running Cucumber:

0S X or Linux
$ echo $?

Windows
$ echo %ERRORLEVEL%

17. http://martinfowler.com/articles/continuousintegration.html

http://martinfowler.com/articles/continuousIntegration.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 14. Controlling Cucumber ¢ 272

Sharing Reports

Earlier in this chapter we saw how to use the --plugin option to change
Cucumber’s output. If we pass --plugin junit:JUNIT_DIR to Cucumber, we can con-
figure our CI server to pick up those reports from JUNIT DIR and analyze them.
Some CI servers can generate a trend chart showing how healthy our build
stays over time. This is a great way to get an indicator of whether the project
is improving or decaying.

We can also pass the -p html:HTML_FILE to get a full HTML report of the results.
This is particularly handy if we're using a browser automation tool, because
we can embed screenshots of the browser right into the HTML report, as we
did in Building the User Interface, on page 161.

What We Just Learned

Cucumber has a rich set of options that give us full control over how it
behaves. We now know how to choose which features and/or scenarios to
run, based on tags, names, and line numbers. Using the special rerun plugin,
we can even choose to only run scenarios that failed the last time the features
were executed. A wealth of other plugins ship with Cucumber, and we've
learned how to control their output as well as how to use several of them at
the same time.

We've looked at some of the other options that control Cucumber, especially
the glue option (which gives us the freedom to structure our solution in the
way that we want) and the snippets option (which gives us control of the format-
ting of our snippet names).

We've also looked at some of the unit test and build frameworks that
Cucumber integrates with, so that you can use it in your project today. And
with the knowledge of how you can use your OS or your build environment
to override Cucumber options, you have the power to customize what
Cucumber does in a flexible way.

Try This
Here are some exercises you can try:

e Modify one of the examples from Part II to use cucumber.api.cliMain instead
of the JUnit integration.

e How many different ways can you find to get the Cucumber version
number? Think about all the places you could provide a --version override.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 15

Working with a REST Web Service

Sometimes the user of the system we're developing isn’t a human being but
another computer program. For systems like these, the user interface is often
a REST' web service. To automate scenarios against it, we need to make our
Cucumber step definitions talk to the web service as though they were a
regular client application.

Your application doesn’t have to be written in Java (or any other JVM lan-
guage) in order to be developed using Cucumber. Applications written in
Ruby, .NET, PHP, or any other programming language can be tested by
starting your application before Cucumber runs and then having Cucumber
talk to it using an HTTP client library.

We'll be dealing with a very simple REST API for storing and retrieving fruit.
It’s probably not the most useful system in the world, but it should allow us
to illustrate the fundamentals of REST and Cucumber. We're going to build
our web service from scratch. Here’s our first scenario:

rest_web_services/00/src/test/resources/fruit_list.feature
Feature: Fruit list
To make a great smoothie, I need some fruit
Scenario: List fruit
Given the system knows about the following fruit:
name	color
banana	yellow
strawberry	red
When the client requests GET /fruits
Then the response should be JSON:

[{"name": "banana", "color": "yellow"},
{"name": "strawberry", "color": "red"} |
1. http://en.wikipedia.org/wiki/Representational state_transfer

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/00/src/test/resources/fruit_list.feature
http://en.wikipedia.org/wiki/Representational_state_transfer
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 15. Working with a REST Web Service ¢ 274

In the rest of this section, we’ll implement this feature. We’ll see how
Cucumber can issue HTTP requests to our application.

Structure Your Step Definitions

When we run our List fruit feature with mvn clean test, we’ll see the usual snippets:

@Given("~the system knows about the following fruit:$")
public void theSystemKnowsAboutTheFollowingFruit(DataTable argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
// For automatic transformation, change DataTable to one of
// List<YourType>, List<List<E>>, List<Map<K,V>> or Map<K,V>.
// E,K,V must be a scalar (String, Integer, Date, enum etc)
throw new PendingException();

}

@when("~the client requests GET /fruits$")

public void theClientRequestsGETFruits() throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("~the response should be JSON:$")

public void theResponseShouldBeJSON(String argl) throws Throwable {
// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Before we go ahead and paste the previous snippets into a Java file and fill
in the blanks, let’s look at each one. The first snippet is a domain-specific
step definition—it’s about our fruit system. The last two seem like more gen-
eral-purpose step definitions for HTTP REST operations. As discussed in
Organizing the Code, on page 134, we'll put each of them in a file that describes
thedomalnconcepttheyrerelated to. This makes it easier in the future to
find our step definitions. Paste the first one in an src/test/java/fruit/FruitSteps.java

file and the last two in an src/test/java/fruit/RestSteps.java file.
Now when we run mvn clean test, our scenario is marked as Pending.

What should we do to make the first step pass? We need some way for
Cucumber to tell our web service—which is going to be running in a different
process from the web service—what fruits we have available. There are many
ways to make this happen, but the essence of it is that we need to make our
application’s data store accessible from a different process.

One option would be to expose a method over our HTTP API that allowed a
client (like our Cucumber scenarios) to add new fruit to the system with an
HTTP POST. POSTing to a special URL to reset a database is not an uncommon

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

Storing Some Fruit ® 275

approach. If you do this, make sure that the URL is disabled in your produc-
tion environment. Another route would be to build our application to use a
data store such as MySQL or MongoDB and use a database library to insert
data. If we did that, our step definition could put fruit in the system by talking
directly to the same database as our web application.

Storing Some Fruit

For the sake of simplicity, let's use the second simplest data store after
memory—a file. Let’s get our step definition to write out the fruit information
to a file:

rest_web_services/02/src/test/java/fruit/FruitSteps.java
package fruit;

- import com.google.gson.Gson;

import cucumber.api.java.en.*;

- import java.io.PrintWriter;
- import java.util.List;

-}

public class FruitSteps {
@Given("~the system knows about the following fruit:$")
public void theSystemKnowsAboutTheFollowingFruit(List<Fruit> fruitList)
throws Throwable {

Gson gson = new Gson();
PrintWriter writer = new PrintWriter("fruit.json", "UTF-8");
writer.println(gson.toJson(fruitlList));
writer.close();

There are a couple of things that are new in this step definition. First, you’ll
see that we've changed the signature of the step definition to accept List<Fruit>
(on line 13). This means that Cucumber will try to convert each row of the
data table to a Fruit object (matching the column headings to members of the
Fruit class).

We're also using the Gson library from Google for the first time. This is a
handy utility that does all the hard work of converting objects to and from
JSON. You can see from our use of it (on line 16) that it can be trivially simple
to use. We'll use some more advanced features of Gson later, but for now all
we need to do is add a dependency to pom.xml:

rest_web_services/02/pom.xml

<dependency>
<groupId>com.google.code.gson</groupId>

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/02/src/test/java/fruit/FruitSteps.java
http://media.pragprog.com/titles/srjcuc/code/rest_web_services/02/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 15. Working with a REST Web Service ¢ 276

<artifactId>gson</artifactId>
<version>${gson.version}</version>
</dependency>

The last thing we need to do to get the first step to pass is to define the Fruit
class:

rest_web_services/02/src/main/java/fruit/Fruit.java
package fruit;

public class Fruit {
private String name;
private String color;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getColor() {
return color;

}

public void setColor(String color) {
this.color = color;
}
}

Now when we run mvn clean test the first step passes and the file fruit.json is
created in the project root:

rest_web_services/02/fruit.json
[{"name":"banana","color":"yellow"},{"name":"strawberry","color":"red"}]

The contents of the file are, as you’d expect, a JSON representation of the
data defined in the first step of our scenario. Next we need to create a web
server for our step definitions to talk to.

Building a Skeleton Web Server

Now it’s time to build a walking skeleton that we can “hang” our functionality
on. Initially our web server needs to be able to respond to a simple request
so that we can be sure our scenarios can talk to the server successfully. This
allows us to check that whatever frameworks we choose to use are working
for us and try different frameworks if theyre not. By doing this early in the
project we avoid nasty surprises later.

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/02/src/main/java/fruit/Fruit.java
http://media.pragprog.com/titles/srjcuc/code/rest_web_services/02/fruit.json
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Building a Skeleton Web Server ¢ 277

Creating the Server with Jersey

We're going to implement our little REST web service with the Jersey” web
framework because it makes it so easy to create a very simple web service
from scratch. If we did this without using a web framework, the feature and
step definition files would be exactly the same, but there would be much more
application code for us to include in the book. Let’s start by adding the
dependencies we’ll need to pom.xml:

rest_web_services/03/pom.xml
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>com.sun.jersey</groupIld>
<artifactId>jersey-server</artifactId>
<version>${jersey.version}</version>
</dependency>
<dependency>
<groupId>com.sun.jersey</groupIld>
<artifactId>jersey-client</artifactId>
<version>${jersey.version}</version>
</dependency>
<dependency>
<groupId>com.sun.jersey</groupId>
<artifactId>jersey-json</artifactId>
<version>${jersey.version}</version>
</dependency>

We need jetty-webapp to run our web server, jersey-client to deploy a JAX-RS web
service, jersey-client to let our step definitions talk to the web service, and jersey-
json for automatic conversion of our domain objects to JSON.

With that out of the way, we can get on with building our web server. Create
a file named FruitServerjava in the src/mainjjava/fruit directory. Add the following
code to that file:

2. https://jersey.java.net/

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/03/pom.xml
https://jersey.java.net/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Line 1

10

20

25

30

35

Chapter 15. Working with a REST Web Service ¢ 278

rest_web_services/03/src/main/java/fruit/FruitServer.java
package fruit;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHolder;

import com.sun.jersey.spi.container.servlet.ServletContainer;

public class FruitServer

{

private final Server server;

public FruitServer(int port) {
ServletHolder sh = new ServletHolder(ServletContainer.class);
sh.setInitParameter("com.sun. jersey.config.property.resourceConfigClass",

"com.sun. jersey.api.core.PackagesResourceConfig");
sh.setInitParameter("com.sun. jersey.config.property.packages", "fruit");
sh.setInitParameter("com.sun.jersey.api.json.P0JOMappingFeature", "true");
server = new Server(port);
ServletContextHandler context =
new ServletContextHandler(server, "/", ServletContextHandler.SESSIONS);

context.addServlet(sh, "/");

}

public void start() throws Exception {
server.start();
System.out.println("Listening on " + server.getURI());

}

public void stop() throws Exception {
server.stop();
System.out.println("Server shutdown");

}

public static void main(String[] args) throws Exception {
new FruitServer(9988).start();

}

}

This is very similar to our AtmServer from the ATM example, but this time
instead of adding servlets to the app explicitly, we tell it to look for services
in the fruit package (on line 17). This is followed by setting the property
POJOMappingFeature to true (on line 18), which tells Jersey to automatically convert
Plain Old Java Objects (POJO) to JSON whenever possible.

We'll create hooks (in exactly the same way as in the ATM example) to start
and stop the web service in src/test/java/hooks/ServerHooks.java. And we’ll need to

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/03/src/main/java/fruit/FruitServer.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Building a Skeleton Web Server ¢ 279

delete the fruitjson before each scenario, using a hook defined in
src/test/java/hooks/ResetHooks.java.

Now it’s time to get the second step to pass, which will need us to issue a
GET request:

rest_web_services/03/src/test/java/fruit/RestSteps.java
@when("~the client requests GET /fruits$")
public void theClientRequestsGETFruits() throws Throwable {

try {
Client client = Client.create();

WebResource webResource = client
.resource("http://localhost:" + ServerHooks.PORT + "/fruits");

response = webResource.type("application/json")
.get(ClientResponse.class);
} catch (RuntimeException r) {
throw r;
} catch (Exception e) {
System.out.println(
e.printStackTrace()

"Exception caught");

’

}

Assert.assertEquals("Did not receive OK response: ",
HttpURLConnection.HTTP_OK, response.getStatus());
}

Unfortunately, when we run mvn clean test the second step fails with a set of
stack traces and a failed assertion that says expected:<200> but was:<500>. This
HTTP status code indicates a server error, and looking at the beginning of
the stack trace gives us a clue as to what went wrong: The ResourceConfig instance
does not contain any root resource classes. It's not a great error message, but what
Jetty is trying to tell us is that we have created a server without any services.
In the next section we’ll see just how easy it is to add a service.

Creating the Service Using JAX-RS

Creating the service using JAX-RS® is really easy. Take a look at this simple
implementation of FruitService:

rest_web_services/04/src/main/java/fruit/FruitService.java
package fruit;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

3. https://jax-rs-spec.java.net/

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/03/src/test/java/fruit/RestSteps.java
http://media.pragprog.com/titles/srjcuc/code/rest_web_services/04/src/main/java/fruit/FruitService.java
https://jax-rs-spec.java.net/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 15. Working with a REST Web Service ¢ 280

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import java.util.List;
import java.util.ArrayList;

@Path("/")
public class FruitService {
@GET
@Path("/fruits")
@Produces (MediaType.APPLICATION JSON)
public Fruit[] getAllFruits() {
List<Fruit> fruits = new ArraylList<Fruit>();
return fruits.toArray(new Fruit[]1{});

}

The @GET annotation indicates that this method should be called when a GET
request is sent to the URI described by the @Path annotation. Finally, the
@Produces annotation specifies what format of data this service can provide.
JAX-RS allows you to create much more complex services than this one, but
that’s outside the scope of this book, so take a look at the documentation.*

At the end of theClientRequestsGETFruits, you’ll notice that we're asserting that the
GET request returns an HTTP status of OK. This is similar to when we check
the balance of the account during the deposit step of the ATM example—it
helps us validate that the step actually is doing what we expect.

Run mvn clean test one more time and you’ll see that the second step is now
passing, which means that our web service is returning a status of OK. Just
one more step to go!

The Fruits of Our Labor

Now it’s time to get the third, and final, step of the scenario to pass. Before
changing anything in our service, we should implement the step so that it
compares the JSON we receive to the JSON we expect. Then, once we have
moved our third step from Pending to Failing, it's time to write the code in
the service and get the scenario to pass.

Putting It All Together

JSON is generally represented as text, so it is really easy to compare our
expected JSON by comparing the String that we expect to the String that we
receive from our web service:

https://jersey.java.net/documentation/latest/user-guide.html#d0e1657
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

The Fruits of Our Labor ¢ 281

rest_web_services/05/src/test/java/fruit/RestSteps.java
@Then("~the response should be JSON:$")
public void theResponseShouldBelSON(String jsonExpected) throws Throwable {
Assert.assertEquals("Incorrect JSON representation.",
jsonExpected, response.getEntity(String.class));

}
When we run mvn clean test, the scenario fails as expected with an error:

Scenario: List fruit
Given the system knows about the following fruit:
When the client requests GET /fruits
Then the response should be JSON:

[
{"name": "banana", "color": "yellow"},
{"name": "strawberry", "color": "red"}
1

org.junit.ComparisonFailure: Incorrect JSON representation. expected:<[[
{"name": "banana", "color": "yellow"},
{"name": "strawberry", "color": "red"}
11> but was:<[[]]>
at org.junit.Assert.assertEquals(Assert.java:115)
at RestSteps.theResponseShouldBeJSON(RestSteps.java:44)
at *.Then the response should be JSON:(fruit list.feature:11)

1 Scenarios (1 failed)
3 Steps (1 failed, 2 passed)

This is telling us that our service is returning an empty list, which should
come as no surprise, because that's what we’re creating in our current
implementation. What we need to do is read fruitjson and return that list of
fruit to our caller:

rest_web_services/06/src/main/java/fruit/FruitService.java

private List<Fruit> getFruitsFromFile() {
String fruitJson = readJsonFruitFile();
return buildListFromJson(fruitJson);

}

private String readJsonFruitFile() {
try {
java.nio.file.Path path = FileSystems.getDefault().getPath("fruit.json");
return new String(Files.readAllBytes(path));

}

catch (IOException ioe) {
return "[]";

}

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/05/src/test/java/fruit/RestSteps.java
http://media.pragprog.com/titles/srjcuc/code/rest_web_services/06/src/main/java/fruit/FruitService.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 15. Working with a REST Web Service ¢ 282

private List<Fruit> buildListFromJson(String fruitJson) {
final TypeToken<List<Fruit>> token = new TypeToken<List<Fruit>>() {};
final Type type = token.getType();
final Gson gson = new Gson();

return gson.fromJson(fruitJson, type);

}

The first method, getFruitsfromFile, simply delegates to the two other methods.
The next method, readjsonFruitFile, opens fruit.json and reads its contents. If the
file doesn’t exist, then it returns "[]", the empty list. The third method,
buildListFrom)son, takes a JSON representation and uses Gson to construct a
List<Fruit> from it. Because of the way Java handles generic types, we need to
use Gson'’s TypeToken to tell Gson how to turn the JSON into Java objects. We
won’t go into the details here, but you can read about it in the Gson documen-
tation.”

The third step is still failing. In the next section we’ll find out why.

It's always important to ensure that the scenarios are readable by the stakeholders,
so you should consider who your stakeholders actually are. If the scenarios are only
going to be read by other programmers writing a client for the REST interface, it may
be fine to expose technical details. For systems that involve collaboration with non-
technical stakeholders, you should use nontechnical terms.

Only Compare Strings if You Have To

The scenario is failing simply because the actual JSON has a different layout
than the JSON from our scenario. Of course, we could try to make the scenario
pass by making the JSON in our scenario match that returned by our web
service, but that would make it very hard to read. Remember, our features
are supposed to serve as documentation too, not only automated tests. In
any case, it’s the data that’s significant in this scenario, not the layout. What
we really want to do is to parse the two JSON strings into an object structure
and compare them. This is just a small change:

5. https://sites.google.com/site/gson/gson-user-guide#TOC-Collections-Limitations

report erratum -« discuss

https://sites.google.com/site/gson/gson-user-guide#TOC-Collections-Limitations
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

What We Just Learned ® 283

rest_web_services/07/src/test/java/fruit/RestSteps.java

@Then("~the response should be JSON:$")

public void theResponseShouldBeJSON(String jsonExpected) throws Throwable {
JsonParser parser = new JsonParser();
Assert.assertEquals("Unexpected JSON.",

parser.parse(jsonExpected), parser.parse(response.getEntity(String.class)));

}
Finally, our first REST feature is passing!

The lesson we learn in this chapter about parsing both strings into JSON documents
before comparing them is a useful one to remember for other situations. When you
compare two strings in a test, you're often leaving yourself open to brittle failures
that aren’t telling you anything useful. Parsing the string from the Gherkin feature
into more meaningful data can often mean you have more robust tests that fail only
when they should.

U
What We Just Learned

When developing a REST web service with Cucumber, we need to keep in
mind that the service is running in a different process than Cucumber. This
means that we need to remember to start the service before we can run our
features.

Although our example used the Jersey JAX-RS library, the techniques used
in this chapter can be applied to any other web services technology. And
because we're accessing the service’s functionality through its web interface,
the service can be written in any language—Cucumber doesn’t care what
language the application you're developing is written in, as long as there’s an
API that it can talk to.

Often our services will “talk” in JSON, and this may surface in our features.
You can make this easier to read by using indented JSON documents in your
scenarios, as long as you ignore whitespace when you compare them to doc-
uments produced by your API.

report erratum -« discuss

http://media.pragprog.com/titles/srjcuc/code/rest_web_services/07/src/test/java/fruit/RestSteps.java
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 15. Working with a REST Web Service ¢ 284

Try This

Our Fruit application is very simple. It doesn’t provide an API to store fruit,
and the file-based database is not complex. Here are some new features you
can try to express with Cucumber and then implement:

e Add a scenario that starts with one fruit in the database, adds another
one via an HTTP POST, and then verifies that you now have two fruit.

e Refactor your code to use a proper database, like MySQL or MongoDB,
to store fruit. Make sure all scenarios are still passing and that you can
run each of them individually. Hint: Remember to make sure each scenario
starts with a blank database.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

CHAPTER 16

Working with Legacy Applications

In the real world, you don’t always get the luxury of working on shiny new
code. Reading a book like this can be a little bit frustrating because the
examples all deal with nice, simple problems, usually in a new codebase.

We all know that software development isn’t really like that.

Even in the best teams we’ve worked on, there have always been a few dark
and ugly corners of the codebase where nobody wanted to go. People would
sometimes disappear into there for days at a time and emerge exhausted and
confused, blinking in the bright sunlight.

Like an old abandoned mine, those areas of the codebase are dangerous. The
code is fragile, and the slightest change can cause other parts of the code to
collapse and stop working. Everyone knows this, and that’s why people are
reluctant to go in there; it’s stressful work.

If you had to go down an old mine tunnel, what would you do to make it safer?
You’d probably build some scaffolding to hold the roof of the tunnel up so
that it didn’t collapse—just enough to help you get in and get out again
safely.

You can think of automated tests like this. When you have to make a change
to an area of the code that you know is brittle, it’s scary. What is the thing
that you're most afraid of?

Breaking something.

Automated tests can help you keep this fear at bay. If you make a change
and other parts of the code start to collapse, the tests will give you a warning
while you still have a chance to do something to correct it. But what if you
don’t have any tests?

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 16. Working with Legacy Applications ® 286

Even if you have recognized that automated testing can help your team write
better code, the prospect of adding tests to a large legacy codebase can seem
overwhelming. In this chapter, we’ll show you some simple techniques you
can use to help to solve the problem gradually, giving you added benefit each
step of the way.

This isn’t a technical chapter, but it will give you some useful techniques and
encouragement if you're facing this situation.

Let’s start with the first tool you’ll need when you enter the mine: a flashlight.

Characterization Tests

In his excellent book Working Effectively with Legacy Code [Fea04], Michael

Feathers talks about two different types of tests, which he calls specification
tests and characterization tests.

Specification tests are the ones we've been talking about throughout this
book. They check that the code does what it's supposed to. Ideally you write
them before you write the code itself and use them as a guide to help you get
the code into the right shape.

Characterization tests are different. You can think of them more like a science
experiment, where you test the properties of a mysterious substance by boiling
it or mixing it with other substances to see how it reacts. With characterization
tests, the aim is just to understand what the system currently does.

Characterization tests apply perfectly to legacy code that has limited or no
tests and where the code is hard to read and understand. Here is our
approach, adapted from Michael Feathers’s book, for creating a Cucumber
characterization test:

1. Write a scenario that exercises some interesting—but mysterious—
behavior of your system.

2. Write a Then step that you know will fail.

3. Wire up the step definitions and run the scenario. Let the failure in the
Then step tell you what the actual behavior is.

4. Change the failing Then step so that it describes the actual behavior of the
system.

5. Repeat.

As an example, let’'s suppose we're making some changes to the checkout
system for a supermarket. We've been asked to add a new special offer to the

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Characterization Tests ® 287

system, which was developed a couple of years ago by a firm of expensive
management consultants, who are sadly no longer with us. We've grabbed
the source code, managed to get the system to spin up on our development
machine, and have been poking around through the user interface. The code
is pretty gnarly and it’s hard to tell exactly what’s going on, but we noticed
something about shampoo. It looks like there might be an existing special
offer on shampoo bottles already baked into the code, but it’s hard to tell
exactly what the rules are. Let’s write a test:

Scenario: Buy Two Bottles of Shampoo
Given the price of a bottle of shampoo is $2
When I scan 2 bottles of shampoo
Then the price should be $0

We know that’s going to fail; they’re not going to give us the shampoo for free,
are they (steps 1 and 2)?

So, we wire up the step definitions to the system and run the scenario. Here’s
what happens:

Running RunCukesTest
Feature:

Scenario: Buy Two Bottles of Shampoo

Given the price of a bottle of shampoo is $2

When I scan 2 bottles of shampoo

Then the price should be $0

java.lang.AssertionError: expected:<0> but was:<2>

at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at org.junit.Assert.assertEquals(Assert.java:542)
at legacy.Steps.thePriceShouldBe$(Steps.java:19)
at *.Then the price should be $0(bogof.feature:5)

1 Scenarios (1 failed)
3 Steps (1 failed, 2 passed)

A-ha! Now we know what price the system is charging for two $2 bottles of
shampoo: 82 (step 3).

Now we update the Then step of our scenario to reflect our new understanding
of what the system does (step 4):

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 16. Working with Legacy Applications ® 288

Scenario: Buy Two Bottles of Shampoo
Given the price of a bottle of shampoo is $2
When I scan 2 bottles of shampoo
Then the price should be $2

We run the scenario again, and this time it passes. Great! We've added our
first characterization test. It’s not much, but it's a start, and we know that
whatever we do to the code from now on, we’ll always have this scenario to
tell us whether we break this particular aspect of its behavior.

It looks like there’s a buy-one-get-one-free offer on shampoo, but we can’t be
sure from this single example. We now need to repeat steps 1 to 4 and add
some more scenarios to give us some more clues as to what the system is
doing.

We can refactor the scenario into a scenario outline (see 9_}_1%}_)_‘[.9_1_"?_,...If_,‘gc.}_g.rggfi_gg

Feature: Special Offers

Scenario Outline: Shampoo
Given the price of a bottle of shampoo is $2
When I scan <number> bottles of shampoo
Then the price should be <total>

Examples:
| number | total |
| 1 | $6 |
| 2 | $2 I

We can now add examples into the table, one at a time. Each time, we start
with a silly value for the total price and then run the scenario and let it tell
us what the real total is. Then we update the scenario to document that
behavior.

Squashing Bugs

Our legacy application is big and mysterious, and we could spend an awfully
long time writing characterization tests if we just started adding them aim-
lessly. So, assuming that we do want to grow our suite of automated tests,
where should we start?

One of the best ways to start practicing with Cucumber is when you have a
bug to fix. Bug reports generally come to you in the form of an example, so
they’re nice and easy to translate into Cucumber scenarios. Using a bug
report, work through the steps on the following list:

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Adding New Behavior ® 289

1. Translate the bug report into a Cucumber scenario. Show the scenario
to the person who reported the bug, and ask that person whether it
accurately describes what he or she was doing.

2. Wire up the step definitions and run the scenario. It should fail in the
same way as the real system did when the bug was first discovered. The
bug is trapped!

3. Examine the defective code, and think about what you’ll need to change.
If you're unsure or worried about breaking some existing behavior, write
one or more characterization test scenarios for it.

4. Fix the code so that the bug report scenario passes.
5. Run the characterization tests to check that you didn’t break anything.

You'll find that the bug report scenario acts as a driving force, helping you
focus on the code instead of having to keep running a manual test to see
whether the fix has worked.

Despite your new characterization tests, you may still find that you missed
something and introduced a new bug. That happens sometimes, and it would
have happened just the same if you hadn’t used any automated tests. If you
use the same recipe to fix that new bug and each new bug that comes along,
then gradually, over time, you’ll build up a solid suite of Cucumber scenarios.
Not only will those scenarios prevent any of these bugs from recurring, but
they’ll start to document the behavior of the system for anyone doing mainte-
nance on it in the future.

Adding New Behavior

When you think about it, the process of adding new behavior to a system isn’t
so different from fixing a bug. The overall goal is to change some aspect of
how the system behaves, without breaking anything else.

Just as with bug fixing, we can use characterization tests to pin down the
surrounding behavior of the system to make sure it isn’t dislodged by our
work. Characterization tests can also be useful before that, while the new
feature is first being considered. You can use them to help understand how
much work is involved in the new feature by clarifying exactly what the system
currently does.

Here’s our approach for adding new behavior to a legacy system:

1. Examine the new feature. If needed, write a few characterization scenarios
to examine and clarify the current behavior of the system in that area.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

6.
7.

Chapter 16. Working with Legacy Applications ® 290

We've just told you to use Cucumber to help you reproduce and trap bugs, so it's
quite likely that you might end up writing a new feature and calling it something like
features/verify_bugfix_52553.feature. We've done this ourselves, and trust us—it doesn’t
make for great documentation!

There are two ways around this problem. If you judge that the scenario is relevant
enough to keep as business-facing documentation, then just talk to your team about
where to file it away tidily in your features. If you're adding features to a legacy system,
that might well mean creating a new empty feature file about a whole big area of the
system and then just adding a single scenario to describe one aspect of its behavior.
That’s OK; you've created a space where other people can add more scenarios as they
come up. Try not to mention the bug itself as you write the scenario—just describe
the behavior you want as though it’'s always been there.

On the other hand, if you decide that it's such an obscure edge case that it isn’t
interesting enough to remain as business-facing documentation, you can just delete
the scenario once you've fixed the bug. That's assuming you've used a unit test to
cover the changes you've made to make the fix, so you can be safe in the knowledge
that the bug won’t reappear.

Now, with the new feature in mind, modify those scenarios or write new
ones to specify the desired new behavior.

Run through the scenarios with your team’s stakeholder representative
to check that you're about to build the right thing. Correct the scenarios
with them if necessary.

Run the scenarios. For each failing scenario, examine the code you'll need
to change to make it pass, but work on only one failing scenario at a time.

Write any extra characterization tests you need to give you the confidence
to change that code.

Change the code to make the scenario pass.

Repeat from step 4 until all the scenarios pass.

Sometimes we find that when we're about to implement the change (step 6),
we see that the code we're about to change is responsible for doing things
that we hadn’t anticipated when we wrote the original characterization tests
in step 1. At this point, we’ll stop and add some new characterization tests
(step b) first if we think there’s a significant risk we could break something.

report erratum -« discuss

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Are Your Scenarios Sufficient? ® 291

Just as with bug fixing, following this process means that you quickly get the
benefits of automated testing in the areas of the system where you most need
them: the ones that are most prone to change and instability.

As you gradually build up your suite of Cucumber scenarios for your legacy
application, you’ll find you have more confidence to refactor and clean up the
code. This becomes a virtuous cycle, with cleaner code causing less bugs.

Are Your Scenarios Sufficient?

Often it’s difficult to tell whether the characterization tests that you've written
cover enough of the functionality of the application to give you confidence to
go in and make changes safely. There are some tools that can help you decide
how safe you should really be feeling. The last thing we want is a false sense
of security leading to uncaught regressions being delivered to our customer.

Code Coverage

Code coverage tools allow us to discover which specific lines of code in the
system were executed during a test. When you are starting to add tests to a
legacy application, it can be useful to know your code coverage:

¢ If you know that a line of code isn’t covered by your tests yet, you can see
more clearly what kind of a characterization test you need to write.

¢ If you know that a line of code is covered by your tests, you can be more
confident in refactoring or changing it.

Mutation Testing

Code coverage tools tell us what lines get executed when we run our tests,
but don’t tell us whether we're testing the right things. You might think that
there’s no substitute for human analysis when it comes to checking that your

help.

The theory behind mutation testing is quite simple. The tool takes your
application and creates a mutant version by automatically injecting a bug. It
then runs your tests, and if one or more fails, then the mutant is killed. But
if they all pass, the mutant survives. Any mutant that survives indicates a
gap in our tests. We might choose to go back and fill that gap, either by
writing a new test or by modifying an existing test.

As you can imagine, a huge number of bugs could be injected into any rea-
sonably sized application, so mutation testing can be quite slow. A lot of work

http://pitest.org
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Chapter 16. Working with Legacy Applications ® 292

Track Your Code Coverage for Team Encouragement

Code coverage is a much misused metric of code quality. We've heard of managers
who've demanded that their teams achieve 100 percent code coverage. We've also
heard of teams that, under those circumstances, simply wrote a load of tests with no
assertions in them. All the code was run, but it wasn’t tested!

As a source of internal feedback for the team, though, code coverage can be useful,
especially when you're embarking on a long-term project to bring a legacy system
under the control of automated tests. Start measuring your code coverage today, and
come back every few weeks to measure it again. You should be pleased to see the
number is climbing all the time.

Another great related metric to track, which your manager might be more impressed
with, is the defect rate (number of new bugs discovered per week). If your Cucumber
tests are going to add any value to your customers, this is the most likely place it will
surface. As you add more test coverage, your team will make fewer and fewer mistakes,
and you should see your defect rate drop.

has gone into the development of tools like pitest to minimize the time it takes
to run them on your application, but they are still relatively slow compared
to our scenarios and unit tests. Used as part of your development process
and integrated into your CI pipeline, mutation testing can be a cost-effective
way of confirming the quality of your automated testing.

What We Just Learned

Working with legacy code is always a challenge, but you can use Cucumber
scenarios to help make it a much more enjoyable challenge. Be pragmatic!
Don’t exhaust yourself trying to retrofit a complete set of Cucumber features
for everything the system already does. Instead, add them gradually, one at
a time, as you need them.

You'll use characterization tests to help understand what the system is already
doing and to give you some security before you make a change. Similarly,
every time you discover a bug, you'll trap it with a new Cucumber scenario.
And, every time you add new behavior to the system, start by describing it
with a Cucumber feature.

Code coverage can give you and your team feedback and encouragement
about your progress in getting the system under test.

Enjoy the newfound confidence with which you can refactor and clean up the
code that’s covered by the tests.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

APPENDIX 1

Installing Cucumber

Cucumber for Java is packaged as a series of JAR files. You can install it
simply by downloading the relevant JAR files and placing them on the Java
classpath, which is what we did in Chapter 2, First Taste, on page 11. More
likely you’'ll be using some dependencymanagementtoolmyourbulldprocess
such as Maven or Ivy, but this still requires you to specify the leaves of the
dependency tree. This can be confusing, and that’s what this appendix will

explain.

Choosing Your JARs

The current release of Cucumber for Java contains nineteen JARs, which
split into four groups, described in the following sections. You will need to
select the JARs that are relevant to your environment. As you’ll see, some
choices are optional, whereas others are required. Full details are outlined
below and further information can be found online."

Core JARs

The core JAR cucumber-core is always needed. As its name suggests, it imple-
ments the core functionality of Cucumber.

If you're using a dependency management tool, then you’ll never need to
specify cucumber-core because the other Cucumber JARs that you have to
specify (specifically the Programming Language Module) depend on it, and so
it will always be present in the dependency graph. If you'’re downloading JARs
manually, then you’ll need to download it.

1. http://cukes.info/install-cucumber-jvm.html

http://cukes.info/install-cucumber-jvm.html
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 1. Installing Cucumber ¢ 294

Backend Modules

The choice of Backend module specifies which language you are going to write
your glue (step definitions and hooks) in. The modules define the format of
the snippets that are generated when Cucumber discovers a missing step
definition and may also control how Cucumber searches for your glue code.

Language JAR
Java cucumber-java
Clojure cucumber-clojure
Groovy cucumber-groovy
Ioke cucumber-ioke
JRuby cucumber-jruby
Jython cucumber-jython
Rhino cucumber-rhino
Scala cucumber-scala

Java for Android cucumber-android

You must choose one, and only one, of these modules and have it on the Java
classpath. Without a Backend module, Cucumber will fail with this error:

Exception in thread "main" cucumber.runtime.CucumberException:
No backends were found.
Please make sure you have a backend module on your CLASSPATH.

With more than one Backend module, Cucumber will not run correctly. Also,
if you use cucumber-android you’'ll need the Android development environment
correctly installed.

Runners

The cucumber-core JAR provides a class that offers a command-line interface.
If, however, you want to run your features from within an IDE or from a
continuous integration (CI) server, you may want to interact with the features
via a more common test API, such as JUnit.

These runners are currently supported by Cucumber:

Runner JAR
JUnit cucumber-junit

TestNG cucumber-testng

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

External Dependencies ® 295

You only need to include these JARs on the Java classpath if you want to run
your features using these tools. Including both cucumber-junit and cucumber-testng
on the classpath will not stop Cucumber from running.

Dependency Injection Modules

As described in Chapter 11, Simplifying Design with Dependency Injection, on

(DI) containers in your glue code.

DI Container JAR
Guice cucumber-guice
Weld cucumber-weld

PicoContainer cucumber-picocontainer

OpenEJB cucumber-openejb
Spring cucumber-spring
Needle cucumber-needle

You may choose not to use a DI container, but you must not place more than
one Dependency Injection Module on the classpath.

If you do include one of these DI modules on the classpath, you’ll also need
to ensure that the corresponding DI container is available since the modules
only include the binding between Cucumber and the container, not the con-
tainer itself.

Version Numbers

Each time Cucumber is released, the version number is incremented. You
should never mix different version numbers together. As of this writing, the
latest released version is 1.2.0.

Some of the JARs that Cucumber-JVM depends on are not part of the release,
and their version numbers are not directly linked to the version of Cucumber-
JVM you are using. Specifically cucumberjvm-deps and gherkin are released as
required and have their own version numbers.

External Dependencies

As described in the previous section, there are some JARs that Cucumber
depends on that are not part of a specific Cucumber release. You won’t need
to concern yourself with these if you use a dependency manager, but if you're
downloading JARs manually you will.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 1. Installing Cucumber ¢ 296

Gherkin

Gherkin is the name of the dialect that we use to write our feature files. It
includes the keywords, and their translations into other languages. Obviously
Cucumber depends on Gherkin to make sense of our feature files, but it is a
separate project that is released independently.

The relevant gherkin JAR is available from the cukes portion of the public Maven
repo.” As of this writing, the released version is 2.12.2.

Cucumber Dependencies

Cucumber makes use of some other tools as well, such as the XStream utility
from Thoughtworks (for marshaling data from your features through to your
step definitions) and difflib for comparing tables.

These, and others, are packaged in the cucumberjvm-deps JAR, also available
from the cukes portion of the public Maven repo. As of this writing, the released
version is 1.0.3.

Console Colors on Windows

Cucumber uses ANSI escape codes to print colored output to the console.
This isn’t supported natively in Windows, so you have to install a tool called
ANSICON to see colors.

Download and unzip the latest version.? Open a command prompt and cd to
the folder where you unzipped it. Now, cd into either x86 or x64 (depending
on your machine’s processor) and install it globally on your machine:

C:\somewhere\ansil40\x64> ansicon -i

Any program that prints ANSI colors will now display properly on your
machine.

If you don’t want (or aren’t allowed) to install ANSICON, then you can use the
--monochrome option to make the output text only.

2. http://repol.maven.org/maven2/info/cukes/

3. https://github.com/adoxa/ansicon/downloads

http://repo1.maven.org/maven2/info/cukes/
https://github.com/adoxa/ansicon/downloads
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

APPENDIX 2

Cucumber and Other JVM Languages

Cucumber comes in several flavors—it has been ported from Ruby to Java-
Script, C#, Java, PHP, and others. The choice of which flavor of Cucumber
you use essentially comes down to what language you want to write your step
definitions in. Since most languages offer libraries that let you drive web
browsers or interact with web services, you can use any implementation of
Cucumber if you want to drive these sorts of applications from the outside.
You should therefore choose the Cucumber that offers the language that your
team will be most comfortable writing the step definitions in.

However, if you want your steps to interact directly with the code of the system
under test, it’s best to choose the version of Cucumber that allows you write
the step definitions in the same language. So, for Ruby applications, choose
Cucumber for Ruby; for JavaScript applications, choose Cucumber-JS: and
SO on.

Cucumber for Java is written in Java and is an obvious choice when using
Cucumber with Java applications. However, Java runs on the JVM and
interoperates seamlessly with other JVM languages. This opens up the possi-
bility of writing your step definitions in the JVM language of your choice. You
can choose to write your step definitions in one JVM language and your
application in another.

As described in Backend Modules, on page 294, there are many languages to
choose from. Thefunctlonahtytheyoffer ‘is all built on top of the same
Cucumber functionality (implemented in cucumber-core), but due to the differing
paradigms of these languages the mechanisms used to make the functionality

available varies from language to language.

Since there are a large number of JVM languages integrated with Cucumber,
with varying popularity, we have chosen to focus on the Java back end in

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 2. Cucumber and Other JVM Languages ® 298

this book. In this appendix we’ll show you some simple examples of using
Cucumber directly with step definitions written in Groovy, Scala, and Clojure.
For each language, we’ll show a simple Checkout example, similar to the one
we started developing in Chapter 2, First Taste, on page 11.

Combined with the knowledge you have gained from this book (and other
examples available in the cucumberjvm repository'), this should be sufficient
for you to start using any of the other JVM languages for which Cucumber
provides an integration.

Groovy

Our favorite source of truth has this to say about Groovy:*

Groovy is an object-oriented programming language for the Java platform. It is a
dynamic language with features similar to those of Python, Ruby, Perl, and
Smalltalk. It can be used as a scripting language for the Java Platform, is
dynamically compiled to Java Virtual Machine (JVM) bytecode, and interoperates
with other Java code and libraries. Groovy uses a Java-like curly-bracket syntax.
Most Java code is also syntactically valid Groovy.

So, Groovy is quite like Java, but it has some of the ease-of-use features more
commonly found in languages (often used for scripting) like Ruby. What'’s
more, Groovy (like other JVM languages) has access to any library written in
any JVM language.

To demonstrate how you might use Groovy, we’'ve implemented the Checkout
application—once with the production code written in Groovy and again with
the production code written in Java. But we've used the same Groovy step
definitions to drive both our implementations. In the next two sections we’ll
take a look at these implementations and discuss the differences.

Groovy All the Way Down

If you have a look at the project, you'll see that it looks remarkably similar
to the Java examples that we've been working with throughout the rest of the
book. However, there are some notable differences, which we’ll tackle one by
one.

The POM

The first thing we need to do is change pom.xml, as you can see in this extract:

1. https://github.com/cucumber/cucumber-jvm/tree/master/examples

https://github.com/cucumber/cucumber-jvm/tree/master/examples
http://en.wikipedia.org/wiki/Groovy_(programming_language)
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Groovy ® 299

appendix/groovy/01/pom.xml
Line1 <dependencies>
<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-groovy</artifactId>

5 <version>${cucumber.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>info.cukes</groupId>
10 <artifactId>cucumber-junit</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>
</dependency>
- <dependency>
15 <groupId>junit</groupId>

<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
</dependency>
20 <dependency>
<groupId>org.codehaus.groovy</groupId>
<artifactId>groovy-all</artifactId>
<version>${groovy.version}</version>
- <scope>provided</scope>
25 </dependency>
</dependencies>

<build>
<plugins>
30 <plugin>
<groupId>org.codehaus.gmaven</groupId>
<artifactId>gmaven-plugin</artifactId>
<version>${gmaven-plugin.version}</version>

<executions>
35 <execution>
<goals>
<goal>generateStubs</goal>
<goal>compile</goal>
<goal>generateTestStubs</goal>
40 <goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
45 </plugins>

</build>

report erratum

- discuss

http://media.pragprog.com/titles/srjcuc/code/appendix/groovy/01/pom.xml
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 2. Cucumber and Other JVM Languages ¢ 300

On line 4, we’ve specified cucumber-groovy as the Cucumber back end. Then on
line 21, we add a dependency on Groovy itself. Finally, in the plugins section,
starting on line 30 we tell Maven to use the gmaven plugin.’

Notice that we're still referencing cucumber-junit and junit, and we can still run
the project by executing mvn clean test.

The World

The original version of Cucumber was written in Ruby and introduced the
concept of a World. Step definitions can share context by adding objects,
functions, and data to the World. The World is re-created before each scenario
is run to make sure that you don’t end up with Leaky Scenarios, on page 103.

discussed how Cucumber for Java uses various dependency injection contain-
ers to allow us to easily share state between our step definitions. The
Cucumber Groovy integration takes a different approach, borrowed from the
original Ruby version of Cucumber. Before each scenario is run, cucumber-groovy
creates a new World, which is the shared context that all your hooks and step
definitions will use. You can provide your own implementation of this by
implementing the World hook:

appendix/groovy/01/src/test/groovy/checkout/World.groovy
this.metaClass.mixin(cucumber.api.groovy.Hooks)

class CheckoutWorld {
def priceList = new Pricelist()
def checkout = new Checkout(pricelList)

}

World {
new CheckoutWorld()
}

Now the World contains an instance of CheckoutWorld and any step definition has
access to its members. Notice that we need to mix in the cucumber.api.groovy.hooks

package. This mixin also gives us access to @Begin and @After hooks when we
need them.

Step Definitions

Step definitions in Groovy are similar to their counterparts in Java. Take a
look at CheckoutSteps:

3. http://gmaven.codehaus.org/

http://media.pragprog.com/titles/srjcuc/code/appendix/groovy/01/src/test/groovy/checkout/World.groovy
http://gmaven.codehaus.org/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Groovy ® 301

appendix/groovy/01/src/test/groovy/checkout/CheckoutSteps.groovy
package checkout

this.metaClass.mixin(cucumber.api.groovy.EN)

When(~/"~1 scan a "(.*?)"$/) { String itemName ->
checkout.scan(itemName)

}

Then(~/"the total is (ld+)c$/) { int expectedTotal ->
assert expectedTotal == checkout.getTotal()
}

Notice that instead of Java annotations, the Groovy implementation uses
classes mixed in from cucumberapi.groovy.EN. The language identifier in the
Groovy mixin package is capitalized (for example, cucumber.api.groovy.EN), unlike
the equivalent Java package (e.g. cucumber.api.java.en).

Maybe the most noticeable difference is that access to members of the world
is so concise. In the code shown we can access the shared instance checkout
directly, without any qualification, even though it is a member of an instance
of CheckoutWorld.

Groovy Driving a Java Application

It has been said that you'd be crazy to write your step definitions in Java
when developing a Java application.” We don’t necessarily agree, but just to
show how easy it is to use Groovy and Java together, this project includes a
Java implementation as an example. All you have to do is change which import
statement is commented out in World.groovy:

appendix/groovy/01/src/test/groovy/checkout/World.groovy

/*

* Change which import below is commented out to switch between the
* Java and Groovy implementations of the checkout code.

*/

//import checkout. java.*

import checkout.groovy.*

Now when you run mvn clean test exactly the same, Groovy step definitions drive
the Java implementation. Simple!

4. https://twitter.com/cowspassage/status/507284159505895424

http://media.pragprog.com/titles/srjcuc/code/appendix/groovy/01/src/test/groovy/checkout/CheckoutSteps.groovy
http://media.pragprog.com/titles/srjcuc/code/appendix/groovy/01/src/test/groovy/checkout/World.groovy
https://twitter.com/cowspassage/status/507284159505895424
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 2. Cucumber and Other JVM Languages ® 302

Scala

Wikipedia describes Scala like this:®

Scala is an object-functional programming language for general software applica-
tions. Scala has full support for functional programming and a very strong static
type system. This allows programs written in Scala to be very concise and thus
smaller in size than most general purpose programming languages. Many of Scala’s
design decisions were inspired by criticism over the shortcomings of Java.

The cucumber-scala back end has neither integrations with DI containers (like
cucumber-java) nor a World hook like Groovy. You have to roll your own context-
sharing mechanism and ensure that it gets reset before each scenario. This
example shows one way to do it:

appendix/scala/01/src/test/scala/checkout/CheckoutWorld.scala
package checkout

import cucumber.api.Scenario
import cucumber.api.scala.{ScalaDsl, EN}

object CheckoutWorld extends ScalaDsl with EN {

var pricelList: PricelList = _
var checkout: Checkout = _

Before(){ scenario : Scenario =>
priceList = new Pricelist
checkout = new Checkout(pricelList)

}

}

Here, we've created our own CheckoutWorld object to store data that needs to be
shared. The contents get reset for each scenario, using a @Before hook. This
object can be accessed easily by our step definitions, which also extend ScalaDsl:

appendix/scala/01/src/test/scala/checkout/CheckoutSteps.scala
package checkout

import cucumber.api.scala.{ScalaDsl, EN}
import org.junit.Assert.

class CheckoutSteps extends ScalaDsl with EN {
When("""~I scan a "(.*?)"g""""""){ (itemName:String) =>

CheckoutWorld.checkout.scan(itemName)

}

5. http://en.wikipedia.org/wiki/Scala_(programming_language)

http://media.pragprog.com/titles/srjcuc/code/appendix/scala/01/src/test/scala/checkout/CheckoutWorld.scala
http://media.pragprog.com/titles/srjcuc/code/appendix/scala/01/src/test/scala/checkout/CheckoutSteps.scala
http://en.wikipedia.org/wiki/Scala_(programming_language)
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Clojure ¢ 303

Then("""~the total is (\d+)c$""""""){ (expectedTotal:Int) =>
assertEquals (expectedTotal, CheckoutWorld.checkout.getTotal)
}
}

Notice that we've imported the JUnit package, so we can use the same assert
statements in Scala that we could in Java.

Clojure

The Clojure website describes Clojure like this:®

It is designed to be a general-purpose language, combining the approachability
and interactive development of a scripting language with an efficient and robust
infrastructure for multithreaded programming. Clojure is a compiled language—it
compiles directly to JVM bytecode, yet remains completely dynamic. Every feature
supported by Clojure is supported at runtime. Clojure provides easy access to
the Java frameworks, with optional type hints and type inference, to ensure that
calls to Java can avoid reflection.

The profusion of parentheses might confuse a Java programmer, but they
should come as no surprise, because Clojure is a dialect of Lisp—which of
course means that Clojure is a functional language.

Managing state in a functional language can be confusing for programmers
not used to it—mot because it's difficult, but because these languages
encourage idempotence, and hence stateless functions. In this example our
step definitions test functions defined in the production code. No state is
stored in the production code, which leaves this responsibility to our step
definitions.

There are two common approaches taken when using Cucumber with Clojure:
use the traditional Java infrastructure or use Leiningen.” We’ll show you both.

Maven and JUnit

This project uses Maven, so the folder structure should look familiar to Java
programmers. There’s no support from the cucumberclojure integration for
managing or resetting state, so we have to do it ourselves:

appendix/clojure-java/01/src/test/clojure/checkout/world.clj
(require '[checkout.checkout :refer [empty-cart empty-price-list]])
(import '[org.junit Assert])

6. http://clojure.org/

7. http://leiningen.org/

http://media.pragprog.com/titles/srjcuc/code/appendix/clojure-java/01/src/test/clojure/checkout/world.clj
http://clojure.org/
http://leiningen.org/
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Appendix 2. Cucumber and Other JVM Languages ® 304

(def cart (atom (empty-cart)))
(def price-list (atom (empty-price-list)))

(defn- force-long
[maybe-str]
(Long. maybe-str))

(defn- assert-equals [expected actual]
(Assert/assertEquals expected actual))

(Before []
(reset! cart (empty-cart))
(reset! price-list (empty-price-list)))

As you can see, we use a @Before hook to reset the state of the world before
each scenario runs. You'll also notice that we've defined a function, force-long,
to make sure that we treat the argument passed from the feature as a number
—this is something that cucumberjava handles for us.

Our step definitions should be recognizable:

appendix/clojure-java/01/src/test/clojure/checkout/checkout_steps.clj
(require '[checkout.checkout :refer :all])

(Load-file "src/test/clojure/checkout/world.clj")

(When #"~I scan a \"(.*?)\"$" [item-name]
(swap! cart scan @price-list item-name))

(Then #"~the total is (\d+)c$" [expected-totall
(assert-equals (force-long expected-total) (checkout @cart)))

We've made the shared state available to our step definitions using a load-file
expression. And we've made the JUnit assertEquals available by using an import
statement.

Leiningen

Now we’ll show you how to use Leiningen to build this example. Leiningen is
a build tool developed expressly for Clojure development, and it allows projects
to be configured using Clojure—no XML is needed. The file structure is quite
different from the one Java programmers are used to, so it’s worth having a
look at the example project.

Apart from the folder structure, the most noticeable difference is that the
pom.xml has been replaced by project.clj:

appendix/clojure-lein/01/project.clj
(defproject clojure-cucumber "0.1.0-SNAPSHOT"

http://media.pragprog.com/titles/srjcuc/code/appendix/clojure-java/01/src/test/clojure/checkout/checkout_steps.clj
http://media.pragprog.com/titles/srjcuc/code/appendix/clojure-lein/01/project.clj
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

Clojure ® 305

:description "A checkout example tested using Cucumber"
:dependencies [[org.clojure/clojure "1.6.0"]]

:plugins [[lein-cucumber "1.0.2"1]
:cucumber-feature-paths ["test/features/"])

We've also replaced the use of JUnit with the more idiomatic clojure.test:

appendix/clojure-lein/01/test/features/step_definitions/checkout_steps.clj
(require '[clojure-cucumber.core :refer :alll])
(require '[clojure.test :refer [is]])

(load-file "test/features/step definitions/world.clj")

(When #"~I scan a \"(.*?)\"$" [item-name]
(swap! cart scan @price-list item-name))

(Then #"~the total is (\d+)c$" [expected-totall]
(is (= (force-num expected-total) (checkout @cart))))

You can build and test this example by typing lein do clean, cucumber. This uses
the lean-cucumber plugin,® which works well but doesn’t expose all of Cucumber’s
options. For example, the output to the console always uses the progress plugin,
whereas the pretty output gets written to target/test-reports/cucumber.out—there’s
nothing you can do about this.

We've had a brief look at Cucumber’s integration with the three most popular
non-Java JVM languages. They, and the other integrations, are under active
development by the Cucumber community, so check the documentation online
for the latest details. And if you'd like to see other features in these integra-
tions, then why not implement them yourself and submit a pull request? The
Cucumber team needs YOU!

8. https://github.com/nilswloka/lein-cucumber

http://media.pragprog.com/titles/srjcuc/code/appendix/clojure-lein/01/test/features/step_definitions/checkout_steps.clj
https://github.com/nilswloka/lein-cucumber
http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

[Ad 11]

[Bec0O0]

[Bec02]

[Bro95]

[CADHO9]

[CGO8]

[Coc04]

[CohO05]

[Coh09]

[Eva03]

[FBBO99]

APPENDIX 3

Bibliography

Gojko Adzi¢. Specification by Example. Manning Publications Co., Green-
wich, CT, 2011.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman, Reading, MA, 2000.

Kent Beck. Test Driven Development: By Example. Addison-Wesley, Reading,
MA, 2002.

Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, Reading, MA, Anniversary, 1995.

David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesgy, Bryan
Helmkamp, and Dan North. The RSpec Book. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, 2009.

Lisa Crispin and Janet Gregory. Agile Testing: A Practical Guide for Testers
and Agile Teams. Addison-Wesley, Reading, MA, 2008.

Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small
Teams. Addison-Wesley Professional, Boston, MA, 2004.

Mike Cohn. Agile Estimating and Planning. Prentice Hall, Englewood Cliffs,
NJ, 2005.

Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley, Reading, MA, 2009.

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Longman, Reading, MA, First, 2003.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, 1999.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

[Fea04]

[FPO9]

[GHJV95]

[HTOO]

[Joh10]

[Mes07]

[Ohn88]

Appendix 3. Bibliography ® 308
Michael Feathers. Working Effectively with Legacy Code. Prentice Hall,
Englewood Cliffs, NJ, 2004.

Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided
by Tests. Addison-Wesley Longman, Reading, MA, 2009.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, Reading, MA, 2000.

Christian Johansen. Test-Driven JavaScript Development. Addison-Wesley
Professional, Boston, MA, 2010.

Gerard Meszaros. xUnit Test Patterns. Addison-Wesley, Reading, MA, 2007.

Taiichi Ohno. Toyota Production System: Beyond Large Scale Production.
Productivity Press, New York, NY, USA, 1st, 1988.

http://pragprog.com/titles/srjcuc/errata/add
http://forums.pragprog.com/forums/srjcuc

SYMBOLS
character, 40-41
$ character
literal (in regular expres-
sions), 47
in regular expressions, 58
* character
Gherkin keyword, 38

in regular expressions,
52-53
+ character
in diff output, 78
in regular expressions, 54
- character, 78
. character, 52-53
<.>, 80
? character, 57
@ character, 88

\ character
literal (in Java strings),
47
in regular expressions,
47, 53
~ character, 58
| character
in data tables, 73
in regular expressions, 52

A

abstraction level, 84-86, 95—
96

acceptance criteria, 32

acceptance tests
automated, 4, 33
and collaboration, 4-5,
31

Cucumber test example,
5

defined, 4

Specification by Example,
6

Testing Pyramid, 249

vs. unit tests, 4, 248

action (scenario), 37

Active Record design pattern,
186
ActiveJDBC ORM, 185-187,
189-190
documentation, 204
overriding conventions,
187
activejdbc.Model, 186
addCookie method, 227
addShutdownHook, 159, 234-235
Adzic, Gojko, 6, 82, 95
@After hooks, 156, 160, 200,
203
Ajax, 235-238
Ambrosio, Paulo, 159
And keyword, 37
annotations
ActiveJDBC, 187
CDI/Weld, 222
Cucumber, 47, 50
Guice, 215-218
JAX-RS, 280
JUnit, 265
Spring, 219
TestNG, 265
ANSICON, 296
Ant, 270-271
architecture
asynchronous, 169-172

Index

ports and adapters, 110
testable, 110

AssertionError method, 182

assertions
and failing steps, 64
in Given steps, 121
with JUnit, 23, 62
asterisk character
as Gherkin keyword, 38
in regular expressions,
52-53
ATM application
with Ajax, 235-238
dependency injection,
137-138, 207-213
domain model, 118-134
failure scenarios, 228-
233
helper classes, 130-134
injecting a fault, 229-232
with JSON, 239-241
messaging architecture,
169-178
organizing code, 134-137
refactoring, 123-127,
145-149, 208-213
relational database, 185
203
transaction queue, 173-
175
user interface, 151, 154-
155, 161-165, 231-232

@Autowired annotation, 219

B
back-end modules, 294
Background keyword, 71

backgrounds, 69-72
descriptions, 71
naming, 71-72
refactoring to, 73
backslash character
literal, in Java strings, 47
in regular expressions,
47, 53
bean.xml, 222
Beck, Kent, 27, 145
@Before hooks, 156-157, 160,
177
behaviour-driven development
(BDD), 4-6, 248-249
“brittle” features, 93, 107
Brooks, Fred, 31
bugs
injecting, with mutation
testing, 291
as missing scenarios, 144
pursuing code inconsis-
tencies, 142
scenarios preventing re-
currence, 288-289

builds
build tools and Cucum-
ber, 268-271
with Maven, 48
partitioning tests, 108-
109, 245-248

business stakeholders,
see stakeholders

But keyword, 37
C

CamelCase vs. underscores
(snake case), 15, 264

CDI (Contexts and Dependen-
cy Injection for Java EE)
standard, 221

CDI/Weld, 207, 221-223, 295

characterization tests, 286—
288

className method, 227

click method, 227

Clojure, 303-305

clojure.test, 305

Cockburn, Alistair, 26, 110
code coverage tools, 291-292
Cohn, Mike, 248

collaboration, xv, 5, 31-32,
101, 144

command prompt, xviii
comments, 40

@Component annotation, 219
concrete examples, 31
constructor injection, 206
context (scenario), 37

continuous improvement
process, 110-112

continuous integration (CI)
environment-specific step
definitions, 250-255
mutation testing in, 291
running Cucumber in,
271-272

Crispin, Lisa, 4
cssSelector method, 227

Cucumber

annotations, 47, 50

argument passing, 51—
52, 55

auto-conversion, 125

as collaboration tool, xv,
5, 31-32, 144

command-line options,
259-260, 265

comments, 40

dependency injection
and, 205-213

filtering at runtime, 261-
263

flickering scenarios, 92,
105, 179-181

Gherkin, 33-39

installing, 12-14, 293-
296

integration with JUnit,
266-267

integration with TestNG,
267

JARs in release, 293-296

and JVM languages,
294, 297-305

and legacy applications,
285-292

loss of benefits, 92

matching step definitions,
47-50

and Maven, 48, 269-270

option overrides, 265-266

performance, 93-94,
108-109, 233-235,
245-256

readability, 69, 82

and regular expressions,
46, 51-58

running from build tools,
268-272

scenario execution, 59—
66

Index ® 310

sharing state between
steps, 129-131, 206
spoken language support,
34, 41, 50
stack diagram, 7
subfolders, 87
test suite layers, 17
testing Java classes, 21—
25
version numbers, 295
cucumber-core, 293
cucumber-groovy, 300
cucumber-jvm-deps, 296
cucumber-scala, 302
cucumber.api.DataTable, 78
cucumber.options, 265
cucumber.properties, 265
cucumber.xml, 219-221, 234
CUCUMBER_ENVIRONMENT, 252
CUCUMBER_OPTIONS, 265

@CucumberOptions annotation,
265, 267-268

D

DAMP (Descriptive and
Meaningful Phrases), 100
data tables
comparing with diff, 77—
78
creating, 72-74
vs. Examples tables, 80
as lists of lists, 75-77
in step definitions, 74-79
databases
cleaning between scenar-
ios, 199-203
connecting to, 191
creating, 188
multiple threads access-
ing, 194-196
ORMs, 185-187
reading and writing, 194
199
schemas, 187, 189-191
and testing web applica-
tions, 202
transaction rollback,
199-202
truncation, 202-203
defect prevention process,
111

deleteAllCookies method, 227

dependency injection (DI)
with CDI/Weld, 221-223
constructor injection, 206

container choices, 206
field injection, 219
with Guice, 214-218
with PicoContainer, 137-
138, 206, 213
with Spring, 218-221,
234
design, see software design
detail level, 84-86, 95-96
diff method, 77-78
doc strings, 86-87
domain models, 118
dot character, 52-53

DRY (Don’t Repeat Yourself),
99

dry-run switch, 35, 135

E
embed method, 161

environment variables, 252,
265
Evans, Eric, 5
Examples tables
vs. data tables, 80
descriptions, 83
multiple, 83
readability, 82
in scenario outlines, 79—
84
tagging, 247
exceptions
Cucumber, 19, 60, 125,
294
from external services,
181
JUnit, 62
exec-maven plugin, 269
executable specifications, 6,
33-34
extreme programming (XP)
Agile Testing: A Practical
Guide for Testers and
Agile Teams, 4
Extreme Programming Ex-
plained, 145

F

Failsafe plugin, 269
Feathers, Michael, 110, 251,
286
Feature keyword, 35-36
features
backgrounds, 69-73
brittle, 93, 107
for bug reports, 290

creating, 14, 35-36
descriptions, 35, 40, 83
as documentation, 95,
101-102
as executable specifica-
tions, 6, 33-34
feature extension, 34
Feature Injection tem-
plates, 36
filtering at runtime, 261-
263
naming, 35
partitioning, 246-248
refactoring, 73
vs. requirement docu-
ments, 7
running in parallel, 94
slow runtimes, 93-94,
172
as source of truth, 7
subfolders, 87
synchronization points,
182, 242
tagging, 89, 246-248
vs. user stories, 88
field injection, 219
findElement method, 226-227
findElements method, 226
fixtures, 104, 106-107

“flickering” scenarios, 92,
105, 179-181

Freeman, Steve, 171

G
@GET annotation, 280

GET request, 226, 236, 279-
280

getCookieNamed method, 227
getinteger method, 194
getString method, 190
Gherkin, 7, 15
comments, 40
JAR, 296
keywords, 34-38
as programming lan-
guage, 33
spoken language support,
34, 41, 50
GitHub, 102
@Given annotation, 47
Given keyword, 37
glue (-g) runtime option, 260-
261
glue code, 7, 260, see al-
so step definitions

Index ® 311

Gregory, Janet, 4
Groovy, 298-301
groups (regular expressions),
51, 55, 57
Gson library, 275, 282
Guice, 207
documentation, 214
@Inject annotation, 215,
217
JAR name, 295
@ScenarioScoped annotation,
216
@Singleton annotation, 217

H
hash character, 40-41
help runtime option, 21
helper classes
organizing, 136
replacing, using DI, 210-
213
splitting by domain enti-
ties, 208-210
in step definitions, 130-
131

hooks, 156-159
as glue code, 261
running order, 159
shutdown, 159, 234-235
tagging, 157, 253
HTTP GET request, 226, 279-
280

HTTP POST request, 274
I

Ice Cream Cone antipattern,
249

iI8n switch, 41
@Inject annotation, 215, 222
inputFieldName method, 227

instance variables, in step
definitions, 129-130

integration tests, 109, 248
Testing Pyramid, 249

Ioke, 294
Ivy, 270

J

Jasmine, 237

Java classpath, 19
Java for Android, 294

JavaScript development
Jasmine, 237

QUnit, 237
Test-Driven JavaScript
Development, 237
JAX-RS, 279
Jenkins, 94
Jersey, 277-279
Jetty, 149-151, 162-164
ResourceHandler, 239
JOptionPane, 241
jQuery, 238
JRuby, 294
JSON, 239-241
comparing data vs.
strings, 282-283
Gson library, 275, 282
in scenarios, 280-282
JUnit
assertions in step defini-
tions, 23, 62, 182
and Clojure, 304
@CucumberOptions annota-
tion, 265
installing, 23
and Maven, 49
running Cucumber from,
266-267, 294
Jython, 294

K
Keogh, Liz, 36

L
language (computer) support,
294, 297-305
language (spoken) support,
34, 41, 50
Le Callonnec, Sébastien, 269
lean-cucumber plugin, 305
legacy code
bug report scenarios,
288-289
characterization tests,
286-288
code coverage tools, 291
mutation testing, 291
new behavior, 289-291
Working Effectively with
Legacy Code, 110
Leiningen, 304-305
linkText method, 227
Liquibase, 187-191
listening for synchronization,
171-172
locators, 226-227

M
Matts, Chris, 36
Maven, 48
and Clojure, 303
exec-maven plugin, 269
Failsafe plugin, 269
running Cucumber from,
269-270
Surefire plugin, 269
metacharacters, 52-53
money class, 124
monochrome runtime option,
265, 296
Monster Object antipattern,
207
mutation testing, 291
MySQL, 185

N

name method, 227

name runtime option, 262

names
backgrounds, 71-72
features, 35
methods, 146
scenarios, 38-39

Needle, 295

NullPointerException, 197

(@)
OpenEJB, 207, 221, 295
ORM (object relational map-
per), 185
outcome (scenario), 37
output plugins, see plugins
(Cucumber)
outside-in development, xvi,
4, 22
sketching class inter-
faces, 121-122
steps vs. tests, 25

P
@Path annotation, 280
PendingException(), 19, 60-61
performance, 245-256
sleeps in scenarios, 105
slow feature runs, 93-94
too many scenarios, 108—
109
web browser reuse, 233-
235
PicoContainer, 207
configuration, 213

Index ® 312

installing, 137-138
JAR name, 295
pipe character
in data tables, 73
in regular expressions, 52
pitest, 291
plugin (-p) runtime option, 13,
21, 263-265
plugins (Cucumber)
html, 263, 272
json, 263
junit, 263, 272
multiple, 264
pretty, 13
progress, 21, 263
rerun, 264
runtime option, 263-265
usage, 263
plus character
in diff output, 78
in regular expressions, 54
POJO (Plain Old Java Ob-
jects), 278
pom.xml, 48, 137-138, 149,
155, 188, 192
ports and adapters architec-
ture, 110
POST request, 274
pretty formatter plugin, 13
@Produces annotation, 280
programmer-tester pairing,
106
progress plugin, 21
project communication, 5,
31-32, 100-101, 120, 146,
158
Pryce, Nat, 171

Q

question mark character, 57
QUnit, 237

R

race conditions, 104-105,
179-181
refactoring, 123-127, 145-
149
Refactoring: Improving the
Design of Existing Code,
146
refresh method, 198

regular expressions, 46
alternation, 52, 57
anchors, 58
capture groups, 51, 55

character classes, 53-54

metacharacters, 52-53

modifiers, 52-54, 57

noncapturing groups, 57

whitespace characters,
54

wildcards, 52

word characters, 54, 56

Relish, 102

requirements, 7

REST web services, 273-283
Rhino, 294

RuntimeException, 230

S
sampling for synchronization,
172, 182-184, 242
savelt method, 197
Scala, 302-303
Scenario keyword, 36
scenario outlines, 27-28
combinatorial explosion,
82
placeholders, 80-82
tagging, 247
scenarios, 7
for bug reports, 288-289
bugs as missing scenar-
ios, 144
context-action-outcome,
37
creating, 14
descriptions, 38, 40
execution of, 60-66
filtering at runtime, 261-
263
flickering, 92, 105, 179-
181
incidental details in, 96
independent, 38, 103
level of detail, 84-86, 95—
96
naming, 38-39
partitioning, 108, 245—
248
pending, 19
persistent state in, 173—
177
readability, 69
result states of, 60
sharing a browser, 233-
235
state leakage, 38, 103,
108, 199203
tagging, 88-89, 108-109,
245-248
Scenarios keyword, 80

@ScenarioScoped annotation,
216

schema management, 187-
191

Selenium WebDriver, 155
cookie management, 227
documentation, 226
findElement method, 226-

227
locators, 226-227
pausing, 241
sendKeys method, 227, 240
synchronization, 242
timeouts, 228
versions, 156
WebElements, 226

sendKeys method, 227, 240

setString method, 190

Shore, Jim, 237

@Singleton annotation, 217,
222

sleeps in scenarios, 105

snake case vs. CamelCase,
15, 264

snippets runtime option, 15,
264

software design
Domain Driven Design, 5
simple design criteria,
145
test-first, 4-6, 248-249
testable, 110
spoken language support,
34, 41, 50
Spring, 207
@Autowired annotation, 219
@Component annotation,
219
configuration, 220-221
JAR name, 295
sharing a browser, 233-
234
stakeholders
building trust, 255-256
collaboration with, 4
communicating with, 5-
6, 31-32, 100-101,
120, 146, 158
continued involvement,
94-95
star character, 52-53
state leakage, 38, 103, 108,
199-203
step definitions, 7, 45-46
class instances in, 129

Index ® 313

code snippets for, 15, 17,
264

creating, 17-20, 46-51

data tables in, 74-79

environment-specific,
250-255

global scope of, 158

and glue code, 18, 260—

261

helper classes in, 130—
131

information sharing be-
tween, 24

instance variables in,
129-130

organizing, 136-137,
260-261

sharing state between,
129-131

as translators, 46
unintended matches, 50
StepDefAnnotation, 48
steps, 7
asynchronous, 104-105
declarative vs. imperative
style, 97-99
failing, 64-66
passing, 60
pending, 60-64
race conditions, 104-105
sharing state between,
129-131
skipped, 60-61
vs. step definitions, 46
undefined, 60-61

stories, 88

strict runtime option, 64, 271

submit method, 227

Surefire plugin, 49, 269

Swing, 241

switchTo method, 227

synchronization, 170-172,
182-184, 242

system setup, 107

T
@Table annotation, 187
tags
changing step definitions,
253-255
partitioning tests with,
108, 245-248
on scenarios, 88-89
tag expressions, 246,
261-262, 268
tagged hooks, 157, 253—
255

tags runtime option, 261-262

Test Data Builder pattern,
104, 108

test doubles, 132

test-driven development
(TDD), 4
in JavaScript, 237
tester-programmer pairing,
106
TestNG
@CucumberOptions annota-
tion, 265
running Cucumber from,
267, 294
tests
acceptance tests, 4, 6,
31-33
Agile Testing: A Practical
Guide for Testers and
Agile Teams, 4
characterization tests,
286-288
fault injection, 229-232
integration tests, 109,
248
maintenance, 110-112
managing runtime, 93—
94, 105, 108-109, 245—
256
manual, 249
mutation testing, 291
one-click system setup,
107
partitioning, 108-109,
245-248
pausing the browser, 241
running, with Maven, 49

shared test environ-
ments, 105-106
and software develop-
ment skills, 148
synchronizing, 170-172,
182-184
Testing Iceberg, 249-250
Testing Pyramid, 249
triangulation, 27
unit tests, 4, 109, 248
web applications and
databases, 202
@Then annotation, 48
Then keyword, 37
timeout method, 228
transactions (application)
messaging architecture,
169-178
processing, 177-178
synchronizing, 170-172
transactions (database)
and multiple database
connections, 201
rollback for cleaning,
199-202
Transformer class, 126-127
transforms, 123-127
triangulation, 27

truncation (database), 202-
203

U
ubiquitous language, 5, 100-
101, 120, 146, 158
unit tests
vs. acceptance tests, 4,
248

Index ® 314

vs. integration tests, 109
from step definitions, 122
Succeeding with Agile:
Software Development
Using Scrum, 248
Testing Pyramid, 249

\%

version runtime option, 260

w
walking skeleton, 26
web browser reuse, 233-235
web servers
Jetty, 149-151, 277
starting, 160
WebDriverWait, 242
Weld, 207, 221-223, 295
@When annotation, 48
When keyword, 37
whitespace characters

in Cucumber, 40, 73
in regular expressions, 54
wildcards (regular expres-
sions), 52
Windows
.bat files, 13
colored console output,
16, 296
command prompt, xviii
Java classpath, 19
setting environment vari-
ables, 253

wire protocol, xviii

X
xpath method, 227

Explore Testing and Cucumber

Explore the uncharted waters of exploratory testing and beef up your automated testing

with more Cucumber.

Explore [t!

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(160 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

Cucumber Recipes

You can test just about anything with Cucumber. We
certainly have, and in Cucumber Recipes we’ll show
you how to apply our hard-won field experience to your
own projects. Once you've mastered the basics, this
book will show you how to get the most out of Cucum-
ber—from specific situations to advanced test-writing
advice. With over forty practical recipes, you'll test
desktop, web, mobile, and server applications across
a variety of platforms. This book gives you tools that
you can use today to automate any system that you
encounter, and do it well.

Ian Dees, Matt Wynne, Aslak Hellesgy
(272 pages) ISBN: 9781937785017. $33
https://pragprog.com/book/dhwcr

.

Explore It!
Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson
Edited by Jacquelyn Carter

The

Cucumbelliecipes

Automate Anything with
BDD Tools and Techniques

lan Dees,
Matt Wynne,
and Aslak Hellesoy

Edtted by Jacquelyn Carter

https://pragprog.com/book/ehxta
https://pragprog.com/book/dhwcr

Be Agile

Don't just “do” agile; you want to be agile. We’ll show you how, for new code and old.

Your Code As a Crime Scene

Jack the Ripper and legacy codebases have more in B
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring

Your Code As a

. . . Crime Scene
direction, and understand how your team influences

the design. With its unique blend of forensic psychology o Acvest Detoete, Botionsoks and
and code analysis, this book arms you with the e Uint 3 = 0 3 < loci o) ,..(. b..un.
strategies you need, no matter what programming i ¢ ;'e'? To 3T ¢
language you use. b ﬂ"! 11 = checkRe 13,

Adam Tornhill e | gecodeMeiRRES B hwu v
(190 pages) ISBN: 9781680500387. $36 i

1
e

=120 ceny ¢/ diidhe e i
1,'2 buflloe”

https://pragprog.com/book/atcrime

The Nature of Software Development

The

You need to get value from your software project. You P gafoers

need it “free, now, and perfect.” We can’t get you there,

but we can help you get to “cheaper, sooner, and bet- The Nature
ter.” This book leads you from the desire for value down of Software
to the specific activities that help good Agile projects Development

deliver better software sooner, and at a lower cost.

Keep It Simple,
Makelt Valuable,

Using simple sketches and a few words, the author Buldl iece by Piece

invites you to follow his path of learning and under-

standing from a half century of software development

PLANNING
[EELG AL S
ORGANIZING

GUIDING

Ron Jeffries
Ron Jeffries i by MchaelSune

(150 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjinsd

and from his engagement with Agile methods from their
very beginning.

)

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

Seven in Seven

From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks

Whether you need a new tool or just inspiration, Seven TR mer

Web Frameworks in Seven Weeks explores modern

options, giving you a taste of each with ideas that will Seven Web Frameworks
help you create better apps. You'll see frameworks that in Seven Weeks
leverage modern programming languages, employ Adventures in Better Web Apps
unique architectures, live client-side instead of server- £Z0% o J.
side, or embrace type systems. You'll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38 and Fred Daoud

Sertes editor: Bruce A. Tate

https://pragprog.com/book/7web Deslopment cator: Jaequelyn Carter

Jack Moffitt

Seven Concurrency Models in Seven Weeks

The

Your software needs to leverage multiple cores, handle RS roers
thousands of users and terabytes of data, and continue
working in the face of both hardware and software Seven Concurrency Models
failure. Concurrency and parallelism are the keys, and in Seven Weeks

Seven Concurrency Models in Seven Weeks equips you When Threads Unravel

for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/srjcuc
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: https:/pragprog.com/book/srjcuc

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764

https://pragprog.com/book/srjcuc
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/srjcuc
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	Who This Book Is For
	Why You Should Listen to Us
	How This Book Is Organized
	What Is Not in This Book
	Running the Code Examples
	Online Resources

	Part I—Cucumber Fundamentals
	1. Why Cucumber?
	Automated Acceptance Tests
	Behaviour-Driven Development
	Living Documentation
	How Cucumber Works
	What We Just Learned

	2. First Taste
	Understanding Our Goal
	Creating a Feature
	Creating Step Definitions
	Implementing Our First Step Definition
	Changing Cucumber's Output
	Testing Our Checkout Class
	Adding an Assertion
	Making It Pass
	What We Just Learned

	3. Gherkin Basics
	What's Gherkin For?
	Format and Syntax
	Feature
	Scenario
	Comments
	Spoken Languages
	What We Just Learned

	4. Step Definitions: From the Outside
	Steps and Step Definitions
	Capturing Arguments
	Multiple Captures
	Flexibility
	Returning Results
	What We Just Learned

	5. Expressive Scenarios
	Background
	Data Tables
	Scenario Outline
	Too Much Information
	Doc Strings
	Staying Organized with Tags and Subfolders
	What We Just Learned

	6. Keeping Your Cucumbers Sweet
	Feeling the Pain
	Working Together
	Caring for Your Tests
	Stop the Line and Defect Prevention
	What We Just Learned

	Part II—A Worked Example
	7. Step Definitions: On the Inside
	Sketching Out the Domain Model
	Staying Honest with Transforms
	Adding Custom Helper Methods
	Organizing the Code
	Dependency Injection
	What We Just Learned

	8. Support Code
	Fixing the Bug
	Bootstrapping the User Interface
	Making the Switch
	Using Hooks
	Getting to Green
	What We Just Learned

	9. Message Queues and Asynchronous Components
	Our New Asynchronous Architecture
	How to Synchronize
	Implementing the New Architecture
	Fixing the Flickering Scenario
	What We Just Learned

	10. Databases
	Iterative Database Development
	Refactoring to Use a Database
	Reading and Writing to the Database
	Cleaning the Database with Transactions
	Cleaning the Database with Truncation
	What We Just Learned

	11. Simplifying Design with Dependency Injection
	DI and Cucumber
	Improving Our Design Using DI
	PicoContainer Is Almost Invisible
	Moving to Guice
	Spring in Your Steps
	CDI with Weld
	What We Just Learned

	12. Working with Web Applications
	Selenium WebDriver
	Handling Failure
	Reusing the Browser
	Ajax
	What We Just Learned

	13. Keeping Your Features Fast
	Partitioning Features and Scenarios
	What Sort of Tests?
	Environment-Specific Step Definitions
	Changing Step Definitions Using Tags
	What We Just Learned

	Part III—More Techniques
	14. Controlling Cucumber
	Cucumber's Runtime Options
	Overriding Cucumber Options
	Automating Cucumber
	What We Just Learned

	15. Working with a REST Web Service
	Structure Your Step Definitions
	Storing Some Fruit
	Building a Skeleton Web Server
	The Fruits of Our Labor
	What We Just Learned

	16. Working with Legacy Applications
	Characterization Tests
	Squashing Bugs
	Adding New Behavior
	Are Your Scenarios Sufficient?
	What We Just Learned

	A1. Installing Cucumber
	Choosing Your JARs
	External Dependencies
	Console Colors on Windows

	A2. Cucumber and Other JVM Languages
	Groovy
	Scala
	Clojure

	A3. Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –

