
Raytracing

CS148 AS3

Due 2010-07-25 11:59pm PDT

We start our exploration of “Rendering”- the process of converting a high-level object-based description
of scene into an image. We will do this by building a raytracer - a program that converts 3D geometry into
2D pixels by tracing light rays backwards through a scene. Raytracing simulates light rays moving through
a scene, and can produce physically accurate representations, as explored in detail in CS348B. In this course
we will settle for an approximation of light transport through a scene by limiting and approximating the
interactions that light can undergo.

Figure 1: Ray-traced image

0.1 Required Reading

Please read Chapters 2 (Miscellaneous Math), 4 (Ray Tracing), 6 (Transformation Matrices) and 13 (More
Ray Tracing) of Shirley and Marschner’s “Fundamentals of Computer Graphics”, 3rd ed., for this assignment.
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1 AS3 Minimum Specifications

Write a program called raytracer. It will take two arguments – the input scene file, and the output image
file name. The raytracer will revolve around a trace function that takes a ray as argument, and returns the
color of that ray. This function will be used recursively.

1. Raytracing:

• Render a scene by casting, for each pixel on the viewport, a ray from the eye through this pixel
into the scene.

• Find which, if any, object intersects with this ray.

• Find the color of this ray by performing a shading calculation for the intersection point.

• Reflections:

– Create rays reflected off objects (the so-called “bounce ray”) by reflecting the incoming ray
around the normal.

– Calculate the color by recursively calling traceRay, attenuate the color of this bounce ray by
some material property mr.

– Limit Bounce Depth: Terminate the recursive nature of raycasting after some specified depth.
Set the default depth to 3.

• Anti-aliasing using Distribution Raytracing:

– Multiple rays per pixel: Shooting only a single ray per pixel can result in objectionable aliasing
effects; these can be reduced by shooting multiple rays per pixels and averaging the returned
(r,g,b) intensities. Write your Viewport class to shoot multiple rays per pixel. Each pixel
should be sampled according to a regular grid (i.e. 2, 3, or 4 samples per pixel edge), the size
set by the raysPerPixel parameter in the Viewport class.

– Capture the RGB intensities of all the super-sampling ray bundles in the Film class, and
average them according to the total number of rays per pixel.

• Falloff for Lights:

– We want to model point lights as dimming with distance, and be able to adjust the factor by
which this extinction occurs. This factor is already included in the specification of each light,
and is read into the light class. Apply this falloff according to the absolute distance from the
light to the current location. Assume that all the light intensity values are measured at a
distance of one unit from the light. This should make it easy to apply falloff by measuring the
Pythagorean distance x2 + y2 + z2 = (dist)2 and scaling the light’s intensity appropriately.

– The Light class stores a falloff and a deaddistance. To calculate the color of a point light (the
only light affected by falloff), calculate a scaling factor consisting of: 1

(dist+deaddistance)falloff
,

and scale the illumination of the light by this amount.

2. Transformations:

• Linear transforms on spheres: Support rotate, translate, and non-uniform scaling transfor-
mations on the sphere. The scene parser will load these transforms from the scene file into the
scene for you.

• Ray transforming: Intersection tests with a transformed sphere is done by inverse transforming
the ray, then testing it for intersection with the untransformed sphere. Supporting this will allow
you to easily render ellipsoids.

• Note on Spheres: Since we support arbitrary transformations, all spheres can be considered
the unit sphere at the origin, with some compound transformation applied to them!
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• Transforming Normals: However, the normal vector for the surface at the point of intersection
is now calculated on the untransformed sphere, and needs to be transformed with an inverse
transformation to be properly oriented in world space. Please see Shirley section 6.2.2 for details
on transforming normals.

3. Shading:

• Calculate color according to the Phong reflection model. (See section 2)

• Take each light into account by summing the shading calculation over all lights, using the light’s
direction vector to calculate the necessary angles.

4. Directional Lights:

• Directional lights are like the sun - “infinitely” far away light sources with light rays moving in a
specific direction.

• Model lights as emitting an c = (r, g, b), with light rays (photons) moving in a direction ~d =
(x, y, z), allowing you to calculate the angles needed for shading.

5. Point Lights:

• Point lights emit light from a specific position ~p.

• Model lights as emitting an c = (r, g, b), with light rays (photons) moving in all directions from
~p = (x, y, z), allowing you to calculate the angles needed for shading.

6. Primitives and Material Properties:

• Support a transformed unit sphere.

• Give each sphere a color c = (r, g, b) where each component is in the range of (0.0, 1.0)

• Support the following material properties, each of which is a coefficient in the shading calculations:
ma, ml, ms, msm, msp
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2 Shading - Phong Reflectance Model

For this assignment you will use a slightly different formulation of the Phong Reflectance Model seen in
class to calculate the color of a pixel. Our formula for the Phong Reflectance Model, where ρ is the (r, g, b)
intensity of light sent towards the eye/camera, is:

ρ = maCA +
∑

Lights

mlCImax(Î · n̂, 0) + msSImax(−r̂ · û, 0)msp

S = (msm)C + (1−msm)(1, 1, 1)

Note: This formulation separates the “color” of the object from the components in the Phong formulation.
The equivalent parameters in the lecture slides are:

kA = maC

kL = mlC

kS = msS

σ = msp

I = (r, g, b) is the intensity of the infalling light.
A = (r, g, b) is the intensity of the ambient lightsource in the scene.
C = (r, g, b) is the “color” of the object.
S is the specular highlight color linearly interpolated according to msm

Î is the incidence vector from the intersection point to the light.
n̂ is the surface normal vector.
û is the vector along the (backwards) viewing ray, from the viewer to the intersection point.
r̂ is the reflectance vector, supplying the angle of reflected light.
ma, ml and ms are the ambient, lambertian and specular surface reflection properties of the material.
msm is the metalness of the material.
Colors multiply component-wise, thus CI = {CrIr,CgIg,CbIb}
Notice that all the vectors in this equation are unit length vectors. You need to normalize your vectors
to ensure this is true.

The material properties are:

• Ambient reflectance ma is always visible, regardless of lights in a scene. It multiplies directly with the
color c to calculate the ambient color of an object.

• Lambertian reflectance ml is matte reflection directly related to light falling onto the object from a
light source.

• Specular term ms is the mirror-like reflection of light off an object to the eye.

• Reflection term mr is the mirror property of the material, which attenuates the bounce ray.

• Metalness msm controls the color of the specular highlights. msm = 0 means the highlight is the color
of the lightsource, msm = 1 means the highlight is the color of the object.

• Specular Exponent (or Phong exponent) msp characterizes the smoothness (i.e., the sharpness of the
highlight spot) of a material, and forms an exponent in the calculation of the specular term.

Let’s consider the parts of this equation:
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2.0.1 Ambient Lighting/Shading

Light reflects around a room, illuminating objects uniformly from all sides. This ambient light mixes diffusely,
component by component, with the inherent color of the object.

2.0.2 Lambertian Lighting/Shading

We assume that surfaces are Lambertian, thus they obey Lambert’s Cosine Law :
=⇒ absorbed and re-emitted light energy c ∝ cos(θincidence), in other words c ∝ n̂ · Î

This states that the color of a point on a surface is independent of the viewer, and depends only on the
angle between the surface normal and the incidence vector (the direction from which light falls on the point).
We want the actual color to depend on both the color of the light source I = (r, g, b) and the material’s color
and lambertian reflectance, specified by mlC:

ρlambert = mlCI max(n̂ · Î, 0) (1)

Where ρlambert is an (r,g,b) intensity value.

Î is just the vector defining the light’s direction (pointing at the light).
n̂ needs to be calculated for the surface itself. Luckily this is easy for spheres, since the normal vector simply
points away from the center (see Section 2.4.1).

2.0.3 Specular Lighting/Shading

The Phong illumination model states that there may be a bright highlight caused by the light source on the
surface. This effect depends on where the viewer is. The effect is the strongest when the viewer vector and
reflectance vector are parallel.

ρspecular = msSImax(−r̂ · û, 0)msp (2)

The color, S, of this highlight is calculated by linearly interpolating between C and (1, 1, 1) according to
msm, the metalness. A metalness of 1 means that the specular component takes the color of the object,
and a metalness of 0 means that the specular component takes the color of the infalling light.
msp is the smoothness of the material - it affects how small and concentrated the specular highlight is.
û is calculated along the (backwards) viewing ray, from the viewer to the surface point.

r̂, the reflectance vector, is calculated using Î and n̂:

r̂ = −Î + 2(Î · n̂)n̂ (3)
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3 Tracing rays

Raytracing models the rendering process as shown in this illustration:

Figure 2: Raytracing

To be able to do this, you need the following components:

3.1 Sampling Viewport

Our viewport is a rectangle defined by its 4 coordinates in space, ~LL, ~LR, ~UL, ~UR. We use bilinear
interpolation to find a specific point on this rectangle, by varying u and v from 0 to 1 in appropriately sized
steps for each pixel.

~P (u, v) = (1− u)
[
(1− v) ~LL + (v) ~UL

]
+ (u)

[
(1− v) ~LR + (v) ~UR

]
(4)

3.2 Ray construction

Rays are completely defined by their starting position, ~e, and their direction, ~d, both of which are vectors.
The direction vector can be represented as the difference between a start and an end vector, giving us the
familiar linear interpolation formula, and is very useful for constructing rays from the camera to the image:

~r(t) = ~e+ t~d = ~e+ t(~p− ~e) (5)

3.3 Intersection Tests

We want to find the intersection between a sphere of radius r at position ~c and a ray from position ~e in
direction ~d. The sphere can be represented as an Implicit Surface of the form f(~p(t)) = 0. Finding the
parameter t value at which an intersection occurs means solving that equation. From Shirley, page 77, we

find the following formula for t, where ~d and ~e describes the ray and ~c and R described the sphere:

t =

(
1

~d · ~d

)[
(−~d) · (~e− ~c)±

√
(~d · (~e− ~c))2 − (~d · ~d)((~e− ~c) · (~e− ~c)−R2)

]
(6)
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You can implement this directly using operators on our matrix library’s objects, but you want to check
for the value of the discriminant (the contents of the square root) before you complete the calculation. If it
is negative, the square root will be imaginary, and no intersection occurred.

3.3.1 Normals to Spheres

A sphere’s outward normal, given its center and a point on its surface, is trivial to find. The normal is the
vector from the center to the point on the surface, normalized:

n̂ = Normalize(~p− ~c) = (~p− ~c)/R (7)
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4 Design Ideas

The following documentation will help you in this project:

• Chapters 3 and 14 in Shirley’s textbook (+ 2 and 6 for math background).

• Sid’s “How to raytrace” guide http://fuzzyphoton.tripod.com/howtowrt.htm. See the Links and
Reference pages on this site as well.

• Raytracer Design http://inst.eecs.berkeley.edu/~cs184/sp09/resources/raytracing.htm

• Intersection Tests http://www.realtimerendering.com/intersections.html

4.1 Overall Raytracer Design

In the framework we supply the start and the end phases of the raytracer. We supply something that
generates points on the viewport from which you can construct rays, and we supply the Film aggregator to
which you write color values for pixels at the end of the raytracing cycle. It is up to you to write the parts
in between. Let’s consider a reasonable design for a raytracer:

Figure 3: Suggested design

Thus, we suggest that your raytracer consists of the following:

• Sampler:

– Generates points in world space by using Bilinear Interpolation across viewport.

– Define your viewport as 4 points in your scene (aka 4 points in world space), known as LL, LR,
UL, UR.

– Calling sampler.getPoint() returns the next point to raytrace.

• Raytrace method:
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– Rather than making a class for this, write a traceRay method responsible for taking a ray and
returning a color.

– This method will check for intersections of the ray with objects in the scene.

– This method will calculate shading for object which was intersected.

• Scene and Geometry:

– The Scene will store all the geometry in the world, and expose a method to do intersection tests
on them.

– For now, store geometry (so-called primitives) in a vector on this object.

– Support the intersect(ray) method on a primitive.

– Geometry / Spheres:

∗ Spheres are characterized by a center and a radius. Store these as a vec4 and a float. (We’ll
be using homogeneous coordinates.)

∗ Write a Primitive class that supports the intersect(ray) method. Make Sphere a subclass.

• Render method: Since something needs to wire this process together, write a render method that
gets points from the sampler, traces these points, and saves the pixels to the Film class.

IMPORTANT: We have supplied classes for Color, Ray, Sampled Point and Material in algebra3.h,
please use these classes to avoid reinventing the wheel. They define many useful operators.

We suggest that you work first to render primitives without doing any shading or bouncing - just return
white if you intersect something, else return black. Next, implement Phong shading. Once this is working,
add recursive bounce rays to the raytracer.

5 Submission

We will supply you with 5 scene files. You need to render each of these 5 scenes, and they should correspond
with the results we show on the assignment page.

5.1 Extra Credit

• Allow for area lights. Choose several random points on the light and trace multiple rays there.

• Implement more primitives - triangles, triangle meshes, quadrics, torii, superquadrics. (See Sid’s guide
for solving equations of degree 3 and 4.)

• Implement Refraction for extra credit.

• Implement an acceleration structure, such as a bounding box hierarchy or a kd-tree.
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