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Abstract We discuss the problem of computing optimal linearisation parameters for the first order loss func-
tion of a family of arbitrarily distributed random variable. We demonstrate that, in contrast to the
problem in which parameters must be determined for the loss function of a single random variable,
this problem is nonlinear and features several local optima and plateaus. We introduce a simple
and yet effective heuristic for determining these parameters and we demonstrate its effectiveness
via a numerical analysis carried out on a well known stochastic lot sizing problem.
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1. Introduction

Consider a random variable w with expected value p and density function g,, and a scalar
variable x. The first order loss function is defined as L, (z) = E,[max(w — z,0)], where E
denotes the expected value. The complementary first order loss function is defined as £, (x) =
E,[max(z — w,0)]. Note that £, (z) = u — z + L, (). The first order loss function £, (z) and
its complementary function £, () are extensively used in several application domains, such as
inventory control [8] and finance (see e.g. [5]).

In general, £, (z) does not admit a closed form and cannot be evaluated without resorting to
numerical approximations (see e.g. [1]). £, (z) and its numerical approximations are nonlinear
in z and cannot directly be embedded in mixed integer linear programming (MILP) models.

In [7] the authors discuss piecewise linear upper and lower bounds for the first order loss
function, which can be immediately embedded in MILP models. These bounds are particularly
convenient for a number of reasons: they rely on constant parameters that are independent
of the mean and standard deviation of the normal distribution of interest; it is easy to obtain
bounds for generic, i.e. non standard, normally distributed random variables via a simple linear
transformation. Optimal linearisation parameters are derived following an approach similar to
the one discussed in [2, 3|, which minimise the maximum approximation error.

In this work, we extend the approach in [7] to the case of generic, i.e. non normal, distributions
and we discuss how to embed into a MILP model piecewise linear upper and lower bounds of
the first order loss function for a predefined family of generic random variables wi,ws, ..., wn.
These bounds are computed in such a way as to minimise the maximum approximation error
over the given family of random variables. We demonstrate the effectiveness of this technique to
address a well known stochastic lot sizing problem. Because of the relation that exists between
the function £, (x) and its complement £, (), the following discussion will be limited to the
complementary first order loss function L, (z).
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2. Piecewise linear upper and lower bounds

The complementary first order loss function function £, (z) is convex in z regardless of the
distribution of w. For this reason, both Jensen’s lower bound and Edmundson-Madanski upper
bound are applicable [4]. Consider a partition of the support  of w into W disjoint compact
subregions 2y, ...,Qu . We define, for all i =1,... . W

pi = Pr{w € O} — /ng(t) gt and Elw]Qi] = pli/ﬂtgw(t) dt. (1)

Lemma 1. Let 2, ..., Qw be a partition of the support  of random variable w, p; and E[w|[€2;]
defined by (1) and lower bounding function A (z) = 2>, _; pk — > p—q PkE[w|Qk]. Then lower
bounding function

A, (z) = max <m?x Al (z), o> < L,(x)

is a piecewise linear function with W 4 1 segments.

This lower bound is a direct application of Jensen’s inequality. Let us then consider the
maximum approximation error ey = max, (L, (r) — Ay(x)) for the lower bound in Lemma
1 associated with a given partition. A piecewise linear upper bound, i.e. the Edmundson-
Madanski bound, is A, (z) + ey, which is obtained by shifting up the lower bound in Lemma 1
by a value eyy. These lower and upper bounds for any random variable w can directly be used
in an MILP model.

Having established this results, the question is how to partition the support €2 in order to
obtain good bounds. A number of works discussed how to obtain an optimal partitioning of
the support under a framework that minimises the maximum approximation error [2, 3|. In
short, these works demonstrate that, in order to minimise the maximum approximation error,
one must find parameters ensuring approximation errors at piecewise function breakpoints are
all equal. This result unfortunately does not hold when optimal linearisation parameters must
be found for complementary first order loss functions of a family of generic random variables.
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Consider the complementary first order loss functions for a family of generic random variables
Wiy.eeyWhy ..., wy. From (1) it is clear that E[w|Q;] is uniquely determined by the choice of
p;. From this choice of the coefficients p; follows for each w,, the function A, (x). Within an
MILP model, one can select the desired bounding function via a binary selector variable y,,:

N i i
A(z) =) max (max <$Zpk ~ Yn ZPkE[wn|Qk]> ,0>
n—1 ! k=1 k=1

adding 2521 yn = 1. These expressions generalise those discussed in [7], which only hold for
normally distributed random variables.
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The challenge is, of course, to compute an optimal partition of random variable supports
into W disjoint compact subregions with probability masses p1,...,p;,...,pw. We shall first
demonstrate that this is a nonconvex optimisation problem in contrast to computing optimal
linearisation parameters for a single loss function. To do so, we consider a simple instance
involving two random variables w; and ws with probability density function as shown in Fig.
la and 1b.

We split the support of wy and ws into five regions with probability mass p1, ..., ps, respec-
tively. In Fig. 2 we plot the maximum approximation error

ey = max (mfx(ﬁwl () — Ay, (7)), mgx(ﬁw () — Ay, (x))) ,

when p; and py4 are free to vary, po = 0.3, p3 = 0.1 and ps = 1 — p; — p2 — p3 — p4; note that this
is a standard 2-simplex in R? projected in R? and coloured to reflect the value of eyy. It is clear
that this function has a number of local minima. In fact, the function is also constant in some
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Figure 3. Optimality gap trend as a function of

Figure 2. Maximum approximation error of our the number of segments used in the linearisation.

piecewise linear lower bound when pi 4+ ps + ps <
1—p2—ps; the x axis represents pi, i.e. the slope of
segment 1, the y axis represents p1 + p2 + p3 + pa,

The optimality gap is presented as a percentage
of the optimal solution obtained with the model
embedding a piecewise linear upper bound.

i.e. the slope of segment 4; darker regions mean
lower error.

regions, i.e. it has wide plateaus. It is intuitive to observe this, if one considers the fact that
the slope of the i-th linear segment is given by Zle p; and that by varying the slope of one or
more segments the maximum approximation error — attained at one or more breakpoints —
may easily remain the same. Finding a global optimum of this function is a challenge.

Therefore we developed a metaheuristic to find good, but not necessarily optimal parameter
values. The heuristic is a combination of simple random sampling (SRS) and coordinate descent
(CD) from the best solution produced by the SRS. For the above example, this strategy produced
the following partitioning: p; = 0.24, po = 0.18, ps = 0.215, py, = 0.175, ps = 0.19, with
associated maximum approximation error of 0.639. This approximation error amounts to 1.5%
of the expected value of wy and to 1.3% of the expected value of ws. As we will demonstrate,
this strategy produced fairly good outcomes in practical applications.
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3. An application to stochastic lot-sizing

We applied the metaheuristic to compute near optimal linearisation parameters for the stochas-
tic lot sizing problem discussed in [6]. We tested the approach over a test bed discussed in
[6] comprising 270 instances. In our experiments, in contrast to the original test bed in which
demand is normally distributed, demand follows different distributions in different periods: nor-
mal, Poisson, exponential and uniform. All instances took just a few seconds to be solved. Note
that each of these instances comprises N = 15 periods in which demand is observed. Con-
sequently, there are N(N + 1)/2 loss functions in the family for which optimal linearisation
parameters must be computed; these parameters must be computed for each instance sepa-
rately, this is why a lightweight heuristic is desirable. The average optimality gap trend —
the difference between the optimal solution of the model embedding our piecewise linear upper
bound and that of the model embedding our piecewise linear lower bound — as a function of
the number of segments used in the linearisation is shown in Fig. 3. As we see, the gap drops
initially with the number of segments and it is well below 1% of the optimal cost even when
just four segments are employed. For higher number of segments the gap fluctuates. This is
due to the fact that the simple heuristic here proposed gets stuck in local minima for high
dimensional spaces. Future research should therefore investigate more effective approaches to
comput optimal parameters for linearisations involving a large number of segments.

4, Conclusions

We have shown that finding optimal linearisation parameters to approximate loss functions
when several non-normal random variables are considered, is a challenging global optimisation
problem. We discuss how to handle this in a practical setting to generate reasonable results
that can be used in MILP models for inventory control.
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