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Abstract The generalized Pareto distribution is relevant to many situations when
modeling extremes of random variables. In particular, peaks over threshold data
approximately follow the generalized Pareto distribution. We use a fiducial frame-
work to perform inference on the parameters and the extreme quantiles of the
generalized Pareto. This inference technique is demonstrated both when the threshold
is a known and unknown parameter. Assuming the threshold is a known parameter
resulted in fiducial intervals with good empirical properties and asymptotically cor-
rect coverage. Likewise, our simulation results suggest that the fiducial intervals and
point estimates compare favorably to the competing methods seen in the literature.
The proposed intervals for the extreme quantiles when the threshold is unknown also
have good empirical properties regardless of the underlying distribution of the data.
Comparisons to a similar Bayesian method suggest that the fiducial intervals have
better coverage and are similar in length with fewer assumptions. In addition to sim-
ulation results, the proposed method is applied to a data set from the NASDAQ 100.
The data set is analyzed using the fiducial approach and its competitors for both
cases when the threshold is known and unknown. R code for our procedure can be
downloaded at http://www.unc.edu/˜hannig/.
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1 Introduction

Extreme value theory is of practical interest in a variety of different fields (e.g. eco-
nomics, hydrology, environmental science, insurance, etc.). It is well known that
modeling data over a high threshold with the generalized Pareto distribution (GPD)
is appropriate (Davison and Smith 1990). As stated by Hosking and Wallis (1987)
the applications of the GPD include analysis in extreme events such as the modeling
of large insurance claims and in situations that an exponential distribution might be
used but robustness is required with heavy or light tailed alternatives.

The generalized Pareto was first introduced by Pickands (1975). Later Smith
(1984, 1985), Davison (1984), and Monfort and Witter (1985) all showed interest
in its application and theoretical properties. If X ∼ F , Pickands (1975) showed that
the limiting distribution of (X − a) conditional on X > a as a → ωF where ωF is
the right-hand endpoint of the distribution follows a generalized Pareto distribution.
The density of the GPD is defined as

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

σ

(

1 + γ (x − a)

σ

)− 1
γ

−1

γ �= 0

1

σ
exp {− (x − a) /σ } γ = 0

for x > a such that 1 + γ (x − a)/σ > 0.
Estimators of the parameters using maximum likelihood, method of moments,

and L-moments have been explored in Davison (1984), Hosking and Wallis (1987),
and Smith (1984). Smith (1984) found the maximum likelihood estimators to be
asymptotically normal and consistent when γ > − 1

2 . Hosking (1990) showed that
procedures using L-moments and probability weighted moments are equivalent. Fur-
thermore, L-moments are more robust than method of moments and are often more
efficient than maximum likelihood estimates. A Bayesian solution to this problem
has been explored in Castellanos and Cabras (2005).

We propose new confidence intervals for γ, σ , and the β-quantile for the cases
when the threshold, a, is a known and unknown parameter. The proposed solu-
tion is based on generalized fiducial intervals of Hannig (2009b). Simulation results
suggest that this inference technique performs well with small sample sizes, and,
when a is known, the confidence intervals have asymptotically correct coverage. This
fiducial method for calculating intervals for the extreme quantiles (return levels) of
the GPD also compare favorably to the profile log-likelihood method described in
Coles (2001) and the Bayesian method described in Castellanos and Cabras (2005).
That is to say that the fiducial intervals have good empirical coverage and are often
shorter than the comparable profile log-likelihood and Bayesian intervals. Further-
more, the point estimates for γ and σ using this fiducial approach have smaller bias
when compared with estimators calculated using maximum likelihood, L-moments,
and the aforementioned Bayesian methods. The bias for the estimate of the β-quantile
is smaller than the estimates based on maximum likelihood and L-moments but
slightly larger than those calculated by the Bayesian method.



Generalized fiducial confidence intervals for extremes 69

We also developed fiducial methods when the threshold is unknown. As seen in
Coles (2001), the threshold is generally chosen by some ad hoc procedure of look-
ing at plots and fixing the threshold for all subsequent calculations. Other methods
will test whether the generalized Pareto fits the data for various different thresholds
as seen in Choulakian and Stephens (2001) and Dupuis (1999). Guillou and Hall
(2001) investigate this problem of choosing a threshold by using a fixed number of
the largest order statistics and Frigessi et al. (2002) used a weighting scheme with a
mixture of a Weibull distribution and the GPD to model the data. These methods do
not account for fact that the threshold is unknown in all practical applications. The
unknown threshold will add variability to the estimates of the extreme quantiles. Our
method, like the Bayesian methods developed in Cabras and Castellanos (2009) and
Tancredi et al. (2006), assumes the threshold is another parameter that is unknown.
As a result, the fiducial method will select likely values for the threshold based on
the data. Using this method, we performed a simulation study for data that was gen-
erated from various distributions that could be seen in real-life settings. Based on the
simulations, the fiducial framework produced intervals for the β-quantile that had
reasonable frequentist coverage for all of the distributions and compared favorably to
the Bayesian approach described in Cabras and Castellanos (2009).

This fiducial approach was also used to analyze a data set in both cases when the
threshold is assumed to be known and unknown. The data set that was analyzed was
the log-weekly losses of the NASDAQ 100 index. Our analysis produced fiducial
intervals for the 0.99-quantile that were generally shorter than the intervals from the
appropriate profile log-likelihood and Bayesian methods.

2 Generalized fiducial inference

2.1 Overview

The original idea for fiducial inference was developed by Fisher (1930) in an attempt
to overcome what he perceived as a deficiency in the Bayesian framework. Namely,
he was opposed to assuming a prior distribution when there was little or no infor-
mation about the parameters available. Opposition to the fiducial framework arose
when it was later discovered that some of the properties that Fisher had originally
claimed were not actually true (Lindley 1958; Zabell 1992). More recently, fiducial
inference has begun to gain more acceptance in the statistics community following
the introduction of generalized inference by Weeranhandi (1993) and the work of
Hannig et al. (2006) where a relationship between fiducial and generalized infer-
ence was established. More background on fiducial inference and discussion of the
asymptotic and empirical properties can be found in Hannig (2009b).

The principle idea of generalized fiducial inference is similar to the likelihood
function and “switches” the role of the data, X, and the model parameter(s) ξ . We
use a model and the observed data, X, to gain information about the parameter(s) ξ .
We use this function to define a probability measure on the parameter space, �.
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To formally describe fiducial inference we assume that a relationship between X
and ξ exists in the form of

X = G(ξ, U) (1)

where G(·, ·) is called the structural equation and U is a random vector with a com-
pletely known distribution and independent of any parameters. The parameter ξ and
the random vector U will determine the distribution of X. After X is observed the role
of the data and the parameter can be switched and one can infer a distribution on ξ

from what we know of the distribution of U. If Eq. 1 can be inverted the inverse will
be written as G−1(·, ·). For an observed x and u we can calculate ξ from

ξ = G−1(x, u). (2)

Because of this inverse relationship we can generate a random sample of
u′

1, u′
2, . . . , u′

M and obtain a random sample for ξ : ξ ′
1 = G−1(x, u′

1), ξ
′
2 =

G−1(x, u′
2), . . . , ξ

′
M = G−1(x, u′

M ). This sample is called a fiducial sample and can
be used to calculate estimates and confidence intervals for the true parameter(s), ξ0.

Two potential times that G−1(·, ·) may not exist are listed in Hannig and Lee
(2009). They occur when (i) there is no ξ that satisfies Eq. 2 or (ii) there is more
than one ξ that satisfies Eq. 2. From Hannig (2009b) we will handle situation (i) by
eliminating such u’s and re-normalizing the sampling probabilities. This is reason-
able because we know our data was generated using ξ0 and u0. Consequently, we
know that there is at least one solution for Eq. 2 when u0 is considered; we will only
consider the u’s that allow for G−1(·, ·) to exist. Hannig (2009b) suggests that situa-
tion (ii) is handled by picking an ξ by some, possibly random, rule that satisfies the
inverse in Eq. 2.

A more rigorous definition of the inverse is the set valued function of

Q(x, u) = {ξ : x = G(ξ, u)}. (3)

As we previously noted we know that our observed data was generated using some
value of the model parameter, ξ0, and random vector, u0. Thus, we know the dis-
tribution of U and that Q(x, u0) �= ∅. Using these two facts we can compute the
generalized f iducial distribution from

V (Q(x, U�))|{Q(x, U�) �= ∅} (4)

where U� is an independent copy of U and V (S) is a random element for any mea-
surable set, S, with support on the closure of S, S̄ (i.e. V (·) is the random rule for
selecting the possible ξ ’s). To simplify references to the generalized fiducial distribu-
tion in this manuscript, we will refer to a random vector that has a distribution given
by Eq. 4 as Rξ .

For a more detailed discussion of the derivation of the generalized fiducial dis-
tribution see Hannig (2009b). From the distribution, we can also calculate the
generalized f iducial density as proposed in Hannig (2009a, b). In these papers, there
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is also a theoretical justification of generalized fiducial inference. In particular, it is
demonstrated that the confidence intervals based on the generalized fiducial density
will have, under some regularity conditions, asymptotically correct coverage.

To compute the fiducial density, we will additionally assume that the structural
equation (1) can be written as Xi = gi (ξ, Ui ), i = 1, . . . , n. Here X = (X1, . . . , Xn),
G = (g1, . . . , gn) and U = (U1, . . . , Un) with Ui being independent random vari-
ables or vectors of known distribution. Note that ξ is a p × 1 vector and let X0 =
(X1, . . . , X p), Xc = (X p+1, . . . , Xn), U0 = (U1, . . . , Up) , Uc = (Up+1, . . . , Un),
and assume that G = (G0, Gc) where X0 = G0(ξ, U0) and Xc = Gc(ξ, Uc). Finally,
we will assume that the functions G0 and Gc are one-to-one and differentiable. After
establishing these relationships we can now follow the prescribed recipe to calculate
the generalized fiducial density.

If we were to use the first p structural equations in X0 = G0(ξ, U0) when we
observe x0 and u0 the inverse with respect to u0 would be, u0 = G−1

0 (ξ, x0). The
resulting generalized fiducial density is

fRξ
(ξ) = fX(x|ξ)J0(x0, ξ)

∫

�
fX(x|ξ ′)J0(x0, ξ ′)dξ ′

where

J0(x0, ξ) =
∣
∣
∣
∣
∣
∣

det
(

d
dξ

G−1
0 (x0, ξ)

)

det
(

d
du0

G−1
0 (x0, ξ)

)

∣
∣
∣
∣
∣
∣
.

This depends on the choice of G0 and Gc. Choosing G0 from the first p equations is

rather arbitrary so we will average over all possible p combinations. Specifically, we
will denote Xi = G0,i(ξ, Ui) where Xi = (Xi1 , . . . , Xi p ) and Ui = (Ui1 , . . . , Ui p )

for all possible combinations of the indices i = (i1, . . . , i p). This will produce the
generalized fiducial density

fRξ
(ξ) = fX(x|ξ)J (x, ξ)

∫

�
fX(x|ξ ′)J (x, ξ ′)dξ ′ (5)

where

J (x, ξ) =
(

n

p

)−1 ∑

i=(i1,...,i p)

∣
∣
∣
∣
∣
∣

det
(

d
dξ

G−1
0,i (xi, ξ)

)

det
(

d
dui

G−1
0,i (xi, ξ)

)

∣
∣
∣
∣
∣
∣

(6)

is the mean of all subsets where 1 ≤ i1 < · · · < i p ≤ n and the determinants in Eq. 6
are the appropriate Jacobians.

The generalized fiducial distribution describes our belief about possible values of
the parameters. It can be used in the same way as the Bayesian posterior to define
point estimators, confidence sets, etc.
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3 Main results

3.1 Structural equation

3.1.1 Known threshold

If X1, X2, . . . , Xn are independent and identically distributed random variables from
the GPD with parameters γ and σ then a structural equation, when a is known, can
be defined as

Xi = a + (
U−γ

i − 1
)σ

γ

where Ui for i = 1, . . . , n are independent random variables from the U (0, 1)

distribution.
Following the recipe from Eq. 5 we were able to calculate the fiducial density for

ξ = (γ, σ ). The generalized fiducial density when a is known is

fRξ
(ξ) ∝ 1

σ n

n∏

i=1

(

1 + γ (xi − a)

σ

)− 1
γ

−1

I(a,∞)(x(1)) I(0,∞)(σ ) I(− σ
x(n)−a ,∞)(γ )

×
(

n

2

)−1 1

γ 2

∑

i< j

∣
∣
∣
∣
∣
(xi − a)

(

1 + γ
(
x j − a

)

σ

)

log

(

1 + γ
(
x j − a

)

σ

)

−(
x j − a

)
(

1+ γ (xi − a)

σ

)

log

(

1 + γ (xi − a)

σ

)∣
∣
∣
∣ (7)

where Rξ = (Rγ ,Rσ ) is the fiducial random variable for (γ, σ ) and x(i) is the order
statistic for i = 1, . . . , n.

To find the fiducial density for the β-quantile (return level) a transformation on
Eq. 7 is needed. Namely, we need to find the distribution of

Rq = a + Rσ

Rγ

(
(1 − β)−Rγ − 1

)
β ∈ (0, 1) (8)

where Rq is the fiducial random variable associated with the β-quantile. The fiducial
density for the β-quantile is

fRq (q) ∝
∫

fRγ q (γ, q) dγ (9)

where fRγ q (γ, q) is the joint density of
(
Rγ ,Rq

)
using the transformation in Eq. 8.

3.1.2 Unknown threshold

In most practical applications the threshold is unknown and the GPD does not fit the
tail of the distribution exactly. As a result, we consider the following model as an
approximation:

Xi = I(0,p)(Ui ) (aWi ) + I(p,1)(Ui )

(

a + (
W −γ

i − 1
)σ

γ

)

(10)
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where Ui and Wi for i = 1, . . . , n are independent random variables from the U (0, 1)

distribution. Furthermore, p is chosen so the density based on Eq. 10 is continuous
at a. Notice that Eq. 10 is a structural equation of the form given in Eq. 1 with
U = {(Ui , Wi ), i = 1, . . . , n}. For computational stability, we also assume that it is
known a priori that at least B observations are above the threshold and at least one is
below the threshold, a.

As we are only interested in the data above the threshold the model below the
threshold serves as a way of introducing a penalty. The penalty helps to ensure that
the threshold is not forced far into the tail of the distribution. The uniform distri-
bution, while not the correct distribution of the data below the threshold, seems
to introduce the correct penalty for selecting the threshold as demonstrated by our
simulation studies.

Using this structural equation, the recipe described earlier produces the general-
ized fiducial density as

f (ξ) ∝
n−B∑

i=1

⎧
⎨

⎩

I(x(i),x(i+1))(a)J (xi+1:n, ξ)

(a + σ)n

n∏

j=i+1

⎡

⎣

(

1 + γ
(
x( j) − a

)

σ

)− 1
γ

−1
⎤

⎦

⎫
⎬

⎭

(11)
where

J (xi+1:n, ξ) =
(

n − i − 1

3

)−1 1

γ 2

×
∑

1≤i< j<k<l≤n

∣
∣
∣
∣(x j − xl)

(

1 + γ (xk − a)

σ

)

log

(
γ (xk − a)

σ
+ 1

)

− (xk − xl)

(

1+ γ (x j − a)

σ

)

log

(
γ (x j − a)

σ
+1

)

−(x j − xk)

(

1+ γ (xl − a)

σ

)

log

(
γ (xl − a)

σ
+1

)∣
∣
∣
∣ ,

x j :n = (
x( j), x( j+1), . . . , x(n)

)
is a vector of order statistics (x(0) = 0) and B < n.

Note that B forces a certain number of values in the tail to be fit with a GPD to ensure
that the threshold is not selected too close to x(n). In our simulations (discussed later)
we chose B = 10.

Finally we remark that the (a + σ)−n portion is a product of using the U (0, a)

distribution below the threshold and down-weights the generalized fiducial den-
sity for large threshold values. We have chosen the U (0, a) below the threshold
because it gives good empirical properties and leads to a simple form of the penalty
term, (a + σ)−n . Other choices for the distribution below the threshold are possible
and would lead to a more complicated penalty term, which we do not investigate
here.
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3.2 Confidence intervals, coverage, and point estimates when a is known

3.2.1 Conf idence intervals and coverage

Based on the fiducial densities in Eqs. 7 and 9 we defined point estimates and
confidence intervals for the parameters. The point estimates are defined as the
median of the marginal distributions of Eqs. 7 and 9. We constructed the equal tailed
confidence region for the true parameters (γ0, σ0) and one and two sided intervals for
the true high quantile, qβ0 . First, one sided lower and upper tailed intervals for qβ0

are defined as (c1, ∞) and (0, c2) respectively. The values c1 and c2 are the α and
1 − α quantiles of Eq. 9. Two tailed intervals were calculated in two different ways.
A symmetric (1 − α) 100% interval is obtained by combining two 1 − α

2 one tailed
intervals to get (c1, c2). The second two tailed interval is defined as

{

(d1, d2) : arg min
d1,d2

{

(d2 − d1),

∫ d2

d1

fRQ (q)dq = 1 − α

}}

. (12)

The interval (c1, c2) will be referred to as the “fiducial symmetric interval” and the
interval in Eq. 12 will be referred to as the “fiducial shortest interval”. Likewise, we
define the equal tailed joint confidence region for the true parameters (γ0, σ0) as

C(X) =
⎧
⎨

⎩
(γ, σ ) : A1 =

∫ ∞

0

∫ d1

−σ
x(n)−a

fRξ
(γ, σ )dγ dσ,

A2 =
∫ d2

0

∫ ∞
−σ

x(n)−a

fRξ
(γ, σ )dγ dσ, A3 =

∫ ∞

0

∫ ∞

d3

fRξ
(γ, σ )dγ dσ,

A4 =
∫ ∞

d4

∫ ∞
−σ

x(n)−a

fRξ
(γ, σ )dγ dσ, where d1, d2, d3, d4 satisfy

A1 = A2 = A3 = A4,

∫ d4

d2

∫ d3

d1

fRξ
(γ, σ )dγ dσ = 1 − α

}

. (13)

Fig. 1 Equal tailed confidence
region for (γ0, σ0)
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Table 1 Simulation values
when a is known γ0 −0.2 0 0.2 0.4 0.6

σ0 1

n 20 50 200

See Fig. 1 for illustration.
The traditional way to assess the coverage of confidence intervals is to choose a

desired confidence level (e.g. 95%), simulate data, then check the frequency in which
the true parameter(s) is/are captured by the constructed interval(s). Alternatively, we
use a graphic device demonstrated in Hannig (2009b), which allows us to check the
coverage at all confidence levels simultaneously. To accomplish this for the one tailed
intervals for the β-quantile set Qβ(X, qβ0) = P(Rq < qβ0 |X). This is essentially
the smallest coverage level of an upper tailed confidence interval that will contain
the true quantile, qβ0 . If the confidence interval for qβ0 were exact at all confidence
levels then Qβ(X, qβ0) (which can be thought of as a p-value) would follow the
U (0, 1) distribution.

We generated 1,000 data sets from a generalized Pareto distribution with the
parameter values seen in Table 1. An MCMC algorithm was used to draw a sample
from Eq. 7. Each generated data set produced one Qβ(X, qβ0) value which we used
to construct U (0, 1) QQ-plots. To assess the coverage look at the nominal coverage
and then note the corresponding actual coverage that coincides with the simulated
line. For example, the dotted line in the first two plots of Fig. 2 reflect that the 0.95
lower and upper tailed intervals have actual coverage of 0.948 and 0.962 respectively.
Figures 3 and 4 are additional QQ-plots for specified parameter values. In general,
intervals with exact coverage would follow the diagonal line in the plots. Because
there is variation due to simulation we provide confidence bands (dashed lines). If
the observed Qβ(X, qβ0) values (simulated line) stay within the dashed lines (95%
confidence bands) then they cannot be distinguished from a sample of the U (0, 1)

distribution and we claim good coverage properties.
A similar calculation can be done with the two tailed interval (c1, c2), the interval

in Eq. 12, and the joint confidence region in Eq. 13. The coverage for the intervals
of the 0.99-quantile and the joint confidence region are seen in Figs. 2, 3, and 4. The
figures with the titles “Upper tailed”, “Lower tailed”, and “Symmetric” coincide with
the previously described intervals of (0, c2), (c1, ∞), and (c1, c2) respectively. The
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Fig. 3 QQ-plots when γ0 = 0 and σ0 = 1, and n = 50

figures titled “Shortest” and “C(X)” coincide with the intervals defined in Eqs. 12
and 13, respectively. As the plots illustrate all of the intervals are very close to achiev-
ing the nominal coverage rate. This behavior was also seen for all of the γ0, σ0, and
sample size combinations in Table 1.

3.2.2 Asymptotic properties

For the parametric model with a known threshold we proved that the intervals
described previously have asymptotically correct frequentist coverage. If the thresh-
old is not known the relevant model is no longer parametric. Asymptotic properties
of the generalized fiducial distribution for non-parametric and semi-parametric prob-
lems are still not fully understood. See Hannig and Lee (2009) for an early result in
this direction.

We have verified that the confidence region in Eq. 13 has asymptotically correct
coverage using Theorem 5.1 from Hannig (2009a). Similarly, because the β-quantile
is a differentiable function of γ and σ it follows directly from the delta method that
the intervals for the β-quantile are also asymptotically correct. These calculations
have been relegated to Appendix A.

3.2.3 Interval comparisons

Our assessment of the confidence intervals for the β-quantile also involved a com-
parison to intervals constructed using the profile log-likelihood described in Coles
(2001) and the Bayesian approach using Jefferys prior described in Castellanos and
Cabras (2005). The coverage for two tailed 95 and 99% intervals based on the γ0
values in Table 1 for the 0.99-quantile are seen in Fig. 5. Each dot represents the
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Fig. 4 QQ-plots when γ0 = 0.4 and σ0 = 1, and n = 50
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Fig. 5 Coverage of the 95 and 99% confidence intervals for the 0.99-quantile with various γ0 values and
σ0 = 1

coverage for a simulation using a particular γ0 value. Due to convergence problems
the profile log-likelihood could not always be calculated for the small sample sizes.
As the plots illustrate, the fiducial intervals are very close to the desired coverage
rate while the Bayesian and profile log-likelihood methods tend to be slightly liberal.
Figure 6 demonstrates the lengths of the intervals when γ0 > 0. The mean (denoted
by the triangle) and the median length of the fiducial shortest interval described in
Eq. 12 is less than its competitors for all sample sizes. When γ0 ≤ 0 similar results
are seen. However, the mean and median lengths of the fiducial intervals are slightly
longer than the competitors when n = 20 and 50. The fiducial shortest interval is
shorter than its competitors when n = 200.

3.2.4 Point estimates comparisons

Comparisons of the point estimates of our method, the Bayesian estimates, the MLE
estimates, and estimates based on L-moments were also performed. The results were
similar for all γ0 values, we report these comparisons in Fig. 7. Again, the MLE
estimates at small sample sizes occasionally had convergence issues so we limit the
MLE comparisons to the sample sizes of n = 50 and 200. The fiducial estimates for
γ0 and σ0 have smaller bias than all of the competitors. The Bayesian estimate for
the 0.99-quantile is slightly less biased. All of the methods have similar variability
amongst the estimates.
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Fig. 7 Absolute bias and standard deviation of the point estimates using distributions with parameter
values given in Table 1

3.3 Confidence intervals and coverage when a is unknown

3.3.1 Conf idence intervals and coverage

Similar analysis can be done when the threshold, a, is unknown. We have derived the
generalized fiducial density when a is treated as an unknown parameter in Eq. 11.
We assume the data came from a mixture of the U (0, a) and the GPD beyond a. As
a result, all computations were done on the transformed data set of X ′ = X − X(1)

where X(1) is the minimum and then back transformed to the original scale. Using
the transformation in Eq. 8 we can calculate the generalized fiducial density for the
β-quantile of the X ′ data set. A Metropolis-Hastings algorithm allowed us to draw
a sample from Eq. 11 and calculate intervals for the parameters in the same manner
that was discussed earlier.

To assess the usefulness of our method we applied it to general data sets. We gen-
erated 1,000 data sets from the distributions listed in Table 2 with a sample size of
1,000 and assessed the confidence intervals for the β-quantile. Figures 8, 9, and 10
reflect the coverage for the 0.99 and 0.999 quantiles when the underlying distribu-
tions of the data are Exp(1), t (5) + 10, and N (10, 100). Our intervals are very close
to achieving the nominal coverage rate in those scenarios with the exception of the

Table 2 Distributions of the
simulated data Exp(1) t (5) + 10

Exp(5) t (10) + 10

Gamma(5, 1) N (10, 100)
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Fig. 8 QQ-plots for the 0.99 and 0.999 quantile when X ∼ Exp(1) using the fiducial method

two tailed intervals for the 0.99-quantile in Fig. 9. Those intervals are slightly liberal.
Similar results were seen when the data was generated from the other distributions.

3.3.2 Comparisons

In addition to checking the coverage we also compared our method to a similar
Bayesian method described in Cabras and Castellanos (2009). This method used a
mixture of a normal, Weibull, or nonparametric model below the threshold and a
GPD above the threshold. Obviously, this method depends on which central model is
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Fig. 9 QQ-plots for the 0.99 and 0.999 quantile when X ∼ t (5) + 10 using the fiducial method
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Fig. 10 QQ-plots for the 0.99 and 0.999 quantile when X ∼ N (10, 100) using the fiducial method

chosen. We found that the nonparametric model often chose a threshold far into the
tail and estimated the extreme quantiles using the prescribed nonparametric distribu-
tion. As a result, there was very little variation in the MCMC chain which caused
very liberal confidence intervals that rarely contained the true quantile. When the
data came from a t (5)+10 the nonparametric method does a better job but is still
rather liberal in its two tailed intervals, seen in Fig. 11. Using a normal central model
worked well when the data was normal and when it was very different from a normal
distribution, seen in Figs. 12 and 13. When the data came from a t distribution the
normal central model attempted to fit the bulk of the data and forced the threshold
into the tail. This caused an underestimation of the quantiles and produced very lib-
eral upper tailed and symmetric intervals, seen in Fig. 14. The Weibull central model

Fig. 11 QQ-plots for the 0.99
and 0.999 quantile when
X ∼ t (5) + 10 using the
Bayesian method with a
nonparametric central model
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Fig. 12 QQ-plots for the 0.99
and 0.999 quantile when
X ∼ Exp(1) using the Bayesian
method with a normal central
model

0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Lower tailed 0.99

A
ct

ua
l c

ov
er

ag
e

0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Upper tailed 0.99

0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Symmetric 0.99

0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Lower tailed 0.999

A
ct

ua
l c

ov
er

ag
e

Nominal coverage
0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Upper tailed 0.999

Nominal coverage
0.85 0.90 0.95 1.00

0.85

0.90

0.95

1.00

Symmetric 0.999

Nominal coverage

Fig. 13 QQ-plots for the 0.99
and 0.999 quantile when
X ∼ N (10, 100) using the
Bayesian method with a normal
central model
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Fig. 14 QQ-plots for the 0.99
and 0.999 quantile when
X ∼ t (10) + 10 using the
Bayesian method with a normal
central model
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Fig. 15 Length of the two tailed fiducial and Bayesian intervals for the 0.99-quantile when the data was
generated from Exp(1), Normal(10, 100), and t (5) + 10 respectively

produced reasonable coverage when the data came from an exponential distribution.
The other cases were not appropriate for a Weibull central model.

Figure 15 illustrates the lengths of the two tailed intervals when the methods
had reasonable coverage rates. The first plot reflects the Bayesian approach with
a Weibull central model is the shortest. The fiducial shortest interval is only slightly
longer in this case when the data came from an Exp(1). In the second plot the data was
generated from a N (10, 100) and, as expected, the Bayesian method that fits a nor-
mal model is shorter than both of our fiducial methods. In the third plot the data came
from a t (5)+10 and our fiducial shortest interval was the best. The fiducial symmet-
ric interval was only slightly longer than the Bayesian method using a nonparametric
central model.

4 NASDAQ 100 data set

We analyzed a data set of the log-weekly losses of the NASDAQ 100 index . The
data consists of 1222 weeks from October 1985 to March 2009.

Using the ad hoc approaches like the mean residual life plot in Fig. 16, suggested
in Coles (2001), a fixed threshold ranging from 0.03 to 0.05 would be appropriate.
Figure 16 also shows some fit diagnostics for the GPD when a = 0.04. Neither plot
would suggest that the GPD is not appropriate.

The estimates and confidence intervals for the 0.99-quantile can be seen in Table 3.
The estimates for the 0.99-quantile are all very similar and the fiducial shortest inter-
val is equivalent or shorter than the Bayesian interval and the profile log-likelihood
interval. Considering that the Bayesian and profile log-likelihood methods were both
slightly liberal and the fiducial intervals were very close to exact the fiducial interval
shows improvement.

Like Bayesian analysis we could also look at the density of any parameter.
Figure 17 illustrates the fiducial density and Bayesian posterior for γ when a = 0.04.

As the plots show, both methods produce a very similar density.
When the threshold is unknown the Bayesian method using the normal cen-

tral model was slightly shorter than the fiducial intervals. As demonstrated in the
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Fig. 16 Mean residual life plot for the NASDAQ 100 data set and probability and quantile plots when
a = 0.04

simulations, when the data came from a normal distribution the Bayesian method
with a normal central model produced the shortest intervals. However, as normal
QQ-plots would suggest, it is not likely that these data came from a normal distribu-
tion. As a result, the coverage of the Bayesian interval with a normal central model
may be called into question. The fiducial shortest interval was equal in length to the
Bayesian method that used a nonparametric central model and the symmetric inter-
val was slightly longer. When the threshold was unknown the fiducial method still

Table 3 Estimates and confidence intervals for the 0.99-quantile of the NASDAQ 100 data set

Method a (fixed) q0.99 estimate q0.99 95% CI

Fiducial symmetric interval 0.03 0.109 (0.096, 0.128)

0.04 0.109 (0.097, 0.128)

0.05 0.107 (0.095, 0.125)

Fiducial shortest interval 0.03 0.109 (0.095, 0.126)

0.04 0.109 (0.096, 0.125)

0.05 0.107 (0.094, 0.123)

Bayesian interval 0.03 0.109 (0.097, 0.128)

0.04 0.110 (0.097, 0.129)

0.05 0.108 (0.095, 0.125)

Profile log-likelihood interval 0.03 0.108 (0.096, 0.126)

0.04 0.109 (0.097, 0.126)

0.05 0.106 (0.094, 0.124)

Method a (estimate) q0.99 estimate q0.99 95% CI

Fiducial symmetric interval 0.038 0.110 (0.096, 0.129)

Fiducial shortest interval 0.038 0.110 (0.095, 0.126)

Bayesian normal central model 0.016 0.110 (0.099, 0.129)

Bayesian nonpar central model 0.029 0.109 (0.096, 0.127)
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Fig. 17 Fiducial density and Bayesian posterior for γ when a = 0.04

produced confidence intervals for the β-quantile with good coverage. Thus, we can
be confident that the reported intervals have good empirical properties. Even though
similar intervals are produced, our fiducial method is more flexible as it can account
for different distributions while still maintaining good coverage properties.

In the case when the threshold is unknown, our method is computationally
intensive. As a result, analysis can take longer than the commonly used profile log-
likelihood analysis. The benefit of our method comes from the fact that the threshold
is an unknown parameter in any real life setting. Assuming that the threshold is
known, as is done with the profile log-likelihood, may not be appropriate for all
situations.

5 Conclusion

There has been substantial interest in peaks over threshold modeling. Various esti-
mation techniques have been developed and methods continue to improve. The
challenge in modeling peaks over threshold data come from estimating the extreme
quantiles and also estimating the threshold. We developed a fiducial approach to both
problems.

When the threshold is assumed to be known our fiducial approach constructs inter-
vals and point estimates for the true parameters (γ0, σ0) and the β-quantile that have
good small sample properties. Furthermore, all of the proposed intervals have asymp-
totically correct coverage. Comparisons with a Bayesian method and the profile
log-likelihood approach suggest that the fiducial intervals were closer to achieving
the nominal coverage rate for the 0.99-quantile and one of the fiducial intervals was
shortest. Likewise, the point estimates for the shape and scale parameters using the
fiducial method had the smallest bias. The point estimate for the 0.99-quantile was
slightly better using the Bayesian approach.
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When the threshold is unknown the proposed fiducial intervals for the β-quantile
had good frequentist coverage. Our method worked well on the different data types
that could be seen in real life while the competing Bayesian method did not uni-
versally work well for all data types. First, a central model had to be chosen from
either a Weibull, normal, or nonparametric distribution. Even after choosing an ade-
quate central model it was not assured that the coverage for the β-quantiles would
be reasonably close to exact. When the Bayesian intervals had an acceptable cover-
age rate the recommended fiducial intervals were either close to the same length or
shorter.

We analyzed a data set from the log-weekly losses of the NASDAQ 100 index. Our
analysis demonstrated that the intervals for the fiducial method were similar in length
(sometimes shorter) when compared to the competing methods in both cases where
the threshold was known and unknown. Because we demonstrated that the coverage
for the fiducial intervals were reasonably close to exact for any data type, we can be
confident that these intervals have adequate coverage while the competitors tended
to have lower than their stated coverage.

Based on our findings the fiducial approach to the generalized Pareto distri-
bution is a viable alternative to modeling peaks over threshold data sets. The
good small sample properties and the asymptotic results make this an attractive
solution to a difficult problem. R code for our procedure can be downloaded at
http://www.unc.edu/˜hannig/.
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Appendix A: Asymptotic calculation

From Hannig (2009a) we can show that the intervals, when the threshold is known,
are asymptotically correct from a frequentist prospective. The assumption are easily
verifiable.

First, the structural equation must be set up as

Xi = F−1(ξ, Ui )

for i = 1, . . . , n and Ui are i.i.d. U (0, 1). This is exactly how we set up our structural

equation so this has been verified.
Second, we need F(x, ξ) to be continuously differentiable in ξ for all x . This is

true by definition of the GPD.
For each (x1, . . . , x p) the map of (F(x1, ξ), . . . , F(x p, ξ)) = (u1, . . . , u p) as a

function of ξ is one to one. To accomplish this we will show that there is only one
nonzero root for γ when considering the function

f (γ ) = X2U−γ

1 − X1U−γ

2 + X1 − X2 = 0

http://www.unc.edu/~hannig/
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where f (γ ) is a result of solving one of the structural equations for σ and substituting
into the other, without loss of generality we will also assume X1 > X2. This function
has one minimum at

γ = −
log

(
X2 log(U1)
X1 log(U2)

)

log
(

U2
U1

)

and the derivative is

d f (γ )

dγ
= X1U−γ

2 log (U2) − X2U−γ

1 log (U1) .

The derivative is negative when γ is small and positive for large γ . Also, f (γ )

approaches X1 − X2 as γ → −∞, which is always positive. Since there is still only
one minimum and the function goes through the origin there can be only one other
root. Thus satisfying the assumption.

Finally, we will assume that there exists a fixed grid in R of the form

(−∞, c1], (c1, c2), . . . , (cn, ∞)

and that each observed value x j ∈ (c j , c j+1]. This means that X j is only observed to
the resolution of the grid. This assumption is very natural in any real setting. Every
observation is measured to some measurement resolution and is not an exact value.

After these assumptions are satisfied we can directly apply Theorem 5.1 from
Hannig (2009a) to demonstrate that the interval in Eq. 13 and intervals for the β-
quantile are asymptotically correct.
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