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First laws of black hole mechanics, or thermodynamics, come in a variety of different forms. In this

paper, from a purely post-Newtonian (PN) analysis, we obtain a first law for binary systems of point

masses moving along an exactly circular orbit. Our calculation is valid through 3PN order and includes, in

addition, the contributions of logarithmic terms at 4PN and 5PN orders. This first law of binary point-

particle mechanics is then derived from first principles in general relativity, and analogies are drawn with

the single and binary black hole cases. Some consequences of the first law are explored for PN spacetimes.

As one such consequence, a simple relation between the PN binding energy of the binary system and

Detweiler’s redshift observable is established. Through it, we are able to determine with high precision the

numerical values of some previously unknown high-order PN coefficients in the circular-orbit binding

energy. Finally, we propose new gauge-invariant notions for the energy and angular momentum of a

particle in a binary system.
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I. INTRODUCTION

A. Motivation

Inspiralling and coalescing binary systems composed
of black holes and/or neutron stars are among the most
promising sources of gravitational radiation that might be
detectable by forthcoming ground-based interferometers,
such as Advanced LIGO and Advanced Virgo, as well as
by future space-based observatories [1]. The detection and
analysis of these signals require very accurate theoretical
predictions, for use in the construction of gravitational-
wave templates. Given the complexity of the Einstein field
equations, continued progress requires that we must
(i) cleverly identify which parts of the problem naturally
lend themselves to simplification, and (ii) rely on a combi-
nation of approximation and numerical methods.

There are two main approximation schemes for studying
the relativistic dynamics of compact binary systems, and
the associated emission of gravitational radiation: the post-
Newtonian (PN) approximation, which is well-suited to
describe the inspiralling phase of arbitrary mass ratio
compact binaries in the small velocity and weak field
regime (v � c) [2], and black hole perturbation theory,
which provides an accurate description of extreme mass
ratio binaries (m1 � m2), even in the strong field
regime [3].

Each of these approximation methods frequently relies
on a simplified description of one or both of the compact
objects in terms of structureless point particles, character-
ized solely by their massesm1 andm2, and eventually their
spins. Even though the notion of a point mass has been
shown to be ill-defined in the exact theory of general
relativity [4,5],1 it can be made sensible in approximation
methods such as PN expansions or black hole perturbation
theory. This idealization is particularly convenient in
order to carry out calculations up to very high orders, as
required for gravitational-wave searches relying on
matched filtering.
Except for the occurrence of a gradual inspiral driven by

radiation-reaction, the orbits of stellar mass compact bi-
naries can be considered to be circular, to a very high
degree of approximation. Mathematically, the approxima-
tion of an exactly closed circular orbit translates into the
existence of a helical Killing vector (HKV), along the
orbits of which the spacetime geometry is invariant. This
HKV field (say K�@� ¼ @t þ�@’, where � is the con-

stant circular-orbit frequency) can be viewed as the gen-
erator of time translations in a corotating frame. Given the
high astrophysical relevance of this approximation, heli-
cally symmetric spacetimes have been studied extensively
in the literature [6–16]; these numerous works range from
formal mathematical analyses to practical calculations of
initial data for binary black holes and binary neutron stars.

*letiec@umd.edu
†blanchet@iap.fr
‡bernard@phys.ufl.edu

1Physically, if one tries to compress an extended body down to
a single point, a black hole will form before the point-particle
limit is reached.
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In general relativity, it is known that helically symmetric
spacetimes cannot be asymptotically flat [12]. This can
easily be understood from a heuristic point of view: in
order to maintain the binary on a fixed circular orbit, the
energy radiated in the form of gravitational waves needs to
be compensated by an equal amount of incoming radiation.
Far away from the source, the resulting system of standing
waves rapidly dominates the energy content of the space-
time, such that the falloff conditions necessary to ensure
asymptotic flatness cannot be satisfied. Nevertheless,
asymptotic flatness can be recovered if, loosely speaking,
the gravitational radiation can be ‘‘turned off’’. There are
two well-known approximations to general relativity for
which this can be achieved: the Isenberg, Wilson and
Mathews approximation (or conformal flatness condition)
[17–19], and the post-Newtonian approximation. In the
latter, it is in principle possible to unambiguously disen-
tangle the conservative part of the orbital dynamics, from
the dissipative effects related to radiation-reaction (at least
up to 3.5PN order2). Consequently, in the PN approxima-
tion, one can justifiably consider nonradiative, helically
symmetric, asymptotically flat spacetimes.

B. Overview

In this paper we shall consider such nonradiative, heli-
cally symmetric, asymptotically flat spacetimes, in which
both compact objects are modeled as point masses m1 and
m2 moving on exact circular orbits. Building on previous
works [20,21],3 we compute Detweiler’s redshift observ-
ables z1 and z2 [22], which represent the redshift of light
rays emitted from the particles and received on the helical
symmetry axis perpendicular to the orbital plane. On the
other hand, we compute also the total ADM mass M and
total angular momentum J of the system of two point
particles. Our calculations are carried through high post-
Newtonian order, being complete up to 3PN order and
including also the leading-order 4PN and next-to-leading
5PN logarithmic contributions.

The ADM mass M, angular momentum J, and redshifts
z1;2 are all functions of the three independent variables of
the problem, namely, the orbital frequency � that is im-
posed by the existence of the HKV, and the individual
masses m1 and m2 of the particles. We shall prove from
our high-order post-Newtonian calculation that the varia-
tions of the ADM quantities are linked to the variations of
the individual masses by the first law of the binary point-
particle mechanics (or ‘‘thermodynamics’’)

�M���J ¼ z1�m1 þ z2�m2: (1.1)

We shall demonstrate that this law is actually a particular
case, valid when one assumes the existence of a HKV
covering the entire spacetime, of the generalized law of
black hole mechanics obtained by Friedman, Uryū, and
Shibata [11]. Various consequences of this law will also be
investigated and discussed in the framework of post-
Newtonian spacetimes, notably the interesting relation

M� 2�J ¼ m1z1 þm2z2: (1.2)

As an application of the first law (1.1) we shall be able to
determine the numerical values of some previously un-
known post-Newtonian coefficients (at 4PN, 5PN and
6PN orders) in the binding energy of the compact binary
on a circular orbit. We shall also propose some gauge-
invariant definitions for the energy and angular momentum
of a point particle in a binary system.
This paper is organized as follows. In Sec. II we com-

plete the PN calculations performed in Papers I and II by
taking into account new logarithmic contributions coming
from memory-type hereditary terms in the metric, and
show that including these new contributions yields the first
law (1.1), which is thereby proved up to 3PN order plus the
log-terms at 4PN and 5PN orders. In Sec. III we show that
this law is a particular case of the known general law of
mechanics for systems of black holes and extended fluid
bodies. Analogies with the single and binary black hole
cases are drawn, and various discussions and alternative
proofs are presented. Finally, in Sec. IV these results are
applied (i) to provide gauge-invariant candidates for the
perturbed energy and angular momentum of a point parti-
cle in circular orbit about a Schwarzschild black hole, and
(ii) to the numerical determination of high-order PN co-
efficients in the circular-orbit binding energy. We end up
with a list of potential applications which are left for future
work.

II. POST-NEWTONIAN DERIVATION OF THE
FIRST LAW

In Papers I and II, motivated by high-accuracy compari-
son between the post-Newtonian approximation and self-
force (SF) perturbative results [22], we derived the redshift
observables z1 and z2 of a circular-orbit binary up to order
3PN, and included the specific contributions of logarithms
at 4PN and 5PN orders (see also Ref. [23] for the 4PN
logarithm). In the limit of small mass ratio, we showed a
very good agreement with numerical SF computations
based on first-order black hole perturbation theory.

A. Logarithmic contributions coming from
memory-type hereditary terms

We have found that the previous calculation of the 4PN
and 5PN logarithmic terms had overlooked a subtle point
related to the assumption of helical symmetry: in the

2As usual we refer to nPN as the order corresponding to terms
Oðc�2nÞ in the equations of motion.

3The papers [20,21] are hereafter referred to as Papers I and II,
respectively.
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Appendix of Paper II, it was shown that a class of loga-
rithmic terms contributing to the metric appeared in the
form of an infinitesimal gauge transformation. These terms
were left out of the calculation, because they could not
contribute to the coordinate invariant relations computed
for quasicircular orbits. That conclusion is correct in the
case of the physical problem where both conservative and
dissipative effects are included, such that the binary decays
and coalesces within a finite amount of time (from the
point of view of a distant inertial observer). However,
once the helical symmetry is imposed, the binary must be
seen as having orbited for an infinite amount of time, and
the infinitesimal gauge transformation used in the
Appendix of Paper II turns out to become meaningless.
In the present section we correct for this effect and consider
only a class of gauge transformations allowed by the HKV.
We shall show that this adds extra logarithmic contribu-
tions at 4PN and 5PN orders, but that these do not affect the
self-force regime investigated in Papers I and II.

The logarithms at 4PN and 5PN orders are produced by
so-called ‘‘hereditary’’ terms [24] when the helical sym-
metry is imposed. They can be computed by using the
‘‘instantaneous’’ propagator given by

I �1 � FPB¼0

Xþ1

k¼0

�
@

c@t

�
2k
��k�1

�
r

�

�
B
: (2.1)

This propagator depends explicitly on the orbital frequency
� imposed by the helical symmetry, through the length
scale � ¼ 2�c=�. Indeed, a certain finite part (FP) opera-
tion at B ¼ 0 is required (see e.g. Papers I and II), which
involves the regulator ðr=�ÞB and yields when B ! 0 some
logarithms of the type lnðr=�Þ. At quadratic nonlinear
order these logarithms are contained into the following
piece of the ‘‘gothic’’ metric4:

�h��2 ¼ I�1

�
1

r2

�
4M

c4
z
ð2Þ�� þ k�k�

c2
�

��
: (2.2)

The first term in the right-hand-side (RHS) corresponds to
gravitational-wave tails (back-scattering of linear waves
onto the background curvature associated with the mono-
pole M of the source), while the second term is due to the
nonlinear memory effect (radiation of waves by the stress-
energy distribution of linear waves). The tensor z��ðn; uÞ
in Eq. (2.2) represents the coefficient of the dominant 1=r

term of the (nonstatic part of the) linearized metric h��1 at
future null infinity, i.e. when r ! þ1 with the retarded
time u � t� r=c kept fixed. It is in the form of a sum of
multipoles parametrized by mass-type moments MLðuÞ
and current-type moments SLðuÞ:

z00 ¼ �4
X
‘�2

nL
c‘þ2‘!

Mð‘Þ
L ðuÞ; (2.3a)

z0i ¼ �4
X
‘�2

�
nL�1

c‘þ2‘!
Mð‘Þ

iL�1ðuÞ

� ‘

c‘þ3ð‘þ 1Þ!"iabnaL�1S
ð‘Þ
bL�1ðuÞ

�
; (2.3b)

zij ¼ �4
X
‘�2

�
nL�2

c‘þ2‘!
Mð‘Þ

ijL�2ðuÞ

� 2‘

c‘þ3ð‘þ 1Þ!naL�2"abðiS
ð‘Þ
jÞbL�2ðuÞ

�
: (2.3c)

Our notation for multi-indices such as L ¼ i1 � � � i‘ (and so
on) is the same as in Paper II. The superscript ð‘Þ refers
to time derivatives. In the second term of the RHS of
Eq. (2.2), k� ¼ ð1;nÞ is the outgoing Minkowskian null
vector and �ðn; uÞ, which is essentially the energy carried
away by the waves in the direction n ¼ x=r, is given by

� ¼ 1

2
z
ð1Þ�� z

ð1Þ
�� � 1

4
z
ð1Þ�

� z
ð1Þ�

�: (2.4)

The whole computation of the log-terms in Paper II was
based on the first contribution (tail) in Eq. (2.2). The
second contribution (memory) was discarded because the
log-terms therein are formally in the form of an infinitesi-
mal gauge transformation. However, the argument over-
looks the fact that the needed gauge transformation
involves some antiderivatives of the quantity � defined by
(2.4); cf. the Appendix of Paper II. Since the average of �
over all directions represents the energy flux in the waves
[see e.g. Eq. (2.13a) below], this means that the gauge
transformation is actually not admissible in the presence
of the helical symmetry, because the integral of the flux, or
total energy emitted, is infinite in that case.
In the present paper we redo the analysis of the memory

term in Eq. (2.2), i.e.

½�h��2 �memory ¼ I�1

�
k�k�

r2c2
�ðn; uÞ

�
; (2.5)

and show that it does contribute (together with its iteration
at cubic nonlinear order) to some new log-terms at 4PN and
5PN orders with respect to the results of Paper II. To this
end we decompose �ðn; uÞ into symmetric and trace-free
(STF) spherical harmonics:

�ðn; uÞ ¼ Xþ1

‘¼0

nL�̂LðuÞ; (2.6)

where �̂LðuÞ denotes the STF coefficient of order ‘ and
nL ¼ ni1 � � � ni‘ . In the Appendix of Paper II, it is shown

that the log-terms issued from Eq. (2.5) are given by5

4We pose h�� � ffiffiffiffiffiffiffi�g
p

g�� � ���, where g�� denotes the
inverse of the usual covariant metric g��, of determinant g ¼
detðg��Þ, and ��� is the Minkowski metric. We use harmonic
coordinates throughout, i.e. @�h

�� ¼ 0.

5We no longer mention the ‘‘memory’’ origin of this term. For
the rest of this Section the notation �q will refer to a modifica-
tion in the quantity q with respect to Paper II, i.e. which is to be
added to the corresponding results of Paper II.
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�h��2 ¼ ln

�
r

�

� Xþ1

‘¼0

ð�cÞ‘þ1@�@�@Lf�̂ð�‘�3Þ
L g; (2.7)

where @L ¼ @i1 � � � @i‘ and the superscript ð�‘� 3Þ refers
to time anti-derivatives. We employ the following conve-
nient notation for a monopolar antisymmetric wave built
from an arbitrary function FðuÞ [25]:

fFg � Fðt� r=cÞ � Fðtþ r=cÞ
2r

: (2.8)

It was then shown in Paper II that the log-terms (2.7) can
formally be rewritten in the form of an infinitesimal gauge

transformation, i.e. �h��2 ¼ 2@ð���Þ � ���@	�
	, where

the gauge vector is explicitly given by

�� ¼ 1

2
ln

�
r

�

�Xþ1

‘¼0

ð�cÞ‘þ1@�@Lf�̂ð�‘�3Þ
L g: (2.9)

1. ‘‘Maximal allowed’’ gauge tranformation

However, it is crucial to control the occurrence of time
antiderivatives in this gauge vector. Recall from Paper II
that we are looking for so-called near-zone logarithms,
present in the near-zone expansion when r ! 0 of the
metric. So we must here discard time antiderivatives,
which appear in the near-zone expansion of the gauge
vector (2.9). The near-zone expansion when r ! 0 of the
antisymmetric wave (2.8) is regular, and given by

fFg ¼ � 1

c

Xþ1

k¼0

1

ð2kþ 1Þ!
�
r

c

�
2k
Fð2kþ1ÞðtÞ: (2.10)

Inspection of Eq. (2.9) with the help of the expansion
formula (2.10) then shows that the monopole ‘ ¼ 0 and
dipole ‘ ¼ 1 contributions in (2.9) involve time antider-
ivatives. These are clearly incompatible with the imposi-
tion of the helical Killing symmetry, since for instance the
antiderivative of the energy flux is the total radiated energy,
which is infinite. We shall therefore have to define a gauge
transformation �� differing from Eq. (2.9), and whose
near-zone expansion is free of time antiderivatives. There
is a large number of possible choices for such a gauge
vector. Here we choose to define �� by removing from ��

a minimal number of terms containing the putative anti-
derivatives, in such a way that the new gauge is still
harmonic. This corresponds to a ‘‘maximal allowed’’
gauge transformation in the context of helical symmetric
spacetimes. Our definition of �� reads

�0 ¼ �0 � 1

2
f�̂ð�2Þg ln

�
r

�

�
; (2.11a)

�i ¼ �i � 1

6
f�̂ð�2Þ

i g ln
�
r

�

�
; (2.11b)

where �̂ and �̂i denote the monopolar and dipolar coef-
ficients in the STF multipole expansion (2.6), given by
(with d� the solid angle in the direction n)

�̂ðuÞ ¼
Z d�

4�
�ðn; uÞ; (2.12a)

�̂iðuÞ ¼ 3
Z d�

4�
ni�ðn; uÞ: (2.12b)

An easy computation using the definition (2.4) together
with the explicit expression (2.3) of z�� shows that �̂ðuÞ,
which is the average of �ðn; uÞ, starts to contribute at order
1=c8, while the dipole part �̂iðuÞ starts at order 1=c9. These
will correspond to 4PN and 5PN terms in the metric,
respectively. Here, to be consistent with 5PN, we have to
obtain also the next-to-leading correction Oð1=c10Þ in �̂,
while the leading term is sufficient for �̂i. We find

�̂¼ 4

5c8
Mð3Þ

ij M
ð3Þ
ij þ 1

c10

�
4

189
Mð4Þ

ijkM
ð4Þ
ijkþ

64

45
Sð3Þij S

ð3Þ
ij

�

þO
�
1

c12

�
; (2.13a)

�̂i¼ 1

c9

�
8

21
Mð3Þ

jk M
ð4Þ
ijkþ

64

15
"ijkM

ð3Þ
jl S

ð3Þ
kl

�
þO

�
1

c11

�
: (2.13b)

We recognize the fluxes of energy and linear momentum
carried away by the gravitational waves at future null
infinity, so that the usual balance equations for the losses
of energy E and linear momentum Pi read, with such
notations,

dE

dt
¼ �Gc3

4
�̂; (2.14a)

dPi

dt
¼ �Gc2

12
�̂i: (2.14b)

Since the energy flux is accurate up to next-to-leading-
order with respect to the quadrupole approximation, the
quadrupole moment Mij in Eq. (2.13a) has to properly

include the 1PN relativistic corrections.
Performing the maximal allowed gauge transformation

with gauge vector �� defined by Eq. (2.11), we obtain the
following extra logarithmic contributions in the quadratic
metric perturbation (with respect to Eqs. (3.3) in Paper II):

�h002 ¼
�
� 1

2c
f�̂ð�1Þg þ 1

6
@if�̂ð�2Þ

i g
�
ln

�
r

�

�
; (2.15a)

�h0i2 ¼
�
1

2
@if�̂ð�2Þg � 1

6c
f�̂ð�1Þ

i g
�
ln

�
r

�

�
; (2.15b)

�hij2 ¼
�
1

3
@ðif�̂ð�2Þ

jÞ g � 1

2c
�ijf�̂ð�1Þg

� 1

6
�ij@kf�̂ð�2Þ

k g
�
ln

�
r

�

�
: (2.15c)

It can be checked that @��h
��
2 ¼ 0 (modulo some non-

logarithmic terms); hence the metric is still harmonic. The
formula (2.10) then gives the 4PN and 5PN terms in the
metric perturbation as
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�h002 ¼
�
1

2c2
�̂þ r2

12c4
�̂ð2Þ � xk

18c3
�̂ð1Þ

k

�
ln

�
r

�

�
þO

�
1

c14

�
;

(2.16a)

�h0i2 ¼
�
1

6c2
�̂i � xi

6c3
�̂ð1Þ

�
ln

�
r

�

�
þO

�
1

c13

�
; (2.16b)

�hij2 ¼
�
1

2c2
�ij�̂þ r2

12c4
�ij�̂

ð2Þ � 1

9c3
xði�̂ð1Þ

jÞ

þ 1

18c3
�ijx

k�̂ð1Þ
k

�
ln

�
r

�

�
þO

�
1

c14

�
: (2.16c)

As usual this quadratic 4PNþ 5PN contribution will gen-
erate at cubic order an extra 5PN contribution, which is
readily computed using techniques similar to those in
Paper II. The required equation to be integrated is

�½�h003 þ �hii3 � ¼
4

c2
�hij2 @ijUþ 8

c2
@i�h

00
2 @iUþO

�
1

c14

�
;

(2.17)

where U is the Newtonian potential obeying
�U ¼ �4�G
�.

6 At 4PN order both �h002 and �hii2 are
proportional to �̂, and thus depend only on time (modulo
some non log-terms). Using this fact we can readily inte-
grate Eq. (2.17) and obtain the following cubic contribution
to the log-terms at 5PN order7:

�h003 þ �hii3 ¼ 2

c4
�̂U ln

�
r

�

�
þO

�
1

c14

�
: (2.18)

Finally, gathering the results we end up with the supple-
mentary contributions (i.e., with respect to Eqs. (3.9) and
(3.12) in Paper II) of the logarithms at 4PN and 5PN orders
in the covariant metric as

�g00¼
�
�G2

c2
�̂þ2G2

c4
U�̂� G2

6c4
r2�̂ð2Þ

�
ln

�
r

�

�
þO

�
1

c14

�
;

(2.19a)

�g0i¼
�
G2

6c2
�̂i� G2

6c3
xi�̂ð1Þ

�
ln

�
r

�

�
þO

�
1

c13

�
; (2.19b)

�gij¼O
�
1

c12

�
: (2.19c)

This harmonic metric is rather simple and we have done all
computations with it.

2. Cross-checking in a different gauge

As a check of the computations, we have also used an
equivalent metric corresponding to a different (nonhar-
monic) coordinate system, and given by

�g000¼
�
�G2

c2
�̂þ2G2

c4
U�̂

�
ln

�
r

�

�
þ��1

�
G2

c4
�̂�U ln

�
r

�

��

þO
�
1

c14

�
; (2.20a)

�g00i¼
�
G2

6c2
�̂i� G2

2c3
xi�̂ð1Þ

�
ln

�
r

�

�
þO

�
1

c13

�
; (2.20b)

�g0ij¼�G2

c2
�ij�̂ln

�
r

�

�
þO

�
1

c12

�
: (2.20c)

This new metric involves a term which is not proportional
to lnðr=�Þ but instead contains the logarithm in its
‘‘source’’, originating in a 5PN modification of the source
density 
�. This term, namely

��1

�
G2

c4
�̂�U ln

�
r

�

��
¼ G2

c4
�̂

�
Gm1

jx� y1j ln
�jy1j
�

�

þ Gm2

jx� y2j ln
�jy2j
�

��
; (2.21)

is crucial to take into account in the calculation with the
alternative metric (2.20). When computing the equations
of motion and the associated conserved quantities, we
must apply the metric at the coordinate locations of the
particles, so that lnðr=�Þ becomes lnðjy1j=�Þ or lnðjy2j=�Þ,
which play the same role as the logarithms generated in
Eq. (2.21). In the center-of-mass frame, both types of
logarithms become in fine lnðr12=�Þ (modulo irrelevant
constant terms), where r12 ¼ jy1 � y2j is the coordinate
separation. By contrast, in the computation with the origi-
nal metric (2.19), there is no such term as (2.21) corre-
sponding to a logarithmic modification of the source.
Rather, all terms in Eq. (2.19) are proportional to
lnðr=�Þ. The two computations are however easily recon-
ciled because the metrics (2.19) and (2.20) only differ by a
coordinate transformation x0� ¼ x� þ ��ðxÞ, namely

�g000 ¼ �g00 � 2

c
@t�0 þ 2

c2

�
ð�k � �k1Þ

@U

@yk1

þ ð�k � �k2Þ
@U

@yk2

�
þO

�
1

c14

�
; (2.22a)

�g00i ¼ �g0i � @i�0 � 1

c
@t�i þO

�
1

c13

�
; (2.22b)

�g0ij ¼ �gij � @i�j � @j�i þO
�
1

c12

�
; (2.22c)

where �kA � �kðyA; tÞ, with explicit expression for the
gauge vector

6Here 
� ¼ m1�ðx� y1Þ þm2�ðx� y2Þ is the Newtonian
coordinate mass density of the particles.

7We also obtain a contribution of far-zone logarithms given by

ð�h003 þ �hii3 ÞFZ ¼ 2

c4
�̂ ln

�
r

�

�X
‘�0

ð�Þ‘
‘!ð2‘þ 1ÞML@L

�
1

r

�
:

However, according to the arguments in Paper II, we can ignore
the contribution of far-zone logarithms.
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�0 ¼ G2

12c3
r2�̂ð1Þ ln

�
r

�

�
þO

�
1

c13

�
; (2.23a)

�i ¼ G2

2c2
xi�̂ ln

�
r

�

�
þO

�
1

c12

�
: (2.23b)

The log-terms arising from the nonlinear contribution in
Eq. (2.22a) are exactly given by (2.21), so that this term can
be eliminated by the coordinate transformation (2.23),
and the two computations give the same gauge-invariant
results.

B. Modification of the equations of motion
and invariant quantities

We then compute the modification of the acceleration of
one of the particles induced by the change (2.19) in the
metric. For definiteness we use the harmonic-coordinate
system for this computation. Because the additional loga-
rithmic contributions (2.19) reduce to the mere function of
time �̂ðtÞ at 4PN order, the modification of the acceleration
occurs only at 5PN order. We find for the particle 1 (dis-
carding uncontrolled non log-terms)

�ai1 ¼
�
��̂

G3m2

r212c
2
ni12 þ

G2

2c2
�̂ð1Þvi

1 �
G2

6c
�̂ð1Þ

i

�
ln

�
r12
�

�
;

(2.24)

where ni12 ¼ ðyi1 � yi2Þ=r12 and vi
1 ¼ dyi1=dt denotes the

coordinate velocity. For simplicity we no longer write the
neglected 6PN remainder. We now check that this modifi-
cation of the acceleration is conservative, in the sense that
it corrects the conserved energy E, angular momentum Ji,
linear momentum Pi, and center-of-mass positionGi of the
binary system. Indeed, a few calculations (see Paper II for
more details) reveal that these corrections, which all occur
at 5PN order, are given by

�E ¼
�
� G2

2c2
�̂ðm1v

2
1 þm2v

2
2Þ þ

G2

6c
�̂iM

ð1Þ
i

�
ln

�
r12
�

�
;

(2.25a)

�Ji ¼
�
� G2

2c2
�̂Ji þG2

6c
"ijkMj�̂k

�
ln

�
r12
�

�
; (2.25b)

�Pi ¼
�
� G2

2c2
�̂Mð1Þ

i þG2

6c
�̂iM

�
ln

�
r12
�

�
; (2.25c)

�Gi ¼
�
2G

c5
EMð1Þ

i

�
ln

�
r12
�

�
; (2.25d)

where M is the monopole of the source (reducing to
m ¼ m1 þm2 at this level of approximation), Mi ¼
m1y

i
1 þm2y

i
2 is the binary’s mass dipole, and E is the

relativistic 2.5PN-accurate binding energy satisfying the
balance Eq. (2.14a). We now work in the center-of-mass

frame defined by Gi ¼ 0, which gives in particular Mi ¼
Mð1Þ

i ¼ 0; hence

�E ¼ � G2

2c2
�̂ðm1v

2
1 þm2v

2
2Þ ln

�
r12
�

�
; (2.26a)

�Ji ¼ � G2

2c2
�̂Ji ln

�
r12
�

�
; (2.26b)

�Pi ¼ G2

6c
�̂iM ln

�
r12
�

�
; (2.26c)

�Gi ¼ 0: (2.26d)

For circular orbits, the extra log-terms in the relative
acceleration ai ¼ ai1 � ai2 reduce to

�ai ¼ � 128

5

G6m6

r7c10
�2ni ln

�
r

�

�
; (2.27)

where at this stage we denote r � r12 and ni � ni12,
8 and

we have introduced the symmetric mass ratio � ¼
m1m2=m

2, with m ¼ m1 þm2 the total mass. The result
(2.27) yields in turn a correction in the invariant orbital
frequency� as a function of the parameter 	 � Gm=ðrc2Þ
(see Paper II for notation) given by

��2 ¼ Gm

r3

�
64

5
�2	5 ln	

�
; (2.28)

where we have used the fact that lnðr=�Þ ¼ 1
2 ln	 (see Paper

II). From Eq. (2.28) we obtain the correction in 	 as a
function of the orbital frequency �, or rather of the dimen-

sionless invariant PN parameter x � ðGm�=c3Þ2=3, as

�	 ¼ x

�
� 64

15
�2x5 lnx

�
: (2.29)

It is important to realize that the results (2.27), (2.28), and
(2.29) are coordinate dependent. They are given here in the
harmonic gauge defined by the metric (2.19). Finally, mak-
ing use of these last results, we find the following 5PN
logarithmic corrections in the energy and angular momen-
tum for circular orbits in the center-of-mass frame9:

�E ¼ � 1

2
m�c2x

�
� 64

15
�2x5 lnx

�
; (2.30a)

�J ¼ Gm2�

cx1=2

�
32

15
�2x5 lnx

�
: (2.30b)

These last results are coordinate invariant, and we
have checked that they come out the same with either metric
(2.19) or (2.20). The corrections (2.30) are such that �E ¼
��J, which is natural because they arise from terms

8Note the slight inconsistency in notation here: r ¼ r12 is the
binary’s separation in (2.27), while r ¼ jxj represented the
distance to the field point in e.g. Eqs. (2.19).

9Beware that the notation �E and �J here has not exactly the
same meaning as in Eqs. (2.25) and (2.26). Indeed, there are
additional pieces coming from the reduction to circular orbits of
the Newtonian parts of E and J using Eqs. (2.28) and (2.29).
However, because we have proved in (2.26d) that �Gi ¼ 0, there
is no additional piece coming from the passage to the center-of-
mass frame. See also the discussion in Paper II.
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connected to the gravitational-wave fluxes [remember
Eqs. (2.14)]. These 5PN logarithmic contributions to the
energy and angular momentum have to be added to the
4PN and 5PN terms already found in Paper II. Note that
these corrections are proportional to �2 and therefore affect
the results only starting at the post-self-force level.

Next, we compute the redshift observable, which is
coordinate invariant for circular orbits under the assump-
tion of helical symmetry [22]. In a coordinate system in
which the HKV readsK�@� ¼ @t þ�@’, it is given by the

time component of the four-velocity of the particle:

ut1 ¼
�
�g��ðy1Þv

�
1v

�
1

c2

��1=2
; (2.31)

where v�
1 ¼ ðc; vi

1Þ. Inserting the modification of the met-
ric (2.19), together with the standard 1PN metric for con-
sistent reduction to circular orbits making use of the results
(2.28) and (2.29), we find the 4PNþ 5PN corrections

�ut1 ¼
�
� 32

5
þ

�
1886

105
� 608

105
�þ 1592

105
�

�
x

�
�2x5 lnx:

(2.32)

We introduced the notation � � ðm2 �m1Þ=m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
for the relative mass difference,10 so that �ut2 is

simply obtained by changing � into ��. Again, the cor-
rection (2.32) occurs at the post-self-force level, and does
not affect the high-accuracy comparison between the post-
Newtonian and the perturbative self-force calculations re-
ported in Papers I and II.

In the following it will be more convenient to work with
the inverse of ut1, denoted

z1 � 1

ut1
¼

�
�g��ðy1Þv

�
1v

�
1

c2

�
1=2

; (2.33)

and which we will still refer to as the redshift observable
following Ref. [22]. In terms of this variable the correction
with respect to paper II reads11

�z1¼
�
32

5
þ
�
�2894

105
�80

21
��184

21
�

�
x

�
�2x5 lnx: (2.34)

C. Post-Newtonian results for the conserved quantities
and redshift observable

The expressionsEð�Þ and Jð�Þ of the PN binding energy
and angular momentum for point-particle binaries on qua-
sicircular orbits have been computed up to 3PN order by
different groups [26–31]. More recently, the 3PN expansion
of the redshift observable z1ð�Þ was computed in Paper I,
and compared to the numerical result for the gravitational
SF in linear black hole perturbation theory.

The dominant logarithmic contributions, which arise at
4PN order [32,33], together with the next-to-leading-order
5PN contributions, were computed in Paper II. These were
assumed to only come from gravitational-wave tails, heuris-
tically the scattering of gravitational radiation by the back-
ground curvature generated by the monopole of the source.
Furthermore, we have now computed some additional 4PN
and 5PN logarithmic terms which come from the nonlinear
memory effect, heuristically the gravitational radiation gen-
erated by the stress-energy distribution of linear waves. All
those logarithmic contributions are appropriate to conserva-
tive helically symmetric PN spacetimes.
Combining the result (4.12) of Paper II with the new

correction (2.30a) obtained above we obtain the 5PN-
accurate expression for the binding energy:

E¼�1

2
m�c2x

�
1þ

�
�3

4
� �

12

�
xþ

�
�27

8
þ19

8
���2

24

�
x2

þ
�
�675

64
þ
�
34445

576
�205

96
�2

�
��155

96
�2� 35

5184
�3

�
x3

þ
�
�3969

128
þ�e4ð�Þþ448

15
�lnx

�
x4

þ
�
�45927

512
þ�e5ð�Þþ

�
�4988

35
�656

5
�

�
�lnx

�
x5
�
;

(2.35)

where we recall that x ¼ ðGm�=c3Þ2=3 (for simplicity we
do not indicate the neglected 6PN remainder). We intro-
duced some unknown 4PN and 5PN coefficients e4ð�Þ and
e5ð�Þ, which however are known to be polynomials in the
symmetric mass ratio.12 In Sec. IVB we shall be able to
obtain precise numerical estimates of e4ð0Þ and e5ð0Þ,
which encode information at leading-order beyond the
test-particle result (corrections linear in �).
The computation of the angular momentum proceeds in

the same way. We first derive the 4PN and 5PN logarithmic
terms due to gravitational-wave tails, similarly to
Section IV of Paper II, and then add the correction terms
given by Eq. (2.30b). The result is

J ¼ Gm2�

cx1=2

�
1þ

�
3

2
þ �

6

�
xþ

�
27

8
� 19

8
�þ �2

24

�
x2

þ
�
135

16
þ

�
� 6889

144
þ 41

24
�2

�
�þ 31

24
�2 þ 7

1296
�3

�
x3

þ
�
2835

128
þ �j4ð�Þ � 64

3
� lnx

�
x4

þ
�
15309

256
þ �j5ð�Þ þ

�
9976

105
þ 1312

15
�

�
� lnx

�
x5
�
;

(2.36)

10We assume, without any loss of generality, that m1 � m2.
11We take into account the leading-order terms in the expansion
as given by ut1 ¼ 1þ ð34 þ 3

4 �� �
2ÞxþOðx2Þ.

12The latter point can be proved from the fact that the expres-
sion of E (and similarly for J and z1) for general orbits, i.e.
before restriction to the center-of-mass frame and circular orbits,
must be a polynomial in the two separate masses m1 and m2.
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where j4ð�Þ and j5ð�Þ denote other unknown coefficients which are also polynomials in �. Next, combining the results
(4.10) of Paper I and (5.2) of Paper II with the correction term (2.32) found above, we obtain the 5PN-accurate expression
of the redshift observable ut1, or rather of its inverse z1 ¼ 1=ut1, as

z1¼1þ
�
�3

4
�3

4
�þ�

2

�
xþ

�
� 9

16
� 9

16
���

2
�1

8
��þ 5

24
�2

�
x2þ

�
�27

32
�27

32
���

2
þ19

16
���39

32
�2� 1

32
��2þ�3

16

�
x3

þ
�
�405

256
�405

256
�þ

�
38

3
�41

64
�2

�
�þ

�
6889

384
�41

64
�2

�
��þ

�
�3863

576
þ 41

192
�2

�
�2

� 93

128
��2þ973

864
�3� 7

1728
��3þ 91

10368
�4

�
x4þ

�
�1701

512
�1701

512
�þ�½p4ð�Þþ�q4ð�Þ�þ

�
32

5
þ32

5
�þ32

15
�

�
�lnx

�
x5

þ
�
�15309

2048
�15309

2048
�þ�½p5ð�Þþ�q5ð�Þ�þ

�
�2494

105
�2494

105
��5938

105
��164

5
��þ328

15
�2

�
�lnx

�
x6: (2.37)

The redshift observable z2 of particle 2 can immediately be
deduced from z1 by setting � ! ��. Here p4ð�Þ, q4ð�Þ
and p5ð�Þ, q5ð�Þ denote some still further a priori un-
known 4PN and 5PN polynomials in the symmetric mass
ratio.

Note that in each of Eqs. (2.35), (2.36), and (2.37) we
have added to the usual PN results, valid for any mass ratio,
the 4PN and 5PN contributions from the test-mass limit for
one of the particles, known from exact calculations for test
particles in the Schwarzschild geometry:

E ¼ m�c2
�
1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1

�
þOð�2Þ; (2.38a)

J ¼ Gm2�

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� 3xÞp þOð�2Þ; (2.38b)

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p þOð�Þ: (2.38c)

D. Post-Newtonian first law of black hole binaries

In this section we shall show that the previous post-
Newtonian results for the energy E, angular momentum
J, and redshift observables z1;2 of binary systems on cir-

cular orbits satisfy a very important property called the first
law of binary black hole mechanics. Here, since we are
working within the PN framework, the appropriate descrip-
tion of (nonspinning) black holes is by structureless point
masses; hence we shall also refer to this result as the first
law of binary point-particle mechanics.

For this study we shall introduce the total relativistic
(ADM) mass of the binary system13:

M ¼ mþ E; (2.39)

where m ¼ m1 þm2 is the sum of the post-Newtonian
individual masses, i.e. those which enter as coefficients
of Dirac delta-functions in the stress-energy tensor of point

particles; cf. Eq. (3.19) below. The various concepts of
mass we use will be further specified in Sec. II E.
The ADM mass M, total angular momentum J, and

redshifts z1;2, all being given by Eqs. (2.35), (2.36), and

(2.37), are functions of the three independent variables of
the problem, namely, the orbital frequency � that is im-
posed by the existence of the HKV, and the individual
masses m1;2 of the particles. We first find, with the above

expressions, that the ADM quantities obey the usual rela-
tion commonly used in PN theory (see e.g. Refs. [26,34]):

@M

@�
¼ �

@J

@�
: (2.40)

This well-known relation is, for instance, extensively used
in computations of the binary evolution based on a se-
quence of quasiequilibrium configurations [9,10]. For
black hole binaries moving on quasicircular orbits, it states
that the gravitational-wave energy and angular momentum
fluxes are proportional (with � being the coefficient of
proportionality). Here we find that this relation is satisfied
for all the terms explicitly computed up to 5PN order,
including the non trivial 4PN and 5PN logarithmic
contributions.
Largely unrecognized, however, are the relations which

tell how the ADM quantities change when the individual
massesm1 andm2 of the particles vary (keeping the orbital
frequency � fixed). By direct partial differentiation of the
expressions (2.35) and (2.36) with respect to m1 and m2,
and comparison with (2.37), we find

@M

@m1

��
@J

@m1

¼ z1; (2.41a)

@M

@m2

��
@J

@m2

¼ z2: (2.41b)

Again, these relations hold for all the terms we have
computed, namely, up to 3PN order and including the
4PN and 5PN log-terms. Taking further partial derivatives
of Eqs. (2.41) with respect to the masses yields the simple
symmetric relation13From now on we use geometrized units G ¼ c ¼ 1.
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@z1
@m2

¼ @z2
@m1

; (2.42)

which can be viewed as reflecting some ‘‘equilibrium’’
state of the binary system.

The three relations (2.40) and (2.41) can be summarized
in the first law of the binary black hole (or binary point-
particle) mechanics

�M���J ¼ z1�m1 þ z2�m2: (2.43)

This first law provides the changes in the ADM mass and
angular momentum in response to infinitesimal variations
of the individual masses of the point particles, weighted by
their redshift factors. As we shall prove in Sec. III A that
this law should be correct at all PN orders, its verification
provides a very powerful test of the intricate post-
Newtonian calculations yielding Eqs. (2.35), (2.36), and
(2.37). An interesting by-product of the first law (2.43) is
the remarkably simple relation

M� 2�J ¼ m1z1 þm2z2; (2.44)

which can be seen as a ‘‘first integral’’ of the differential
law (2.43). It should be stressed that the existence of such a
simple, linear, algebraic relation between the local quanti-
ties z1;2 on one hand, and the global quantities M and J on

the other hand, is not trivial.14

In order to prove Eq. (2.44), we take a linear combina-
tion of the two Eqs. (2.41), make the change of variables
ð�; m1; m2Þ ! ð�; m; �Þ, where we recall that m ¼
m1 þm2 is the total mass and � ¼ m1m2=m

2 the symmet-
ric mass ratio, to get

m
@M
@m

¼ m1z1 þm2z2; (2.45)

where we introduced the convenient combination

M � M��J; (2.46)

which can heuristically be viewed as the energy of the
binary in a corotating frame. Next, we notice that the ratio
M=m is dimensionless and symmetric by exchange
m1 $ m2 of the masses. It must, therefore, depend on the
three independent variables ð�; m1; m2Þ only through the
symmetric mass ratio � and the product m�. This last
observation implies that

m
@ðM=mÞ

@m
¼ �

@ðM=mÞ
@�

: (2.47)

Combining (2.45) with (2.47), andmaking use of Eq. (2.40),
we obtain the relation (2.44). Alternatively, we can use

Euler’s theorem for homogeneous functions: since, from
Eq. (2.43), the ADM mass M must be a homogeneous

function of degree one in J1=2, m1, and m2, we have
15

MðJ;m1; m2Þ ¼ J1=2
@M

@J1=2
þm1

@M

@m1

þm2

@M

@m2

; (2.48)

which combinedwith the first law (2.43) immediately yields
the result (2.44). In Sec. III C we provide a third derivation,
based on the integration of the Einstein field equations.
Note that we have explicitly verified the partial differ-

ential equations (2.40) and (2.41), and therefore the first
law (2.43), only for those terms in the ADM quantitiesM, J
and the redshifts z1;2 which are known, namely, for all the

terms up to 3PN order and for the log-terms occuring at
4PN and 5PN orders. Evidently we could not verify the law
for the 4PN and 5PN nonlogarithmic contributions (and all
6PN and higher-order terms), which are left out in the PN
calculation. However, it is not difficult to find the relation-
ships which must be satisfied by the polynomials of the
symmetric mass ratio parametrizing the unknown terms in
Eqs. (2.35), (2.36), and (2.37). We find that Eq. (2.40) is
exactly satisfied at 5PN order if and only if the unknown
functions j4ð�Þ, j5ð�Þ in the angular momentum are given
in terms of the unknowns e4ð�Þ, e5ð�Þ in the energy by

j4ð�Þ ¼ � 5

7
e4ð�Þ þ 64

35
; (2.49a)

j5ð�Þ ¼ � 2

3
e5ð�Þ � 4988

945
� 656

135
�: (2.49b)

Furthermore, we find that the first law is fully satisfied up
to 5PN order if and only if the unknowns p4ð�Þ, p5ð�Þ and
q4ð�Þ, q5ð�Þ in the redshift (2.37) are also given in terms of
the functions e4ð�Þ, e5ð�Þ in the energy, and their
�-derivatives e04ð�Þ, e05ð�Þ, by

p4ð�Þ ¼ 13

14
�e4ð�Þ þ ð1� 4�Þq4ð�Þ � 3969

256
� 128

35
�;

(2.50a)

p5ð�Þ ¼ 5

6
�e5ð�Þ þ ð1� 4�Þq5ð�Þ � 45927

1024

þ 9976

945
�þ 1312

135
�2; (2.50b)

q4ð�Þ ¼ 3

28
�e04ð�Þ þ

3

14
e4ð�Þ � 64

35
; (2.50c)

q5ð�Þ ¼ 1

12
�e05ð�Þ þ

1

6
e5ð�Þ þ 4988

945
þ 328

45
�: (2.50d)

14Interestingly, a result equivalent to (2.44) was implicitly
derived, in the case of a specific point-particle model, at first-
order in post-Minkowskian gravity: cf. Eqs. (92) and (96) of
Ref. [14].

15Here the partial derivatives are to be taken using the inde-
pendent variables ðJ;m1; m2Þ instead of the variables ð�; m1; m2Þ
as used in Eqs. (2.40) and (2.41). In this respect notice that

z1 ¼ @M

@m1

��������J;m2

¼ @M

@m1

���������;m2

��
@J

@m1

���������;m2

;

together with a similar expression for z2.

FIRST LAW OF BINARY BLACK HOLE MECHANICS IN . . . PHYSICAL REVIEW D 85, 064039 (2012)

064039-9



Thus, all unknown nonlogarithmic terms at 4PN and 5PN
orders are parametrized by only two polynomials of the
symmetric mass ratio, which can conveniently be chosen to
be e4ð�Þ, e5ð�Þ introduced in the binding energy (2.35).
Given the high physical significance of the first law, as well
as the general proof of it given in Sec. III (which does not
rely on a PN expansion), we shall take for granted that it is
valid for all PN terms, including the unknown ones, so the
relationships (2.49) and (2.50) must be exactly satisfied.
We will make further use of these relations in Sec. IV.

In summary, we have proved by a high-order post-
Newtonian calculation in this Section (building on the
results of Papers I and II), that the first law of black hole
mechanics (2.43) holds in the particular case of a binary
system moving on an exact circular orbit. We shall further
demonstrate, in Sec. III, that the law (2.43) is actually a
particular case, valid when one assumes the existence of a
HKV covering the entire spacetime, of the generalized law
of black hole mechanics obtained by Friedman, Uryū, and
Shibata [11]. Before doing so, we want to clarify the
concepts of ADM and Bondi masses as we use them in
post-Newtonian theory, i.e. in relation to the relativistic
mass M introduced in Eq. (2.39).

E. Bondi mass versus ADM mass in
post-Newtonian theory

The structure of the gravitational radiation field gener-
ated by isolated systems in general relativity was eluci-
dated during the early sixties by Bondi, Sachs, Penrose,
and coworkers, who analyzed its asymptotic structure at
future null infinity. Of particular importance is the Bondi-
Sachs mass-loss formula [35,36], which relates the rate of
change of the Bondi mass MBðUÞ at a retarded instant of
time U,16 to the gravitational-wave energy fluxF , through

dMB

dU
¼ �F ðUÞ; (2.51)

whereF ¼ H
Iþ jN j2d� is computed as a surface integral

(at future null infinity) of the News function N . Another
important result was obtained later by Ashtekar and
Magnon-Ashtekar [37], who showed that (for isolated
gravitating systems) the difference between the ADM
mass MADM and the Bondi mass MBðUÞ is equal to the
mass carried away by the gravitational radiation emitted
between the infinite past and the given retarded instant:

MADM ¼ MBðUÞ þ
Z U

�1
F ðU0ÞdU0: (2.52)

Since the ADM mass is constant, dMADM=dU ¼ 0, the
mass-loss formula (2.51) immediately follows from
Eq. (2.52). More generally, similar results hold for the

ADM four-momentum P� ¼ ðMADM; P
iÞ and the Bondi

four-momentum P�
B ¼ ðMB; P

i
BÞ.

In addition to the ADM mass and the Bondi mass, many
alternative notions of mass have been introduced in general
relativity (see e.g. [38] for a recent review). However,
while the definitions of MADM and MB only rely on some
universal properties of spatial infinity and future null in-
finity, respectively, most of these alternative notions of
mass require the introduction of one or several additional
structure(s) on top of the spacetime metric g��; the Komar

mass MK, defined in terms of the timelike Killing vector
t� of a stationary spacetime, being one specific example
(cf. Sec. III C).
In post-Newtonian theory, a background Minkowski

metric ��� is introduced in addition to the usual spacetime

metric g��. While this, in effect, breaks the manifest

general covariance of the exact theory, the resulting field
equations remain covariant under the Poincaré group of
special relativity. In particular, the PN equations of motion
of compact binary systems (in harmonic coordinates,
which preserve the Poincaré symmetry) are invariant under
time translations, spatial translations, spatial rotations, and
Lorentz boosts. Noether’s theorem then implies the exis-
tence of ten conserved quantities associated with these
continuous symmetries: the post-Newtonian binding en-
ergy E, linear momentum Pi, angular momentum Ji, and
the vector Ki such that the center-of-mass position reads
Gi ¼ Ki þ Pit.
The problem of constructing gravitational-wave tem-

plates for circularized inspiralling compact binary systems
in the PN approximation is usually divided into two sub-
problems: (i) the computation of the center-of-mass bind-
ing energy E, using the conservative part of the dynamics
of the source, and (ii) the calculation of the gravitational-
wave energy flux F , associated with the dissipative part of
the dynamics, from the wave-zone gravitational field. One
then postulates the energy balance relation

dE

dT
¼ �F ðTÞ; (2.53)

which states that the binding energy decreases at a rate
determined by the flux of energy carried away by the
gravitational radiation. The coordinate time T coincides
with the proper time of an inertial observer far away from
the source, where the geometry is essentially flat. In the
case of compact binary systems whose components are
modeled as point masses, both E and F have been com-
puted up to 3.5PN order included (see [2] for a review).
One could in principle verify the energy balance relation
(2.53) explicitly from the knowledge of all conservative
and dissipative contributions to the dynamics of the binary
system up to 3.5PN beyond the leading-order radiation-
reaction force, which is at leading 2.5PN order; this would
correspond to 6PN order beyond the Newtonian motion.
Since it is, in practice, too challenging to compute the PN

16Here U denotes a null retarded coordinate, which differs from
the shorthand u ¼ t� r=c used in Sec. II A, where ft; rg are
harmonic coordinates.
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equations of motion to such high orders, the relation (2.53)
has to be assumed, rather than derived. Note however that
Eq. (2.53) has been proved to hold up to the relative 1.5PN
order, for a generic matter source [25,33,39].

The similarity between the PN energy balance Eq. (2.53)
and the mass-loss formula (2.51) is of course striking.
However, the mathematical objects entering these two
relations are conceptually different: for asymptotically
flat spacetimes, the Bondi mass MB is defined in the exact
theory as a surface integral at future null infinity, while the
binding energy E is only defined in the post-Newtonian
approximation to general relativity, and its computation
involves the near-zone PN metric. Although it has not been
proved rigorously that the two notions of mass coincide,
the identification of the Bondi mass with the PN binding
energy (or, rather, with M ¼ mþ E which includes the
rest massm ¼ m1 þm2) seems intuitively sound and natu-
ral. Henceforth, we shall thus postulate that if U ¼ T � R
is the asymptotically null outgoing coordinate associated
with an asymptotically radiative (or Bondi-type) coordi-
nate system fT; Rg, then there exists a spacelike hypersur-
face T ¼ const such that

MBðUÞ ¼ MðTÞ: (2.54)

The balance Eq. (2.53) can then be derived from the mass-
loss formula (2.51).17 Conversely, if the PN energy balance
is assumed to be valid, then the identification (2.54) must
hold. The Carter-Penrose diagram depicted in Fig. 1 illus-
trates the previous discussion.

While in the exact theory it is not possible to unambig-
uously split the conservative and dissipative parts of the
orbital dynamics (e.g. in the binary black hole spacetimes
simulated in numerical relativity), this can be done in
approximation methods such as PN expansions and black
hole perturbation theory. For example, in post-Newtonian
theory, one can discard the purely dissipative 2.5PN and
3.5PN radiation-reaction terms, and consider only the con-
servative dynamics at the Newtonian, 1PN, 2PN and 3PN
orders. Since there is a one-to-one correspondence between
the near-zone radiation-reaction force affecting the dynam-
ics of the source and the fluxes of energy, linear momen-
tum, and angular momentum computed from the wave-
zone radiation field (see e.g. Refs. [40,41]), this amounts to
considering nonradiative spacetimes. From Eq. (2.52)—in
which we setF ¼ 0—and the identification (2.54), we find
that for such PN spacetimes, all the notions of mass that we
have considered so far coincide, namely

MADM ¼ MB ¼ M ¼ const: (2.55)

See Fig. 2 for an illustration. We shall also assume that a
similar result holds for the angular momenta, i.e. that the

angular momentum Ji computed in PN theory from the
near-zone metric coincides with the total angular momen-
tum of the system, defined at spatial infinity.
In Sec. II D, the first law of binary point-particle me-

chanics, as expressed by Eq. (2.43) and its first integral
(2.44), was derived directly from PN calculations, under
the assumptions of helical symmetry and asymptotic flat-
ness. When considering only the conservative part of the
dynamics of a point-particle binary system on a circular
orbit, both conditions are fulfilled by the post-Newtonian
metric. For such orbits, the PN results in Sec. II D establish
algebraically that, for M ¼ mþ E, J and z1;2 given there,

the first law is indeed satisfied up to the PN order involved.
We shall now show that this first law actually holds more
generally so that, for the system being considered, it can be
expected to be satisfied at all (conservative) PN orders.

III. THE FIRST LAW OF BINARY BLACK
HOLE MECHANICS

Friedman, Uryū, and Shibata [11] considered a one-
parameter family of solutions of the Einstein field equa-
tions, describing an arbitrary number of black holes with a
generic distribution of perfect fluid matter sources having

FIG. 1 (color online). A gravitationally bound isolated matter
source is formed at T ¼ T0, and starts emitting gravitational
radiation. The ADMmassMADM, as computed on that time slice,
coincides with the binding energyMðT0Þ ¼ mþ EðT0Þ, which is
itself equal to the Bondi mass MBðU0Þ, as computed on the
asymptotically null hypersurface U ¼ U0. At a later time
T ¼ T1, the binding energy MðT1Þ ¼ MBðU1Þ has decreased.
The difference MADM �MBðU1Þ with respect to the constant
ADM mass is equal to the energy taken away from the source by
the gravitational waves emitted between T ¼ T0 and T ¼ T1, or
equivalently between U ¼ U0 and U ¼ U1.

17Since Eq. (2.53) is a functional equality, it can also be written
as dE=dt ¼ �F ðtÞ, where t is the harmonic-coordinate time in
the near-zone of the source.
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compact support.18 A perfect fluid is entirely characterized
by its four-velocity u�, normalized to g��u

�u� ¼ �1, its

energy density "ð
; sÞ, and pressure Pð
; sÞ, both functions
of the entropy per unit baryon mass s and the conserved
proper mass density 
, such that r�ð
u�Þ ¼ 0.

Each member of the family of geometries
fg��ð�Þ; u�ð�Þ; 
ð�Þ; sð�Þg is assumed to have a globally

defined Killing vector field K�. The Noether current asso-
ciated with K� assigns to each spacetime a conserved
charge Q. The main result established in Ref. [11] relates
the Eulerian variation �Q � dQ=d�j�¼0 of the conserved
charge Q to the Eulerian variations �An of the horizon
surface areas An of the black holes, as well as to the
Lagrangian variations �ðdMbÞ, �ðdSÞ and �ðdC�Þ of the
fluid’s baryonic mass, entropy, and vorticity. This general-
ized first law explicitly reads

�Q¼
Z
�
½ ��ðdMbÞþ �T�ðdSÞþv��ðdC�Þ�þ

X
n

�n

8�
�An;

(3.1)

where �n are the uniform surface gravities of the black
holes, �T ¼ T=ut is the redshifted temperature, and � ¼
ðh� TsÞ=ut the redshifted chemical potential (or specific
Gibbs free energy), with h ¼ ð"þ PÞ=
 the specific en-
thalpy of the fluid. The spacelike velocity field v� mea-
sures the peculiar velocities of the fluid elements with
respect to the Killing vector field K�, whose integral
curves define some preferred worldlines; it is defined by
u� ¼ utðK� þ v�Þ, with v�r�t ¼ 0. The matter fields to
be varied are given by

dMb � 
u�d��; (3.2a)

dS � sdMb; (3.2b)

dC� � hu�dMb; (3.2c)

with d�� ¼ �n�
ffiffiffiffi
	

p
d3x the volume element on the space-

like (t ¼ const) hypersurface �, covered by Cartesian
coordinates fxig, and over which the integral in Eq. (3.1)
is performed; n� is the future-pointing unit timelike vector
normal to �, and 	 ¼ detð	ijÞ the determinant of the

induced metric 	ij on �.

A. The first law for point-particle binaries
on circular orbits

We are interested in applying the general result (3.1) to
the particular case of a compact binary system, whose
components move on exactly circular orbits. For such
spacetimes, the geometry is invariant along the direction
of the helical Killing vector K� ¼ t� þ���, where � is
a constant, which is identified with the angular frequency
d’=dt of the circular motion; the vectors t� � ð@tÞ� and

�� � ð@�Þ� are part of the natural basis ð@t; @r; @�; @�Þ,
with fr; �; �g the spherical coordinate system associated
with the Cartesian coordinates fxig in the usual way, i.e.
x1 ¼ r sin� cos�, x2 ¼ r sin� sin�, and x3 ¼ r cos�.
For asymptotically flat spacetimes, the basis vectors t�

and �� are both asymptotic Killing vectors, reflecting the
invariance of Minkowski spacetime under time translations
and spatial rotations. Then, the variation �Q of the con-
served charge Q associated with the helical Killing vector
K� is given by [11]

�Q ¼ �M���J; (3.3)

where M is the ADM mass, and J the norm of the total
angular momentum Ji of the system, defined as a surface
integral at spatial infinity, in terms of the three rotational
Killing vectors of the flat metric ��� (cf. Eq. (109) of

Ref. [11]). The variational Eq. (3.3) holds in the center-of-
mass frame, in which the ADM three-momentum Pi

vanishes.
As discussed in the Introduction, we shall model the

compact objects (namely nonspinning black holes and/or
neutron stars) as two point particles with ‘‘Schwarzschild’’
masses m1 and m2. We therefore consider the simple
case of a perfect fluid with vanishing pressure P, tempera-
ture T, specific entropy s, and peculiar velocity v�.
The redshifted chemical potential then simply reads � ¼
1=ut. Combining Eq. (3.3) with (3.1), in which we set
�n�An ¼ 0, the generalized first law reduces to

FIG. 2 (color online). A nonradiative PN spacetime containing
an ever-lasting gravitationally bound isolated matter source of
constant size R. The ADM mass MADM coincides with the
binding energy MðTÞ ¼ mþ EðTÞ, which is itself equal to the
Bondi mass MBðUÞ, at all times.

18See Ref. [42] for the recent generalization to the magneto-
hydrodynamical case.
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�M���J ¼
Z
�
z�ðdMbÞ; (3.4)

where z � 1=ut is the redshift factor. Now, in order to
evaluate the Lagrangian variation �ðdMbÞ of the baryonic
mass element (3.2a), we use the explicit expression of the
proper mass density 
 for two point masses, namely


ðx; tÞ ¼ 1ffiffiffiffiffiffiffi�g
p

X2
A¼1

mAzA�½x� yAðtÞ�; (3.5)

where yAðtÞ are the coordinate trajectories of the particles
(A ¼ 1, 2), � is the usual three-dimensional Dirac distri-
bution, such that

R
d3x�ðxÞ ¼ 1, and g ¼ detðg��Þ

is the determinant of the covariant metric g��. In a 3þ 1

decomposition, we have
ffiffiffiffiffiffiffi�g

p ¼ N
ffiffiffiffi
	

p
, where N is the

lapse function. Since the four-velocities u�A of the particles
are tangent to the HKV evaluated at their coordinate loca-
tions, i.e. u�A ¼ utAK

�ðyA; tÞ, we find that (3.2a) explicitly
reads

dMb ¼ �d3x
X2
A¼1

mA

ðKnÞA
NA

�ðx� yAÞ: (3.6)

We have introduced the shorthands NA � NðyA; tÞ and
ðKnÞ � K�n

�. From the 3þ 1 decomposition of the time
evolution vector t� in terms of the lapse N and shift
N�, namely t� ¼ Nn� þ N�, the HKV reads K� ¼
Nn� þ ðN� þ���Þ. Since the shift vector N� and the
basis vector�� are both tangent to�, we getK�n

� ¼ �N,
which in turn implies ðKnÞA ¼ �NA at the location of each
particle. This simplifies the expression of the baryonic
mass element (3.6)19 which, once substituted into (3.4),
yields our final result in the form20

�M���J ¼ z1�m1 þ z2�m2; (3.7)

which we recognize as our first law of binary point-particle
mechanics (2.43) derived using post-Newtonian theory.
This first law compares two neighboring helically symmet-
ric, asymptotically flat solutions of the field equations, and
tells how the changes in the ‘‘baryonic’’ masses of the
bodies will affect the ADM mass and angular momentum
of the binary system. Alternatively, the first law of binary
point-particle mechanics could probably be derived in the
Hamiltonian approach by varying the individual degrees of
freedom of the point masses, namely, their positions, mo-
menta and masses. Some consequences of Eq. (3.7) have
already been explored, notably the existence of the first
integral given by

M� 2�J ¼ m1z1 þm2z2: (3.8)

In Sec. II D we derived the first law (3.7) directly from
post-Newtonian calculations. Here we recovered this
important relation based on first principles in general rela-
tivity; in particular, our derivation does not rely on a post-
Newtonian expansion. Hence we expect the first law (3.7),
as well as all of its consequences, including Eq. (3.8), to
hold at all conservative orders in a PN expansion.

B. Analogies with single and binary black
hole mechanics

In this section we point out some interesting analogies
between the result (3.7) and its consequence (3.8) for point-
particle binaries on one hand, and some well-known rela-
tions regarding the mechanics (or thermodynamics) of
single or binary black holes on the other hand. In the
particular case of an asymptotically flat vacuum spacetime
with two black holes on quasicircular orbits, the general
result (3.1) reduces to21

�M���J ¼ �1

�A1

8�
þ �2

�A2

8�
: (3.9)

This variational relation can be viewed as a generalization
to the binary black hole case of the celebrated first law of
black hole mechanics �M��H�J ¼ ��A=ð8�Þ, which
holds for any nonsingular, asymptotically flat perturbation
of a stationary and axisymmetric black hole of mass M,
intrinsic angular momentum (or spin) J � Ma, surface
area A, uniform surface gravity �, and angular frequency
�H on the horizon [43,44]. In the binary black hole case,
the horizon angular velocity �H of a single rotating black
hole is replaced by the orbital frequency � of the binary.
The surface area A of a black hole is related to its

irreducible (or Christodoulou) mass mirr through m2
irr ¼

A=ð16�Þ [45,46]. We may thus substitute ��A=ð8�Þ !
ð4mirr�Þ�mirr in both terms in the RHS of Eq. (3.9).
Then, comparing the first law of binary black hole me-
chanics (3.9) to Eq. (3.7) for the analogous binary point-
particle case, we notice the formal analogies

m $ mirr; z $ 4mirr�: (3.10)

Both analogies are rather intuitive and physically appeal-
ing. Indeed, one might expect the irreducible massmirr of a
nonrotating black hole to be analogous to the ‘‘post-
Newtonian’’ mass m of a point-particle.22 Furthermore,

19Namely, dMb ¼ 
�d3x where 
� ¼
P

AmA�ðx� yAÞ denotes
the baryonic coordinate density.
20For clarity and uniformity in notation, we have made the
substitution �mA ! �mA for the Lagrangian variations of the
individual masses m1 and m2.

21See Sec. I for a discussion of helical symmetry and asymp-
totic flatness in binary black hole spacetimes.
22Notice, however, that the assumption of helical symmetry,
which is necessary to derive the first law (3.9), requires that the
two black holes are in corotation, and must therefore have
nonzero spins [9,11]. It would be interesting to generalize the
binary point-particle first law (3.7) by including spin effects, e.g.
using a pole-dipole model for the spinning point masses. For
rotating black holes, the post-Newtonian mass m should be
identified with the total mass of the black hole, including the
effect of the spin S; hence m2 ¼ m2

irr þ S2=ð4m2
irrÞ. See e.g.

Ref. [34].
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the surface gravity � of a black hole may naturally be
related to the redshift z of the ‘‘associated’’ point mass,
via the gravitational redshift, or Einstein effect
(cf. Detweiler’s Gedankenexperiment in Sec. IIC of [22]).
In particular, for two Schwarzschild black holes on quasi-
circular orbits, but far enough apart so that they can be
viewed—in first approximation—as isolated, the surface
gravity � ! ð4mirrÞ�1, while for the point particles we
have z ! 1. Therefore, in that limiting case the analogies
(3.10) seem perfectly sound.

Then, following exactly the same steps as in Sec. II D,
but with the irreducible masses of the black holes playing
the role of the post-Newtonian masses of the point parti-
cles, it can easily be established that

M� 2�J ¼ �1

A1

4�
þ �2

A2

4�
: (3.11)

This last relation can be viewed as a generalization to the
binary black hole case of Smarr’s formula M� 2�HJ ¼
�A=ð4�Þ for a single Kerr black hole [47]. The RHS side
of Eq. (3.11) is the sum of two terms of the form
�A=ð4�Þ ¼ 4m2

irr�; one for each black hole. This binary

black hole expression should be compared to the RHS of
Eq. (3.8) for the point-particle case. We then find the
analogy

mz $ 4m2
irr�; (3.12)

i.e. precisely what is expected from the analogies (3.10),
which were drawn from the differential relations (3.7) and
(3.9).

It would be interesting to investigate how far the formal
analogies (3.10) can be pushed, especially in the relevant
regime where the two black holes or point masses are in
corotation and interact strongly with each other, namely,
when z � 1. One might, for example, try to recover the
point-particle results (3.7) and (3.8) starting from the black
hole results (3.9) and (3.11), by taking some suitable point-
particle limit. In that respect, one might use the method
proposed in Ref. [48] to derive the gravitational self-force
[49,50] for the motion of a point particle in some back-
ground curved spacetime, by scaling down the massM and
size R of an extended compact object, while holding its
compactness M=R fixed. Such an analysis might improve
our understanding of the validity of modelling extended
objects such as black holes by point masses in general
relativity. This would be valuable because both post-
Newtonian methods and gravitational self-force calcula-
tions rely heavily on such idealizations [2,3]. These ques-
tions should be addressed in future work.

Finally, one can also consider the mixed case of a
circular-orbit compact binary system composed of a black
hole and a point particle. This corresponds to the model
usually adopted in black hole perturbation theory and the
gravitational self-force. Calculations similar to those de-
tailed above naturally yield the results

�M���J ¼ �
�A

8�
þ z�m; (3.13a)

M� 2�J ¼ �
A

4�
þmz: (3.13b)

C. Alternative derivation of the first integral relations

In this Section we show that the algebraic first integral
relations (3.8) and (3.11) can also be obtained by standard
techniques derived from the definition of the Komar mass
and angular momentum (see e.g. [51]). We introduce a
Cartesian-type coordinate system ft; xig, as well as the
associated spherical coordinate system ft; r; �;�g. These
coordinates are chosen such that the metric g�� is explic-

itly asymptotically Minkowskian at spatial infinity, i.e.
g�� ! ��� when r ! þ1. Performing a 3þ 1 decom-

position of the four-dimensional spacetime, the metric
reads

ds2 ¼ �N2dt2 þ 	ijðdxi þ NidtÞðdxj þ NjdtÞ; (3.14)

where N is the lapse function, Ni the shift vector, and 	ij

the three-metric of t ¼ const hypersurfaces. Let � be one
such spacelike hypersurface, and S ¼ @� be the two-
sphere at spatial infinity representing its boundary.
The notions of Komar mass MK and Komar angular

momentum JK are commonly introduced for stationary
and axisymmetric spacetimes [52]. Conserved currents
can be built from the Killing vectors associated with these
symmetries, leading to some well-defined notions of mass
and angular momentum defined as surface integrals over
these currents. However, the Komar quantities can also be
defined for more generic spacetimes, which are neither
stationary, nor axisymmetric, as long as they are asymptoti-
cally flat. For such geometries, the Komar mass and angu-
lar momentum are defined as

MK � � 1

8�
lim
r!1

I
Sr

r�t�dS��; (3.15a)

JK � 1

16�
lim
r!1

I
Sr

r���dS��; (3.15b)

where the basis vectors t� � ð@tÞ� and �� � ð@�Þ� are

asymptotic Killing vectors, reflecting the invariance of
Minkowski spacetime under time translations and spatial
rotations. The integrals in Eqs. (3.15) are performed over a
two-sphere Sr of coordinate radius r, which goes to the
two-sphere at spatial infinity S as the limit r ! þ1 is
taken at the end of the calculation.23 The two-sphere Sr is
the boundary of an hypersurface �r, which is itself part of
the hypersurface � bounded by S. The surface element on

23For stationary and/or axisymmetric spacetimes, t� and/or ��

are Killing vectors on the entire spacetime manifold, and the
integrals may as well be performed over any spacelike topologi-
cal two-sphere enclosing the matter source (where the matter
stress-energy tensor T�� � 0).
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Sr reads dS�� ¼ 2r½�n��
ffiffiffiffi
�

p
d2y, where n� is the future-

pointing unit timelike vector normal to �, and r� the
outward-pointing unit spacelike vector normal to Sr, and
tangent to �. The metric induced on � is 	�� ¼ g�� þ
n�n�, and the metric induced on Sr is ��� ¼ 	�� � r�r�,

with determinant � ¼ detð�abÞ in coordinates fyag cover-
ing Sr (see Fig. 3 for notations). Note that the integral
(3.15b) for the angular momentum JK exhibits the famous
‘‘Komar anomalous factor’’ �1=2 with respect to the in-
tegral (3.15a) for the mass MK [53].

Although t� and�� are only asymptotic Killing vectors,
our assumption of helical symmetry implies that K� ¼
t� þ��� is a Killing vector field over the entire space-
time. The interesting combination of MK and JK is there-
fore given by

MK � 2�JK ¼ � 1

8�

I
S
r�K�dS��: (3.16)

Because of Killing’s equation rð�K�Þ ¼ 0, the tensor

r�K� is antisymmetric. Using a version of the Stokes
theorem for rank 2 antisymmetric tensor fields, the surface
integral in Eq. (3.16) can be converted into a volume
integral over the hypersurface � bounded by S (and the
multiple event horizons H n for spacetimes with black
holes):

I
S
r�K�dS�� ¼ X

n

I
H n

r�K�dS��

þ 2
Z
�
r�ðr�K�Þd��: (3.17)

The volume element on � reads d�� ¼ �n�
ffiffiffiffi
	

p
d3x, with

	 ¼ detð	ijÞ the determinant of the spatial metric 	ij.

Then, Killing’s equation together with the noncommuta-
tion of covariant derivatives yields the well-known formula
r�r�K� ¼ R�

�K
�. Using the Einstein equation to re-

place the Ricci tensor R�� in favor of the stress-energy

tensor T��, we obtain

MK�2�JK¼� 1

8�

X
n

I
H n

r�K�dS��

þ2
Z
�

�
T���1

2
Tg��

�
n�K� ffiffiffiffi

	
p

d3x; (3.18)

where T � g��T
��. Similar expressions for MK and JK

(separately) can be found in textbooks, for stationary and/
or axisymmetric spacetimes; see e.g. Refs. [51,54,55]. We
shall now successively apply the general result (3.18) to the
particular cases of binary point particle and binary black
hole spacetimes.

1. Binary point-particle case

We consider first a spacetime with two point masses
modelling two compact objects on a circular orbit; hence
we discard the first term in the RHS of Eq. (3.18). The
stress-energy tensor is generated by two massive world-
lines, and reads

T��ðx; tÞ ¼ 1ffiffiffiffiffiffiffi�g
p

X2
A¼1

mAzAu
�
Au

�
A�½x� yAðtÞ�; (3.19)

where yAðtÞ are the coordinate trajectories of the particles
(A ¼ 1, 2), with normalized four-velocities u�A , and where
zA ¼ 1=utA are the redshift variables. The determinants
g ¼ detðg��Þ and 	 ¼ detð	ijÞ are related by

ffiffiffiffiffiffiffi�g
p ¼

N
ffiffiffiffi
	

p
. Now, remember that the four-velocities u�A of the

particles are tangent to the helical Killing vector K� eval-
uated at their coordinate locations; hence

u�A ¼ utAK
�
A ; (3.20)

where we introduced the shorthand K�
A � K�ðyA; tÞ (cf.

Fig. 3). Inserting (3.19) into (3.18), contracting the tensors,
and making use of Eq. (3.20), we obtain

MK � 2�JK ¼ � X2
A¼1

mAzA
ðKnÞA
NA

; (3.21)

where we recall that ðKnÞ � K�n
�. As we have already

proved below Eq. (3.6) in Sec. III A above, we have
ðKnÞA ¼ �NA at the coordinate locations of the particles.
We thus recover an expression which is formally identical
to our relation (3.8), with the Komar quantities playing the
role of the ADM mass and angular momentum, namely

MK � 2�JK ¼ m1z1 þm2z2: (3.22)

Finally, it can be shown that if the foliation ð�tÞt2R is
adapted to axisymmetry at spatial infinity (namely
n��� ! 0 when r ! þ1), then the Komar angular mo-
mentum (3.15b) coincides with the total angular momen-
tum [55]: JK ¼ J. On the other hand, for stationary,
asymptotically flat spacetimes, if the foliation is such that
the unit normal n� coincides with the timelike Killing
vector t� at spatial infinity (i.e. N ! 1 and Ni ! 0 when
r ! þ1), then the Komar mass (3.15a) coincides with the

FIG. 3 (color online). A spatial slice � of a circular-orbit
compact binary spacetime. The black hole is characterized by
its horizon area A and uniform surface gravity �, while the point
particle has a mass m and redshift factor z ¼ 1=ut, and is such
that its four-velocity reads u� ¼ utK�.
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ADM mass [56,57]. In Ref. [58], the equality MK ¼ M
allowed the definition of a relativistic version of the clas-
sical virial theorem for stationary, asymptotically flat
spacetimes. More recently, Shibata et al. [59] have shown
that the equality MK ¼ M holds for a much larger class of
spacetimes (in particular they could relax the hypothesis of
stationarity); see Eqs. (3.7)–(3.9) in Ref. [59] for the re-
quired asymptotic conditions on the lapse N, shift Ni,
three-metric 	ij, extrinsic curvature Kij, and their spatial

derivatives. Assuming that our nonradiative, helically sym-
metric, post-Newtonian spacetimes would satisfy these
falloff conditions, we then have

MK � 2�JK ¼ M� 2�J; (3.23)

and we thus recover the algebraic first integral relation
(3.8). From this one sees that the curious factor of 2 in
Eq. (3.8) is actually related to Komar’s anomalous factor
[53].

2. Binary black hole case

We turn next to the case of a vacuum spacetime with two
corotating black holes on quasicircular orbits. From the
general result (3.18), in which we set T�� ¼ 0, we find

MK � 2�JK ¼ � 1

8�

I
H 1

r�K�dS
��

� 1

8�

I
H 2

r�K�dS
��: (3.24)

Following Friedman et al. [11], we write the surface two-

form as dS�� ¼ 2K½�‘��
ffiffiffiffi
�

p
d2y, where ‘� is the unique

null vector orthogonal to H n and such that K�‘� ¼ �1.
For two black holes in corotation, the helical Killing vector
K� is tangent to the null generators of the horizons; hence
the surface gravity � is defined by the usual relation
K�r�K

� ¼ �K�. The integrand in Eq. (3.24) thus reduces

to r�K�dS
�� ¼ �2�

ffiffiffiffi
�

p
d2y, yielding

MK � 2�JK ¼ 1

4�

I
H 1

�dAþ 1

4�

I
H 2

�dA; (3.25)

with dA ¼ ffiffiffiffi
�

p
d2y the surface element. For a single black

hole, the zeroth law of black hole mechanics states that � is
uniform over the event horizon [43]. This result was gen-
eralized to the binary black hole case in Ref. [11]; hence �
can be pulled out of the integrals. Combining this with the
argument (3.23), we recover the result (3.11).

On the other hand, several authors have previously
established a relation similar to (3.11), in the case of two
corotating black holes on quasicircular orbits, namely [6,9]

M� 2�J ¼ 1

4�

I
H 1

r�NdS� þ 1

4�

I
H 2

r�NdS�;

(3.26)

where dS� ¼ r�dA. We shall now derive this result from
Eqs. (3.23) and (3.24), thus establishing that for such

binary black hole spacetimes, the radial projection of the
gradient of the lapse, r�r�N, essentially coincides with
the surface gravity � on each horizon, in agreement with
physical intuition. We assume that the conditions for which
(3.23) holds are met. Making use of the antisymmetry of
the tensor r�K�, we have

r�K�dS
�� ¼ 2n�r�K�dS

�

¼ �2r�NdS� � 2K�r�n�dS
�; (3.27)

where we performed an integration by parts and used
the 3þ 1 decomposition K� ¼ Nn� þm�, with m� ¼
N� þ��� the shift vector in a corotating frame. The
second term in the RHS of Eq. (3.27) can be expressed
using the extrinsic curvature tensor K��, via the well-

known relation r�n� ¼ �K�� � n�r� lnN. Next, we

notice that K�� is both spacelike and symmetric, and that

n�r
� ¼ 0; hence Eq. (3.24) becomes

M� 2�J ¼ 1

4�

X2
A¼1

I
H A

riNdSi � 1

4�

X2
A¼1

I
H A

miKijdS
j:

(3.28)

Finally, because the HKV field K� ¼ Nn� þm� must
become null on the event horizons of the black holes, we
have N2 ¼ 	ijm

imj on H 1 and H 2. Following the au-

thors of Refs. [6,9], we impose the usual boundary condi-
tion of vanishing lapse on the horizons, and thus find that
mi ¼ 0 in the second term in the RHS of Eq. (3.28) (	ij

being positive-definite). We thus recover the relation (3.26)
established in [6,9], based on the 3þ 1 decomposition of
the Einstein field equations, in the presence of a HKV.

IV. APPLICATIONS OF THE FIRST LAW

In this section we consider a number of practical appli-
cations of our first law for compact binaries. The first is an
application when one mass is much smaller than the other,
so that a perturbative analysis is applicable. The second is
an application in which numerical results from a perturba-
tion analysis for z1 can be combined with relationships like
(2.49) and (2.50) to determine previously unknown coef-
ficients in the PN expressions of E and J.

A. New gauge-invariant energy and
angular momentum

1. Implications of the first law for perturbation analysis

Perturbation analysis is applicable in the ‘‘two-body
problem’’ when the mass of one of the bodies is much
smaller than the mass of the other. Typically for our
purposes, the large mass body will be treated as a black
hole of massm2, while the small mass body may be treated
either as a point-particle or as a small black hole of mass
m1 � m2. In this context, we have the usual notions of
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perturbative energy per unit mass and angular momentum
per unit mass of the particle m1,

E1 � �u1t; (4.1a)

J 1 � u1’; (4.1b)

where u1t and u1’ are covariant components of the parti-

cle’s four-velocity u�1 . It was shown in Ref. [22] that
z1 ¼ 1=ut1 ¼ E1 ��J 1. As Detweiler pointed out [22],
E1 and J 1 are not separately gauge-invariant, while the
redshift observable z1 is. In the notation of Ref. [22],
Eqs. (22) and (23) given there are, to first order in the
mass ratio q � m1=m2,

E1 ¼ r� 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 3m2Þ

p
�
1� �u� �u�h��

2
� r

4
�u� �u�

@h��

@r

�
; (4.2a)

J 1 ¼
r

ffiffiffiffiffiffi
m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3m2

p
�
1� �u� �u�h��

2
� rðr� 2m2Þ

4m2

�u� �u�
@h��

@r

�
;

(4.2b)

in which use has been made of conditions (A3) and (A4)
for quasicircular orbits, and where �u� is a convenience
introduced by Detweiler—it does not denote the four-
velocity of the particle but is defined in (A5) below; and
h�� is the regularized metric perturbation, which is a

smooth vacuum solution in the neighborhood of the parti-
cle [60].24 Making use of Eq. (28) in [22] we obtain (see
also Eq. (2.7) from Paper I)

m2

r
¼ yþ rð1� 3yÞ

6
�u� �u�

@h��
@r

; (4.3)

where we have introduced the dimensionless invariant PN

parameter y � ðm2�Þ2=3. It will also be convenient to
define a coordinate invariant measure of the constant orbit
separation, via r� � m2=y. Then, using (4.3), Eqs. (4.2)
can be rewritten, to first order in q, as

E1 ¼ 1� 2yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p
�
1� �u� �u�h��

2
� r

4
�u� �u�

@h��

@r

� rð1� 6yÞ
12ð1� 2yÞ �u

� �u�
@h��
@r

�
; (4.4a)

J 1 ¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� 3yÞp

�
1� �u� �u�h��

2
� rð1� 2yÞ

4y
�u� �u�

@h��

@r

� rð1� 6yÞ
12y

�u� �u�
@h��
@r

�
; (4.4b)

which, as demonstrated at the end of Appendix A, are not
gauge invariant. Nevertheless, Eqs. (4.4) can be combined
to give

z1 ¼ E1 ��J 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p �
1� 1

2
�u� �u�h��

�
; (4.5)

where the term in parenthesis is gauge invariant (see [22]
and (A10) in our Appendix A).
Inspired by the present work, new definitions of energy

and angular momentum (per unit mass) of the particle can
be given, which are separately gauge invariant. Indeed,
Eq. (2.41a) provokes a powerful suggestion to introduce
these alternative gauge-invariant quantities25:

~E1 � @M

@m1

; (4.6a)

~J 1 � @J

@m1

: (4.6b)

Note that by definition the same combination as in Eq. (4.5)
holds, namely

z1 ¼ ~E1 ��~J 1: (4.7)

Furthermore, the thermodynamic relation for these quan-
tities holds, i.e.

@~E1

@�
¼ �

@ ~J 1

@�
: (4.8)

This follows from Eq. (2.40) and commutation of partial
derivatives. Combining Eqs. (4.7) and (4.8) yields

~E1 ¼ z1 ��
@z1
@�

; (4.9a)

~J 1 ¼ � @z1
@�

: (4.9b)

The associated invariant energy and angular momentum

are defined by ~E1 � m1
~E1 and ~J1 � m1

~J 1. Using the first
integral relation (2.44), it is straightforward to verify the
following connections with the ADM mass and angular
momentum:

~E1 þ ~E2 ¼ Mþ�
@M

@�
; (4.10a)

~J1 þ ~J2 ¼ J þ @ð�JÞ
@�

: (4.10b)

We now compute the gauge-invariant quantities (4.6) or
(4.9) to first order in the mass ratio q. This readily follows
from the expressions (4.9) which can be rewritten, using
the gauge-invariant result for z1 given by (4.5), as (with
r� ¼ m2=y)

24In this subsection, h�� is indeed a regular metric perturbation
in the Schwarzschild geometry, and not the PN metric perturba-
tion from flat space used in Sec. II, as defined in the first footnote
in Sec. II A.

25The partial derivatives with respect to the masses are taken
with constant orbital frequency �. Thus we really mean for
instance ~E1 ¼ ð@M=@m1Þj�;m2

.
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~E1 ¼ 1� 2yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p
�
1� �u� �u�h��

2
� r�ð1� 3yÞ

3ð1� 2yÞ
@ð �u� �u�h��Þ

@r�

�
;

(4.11a)

~J 1 ¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� 3yÞp

�
1� �u� �u�h��

2

� r�ð1� 3yÞ
3y

@ð �u� �u�h��Þ
@r�

�
; (4.11b)

where the final results here expressly hold to first pertur-
bative order. These allow us to show, up to terms Oðq2Þ,
that we can write E1 ¼ ~E1 þ �E and J 1 ¼ ~J 1 þ �J ,
where

�E¼ 1� 2yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p
�
r�
4

�
@ð �u� �u�h��Þ

@r�
� �u� �u�

@h��

@r

�

þ r�ð1� 6yÞ
12ð1� 2yÞ

�
@ð �u� �u�h��Þ

@r�
� �u� �u�

@h��
@r

��
; (4.12)

together with �J ¼ �E=�. Note that the terms in the first
brackets have different meanings; the first term means the
derivative between different circular orbits, and is gauge
invariant while, as explained in Appendix A, the second
term is not gauge invariant; rather, as pointed out in
Appendix A, it means the derivative of spacetime depen-
dence of �u� �u�h

�� at the existing quasi-circular orbit with

frequency, �, held fixed.

It will be interesting to understand the implications of

the new gauge-invariant quantities ~E1 and ~J 1 as we pro-
ceed to calculations at second perturbative order. Even

without ~E1 and ~J 1, the relations (2.41) have another
powerful implication, namely, that z1 (and hence ut1) can
be calculated directly from the post-Newtonian energy and
angular momentum E and J coming from the PN equations
of motion, instead of the long PN reduction of the defining
expression (2.31) as was done in Paper I. This thus gives us
a new tool through which wewill be able to compare future
PN results that have been obtained in different ways.

2. Post-Newtonian expansions of the invariant energy
and angular momentum

The new gauge-invariant energy ~E1 ¼ m1
~E1 and angular

momentum ~J1 ¼ m1
~J 1 of the particle 1 (with smallest

mass m1) as defined by (4.6) have been obtained at first
order in the mass ratio q in Eqs. (4.11). This result applies
in the strong field regime, and is formally valid up to any
post-Newtonian order. We now present the PN expressions

of ~E1 and ~J 1, valid at a finite PN order but for any mass
ratio. These can be obtained using Eqs. (4.9) and the PN
expansion of z1 given by Eq. (2.37). To write PN expres-
sions valid for an arbitrary mass ratio, it is appropriate to

use the variables x ¼ ðm�Þ2=3, � ¼ m1m2=m
2, and � ¼

ðm2 �m1Þ=m. We find, up to 3PN order and augmented by
the logarithmic contributions at 4PN and 5PN orders,

~E1 ¼ 1þ
�
�1

4
� 1

4
�þ�

6

�
xþ

�
3

16
þ 3

16
�þ�

6
þ 1

24
��� 5

72
�2

�
x2 þ

�
27

32
þ 27

32
�þ�

2
� 19

16
��þ 39

32
�2 þ 1

32
��2 � �3

16

�
x3

þ
�
675

256
þ 675

256
�þ

�
�190

9
þ 205

192
�2

�
�þ

�
�34445

1152
þ 205

192
�2

�
��þ

�
19315

1728
� 205

576
�2

�
�2

þ 155

128
��2 � 4865

2592
�3 þ 35

5184
��3 � 455

31104
�4

�
x4 þ

�
3969

512
þ 3969

512
�þ�

�
�64

15
� 64

15
�� 7

3
p4ð�Þ� 7

3
�q4ð�Þ

�

� 64

45
�2 þ

�
�224

15
� 224

15
�� 224

45
�

�
� lnx

�
x5 þ

�
45927

2048
þ 45927

2048
�þ�

�
4988

315
þ 4988

315
�� 3p5ð�Þ� 3�q5ð�Þ

�

þ 11876

315
�2 þ 328

15
��2 � 656

45
�3 þ

�
2494

35
þ 2494

35
�þ 5938

35
�þ 492

5
��� 328

5
�2

�
� lnx

�
x6; (4.13)

together with

~J 1 ¼ 1

�

��
1

2
þ 1

2
�� �

3

�
xþ

�
3

4
þ 3

4
�þ 2�

3
þ 1

6
��� 5

18
�2

�
x2 þ

�
27

16
þ 27

16
�þ �� 19

8
��þ 39

16
�2 þ 1

16
��2 � �3

8

�
x3

þ
�
135

32
þ 135

32
�þ

�
� 304

9
þ 41

24
�2

�
�þ

�
� 6889

144
þ 41

24
�2

�
��þ

�
3863

216
� 41

72
�2

�
�2 þ 31

16
��2 � 973

324
�3

þ 7

648
��3 � 91

3888
�4

�
x4 þ

�
2835

256
þ 2835

256
�þ �

�
� 64

15
� 64

15
�� 10

3
p4ð�Þ � 10

3
�q4ð�Þ

�
� 64

45
�2

þ
�
� 64

3
� 64

3
�� 64

9
�

�
� lnx

�
x5 þ

�
15309

512
þ 15309

512
�þ �

�
4988

315
þ 4988

315
�� 4p5ð�Þ � 4�q5ð�Þ

�

þ 11876

315
�2 þ 328

15
��2 � 656

45
�3 þ

�
9976

105
þ 9976

105
�þ 23752

105
�þ 656

5
��� 1312

15
�2

�
� lnx

�
x6
�
: (4.14)
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The functions p4ð�Þ, p5ð�Þ and q4ð�Þ, q5ð�Þ have been
related to the functions e4ð�Þ, e5ð�Þ in the binding energy E
by Eqs. (2.50). From these expressions it is easy to verify
that ~E1 ��~J 1 ¼ z1 holds, together with the thermody-
namic relation (4.8) and the connections to the ADM
quantities found in Eqs. (4.10).

B. Determination of high-order PN coefficients
in the binding energy

Black hole perturbation theory is usually formulated as
an expansion in powers of the mass ratio q ¼ m1=m2.
However, at first order in q, the symmetric mass ratio � ¼
q=ð1þ qÞ2 coincides with q, i.e. q ¼ �þOð�2Þ. In the
extreme mass ratio limit q � 1, we may therefore expand
the redshift observable associated with particle 1 as

z1ðx; �Þ ¼ zSchwðxÞ þ �zSFðxÞ þOð�2Þ; (4.15)

where we recall that x ¼ ðm�Þ2=3. The result for a test
particle on a circular orbit around a Schwarzschild black

hole is known in closed form as zSchw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
; see

Eq. (2.38c) (for simplicity’s sake we remove the label 1
indicating the first particle). The invariant relation zSFðxÞ
encoding the first-order mass ratio correction was first
computed numerically, in the Regge-Wheeler gauge, in
Ref. [22]. Alternative self-force (SF) calculations based
on different gauges (Lorenz gauge and radiation gauge)
were later found to be in agreement within the numerical
uncertainties [61,62].

The conservative gravitational SF effect zSFðxÞ has also
been computed up to high orders in the post-Newtonian
approximation. From the general form of the near-zone PN
metric, the conservative SF effect on z1 reads

zSFðxÞ ¼
X
k�0

	kx
kþ1 þ lnx

X
k�4

�kx
kþ1 þ � � � ; (4.16)

where k is a positive integer, the coefficients 	k and �k are
pure numbers, the first logarithms occur at 4PN order, and
the dots stand for terms involving higher powers of loga-
rithms ðlnxÞp, with p � 2, which are expected not to occur
before the very high 7PN order [21].26

The exact values of the Newtonian, 1PN, 2PN and 3PN
polynomial coefficients 	0, 	1, 	2, and 	3, as well as those
of the 4PN and 5PN logarithmic coefficients �4 and �5 can
immediately be derived from the result (2.37), valid for
any mass ratio. These analytical results are reported in
Table I.27

Then Paper II showed, for the first time, that it is possible
to extract from a SF calculation valuable information cor-
responding to very high orders in the PN approximation
(see also Ref. [64] for a similar analysis). Indeed, by fitting
the highly accurate SF data for zSFðxÞ to a PN series of the
type (4.16), using the exact values of the analytically
determined PN coefficients reported in Table I, the numeri-
cal values of the 4PN, 5PN, and 6PN coefficients 	4, 	5,
	6, and �6 could be determined.28 These are reported in
Table II. Notice, in particular, how the 4PN and 5PN
coefficients 	4 and 	5 could be measured with high preci-
sion. Note that 	4 and 	5 coincide with the � ! 0 limit of
the polynomials p4ð�Þ, q4ð�Þ and p5ð�Þ, q5ð�Þ introduced
in Eq. (2.37), namely

	4 ¼ p4ð0Þ þ q4ð0Þ þ 1701

256
; (4.17a)

	5 ¼ p5ð0Þ þ q5ð0Þ þ 15309

1024
: (4.17b)

Extending to 6PN order the 5PN-accurate expression of
the circular-orbit ADM energy Mð�Þ ¼ mþ Eð�Þ given
by Eq. (2.35), we have

TABLE I. The analytically determined PN coefficients
f�k;�kg for utSFðyÞ and f	k; �kg for zSFðxÞ.
Coeff. Value Coeff. Value

�0 �1 	0 2

�1 �2 	1
1
2

�2 �5 	2
19
8

�3 � 121
3 þ 41

32�
2 	3

1621
48 � 41

32�
2

�4 � 64
5 �4

64
5

�5
956
105 �5 � 4988

105

26The general structure of the near-zone PN expansion is
known to be of the type

P
xn=2ðlnxÞp, where n and p are positive

integers [63]. For conservative effects n=2 ¼ k is a positive
integer.

27Papers I and II actually determined the coefficients �k and �k
in the post-Newtonian expansion in powers of y ¼ ðm2�Þ2=3 of
the self-force effect utSF on ut1 ¼ 1=z1, defined by analogy with
Eqs. (4.15) and (4.16):

utSFðyÞ ¼
X
k�0

�ky
kþ1 þ lny

X
k�4

�ky
kþ1 þ � � � :

The two sets of coefficients f�k;�kg and f	k; �kg can very easily
be related using

zSFðxÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � ð1� 3xÞutSFðxÞ:
For convenience, we provide the values of both sets of coef-
ficients in Tables I and II.
28The accuracy of the SF data used in Paper II did not allow an
unambiguous distinction between the effects of the 7PN poly-
nomial (i.e. 	7) and logarithmic contributions (�7) in the PN
expansion of zSFðxÞ. However, an 	7 (and �7) coefficient is
included in Table II since it was used in Paper II to ensure the
goodness of the fit that was finally obtained for the lower order
coefficients. It essentially captures in a single term, to the extent
available in the data used, the additional contributions from �7
and higher PN order coefficients. In the remainder of the present
work, we shall disregard any results beyond 6PN order, because
we believe that a contribution from �7 confounds �7 [65]. We
expect the �7 contribution would be substantially improved if
PN values could be given for the 6PN and 7PN log coefficients.
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M¼m�1
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m�x
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�
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�
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�
34445

576
�205
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�2

�
��155

96
�2� 35

5184
�3

�
x3

þ
�
�3969

128
þ�e4ð�Þþ448

15
�lnx

�
x4

þ
�
�45927

512
þ�e5ð�Þþ

�
�4988

35
�656

5
�

�
�lnx

�
x5

þ
�
�264627

1024
þ�e6ð�Þþ�eln6 ð�Þlnx

�
x6
�
: (4.18)

In addition to the 4PN and 5PN unknown coefficients e4ð�Þ
and e5ð�Þ, we introduced further 6PN unknown coeffi-
cients e6ð�Þ and eln6 ð�Þ, which are also polynomials in �.
We wish to determine the zeroth order coefficients of these
four polynomials in the limit � ! 0, i.e. the numerical
values of e4ð0Þ, e5ð0Þ, e6ð0Þ, and eln6 ð0Þ. To do so, we shall

use the first law, more precisely Eqs. (2.40) and (2.41a),
together with the SF results for the redshift observable z1.

Since Eq. (2.41a) involves the combination M ¼
M��J, it will be convenient to express M as a function
of the energy M alone via the ‘‘thermodynamic’’ relation
(2.40). Indeed we have dðM=�Þ ¼ Mdð1=�Þ, from which
we deduce

M ¼ ��
Z Mð�Þ

�2
d� ¼ � 3

2
x3=2

Z MðxÞ
x5=2

dx; (4.19)

whereM is treated as a function of� or, more precisely, x,
holding the individual massesm1 andm2 fixed. Introducing
the PN expansion (4.18) into (4.19) and integrating yields
the 6PN-accurate expression29
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�
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�
4988
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�
x5
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�
24057
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�
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eln6 ð�Þ

�
�

� eln6 ð�Þ
11

� lnx

�
x6
�
: (4.20)

In the test-particle limit, we recover the 6PN expansion of
the exact result, which reads

M ¼ mþm�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1Þ þOð�2Þ: (4.21)

The relation z1 ¼ @M=@m1 [see Eq. (2.41a)] estab-
lishes a direct link between the redshift z1 of particle 1,
and the combination M ¼ M��J of the ADM energy
and angular momentum. Making the change of variables
ð�; m1; m2Þ ! ð�; m; �Þ, this equation becomes (remem-

ber that m1 < m2, with � ¼ ðm2 �m1Þ=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
)

z1 ¼ @M
@m

þ 1� 4�þ �

2m

@M
@�

: (4.22)

The analogous relation for the redshift z2 of particle 2 is
obtained by changing � into ��. We then make another
change of variables, namely ð�; m; �Þ ! ðx;m; �Þ. Since
the ratioM=m does not depend explicitly on the total mass

m but only through x ¼ ðm�Þ2=3, we have m@M=@m ¼
Mþ 2

3 x@M=@x; therefore Eq. (4.22) can be rewritten as

mz1 ¼ Mþ 2x

3

@M
@x

þ 1� 4�þ �

2

@M
@�

: (4.23)

We can now expand � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
in powers of �, and

neglect terms Oð�2Þ because these contributions are not
controlled in the self-force calculation of the redshift z1.
Equating the terms Oð�Þ in both sides of Eq. (4.23), we
obtain the algebraic relations between the known coeffi-
cients 	k and �k entering the PN expansion (4.16) of the SF
effect on z1, and the � ! 0 limit of the unknown coeffi-
cients ekð�Þ and elnk ð�Þ entering the PN expansion (4.18) of

the energy M, which we rearrange as30

e4ð0Þ ¼ 7

3
	4 þ 28037

960
; (4.24a)

e5ð0Þ ¼ 3	5 þ 9359293

161280
; (4.24b)

e6ð0Þ ¼ 11

3
	6 þ 2

3
�6 þ 88209

256
; (4.24c)

eln6 ð0Þ ¼
11

3
�6: (4.24d)

Finally, replacing the coefficients 	4, 	5, 	6, and �6 by
their known numerical values, as given in Table II, we find

e4ð0Þ ¼ þ153:8803ð1Þ; (4.25a)

e5ð0Þ ¼ �55:13ð3Þ; (4.25b)

e6ð0Þ ¼ þ588ð7Þ; (4.25c)

eln6 ð0Þ ¼ �1144ð2Þ: (4.25d)

29Alternatively, we could have subtracted directly the PN
expansions (2.35) and (2.36) and use the relations (2.49) linking
the unknown coefficients j4ð�Þ and j5ð�Þ in the angular momen-
tum to e4ð�Þ and e5ð�Þ.

30Alternatively, the relations (4.24a) and (4.24b) between e4ð0Þ,
e5ð0Þ and 	4, 	5 could also be obtained by substituting the
� ! 0 limit of Eqs. (2.50) into (4.17).
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Any future post-Newtonian calculation of the 4PN, 5PN, or
even 6PN dynamics of point-particle binaries will have to
be compatible with these numerical values.31 In principle,
these could also be recovered from an accurate post-self-
force calculation based on second order black hole
perturbation theory [68]. We now turn to some possible
applications of the numerical results (4.25).

C. Other applications left for future work

We have used the first law (2.43), together with the
recently determined numerical values of high-order PN
coefficients in the self-force contribution zSF to the invari-
ant relation z1ð�Þ [see Eqs. (4.15) and (4.16)], to compute
new PN coefficients in the binding energy Eð�Þ, at leading
order beyond the test-particle approximation. However,
since the first law has been derived in full general relativity
in Sec. III A, the relations (2.40) and (2.41) are expected to
hold at all (conservative) orders in a PN expansion. Making
use of these relations, together with the numerical results
for the exact conservative SF effect zSFð�Þ on the redshift
observable [22,61,62], one could in principle compute the
fully relativistic SF contribution ESFð�Þ to the binding
energy of nonspinning compact binaries [69].32 This pros-
pect opens up the following applications.

1. ISCO shift induced by the conservative piece of the
gravitational self-force

In the test-particle limit, the innermost stable circular
orbit (ISCO) of the Schwarzschild geometry is defined as

the point of onset of a dynamical instability for circular
orbits (the circular orbit for which the radial frequency
squared of an infinitesimal eccentricity perturbation turns
negative). The orbital frequency of the Schwarzschild
ISCO naturally coincides with the frequency obtained
by minimizing the specific energy ESchw ¼ ð1� 2xÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1 of a test mass in circular orbit around a
nonrotating black hole. Going beyond the test-particle
approximation, the shift of the Schwarzschild ISCO fre-
quency induced by the conservative part of the gravita-
tional self-force has recently been computed [67,70]. This
genuine strong field result has been used extensively as a
reference point for comparison with other analytical and
numerical methods.
In a post-Newtonian context, one can also compute an

ISCO (for any mass ratio) from a stability analysis of the
conservative part of the PN equations of motion [71].
Alternatively, the innermost circular orbit (ICO), or mini-
mum energy circular orbit (MECO), is defined as the
minimum of the PN binding energy EðxÞ, when it exists
[34]. An extensive comparison of the SF-induced ISCO
shift to the numerous PN-based estimates of ISCO and ICO
available in the literature was performed in Ref. [66]. In
particular, the standard Taylor-expanded 3PN result [71],
based on a stability analysis criterion of the 3PN equations
of motion was shown to perform astonishingly well.
Now, it has been shown on very general ground that, for

arbitrary mass ratio compact binaries, the definitions of
ISCO and ICO are formally equivalent [72]; this conclu-
sion does not rely on any PN expansion, and only requires
that the conservative dynamics of the binary system derives
from a Hamiltonian.33 Hence, the exact value of the ISCO
frequency shift induced by the conservative SF could (in
principle) be recovered by minimizing the reduced binding
energy E= ¼ ESchwðxÞ þ �ESFðxÞ þOð�2Þ [69].

2. Calibration of the potentials entering the
effective-one-body metric

Within the effective-one-body (EOB) framework, the
circular-orbit binding energy EðxÞ is in one-to-one corre-
spondence with the ‘‘temporal’’ potential A � �gefftt enter-
ing the EOB effective metric. The knowledge of the
self-force correction ESFðxÞ to the test-particle result
ESchwðxÞ thus immediately translates into the knowledge
of the coefficient linear in � in the potential A,34 i.e. the

TABLE II. The numerically determined values of higher-order
PN coefficients, based on a fit to the SF data given in Paper II.
The uncertainties in the last digits are indicated in parenthesis.

Coeff. Value Coeff. Value

�4 �114:34747ð5Þ 	4 þ53:43220ð5Þ
�5 �245:53ð1Þ 	5 �37:72ð1Þ
�6 �695ð2Þ 	6 þ123ð2Þ
�6 þ339:3ð5Þ �6 �311:9ð5Þ
�7 �5837ð16Þ 	7 þ4210ð9Þ

31We notice that the numerical values of the coefficients e4ð0Þ
and e5ð0Þ, as predicted in Ref. [66] using the recently computed
conservative gravitational self-force correction to the
Schwarzschild innermost stable circular orbit [67], are off by
	180% and	320%, respectively. This probably reflects the fact
that, in the extreme mass ratio limit, even a 5PN-accurate
formula for the binding energy does not reproduce faithfully
the exact relativistic result.
32Note that in order to do so, it must be assumed that the results
of a SF calculation, which involve one point particle orbiting a
Schwarzschild black hole, can be used in conjunction with the
first law (2.43), which was itself derived for two point masses in
the context of PN spacetimes. From this perspective, SF calcu-
lations would essentially be treated as post-Newtonian calcula-
tions formally including all the PN corrections (at linear order in
the mass ratio).

33In a post-Newtonian context however, the location of the ICO
needs not agree with that of the ISCO, because of the truncation
at a finite PN order of the equations defining these notions
[71,73].
34Assuming that the usual mapping between the effective and
EOB Hamiltonians holds at all PN orders, and that the non-
geodesic terms occuring in the expression of the effective
Hamiltonian beyond 2PN order are proportional to the radial
momentum pr, at all PN orders, thus vanishing for circular
orbits. See Refs. [23,74] for more details.
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function ASFðuÞ such that A ¼ 1� 2uþ �ASFðuÞ þ
Oð�2Þ, where u ¼ m=r is the usual inverse EOB
Schwarzschild-like radial coordinate.

Furthermore, by combining this result to the recent
constraint obtained from a SF/EOB comparison of the
periastron advance of black hole binaries on circular orbits
[23,64], one could also compute the SF coefficient entering
the expression of the ‘‘radial’’ EOB potential B � geffrr , i.e.
the function BSFðuÞ such that B�1 ¼ 1� 2uþ �BSFðuÞ þ
Oð�2Þ. This would complete the determination of the two
potentials entering the EOB effective metric at linear order
in the symmetric mass ratio �. Such results would obvi-
ously be very useful for improving the calibration of EOB
models [74].

3. Comparison with sequences of quasicircular initial
data in numerical relativity

The resulting expression for the binding energy EðxÞ
could also be used to revisit comparisons with sequences
of quasicircular initial data in numerical relativity.35 For
comparable mass black hole binaries, previous compari-
sons suggested that the convergence of the PN series may
improve with respect to the extreme mass ratio limit
[34,75–77]. This could be investigated using the fully
relativistic result for EðxÞ, keeping in mind that only the
first-order correction in � beyond the test-particle result
would be under control.

However, higher-order uncontrolled terms Oð�nÞ with
n � 2 in E= may give only a very small contribution to
the exact result. Indeed, in a PN expansion, one can check
that the termsOð�2Þ andOð�3Þ in Eq. (4.18) contribute less
than 1% to the total 3PN result, up to the Schwarzschild
ISCO at x ¼ 1=6. Furthermore, a similar observation has
recently been put forward in Ref. [77], for another coor-
dinate invariant relation, namely, the general relativistic
periastron advance ��ðxÞ, in the case of nonspinning
binary black holes on quasicircular orbits, even in the
strong field regime accessible to numerical relativity
simulations.
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APPENDIX A: DETAILS OF THE SELF-FORCE
ANALYSIS

1. Some relevant definitions

In Ref. [22], Detweiler defines the quantities E1,
_R1, and

J 1 in terms of the particle’s four-velocity and four-
momentum by

E1 � �u1t;
_R1 � ur1; and J 1 � u1�: (A1)

In general, they are functions of the proper time, s, and the
overdot represents d=ds. In consequence,

u1� ¼
�
�E1;

_R1 þ u�1 h�
r

1� 2m2=r
; 0;J 1

�
; (A2a)

u�1 ¼
�E1 þ u�1 h�t
1� 2m2=r

; _R1; 0;
J 1 � u�1 h��

r2

�
: (A2b)

For quasicircular orbits, Detweiler assumes that E1, R1,
and J 1 all change slowly, so that

_E1 	 _R1 	 _J 1 	OðqÞ; (A3)

while their rates of change vary more slowly still, so that

€E1 	 €R1 	 €J 1 	Oðq2Þ: (A4)

Although not entirely necessary, Detweiler found it con-
venient to define

�u� � �u�1 ¼
�

E1

1� 2m2=r
; 0; 0;

J 1

r2

�
; (A5)

being the nonradial part of the four-velocity of the particle,
and with all h�� terms removed (i.e. it corresponds to the

nonradial velocity in the background).
There are two extra quantities that are needed in

Sec. IVA and which Detweiler introduced in his
Appendix A of [22]. The first is simply the contraction

�u� �u�h�� ¼ E1

1� 2m2=r
�u�ht� þ J 1

r2
�u�h��; (A6)

that follows directly from Eq. (A5), and the second, in
which � is held fixed, is

@g�	

@r
�u	 �u

�h�� ¼ � 2m2E1

ðr� 2m2Þ2
�u�ht� � 2J 1

r3
�u�h��;

(A7)
35Incidentally, we note that the sequence constructed in
Ref. [10] relies on the first law (3.9).
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in which we depart slightly from [22], to emphasize that
the derivatives do not act on E1 or J 1 which, as indicated
below (A1), are functions of the proper time, s, along the
orbit; rather the derivative is simply acting on components
of the metric embedded in the definition (A5).

2. Gauge transformation properties

In the application discussed in Sec. IVA, we are inter-
ested in identifying gauge invariants. Here we discuss the
transformations of �u� �u�h��, and related quantities, under

infinitesimal gauge transformations generated by a gauge
vector ��, which leads to a metric perturbation given by

�h�� ¼ �r��� �r���: (A8)

In his analysis [22], Detweiler assumed equatorial symme-
try, so that �� and all its derivatives vanish on the equatorial
plane, and the resulting metric perturbations are given in
his Eqs. (B2)–(B7). As indicated in Sec. I A, and empha-
sized in Sec. II A, for quasicircular orbits we require the
gauge transformation to obey the implied Killing symme-
try, so that we must have ð@t þ�@�Þ�� ¼ 0. Making use

of Detweiler’s (B4)–(B6) and the HKV condition, and
discarding quantities higher than first order, we find

�u� �u��h�� � �u� �u��h
��

¼ E2
1

ð1� 2m2=rÞ2
�
2m2

r2
�r þ 2�@��t

�

� 2E1

ð1� 2m2=rÞ
J 1

r2
½@��t þ @t���

þ J 2
1

r4

�
�2r�r þ 2

�
@t��

�
; (A9)

where the large square brackets contain only metric com-
ponent transformations. We can write this alternatively as

�u� �u��h��

¼ 2E2
1

ð1�2m2=rÞ2
�
r

�
m2

r3
��2

�
�r

�

þ 2E1

1�2m2=r

�
�E1

1�2m2=r
�J 1

r2

�
½�r�rþ@��t�

�2J 1

r2

�
�E1

1�2m2=r
�J 1

r2

��
�r�rþ 1

�
@t��

�
; (A10)

where, in addition, the large round brackets contain terms
which vanish to OðqÞ at the particle. Thus, it is clear that
�u� �u��h�� is gauge invariant when evaluated at the parti-

cle. This result is needed in (4.5) to establish that z1 is
gauge invariant through first order in q.
To evaluate �u� �u�@r�h�� at the particle, we need differ-

entiate only the first large round bracket, and we obtain the
equivalent of Detweiler’s equations (B14) and (B15):

�u� �u�
@�h��
@r

¼ � 6E2
1

ð1� 2m2=rÞ2
m2

r3
�r; so that

�u� �u�
@�h��
@r

��������

¼ � 6�2

ð1� 3yÞ�
r; (A11a)

where the notation j
 indicates that the RHS expression has
been evaluated at the particle. This was used by Detweiler
to show that � [see his Eq. (28)] was indeed gauge
invariant.
To evaluate �u� �u�@r�h

��, we should differentiate all

large round brackets, and we find

�u� �u�
@�h��

@r
¼�6

E2
1

ð1� 2m2=rÞ2
�2�r þ 6

E2
1

ð1� 2m2=rÞ2
�
�2 �m2

r3

�
�r þ 4

r

ð1� 3m2=rÞ
ð1� 2m2=rÞ

�E2
1

ð1� 2m2=rÞ2
½�r�r þ @��t�

� 4

r

E1

ð1� 2m2=rÞ
�

�E1

1� 2m2=r
�J 1

r2

�
½�r�r þ @��t� � 4

r

ð1� 3m2=rÞ
ð1� 2m2=rÞ

�2E2
1

ð1� 2m2=rÞ2
�
�r�r þ 1

�
@t��

�

þ 4

r

�E1

ð1� 2m2=rÞ
�

�E1

1� 2m2=r
�J 1

r2

��
�r�r þ 1

�
@t��

�
; so that

�u� �u�
@�h��

@r

��������

¼ 2

ð1� 6yÞ
ð1� 2yÞ

�2

ð1� 3yÞ�
r þ 4

r

�

ð1� 2yÞ ½@��t � @t���; (A12a)

a result not given explicitly in [22]. Notice that neither �u� �u�@rh�� nor �u� �u�@rh
�� is gauge invariant, even though

�u� �u�h�� � �u� �u�h
�� itself is. The terms discussed in (A11) and (A12) both occur in (4.4). We see that under gauge

transformations, E1 and J 1 transform according to �E1 ¼ ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p � ½@��t � @t��� and �J 1 ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p �
½@��t � @t���, respectively. They are thus radially gauge invariant, but not under Killing-compatible t and � changes.
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