
Challenges in Using Search-Based Test Generation to
Identify Real Faults in Mockito

Gregory Gay

University of South Carolina, Columbia, SC, USA,
greg@greggay.com

Abstract. The cost of test creation can potentially be reduced through automated
generation. However, to impact testing practice, automated tools must be at least
as effective as manual generation. The Mockito project—a framework for mock-
ing portions of a system—offers an opportunity to assess the capabilities of test
generation tools on a complex real-world system. We have identified 17 faults in
the Mockito project, added those to the Defects4J database, and assessed the abil-
ity of the EvoSuite tool to detect these faults. In our study, EvoSuite was only able
to detect one of the 17 faults. Analysis of the 16 undetected faults yields lessons
in how to improve generation tools. We offer these faults to the community to
assist in benchmarking future test generation advances.

Keywords: Search-based testing, automated unit test generation, real faults

1 Introduction

Software testing is a notoriously expensive and difficult activity. With the exponential
growth in the complexity of software, the cost of testing has only continued to rise.
Much of the cost of testing can be traced directly to the human effort required to conduct
most testing activities—such as producing test input and expected outputs. However,
such effort is often in service of goals that can be framed as search problems, and
automated through the use of optimization algorithms [1].

Test case generation can naturally be seen as a search problem. There are hun-
dreds of thousands of test cases that could be generated for any particular SUT. From
that pool, we want to select—systematically and at a reasonable cost—those that meet
our goals and are expected to be fault-revealing [1]. Automated unit test generation
tools have become very effective—even covering more code than tests manually con-
structed by developers [4]. However, to make an impact on testing practice, automated
test generation techniques must be as effective, if not more so, at detecting faults as
human-created test cases [7].

The Mockito project1 offers an opportunity to assess the capabilities of test gen-
eration tools. Mockito is a mocking framework for Java unit testing, allowing users to
create customized stand-ins (mock objects) for classes in a system, permitting testers to
isolate units of a system from their dependencies. Rather than performing the functions

1
http://mockito.org/

http://mockito.org/


2

of the mocked object, the mock instead issues preprogrammed output. Mockito is an
essential tool of modern development, and is one of the most used Java libraries [8].

Mockito serves as an interesting benchmark for two reasons. First, it is a complex
project. Much of its functionality is, naturally, related to the creation and manipulation
of mock objects. The inputs required by many Mockito functions are complex objects—
which are difficult for many test case generators to produce [2]. Second, Mockito is a
mature project, having undergone eight years of active development. Recent Mockito
faults are unlikely to be the simple syntactic mistakes modeled by mutation coverage.
Faults that emerge in a mature project are more likely to require specific, difficult to
trigger, combinations of input and method calls. If a test generation tool can detect such
faults, then it is likely ready for real-world use. If not, then by studying these faults—
and others like them—we may be able to learn lessons that will improve these tools.

We have identified 17 real faults in the Mockito project, and have added them to the
Defects4J fault library [6]. We generated test suites using the search-based EvoSuite
generation framework [3], and measured the suites’ ability to cover the affected classes
and detect each fault. EvoSuite was only able to detect one of the 17 faults discovered
in the project. Some of the issues preventing fault detection include poor guidance for
the fitness function, the need for complex input to methods and object constructors,
specific environmental configurations and factors, uncertainty in which classes to gen-
erate tests for, and simplistic handling of interface changes between software versions.
We have made this set of Mockito faults available to provide data and examples for
benchmarking future test generation advances.

2 Study

Recent studies have assessed the capabilities of test generation tools on faults in open-
source projects [7], but more data is needed to understand where such tools excel and
where they need to be improved. In this study, we have generated tests using the search-
based EvoSuite framework [3] on classes of the Mockito project. In doing so, we wish
to answer the following research questions:

1. Can EvoSuite detect faults found in Mockito?
2. What factors prevented EvoSuite from detecting faults?

In order to answer these questions, we have performed the following experiment:

1. Derived Faults: We have identified 17 real faults in the Mockito project, and added
them to the Defects4J fault database (See Section 2.1).

2. Generated Test Cases: For each fault, we generated tests on the fixed version of
fault-affected classes. (See Section 2.2).

3. Removed Non-Compiling Tests: Any tests that do not compile or that fail on the
fixed system are automatically removed (See Section 2.2).

4. Assessed Fault-finding and Coverage: For each suite and fault, we measure the
number of tests that pass on the fixed version and fail on the faulty version. We also
record the achieved code coverage.

5. Analyzed Faults That Were Not Detected: For each undetected fault, we exam-
ined the report and source code to identify possible detection-preventing factors.



3

2.1 Fault Extraction

Using Mockito’s version control and issue tracking systems, we have identified 17
faults. Each fault is required to meet three properties. First, the fault must be related
to the source code. For each reported issue, we attempted to identify a pair of code ver-
sions that differ only by the minimum changes required to address the fault. The “fixed”
version must be explicitly labeled as a fix to an issue, and changes imposed by the fix
must be to source code, not to other project artifacts such as the build system. Second,
the fault must be reproducible—at least one test must pass on the fixed version and fail
on the faulty version. Third, the fix to the fault must be isolated from unrelated code
changes such as refactorings.

In order to focus on the faults typical of a mature project, we limited our extraction
to the GitHub-based issue tracking system that Mockito began using in July 2014 (pre-
viously, Google Code was used). To help identify candidate faults, we used automation
provided by Defects4J [6]—a library of faults from five open-source Java programs and
tools for assessing tests intended to find such faults.

We have added Mockito as a sixth Defects4J project. This consisted of developing
build files that work across project versions, extracting candidate faults, ensuring that
each candidate could be reliable reproduced, and minimizing the ”patch” used to dis-
tinguish fixed and faulty classes. Following this process, we extracted 17 faults from a
pool of 89 candidate faults. Six of the 17 faults were “false-positives”, fixes to issues
reported in the old issue tracker that shared an issue ID with issues in the newer tracking
system. As these six faults met reasonable system maturity and complexity thresholds,
we also added them to Defects4J.

The faults used in this study can be accessed by cloning the bug-mining branch
of https://github.com/Greg4cr/defects4j. Additional data about each fault
can be found at http://greggay.com/data/mockito/mockitofaults.csv,
including commit IDs, fault descriptions, and a list of triggering tests. We plan to add
additional faults and improvements in the future.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over several gener-
ations, forming a new population by retaining, mutating, and combining the strongest
solutions. It is actively maintained and has been successfully applied to a variety of
projects [7]. In this study, we used EvoSuite version 1.0.3 with the default fitness
function—a combination of branch, context branch, line, exception, weak mutation,
method-output, top-level method, and no-exception top-level method coverage. Given
the potential difficulty in achieving coverage over Mockito classes, the search budget
was set to 10 minutes. To control experiment cost, we deactivated assertion filtering—
all possible regression assertions are included. All other settings were kept at their de-
fault values. As results may vary, we performed 30 trials for each fault by generating
tests for the classes patched to fix the fault.

Tests are generated from the fixed version of the system and applied to the faulty
version in order to eliminate the oracle problem. In practice, this translates to a regres-
sion testing scenario. Due to changes introduced to fix faults, such as altered method

https://github.com/Greg4cr/defects4j
http://greggay.com/data/mockito/mockitofaults.csv


4

ID Fault # Tests # Tests % LC % BC % EC % WMC % OC % MC % MNEC % CBC Resulting %
Detected Generated Removed Coverage

1 X 4.23 0.00 10.00 7.00 100.00 2.00 2.00 25.00 8.00 3.00 20.00
2 X 92.00 1.00 86.97 87.95 100.00 62.85 50.00 100.00 50.50 87.95 72.47
3 X 4.31 0.00 10.00 8.00 100.00 2.00 2.00 25.00 8.00 3.00 20.00
4 X 84.70 0.00 73.67 85.33 100.00 24.50 0.00 100.00 1.00 85.33 46.67
5 X 15.03 0.00 61.80 77.63 98.90 77.00 100.00 100.00 100.00 77.63 87.00
6 X 60.13 0.00 100.00 100.00 100.00 100.00 44.50 100.00 100.00 100.00 93.00
7 X 14.82 0.00 12.86 20.86 92.86 12.82 0.00 10.00 0.00 20.86 26.00
8 X 14.97 0.00 12.97 20.93 100.00 12.93 0.00 10.00 0.00 20.93 26.00
9 X 1.00 0.00 33.00 33.00 100.00 0.00 0.00 100.00 50.00 33.00 38.00

10 X 2.00 0.00 8.00 10.00 100.00 0.00 0.00 100.00 33.00 10.00 24.00
11 X 1.00 0.00 6.00 12.00 100.00 20.00 0.00 10.00 0.00 12.00 20.67
12 X 1.00 0.00 12.00 11.00 100.00 0.00 0.00 100.00 50.00 11.00 29.00
13 X 10.07 0.00 45.90 59.78 100.00 25.00 67.00 100.00 75.00 59.77 62.93
14 X 41.89 4.63 81.59 83.52 93.48 67.81 62.63 99.84 83.96 83.26 80.02
15 X 16.70 7.37 65.36 64.09 92.48 55.42 50.56 85.56 80.97 64.09 64.00
16 X 73.90 7.57 86.43 84.91 80.68 83.33 38.68 100.00 77.43 84.41 71.36
17 X 35.50 3.43 99.04 97.43 95.21 94.91 57.50 100.00 100.00 97.43 91.03

Table 1. Average test generation results for each fault—whether the fault was detected, number
of generated tests, number of non-compiling tests, line coverage (LC), branch coverage(BC), ex-
ception coverage (EC), weak mutation coverage (WMC), method-output coverage (OC), method
coverage (MC), no-exception top-level method coverage (MNEC), context branch coverage
(CBC), and the resulting average across all coverage metrics.

signatures or new classes, some tests may not compile on the faulty version of the sys-
tem. We have automatically removed such tests. We have also removed tests that fail on
the fixed version of the system, as these do not assist in identifying faults. On average,
4.48% of the tests are removed from each suite. More statistics are included in Table 1.

3 Results and Discussion

The results of our experiment can be seen in Table 1. In our study, only one of the 17
faults was detected—Fault 2. This particular fault—revolving around incorrect handling
of negative time values—is an excellent example of the kind of fault that automated test
generation is able to handle. The code fix adds conditional behavior to handle time in-
put. By covering the new branches, the tests are guided to detect the fault in all 30 trials.
However, EvoSuite failed to detect the other 16 faults. Therefore, our next step was to
examine these faults to identify factors preventing detection. These factors include:

Poor Guidance for the Fitness Function: While EvoSuite is often able to achieve
reasonable levels of coverage across Mockito classes, coverage is sometimes quite
low. While coverage does not guarantee fault detection, unexecuted code cannot reveal
faults [5]. One reason coverage may not be achieved is that the code offers no guidance
to the search tool in selecting better test suites.

Many fitness functions are designed to measure the distance from optimality of gen-
erated test cases. However, it is not always obvious how to calculate this distance. The
code that must be covered to detect Fault 122 provides a good example. Both branches
use the instanceof operator. Without a method of determining the “distance” be-
tween class types, the search devolves into a random search.

2
https://github.com/mockito/mockito/commit/7a647a702c8af81ccf5d37b09c11529c6c0cb1b7

https://github.com/mockito/mockito/commit/7a647a702c8af81ccf5d37b09c11529c6c0cb1b7


5

Complex Input is Required to Trigger a Fault: A challenge for test generation tech-
niques is generating inputs of complex data types [2]. As Mockito generates objects
that mimic other objects, many of its methods require complex objects as input. Even
in cases where coverage is high, test generators may have difficulty producing the intri-
cate, highly-specific, input required to detect that fault.

Consider Fault 133, which occurs when Mockito’s verification capabilities are in-
voked on a method call that, itself, has an embedded method call within it. Triggering
this fault requires generating two different mock objects, then embedding a call to one
object within a call to the second. Coverage alone is unlikely to suggest such input.
Rather, fitness functions that incorporate domain expertise may be needed to help gener-
ate more complex input scenarios. Promising work has been conducted using grammars
to produce complex input [2].
Complex Input is Required to Generate Any Tests: Unit tests instantiate an object and
call the methods offered by that object. At times, objects must be provided with input
when they are instantiated (there is no “default” constructor). Many of the code changes
made to fix Fault 34 are contained within one method. EvoSuite not only fails to fully
cover this method, it fails to invoke this method at all. In this case, EvoSuite attempts
to instantiate the InvocationMaster class, but many of these attempts fail due to
invalid input. EvoSuite cannot cover the methods of an object that it cannot instantiate.
Faults Require Specific Environmental Factors: Fault 55 revolves around an unde-
sired dependency on the JUnit framework. Fixing this fault requires code changes—yet,
coverage of this code will not reveal this fault. Rather, the fault is detected when JU-
nit is removed from the local classpath. This is an example of a fault that depends on
environmental factors—in this case, the classpath used to compile code. EvoSuite does
manipulate certain environmental factors, such as file system access, but more exami-
nation of such factors is needed in future test generation research.
Fault Detection Requires Generating Tests for Related Classes: The classes affected
by Fault 66 offer another interesting example. Mock objects can be configured to return
different values based on the type of function input. Due to this fault, a mock can pro-
duce a value intended for certain data types when a null object is passed instead of
the intended type. The fault-fixing changes are primarily in methods that do not require
input—methods that are called by Mockito’s argument matchers. Because these meth-
ods do not require input, this fault cannot be detected without generating tests for the
argument matcher classes that, in turn, call these methods. Under normal circumstances,
EvoSuite could produce the required null input, but tests would need to be generated
for classes that do not contain faulty code, and instead depend on faulty code. Some
consideration should be given to which classes are used when generating tests, and the
dependencies between those classes.
Changes to Code Invalidate Test Cases: When tests are generated on one version
of a system and applied to another, code changes such as the addition of new classes
or altered method signatures can result in tests that do not compile on one version. In

3
https://code.google.com/archive/p/mockito/issues/138

4
https://github.com/mockito/mockito/commit/3eec7451d6c83c280743c39b39c77a179abb30f9

5
https://github.com/mockito/mockito/issues/152

6
https://github.com/mockito/mockito/commit/dc205824dbc289acbcde919e430176ad72da847f

https://code.google.com/archive/p/mockito/issues/138
https://github.com/mockito/mockito/commit/3eec7451d6c83c280743c39b39c77a179abb30f9
https://github.com/mockito/mockito/issues/152
https://github.com/mockito/mockito/commit/dc205824dbc289acbcde919e430176ad72da847f


6

this study, we removed those tests. This may prevent fault detection. Fault 177 affects
the ability to set mock objects as serializable. EvoSuite is correctly guided to create
serializable mock objects. However, any time this occurs, interactions take place with
a new class. These tests are removed, as they do not compile on the faulty version of
the system. In normal practice, this is not an issue, as tests are generated on the version
they are applied to, but during regression testing, similar issues may occur. Intelligent
strategies are needed to generate tests that compile across multiple versions of systems.

4 Conclusion

The capabilities of test generation techniques have increased. Yet, from the examples
extracted from the Mockito project, we can see that there are still fault-detection hurdles
to overcome. EvoSuite was only able to detect one of the 17 faults. Some of the issues
preventing fault detection include poor guidance for the fitness function, the need for
complex input to methods and object constructors, environmental factors, uncertainty in
which classes to generate tests for, and simplistic handling of interface changes between
multiple software versions. We hope that the set of faults extracted from Mockito will
provide data and examples for benchmarking new test generation advances.

References

1. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the appli-
cation and empirical investigation of search-based test case generation. Software Engineering,
IEEE Transactions on 36(6), 742–762 (2010)

2. Feldt, R., Poulding, S.: Finding test data with specific properties via metaheuristic search. In:
2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE). pp.
350–359 (Nov 2013)

3. Fraser, G., Arcuri, A.: Whole test suite generation. Software Engineering, IEEE Transactions
on 39(2), 276–291 (Feb 2013)

4. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-box test
generation really help software testers? In: Proceedings of the 2013 International Symposium
on Software Testing and Analysis. pp. 291–301. ISSTA 2013, ACM, New York, NY, USA
(2013), http://doi.acm.org/10.1145/2483760.2483774

5. Gay, G., Staats, M., Whalen, M., Heimdahl, M.: The risks of coverage-directed test case gen-
eration. Software Engineering, IEEE Transactions on PP(99) (2015)

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. pp. 437–440. ISSTA 2014, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2610384.2628055

7. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do automatically
generated unit tests find real faults? an empirical study of effectiveness and challenges. In:
Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). ASE 2015, ACM, New York, NY, USA (2015)

8. Weiss, T.: We analyzed 30,000 GitHub projects - here are the top 100 libraries in Java,
JS and Ruby (2013), http://blog.takipi.com/we-analyzed-30000-github-
projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

7
https://github.com/mockito/mockito/commit/77cb2037314dd024eb53ffe2e9e06304088a2d53

http://doi.acm.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2610384.2628055
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
https://github.com/mockito/mockito/commit/77cb2037314dd024eb53ffe2e9e06304088a2d53

	Challenges in Using Search-Based Test Generation to Identify Real Faults in Mockito
	Introduction
	Study
	Fault Extraction
	Test Generation and Removal

	Results and Discussion
	Conclusion


