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A Switching-Coupled Backend for Simultaneous
Localization and Dynamic Object Tracking

Yuzhen Liu , Jiacheng Liu , Yun Hao, Bowen Deng, and Ziyang Meng

Abstract—Simultaneous localization and object tracking
(SLOT) is essentially important for autonomous systems.
Tightly-coupled and loosely-coupled methods are two commonly
used back-end frameworks for the state-of-the-art solutions
of SLOT problem. However, some inherent limitations exist
in these two frameworks. In particular, the tightly-coupled
method is usually disturbed by the poor observations of some
dynamic objects, and the performance of a loosely-coupled
one completely depends on that of classical static simultaneous
localization and mapping (SLAM) process. Motivated by these
observations, we propose a novel switching-coupled back-end
solution and theoretically derive its concrete form using probability
representation. Based on the switching strategy and the proposed
objects classification criteria where the object uncertainty,
observation quality and prior information are jointly considered,
the dynamic objects’ states are flexibly coupled with camera’s
state and static landmarks’ states. For implementation, the
measurement constraints of “good” dynamic objects and static
landmarks are simultaneously leveraged to perform SLAM and
good object tracking (SLAMGOT) process, and those of “bad”
objects are used for bad object tracking (BOT) process based
on the obtained camera state. Extensive evaluations on synthetic
scenes, KITTI datasets and real-world experiments demonstrate
the performance of the proposed method.

Index Terms—Visual tracking, localization, SLAM, probability
and statistical methods.

I. INTRODUCTION

S IMULTANEOUS localization and object tracking is an
essential task in many applications for robotics and aug-

mented reality [1]–[17]. For example, in autonomous driving,
vehicles need to achieve self localization and perceive their
surrounding moving cars, so as to avoid obstacles and remain
safe [13]. On the other hand, for practical applications of aug-
mented reality, dynamic targets need to be explicitly tracked in
3D space to enable interactions of virtual instances with real
moving objects [11].
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From technical perspective, SLOT algorithms are roughly
classified into tightly-coupled and loosely-coupled solutions. In
particular, in the tightly-coupled solutions, all the states of cam-
era, dynamic objects and static landmarks are tightly coupled,
and all the measurement equations are established at one time for
the state estimation of the system. The concept of “simultaneity”
is emphasized since the two problems of SLAM [18], [19] and
dynamic object tracking (DOT) [3] are jointly solved in a same
posterior estimation framework. In contrast, loosely-coupled
methods usually decouple the considered SLOT problem into
two separate processes, one classical SLAM process and the
other DOT process [12]. For implementation, SLAM process is
first performed to estimate the states of camera and static land-
marks, and then DOT process is performed based on the obtained
camera poses. Compared with the tightly-coupled methods, the
loosely-coupled ones are computationally more efficient since
the estimation processes are two-step and each step is relatively
independent [13]. However, such a solution is actually not
optimal since all the measurements from dynamic objects are
directly ignored in the first process, and it is essentially a classical
SLAM solution for the problem of camera state estimation.
Therefore, loosely-coupled methods cannot work properly in
the environments where the traditional SLAM process is prone
to failure, e.g., automatic driving scene where the front vehicle
obstructs the view. In contrast, the tightly-coupled methods
achieve better estimation accuracy in theory, while significant
computing resources are required especially when lots of track-
ing objects exist. More importantly, since all the states of camera
and dynamic objects are tightly interrelated, the estimations of
camera ego-motion and dynamic objects’ motion may interfere
with each other in the environments where some dynamic objects
exist with poor observation (e.g., moving fast or being far away
from the camera) and without proper prior information (e.g.,
scale and motion model) [5].

Motivated by the observation that loosely-coupled and tightly-
coupled solutions have their respective limitations, we propose
a switching-coupled back-end method in this paper in order
to achieve a robust and accurate simultaneous localization and
object tracking. The contributions of this paper are threefold.
First, a novel switching-coupled back-end solution for SLOT
is proposed. Compared with the tightly-coupled solutions [6]–
[10], the proposed algorithm reduces the influence of the mea-
surements from “bad” dynamic objects thanks to the proposed
objects classification criteria and the switching strategy. On the
other hand, compared with the loosely-coupled solutions [11]–
[16], the proposed algorithm allows leveraging the measurement
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constraints of “good” dynamic objects to improve the accuracy
and robustness of the system. Second, we propose a reasonable
and effective objects classification strategy, where the object un-
certainty, observations quality and prior information are jointly
considered. Third, extensive evaluations on synthetic scenes,
KITTI datasets and real-world experiments demonstrate that the
proposed method achieves better accuracy and robustness even
compared with the state-of-the-art approaches.

The rest of this paper is organized as follows. In Section II,
the related works are discussed. The notations and the problem
formulation are given in Section III. Section IV introduces
the proposed switch-coupled backend and objects classification
criteria. In Section V, implementation details and experimental
results are presented and the conclusions are finally summarized
in Section VI.

II. RELATED WORKS

The authors of [11]–[16] focus on loosely-coupled solutions
for SLOT problem. In particular, C. Wang et al. [12] first decou-
ple the solution of SLOT problem into two different estimators
in the filter-based framework, one for static SLAM problem
and the other for object tracking problem. P. Li et al. [13] use
stereo vision to realize simultaneous localization and moving
vehicles tracking in autonomous driving scene. The classical
SLAM process is first performed to estimate the camera ego-
motion by leveraging the observations of static landmarks. Then,
combining with the prior scale information of vehicles, the pose
and motion parameters of the moving vehicles are estimated via
a separate batch optimization. In [14], K. Qiu et al. propose
a loosely-coupled method for 3-D motion tracking of dynamic
objects. In particular, an existing visual-inertial odometry (VIO)
algorithm (VINS-mono [20]) is first performed to estimate the
robot states. Then, relative pose without scale factor between the
object and robot is calculated via a region-based bundle adjust-
ment (BA). The unknown scale factor is finally recovered by a
signal correlation-based estimation method. While this method
displays impressive ability to track motion over a sliding window
of images, the key assumption that the robot self-motion is
completely unrelated to the object motion is actually not always
guaranteed in practical tracking applications. In [16], H. Lim et
al. employ a loosely-coupled method to achieve simultaneous
localization and pedestrian tracking. In particular, a monocular
visual odometry (VO) is proposed to estimate the up-to-scale
camera pose, and then the measurement constraints of pedestrian
with prior height information are leveraged to recover the scale
factor.

On the other hand, tightly-coupled methods have been also
proposed in [6]–[10]. In particular, K. Lin et al. [9] realize a
simultaneous localization, mapping and moving object tracking
within the extented Kalman filter (EKF) framework based on a
stereo vision. In [7], M. Chojnacki propose a tightly-coupled
method based on light bundle adjustment (LBA), where the
case of monocular vision is considered and the moving object
is treated as a particle with constant global velocity. In [6],
K. Eckenhoff et al. propose a tightly-coupled method based
on multi-state constraint Kalman filter (MSCKF) [18], where

three motion models for the dynamic objects are proposed
and the system observability is correspondingly analyzed un-
der these three different motion assumptions. In [10], S. Yang
propose a dynamic SLAM algorithm using monocular vision
in a tightly-coupled optimization-based framework, denoted by
CubeSLAM, where a single image 3-D cuboid detection ap-
proach is proposed based on the estimation of vanishing points.

III. NOTATIONS AND PROBLEM FORMULATION

A. Notations

We consider four reference frames in this paper, including
the world frame {w}, the camera frame {c}, the robot body
frame {b}, and the object frame {q}. Without loss of generality,
the robot body frame {b} is assumed to be coincident with the
camera frame {c}. For camera state, xi = {wTi

c} denotes the
camera pose in the world frame at time i, where wTi

c ∈ SE(3).
For the state of dynamic object, we use oq

i = {wTi
q,

wvi
q} to

represent the state of the q-th object at time i containing the
6-DoF pose wTi

q ∈ SE(3) and the linear speed wvi
q ∈ R3 both

in the world frame. Also, we use q = 0 to denote the static
background. For the landmark state, jlq = {qpj} denotes the
position of j-th landmark belonging to the q-th object in the
object frame, where qpj ∈ R3. For observations, jzqi denotes
the location of the j-th feature belonging to the q-th object on
the image plane at time i. In addition, we define the follow-
ing sets:Xk = {xi}i=0:k,Ok = {Oq

k}q=1:N ,Oq
k = {oq

i }i=0:k,
l = {lq}q=0:N , lq = {jlq}j=1:Nq

, Zk = {Zq
k}q=0:N , Zq

k =
{zqi }i=0:k, zqi = {jzqi }j=1:Nq

, where time k denotes the current
time instant, Xk denotes the camera states at all times, Ok and
Oq

k respectively represent the states of all objects and those of
the q-th object at all times,N is number of the dynamic objects,
l and lq respectively represent the states of all landmarks and
those of the landmarks belonging to the q-th object, Nq ∈ N+

represents the number of landmarks belonging to the q-th object,
Zk and Zq

k respectively represent the feature observations of all
objects and those of the q-th object at all times, and zqi denotes
the feature observations of the q-th object at time i.

B. Problem Formulation

Consider a robot equipped with a camera moving in an un-
known dynamic environment. The inputs of the SLOT process
are the measurements from camera, and the outputs are both
camera pose and the environment map, together with the poses
and velocities of dynamic objects. Using probabilistic repre-
sentation, the objective for the considered SLOT problem is to
maximize the following posterior,

p(Xk,Ok, l|Zk). (1)

IV. SWITCHING-COUPLED SOLUTION FOR SLOT

In this section, we detail the proposed switching-coupled
solution for the considered SLOT problem. In particular, we first
derive the concrete probability form of the proposed switching-
coupled backend, and then a core objects classification criteria
used in our algorithm is given.
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A. Probability Derivation for Switching-Coupled Backend

Before introducing the proposed method, we briefly review
two existing popular back-end frameworks for the state-of-the-
art solutions of SLOT problem, i.e., tightly-coupled method and
loosely-coupled one. In the tightly-coupled method, the camera
state is related to the measurements of all dynamic objects and
static landmarks. Therefore, the performance of the system will
be greatly affected if some dynamic objects exist with poor
observation quality and without enough prior information (see
Section I). On the other hand, in the loosely-coupled method, a
key artificial assumption is imposed,

Assumption 1: The posteriors of the camera state and the
static landmarks’ states are independent of the states of dynamic
objects and landmarks, and also independent of their measure-
ments, i.e., p(Xk, l

0|O1:N
k , l1:N ,Zk) = p(Xk, l

0|Z0
k).

Under Assumption 1, the SLOT problem is decomposed into
two separate posteriors, one for the classical SLAM process and
the other for the dynamic object tracking process [12]. However,
the loosely-coupled method may not obtain the optimal result
for the camera state estimation since all the measurements from
dynamic objects are directly ignored according to Assumption 1.
Moreover, the performance is unsatisfactory in the environments
where the observation quality of static background is inferior,
e.g. a vehicle on a bridge or inside a tunnel occluded by other
vehicles driving alongside and failing to track static structure [8].

Motivated by these observations, in this section, we propose
a novel switching-coupled back-end method, where dynamic
objects are divided into “good” ones and “bad” ones. By im-
posing a more practical assumption that the camera state are
independent with the measurements of “bad” dynamic objects,
the considered SLOT problem can be also decomposed into two
separate posteriors for practical applications, and the camera
state is more likely to maintain an accurate and robust estima-
tion compared with the pure tightly-coupled or loosely-coupled
back-end solutions.

We divide the states of dynamic objects into “good” ones
and “bad” ones, i.e., Ok = {O′

k,O
′′
k}, and the measurements

and landmarks’ states are correspondingly divided, i.e., l =
{l′, l′′, l0}, Zk = {Z′

k,Z
′′
k,Z

0
k}, and zi = {z′i, z′′i , z0i }, where

the superscripts “′” and “′′” denote “good” and “bad,” respec-
tively. Before preceding on, the following assumption is first
imposed.

Assumption 2: The posteriors of the camera state, the states
of static landmarks, and the states of good dynamic objects and
landmarks, are independent of the states of bad dynamic objects
and landmarks, and also independent of their measurements, i.e.,
p(Xk,O

′
k, l

′, l0|O′′
k, l

′′,Zk) = p(xk,O
′
k, l

′, l0|Z′
k,Z

0
k),

Remark 1: Assumption 2 is a practical assumption due to
the following reasons: (i) compared with the tightly-coupled
solution, the states and the measurements of bad dynamic ob-
jects will not influence the state estimations of camera, static
landmarks and good dynamic objects, and the robustness and
accuracy of the whole system can be therefore improved. (ii)
Compared with the loosely-coupled solution based on Assump-
tion 1, Assumption 2 allows the estimation of camera state
leveraging the measurements of good dynamic objects, instead

of directly ignoring all the measurements from dynamic ones.
Such a property is quite helpful in the situations that the classical
SLAM are prone to failure, e.g., texture less or automatic driving
scene where the front dynamic vehicle obstructs the view.

Using the conditional probability theorem, the posterior (1)
is derived as p(Xk,Ok, l|Zk) = p(Xk,O

′
k, l

′, l0|O′′
k, l

′′,Zk) ·
p(O′′

k, l
′′|Zk). It then follows from Assumption 2 that

p(Xk,Ok, l|Zk) = p(Xk,O
′
k, l

′, l0|Z′
k,Z

0
k) · p(O′′

k, l
′′|Zk).

(2)
According to (2), the posterior (1) is decomposed into two
separate posteriors, one simultaneous localization, mapping and
good objects tracking (SLAMGOT) process, and the other bad
objects tracking (BOT) process. In particular, for the SLAMGOT
part, we can obtain

p(Xk,O
′
k, l

′, l0|Zk) =

∫ ∫
p(Xk,Ok, l|Zk)dl

′′dO′′
k

=

∫ ∫
p(Xk,O

′
k, l

′, l0|Z′
k,Z

0
k)p(O

′′
k, l

′′|Zk)dl
′′dO′′

k

= p(Xk,O
′
k, l

′, l0|Z′
k,Z

0
k). (3)

For the BOT part, we can obtain

p(O′′
k, l

′′|Zk) =

∫ ∫ ∫ ∫
p(Xk,Ok, l|Zk)dl

0 dl′dO′
kdXk

=

∫ ∫ ∫ ∫
p(Xk,O

′
k, l

′, l0|Z′
k,Z

0
k)

· p(O′′
k, l

′′|Zk)dl
0 dl′dO′

kdXk

=

∫
p(O′′

k, l
′′|Zk) ·

Camera state estimation︷ ︸︸ ︷
p(Xk|Z′

k,Z
0
k) dXk,

(4)
where the camera state estimation term is the marginal dis-
tribution of the joint distribution of (3), i.e., p(Xk|Z′

k,Z
0
k) =∫ ∫ ∫

p(Xk,O
′
k, l

′, l0|Z′
k,Z

0
k)dl

0dl′dO′
k.

For implementation, the SLAMGOT process is first per-
formed according to (3), and we have the following maximum-
a-posteriori (MAP) estimation,

(Xk,O
′
k, l

′, l0)∗MAP = argmax
Xk,O′

k,l
′,l0
p(Xk,O

′
k, l

′, l0|Z′
k,Z

0
k)

= argmax
Xk,O′

k,l
′,l0

k∏
i=0

p(z0i |xi, l
0)

k∏
i=0

p(z′i|xi,o
′
i, l

′)

·
k∏

i=1

p(o′
i|o′

i−1) · p(x0,o
′
0, l

′).

(5)
Then, the BOT process is performed based on the the camera
states X̂k calculated in the SLAMGOT process,

(O′′
k, l

′′)∗MAP = argmax
O′′

k,l
′′
p(O′′

k, l
′′|Zk, X̂k)

= argmax
O′′

k,l
′′

k∏
i=0

p(z′′i |x̂i,o
′′
i , l

′′)
k∏

i=1

p(o′′
i |o′′

i−1) · p(o′′
0, l

′′).

(6)
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Algorithm 1: Threshold-Based Evaluation Strategy.
Input: ψΣ, ψO, ψA of the object.
Output: label of the object: Good or Bad.

if ψΣ ∈ [0, th1) or ψO ∈ [0, th2) or ψA ∈ [0, th3) then
return Bad;

else
Ω = βΣ · ψΣ + βO · ψO + βA · ψA, where βΣ, βO and
βA are three balance factors;
if Ω < th4 then

return Bad;
else

return Good;
end if

end if

Finally, under Gaussian distribution assumption, the maximum-
a-posteriors of (5) and (6) can be converted into the nonlinear
least square problems and further solved by Gauss-Newton
method or Levenberg-Marquardt method. The details can be
found in [7], [13].

B. Objects Classification Criteria

We note that in order to effectively perform the proposed
switching-coupled backend, it is crucial to classify the observed
dynamic objects into good ones and bad ones. We therefore intro-
duce an effective classification criteria in which three practical
evaluation factors are jointly considered, i.e., object uncertainty
ψΣ, observation qualityψO and prior informationψA, and a fast
threshold-based evaluation strategy E(ψΣ, ψO, ψA) described
in Algorithm 1 is employed.

Object uncertainty ψΣ. In fact, re-projection constraints of
the features belonging to an object are crucial for state estimation
of the object. For the observation of the j-th landmark belonging
to the q-th object at time i, we have

jzqi = π(cTi
w
wTi

q
qpj) = π(

cTi
w
wpi

qj), (7)

where π denotes camera projection function and wpi
qj repre-

sents the position of the landmark in the world frame at time
i. Here, we omit the transformation between homogeneous
and non-homogeneous coordinates. Therefore, under Gaussian
distribution assumption, mean trace of covariance matrices of the
states of all the landmarks belonging to the object is leveraged to
approximately characterize the object uncertainty. In particular,
for the q-th object at time i,

ψΣ =

∑
j∈Mqi

1/tr(jwΣ
q
i )

NMqi

, (8)

where tr(·) denotes the trace of a matrix, and j
wΣ

q
i represents

the covariance matrix of wpi
qj ,Mqi denotes the set of landmarks

belonging to the object observed at time i, and NMqi
represents

the number of landmarks inMqi . According to (7), jwΣ
q
i actually

reflects both the uncertainty of the landmark’s position in the
object frame and the uncertainty of the object’s pose in the
world frame. In the filter-based frameworks, the covariances of

landmarks’ positions and objects’ poses can be directly obtained,
and therefore the calculation of ψΣ is direct and simple. On the
other hand, in the optimization-based frameworks, j

wΣ
q
i should

be extracted from the system information matrix from the last
state estimation step while the computation burden is heavy.
In order to simplify calculation, we use optimization times to
approximately reflect the object uncertainty. In particular, ψΣ is
calculated through the following formula,

ψΣ =

∑
j∈Mqi

1(jBq
i > B1)

NMqi

· 1(Bq
i > B2), (9)

where jBq
i and Bq

i represent the number of times that the
landmark state and the object state have been optimized before
time i, respectively, B1 and B2 denote two thresholds of the

optimization times, and the function 1(P ) = {
1, P is true

0, otherwise
.

Observation quality ψO. For the q-th object at time i, its
observation quality ψO is defined as

ψO =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sqi , NMqi
∈ [Nth1,+∞)

sqi ·
NMqi

−Nth2

Nth1 −Nth2
, NMqi

∈ [Nth2, Nth1)

0, NMqi
∈ [0, Nth2),

(10)

where Nth1 and Nth2 denote two thresholds of the number of
observed landmarks for an object, respectively. In addition, sqi

represents matching similarity, i.e., sqi =
∑

j∈Mqi
1(θj<γ)

NMqi

· Pqi ,

where θj reflects matching degree between the j-th landmark
and its corresponding observation (e.g., descriptor distance for
descriptor-based feature matching methods and end-point error
(EPE) for optical flow tracking methods), γ is a matching
threshold, Pqi represents tracking confidence of the object, and
αl and αq are balance factors.

Prior information ψA. Last but not least, the prior infor-
mation of an object is important for state estimation, including
scale information s, motion model m, and prior pose informa-
tion p measured by other approaches (e.g., GPS, laser range
finder, and deep-learning-based 3D object detection methods).
For example, if the scale information of the objects is known,
their 2D measurement equations can be accurately established.
In the second place, for the case when GPS measurements
are available, corresponding GPS measurement constraints for
these active objects can be leveraged to aid the state estimation
of the whole system. In particular, ψA is defined as ψA =
αsCs + αmCm + αpCp, where αs, αm and αp are weighting
factors, and Cs, Cm and Cp reflect the accuracies of these three
kinds of prior information.

Remark 2: If all the dynamic objects are labeled as “good,”
the switching-coupled method is equivalent to the tightly-
coupled one. On the other hand, if all dynamic objects are
labeled as “bad,” the switching-coupled method becomes the
loosely-coupled one. In this sense, the tightly-coupled and
loosely-coupled solutions are two special cases of the proposed
switching-coupled back-end method.
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Fig. 1. Overview of the proposed SLOT system based on switching-coupled
backend.

Remark 3: The label of a dynamic object is switchable at
different time instant. For example, a dynamic object is labeled
as “bad” at the current time, but it can also be labeled as
“good” in the future due to the improved observation quality,
reduced uncertainty or new added prior information, and then
their measurement constraints are used for SLAMGOT process.

V. IMPLEMENTATION AND RESULTS

In this section, we first give the implementation details, where
a complete SLOT system based on the proposed switching-
coupled backend is proposed. Then, we detail the evaluation
results of the proposed method on synthesized scenes, KITTI
datasets [24] and real-world experiments.

A. Implementation

In order to evaluate the proposed switching-coupled back-end
method, we construct a monocular SLOT system based on ORB-
SLAM2 [19].The pipeline is illustrated in Fig. 1. For each incom-
ing frame, semantic bounding boxes of objects are detected using
YOLOv3 [22], and ORB features [19] are extracted. According
to semantic information, we distinguish the regions of dynamic
and static in the image. Then, dynamic observation composed
by 2D bounding boxes of objects and their features is associated
with dynamic map composed by 3D objects and their land-
marks through discriminative scale space tracker (DSST) [23]
and feature matching. After that, dynamic objects composed
by dynamic observation, dynamic map and prior information,
are divided into “good” ones and “bad” ones according to the
proposed objects classification criteria (Section IV-B). Next,
SLAMGOT solver is first performed to optimize camera state,
static landmarks’ states and good objects’ states, and then, BOT
solver is performed to optimize the states of bad objects based
on the obtained camera state calculated by SLAMGOT solver.
In particular, we utilize the g2o [25] framework to implement
the SLAMGOT and BOT solvers according to Section V-B. All
the experiments have been run on a laptop with an i7-8750H
CPU and a GTX 1060 Max-q GPU, where the GPU is only used
for implementing YOLOv3.

B. Synthesized Scenes

A simulation environment is built for analysis, where an active
tracking robot and two passive dynamic objects are included.
They all move with 3D motions. In particular, the tracking robot
is equipped with a monocular camera with an image resolution
of 640× 480. Each dynamic object is treated as a cuboid (its
size is set to a common car size, i.e., length = 3.6 m, width
= 1.6 m, height = 1.5 m) and a motion model of constant
global linear velocity [6] is used. The features of the objects
lie on the surface of the boundary and the static features are
simulated around the motion space of the active robot. We
simulate four different practical tracking cases: (i) ideal-case:
more than 400 static landmarks and 60 dynamic landmarks
belonging to an object are observed in each frame, and the feature
observation is interfered by Gaussian white noise with mean
value of 1 pixel; (ii) static-bad-case: within a certain period of
time, the number of matched static features is very few (less than
15 in our implementation). In practice, this case often occurs in
the automatic driving scene where the front vehicle obstructs the
view. (iii) dynamic-bad-case: within a certain period of time, the
observations of 50 features belonging to object 1 are interfered
by Gaussian white noise with mean value of 5 pixel, and the
prior information including scale and motion model of object 1
is unknown. (iv) both-bad-case: within different time periods,
the aforementioned cases (ii) and (iii) occur successively, and
the specific parameter configuration is similar with the ones of
cases (ii) and (iii).

The proposed switching-coupled method is compared against
the tightly-coupled method and the loosely-coupled method
based on Assumption 1 [12]. The performance metrics used are
the root mean squared errors (RMSE) of the absolute trajectory
error (ATE) and the translational relative pose error (T.RPE),
where the results of camera (robot) ego-motion, object 0 motion
and object 1 motion are recorded, respectively. In addition, we
also evaluate the running time consumption of each method,
where each optimizer runs for 15 iterations. All the quantitative
results are given in Table I, and some qualitative results are
illustrated in Fig. 2. In summery, we can see that for most of
cases the proposed method achieves the best performance in
terms of ATE and T.RPE. Especially in cases (ii), (iii) and (iv),
tightly-coupled and loosely-coupled methods almost fail due to
the different kinds of challenges, while the proposed method
can still achieve accurate pose estimations for the camera and
dynamic objects. In addition, we can see that the mean time
consumption of the proposed method is close to that of the
loosely-coupled one, which indicates that the proposed method
has a comparable computational efficiency and better robustness
and accuracy.

C. KITTI Datasets

The proposed method is compared with state-of-the-
art systems including ORB-SLAM2 [19], DynaSLAM [1],
DynSLAM [2], SLAMMOT [12], CubeSLAM [10] on KITTI
datasets. In particular, we demonstrate the strength of our
method in 10 representative raw sequences, in which multiple
dynamic cars can be observed over a long time and the ground
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TABLE I
QUANTITATIVE COMPARISON ON SYNTHETIC SCENES

“(·)/(·)/(·)/” represent the corresponding results of camera, object 0 and object 1, respectively.

TABLE II
EGO MOTION COMPARISON ON KITTI SEQUENCES

“*” stands for algorithm failure, and “-” denotes that the algorithm is not evaluated due to the missing preprocessing data.

Fig. 2. The estimated trajectory comparisons between the proposed switching-
coupled backend with the tightly-coupled and loosely-coupled ones in case (ii)
and case (iii). The total path lengths of the robot, object 0 and object 1 are
255.6 m, 142.4 m and 151.6 m, respectively. The circle and diamond denote the
start and end of a trajectory, respectively. The subscripts “gt” and “est” denote
the ground truth and the estimation result, respectively.

truth of camera poses are provided by GPS/INS. The prior scale
of vehicles and a nonholonomic wheel motion model [13] are
used in SLAMMOT, CubeSLAM and the proposed system.
Table. II shows the quantitative results of camera ego-motion
after scale adjustment and Fig. 3 shows a visualized sample of
the proposed method. We can see that for most of sequences, the
proposed method has the minimum translation error compared
with the other methods. In particular, ORB-SLAM2 is based

Fig. 3. A visualized sample of the proposed SLOT system on KITTI raw
datasets. The solid and dotted line boxes in the image represent “good” objects
and “bad” objects labeled by the proposed objects classification criterion,
respectively.

on a static world assumption and therefore the performance is
degraded in dynamic environments. DynaSLAM is a dynamic
SLAM system which removes dynamic features by using mask
R-CNN [21] to generate object masks, while it cannot estimate
the trajectories of dynamic objects. Note that DynSLAM is a
stereo SLOT system which maintains a dense dynamic map. The
underlying sparse scene flow estimation is based on a frame-to-
frame visual odometry libviso, which leads to remarkable drift
over long travel distances (e.g., 0926-0014) [11]. CubeSLAM
is a tightly-coupled monocular SLOT system, and thus the poor
measurements of some dynamic objects negatively affect state
estimation of the system. SLAMMOT is a parallel SLAM and
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Fig. 4. The indoor experimental setup and an OptiTrack motion capture
system.

Fig. 5. Snapshots taken during the indoor experiments. (a) The object is
initially labeled as “bad” due to the high uncertainty. (b) Lots of static features
are lost because of the sudden rotation of the camera and the occupying the part
field of vision by smooth walls, while the object is labeled as “good”. (c) The
object is labeled as “bad” due to the bad observation quality.

object tracking method [12]. We realize it by using the same
frontend in the proposed SLOT system, and only the backend
is replaced by a loosely-coupled one. Therefore, it depends on
the quality of the returned static map and may perform poorly in
environments with insufficient number of reliable static structure
(e.g., 0926-0032 and 0926-0036). In contrast, the proposed
method achieves comparable or even better results than all the
previous methods thanks to the proposed switching-coupled
strategy and objects classification criteria.

D. Real-World Experiments

1) Indoor: The indoor experimental setup is displayed in
Fig. 4(a). Active tracking robot is a pioneer robot equipped with
a Mynteye binocular camera D1000-IR-120,1 and the passive
object is an off-road toy vehicle equipped with a cuboid shell.
Meanwhile, an OptiTrack2 motion capture system as shown in
Fig. 4(b) is used to record the three-dimensional positions as
the groundtruth.

We compare the proposed switching-coupled backend against
the tightly-coupled and loosely-coupled methods. To compare
fairly, we replace the backend in the proposed SLOT system
with the ones of loosely-coupled and tightly-coupled, while
the frontend remains unchanged. Fig. 6 shows the trajectory
comparisons among these three methods in 3D space. Snapshots
taken during the experiments are shown in Fig. 5. We can see that
the translation error of the proposed method is much smaller than
the ones of the tightly-coupled and loosely-coupled algorithms.
Note that the trajectory of the loosely-coupled method is very
messy within a period of time. The reason may be that the
sudden rotation of the camera and the occupying the part field

1http://www.myntai.com/cn/mynteye/
2http://www.optitrack.com/

Fig. 6. The trajectory comparisons in indoor experiments. The proposed
switching-coupled backend is compared with the ones of tightly-coupled and
loosely-coupled. For clear observation, Z-coordinate of the camera position is
manually shifted upward by 1.5 m.

Fig. 7. The outdoor experimental setup.

of vision by smooth walls lead to the matching failure of lots of
static features (see Fig. 5(b)). However, the observation quality
of the passive object is good at the same time, and the other
two methods can therefore work properly. This indicates that
dynamic object tracking can also benefit the classical SLAM as
long as a proper back-end method is selected.

2) Outdoor: The outdoor experimental setup is displayed in
Fig. 7. The active tracking robot and the passive object are two
tracer unmanned ground vehicles (UGVs), respectively. A RTK-
GPS is attached to the passive object to allow for groundtruth
comparison. Based on the setup, we collect an outdoor dataset
with a total length of 364.9 m (object’s GPS trajectory) on the
campus of Tsinghua University. The proposed SLOT system is
also compared with ORB-SLAM2 and CubeSLAM. In order
to get an absolute scale for these three monocular systems, the
camera height is provided to scale the map. The similar method
is also used in [10]. The paths of the tracking robot, passive
object, and RTK-GPS are overlaid onto satellite imagery as
shown in Fig. 8. We can see that ORB-SLAM2 and CubeSLAM
almost fail on this outdoor dataset. The reason for ORB-SLAM2
may be its static scene assumption. For CubeSLAM, the system
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Fig. 8. Top-down view of the trajectories generated by the proposed method,
ORB-SLAM2 and CubeSLAM. The circle and triangle denote the start of the
trajectories of camera and object, respectively, and diamond denotes the end of a
trajectory. There is a missing part of the GPS groundtruth due to the transmission
interference by the occlusion of nearby big trucks. .

performance decreases sharply once the object observation is
poor due to the tightly-coupled backend. On the other hand,
it only optimizes the object state in keyframes, which makes
that lots of object information in normal frames are ignored and
leads to over-dependent on the results of 3D object detection
from the frontend. In contrast, the proposed method can work
properly and maintain correct camera and object trajectories,
which indicates that the proposed method has better robustness
and accuracy.

VI. CONCLUSION

In this letter, we propose a novel switching-coupled back-end
solution for simultaneous localization and object tracking prob-
lem. Based on the switching strategy and objects classification
criteria, the proposed method reduces the influence of “bad”
dynamic objects and leverages the measurement constraints of
“good” dynamic objects to improve the performance of the
overall system. Simulations and experiments demonstrate that
the proposed method achieves better accuracy and robustness
even compared with the existing state-of-the-art systems do.
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