The Monte-Carlo Approach in Amazons

Julien Kloetzer!, Hiroyuki lida!, and Bruno Bouzy?

! Research Unit for Computers and Games
Japan Advanced Institute of Science and Technology
2 Centre de Recherche en Informatique de Paris 5
Université René Descartes

Abstract. The game of the Amazons is a quite new game whose rules
stand between the game of Go and Chess. Its main difficulty in terms
of game programming is the huge branching factor. Monte-Carlo is a
method used in game programming which allows us to overcome easily
this problem. This paper presents how the Monte-Carlo method can be
best adapted to Amazon programming to obtain a good level program,
and improvements that can be added to it.

1 Introduction

The game of Amazons (in Spanish, El Juego de las Amazonas) has been invented
in 1988 by Walter Zamkauskas of Argentina. Although it is very young, it is
already considered as being a difficult game: its complexity is between Chess
and the game of Go.

The main difficulty of the game of Amazons is its complexity: the average
number of moves is 80, with a branching factor of approximately 500, and no
more than 2176 available moves for the first player. With this in head, we can
clearly see that an exhaustive full tree-search is a difficult task: there are no
more than 4 millions different positions after two moves. Moreover, even if many
of theses moves are clearly bad, there are often positions where more than 20
moves can be considered as “good” moves, and selecting these moves is a hard
task [2].

Monte-Carlo (short: MC) is a simple game-independent algorithm which has
recently proven to be competitive for the game of Go, especially including a part
of Tree Search (different from the classical minimax approach), and knowledge
of the game. Now, considering that the game of Go has the same main draw-
back as the Amazons, a huge branching factor, and that both these games are
territory-based games, thus increasing the similarity, we can expect the Monte-
Carlo approach to give good results for the game of Amazons.

After a brief description of the rules of the game, section 2 of this paper
focuses on the main core of a Monte-Carlo Amazons program. Section 3 presents
some improvements that can be added to it, with the results discussed in section
4. Section 5 focuses on our latest improvement to the program, before concluding
and discussing future works in section 6.

2 Using Monte-Carlo for the game of Amazons

The rules of this game (usually called simply “Amazons”) are very simple: it is
played on a square board of 10x10, sometimes less but this size is the classical
one. Each player begins with 4 Amazons, placed all over the board (left of figure
1). A player move consists first on moving one of his Amazons: it can be moved
in every direction in a straight line, on any square accessible from the Amazon,
exactly as Queen in Chess. Then, after having moved an Amazon, the player
chooses a square accessible from the one on which his Amazon just landed, and
shoots an arrow on this square: this square becomes blocked until the end of the
game. No further Amazon move or arrow shot can go through it or land on it
(right of figure 1).

azich: “ciijtdile W FIIe by A0

—
=

=N W & N e W

Fig. 1. Beginning position in Amazons (left) and after one move (right).

Each player alternatively makes one of these moves, so a square is blocked
on each move. The first player that cannot move any more loses the game, and
the score of the game is usually determined as being the number of moves that
the other player could have played after it.

All Monte-Carlo Amazons programs should include recent developments made
to combine MC and Tree-Search (short: TS). A pseudo code is given in figure 2.

One run (or playout) of the evaluation consists on three steps:

— First, after the search tree used in the evaluation has been initialized to the
root itself only (line 2), a new node of the game tree is selected to be added
later to the current search tree (line 6), combined with its evaluation.

— Then, a completely random game is performed, starting from the given node,
until the end of the game (line 5). The evaluation given is usually either the
score of the game (if available), or the information win/loss/draw.

1. Function find_move (position)

2. treeSearch_tree = tree (position)

3. while (time is remaining)

4, Node new_node = search_new_node (treeSearch_tree)
5. v = evaluate (new_node)

6. treeSearch.add (v, new_node)

7. return best_move()

8.

9. Function search_new_node (tree)

10. node = root (tree)

11. while (number_unvisited_children (node) != 0)
12. node = find_best_children (node)

13. node = random_unvisited_children (node)

14. return node

Fig. 2. Pseudo-code for Monte-Carlo using tree-search.

— Finally, the given node is added to the current search tree: the evalua-
tion given is stored in all the nodes that have been visited in the function
search_new_node and in the new node.

The search function is the main core of the tree-search Monte-Carlo model.
In previous versions of MC, it always returned one of the children node of the
root, either chosen randomly, or so that each node is visited the same number
of time [1], or chosen by some knowledge [4]. Following the algorithm UCT [7],
our program visits the current search tree by exploring nodes that maximizes
the score given by the formula:

Score(node(i)) = Evaluation(node(i)) + C * \/l"("b‘:ﬁ}zgf:g::;e(g')}fe(’))) (1)

The first term of formula (1), the evaluation, is usually given either by the
expected win/loss ratio of the node, or the expected average score. The number
of visits of one node is the number of timeit was selected in the process of
searching for a new node (line 9 of figure 2). Both these values (number of visits
and average evaluation) are updated after each playout (line 6). The second term
allows nodes not to be forgotten during the process, raising if the node is not
visited while his parent is. Finally, the factor C has to be tuned experimentally.

In the field of Amazons playing, some features need to be discussed:

— Each move consists of two actions (Amazon movement + arrow shot), and
usually, one node results from a combination of these actions. However, we
can also choose to split every action decision in two: in every random game,
an Amazon movement is selected at random, and then an arrow shot from
this Amazon, not a combination. Also, we can do the same with the search

tree used by UCT, by not using a usual two levels tree, but a four levels one.
On the first level are the positions obtained after an Amazon movement, on
the second the positions obtained after an arrow shot from the Amazon just
moved, and similarly for the third and fourth level, with movements and
shot from the other player.
This changes should allows us basically to run more playouts, and thus to
increase in a very simple way the level of the program, because it does not
have to compute every move at each position in the random games.

— The evaluation has also to be chosen accordingly to the game which is played.
A Win-Loss ratio is usually used for MC + TS in game programming [6],
but we could also use an average score, or a combination of both.

Tests and discussion of these three features (splitting in the random games,
splitting in the tree used by UCT and the evaluation) are given in section 4.

3 Improving the rand games

Our program (Campya) includes the algorithm presented in section 2 to choose
a move. However, at this state, it lacks seriously of some knowledge of the game,
and can easily be defeated by a fair human player.

Improvements to a Monte-Carlo with Tree-search program can basically be
made at three levels:

— In the random games, by adding knowledge to it [3]

— In the tree-search part, changing the behaviour of UCT or using other tech-
niques [5]

— At the final decision of the move, for example by pruning moves [4]

Improving the random games has already proven to be a good way to im-
prove the level of a Monte-Carlo program, by adding knowledge to create pseudo-
random games. Moves can be chosen more or less frequently according to pat-
terns or to simple rules, as we did here for the game of Amazons. We decided to
focus on this method to improve the level of Campya.

3.1 The liberty rule

Mobility is an important factor in Amazons. Having an Amazon which is com-
pletely or almost completely enclosed at the beginning of the game is like fighting
at 3 against 4 for the remaining game. We defined the number of liberties of an
Amazon as the number of empty squares adjacent to this Amazon, using a con-
cept similar to the game of Go. Then, we added the following rules to the random
games:

— Any Amazon with 1 or 2 liberties has to be moved immediately
— Any opponent’s Amazon with 1 or 2 liberties should be enclosed if possible

Two liberties is a critical number: if they are adjacent, one can move an
Amazon on one of these, and shoot an arrow on the other one. This way, we
punish bad moves, and try to avoid being punished.

3.2 Pruning moves from enclosed Amazons

We say that an Amazon is isolated if any of the squares accessible from this
Amazon in any number of moves cannot be accessed by opponent’s Amazons.
An isolated Amazon is inside a territory and should not be moved, except in
situations of Zugzwang. Since this concept is way beyond the simplicity we search
in the random games, we added the following rule to the random games:

— Any isolated Amazon should not be moved if possible

Obviously, if all Amazons are isolated, one has to be moved. But in this
case, the game should be considered to be over: no player can now access to its
opponent territory.

Tests and discussion of these two features will be discussed in section 4.

4 Experiments and results

Due to the absence of popular Amazons servers and game protocol, testing of
these improvements has been realised through self-play games against a standard
version of our program. Each test consisted of runs of 250 games with 3 minutes
per player, each player playing half of the time as first player. Some games were
also played by hand against an other Amazons program: Invader [9], with an
equivalent 30 sec/move time setting for both programs.

The standard version used for testing, later called Vanilla Campya, uses a
light version of the algorithm presented in section 2: Monte-Carlo without Tree-
Search. Moves in the random games are split, and the evaluation of the games is
given by their score. The results of the game-independent features are shown in
table 1, and those of game-dependent features (liberty rule and pruning isolated
Amazons moves) in table 2. Each feature or set of features was added to Vanilla
Campya to produce a new version of the program, and then tested against the
Vanilla version.

Table 1. Results of Campya integrating some features against a standard MC version.

Feature tested Win ratio

Not splitting moves in the random games 20,4%
Evaluation by Win-Loss ratio 43,6%
Evaluation by combining score and Win-Loss ratio 63,5%
Using tree-search 81,6%
Using tree-search and combined evaluation 89,2%

(1) Using tree-search, combined evaluation,
and splitting moves in the tree-search 96%

The results obtained by the version not splitting moves in the random games
are conform to our intuition, with only 20% of win against the Vanilla version.

Further tests (not included here) showed us also that, even with an equivalent
number of playouts, the non-splitting version was behind. The results obtained
using different evaluations are a bit more surprising: it seems that, for the game
of Amazons, evaluation with a Win-Loss ratio is not the key, and that the score
alone is not sufficient either. Finally, the results obtained by integrating Tree-
Search are not surprising: a Tree-Search based version of Campya is way above
the others. Also, splitting the moves in the tree used by this version seems really
effective, and not only because of the higher number of random games that
Campya could launch: as for splitting moves in the random games, even with an
equivalent number of playouts, the non-splitting version was behind.

Table 2. Results of Campya integrating some features against a standard MC+TS
version.

Feature tested Win ratio
Version (1) + liberty rule 94.,4%
Version (1) + pruning 92,8%

Version (1) + pruning + liberty rule 96,4%

Version (1) in table 1 was used as a basis to test the knowledge-based im-
provements (liberty and pruning). Results obtained using them do not show a
significant difference with the results given in table 1. However, considering that:

— Adding this form of external knowledge slowed the playouts, and thus did
not permit us to launch as many as without, and

— The knowledge of liberties is especially useful against players who know how
to exploit it, so not against Vanilla Campya,

we can still consider this integration of Amazons-knowledge in Campya as be-
ing an improvement. Moreover, the first few games played against Invader were
terrific in the opening, because Campya had no knowledge of Amazon imprison-
ment. Adding it permitted our program to perform better games against Invader.

5 Integrating the accessibility in Campya

At this point, Campya still lacked an important knowledge, used a lot in other
programs. The accessibility to a square by a player can be defined as the min-
imum number of Amazon move a player has to perform to place an Amazon
on this square. This number is set to infinite if the player has no access to the
square. It is used by many programs, such as Amazong [8]

Accessibility is territory-related: if a player has a better accessibility to a
square than his opponent, this square has a higher chance to be part of this
player’s territory at the end of the game than to be part of his opponent’s.
This goes even more true as the game reaches its end. Lacking this knowledge,

our program could not understand the idea of potential territory, and thus was
mostly crushed in the opening and middle game by other programs or good
human players.

Integrating this knowledge in a Monte-Carlo architecture cannot be done
easily: it requires lots of computations, and thus slows down the speed of the
random games too much to be useful. However, it can be integrated as a new
evaluation, which led us to this:

— random games are not any more evaluated by their a combination score +
win/loss at the end of the game, but by the estimated score of the game
after a fixed number of plies

Tests of this new feature have been done the same way as presented in section
4, with the difference that the reference version was not Vanllla-Campya any
more, but the version (1) of table 1. Results are shown in table 3.

Table 3. Results of Campya integrating accessibility-based evaluation, in number of
games (average score).

Version (1) Version (1) + accessibility evaluation
15 (3) 205 (12)

Using the accessibility heuristic as a score evaluator allowed Campya to per-
form much better results, having more than 80% of win against its previous best
version and losses by only a few points, any feature similar except for the evalu-
ation. The games played against Invader also showed us that its level increased
and that it was now able to understand the concept of potential territory, still
not being able, in its actual version, to perform better than Invader, but showing
lots of potential.

6 Conclusion and future works

We presented in this paper how to best integrate the Monte-Carlo method for the
purpose of obtaining a good Amazons playing program. We discussed the main
features, and proposed forcing moves by the liberty rule and pruning useless
moves as ways to improve the level of the play. Finally, we proposed combining
MC and an evaluation function as being the best way to obtain a good level
program, thus using MC to explore a game tree and not any more to create an
evaluation function.

Further works mostly include finding other light forms of knowledge to im-
prove the random plays, specifically related to the endgame and the opening.
Also, we would like to find the best way to combine Monte-Carlo tree-search and
en evaluation function for the game of Amazons.

Acknowledgements

The picture of the Amazons boards in section 2 comes from the website
www.solitairelaboratory.com

References

Bruce Abramson (1993), Expected-outcome: a general model of static evaluation,
IEEE transactions on pattern analysis and machine intelligence 12:22, 182-193.
Henry Avetisyan, Richard J. Lorentz (2002), Selective search in an Amazons pro-
gram, Computers and Games 2002: 123-141.

Bruno Bouzy (2005), Associating knowledge and Monte Carlo approaches within
a go program, Information Sciences, 175(4):247257, November 2005.

Bruno Bouzy (2005), Move Pruning Techniques for Monte-Carlo Go, 11th Advances
in Computer Game conference, Taipei 2005.

Remi Coulom (2006), Efficient Selectivity and Backup operators in Monte-Carlo
Tree-Search, Proceedings of the 5th International Conference on Computers and
Games, Turin, Italy, 2006.

Sylvain Gelly, Yizao Wang, Remi Munos, Olivier Teytaud, Modifications of UCT
with Patterns in Monte-Carlo Go, Technical Report 6062, INRIA

Levente Kocsis, Csaba Szepesvari (2006), Bandit based Monte-Carlo planning, 5th
European Conference on Machine Learning (ECML), Pisa, Italy, Pages 282-293,
September 2006.

Jens Lieberum (2005), An evaluation function for the game of Amazons Theoretical
computer science 349, 230-244, Elsevier, 2005.

Richard J. Lorentz, Invader, http://www.csun.edu/ lorentz/amazon.htm

. Martin Muller, Theodore Tegos (2001), Experiments in Computer Amazons, in

R.J. Nowakowski editor, More games of No Chance, Cambridge University Press,
2001, 243-260

