
conventional sense in which the term is used in other engi-
neering disciplines—namely, it is where the very idea of the 
software is first conceptualized; and second, in the sense of 
‘conceptual modeling’, since it requires the invention (or at 
least recognition) of the fundamental concepts in terms of 
which the software’s behavior will be understood.

The other aspect involves the selection of structures to 
realize the behavior and concepts of the conceptual design; 
this might be called representation design since it focus-
es on how abstractions are to be represented as data struc-
tures, modules, and so on. Conceptual design is the domain 
of conventional requirements analysis, project scoping and 
specification; representation design covers software archi-
tecture, module design, and implementation.

Traditionally, conceptual design and representation de-
sign have been separated into distinct phases. But the recog-
nition that there are two fundamentally different aspects of 
design does not presume a particular ordering of tasks, and 
applies equally to ‘agile’ processes in which the two are in-
terleaved. Recently, decisions about when conceptual design 
should take place, and how (or even whether) it is recorded, 
have been the subject of endless debate. But that conceptual 
design exists and matters has not been questioned. After all, 
ideas are the raw material of software, and everyone recog-
nizes that you cannot build good software from bad ideas.

2	 Little Research on Conceptual Design
Much research effort has been directed at conceptual de-
sign, but very little of it has focused on design itself. Instead, 
the main concerns has been how conceptual designs should 
be recorded (for example, as semantic data models or as 
state machines; with programming languages or specifica-
tion languages based on sets and relations; with text or with 
diagrams; and so on). Analysis has been a focus too, and a 
key motivation for formalizing design models. But this anal-
ysis has typically been about exploring details of behavior 
(for example, with model checkers) or justifying a represen-
tation design based on its relationship to a conceptual de-
sign (for example, with proofs of correctness), and not about 
determining whether the design is actually fit for purpose.

More surprisingly, perhaps, despite much talk of the im-
portance of getting the concepts right, little work has been 
done to clarify what exactly a ‘concept’ is, how to identify the 

Abstract
Concepts are the building blocks of software systems. They 
are not just subjective mental constructs, but are objective 
features of a system’s design: increments of functionality 
that were consciously introduced by a designer to serve par-
ticular purposes.

This essay argues for viewing the design of software in 
terms of concepts, with their invention (or adoption) and 
refinement as the central activity of software design. A fam-
ily of products can be characterized by arranging concepts 
in a dependence graph from which coherent concept sub-
sets can be extracted. Just as bugs can be found in the code 
of a function prior to testing by reviewing the program-
mer’s argument for its correctness, so flaws can be found in 
a software design by reviewing an argument by the design-
er. This argument consists of providing, for each concept, a 
single compelling purpose, and demonstrating how the con-
cept fulfills the purpose with an archetypal scenario called 
an ‘operational principle’. Some simple conditions (primar-
ily in the relationship between concepts and their purposes) 
can then be applied to reveal flaws in the conceptual design.

Categories and Subject Descriptors: D.2.1 [Software engi-
neering]: Requirements/Specifications—methodologies; 
D.2.2: Design Tools and Techniques; H.5.2 [Information 
Interfaces and Presentation]: User interfaces—theory and 
methods.

General Terms: Design, human factors, languages.

Keywords: Concepts; purposes; conceptual design; usability.

1	 Two Aspects of Software Design
Software design has two aspects. One involves shaping the 
behavior of the software, how it will be perceived by its users, 
and what impact it will have in the environment in which it 
operates. This is conceptual design in two senses: first, in the 

Towards a Theory of Conceptual Design for Software

Daniel Jackson 
Computer Science and Artificial Intelligence Laboratory 

Massachusetts Institute of Technology, USA 
dnj@mit.edu



graph and paragraphs will be names for the same con-
cept.

4	 Where Concepts Come From
Software systems often embody preexisting concepts. The 
health care systems that handle doctors’ prescriptions, for ex-
ample, did not invent that concept; doctors wrote prescrip-
tions on paper, and they played a similar role prior to com-
puterization. Some old concepts acquire new significance 
when incorporated in software. The concept of paragraphs, 
for example, goes back to the ancient Greeks, who used a 
special mark known as the paragraphos to divide groups of 
sentences. But the Greeks did not anticipate the fundamen-
tal role that paragraphs play in Microsoft Word—namely to 
provide the primary unit of formatting.

Most, and perhaps all, concepts are invented. Some, like 
the paragraph, were invented in ancient times; some, like the 
social security number, are modern inventions. A software con-
cept may appeal to an analogy with a real-world concept but 
in fact be a totally new invention, motivated by a new pur-
pose. The Macintosh trash, for example, looks like a physi-
cal trashcan but plays a very different role. The purpose of a 
physical trashcan is to make disposal of trash more conve-
nient by staging it (first into the can in the room; then into 
the building’s larger receptacle; then into a dumpster; and fi-
nally into landfill). The purpose of the Macintosh trash, in 
contrast, is to allow deletions to be undone.

Some invented concepts are fundamental enablers: with-
out them, an application would barely work at all. It’s hard 
to imagine a spreadsheet without the concept of relative refer-
ences, for example, which make it possible to cut-and-paste 
formulas from cell to cell.

5	 Abstract Affordances
The psychologist J.J. Gibson recognized that physical objects 
convey clues about how they are to be used. Through our 
perception of the world, and our familiarity with the objects 
we encounter, we are able to sense that a chair can be sat on, 
or a door opened, without any great cognitive effort. Gib-
son coined the term ‘affordance’ to describe this relation-
ship; thus a chair affords sitting, a door affords opening, a 
screwdriver affords turning, and so on.

Don Norman, in his influential book The Psychology 
of Everyday Things (later renamed The Design of Everyday 
Things) [21], developed a theory of usability based on this 
notion of affordance. Well designed objects, he asserted, 
convey their affordances in a clear way. Thus a door han-
dle should be shaped so that it is obvious whether to pull or 
push; if a sign is needed to tell you which (a ‘user manual’, 
as Norman calls it), the designer has surely failed. Norman’s 
notion of affordance became so popular that designers be-
gan talking about the features that conveyed affordanc-

concepts that underlie a software system, and how to distin-
guish good concepts from bad ones. If we could do this bet-
ter, we might end up not only with conceptual designs that 
work better for the user, but which—due to their clarity and 
simplicity, amongst other qualities—would provide an easi-
er transition to representation, resulting in more robust and 
maintainable implementations.

3	 Concepts Define Systems
The concepts of a software system are the ideas you need to 
understand in order to use it. For example, to use a word 
processor such as Microsoft Word effectively, you need to 
know what a paragraph is (whereas no such concept is re-
quired to use a text editor). To use Twitter, you need to un-
derstand tweets, hashtags and the concept of one user follow-
ing another. To use Facebook, you need to understand posts, 
tags and friends. To use Adobe Photoshop, you need to un-
derstand pixels, layers and masks (and channels, profiles and so 
on). Some concepts, such as tweets, are simple and easy to 
grasp; some, such as tags, are more complicated. Some sys-
tems, such as Twitter, have only a few concepts; others, such 
as Photoshop, have many.

Aside. Throughout the paper, concepts appear like this.
Concepts are most evident in applications, but play an 

important role in infrastructural services too. To use the 
web, for example, you need to know what a URL is, and to 
be a power user you also need to understand the distinc-
tion between a domain name and an IP address. Concepts distin-
guish one system from another. The concept of the trash, for 
example, invented by Apple for the Lisa computer in 1982 
and carried over to the Macintosh, distinguished that oper-
ating system from all others until later copied in Microsoft 
Windows. Concepts also distinguish families. Thus ‘text edi-
tors’ typically offer lines and character encodings as their key con-
cepts; ‘word processors’ offer paragraphs, formatting and styles; 
and ‘desktop publishing programs’ offer stylesheets, page tem-
plates, and text flows.

Not all software is user-facing, of course. Concepts may 
still play an important role in such systems. In railway sig-
nalling, for example, routes were introduced to simplify point 
and light settings, and reduce the risk of train collisions.

Concepts are not only for the user, but also for the devel-
oper. A programmer working on the codebase of a text edi-
tor would have to grasp the concept of a line (and how exact-
ly a line is terminated). The need to understand a complex 
of subtle concepts creates entire subspecialties. You cannot 
work as a programmer in the domain of typography, for ex-
ample, if you don’t know the difference between kerning and 
letter spacing; nor can you work in the domain of air traffic 
control if you are not familiar with the concept of flight plan 
or waypoint.

Aside. When discussing concepts, it’s convenient to 
use singular and plural forms interchangeably. So para-



6	 Concepts and Complex Systems
This may serve as one definition of a complex system: name-
ly, a system in which the actions of users have direct effects 
that they cannot see, and indirect effects that they might not 
be able to anticipate.

How then can a user hope to make sense of such a sys-
tem? This is where concepts come in: A concept is a struc-
ture that is invented to give a coherent account of the im-
mediate consequences of actions in a complex system. Thus 
concepts are rarely ends in themselves, but are means to 
other ends. The concept of style in a word processor, for ex-
ample, does not provide any direct functionality in terms 
of the appearance or structure of documents; anything that 
can be achieved in the final printed document with styles 
can be achieved without them. Rather, the concept explains 
all the intermediate effects in which collections of format-
ting changes can be made to an abstract entity—the style—
and then applied (immediately or later) to a set of a para-
graphs to which that style is attached.

Sometimes a concept is so familiar that it seems almost 
silly to explain it. But it’s a fun game, and an instructive one. 
Consider, for example, the timer shown in Figure 1. This 
kind of mechanical device is still common in the US, despite 
the encroachment of electronic timers.

The whole device is plugged in to an outlet and a mo-
tor rotates its central ring marked with the hours of the day, 
which passes the little arrow labelled ‘time now’ at the time 
marked on the ring. An outer ring of tabs rotates with this 
inner ring, each tab having two positions. When a tab passes 
the arrow, a light plugged into the timer will be on if the tab 
is depressed, and off if the tab is flush with the ring. Thus to 
set the light to be on all night, for example, one would sim-
ply depress all the tabs in the nighttime zone of the ring (the 
darker side marked with the moon symbol).

More abstractly, we can explain the device with the con-
cept of a schedule. The schedule consists of a set of time slots; 
the timer offers an action to toggle a time slot, which inserts 

fig. 1  A timer with the schedule concept implemented with 
tabs.

es as ‘affordances’ themselves; thus ‘a slider is a kind of af-
fordance’. He therefore suggests (in the latest edition of the 
book [22]) that we use the term ‘signifier’ for the feature of 
the design that signals the affordance.

Because software systems lack the tangibility of physi-
cal objects, their affordances tend to be less evident. Even 
as our devices become more physical and respond to more 
gestures (such as swiping, tipping or shaking), the problem 
remains, since the functionality associated with these signi-
fiers is rarely concrete and visible. It is hardly obvious, for 
example, that shaking an iPhone should undo the last com-
mand (although that is what the user interface guidelines 
dictate).

There is a more fundamental problem with the usabili-
ty of software in comparison to physical tools, however. The 
affordances of a physical tool are associated with immedi-
ate effects in the environment. Opening a door allows you 
to walk through immediately; sitting in a chair provides in-
stant support; lighting a match makes a flame (sometimes 
too quickly!). When the desired purpose is not immediate-
ly accomplished, progress towards it is often tangible. Turn-
ing a screw progressively tightens a coupling, and even if the 
tightening has not begun, the user can often see the screw 
moving towards the surface or item to be coupled.

Software systems, like physical tools, have an impact in 
the environment in which they are used: causing packages 
to be mailed, pages to be printed, X-rays to be taken, and 
so on. And users perform actions in order to produce these 
effects. But most of the actions performed by users in soft-
ware systems have no immediate effect in the environment. 
Sometimes this is due just to delay and failures: sending an 
email message does not result in it being immediately re-
ceived; queuing a file to be printed does not mean it will 
necessarily emerge from the printer. More fundamentally, 
many actions only directly affect internal state. Thus modi-
fying the definition of a style has no visible effect on a docu-
ment unless there is a paragraph that has been assigned that 
style; completing a contact entry in an address book has no 
effect until that contact is used in some way; storing a book-
mark does nothing until the bookmark is later selected and 
visited.

Aside. Sometimes the indirect effects are surprising 
and insidious. Tagging a person in a photo on Face-
book, for example, changes the accessibility of the 
photo so that it becomes readable not only by the per-
son who posted the photo and her friends, but also 
by all the friends of the person tagged (a set that the 
person performing the tagging may well not have ac-
cess to).
The affordances of software are thus often abstract: the 

user is offered the capability to perform actions in an ab-
stract world, which may or may not end up having physi-
cal consequences.



the slot into the schedule or removes it. When a given time 
slot arrives, the light is on if the slot is in the schedule and 
off otherwise.

Now imagine trying to understand the timer without the 
schedule concept. The state transition diagram in Figure 2 ful-
ly defines the behavior of the timer (albeit simplified with 
just two slots, one for daytime and one for nighttime, and 
a twice-daily tick event to represent the transition between 
the two). And yet it’s incomprehensible, lacking the essen-
tial structure that allows us to make sense of the behavior.

7	 Concepts and Datatypes
Concepts are associated with that programmers would call 
‘datatypes’, and correspond to a set of abstract objects. Thus 
the style concept in a word processor is associated with a set 
of style objects; folder in a file system with a set of folders; label 
in an email application with a set of labels and so on. Some 
concepts are singletons with only a single object: thus there 
is only one schedule in the timer, for example. In some cases, 
the objects of the datatype represent relationships. The ob-
jects associated with the friend concept in a social network-
ing application, for example, are really ‘friendships’, created 
when a friending request is accepted.

But concepts are not quite the same as conventional 
datatypes. When a datatype is being designed, the program-
mer considers which behaviors should be assigned to the 
datatype and which behaviors to other datatypes, aiming to 
simplify the datatype’s interface and minimize dependences 
in the code. Paradoxically, the very behaviors that motivat-
ed the introduction of the datatype may end up not belong-
ing to the datatype itself, but instead be spread across multi-
ple datatypes. For example, in an email client, a programmer 
may introduce a Label datatype to represent labels that can 

be attached to messages. Since these labels will be stored as 
keys in a hash table, they are implemented as immutable ob-
jects, and hold no references to messages. The fundamental 
action of assigning a label to a message is thus not a feature 
of the Label datatype at all.

In contrast, a concept encompasses all the state and be-
havior that motivates the concept. We can formalize a con-
cept with an abstract state machine model. Such a model for 
the schedule concept is shown in Figure 3. Note that the mod-
el includes not only the schedule datatype itself (represent-
ed as a set of slots), but additionally the clock (represented 
by the time component) and the state of the light (represent-
ed by on), since without these, the rationale for schedule—
turning on and off the light as the clock advances—cannot 
be conveyed.

Aside. This model is written in the conventional style 
of model-based specification languages (such as Al-
loy, B, VDM and Z). The invariant is made to hold 
magically, updating the state variables in response to 
the events.

8	 The Operational Principle
How should a concept be described? A designer needs to 
express the concepts of a design, so they can be recorded, 
shared, evaluated, and so on. One possibility is to construct 
a formal model (as shown in Figure 3). Such a model has 
many merits—including abstraction (being free of imple-
mentation details), completeness (characterizing all pos-
sible behaviors), and precision (lack of ambiguity)—and is 
also amenable to mechanical analysis.

Aside. A state transition diagram (as shown in Fig-
ure 2) provides these advantages too, but lacks the 
structure (in particular the factoring of the state) that 
makes the textual model intelligible.
Such a model can be very helpful for exploring the de-

tails of a concept’s design. But as a primary means of defin-
ing a concept, it is fundamentally unsuitable. There are two 
key aspects that are missing.

First, certain actions are connected to one another: the 
toggling of a time slot and the tick of the clock at which that 
time slot comes around (and the prior toggling determines 

¬ON

¬ON

ON

¬ON

¬ON

ON

ON

ON

tick
toggle(day)
toggle(night)

fig. 2  A conceptless state transition diagram describing a tim-
er.

on: bool
time: Slot
schedule: set Slot

inv on = (time ∈ schedule)

tick ≜  time := next(time)

toggle (s: Slot) ≜ 
     if s ∉ schedule then schedule := schedule ∪ {s}
     else schedule := schedule \ {s}

fig. 3  A timer described using the schedule concept.



Aside. In the field of formal methods, a formal mod-
el is thought to have a credible ‘semantics’ because a 
meaning can be assigned to it systematically, and an 
informal statement such as the operational principle 
would be regarded as lacking semantics. But ironically 
it is the formal model that lacks semantics in the true 
sense of the word, since it fails to convey the essential 
meaning of the concept.

9	 Operational Misfits
The operational principle is a scenario that explains how a 
concept fulfills its motivating purpose. But a concept may 
be flawed, either in its most basic form, or in its elaboration 
into a fuller set of behaviors. In that case, a negative scenar-
io, a kind of dual to the positive scenario of the operational 
principle, can explain what goes wrong. Such a scenario is 
an operational misfit.

Take the Macintosh trash, for example, one of the key con-
cepts of Apple’s Finder. The purpose of the trash is to allow 
deletion of files to be undone. The operational principle ex-
plains how: ‘when a file is deleted, it is placed in the trash 
folder; it is only removed irrevocably from the trash when 
the trash is emptied, and prior to that, can be restored by 
a simple move to another folder’. The concept of the trash 
isn’t quite rich enough, however, to fulfill its purpose in the 
full context of a modern machine. Here are two operation-
al misfits:
·	 More than one drive: Suppose you mount an external 

drive intending to copy some files to it, but that drive 
does not have enough free space. The Finder will tell 
you that the files cannot be copied. So you delete some 
files to make space, but of course that will not free the 
space (since the files remain on the drive, albeit in a spe-
cial trash folder). To make space, you must empty the 
trash. But emptying the trash will eliminate not only the 
files deleted from the external drive, but also all the accu-
mulated deletions from the main drive of the computer. 
Making room on the external drive will thus make it im-
possible to later restore files on the main drive.

·	 Inadequate metadata: Suppose you are looking through 
old directories, cleaning out obsolete files. You realize 
that a file you just deleted, perhaps a few deletions ago, 
was actually one you wanted. You can’t undo the dele-
tion since you’ve performed other deletions since then; 
and you can’t find the file in the trash because it contains 
a large number of files and you can’t remember the file’s 
name! You can sort the files by their modification date, 
but deletion is not a modification, so that won’t help.

10	 Concept Dependences and Product Families
The concepts of a software system can be arranged in a graph, 
with an edge from a concept C1 to a concept C2, read ‘C1 de-

whether the light is turned on or off). The formal model 
treats these actions entirely independently, and gives no hint 
of their relationship. Second, these connections are in ser-
vice of a purpose: to allows the user to establish a schedule 
in advance for the control of the light. Paradoxically, by de-
scribing all possible behaviors, and thus giving them equal 
weight, the formal model fails to distinguish the behaviors 
that motivate the concept—for example, in which a time slot 
is selected and later comes around—from irrelevant behav-
iors—for example, in which a time slot is toggled twice with 
no resulting effect.

As another example, imagine a logician from the 19th 
century—Charles Peirce say—encountering a formal model 
of posts and friends in the design of a social networking appli-
cation. With a little help interpreting the notation, our logi-
cian would surely have no trouble understanding the seman-
tics of the model, and could predict the effect of an action 
in any given state. But this is not the same as understanding 
the model. To understand these concepts, you would need 
to internalize their purposes, and to see how they fulfill that 
purpose: for example, that, having friended someone, your 
posts become visible to them.

The operational principle provides a structure for defin-
ing concepts to overcome these difficulties. It gives an ar-
chetypal scenario that explains how the concept works to 
fulfill its purpose.

Here are some examples of operational principles for 
three different concepts:
·	 Schedule: ‘When you toggle a slot, the slot is added or re-

moved from the schedule; when that time slot comes 
around, the light will be turned on or off depending on 
whether the slots is in the schedule or not.’

·	 Bcc: ‘When you add a recipient to a message as a bcc 
(blind carbon copy), that recipient will get a copy of the 
message, in addition to any other recipients, but that re-
cipient will not be identified in any visible header so that 
other recipients will not know that she received a copy.’

·	 Style: ‘If you create a style and assign it to one or more 
paragraphs, then when you make any changes to the for-
mat rules of that style, they will be applied to all of the as-
sociated paragraphs’.
The operational principle is not a complete explanation. 

The principle that explains schedule does not say what hap-
pens if you toggle the current time slot; the principle for bcc 
does not say whether the copy of the message saved by the 
sender names the recipient in its header; the principle for 
style does not tell you what happens when a style is deleted.

This is not a deficiency to be remedied. A description suf-
ficient to predict all behaviors can certainly be constructed, 
as the kind of formal model just discussed—and indeed do-
ing so can help clarify and refine the design. But such a de-
scription must be auxiliary to the operational principle, as it 
fails to distinguish accidental aspects of behavior from those 
that motivate the invention of a concept.



pends on C2’, when C1 makes no sense without the presence 
of C2.  Implicitly, subsets of the concepts correspond to dif-
ferent members of a product family. The dependences tell us 
which subsets are well formed. Thus a dependence of C1 on 
C2 means that whenever a member of the family includes 
the concept C1 it must also include the concept C2.

Figure 4 shows a dependence graph for some of the con-
cepts of a social networking app such as Facebook. As one 
might expect, post is a leaf concept: it might conceivably ex-
ist alone (although the resulting application would be rath-
er primitive) and all other concepts depend on it, directly 
or indirectly. In contrast, the concept of user depends on the 
concept of post, because without posts, users have no pur-
pose.

Aside. Recall that concepts are more than just con-
ventional datatypes (Section 7). Thus the concept user 
in this example means more than the existence of an 
identified set of users: in particular, it means that the 
application records which users authored which posts. 
(It would be possible to have a concept of user just for 
the purpose of allowing users to set application prefer-
ences, for example, but that would be a different con-
cept.) The dependence of friend on user therefore arises 
not because friendship is defined over users, but be-
cause the concept of friend only makes sense in a con-
text in which authorship is recorded.
The dependence diagram suggests some useful sanity 

checks. First, there should be no cycles in the graph. If two 
concepts are mutually dependent, they must be included or 
excluded together. This suggests that they are not indepen-
dent of one another, and are instead aspects of a single con-
cept. Second, the operational principle of a concept should 
mention at most that concept and the concepts it depends 
on, directly or indirectly. The operational principle for the 
friend concept, for example, will say that when one user be-
comes a friend of another, she can read that person’s posts; 
this then implies that the concept of friend must depend on 
the concept of post.

Aside. Likewise the dependence of tag on friend is re-
quired because the operational principle of tag says 
that tagging an image with a user’s name makes the 
image viewable by the user’s friends.
Sometimes a group of concepts can be viewed as vari-

ants of a single, abstract concept. A word processor (Figure 
5) might have a concept of style whose purpose is to achieve 
consistent formatting, and which (unsurprisingly) depends 
on the format concept. The style concept has two variants: para-
graph styles (for formatting paragraphs, which thus depends 
on the paragraph concept) and character styles (for formatting 
arbitrary segments of the text buffer, and which thus de-
pends on the text concept). To show this in the dependence 
diagram, the abstract concept is shown italicized, and dotted 
instantiation arrows link the variants to it. A dependence on 
an abstract concept means that at least one of the variants of 

the abstract concept must be present. Thus this diagram says 
that if the stylesheet concept is present, then paragraph styles or 
character styles must be present too.

11	 Criteria for Judging Concepts
How can we determine, in advance of implementation, 
whether a concept is well designed? We might simulate the 
behavior of the concept in our mind, imagining how the op-
erational principle would apply in different contexts. We 
could also elaborate a model of the concept (as in Figure 3) 
and explore corner cases of behavior (such as toggling the 
current time), or formulate properties (for example that tog-
gling is its own undo) and check them. These two kinds of 
activities are synergistic; a formal analysis is better at find-
ing unusual scenarios that are implicit in the model, but an 
informal simulation can catch misfits that lie beyond the de-
signer’s initial assumptions.

Such analyses are entirely concept-specific. In contrast, 
there are some general criteria that can be applied to all 

fig. 4  Part of a concept dependence graph for a social net-
working app.

stylesheet

style

paragraphformat

text

paragraph style

character style

fig. 5  Part of a concept dependence graph for a word pro-
cessor.

friend

user

comment

post

tag

reply



concepts. These criteria are neither necessary nor sufficient. 
They are not necessary because it is possible to violate them 
and still end up with a good design; they are not sufficient 
because they do not guarantee a good design. Nevertheless, 
my experience to date suggests that they can explain a vari-
ety of conceptual design flaws in existing products.

There are four criteria, of which the first three all relate 
concepts to purposes, and do not require detailed analysis 
of behavior:
·	 Motivation: a concept should have an articulated pur-

pose;
·	 No redundancy: two concepts should not have the same 

purpose;
·	 No overloading: a concept should not attempt to serve 

two distinct purposes;
The last criterion requires a comparison of the behavior 

of different concepts:
·	 Uniformity: variant concepts should have similar behav-

iors.
The following sections explain each of these in turn, il-

lustrating violations of the criteria in a variety of applica-
tions.

12	 Unmotivated Concepts
That a concept needs a purpose is hardly surprising; with-
out a purpose, there is no reason for a concept to exist. Or 
at least there is no reason from the user’s point of view: such 
concepts may be introduced because they solve a problem 
for the designer or implementer, perhaps making up for the 
deficiencies of other concepts. A useful rule of thumb is that 
a purpose should be expressible in a short phrase: ‘to allow 
undo of deletions’ (trash), ‘to maintain formatting consisten-
cy within a document’ (style), ‘to classify messages so they 
can be retrieved easily’ (label), etc.

Example. The domain name system has a concept of glue 
records; these are special records, which (unlike conventional 
domain name records) give the IP address of the name serv-
er that will resolve the given name rather than the domain 
name of the name server. Glue records are indeed used to 
fulfill the purpose of resolving domain names. But that is 
not the purpose that motivates their existence. Rather, glue 
records exist because the standard mechanism for resolving 
names fails when the name server is within the domain of 
the name being resolved. They exist, therefore, not to meet 
a purpose, but to patch a flaw in the resolution algorithm 
(which would otherwise get stuck in an infinite loop).

Example. Likewise, in the Git version control system, the 
stash concept exists to overcome a flaw in the branch concept 
(namely that switching branches has undesired side effects 
when the old branch contains uncommitted work). Git in-
cludes a pervasive concept of staging area, a separate area of 
storage to which files are copied prior to being committed. 
On first encountering it, users inevitably ask what the stag-

ing area is for. Expert users, eager to defend a complex and 
confusing concept, typically respond with a barrage of pos-
sible purposes, none entirely convincing.

13	 Redundant Concepts
A single purpose should not motivate more than one dis-
tinct concept. This criterion is also uncontroversial; the ad-
ditional concepts bring no additional benefit if they serve 
the same purpose, and create a burden of needless complex-
ity for user and developer alike.

Example. In Adobe Lightroom, photos have rating stars 
whose purpose is to allow the user to mark the best photos 
and then find them later. But in addition to rating stars there 
are also flags (with the values select, don’t select, and to-be-
deleted). One might imagine that flags offer a more stream-
lined way to selecting files for deletion, but Lightroom’s 
metadata search makes it easy to use rating stars in the same 
way. So there appears to be no fundamental difference in 
motivation between the two concepts. Interestingly, the de-
signers of Lightroom gave the two concepts different scopes 
(in Lightroom 3, an earlier version): stars were global but 
flags were specific to collections. This might have been an at-
tempt to differentiate the two with distinct purposes.

Example. Until version 11 of Adobe Acrobat, the text ap-
pearing in a file could be modified using a variety of con-
cepts. The document text seemed to be a string containing the 
concatenation of all the text in the document; an object was a 
paragraph or a column that could be selected and moved or 
deleted; and a textbox was like an object, but was something 
added to the document rather than a preexisting element. 
These distinctions seemed confusing and unnecessary. They 
were eliminated in version 11, which instead has a general 
concept of an object, which is either a text object or an image 
object. Both existing paragraphs and new annotations are 
treated as text objects, and are edited in the same way, with 
the same commands.

Example. In 2013, Google added categories to Gmail. The 
avowed purpose was to classify incoming messages auto-
matically, so that users could more easily distinguish per-
sonal email from spam. But users were confused since labels 
already existed for the same purpose (with system labels being 
used for automatic assignments by the application itself). It 
remains unclear why Google did not simply associate the 
new built-in filters with labels rather than inventing the new 
concept of categories. Worse, categories and labels differ in small 
but significant ways. The inbox can be sorted into tabs by cat-
egory, for example, but not by label.

14	 Overloaded Concepts
No one can serve two masters. Either you will hate the one 
and love the other, or you will be devoted to the one and de-
spise the other. [Matthew 6:24]



The criterion that a concept should not be motivated 
by more than one purpose is far from obvious. In fact, one 
might imagine that achieving two purposes with one de-
sign component is the very essence of elegant and efficient 
design. A car’s windshield, for example, protects the driv-
er from road debris, provides a view of the road, supports 
the roof, and helps maintain cabin temperature. It is hard 
to imagine that a design that separated these purposes into 
separate components would be an improvement.

Attempting to satisfy multiple purposes at once, howev-
er, inevitably creates conflicts. A stronger windshield that 
will support the roof and protect better against rollovers will 
be harder to see through, for example. Such designs tend to 
be highly coupled, with few combinations of the design pa-
rameters meeting all requirements. Nevertheless, even for 
physical systems, it is possible to design the component to 
minimize the coupling [31].

In the conceptual realm, there are no physical constraints, 
and thus no reason not to aim for a complete decoupling in 
which each concept is motivated by at most one purpose.

Example. Acrobat 9 offers a signature concept that com-
bines two purposes: including the image of a written signa-
ture, and attaching a digital signature to the file. The pro-
gram won’t allow you to include the image without the 
digital signature; and because creating the digital signature 
requires visiting Adobe’s website to register to a public key, 
you can’t do either without a network connection.

Example. The conference review has two purposes: to pro-
vide constructive feedback to authors, and to help the pro-
gram committee select papers. A reviewer who wants a 
paper accepted will often hold back on constructive sug-
gestions for fear that they will be interpreted as criticisms 
by other committee members; and authors, when receiving 
their reviews, are often unsure which comments are intend-
ed to be helpful and which actually determined the fate of 
the paper.

Example. Pamela Zave provides an example from call 
forwarding [33]. Suppose phone A is forwarded to phone B, 
so that calls to A are automatically rerouted to B. But now 
suppose that, in addition, B is forwarded to C. Clearly a call 
to B should be forwarded to C, but should a call to A be for-
warded to B or to C? In analyzing this (and many related) 
examples, Zave notes that the answer depends on the pur-
pose of the forwarding. If you forward your calls to an as-
sistant, and that assistant forwards calls to another assistant 
when he is away, then obviously a call should be double-for-
warded. But if you forward your phone to a colleague’s of-
fice that you’re using temporarily, and she forwards her calls 
to the office she’s currently using, then it is equally obvious 
that calls to your office should not be forwarded to your col-
league! Zave calls these two scenarios ‘follow me’ and ‘dele-
gate’, and it is clear that they are distinct purposes requiring 
distinct concepts.

Example. The use of a single concept for two differ-

ent purposes may arise because of ‘piggybacking’, in which 
a new purpose is retrofitted onto an existing concept. The 
printing subsystem of Apple’s OS X has the concept of paper 
size, whose purpose is to save (and recall) the dimensions of 
a sheet of paper, including margins. For their printer driv-
ers, Epson piggybacked onto this concept an additional pur-
pose: saving the choice of media type. Epson’s justification 
was presumably that this now ensures that when you select 
a paper size you get all the properties of the paper that the 
printer needs to know. This essentially redefines the pur-
pose of paper size as a printer setting. But paper size is used 
not only by the printer driver: it’s used also to set document 
sizes, for example. In Adobe Lightroom, printing presets—
which are preset layouts defining photo size, margins, and 
so on—are based on paper sizes. The result is that when you 
change the media type of the paper you’re using (say from 
matte to glossy) none of your existing presets work!

Example. Overloading can also arise from the desire to 
simplify the user interface, so that a single concept does 
double duty, often at the expense of confusing the user. The 
designers of Dropbox, for example, understandably wanted 
to base their application on the concepts of the existing file 
system interface. As a result, deletion of a file or folder serves 
two very different purposes, distinguished according to 
context. If Alice shares a folder with Bob, and Bob deletes it, 
then the folder will no longer be accessible to Bob. But if Al-
ice places a second folder inside the shared folder, and Bob 
deletes that second folder, it will be no longer be accessible 
to either Alice or Bob! Two different purposes are conflated 
here: one is allowing Bob to make space on his machine by 
no longer sharing Alice’s folder; the other is allowing Bob to 
help Alice clean up by deleting folders. I wonder if this con-
flation is partly responsible for the many reports of acciden-
tal deletions of shared Dropbox folders.

Example. My camera (a Fuji x100s) has two related 
menus: (1) an image quality menu that offers options such as 
raw (the full, unprocessed sensor data), various levels of 
JPEG encoding, and a combination of a raw and JPEG file, 
and (2) an image size menu that allows you to select different 
aspect ratios (such as a square ratio, or a traditional 2×3). 
Unfortunately, these two concepts are coupled: you can only 
choose a non-standard aspect ratio when the image quality is 
set to one of the JPEG options. This is not due to any un-
derlying technology problem; if you select the combination 
raw/JPEG option, along with a square ratio, the raw file ac-
tually includes a (non-destructive) crop corresponding to 
the aspect ratio. The root of this problem, it turns out, is re-
vealed if you look more carefully at the image size menu. As 
its name suggests, it actually provides different image sizes 
in terms of pixel dimensions; the different aspect ratios are 
achieved by offering, for a given height, a choice of differ-
ent widths. The concept image size thus has two purposes that 
are coupled—choosing the resolution and choosing an as-
pect ratio—and since resolution only applies to JPEG, it is 



not possible to select a non-standard aspect ratio in a JPEG-
less mode.

Example. The friend concept in Facebook originally served 
two purposes: to allow users to control which other uses 
could read their posts, and to help users manage a poten-
tially overwhelming number of posts to read by limiting 
posts to certain favorite authors. Coupling these two pur-
poses meant that a user had to choose the same set of users 
in both cases. The latter purpose motivates Twitter’s follower 
concept, and it was adopted by Facebook in 2011; now you 
can be someone’s friend (and thus let them read your posts) 
without being a follower (and thus avoiding reading their’s).

15	 Uniformity of Concepts
When two concepts are variants of the same abstract con-
cept, they are expected to have similar operational princi-
ples. When this is not the case, users are likely to surprised 
and frustrated, and modularity will suffer in the implemen-
tation.

Example. In banking, the concept of a deposit into a bank 
account has multiple variants, including transfer deposits and 
check deposits. The operational principle for a transfer deposit says 
that the owner of the sending account initiates the trans-
fer and at some later point, that balance of the receiving ac-
count is augmented and the balance of the sending account 
is reduced accordingly. But the principle for a check deposit is 
more complicated: sometime after the check has been re-
ceived, the balance of the receiving account is augmented 
with ‘available funds’ that the account’s owner may spend; 
but at a later point, the check may bounce and the balance 
will be subsequently reduced. This confusion is the basis of 
a widespread scam.

Sometimes the operational principle is the same, but the 
variants differ in their full behaviors in ways that are unre-
lated to their variant purposes.

Example. In Apple’s iCal calendar application, one can 
associate  alerts with calendar events. There are different vari-
ants of alert, such as email alert and message alert. An alert can be 
chosen as a default for all new events—for example, always 
to display a message the day before. But email alerts are not in-
cluded in the default options.

A related violation of uniformity occurs when a concept 
that depends on an abstract concept makes distinctions be-
tween its variants.

Example. Many cameras offer the ability to save and re-
call one or more custom setting banks, whose purpose is to make 
it quicker to switch the camera between usage modes. There 
is a concept of setting with many variants. But on most cam-
eras, only a subset of the settings are selectable in custom setting 
banks. On my x100s, for example, you can include the choice 
of white balance but not the image size. Similarly, many 
cameras offer a custom function button. On the x100s, it can be 
bound both to settings (for example, set the image quality to 

raw) and to menu actions (for example, open the ISO selec-
tion menu), but it is limited to a few particular settings and 
a few particular menu actions.

Example. In Apple Keynote (v5.3), the concept of group 
depends on the abstract concept element, which includes text 
box, shape and connection line. Unfortunately, however, connection 
lines cannot be grouped.

Finally, two different concepts may have different pur-
poses but may achieve them using a shared subpurpose. 
Ideally, this subpurpose should be realized in the same way, 
preferably as a concept in its own right.

Example. In Apple Mail, searches are used to find previous-
ly received or sent messages that match some criteria, and 
rules are used to set automatic treatment for incoming mes-
sages. Both concepts involve a step in which the user pro-
vides criteria to define a set of messages—in one case to be 
acted upon, and in the other to be displayed. Yet the criteria 
in the two cases are different. Preferably, the behavior would 
not only be made consistent but would be factored out into 
a concept in its own right. Strangely, such a concept already 
exists: the smart mailbox, which like a label in Gmail, offers a 
way to name a set of messages that satisfy some criteria (in 
fact, yet a third set, incomparable with the other two).

16	 Familiarity and Concept Idioms
Old problems may welcome new solutions; and new prob-
lems may demand them. But when an old solution is per-
fectly fit for purpose, and no better solution is proposed, 
novelty should give way to familiarity. This holds especial-
ly for concepts, since new concepts do not come free, ei-
ther for the designer (who has to explore their consequenc-
es) or for the user (who has to learn what they are for and 
how they work). And new things tend to be wrong: the mis-
fits and limitations of a concept may be discovered only af-
ter extensive use.

Concept idioms are reusable concepts that have appli-
cations in many different contexts. Each idiom identifies a 
central concept, its purpose and operational principle, and 
known complications arising in the use or implementation 
of the concept. I am currently building a catalog of such id-
ioms to act as a repository of conceptual design expertise. 
The table in Figure 6 lists the idioms currently in the catalog.

Consider the concept of style. In the context of a word 
processor, a style is associated with one or more paragraphs, 
and allows the formatting of those paragraphs to be updat-
ed all at once. But the essential concept here is a generic 
one, and has applications in many contexts. Color swatches 
in Adobe Indesign are styles; so are themes in Microsoft Pow-
erpoint, and classes in CSS. In all these cases, the fundamen-
tal idea is the same: to introduce an indirection between ele-
ments and their properties. By attaching properties to a style 
rather than to the element itself, an update that would have 



has been set, to unset it. Word experts suggest using Visual 
Basic underneath the hood. Indesign has offered a ‘reset to 
base’ function since 2007, which obliterates all the proper-
ties of a style. Amongst current text processing applications, 
only Apple Pages solves this problem definitively: the dialog 
for setting properties includes not only a field for the value 
of the property, but also a checkbox for whether the proper-
ty should be included or not.

This is hardly a cutting-edge technology problem. Back 
in the 1980s, Framemaker had a special ‘as is’ value that 
could be assigned to any property to exclude it from the 
style. Perhaps if the style idiom had been codified, the sys-
tematic solutions to this problem would be more pervasive.

Aside. At the same time, it is always worth question-
ing traditional concepts. Most users of computers are 
familiar with the folder idiom, in which files are orga-
nized into a hierarchy of folders. But perhaps only 
computer scientists are comfortable with the idea that 
both the name of a file, and its existence, are proper-
ties of the folder in which it is placed. This idea can be 
attributed to a variant of the folder idiom represented 
by Unix, in which a folder (called a directory in Unix) 
is a collection of links mapping local names to files. 
This seems to work well in Unix itself, but it can wreak 
havoc in other contexts. In version control and back-
up systems, for example, users may expect changing a 
file’s name to be recorded as a modification of the file, 
but in many cases it is instead treated as if the file with 
the old name were deleted and a new, unrelated file 
with the new name were created. This idea may also 
explain the confusion amongst some users of Drop-
box about the distinction between deleting a top-level 
shared folder and deleting a folder inside it.

17	 Precursors and Inspirations
A project such as this has, of course, many precursors. The 
essential notions—of concepts and purposes—have been 
around in various forms for many years, although they have 
yet to be brought together in a coherent theory.

Some of the most influential ideas succeed because they 
resonate with sensibilities that many people share, but which 
have not been fully articulated. It is my hope that conceptual 
design of software is such an idea. Put another way, I suspect 
that the very best software designers have been doing these 
things—identifying purposes and devising concepts to ful-
fill them—all along. The value of a theory of design is in part 
just to understand and codify design practices that already 
work well.

The idea that software design might even exist as an ac-
tivity distinct from programming was championed by 
(amongst others) Mitchell Kapor, who argued that software 
needs designers just as buildings need architects [16].

In his celebrated book Mythical Man Month, Fred Brooks 

required changes to multiple elements can be achieved with 
an update to a single style instead.

The style idiom has many subtleties. For example, since 
elements may have properties applied directly, it is usual-
ly desirable to be able to define styles that assign only select 
properties. Surprisingly, some applications do not properly 
support this. In both Microsoft Word and Adobe Indesign, 
the properties of a style are initially unassigned, and become 
assigned only when selected by the user. But unfortunately, 
in both applications, there is no simple way, once a property 

concept purpose

consistency
style achieve consistent formatting of a set of elements
master achieve consistent structure and format of composite elements
stencil use archetypal objects for consistency and time saving
style buffer reformat another object like a previous one to save effort
preset allow setting of many properties at once

organization
folder organize collection of items into a hierarchy
REST organize collection of resources by simple path names
group group items so they can be treated as a single item
layer allow easy inclusion/exclusion of sets of items
stack place items in stacking order for precedence
selection apply action in aggregate to many items at once
label add labels to items so they can be found later
alias address one or more items with a shorthand name
filter allow filtering of set of objects by their features
property describe an object with properties that have values
metadata sort and search for items using associated data

navigation
history keep past actions for audit, undo, visibility
buffer  provide temporary storage area for quick modification
cursor provide shortcut entry into traversable document

access
access token control access to a resource in an easy way
reservation allocate resources efficiently and prevent conflicts
OOBA authenticate user with ‘out of bound’ channel unique to user

communication
message communicate in discrete packets between endpoints
posting share a short communication by broadcast
notification let a user know when something happens

community
friend mediate communications by preapproved relationships
clique create subcommunity within larger community
invitation predicate relationship on approval
account centralize user-specific information
karma incentivize users to contribute to an online community
rating crowdsource evaluation of items

fig. 6  Some idioms from an initial catalog.



coined the term conceptual integrity, and claimed that it was 
‘the most important consideration in system design’. Revisit-
ing the book in an afterword written for an anniversary edi-
tion twenty years later, he reiterated: ‘I am more convinced 
than ever. Conceptual integrity is central to product quality.’ 
The book never actually defines the term, but instead focus-
es on the organizational need for a single designer. Richard 
Gabriel has challenged Fred Brooks’s assertion that coher-
ent designs only emerge from a single mind [10]. Either way, 
this seems to me a psychological and organizational ques-
tion that is orthogonal to the substantive question of what a 
conceptual design is, and how it might be judged. A bit more 
of what Brooks means can be found in his coauthored book 
on architecture [5], which gives three criteria for conceptu-
al integrity: orthogonality (that individual functions should 
be independent of one another); propriety (that a product 
should have only the functions essential to its purpose and 
no more); and generality (that a single function should be 
usable in many ways).

Brooks introduced the distinction between ‘conceptual’ 
and ‘representation’ design, and argued that conceptual de-
sign is the essence of software development: ‘I believe the 
hard part of building software to be the specification, design 
and testing of this conceptual construct, not the labor of 
representing it and testing the fidelity of the representation.’ 
[7]. To Brooks, however, a ‘concept’ is a looser notion that 
includes most of the elements of software design—‘data sets, 
relationships among data items, algorithms, and invocations 
of functions’—and thus conceptual design to him includes 
aspects that I would classify as representational.

The term ‘concept’ is used in a subtly different way in the 
field of conceptual modeling, where it refers to a semantic 
construct, usually tied to something in the world outside the 
computer. In this field, construction of a conceptual model 
is about recording an understanding of the problem world, 
in a similar manner to the approach known as domain mod-
eling or domain engineering [4]. In contrast, my notion of 
concept is more operational than ontological, and the work 
of finding concepts more inventive than descriptive. Closer 
to my theory (and to my idioms) are Martin Fowler’s analy-
sis patterns [9], which are data model fragments for solving 
common domain-specific problems.

The operational principle comes from the work of the 
chemist philosopher Michael Polanyi [27, 26], which I was 
introduced to by Michael Jackson. Prior to discovering Po-
lanyi, Jackson had already used the ‘frame concern’, an ar-
chetypal scenario very similar to the operational principle, 
to explain how the combination of machine and environ-
ment properties satisfy a requirement [15]. Early on, I tried 
to use Jackson’s notion of designation [14] as a way to define 
concepts, but it was not suitable, since concepts are not ob-
servable phenomena but rather artifacts of the design.

My thought experiment of a 19th century logician en-
countering a formal model of a social networking app is just 

an expression of one Polanyi’s central claims: that the natu-
ral sciences cannot explain engineering artifacts. As he ex-
plains:

‘Engineering and physics are two different sciences. En-
gineering includes the operational principles of machines 
and some knowledge of physics bearing on those princi-
ples. Physics and chemistry, on the other hand, include no 
knowledge of the operational principles of machines. Hence 
a complete physical and chemical topography of an object 
would not tell us whether it is a machine, and if so, how 
it works, and for what purpose. Physical and chemical in-
vestigations of a machine are meaningless, unless undertak-
en with a bearing on the previously established operational 
principles of the machine.’ [26]

When we try to be ‘scientific’ in our pursuit of a deeper 
understanding of software, we might heed Polanyi’s distinc-
tion, and recognize that design and engineering knowledge 
are not reducible to scientific principles. The ascendancy of 
semantics and logic in programming languages and soft-
ware engineering research has been very helpful in clarify-
ing the languages that we use and the analyses we apply to 
them, but it has perhaps drawn attention away from design 
issues, which are not so readily formalized.

The idea of misfit comes from Christopher Alexander’s 
first book, Notes on the Synthesis of Form [1], where he ar-
gues compellingly that fitness for purpose cannot be fully 
characterized. No problem has a ‘finite list of requirements’, 
and the best we can therefore do is to check our designs 
against anticipated misfits. Concept idioms are inspired, of 
course, by Alexander’s design patterns [2], and are perhaps 
closer to them in spirit than the more implementation-cen-
tric patterns of object-oriented programming [11].

David Parnas’s uses relation and the related notions of 
program families and minimal subsets [24] are the origin of 
my concept dependence graphs. For a program, dependenc-
es can be defined bottom-up in terms of runtime behav-
ior—although not as easily as one might imagine [13]—and 
the notion of minimal subsets follows from it. For concepts, 
however, finding a behavioral characterization has proved 
hard, so I have used the minimal subset idea not as a conse-
quence of a more basic definition of dependence but as the 
definition itself.

A behavioural characterization of concept dependence is 
possible, but it produces a very different relation. Consid-
er a library system, for example, with the concepts of loan 
and hold; a user places a hold on a book in order to obtain a 
loan. By my definition of concept dependence, hold depends 
on loan, but not vice versa: the concept of a loan makes per-
fect sense without the concept of a hold, but the concept of 
a hold exists only to enable loans. And yet in the execution of 
the system, the behavior associated with loans will be affect-
ed by the behavior associated with holds: the very purpose 
of a hold is to suppress loans so that the book is available for 
the party that reserved it. A behavioural dependence graph 



would therefore include an edge from loan to hold. This graph 
seems to be harder and more subtle to construct, but it may 
be useful to expose design flaws arising from unexpected 
couplings between concepts.

The concept dependence graph defines a family of ap-
plications that could be built with different subsets of the 
concepts. It can therefore serve as a guide to identifying es-
sential concepts for a minimum viable product. The uses re-
lation, in contrast, is defined over the modules of a partic-
ular implementation. Even if these modules correspond to 
concepts (as they are likely to do in a good design), the min-
imum subsets defined by uses will exclude some combina-
tions of modules simply because those particular modules 
require modules outside the subset, due to the way the code 
is structured. As a trivial example, in the code of a word pro-
cessor, a class representing paragraphs may include a field 
that links a paragraph to its style object; the uses relation 
would then rule out a subset that includes paragraphs but 
not styles. In the concept dependence graph (Figure 5), on 
the other hand, there is no dependence of paragraph on style, 
representing the fact that the concept of paragraph makes per-
fect sense in the absence of styles, and that it should therefore 
be possible to build an implementation that reflects this.

This suggests that the concept dependence graph might 
be used as a yardstick to evaluate the module dependence 
graph of a particular implementation. The modules in the 
code would mapped to concepts, and the module depen-
dences that are gratuitous (that is, not required by concept 
dependences) highlighted as potential flaws in the represen-
tation design.

My focus on identifying purposes for applications, and 
subpurposes for concepts, and on emphasizing the unique-
ness of such purposes, was inspired (rather incidentally) by 
Michael Sandel’s account [29] of Aristotelian ethics. For Ar-
istotle, everything in nature has its ‘telos’ or purpose; thus 
the purpose of an acorn is to become an oak tree, and a hu-
man being likewise has a single purpose to fulfill. It struck 
me that this could be viewed as a principle of design, with 
the presence of a compelling purpose for a concept being a 
measure of its clarity.

The controversial idea that a concept should be motivat-
ed by one purpose, and not two, was inspired by Nam Suh’s 
axiomatic design [31], a theory of design in mechanical en-
gineering. Suh’s theory comprises two axioms, the first of 
which states that functional requirements should be kept in-
dependent, in the sense that two functional requirements 
should not be dependent on the same design parameter. If 
they are, it will be hard to adjust the design parameters to 
control the functional requirements independently. This 
consideration applies equally to concept design, but I have 
given more emphasis to the argument that a single concept 
cannot ‘serve two masters’ well, rather than the argument 
for modifiability.

In user interface design, the term ‘conceptual model’ re-

fers to a mental conception of how a system works. In The 
Design of Everyday Things [22], Norman distinguishes two 
conceptual models: the ‘user model’ (representing the user’s 
understanding) and the ‘design model’ (representing what 
the designer has in mind). Between the two, the ‘system im-
age’ (as projected by the user interface) conveys the design 
model to the user, and thus determines the user model. Ide-
ally, the design and user model are perfectly aligned, so the 
user has a sound understanding of how the system works.

To avoid confusion, I have avoided the term ‘conceptual 
model’. A ‘conceptual design’ in my theory corresponds to 
Norman’s design model, with an important caveat. My no-
tion of design is ‘conceptual’ because it focuses on concepts, 
not because it is conceptualized in the mind. I take the view 
that because software is an abstract construction, software 
concepts are no less real than the physical components of a 
mechanical contrivance.

Norman beautifully illustrates the idea of a faulty con-
ceptual model with a refrigerator that has two tempera-
ture controls, one for the fresh food compartment and one 
for the freezer. It turns out that many refrigerators actual-
ly have just a single thermostat in one compartment, and a 
single compressor. One of the controls sets the thermostat 
level, and the other sets the proportion of cold air sent to 
each compartment. Marking the controls as ‘fresh food’ and 
‘freezer’ is totally misleading, and produces a system image 
that leads to an incorrect user model. But, as Norman notes, 
even if the user understands how the system works, the sys-
tem image is still flawed because it does not tell you which 
compartment contains the thermostat, and which control is 
tied to which function.

My analysis would reach a similar conclusion through a 
different path. There are two concepts, freezer setting and fresh 
food setting, corresponding to the two controls, but these con-
cepts have no compelling purposes. Indeed, they can only 
be explained (as Norman does) by reference to the internal 
mechanism. So the design is therefore flawed.

Design thinking [eg, 8, 17] and user-centered design [eg, 
3] are related approaches that address what I have called 
conceptual design. But whereas I have been concerned pri-
marily with the content of the design, these approaches tend 
to be concerned with the process of design. They typically 
advocate incrementality, early prototyping, extensive user 
involvement, multidisciplinary teams, and so on, and have 
been important in championing an ethos of design that is 
more responsive to the needs of users. These are all good 
things that are synergistic with the approach proposed here.

Jakob Nielsen and Rolf Molich’s ‘heuristic evaluation’ 
[19] is a way to find flaws in user interface designs by hav-
ing reviewers apply usability heuristics. Nielsen has since re-
fined the heuristics [20], and his colleague Bruce Tognazzi-
ni has published a larger collection [32] that contains many 
additional insights but is less suitable as a basis for a heuris-
tic evaluation. Similar collections have been extracted (and 



Second, there is the question of whether, having given 
up on specifying system behaviors, we can even specify a 
desired end-state. For the alignment problem this might be 
feasible. For example, we might formalize the user’s intent 
as a set of alignment constraints amongst pairs of elements, 
with the ordering of each pair indicating which element is 
to be moved to satisfy the constraint; the end-state is one 
that satisfies these implicit constraints. But the complexity 
of specifying a desirable end-state in this manner may take 
us across the boundary between need and design, causing us 
to prematurely limit the space of design solutions.

Finally, goals often include amorphous qualities such 
as ‘safety’, ‘responsiveness’ or ‘robustness’. In our approach, 
these would not be distinct purposes but would be qualifi-
ers of functional purposes—an adverb to a purpose’s verb.

18	 Concepts in Practice
This essay has been more descriptive than prescriptive. Its 
goal has been to show how concepts and purposes can ex-
plain real issues in familiar designs, thus making the case 
that concepts might provide a powerful framework for soft-
ware design. From a practical perspective, though, I believe 
that—despite the lack of a well-defined process—concepts 
and purposes can already be used prescriptively to guide a 
new software design.

First, the focus on purpose in motivating not only the ap-
plication design as a whole but the motivation of the indi-
vidual concepts provides a constant reminder to justify ev-
ery step in the development effort in terms of end goals. It 
makes it harder to careen off down a design path of high 
complexity and dubious value. After many years spent 
teaching a software project class to students at MIT, I have 
reached the conclusion that the primary determinant of suc-
cess is not how talented the students are or how well they 
can write code, but how firm is their grasp on the problem 
that they are trying to solve.

Second, concepts give developers a way to break a larger 
design problem into smaller pieces. The widespread adop-
tion of agile approaches is in part a response to the recog-
nition that an incremental approach, in which functionality 
grows slowly rather than arriving in a big bang, generally is 
less risky and more effective. Yet agile approaches offer no 
way to ensure that the increments of functionality are coher-
ent. The desire to deliver the most essential functions first 
may encourage fragmentation, and force a design to pro-
ceed piecemeal, without adequate consideration of the in-
tegrity of related functions.

Pressure to drive development by purposes rather than 
ad hoc use cases should also help to protect against the risk 
of a fragile design that works only for the concrete use cases 
that were explicitly considered. This seems to be what hap-
pened in the design of CSS: features were introduced only 
when they could be justified by demonstrated use cases (of-

can easily be found with a web search) from texts on user in-
terface design by Don Norman [21] and Ben Shneiderman 
[30]. Compared to my criteria, these heuristics are more fo-
cused on the user interface itself, and can be viewed as ad-
dressing general issues in how concepts are concretely real-
ized.

The process of heuristic evaluation might work for con-
cept criteria too, with an important caveat. To apply user in-
terface heuristics, all you need is the interface itself (or a suf-
ficiently detailed design). But to apply concept criteria, you 
need not only the design proper (comprising the concepts 
and their associated behaviors) but also the argument (that 
is, the purposes and the operational principles that link the 
concepts to their purposes). A poor argument for a design 
that happens to work well in practice would thus be found 
lacking. From one point of view, this is a limitation of my 
approach, since applying it to a preexisting design requires 
first reverse engineering the argument. But it might also be 
seen as an merit, since the construction of an argument dur-
ing design—just like the construction of a safety case during 
the design of a critical system—should itself produce better 
results, even without external evaluation.

‘User stories’ are a way to structure increments of func-
tionality in agile development. Like the operational princi-
ple, the user story connects some behavior to the need it 
fulfills. In contrast, user stories are not archetypal, but enu-
merate basic functions of the user interface. They therefore 
act more as an implementation checklist than as a design 
tool.

Goals in requirements engineering are related to purpos-
es, but are different. Goals are typically expressed in terms 
of behaviors; in KAOS [18], for example, a goal is defined as 
an objective to be met that ‘prescribes a set of desired behav-
iours’ [28]. A purpose, in contrast, does not imply any par-
ticular set of behaviors. Consider, for example, the purpose 
of aligning shapes in a drawing application. A human user 
finds such a purpose is reasonably clear, and with little ef-
fort could distinguish concepts that are fit for purpose from 
those that are not. But tying such a purpose down in behav-
ioral terms is much harder than one might at first imagine.

First there is the question of what can be expected from 
the user. If we assume that the user will select some el-
ements and then invoke a function to align them, we can 
certainly specify the desired application behavior. A better 
solution, however, first introduced by Intellidraw and now 
ubiquitous, involves no such function at all. Instead as the 
user moves an element, flashing guide lines indicate align-
ment relationships, and when the user releases the element, 
it snaps into the position determined by the nearest guide-
line. It is clearly not possible to specify a set of system be-
haviors corresponding to the desired purpose that admits 
this kind of solution without also admitting unreasonable 
solutions (such as simply requiring the user to align the el-
ement manually).



ty attacks. A similar story can be told for an image in Pho-
toshop, ranging from a simple matrix of pixels to a richer 
view that includes channels, transparency, profiles, and so 
on. How should we account for this and exploit it in design?

Concepts are not unique to software systems, but are 
found in all kinds of complex systems, physical and organi-
zational. It would be interesting to see whether these ideas 
might be useful there too.

Acknowledgments
I am indebted to Santiago Perez De Rosso, who has been my 
partner on this project, discussing the ideas as they emerged, 
testing them in practice, and helping me refine them. His 
work on Gitless, a rethinking of the conceptual design of 
Git, has been a wonderful testbed for the evolving theory. 
Thank you also to the undergraduates whose project work 
provided examples for this paper: Dwyane George (Face-
book), Nikki Shah (Gmail) and Kelly Zhang (Dropbox).

This work has benefited greatly from the friendly skepti-
cism of many friends: my students Ivan Kuraj, Eunsuk Kang, 
Matt McCutchen, Aleks Milicevic and Joe Near; my col-
leagues Shigeru Chiba, Jonathan Edwards, Yishai Feldman, 
Richard Gabriel, Philip Guo, Emanuel Letier, Michael Mad-
dox, Donald Norman, Julia Rubin, Mitch Wand, William 
Woods and Pamela Zave; and especially David Faitelson, 
Bill Griswold, Michael Jackson, Shriram Krishnamurthi 
and Kevin Sullivan, with whom I enjoyed detailed exchang-
es that helped expose weaknesses and find new paths for-
ward. Thank you to you all.

Finally, thank you to the International Design Center, a 
joint project of MIT and the Singapore University of Tech-
nology and Design, and to John Fernandez and Chris Ma-
gee, its leaders at MIT, for supporting this work.

References
[1]	 Christopher Alexander. Notes on the Synthesis of 

Form, Harvard University Press, 1964.
[2]	 Christopher Alexander. A Pattern Language: Towns, 

Buildings, Construction, Oxford University Press, 
1977.

[3]	 Hugh Beyer and Karen Holtzblatt. Contextual De-
sign: Defining Customer-Centered Systems, Morgan 
Kaufmann, 1997.

[4]	 Dines Bjorner. Domain Engineering: Technology Man-
agement, Research and Engineering. Japan Advanced 
Institute of Science and Technology (JAIST) Press, 
March 2009.

[5]	 Gerrit A. Blaauw and Frederick P. Brooks. Computer 
Architecture: Concepts and Evolution. Addison-Wesley 
Professional, 1997.

[6]	 Frederick P. Brooks. The Mythical Man-Month. Ad-

ten on the assumption that web pages would correspond to 
documents), and by the time the world realized that more 
general, orthogonal and flexible concepts were needed 
(and that many web pages were applications, and not docu-
ments), it was too late.

Third, the concept dependence graph provides a map 
that can be used to explore the space of designs with re-
duced functionality. Many projects aim initially to produce 
a ‘minimum viable product’; the dependence graph gives 
a way to evaluate which concept sets are viable, and might 
suggest (when there are too many dependences) which con-
cepts need to be altered to make simpler subsets viable.

19	 Next Steps
The ideas presented here leave many questions unanswered.

The criterion that a concept should have at most one pur-
pose begs the question of how to tell when an expressed pur-
pose might in fact be composite, representing two distinct 
purposes. The wording might reveal a conjunctive quality 
(‘ensure A and B’), but clearly a more rigorous test is needed.

Some concepts succeed precisely because they can be 
used in so many ways. My sense is that such concepts are not 
‘multipurpose’—that is, designed to serve several, perhaps 
unrelated purposes—but rather are ‘general purpose’, mean-
ing that they are designed with a coherent purpose in mind 
that happens to be general enough to have many applica-
tions. Some of the concepts that appear in my evolving idi-
om catalog have this quality. It would be good to refine this 
idea, and account for the way in which the best designed 
concepts can be combined synergistically so that the combi-
nation is greater than the sum of the parts.

The uniformity criterion unfortunately introduces a non-
uniformity into the list of concept design criteria, since the 
others all involve simple properties of the mapping between 
concepts and purposes. And the criterion itself is sadly non-
uniform. Can uniformity be expressed in more basic terms? 
And can its different aspects be unified into a more compel-
ling and simpler criterion?

Shriram Krishnamurthi noted that the same concept can 
have multiple forms, at different levels of sophistication. For 
some users and in some contexts, a simpler version will suf-
fice, but sometimes additional complexities must be under-
stood. For example, to a typical user of a web browser, a do-
main name is the permanent name of a single machine, and 
this view will suffice to explain most behaviors that such a 
user will experience. A more sophisticated user will know 
that the domain name may be mapped by a load balancer to 
multiple machines, and that the mapping is neither perma-
nent nor global, so that when a DNS record is changed, a do-
main name may be resolved for some users and not others. 
An even more sophisticated user will know that the binding 
of a domain name may change in the course of a web inter-
action; this is the view needed to understand some securi-



dison-Wesley, Reading, Mass, 1975; anniversary edi-
tion, 1995.

[7]	 Frederick P. Brooks. No Silver Bullet—Essence and 
Accident in Software Engineering. Proceedings of the 
IFIP Tenth World Computing Conference, pp. 1069–
1076, 1986.

[8]	 Nigel Cross. Design Thinking: Understanding How 
Designers Think and Work, Bloomsbury Academic , 
2011.

[9]	 Martin Fowler. Analysis Patterns: Reusable Object 
Models. Addison-Wesley Professional, 1997.

[10]	 Richard P. Gabriel. Designed as Designer. Essay track, 
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications, Montreal, 2007. Available at: http://dream-
songs.com/DesignedAsDesigner.html.

[11]	 Erich Gamma, Richard Helm, Ralph Johnson and 
John Vlissides. Design Patterns: Elements of Reusable 
Object-Oriented Software, Addison-Wesley Profes-
sional, 1994.

[12]	 James J. Gibson. The Theory of Affordances. In Per-
ceiving, Acting, and Knowing: Toward an Ecological 
Psychology, edited by Robert Shaw and John Brans-
ford, Lawrence Erlbaum Associates, 1977.

[13]	 Daniel Jackson. Module Dependences in Software 
Design. In Radical Innovations of Software and Sys-
tems Engineering in the Future, 9th International 
Workshop, RISSEF 2002, Venice, Italy, October 7-11, 
2002, pp.198–203, 2002.

[14]	 Michael Jackson. Software Requirements and Specifi-
cations: a lexicon of practice, principles and prejudices. 
Addison-Wesley, 1995.

[15]	 Michael Jackson. Problem Frames: Analysing & Struc-
turing Software Development Problems. Addison-Wes-
ley Professional, 2000.

[16]	 Mitchell Kapor. A Software Design Manifesto, in 
Bringing Design to Software, edited by Terry Wino-
grad, with John Bennett, Laura De Young, and Brad-
ley Hartfield. Addison-Wesley, 1996.

[17]	 Tom Kelley and David Kelley. Creative Confidence: 
Unleashing the Creative Potential Within Us All, 
Crown Business, 2013.

[18]	 Axel van Lamsweerde. Requirements Engineering: 
From System Goals to UML Models to Software Specifi-
cations., Wiley, 2009.

[19]	 Jakob Nielsen and Rolf Molich. Heuristic evaluation 
of user interfaces. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (CHI 
’90), Jane Carrasco Chew and John Whiteside (eds.), 
ACM, New York, 1990.

[20]	 Jakob Nielsen. 10 Usability Heuristics for User Inter-
face Design. At: http://www.nngroup.com/articles/
ten-usability-heuristics

[21]	 Donald Norman. The Design of Everyday Things. Orig-
inally published under the title The Psychology of Ev-
eryday Things. Basic Books, 1988.

[22]	 Donald Norman. The Design of Everyday Things: Re-
vised and Expanded Edition. Basic Books, 2013.

[23]	 David L. Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of the 
ACM, Vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[24]	 David L. Parnas. Designing Software for Ease of Ex-
tension and Contraction. IEEE Transactions on Soft-
ware Engineering, Volume SE-5, Issue 2. March 1979

[25]	 Santiago Perez De Rosso and Daniel Jackson. What’s 
wrong with git? a conceptual design analysis. In On-
ward!, part of ACM International Conference on Sys-
tems, Programming, Languages and Applications 
(SPLASH), pp. 37–52, 2013.

[26]	 Michael Polanyi. The Tacit Dimension, University of 
Chicago Press, 1966, with foreword by Amartya Sen, 
2009; pp. 39–40.

[27]	 Michael Polanyi. Personal Knowledge: Towards a Post-
Critical Philosophy, University Of Chicago Press, 
1974.

[28]	 Respect-IT. A KAOS Tutorial. At: http://www.objecti-
ver.com/fileadmin/download/documents/KaosTuto-
rial.pdf

[29]	 Michael Sandel. Justice: What’s the Right Thing to Do?, 
Farrar, Straus and Giroux, 2010.

[30]	 Ben Schneiderman. Designing the User Interface: 
Strategies for Effective Human-Computer Interaction. 
Prentice Hall, 2009.

[31]	 Nam P. Suh. The Principles of Design. Oxford Series on 
Advanced Manufacturing (Book 6), Oxford Universi-
ty Press, 1990.

[32]	 Bruce Tognazzini. First Principles of Interaction De-
sign (Revised & Expanded). At: http://asktog.com/atc/
principles-of-interaction-design

[33]	 Pamela Zave. Secrets of Call Forwarding: A Specifica-
tion Case Study. In Formal Techniques for Networked 
and Distributed Systems (FORTE), 1995, Montreal, 
Canada.


